Compare commits

..

88 Commits

Author SHA1 Message Date
4ec6a4e493 Feat: Remove the code that outputs jsonschema from the webhook.#10427 (#12297)
### What problem does this PR solve?

Feat: Remove the code that outputs jsonschema from the webhook.#10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-29 17:46:05 +08:00
2d5ad42128 docs: add optional proxy arguments for Docker build instructions (#12272)
### What problem does this PR solve?

Adds instructions for passing optional HTTP/HTTPS proxy arguments when
building the Docker image.

This helps users behind a proxy to successfully build the RAGFlow Docker
image without modifying the Dockerfile itself.

### Type of change

- [x] Documentation Update
2025-12-29 17:43:55 +08:00
dccda35f65 Fix: S3 parameter error (#12290)
### What problem does this PR solve?

Fix: S3 parameter error

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-29 17:38:01 +08:00
d142b9095e Fix: pick message to delete (#12295)
### What problem does this PR solve?

Pick unforgotten message when not found forgotten message to delete.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 17:10:46 +08:00
c2c079886f Revert "Feat: github connector" (#12296)
Reverts infiniflow/ragflow#12292
2025-12-29 17:06:40 +08:00
c3ae1aaecd Feat: Gitlab connector (#12248)
### What problem does this PR solve?

Feat: Gitlab connector
Fix: submit button in darkmode

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-29 17:05:20 +08:00
f099bc1236 Feat: github connector (#12292)
### What problem does this PR solve?

Feat: github connector

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-29 16:57:20 +08:00
0b5d1ebefa refactor: docling parser will close bytes io (#12280)
### What problem does this PR solve?

docling parser will close bytes io

### Type of change

- [x] Refactoring
2025-12-29 13:33:27 +08:00
082c2ed11c helm: improvements (#10976)
- fix(ingress): use root context ($) for fullname inside range
- fix(statefulset): use updateStrategy instead of strategy for
mysql/infinity/elasticsearch/opensearch
- feat(mysql): add external mode via mysql.enabled=false with env
MYSQL_HOST/PORT and MYSQL_USER (default root)
- feat(minio/redis): add external mode via *.enabled=false with env
*_HOST/PORT
- feat(global): add global.repo for image registry prefix and
global.imagePullSecrets for all pods
- feat: helper template ragflow.imageRepo to render image with global
repo
- chore(env): allow optional MINIO_HOST, MINIO_PASSWORD, REDIS_PASSWORD
(remove required); keep MYSQL_PASSWORD required
- docs(helm): add helm/README.md and update usage
- refactor(images): apply global repo to all components and init
containers
- test: align test busybox image with global repo helper

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-12-29 13:29:47 +08:00
a764f0a5b2 Feat: Add Asana data source integration and configuration options (#12239)
### What problem does this PR solve?

change: Add Asana data source integration and configuration options

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-29 13:28:37 +08:00
Rin
651d9fff9f security: replace unsafe eval with ast.literal_eval in vision operators (#12236)
Addresses a potential RCE vulnerability in NormalizeImage by using
ast.literal_eval for safer string parsing.

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-29 13:28:09 +08:00
fddfce303c Fix (sdk): ensure variables defined in rm_chunk API (#12274)
### What problem does this PR solve?

Fixes a bug in the `rm_chunk` SDK interface where an `UnboundLocalError`
could
occur if `chunk_ids` is not provided in the request. 

- `unique_chunk_ids` and `duplicate_messages` are now always initialized
  in the `else` branch when `chunk_ids` is missing.
- API behavior remains unchanged when `chunk_ids` is present.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 13:18:23 +08:00
a24fc8291b Fix: If there is an error message on the chat page, the subsequent message references will not display correctly. #12252 (#12283)
### What problem does this PR solve?

Fix: If there is an error message on the chat page, the subsequent
message references will not display correctly. #12252

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 12:58:12 +08:00
37e4485415 feat: add MDX file support (#12261)
Feat: add MDX file support  #12057 
### What problem does this PR solve?

<img width="1055" height="270" alt="image"
src="https://github.com/user-attachments/assets/a0ab49f9-7806-41cd-8a96-f593591ab36b"
/>

The page states that MDX files are supported, but uploading fails with
the error: "x.mdx: This type of file has not been supported yet!"
<img width="381" height="110" alt="image"
src="https://github.com/user-attachments/assets/4bbb7d08-cb47-416a-95fc-bc90b90fcc39"
/>


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-29 12:54:31 +08:00
8d3f9d61da Fix: Delete chunk images on document parser config change. (#12262)
### What problem does this PR solve?

Modifying a document’s parser config previously left behind obsolete
chunk images. If the dataset isn’t manually deleted, these images
accumulate and waste storage. This PR fixes the issue by automatically
removing associated images when the parser config changes.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 12:54:11 +08:00
27c55f6514 Fix the consistency of ts and datetime (#12288)
### What problem does this PR solve?

#12279
#11942 

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-29 12:37:13 +08:00
9883c572cd Refactor: keep timestamp consistency (#12279)
### What problem does this PR solve?

keep timestamp consistency

### Type of change

- [x] Refactoring
2025-12-29 12:02:43 +08:00
f9619defcc Fix: init memory size from es (#12282)
### What problem does this PR solve?

Handle return when none exist index.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 12:01:45 +08:00
01f0ced1e6 Fix IDE warnings (#12281)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-29 12:01:18 +08:00
647fb115a0 Fix: Data-source S3 page style (#12255)
### What problem does this PR solve?

Fix: Data-source S3 page style

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 09:46:35 +08:00
2114b9e3ad Update deploy_local_llm.mdx (#12276)
### Type of change

- [x] Documentation Update
2025-12-28 19:46:50 +08:00
45b96acf6b Update deploy_local_llm.mdx vllm guide picture (#12275)
### Type of change
- [x] Documentation Update
2025-12-28 19:29:33 +08:00
Rin
3305215144 docs: add security warnings for default passwords in .env (#12250)
Enhances security by adding explicit warnings in the environment
template about changing default passwords for MySQL, Elasticsearch, and
MinIO before deployment.
2025-12-28 14:02:17 +08:00
86b03f399a Fix error in docs (#12269)
### What problem does this PR solve?

As title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-28 11:55:52 +08:00
8dc5b4dc56 Docs: Update version references to v0.23.0 in READMEs and docs (#12253)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.22.1 to v0.23.0
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
2025-12-27 20:44:35 +08:00
ef5341b664 Fix memory issue on Infinity 0.6.15 (#12258)
### What problem does this PR solve?

1. Remove unused columns
2. Check the empty database
3. Switch on the order by expression

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-27 20:25:06 +08:00
050534e743 Bump infinity to 0.6.15 (#12264)
### What problem does this PR solve?

As title

### Type of change

- [x] Other (please describe): update doc engine

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-27 19:48:17 +08:00
3fe94d3386 Docs: Fixed a display issue (#12259)
### Type of change

- [x] Documentation Update
2025-12-26 21:33:55 +08:00
3364cf96cf Fix: optimize init memory_size (#12254)
### What problem does this PR solve?

Handle 404 exception when init memory size from es.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Liu An <asiro@qq.com>
2025-12-26 21:18:44 +08:00
a1ed4430ce Fix: frontend cannot sync document window context (#12256)
### What problem does this PR solve?

Frontend cannot sync document window context.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Liu An <asiro@qq.com>
2025-12-26 20:55:22 +08:00
7f11a79ad9 Fix: fifo -> FIFO (#12257)
### What problem does this PR solve?

Fix: fifo -> FIFO

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 20:40:18 +08:00
ddcd9cf2c4 Fix: order by when pick msg to rm (#12247)
### What problem does this PR solve?

Fix orde by when pick msg to remove.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Liu An <asiro@qq.com>
2025-12-26 19:35:21 +08:00
c2e9064474 Docs: v0.23.0 release notes (#12251)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update

---------

Co-authored-by: Yingfeng Zhang <yingfeng.zhang@gmail.com>
2025-12-26 19:11:10 +08:00
bc9e1e3b9a Fix: parent-children pipleine bad case. (#12246)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 18:57:16 +08:00
613d2c5790 Fix: Memory sava issue (#12243)
### What problem does this PR solve?

Fix: Memory sava issue

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 18:56:28 +08:00
51bc41b2e8 Refa: improve image table context (#12244)
### What problem does this PR solve?

Improve image table context.

Current strategy in attach_media_context:

- Order by position when possible: if any chunk has page/position info,
sort by (page, top, left), otherwise keep original order.
- Apply only to media chunks: images use image_context_size, tables use
table_context_size.
- Primary matching: on the same page, choose a text chunk whose vertical
span overlaps the media, then pick the one with the closest vertical
midpoint.
- Fallback matching: if no overlap on that page, choose the nearest text
chunk on the same page (page-head uses the next text; page-tail uses the
previous text).
- Context extraction: inside the chosen text chunk, find a mid-sentence
boundary near the text midpoint, then take context_size tokens split
before/after (total budget).
- No multi-chunk stitching: context comes from a single text chunk to
avoid mixing unrelated segments.

### Type of change

- [x] Refactoring

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-26 17:55:32 +08:00
9de3ecc4a8 Fix: rm field not allow check (#12240)
### What problem does this PR solve?

Remove not allowed field check.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 16:43:46 +08:00
c4a66204f0 Fix: Memory-related bug fixes (#12238)
### What problem does this PR solve?

Fix: Memory-related bug fixes
- Forget memory button text
- Adjust memory storage interface
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 15:56:41 +08:00
3558a6c170 Fix: allow update memory type (#12237)
### What problem does this PR solve?

Allow update memory_type.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 15:26:56 +08:00
595fc4ccec Feat: Display the selected list of memories in the retrieval node. #4213 (#12235)
### What problem does this PR solve?

Feat: Display the selected list of memories in the retrieval node. #4213

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-26 15:20:40 +08:00
3ad147d349 Update deploy_local_llm.mdx with vllm guide support (#12222)
### What problem does this PR solve?

vllm guide support

### Type of change

- [x] Documentation Update
2025-12-26 15:14:25 +08:00
d285d8cd97 Fix: memory (#12230)
### What problem does this PR solve?

Judge has attr memory_ids

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 14:42:47 +08:00
5714895291 Fix message duration (#12233)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-26 14:40:46 +08:00
a33936e8ff Fix small issues on UI (#12231)
### What problem does this PR solve?

As title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-26 14:21:59 +08:00
9f8161d13e Fix memory config: user prompt text box (#12229)
### What problem does this PR solve?

As title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-26 14:05:58 +08:00
a599a0f4bf Fix forget policy (#12228)
### What problem does this PR solve?

As title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-26 13:54:15 +08:00
7498bc63a3 Fix: judge retrieval from (#12223)
### What problem does this PR solve?

Judge retrieval from in retrieval component, and fix bug in message
component

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 13:01:46 +08:00
894bf995bb Fix: Memory-related bug fixes (#12226)
### What problem does this PR solve?

Fix: bugs fix
- table -> Table
- memory delete fail
- memory copywriting modified

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 12:24:05 +08:00
52dbacc506 Feat: Preview the image at the bottom of the message #12076 (#12225)
### What problem does this PR solve?

Feat: Preview the image at the bottom of the message #12076

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-26 12:11:19 +08:00
cbcbbc41af Feat: The agent can only retrieve content from the knowledge base or memory. #4213 (#12224)
### What problem does this PR solve?

Feat: The agent can only retrieve content from the knowledge base or
memory. #4213

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-26 12:10:13 +08:00
6044314811 Fix text issue (#12221)
### What problem does this PR solve?

Fix several text issues.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-26 11:18:08 +08:00
5fb38ecc2a Fix: Can not select LLM in memory page (#12219)
### What problem does this PR solve?

Fix: Can not select LLM in memory page

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-26 11:00:11 +08:00
73db759558 refactor: improve memory service date time consistency (#12144)
### What problem does this PR solve?

 improve memory service date time consistency

### Type of change

- [x] Refactoring
2025-12-26 09:54:38 +08:00
6e9691a419 Feat: message manage (#12196)
### What problem does this PR solve?

Manage message and use in agent.

Issue #4213 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-25 21:18:13 +08:00
fd53b83190 Feat: Hide the autoplay switch for message operators in webhook mode. #10427 (#12216)
### What problem does this PR solve?

Feat: Hide the autoplay switch for message operators in webhook mode.
#10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-25 19:44:03 +08:00
c7b5bfb809 Feat: An image carousel is displayed at the bottom of the agent's chat messages. #12076 (#12215)
### What problem does this PR solve?

Feat: An image carousel is displayed at the bottom of the agent's chat
messages. #12076

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-25 19:02:49 +08:00
cfd1250615 Fix: Api key modal bug (#12213)
### What problem does this PR solve?

Fix: Api key modal bug

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 19:01:55 +08:00
c8eeba5880 Fix: gen metadata error. (#12212)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 19:01:22 +08:00
1812491679 Feat: add Airtable connector and integration for data synchronization (#12211)
### What problem does this PR solve?
change:
add Airtable connector and integration for data synchronization
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-25 17:50:41 +08:00
7b6ab22b78 fix: chunk editor allows update image only if chunk type is image (#12210)
### What problem does this PR solve?

Disallow updating image on non-image chunk in chunk editor.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 17:39:43 +08:00
c20d112f60 Print log (#12200)
### What problem does this PR solve?

Print invalid URL

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-25 16:59:05 +08:00
2817be14d5 Fix: Metadata tips info (#12209)
### What problem does this PR solve?

Fix: Metadata tips info

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 15:55:06 +08:00
f6217bb990 Feat: Images referenced in chat messages are displayed as a carousel at the bottom of the message. #12076 (#12207)
### What problem does this PR solve?
Feat: Images referenced in chat messages are displayed as a carousel at
the bottom of the message. #12076

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-25 15:54:07 +08:00
a3ceb7a944 Update german language file (resubmission) (#12208)
### What problem does this PR solve?

Resubmission of updated German translation.

### Type of change

- [x] Other (please describe):

Contribution by RAGcon GmbH, visit us at https://www.ragcon.ai
2025-12-25 15:40:16 +08:00
0f8f35bd5b Refa: remove MinerU settings from .env (#12201)
Removed MinerU configuration from .env file.

### What problem does this PR solve?

Remove MinerU settings from .env.

### Type of change

- [x] Refactoring
2025-12-25 15:04:08 +08:00
6373ff898b Fix: keep behavior consistent for converse_with_chat_assistant (#12190)
### What problem does this PR solve?

Keep behavior consistent for converse_with_chat_assistant. #12188

```markdown
2025-12-25 10:02:17,718 ERROR    11674 OpenAI async completion
openai.BadRequestError: Error code: 400 - {'error': {'code': '1213', 'message': '未正常接收到prompt参数。'}}
2025-12-25 10:02:17,718 ERROR    11674 async base giving up: **ERROR**: INVALID_REQUEST - Error code: 400 - {'error': {'code': '1213', 'message': '未正常接收到prompt参数。'}}

```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 15:03:34 +08:00
d1c4077a75 Fix directory name (#12195)
### What problem does this PR solve?

as title.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-25 14:24:13 +08:00
059f375d85 Feat: supports filter documents by empty metadata (#12180)
### What problem does this PR solve?

Supports filter documents by empty metadata

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-25 14:06:50 +08:00
8cbfb5aef6 Fix: toc no chunk found issue. (#12197)
### What problem does this PR solve?

#12170

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 14:06:20 +08:00
5ebabf5bed Fix test error (#12194)
### What problem does this PR solve?

as title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-25 13:14:20 +08:00
e23c8a5dcd Fix: type check for chunks (#12164)
### What problem does this PR solve?

Fix: type check for chunks

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 12:37:14 +08:00
89ea760e67 Fix: Add a no-data filter condition to MetaData (#12189)
### What problem does this PR solve?

Fix: Add a no-data filter condition to MetaData

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 12:13:18 +08:00
02b976ffa4 Bump infinity to 0.6.13 (#12181)
### What problem does this PR solve?

Bump infinity to 0.6.13

### Type of change

- [x] Refactoring
2025-12-25 12:13:11 +08:00
556b5ad686 Dragging down a downstream node of a Switch operator will cause the end_cpn_ids to contain the ID of the placeholder operator. #12177 (#12178)
### What problem does this PR solve?

Dragging down a downstream node of a Switch operator will cause the
end_cpn_ids to contain the ID of the placeholder operator. #12177

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 12:13:01 +08:00
884aabd130 Fix: Fixed the issue of incorrect agent translation text. #10427 (#12172)
### What problem does this PR solve?

Fix: Fixed the issue of incorrect agent translation text. #10427

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 12:12:49 +08:00
f0dac1d90e Fix: loopitem None issue. (#12166)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 12:12:38 +08:00
4a2978150c Fix:Metadata saving, copywriting and other related issues (#12169)
### What problem does this PR solve?

Fix:Bugs Fixed
- Text overflow issues that caused rendering problems
- Metadata saving, copywriting and other related issues

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 12:12:32 +08:00
df0c092b22 Feat: add image table context to pipeline splitter (#12167)
### What problem does this PR solve?

Add image table context to pipeline splitter.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-25 12:12:23 +08:00
7d4258f50e Feat: add document metadata setting (#12156)
### What problem does this PR solve?

Add document metadata setting.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
2025-12-25 12:12:01 +08:00
e24fabb03c Feat: add MiniMax M2.1 (#12148)
### What problem does this PR solve?

Add MiniMax M2.1.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
2025-12-25 12:11:51 +08:00
ce08ee399b Fix: metadata_obj issue. (#12146)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 11:54:09 +08:00
badd5aa101 Fix: LLM tool does not exist in multiple retrieval case (#12143)
### What problem does this PR solve?

 Fix LLM tool does not exist in multiple retrieval case

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 11:53:51 +08:00
5ff3be22b4 Feat: Support Markdown Rendering for tips in user-fill-up Component #11825 (#12147)
### What problem does this PR solve?

Feat: Support Markdown Rendering for tips in user-fill-up Component
#11825

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-25 11:53:43 +08:00
df09cbd271 Doc: Added an HTTP request component reference (#12141)
### Type of change

- [x] Documentation Update
2025-12-25 11:53:32 +08:00
957bc021eb Fix:remove duplicate tool_meta (#12139)
### What problem does this PR solve?
pr:#12117
change:remove duplicate tool_meta

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 11:53:24 +08:00
49dbfdbfb0 Feat: deduplicate metadata lists during updates (#12125)
### What problem does this PR solve?

Deduplicate metadata lists during updates.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-25 11:53:16 +08:00
9a5c5c46f2 Fix: Add prompts when merging or deleting metadata. (#12138)
### What problem does this PR solve?

Fix: Add prompts when merging or deleting metadata.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-25 11:53:06 +08:00
8197f9a873 Fix: table tag on chunks. (#12126)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-25 11:25:38 +08:00
240 changed files with 8018 additions and 2384 deletions

View File

@ -197,38 +197,37 @@ jobs:
echo -e "COMPOSE_PROFILES=\${COMPOSE_PROFILES},tei-cpu" >> docker/.env
echo -e "TEI_MODEL=BAAI/bge-small-en-v1.5" >> docker/.env
echo -e "RAGFLOW_IMAGE=${RAGFLOW_IMAGE}" >> docker/.env
sed -i '1i DOC_ENGINE=infinity' docker/.env
echo "HOST_ADDRESS=http://host.docker.internal:${SVR_HTTP_PORT}" >> ${GITHUB_ENV}
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} up -d
uv sync --python 3.12 --only-group test --no-default-groups --frozen && uv pip install sdk/python --group test
- name: Run sdk tests against Infinity
- name: Run sdk tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS}/v1/system/ping > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
source .venv/bin/activate && DOC_ENGINE=infinity pytest -x -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api 2>&1 | tee infinity_sdk_test.log
source .venv/bin/activate && set -o pipefail; pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api 2>&1 | tee es_sdk_test.log
- name: Run frontend api tests against Infinity
- name: Run frontend api tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS}/v1/system/ping > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
source .venv/bin/activate && DOC_ENGINE=infinity pytest -x -s --tb=short sdk/python/test/test_frontend_api/get_email.py sdk/python/test/test_frontend_api/test_dataset.py 2>&1 | tee infinity_api_test.log
- name: Run http api tests against Infinity
source .venv/bin/activate && set -o pipefail; pytest -s --tb=short sdk/python/test/test_frontend_api/get_email.py sdk/python/test/test_frontend_api/test_dataset.py 2>&1 | tee es_api_test.log
- name: Run http api tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS}/v1/system/ping > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
source .venv/bin/activate && DOC_ENGINE=infinity pytest -x -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api 2>&1 | tee infinity_http_api_test.log
source .venv/bin/activate && set -o pipefail; pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api 2>&1 | tee es_http_api_test.log
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed
@ -238,35 +237,35 @@ jobs:
- name: Start ragflow:nightly
run: |
sed -i '1i DOC_ENGINE=elasticsearch' docker/.env
sed -i '1i DOC_ENGINE=infinity' docker/.env
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} up -d
- name: Run sdk tests against Elasticsearch
- name: Run sdk tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS}/v1/system/ping > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
source .venv/bin/activate && DOC_ENGINE=elasticsearch pytest -x -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api 2>&1 | tee es_sdk_test.log
source .venv/bin/activate && set -o pipefail; DOC_ENGINE=infinity pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api 2>&1 | tee infinity_sdk_test.log
- name: Run frontend api tests against Elasticsearch
- name: Run frontend api tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS}/v1/system/ping > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
source .venv/bin/activate && DOC_ENGINE=elasticsearch pytest -x -s --tb=short sdk/python/test/test_frontend_api/get_email.py sdk/python/test/test_frontend_api/test_dataset.py 2>&1 | tee es_api_test.log
source .venv/bin/activate && set -o pipefail; DOC_ENGINE=infinity pytest -s --tb=short sdk/python/test/test_frontend_api/get_email.py sdk/python/test/test_frontend_api/test_dataset.py 2>&1 | tee infinity_api_test.log
- name: Run http api tests against Elasticsearch
- name: Run http api tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS}/v1/system/ping > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
source .venv/bin/activate && DOC_ENGINE=elasticsearch pytest -x -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api 2>&1 | tee es_http_api_test.log
source .venv/bin/activate && set -o pipefail; DOC_ENGINE=infinity pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api 2>&1 | tee infinity_http_api_test.log
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.22.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -85,6 +85,7 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Latest Updates
- 2025-12-26 Supports 'Memory' for AI agent.
- 2025-11-19 Supports Gemini 3 Pro.
- 2025-11-12 Supports data synchronization from Confluence, S3, Notion, Discord, Google Drive.
- 2025-10-23 Supports MinerU & Docling as document parsing methods.
@ -187,12 +188,12 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.22.1` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.22.1`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server.
> The command below downloads the `v0.23.0` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.23.0`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server.
```bash
$ cd ragflow/docker
# git checkout v0.22.1
# git checkout v0.23.0
# Optional: use a stable tag (see releases: https://github.com/infiniflow/ragflow/releases)
# This step ensures the **entrypoint.sh** file in the code matches the Docker image version.
@ -302,6 +303,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
Or if you are behind a proxy, you can pass proxy arguments:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Launch service from source for development
1. Install `uv` and `pre-commit`, or skip this step if they are already installed:

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.22.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -85,6 +85,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Pembaruan Terbaru
- 2025-12-26 Mendukung 'Memori' untuk agen AI.
- 2025-11-19 Mendukung Gemini 3 Pro.
- 2025-11-12 Mendukung sinkronisasi data dari Confluence, S3, Notion, Discord, Google Drive.
- 2025-10-23 Mendukung MinerU & Docling sebagai metode penguraian dokumen.
@ -187,12 +188,12 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.22.1 dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.22.1, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server.
> Perintah di bawah ini mengunduh edisi v0.23.0 dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.23.0, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server.
```bash
$ cd ragflow/docker
# git checkout v0.22.1
# git checkout v0.23.0
# Opsional: gunakan tag stabil (lihat releases: https://github.com/infiniflow/ragflow/releases)
# This steps ensures the **entrypoint.sh** file in the code matches the Docker image version.
@ -276,6 +277,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
Jika berada di belakang proxy, Anda dapat melewatkan argumen proxy:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal `uv` dan `pre-commit`, atau lewati langkah ini jika sudah terinstal:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.22.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -66,7 +66,8 @@
## 🔥 最新情報
- 2025-11-19 Gemini 3 Proをサポートしています
- 2025-12-26 AIエージェントの「メモリ」機能をサポート。
- 2025-11-19 Gemini 3 Proをサポートしています。
- 2025-11-12 Confluence、S3、Notion、Discord、Google Drive からのデータ同期をサポートします。
- 2025-10-23 ドキュメント解析方法として MinerU と Docling をサポートします。
- 2025-10-15 オーケストレーションされたデータパイプラインのサポート。
@ -167,12 +168,12 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.22.1 エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.22.1 とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.23.0 エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.23.0 とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。
```bash
$ cd ragflow/docker
# git checkout v0.22.1
# git checkout v0.23.0
# 任意: 安定版タグを利用 (一覧: https://github.com/infiniflow/ragflow/releases)
# この手順は、コード内の entrypoint.sh ファイルが Docker イメージのバージョンと一致していることを確認します。
@ -276,6 +277,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
プロキシ環境下にいる場合は、プロキシ引数を指定できます:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 ソースコードからサービスを起動する方法
1. `uv` と `pre-commit` をインストールする。すでにインストールされている場合は、このステップをスキップしてください:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.22.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -67,6 +67,7 @@
## 🔥 업데이트
- 2025-12-26 AI 에이전트의 '메모리' 기능 지원.
- 2025-11-19 Gemini 3 Pro를 지원합니다.
- 2025-11-12 Confluence, S3, Notion, Discord, Google Drive에서 데이터 동기화를 지원합니다.
- 2025-10-23 문서 파싱 방법으로 MinerU 및 Docling을 지원합니다.
@ -169,12 +170,12 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.22.1 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.22.1과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.23.0 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.23.0과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오.
```bash
$ cd ragflow/docker
# git checkout v0.22.1
# git checkout v0.23.0
# Optional: use a stable tag (see releases: https://github.com/infiniflow/ragflow/releases)
# 이 단계는 코드의 entrypoint.sh 파일이 Docker 이미지 버전과 일치하도록 보장합니다.
@ -270,6 +271,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
프록시 환경인 경우, 프록시 인수를 전달할 수 있습니다:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 소스 코드로 서비스를 시작합니다.
1. `uv` 와 `pre-commit` 을 설치하거나, 이미 설치된 경우 이 단계를 건너뜁니다:

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.22.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -86,6 +86,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Últimas Atualizações
- 26-12-2025 Suporte à função 'Memória' para agentes de IA.
- 19-11-2025 Suporta Gemini 3 Pro.
- 12-11-2025 Suporta a sincronização de dados do Confluence, S3, Notion, Discord e Google Drive.
- 23-10-2025 Suporta MinerU e Docling como métodos de análise de documentos.
@ -187,12 +188,12 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição`v0.22.1` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.22.1`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor.
> O comando abaixo baixa a edição`v0.23.0` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.23.0`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor.
```bash
$ cd ragflow/docker
# git checkout v0.22.1
# git checkout v0.23.0
# Opcional: use uma tag estável (veja releases: https://github.com/infiniflow/ragflow/releases)
# Esta etapa garante que o arquivo entrypoint.sh no código corresponda à versão da imagem do Docker.
@ -293,6 +294,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
Se você estiver atrás de um proxy, pode passar argumentos de proxy:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
1. Instale o `uv` e o `pre-commit`, ou pule esta etapa se eles já estiverem instalados:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.22.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -85,15 +85,16 @@
## 🔥 近期更新
- 2025-11-19 支援 Gemini 3 Pro.
- 2025-12-26 支援AI代理的「記憶」功能。
- 2025-11-19 支援 Gemini 3 Pro。
- 2025-11-12 支援從 Confluence、S3、Notion、Discord、Google Drive 進行資料同步。
- 2025-10-23 支援 MinerU 和 Docling 作為文件解析方法。
- 2025-10-15 支援可編排的資料管道。
- 2025-08-08 支援 OpenAI 最新的 GPT-5 系列模型。
- 2025-08-01 支援 agentic workflow 和 MCP
- 2025-08-01 支援 agentic workflow 和 MCP
- 2025-05-23 為 Agent 新增 Python/JS 程式碼執行器元件。
- 2025-05-05 支援跨語言查詢。
- 2025-03-19 PDF和DOCX中的圖支持用多模態大模型去解析得到描述.
- 2025-03-19 PDF和DOCX中的圖支持用多模態大模型去解析得到描述
- 2024-12-18 升級了 DeepDoc 的文檔佈局分析模型。
- 2024-08-22 支援用 RAG 技術實現從自然語言到 SQL 語句的轉換。
@ -186,12 +187,12 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow Docker 映像 `v0.22.1`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.22.1` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。
> 執行以下指令會自動下載 RAGFlow Docker 映像 `v0.23.0`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.23.0` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。
```bash
$ cd ragflow/docker
# git checkout v0.22.1
# git checkout v0.23.0
# 可選使用穩定版標籤查看發佈https://github.com/infiniflow/ragflow/releases
# 此步驟確保程式碼中的 entrypoint.sh 檔案與 Docker 映像版本一致。
@ -302,6 +303,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
若您位於代理環境,可傳遞代理參數:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以原始碼啟動服務
1. 安裝 `uv` 和 `pre-commit`。如已安裝,可跳過此步驟:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.22.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -85,7 +85,8 @@
## 🔥 近期更新
- 2025-11-19 支持 Gemini 3 Pro.
- 2025-12-26 支持AI代理的“记忆”功能。
- 2025-11-19 支持 Gemini 3 Pro。
- 2025-11-12 支持从 Confluence、S3、Notion、Discord、Google Drive 进行数据同步。
- 2025-10-23 支持 MinerU 和 Docling 作为文档解析方法。
- 2025-10-15 支持可编排的数据管道。
@ -93,7 +94,7 @@
- 2025-08-01 支持 agentic workflow 和 MCP。
- 2025-05-23 Agent 新增 Python/JS 代码执行器组件。
- 2025-05-05 支持跨语言查询。
- 2025-03-19 PDF 和 DOCX 中的图支持用多模态大模型去解析得到描述.
- 2025-03-19 PDF 和 DOCX 中的图支持用多模态大模型去解析得到描述
- 2024-12-18 升级了 DeepDoc 的文档布局分析模型。
- 2024-08-22 支持用 RAG 技术实现从自然语言到 SQL 语句的转换。
@ -187,12 +188,12 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow Docker 镜像 `v0.22.1`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.22.1` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。
> 运行以下命令会自动下载 RAGFlow Docker 镜像 `v0.23.0`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.23.0` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。
```bash
$ cd ragflow/docker
# git checkout v0.22.1
# git checkout v0.23.0
# 可选使用稳定版本标签查看发布https://github.com/infiniflow/ragflow/releases
# 这一步确保代码中的 entrypoint.sh 文件与 Docker 镜像的版本保持一致。
@ -301,6 +302,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
如果您处在代理环境下,可以传递代理参数:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以源代码启动服务
1. 安装 `uv` 和 `pre-commit`。如已经安装,可跳过本步骤:

View File

@ -48,7 +48,7 @@ It consists of a server-side Service and a command-line client (CLI), both imple
1. Ensure the Admin Service is running.
2. Install ragflow-cli.
```bash
pip install ragflow-cli==0.22.1
pip install ragflow-cli==0.23.0
```
3. Launch the CLI client:
```bash

View File

@ -16,14 +16,14 @@
import argparse
import base64
from cmd import Cmd
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from typing import Dict, List, Any
from lark import Lark, Transformer, Tree
import requests
import getpass
from cmd import Cmd
from typing import Any, Dict, List
import requests
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from Cryptodome.PublicKey import RSA
from lark import Lark, Transformer, Tree
GRAMMAR = r"""
start: command
@ -141,7 +141,6 @@ NUMBER: /[0-9]+/
class AdminTransformer(Transformer):
def start(self, items):
return items[0]
@ -149,7 +148,7 @@ class AdminTransformer(Transformer):
return items[0]
def list_services(self, items):
result = {'type': 'list_services'}
result = {"type": "list_services"}
return result
def show_service(self, items):
@ -236,11 +235,7 @@ class AdminTransformer(Transformer):
action_list = items[1]
resource = items[3]
role_name = items[6]
return {
"type": "revoke_permission",
"role_name": role_name,
"resource": resource, "actions": action_list
}
return {"type": "revoke_permission", "role_name": role_name, "resource": resource, "actions": action_list}
def alter_user_role(self, items):
user_name = items[2]
@ -264,12 +259,12 @@ class AdminTransformer(Transformer):
# handle quoted parameter
parsed_args = []
for arg in args:
if hasattr(arg, 'value'):
if hasattr(arg, "value"):
parsed_args.append(arg.value)
else:
parsed_args.append(str(arg))
return {'type': 'meta', 'command': command_name, 'args': parsed_args}
return {"type": "meta", "command": command_name, "args": parsed_args}
def meta_command_name(self, items):
return items[0]
@ -279,22 +274,22 @@ class AdminTransformer(Transformer):
def encrypt(input_string):
pub = '-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEArq9XTUSeYr2+N1h3Afl/z8Dse/2yD0ZGrKwx+EEEcdsBLca9Ynmx3nIB5obmLlSfmskLpBo0UACBmB5rEjBp2Q2f3AG3Hjd4B+gNCG6BDaawuDlgANIhGnaTLrIqWrrcm4EMzJOnAOI1fgzJRsOOUEfaS318Eq9OVO3apEyCCt0lOQK6PuksduOjVxtltDav+guVAA068NrPYmRNabVKRNLJpL8w4D44sfth5RvZ3q9t+6RTArpEtc5sh5ChzvqPOzKGMXW83C95TxmXqpbK6olN4RevSfVjEAgCydH6HN6OhtOQEcnrU97r9H0iZOWwbw3pVrZiUkuRD1R56Wzs2wIDAQAB\n-----END PUBLIC KEY-----'
pub = "-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEArq9XTUSeYr2+N1h3Afl/z8Dse/2yD0ZGrKwx+EEEcdsBLca9Ynmx3nIB5obmLlSfmskLpBo0UACBmB5rEjBp2Q2f3AG3Hjd4B+gNCG6BDaawuDlgANIhGnaTLrIqWrrcm4EMzJOnAOI1fgzJRsOOUEfaS318Eq9OVO3apEyCCt0lOQK6PuksduOjVxtltDav+guVAA068NrPYmRNabVKRNLJpL8w4D44sfth5RvZ3q9t+6RTArpEtc5sh5ChzvqPOzKGMXW83C95TxmXqpbK6olN4RevSfVjEAgCydH6HN6OhtOQEcnrU97r9H0iZOWwbw3pVrZiUkuRD1R56Wzs2wIDAQAB\n-----END PUBLIC KEY-----"
pub_key = RSA.importKey(pub)
cipher = Cipher_pkcs1_v1_5.new(pub_key)
cipher_text = cipher.encrypt(base64.b64encode(input_string.encode('utf-8')))
cipher_text = cipher.encrypt(base64.b64encode(input_string.encode("utf-8")))
return base64.b64encode(cipher_text).decode("utf-8")
def encode_to_base64(input_string):
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
return base64_encoded.decode('utf-8')
base64_encoded = base64.b64encode(input_string.encode("utf-8"))
return base64_encoded.decode("utf-8")
class AdminCLI(Cmd):
def __init__(self):
super().__init__()
self.parser = Lark(GRAMMAR, start='start', parser='lalr', transformer=AdminTransformer())
self.parser = Lark(GRAMMAR, start="start", parser="lalr", transformer=AdminTransformer())
self.command_history = []
self.is_interactive = False
self.admin_account = "admin@ragflow.io"
@ -312,7 +307,7 @@ class AdminCLI(Cmd):
result = self.parse_command(command)
if isinstance(result, dict):
if 'type' in result and result.get('type') == 'empty':
if "type" in result and result.get("type") == "empty":
return False
self.execute_command(result)
@ -320,7 +315,7 @@ class AdminCLI(Cmd):
if isinstance(result, Tree):
return False
if result.get('type') == 'meta' and result.get('command') in ['q', 'quit', 'exit']:
if result.get("type") == "meta" and result.get("command") in ["q", "quit", "exit"]:
return True
except KeyboardInterrupt:
@ -338,7 +333,7 @@ class AdminCLI(Cmd):
def parse_command(self, command_str: str) -> dict[str, str]:
if not command_str.strip():
return {'type': 'empty'}
return {"type": "empty"}
self.command_history.append(command_str)
@ -346,11 +341,11 @@ class AdminCLI(Cmd):
result = self.parser.parse(command_str)
return result
except Exception as e:
return {'type': 'error', 'message': f'Parse error: {str(e)}'}
return {"type": "error", "message": f"Parse error: {str(e)}"}
def verify_admin(self, arguments: dict, single_command: bool):
self.host = arguments['host']
self.port = arguments['port']
self.host = arguments["host"]
self.port = arguments["port"]
print("Attempt to access server for admin login")
url = f"http://{self.host}:{self.port}/api/v1/admin/login"
@ -365,25 +360,21 @@ class AdminCLI(Cmd):
return False
if single_command:
admin_passwd = arguments['password']
admin_passwd = arguments["password"]
else:
admin_passwd = getpass.getpass(f"password for {self.admin_account}: ").strip()
try:
self.admin_password = encrypt(admin_passwd)
response = self.session.post(url, json={'email': self.admin_account, 'password': self.admin_password})
response = self.session.post(url, json={"email": self.admin_account, "password": self.admin_password})
if response.status_code == 200:
res_json = response.json()
error_code = res_json.get('code', -1)
error_code = res_json.get("code", -1)
if error_code == 0:
self.session.headers.update({
'Content-Type': 'application/json',
'Authorization': response.headers['Authorization'],
'User-Agent': 'RAGFlow-CLI/0.22.1'
})
self.session.headers.update({"Content-Type": "application/json", "Authorization": response.headers["Authorization"], "User-Agent": "RAGFlow-CLI/0.23.0"})
print("Authentication successful.")
return True
else:
error_message = res_json.get('message', 'Unknown error')
error_message = res_json.get("message", "Unknown error")
print(f"Authentication failed: {error_message}, try again")
continue
else:
@ -403,10 +394,14 @@ class AdminCLI(Cmd):
for k, v in data.items():
# display latest status
heartbeats = sorted(v, key=lambda x: x["now"], reverse=True)
task_executor_list.append({
"task_executor_name": k,
**heartbeats[0],
} if heartbeats else {"task_executor_name": k})
task_executor_list.append(
{
"task_executor_name": k,
**heartbeats[0],
}
if heartbeats
else {"task_executor_name": k}
)
return task_executor_list
def _print_table_simple(self, data):
@ -422,12 +417,7 @@ class AdminCLI(Cmd):
col_widths = {}
def get_string_width(text):
half_width_chars = (
" !\"#$%&'()*+,-./0123456789:;<=>?@"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`"
"abcdefghijklmnopqrstuvwxyz{|}~"
"\t\n\r"
)
half_width_chars = " !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\t\n\r"
width = 0
for char in text:
if char in half_width_chars:
@ -439,7 +429,7 @@ class AdminCLI(Cmd):
for col in columns:
max_width = get_string_width(str(col))
for item in data:
value_len = get_string_width(str(item.get(col, '')))
value_len = get_string_width(str(item.get(col, "")))
if value_len > max_width:
max_width = value_len
col_widths[col] = max(2, max_width)
@ -457,16 +447,15 @@ class AdminCLI(Cmd):
for item in data:
row = "|"
for col in columns:
value = str(item.get(col, ''))
value = str(item.get(col, ""))
if get_string_width(value) > col_widths[col]:
value = value[:col_widths[col] - 3] + "..."
value = value[: col_widths[col] - 3] + "..."
row += f" {value:<{col_widths[col] - (get_string_width(value) - len(value))}} |"
print(row)
print(separator)
def run_interactive(self):
self.is_interactive = True
print("RAGFlow Admin command line interface - Type '\\?' for help, '\\q' to quit")
@ -483,7 +472,7 @@ class AdminCLI(Cmd):
if isinstance(result, Tree):
continue
if result.get('type') == 'meta' and result.get('command') in ['q', 'quit', 'exit']:
if result.get("type") == "meta" and result.get("command") in ["q", "quit", "exit"]:
break
except KeyboardInterrupt:
@ -497,36 +486,30 @@ class AdminCLI(Cmd):
self.execute_command(result)
def parse_connection_args(self, args: List[str]) -> Dict[str, Any]:
parser = argparse.ArgumentParser(description='Admin CLI Client', add_help=False)
parser.add_argument('-h', '--host', default='localhost', help='Admin service host')
parser.add_argument('-p', '--port', type=int, default=9381, help='Admin service port')
parser.add_argument('-w', '--password', default='admin', type=str, help='Superuser password')
parser.add_argument('command', nargs='?', help='Single command')
parser = argparse.ArgumentParser(description="Admin CLI Client", add_help=False)
parser.add_argument("-h", "--host", default="localhost", help="Admin service host")
parser.add_argument("-p", "--port", type=int, default=9381, help="Admin service port")
parser.add_argument("-w", "--password", default="admin", type=str, help="Superuser password")
parser.add_argument("command", nargs="?", help="Single command")
try:
parsed_args, remaining_args = parser.parse_known_args(args)
if remaining_args:
command = remaining_args[0]
return {
'host': parsed_args.host,
'port': parsed_args.port,
'password': parsed_args.password,
'command': command
}
return {"host": parsed_args.host, "port": parsed_args.port, "password": parsed_args.password, "command": command}
else:
return {
'host': parsed_args.host,
'port': parsed_args.port,
"host": parsed_args.host,
"port": parsed_args.port,
}
except SystemExit:
return {'error': 'Invalid connection arguments'}
return {"error": "Invalid connection arguments"}
def execute_command(self, parsed_command: Dict[str, Any]):
command_dict: dict
if isinstance(parsed_command, Tree):
command_dict = parsed_command.children[0]
else:
if parsed_command['type'] == 'error':
if parsed_command["type"] == "error":
print(f"Error: {parsed_command['message']}")
return
else:
@ -534,56 +517,56 @@ class AdminCLI(Cmd):
# print(f"Parsed command: {command_dict}")
command_type = command_dict['type']
command_type = command_dict["type"]
match command_type:
case 'list_services':
case "list_services":
self._handle_list_services(command_dict)
case 'show_service':
case "show_service":
self._handle_show_service(command_dict)
case 'restart_service':
case "restart_service":
self._handle_restart_service(command_dict)
case 'shutdown_service':
case "shutdown_service":
self._handle_shutdown_service(command_dict)
case 'startup_service':
case "startup_service":
self._handle_startup_service(command_dict)
case 'list_users':
case "list_users":
self._handle_list_users(command_dict)
case 'show_user':
case "show_user":
self._handle_show_user(command_dict)
case 'drop_user':
case "drop_user":
self._handle_drop_user(command_dict)
case 'alter_user':
case "alter_user":
self._handle_alter_user(command_dict)
case 'create_user':
case "create_user":
self._handle_create_user(command_dict)
case 'activate_user':
case "activate_user":
self._handle_activate_user(command_dict)
case 'list_datasets':
case "list_datasets":
self._handle_list_datasets(command_dict)
case 'list_agents':
case "list_agents":
self._handle_list_agents(command_dict)
case 'create_role':
case "create_role":
self._create_role(command_dict)
case 'drop_role':
case "drop_role":
self._drop_role(command_dict)
case 'alter_role':
case "alter_role":
self._alter_role(command_dict)
case 'list_roles':
case "list_roles":
self._list_roles(command_dict)
case 'show_role':
case "show_role":
self._show_role(command_dict)
case 'grant_permission':
case "grant_permission":
self._grant_permission(command_dict)
case 'revoke_permission':
case "revoke_permission":
self._revoke_permission(command_dict)
case 'alter_user_role':
case "alter_user_role":
self._alter_user_role(command_dict)
case 'show_user_permission':
case "show_user_permission":
self._show_user_permission(command_dict)
case 'show_version':
case "show_version":
self._show_version(command_dict)
case 'meta':
case "meta":
self._handle_meta_command(command_dict)
case _:
print(f"Command '{command_type}' would be executed with API")
@ -591,29 +574,29 @@ class AdminCLI(Cmd):
def _handle_list_services(self, command):
print("Listing all services")
url = f'http://{self.host}:{self.port}/api/v1/admin/services'
url = f"http://{self.host}:{self.port}/api/v1/admin/services"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(f"Fail to get all services, code: {res_json['code']}, message: {res_json['message']}")
def _handle_show_service(self, command):
service_id: int = command['number']
service_id: int = command["number"]
print(f"Showing service: {service_id}")
url = f'http://{self.host}:{self.port}/api/v1/admin/services/{service_id}'
url = f"http://{self.host}:{self.port}/api/v1/admin/services/{service_id}"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
res_data = res_json['data']
if 'status' in res_data and res_data['status'] == 'alive':
res_data = res_json["data"]
if "status" in res_data and res_data["status"] == "alive":
print(f"Service {res_data['service_name']} is alive, ")
if isinstance(res_data['message'], str):
print(res_data['message'])
if isinstance(res_data["message"], str):
print(res_data["message"])
else:
data = self._format_service_detail_table(res_data['message'])
data = self._format_service_detail_table(res_data["message"])
self._print_table_simple(data)
else:
print(f"Service {res_data['service_name']} is down, {res_data['message']}")
@ -621,47 +604,47 @@ class AdminCLI(Cmd):
print(f"Fail to show service, code: {res_json['code']}, message: {res_json['message']}")
def _handle_restart_service(self, command):
service_id: int = command['number']
service_id: int = command["number"]
print(f"Restart service {service_id}")
def _handle_shutdown_service(self, command):
service_id: int = command['number']
service_id: int = command["number"]
print(f"Shutdown service {service_id}")
def _handle_startup_service(self, command):
service_id: int = command['number']
service_id: int = command["number"]
print(f"Startup service {service_id}")
def _handle_list_users(self, command):
print("Listing all users")
url = f'http://{self.host}:{self.port}/api/v1/admin/users'
url = f"http://{self.host}:{self.port}/api/v1/admin/users"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(f"Fail to get all users, code: {res_json['code']}, message: {res_json['message']}")
def _handle_show_user(self, command):
username_tree: Tree = command['user_name']
username_tree: Tree = command["user_name"]
user_name: str = username_tree.children[0].strip("'\"")
print(f"Showing user: {user_name}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{user_name}'
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name}"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
table_data = res_json['data']
table_data.pop('avatar')
table_data = res_json["data"]
table_data.pop("avatar")
self._print_table_simple(table_data)
else:
print(f"Fail to get user {user_name}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_drop_user(self, command):
username_tree: Tree = command['user_name']
username_tree: Tree = command["user_name"]
user_name: str = username_tree.children[0].strip("'\"")
print(f"Drop user: {user_name}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{user_name}'
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name}"
response = self.session.delete(url)
res_json = response.json()
if response.status_code == 200:
@ -670,13 +653,13 @@ class AdminCLI(Cmd):
print(f"Fail to drop user, code: {res_json['code']}, message: {res_json['message']}")
def _handle_alter_user(self, command):
user_name_tree: Tree = command['user_name']
user_name_tree: Tree = command["user_name"]
user_name: str = user_name_tree.children[0].strip("'\"")
password_tree: Tree = command['password']
password_tree: Tree = command["password"]
password: str = password_tree.children[0].strip("'\"")
print(f"Alter user: {user_name}, password: ******")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/password'
response = self.session.put(url, json={'new_password': encrypt(password)})
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/password"
response = self.session.put(url, json={"new_password": encrypt(password)})
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
@ -684,32 +667,29 @@ class AdminCLI(Cmd):
print(f"Fail to alter password, code: {res_json['code']}, message: {res_json['message']}")
def _handle_create_user(self, command):
user_name_tree: Tree = command['user_name']
user_name_tree: Tree = command["user_name"]
user_name: str = user_name_tree.children[0].strip("'\"")
password_tree: Tree = command['password']
password_tree: Tree = command["password"]
password: str = password_tree.children[0].strip("'\"")
role: str = command['role']
role: str = command["role"]
print(f"Create user: {user_name}, password: ******, role: {role}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users'
response = self.session.post(
url,
json={'user_name': user_name, 'password': encrypt(password), 'role': role}
)
url = f"http://{self.host}:{self.port}/api/v1/admin/users"
response = self.session.post(url, json={"user_name": user_name, "password": encrypt(password), "role": role})
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(f"Fail to create user {user_name}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_activate_user(self, command):
user_name_tree: Tree = command['user_name']
user_name_tree: Tree = command["user_name"]
user_name: str = user_name_tree.children[0].strip("'\"")
activate_tree: Tree = command['activate_status']
activate_tree: Tree = command["activate_status"]
activate_status: str = activate_tree.children[0].strip("'\"")
if activate_status.lower() in ['on', 'off']:
if activate_status.lower() in ["on", "off"]:
print(f"Alter user {user_name} activate status, turn {activate_status.lower()}.")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/activate'
response = self.session.put(url, json={'activate_status': activate_status})
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/activate"
response = self.session.put(url, json={"activate_status": activate_status})
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
@ -719,202 +699,182 @@ class AdminCLI(Cmd):
print(f"Unknown activate status: {activate_status}.")
def _handle_list_datasets(self, command):
username_tree: Tree = command['user_name']
username_tree: Tree = command["user_name"]
user_name: str = username_tree.children[0].strip("'\"")
print(f"Listing all datasets of user: {user_name}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/datasets'
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/datasets"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
table_data = res_json['data']
table_data = res_json["data"]
for t in table_data:
t.pop('avatar')
t.pop("avatar")
self._print_table_simple(table_data)
else:
print(f"Fail to get all datasets of {user_name}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_list_agents(self, command):
username_tree: Tree = command['user_name']
username_tree: Tree = command["user_name"]
user_name: str = username_tree.children[0].strip("'\"")
print(f"Listing all agents of user: {user_name}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/agents'
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/agents"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
table_data = res_json['data']
table_data = res_json["data"]
for t in table_data:
t.pop('avatar')
t.pop("avatar")
self._print_table_simple(table_data)
else:
print(f"Fail to get all agents of {user_name}, code: {res_json['code']}, message: {res_json['message']}")
def _create_role(self, command):
role_name_tree: Tree = command['role_name']
role_name_tree: Tree = command["role_name"]
role_name: str = role_name_tree.children[0].strip("'\"")
desc_str: str = ''
if 'description' in command:
desc_tree: Tree = command['description']
desc_str: str = ""
if "description" in command:
desc_tree: Tree = command["description"]
desc_str = desc_tree.children[0].strip("'\"")
print(f"create role name: {role_name}, description: {desc_str}")
url = f'http://{self.host}:{self.port}/api/v1/admin/roles'
response = self.session.post(
url,
json={'role_name': role_name, 'description': desc_str}
)
url = f"http://{self.host}:{self.port}/api/v1/admin/roles"
response = self.session.post(url, json={"role_name": role_name, "description": desc_str})
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(f"Fail to create role {role_name}, code: {res_json['code']}, message: {res_json['message']}")
def _drop_role(self, command):
role_name_tree: Tree = command['role_name']
role_name_tree: Tree = command["role_name"]
role_name: str = role_name_tree.children[0].strip("'\"")
print(f"drop role name: {role_name}")
url = f'http://{self.host}:{self.port}/api/v1/admin/roles/{role_name}'
url = f"http://{self.host}:{self.port}/api/v1/admin/roles/{role_name}"
response = self.session.delete(url)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(f"Fail to drop role {role_name}, code: {res_json['code']}, message: {res_json['message']}")
def _alter_role(self, command):
role_name_tree: Tree = command['role_name']
role_name_tree: Tree = command["role_name"]
role_name: str = role_name_tree.children[0].strip("'\"")
desc_tree: Tree = command['description']
desc_tree: Tree = command["description"]
desc_str: str = desc_tree.children[0].strip("'\"")
print(f"alter role name: {role_name}, description: {desc_str}")
url = f'http://{self.host}:{self.port}/api/v1/admin/roles/{role_name}'
response = self.session.put(
url,
json={'description': desc_str}
)
url = f"http://{self.host}:{self.port}/api/v1/admin/roles/{role_name}"
response = self.session.put(url, json={"description": desc_str})
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(
f"Fail to update role {role_name} with description: {desc_str}, code: {res_json['code']}, message: {res_json['message']}")
print(f"Fail to update role {role_name} with description: {desc_str}, code: {res_json['code']}, message: {res_json['message']}")
def _list_roles(self, command):
print("Listing all roles")
url = f'http://{self.host}:{self.port}/api/v1/admin/roles'
url = f"http://{self.host}:{self.port}/api/v1/admin/roles"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(f"Fail to list roles, code: {res_json['code']}, message: {res_json['message']}")
def _show_role(self, command):
role_name_tree: Tree = command['role_name']
role_name_tree: Tree = command["role_name"]
role_name: str = role_name_tree.children[0].strip("'\"")
print(f"show role: {role_name}")
url = f'http://{self.host}:{self.port}/api/v1/admin/roles/{role_name}/permission'
url = f"http://{self.host}:{self.port}/api/v1/admin/roles/{role_name}/permission"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(f"Fail to list roles, code: {res_json['code']}, message: {res_json['message']}")
def _grant_permission(self, command):
role_name_tree: Tree = command['role_name']
role_name_tree: Tree = command["role_name"]
role_name_str: str = role_name_tree.children[0].strip("'\"")
resource_tree: Tree = command['resource']
resource_tree: Tree = command["resource"]
resource_str: str = resource_tree.children[0].strip("'\"")
action_tree_list: list = command['actions']
action_tree_list: list = command["actions"]
actions: list = []
for action_tree in action_tree_list:
action_str: str = action_tree.children[0].strip("'\"")
actions.append(action_str)
print(f"grant role_name: {role_name_str}, resource: {resource_str}, actions: {actions}")
url = f'http://{self.host}:{self.port}/api/v1/admin/roles/{role_name_str}/permission'
response = self.session.post(
url,
json={'actions': actions, 'resource': resource_str}
)
url = f"http://{self.host}:{self.port}/api/v1/admin/roles/{role_name_str}/permission"
response = self.session.post(url, json={"actions": actions, "resource": resource_str})
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(
f"Fail to grant role {role_name_str} with {actions} on {resource_str}, code: {res_json['code']}, message: {res_json['message']}")
print(f"Fail to grant role {role_name_str} with {actions} on {resource_str}, code: {res_json['code']}, message: {res_json['message']}")
def _revoke_permission(self, command):
role_name_tree: Tree = command['role_name']
role_name_tree: Tree = command["role_name"]
role_name_str: str = role_name_tree.children[0].strip("'\"")
resource_tree: Tree = command['resource']
resource_tree: Tree = command["resource"]
resource_str: str = resource_tree.children[0].strip("'\"")
action_tree_list: list = command['actions']
action_tree_list: list = command["actions"]
actions: list = []
for action_tree in action_tree_list:
action_str: str = action_tree.children[0].strip("'\"")
actions.append(action_str)
print(f"revoke role_name: {role_name_str}, resource: {resource_str}, actions: {actions}")
url = f'http://{self.host}:{self.port}/api/v1/admin/roles/{role_name_str}/permission'
response = self.session.delete(
url,
json={'actions': actions, 'resource': resource_str}
)
url = f"http://{self.host}:{self.port}/api/v1/admin/roles/{role_name_str}/permission"
response = self.session.delete(url, json={"actions": actions, "resource": resource_str})
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(
f"Fail to revoke role {role_name_str} with {actions} on {resource_str}, code: {res_json['code']}, message: {res_json['message']}")
print(f"Fail to revoke role {role_name_str} with {actions} on {resource_str}, code: {res_json['code']}, message: {res_json['message']}")
def _alter_user_role(self, command):
role_name_tree: Tree = command['role_name']
role_name_tree: Tree = command["role_name"]
role_name_str: str = role_name_tree.children[0].strip("'\"")
user_name_tree: Tree = command['user_name']
user_name_tree: Tree = command["user_name"]
user_name_str: str = user_name_tree.children[0].strip("'\"")
print(f"alter_user_role user_name: {user_name_str}, role_name: {role_name_str}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{user_name_str}/role'
response = self.session.put(
url,
json={'role_name': role_name_str}
)
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name_str}/role"
response = self.session.put(url, json={"role_name": role_name_str})
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(
f"Fail to alter user: {user_name_str} to role {role_name_str}, code: {res_json['code']}, message: {res_json['message']}")
print(f"Fail to alter user: {user_name_str} to role {role_name_str}, code: {res_json['code']}, message: {res_json['message']}")
def _show_user_permission(self, command):
user_name_tree: Tree = command['user_name']
user_name_tree: Tree = command["user_name"]
user_name_str: str = user_name_tree.children[0].strip("'\"")
print(f"show_user_permission user_name: {user_name_str}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{user_name_str}/permission'
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name_str}/permission"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(
f"Fail to show user: {user_name_str} permission, code: {res_json['code']}, message: {res_json['message']}")
print(f"Fail to show user: {user_name_str} permission, code: {res_json['code']}, message: {res_json['message']}")
def _show_version(self, command):
print("show_version")
url = f'http://{self.host}:{self.port}/api/v1/admin/version'
url = f"http://{self.host}:{self.port}/api/v1/admin/version"
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
self._print_table_simple(res_json["data"])
else:
print(f"Fail to show version, code: {res_json['code']}, message: {res_json['message']}")
def _handle_meta_command(self, command):
meta_command = command['command']
args = command.get('args', [])
meta_command = command["command"]
args = command.get("args", [])
if meta_command in ['?', 'h', 'help']:
if meta_command in ["?", "h", "help"]:
self.show_help()
elif meta_command in ['q', 'quit', 'exit']:
elif meta_command in ["q", "quit", "exit"]:
print("Goodbye!")
else:
print(f"Meta command '{meta_command}' with args {args}")
@ -950,16 +910,16 @@ def main():
cli = AdminCLI()
args = cli.parse_connection_args(sys.argv)
if 'error' in args:
if "error" in args:
print("Error: Invalid connection arguments")
return
if 'command' in args:
if 'password' not in args:
if "command" in args:
if "password" not in args:
print("Error: password is missing")
return
if cli.verify_admin(args, single_command=True):
command: str = args['command']
command: str = args["command"]
# print(f"Run single command: {command}")
cli.run_single_command(command)
else:
@ -974,5 +934,5 @@ def main():
cli.cmdloop()
if __name__ == '__main__':
if __name__ == "__main__":
main()

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow-cli"
version = "0.22.1"
version = "0.23.0"
description = "Admin Service's client of [RAGFlow](https://github.com/infiniflow/ragflow). The Admin Service provides user management and system monitoring. "
authors = [{ name = "Lynn", email = "lynn_inf@hotmail.com" }]
license = { text = "Apache License, Version 2.0" }

2
admin/client/uv.lock generated
View File

@ -196,7 +196,7 @@ wheels = [
[[package]]
name = "ragflow-cli"
version = "0.22.1"
version = "0.23.0"
source = { virtual = "." }
dependencies = [
{ name = "beartype" },

View File

@ -278,7 +278,7 @@ class Graph:
class Canvas(Graph):
def __init__(self, dsl: str, tenant_id=None, task_id=None):
def __init__(self, dsl: str, tenant_id=None, task_id=None, canvas_id=None):
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
@ -287,6 +287,7 @@ class Canvas(Graph):
}
self.variables = {}
super().__init__(dsl, tenant_id, task_id)
self._id = canvas_id
def load(self):
super().load()
@ -721,6 +722,9 @@ class Canvas(Graph):
def get_mode(self):
return self.components["begin"]["obj"]._param.mode
def get_sys_query(self):
return self.globals.get("sys.query", "")
def set_global_param(self, **kwargs):
self.globals.update(kwargs)

View File

@ -33,6 +33,8 @@ from common.connection_utils import timeout
from common.misc_utils import get_uuid
from common import settings
from api.db.joint_services.memory_message_service import save_to_memory
class MessageParam(ComponentParamBase):
"""
@ -166,6 +168,7 @@ class Message(ComponentBase):
self.set_output("content", all_content)
self._convert_content(all_content)
await self._save_to_memory(all_content)
def _is_jinjia2(self, content:str) -> bool:
patt = [
@ -198,6 +201,7 @@ class Message(ComponentBase):
self.set_output("content", content)
self._convert_content(content)
self._save_to_memory(content)
def thoughts(self) -> str:
return ""
@ -421,3 +425,29 @@ class Message(ComponentBase):
except Exception as e:
logging.error(f"Error converting content to {self._param.output_format}: {e}")
async def _save_to_memory(self, content):
if not hasattr(self._param, "memory_ids") or not self._param.memory_ids:
return True, "No memory selected."
message_dict = {
"user_id": self._canvas._tenant_id,
"agent_id": self._canvas._id,
"session_id": self._canvas.task_id,
"user_input": self._canvas.get_sys_query(),
"agent_response": content
}
res = []
for memory_id in self._param.memory_ids:
success, msg = await save_to_memory(memory_id, message_dict)
res.append({
"memory_id": memory_id,
"success": success,
"msg": msg
})
if all([r["success"] for r in res]):
return True, "Successfully added to memories."
error_text = "Some messages failed to add. " + " ".join([f"Add to memory {r['memory_id']} failed, detail: {r['msg']}" for r in res if not r["success"]])
logging.error(error_text)
return False, error_text

View File

@ -26,7 +26,7 @@ from common.metadata_utils import apply_meta_data_filter
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.memory_service import MemoryService
from api.db.joint_services.memory_message_service import query_message
from api.db.joint_services import memory_message_service
from common import settings
from common.connection_utils import timeout
from rag.app.tag import label_question
@ -259,36 +259,36 @@ class Retrieval(ToolBase, ABC):
vars = {k: o["value"] for k, o in vars.items()}
query = self.string_format(query_text, vars)
# query message
message_list = query_message({"memory_id": memory_ids}, {
message_list = memory_message_service.query_message({"memory_id": memory_ids}, {
"query": query,
"similarity_threshold": self._param.similarity_threshold,
"keywords_similarity_weight": self._param.keywords_similarity_weight,
"top_n": self._param.top_n
})
print(f"found {len(message_list)} messages.")
if not message_list:
self.set_output("formalized_content", self._param.empty_response)
return
return ""
formated_content = "\n".join(memory_prompt(message_list, 200000))
# set formalized_content output
self.set_output("formalized_content", formated_content)
print(f"formated_content {formated_content}")
return formated_content
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
async def _invoke_async(self, **kwargs):
if self.check_if_canceled("Retrieval processing"):
return
print(f"debug retrieval, query is {kwargs.get('query')}.", flush=True)
if not kwargs.get("query"):
self.set_output("formalized_content", self._param.empty_response)
return
if self._param.kb_ids:
if hasattr(self._param, "retrieval_from") and self._param.retrieval_from == "dataset":
return await self._retrieve_kb(kwargs["query"])
elif self._param.memory_ids:
elif hasattr(self._param, "retrieval_from") and self._param.retrieval_from == "memory":
return await self._retrieve_memory(kwargs["query"])
elif self._param.kb_ids:
return await self._retrieve_kb(kwargs["query"])
elif hasattr(self._param, "memory_ids") and self._param.memory_ids:
return await self._retrieve_memory(kwargs["query"])
else:
self.set_output("formalized_content", self._param.empty_response)

View File

@ -38,7 +38,6 @@ settings.init_settings()
__all__ = ["app"]
app = Quart(__name__)
app = cors(app, allow_origin="*")
@ -103,6 +102,7 @@ from werkzeug.local import LocalProxy
T = TypeVar("T")
P = ParamSpec("P")
def _load_user():
jwt = Serializer(secret_key=settings.SECRET_KEY)
authorization = request.headers.get("Authorization")
@ -164,7 +164,7 @@ def login_required(func: Callable[P, Awaitable[T]]) -> Callable[P, Awaitable[T]]
@wraps(func)
async def wrapper(*args: P.args, **kwargs: P.kwargs) -> T:
if not current_user:# or not session.get("_user_id"):
if not current_user: # or not session.get("_user_id"):
raise Unauthorized()
else:
return await current_app.ensure_async(func)(*args, **kwargs)
@ -228,6 +228,7 @@ def logout_user():
return True
def search_pages_path(page_path):
app_path_list = [
path for path in page_path.glob("*_app.py") if not path.name.startswith(".")
@ -274,6 +275,16 @@ client_urls_prefix = [
]
@app.errorhandler(404)
async def not_found(error):
error_msg: str = f"The requested URL {request.path} was not found"
logging.error(error_msg)
return {
"error": "Not Found",
"message": error_msg,
}, 404
@app.teardown_request
def _db_close(exception):
if exception:

View File

@ -153,7 +153,7 @@ async def run():
return get_json_result(data={"message_id": task_id})
try:
canvas = Canvas(cvs.dsl, current_user.id)
canvas = Canvas(cvs.dsl, current_user.id, canvas_id=cvs.id)
except Exception as e:
return server_error_response(e)
@ -232,7 +232,7 @@ async def reset():
if not e:
return get_data_error_result(message="canvas not found.")
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id, canvas_id=user_canvas.id)
canvas.reset()
req["dsl"] = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], {"dsl": req["dsl"]})
@ -270,7 +270,7 @@ def input_form():
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id, canvas_id=user_canvas.id)
return get_json_result(data=canvas.get_component_input_form(cpn_id))
except Exception as e:
return server_error_response(e)
@ -287,7 +287,7 @@ async def debug():
code=RetCode.OPERATING_ERROR)
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id, canvas_id=user_canvas.id)
canvas.reset()
canvas.message_id = get_uuid()
component = canvas.get_component(req["component_id"])["obj"]

View File

@ -234,6 +234,10 @@ async def list_docs():
req = await get_request_json()
return_empty_metadata = req.get("return_empty_metadata", False)
if isinstance(return_empty_metadata, str):
return_empty_metadata = return_empty_metadata.lower() == "true"
run_status = req.get("run_status", [])
if run_status:
invalid_status = {s for s in run_status if s not in VALID_TASK_STATUS}
@ -248,11 +252,18 @@ async def list_docs():
suffix = req.get("suffix", [])
metadata_condition = req.get("metadata_condition", {}) or {}
if metadata_condition and not isinstance(metadata_condition, dict):
return get_data_error_result(message="metadata_condition must be an object.")
metadata = req.get("metadata", {}) or {}
if metadata and not isinstance(metadata, dict):
return get_data_error_result(message="metadata must be an object.")
if isinstance(metadata, dict) and metadata.get("empty_metadata"):
return_empty_metadata = True
metadata = {k: v for k, v in metadata.items() if k != "empty_metadata"}
if return_empty_metadata:
metadata_condition = {}
metadata = {}
else:
if metadata_condition and not isinstance(metadata_condition, dict):
return get_data_error_result(message="metadata_condition must be an object.")
if metadata and not isinstance(metadata, dict):
return get_data_error_result(message="metadata must be an object.")
doc_ids_filter = None
metas = None
@ -295,7 +306,19 @@ async def list_docs():
doc_ids_filter = list(doc_ids_filter)
try:
docs, tol = DocumentService.get_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, keywords, run_status, types, suffix, doc_ids_filter)
docs, tol = DocumentService.get_by_kb_id(
kb_id,
page_number,
items_per_page,
orderby,
desc,
keywords,
run_status,
types,
suffix,
doc_ids_filter,
return_empty_metadata=return_empty_metadata,
)
if create_time_from or create_time_to:
filtered_docs = []
@ -588,6 +611,13 @@ async def run():
settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), doc.kb_id)
if str(req["run"]) == TaskStatus.RUNNING.value:
if req.get("apply_kb"):
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
if not e:
raise LookupError("Can't find this dataset!")
doc.parser_config["enable_metadata"] = kb.parser_config.get("enable_metadata", False)
doc.parser_config["metadata"] = kb.parser_config.get("metadata", {})
DocumentService.update_parser_config(doc.id, doc.parser_config)
doc_dict = doc.to_dict()
DocumentService.run(tenant_id, doc_dict, kb_table_num_map)
@ -716,6 +746,7 @@ async def change_parser():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
DocumentService.delete_chunk_images(doc, tenant_id)
if settings.docStoreConn.index_exist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
return None

View File

@ -21,11 +21,12 @@ from api.db import TenantPermission
from api.db.services.memory_service import MemoryService
from api.db.services.user_service import UserTenantService
from api.db.services.canvas_service import UserCanvasService
from api.utils.api_utils import validate_request, get_request_json, get_error_argument_result, get_json_result, \
not_allowed_parameters
from api.db.joint_services.memory_message_service import get_memory_size_cache, judge_system_prompt_is_default
from api.utils.api_utils import validate_request, get_request_json, get_error_argument_result, get_json_result
from api.utils.memory_utils import format_ret_data_from_memory, get_memory_type_human
from api.constants import MEMORY_NAME_LIMIT, MEMORY_SIZE_LIMIT
from memory.services.messages import MessageService
from memory.utils.prompt_util import PromptAssembler
from common.constants import MemoryType, RetCode, ForgettingPolicy
@ -68,7 +69,6 @@ async def create_memory():
@manager.route("/<memory_id>", methods=["PUT"]) # noqa: F821
@login_required
@not_allowed_parameters("id", "tenant_id", "memory_type", "storage_type", "embd_id")
async def update_memory(memory_id):
req = await get_request_json()
update_dict = {}
@ -88,6 +88,14 @@ async def update_memory(memory_id):
update_dict["permissions"] = req["permissions"]
if req.get("llm_id"):
update_dict["llm_id"] = req["llm_id"]
if req.get("embd_id"):
update_dict["embd_id"] = req["embd_id"]
if req.get("memory_type"):
memory_type = set(req["memory_type"])
invalid_type = memory_type - {e.name.lower() for e in MemoryType}
if invalid_type:
return get_error_argument_result(f"Memory type '{invalid_type}' is not supported.")
update_dict["memory_type"] = list(memory_type)
# check memory_size valid
if req.get("memory_size"):
if not 0 < int(req["memory_size"]) <= MEMORY_SIZE_LIMIT:
@ -123,6 +131,15 @@ async def update_memory(memory_id):
if not to_update:
return get_json_result(message=True, data=memory_dict)
# check memory empty when update embd_id, memory_type
memory_size = get_memory_size_cache(memory_id, current_memory.tenant_id)
not_allowed_update = [f for f in ["embd_id", "memory_type"] if f in to_update and memory_size > 0]
if not_allowed_update:
return get_error_argument_result(f"Can't update {not_allowed_update} when memory isn't empty.")
if "memory_type" in to_update:
if "system_prompt" not in to_update and judge_system_prompt_is_default(current_memory.system_prompt, current_memory.memory_type):
# update old default prompt, assemble a new one
to_update["system_prompt"] = PromptAssembler.assemble_system_prompt({"memory_type": to_update["memory_type"]})
try:
MemoryService.update_memory(current_memory.tenant_id, memory_id, to_update)

View File

@ -20,7 +20,6 @@ from common.time_utils import current_timestamp, timestamp_to_date
from memory.services.messages import MessageService
from api.db.joint_services import memory_message_service
from api.db.joint_services.memory_message_service import query_message
from api.utils.api_utils import validate_request, get_request_json, get_error_argument_result, get_json_result
from common.constants import RetCode
@ -129,7 +128,7 @@ async def search_message():
"keywords_similarity_weight": keywords_similarity_weight,
"top_n": top_n
}
res = query_message(filter_dict, params)
res = memory_message_service.query_message(filter_dict, params)
return get_json_result(message=True, data=res)

View File

@ -394,7 +394,7 @@ async def webhook(agent_id: str):
if not isinstance(cvs.dsl, str):
dsl = json.dumps(cvs.dsl, ensure_ascii=False)
try:
canvas = Canvas(dsl, cvs.user_id, agent_id)
canvas = Canvas(dsl, cvs.user_id, agent_id, canvas_id=agent_id)
except Exception as e:
resp=get_data_error_result(code=RetCode.BAD_REQUEST,message=str(e))
resp.status_code = RetCode.BAD_REQUEST

View File

@ -1286,6 +1286,9 @@ async def rm_chunk(tenant_id, dataset_id, document_id):
if "chunk_ids" in req:
unique_chunk_ids, duplicate_messages = check_duplicate_ids(req["chunk_ids"], "chunk")
condition["id"] = unique_chunk_ids
else:
unique_chunk_ids = []
duplicate_messages = []
chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
if chunk_number != 0:
DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)

View File

@ -88,7 +88,7 @@ async def create_agent_session(tenant_id, agent_id):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
session_id = get_uuid()
canvas = Canvas(cvs.dsl, tenant_id, agent_id)
canvas = Canvas(cvs.dsl, tenant_id, agent_id, canvas_id=cvs.id)
canvas.reset()
cvs.dsl = json.loads(str(canvas))
@ -986,7 +986,7 @@ async def begin_inputs(agent_id):
if not e:
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id, canvas_id=cvs.id)
return get_result(
data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"),
"prologue": canvas.get_prologue(), "mode": canvas.get_mode()})

View File

@ -1189,7 +1189,7 @@ class Memory(DataBaseModel):
permissions = CharField(max_length=16, null=False, index=True, help_text="me|team", default="me")
description = TextField(null=True, help_text="description")
memory_size = IntegerField(default=5242880, null=False, index=False)
forgetting_policy = CharField(max_length=32, null=False, default="fifo", index=False, help_text="lru|fifo")
forgetting_policy = CharField(max_length=32, null=False, default="FIFO", index=False, help_text="LRU|FIFO")
temperature = FloatField(default=0.5, index=False)
system_prompt = TextField(null=True, help_text="system prompt", index=False)
user_prompt = TextField(null=True, help_text="user prompt", index=False)

View File

@ -96,17 +96,17 @@ async def save_to_memory(memory_id: str, message_dict: dict):
current_memory_size = get_memory_size_cache(memory_id, tenant_id)
if new_msg_size + current_memory_size > memory.memory_size:
size_to_delete = current_memory_size + new_msg_size - memory.memory_size
if memory.forgetting_policy == "fifo":
if memory.forgetting_policy == "FIFO":
message_ids_to_delete, delete_size = MessageService.pick_messages_to_delete_by_fifo(memory_id, tenant_id, size_to_delete)
MessageService.delete_message({"message_id": message_ids_to_delete}, tenant_id, memory_id)
decrease_memory_size_cache(memory_id, tenant_id, delete_size)
decrease_memory_size_cache(memory_id, delete_size)
else:
return False, "Failed to insert message into memory. Memory size reached limit and cannot decide which to delete."
fail_cases = MessageService.insert_message(message_list, tenant_id, memory_id)
if fail_cases:
return False, "Failed to insert message into memory. Details: " + "; ".join(fail_cases)
increase_memory_size_cache(memory_id, tenant_id, new_msg_size)
increase_memory_size_cache(memory_id, new_msg_size)
return True, "Message saved successfully."
@ -163,9 +163,9 @@ def query_message(filter_dict: dict, params: dict):
memory = memory_list[0]
embd_model = LLMBundle(memory.tenant_id, llm_type=LLMType.EMBEDDING, llm_name=memory.embd_id)
match_dense = get_vector(question, embd_model, similarity=params["similarity_threshold"])
match_text, _ = MsgTextQuery().question(question, min_match=0.3)
match_text, _ = MsgTextQuery().question(question, min_match=params["similarity_threshold"])
keywords_similarity_weight = params.get("keywords_similarity_weight", 0.7)
fusion_expr = FusionExpr("weighted_sum", params["top_n"], {"weights": ",".join([str(keywords_similarity_weight), str(1 - keywords_similarity_weight)])})
fusion_expr = FusionExpr("weighted_sum", params["top_n"], {"weights": ",".join([str(1 - keywords_similarity_weight), str(keywords_similarity_weight)])})
return MessageService.search_message(memory_ids, condition_dict, uids, [match_text, match_dense, fusion_expr], params["top_n"])
@ -191,8 +191,8 @@ def init_message_id_sequence():
def get_memory_size_cache(memory_id: str, uid: str):
redis_key = f"memory_{memory_id}"
if REDIS_CONN.exists(redis_key):
return REDIS_CONN.get(redis_key)
if REDIS_CONN.exist(redis_key):
return int(REDIS_CONN.get(redis_key))
else:
memory_size_map = MessageService.calculate_memory_size(
[memory_id],
@ -208,14 +208,14 @@ def set_memory_size_cache(memory_id: str, size: int):
return REDIS_CONN.set(redis_key, size)
def increase_memory_size_cache(memory_id: str, uid: str, size: int):
current_value = get_memory_size_cache(memory_id, uid)
return set_memory_size_cache(memory_id, current_value + size)
def increase_memory_size_cache(memory_id: str, size: int):
redis_key = f"memory_{memory_id}"
return REDIS_CONN.incrby(redis_key, size)
def decrease_memory_size_cache(memory_id: str, uid: str, size: int):
current_value = get_memory_size_cache(memory_id, uid)
return set_memory_size_cache(memory_id, max(current_value - size, 0))
def decrease_memory_size_cache(memory_id: str, size: int):
redis_key = f"memory_{memory_id}"
return REDIS_CONN.decrby(redis_key, size)
def init_memory_size_cache():
@ -223,11 +223,11 @@ def init_memory_size_cache():
if not memory_list:
logging.info("No memory found, no need to init memory size.")
else:
memory_size_map = MessageService.calculate_memory_size(
memory_ids=[m.id for m in memory_list],
uid_list=[m.tenant_id for m in memory_list],
)
for memory in memory_list:
memory_size = memory_size_map.get(memory.id, 0)
set_memory_size_cache(memory.id, memory_size)
for m in memory_list:
get_memory_size_cache(m.id, m.tenant_id)
logging.info("Memory size cache init done.")
def judge_system_prompt_is_default(system_prompt: str, memory_type: int|list[str]):
memory_type_list = memory_type if isinstance(memory_type, list) else get_memory_type_human(memory_type)
return system_prompt == PromptAssembler.assemble_system_prompt({"memory_type": memory_type_list})

View File

@ -211,7 +211,7 @@ async def completion(tenant_id, agent_id, session_id=None, **kwargs):
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
session_id=get_uuid()
canvas = Canvas(cvs.dsl, tenant_id, agent_id)
canvas = Canvas(cvs.dsl, tenant_id, agent_id, canvas_id=cvs.id)
canvas.reset()
conv = {
"id": session_id,

View File

@ -116,6 +116,16 @@ async def async_completion(tenant_id, chat_id, question, name="New session", ses
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
return
else:
answer = {
"answer": conv["message"][0]["content"],
"reference": {},
"audio_binary": None,
"id": None,
"session_id": session_id
}
yield answer
return
conv = ConversationService.query(id=session_id, dialog_id=chat_id)
if not conv:

View File

@ -125,26 +125,26 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def get_by_kb_id(cls, kb_id, page_number, items_per_page,
orderby, desc, keywords, run_status, types, suffix, doc_ids=None):
def get_by_kb_id(cls, kb_id, page_number, items_per_page, orderby, desc, keywords, run_status, types, suffix, doc_ids=None, return_empty_metadata=False):
fields = cls.get_cls_model_fields()
if keywords:
docs = cls.model.select(*[*fields, UserCanvas.title.alias("pipeline_name"), User.nickname])\
.join(File2Document, on=(File2Document.document_id == cls.model.id))\
.join(File, on=(File.id == File2Document.file_id))\
.join(UserCanvas, on=(cls.model.pipeline_id == UserCanvas.id), join_type=JOIN.LEFT_OUTER)\
.join(User, on=(cls.model.created_by == User.id), join_type=JOIN.LEFT_OUTER)\
.where(
(cls.model.kb_id == kb_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
docs = (
cls.model.select(*[*fields, UserCanvas.title.alias("pipeline_name"), User.nickname])
.join(File2Document, on=(File2Document.document_id == cls.model.id))
.join(File, on=(File.id == File2Document.file_id))
.join(UserCanvas, on=(cls.model.pipeline_id == UserCanvas.id), join_type=JOIN.LEFT_OUTER)
.join(User, on=(cls.model.created_by == User.id), join_type=JOIN.LEFT_OUTER)
.where((cls.model.kb_id == kb_id), (fn.LOWER(cls.model.name).contains(keywords.lower())))
)
else:
docs = cls.model.select(*[*fields, UserCanvas.title.alias("pipeline_name"), User.nickname])\
.join(File2Document, on=(File2Document.document_id == cls.model.id))\
.join(UserCanvas, on=(cls.model.pipeline_id == UserCanvas.id), join_type=JOIN.LEFT_OUTER)\
.join(File, on=(File.id == File2Document.file_id))\
.join(User, on=(cls.model.created_by == User.id), join_type=JOIN.LEFT_OUTER)\
docs = (
cls.model.select(*[*fields, UserCanvas.title.alias("pipeline_name"), User.nickname])
.join(File2Document, on=(File2Document.document_id == cls.model.id))
.join(UserCanvas, on=(cls.model.pipeline_id == UserCanvas.id), join_type=JOIN.LEFT_OUTER)
.join(File, on=(File.id == File2Document.file_id))
.join(User, on=(cls.model.created_by == User.id), join_type=JOIN.LEFT_OUTER)
.where(cls.model.kb_id == kb_id)
)
if doc_ids:
docs = docs.where(cls.model.id.in_(doc_ids))
@ -154,6 +154,8 @@ class DocumentService(CommonService):
docs = docs.where(cls.model.type.in_(types))
if suffix:
docs = docs.where(cls.model.suffix.in_(suffix))
if return_empty_metadata:
docs = docs.where(fn.COALESCE(fn.JSON_LENGTH(cls.model.meta_fields), 0) == 0)
count = docs.count()
if desc:
@ -161,7 +163,6 @@ class DocumentService(CommonService):
else:
docs = docs.order_by(cls.model.getter_by(orderby).asc())
if page_number and items_per_page:
docs = docs.paginate(page_number, items_per_page)
@ -217,18 +218,16 @@ class DocumentService(CommonService):
suffix_counter = {}
run_status_counter = {}
metadata_counter = {}
empty_metadata_count = 0
for row in rows:
suffix_counter[row.suffix] = suffix_counter.get(row.suffix, 0) + 1
run_status_counter[str(row.run)] = run_status_counter.get(str(row.run), 0) + 1
meta_fields = row.meta_fields or {}
if isinstance(meta_fields, str):
try:
meta_fields = json.loads(meta_fields)
except Exception:
meta_fields = {}
if not isinstance(meta_fields, dict):
if not meta_fields:
empty_metadata_count += 1
continue
has_valid_meta = False
for key, value in meta_fields.items():
values = value if isinstance(value, list) else [value]
for vv in values:
@ -240,7 +239,11 @@ class DocumentService(CommonService):
if key not in metadata_counter:
metadata_counter[key] = {}
metadata_counter[key][sv] = metadata_counter[key].get(sv, 0) + 1
has_valid_meta = True
if not has_valid_meta:
empty_metadata_count += 1
metadata_counter["empty_metadata"] = {"true": empty_metadata_count}
return {
"suffix": suffix_counter,
"run_status": run_status_counter,
@ -339,21 +342,7 @@ class DocumentService(CommonService):
cls.clear_chunk_num(doc.id)
try:
TaskService.filter_delete([Task.doc_id == doc.id])
page = 0
page_size = 1000
all_chunk_ids = []
while True:
chunks = settings.docStoreConn.search(["img_id"], [], {"doc_id": doc.id}, [], OrderByExpr(),
page * page_size, page_size, search.index_name(tenant_id),
[doc.kb_id])
chunk_ids = settings.docStoreConn.get_doc_ids(chunks)
if not chunk_ids:
break
all_chunk_ids.extend(chunk_ids)
page += 1
for cid in all_chunk_ids:
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, cid):
settings.STORAGE_IMPL.rm(doc.kb_id, cid)
cls.delete_chunk_images(doc, tenant_id)
if doc.thumbnail and not doc.thumbnail.startswith(IMG_BASE64_PREFIX):
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, doc.thumbnail):
settings.STORAGE_IMPL.rm(doc.kb_id, doc.thumbnail)
@ -375,6 +364,23 @@ class DocumentService(CommonService):
pass
return cls.delete_by_id(doc.id)
@classmethod
@DB.connection_context()
def delete_chunk_images(cls, doc, tenant_id):
page = 0
page_size = 1000
while True:
chunks = settings.docStoreConn.search(["img_id"], [], {"doc_id": doc.id}, [], OrderByExpr(),
page * page_size, page_size, search.index_name(tenant_id),
[doc.kb_id])
chunk_ids = settings.docStoreConn.get_doc_ids(chunks)
if not chunk_ids:
break
for cid in chunk_ids:
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, cid):
settings.STORAGE_IMPL.rm(doc.kb_id, cid)
page += 1
@classmethod
@DB.connection_context()
def get_newly_uploaded(cls):

View File

@ -65,6 +65,7 @@ class EvaluationService(CommonService):
(success, dataset_id or error_message)
"""
try:
timestamp= current_timestamp()
dataset_id = get_uuid()
dataset = {
"id": dataset_id,
@ -73,8 +74,8 @@ class EvaluationService(CommonService):
"description": description,
"kb_ids": kb_ids,
"created_by": user_id,
"create_time": current_timestamp(),
"update_time": current_timestamp(),
"create_time": timestamp,
"update_time": timestamp,
"status": StatusEnum.VALID.value
}

View File

@ -64,10 +64,13 @@ class TenantLangfuseService(CommonService):
@classmethod
def save(cls, **kwargs):
kwargs["create_time"] = current_timestamp()
kwargs["create_date"] = datetime_format(datetime.now())
kwargs["update_time"] = current_timestamp()
kwargs["update_date"] = datetime_format(datetime.now())
current_ts = current_timestamp()
current_date = datetime_format(datetime.now())
kwargs["create_time"] = current_ts
kwargs["create_date"] = current_date
kwargs["update_time"] = current_ts
kwargs["update_date"] = current_date
obj = cls.model.create(**kwargs)
return obj

View File

@ -149,6 +149,8 @@ class MemoryService(CommonService):
return 0
if "temperature" in update_dict and isinstance(update_dict["temperature"], str):
update_dict["temperature"] = float(update_dict["temperature"])
if "memory_type" in update_dict and isinstance(update_dict["memory_type"], list):
update_dict["memory_type"] = calculate_memory_type(update_dict["memory_type"])
if "name" in update_dict:
update_dict["name"] = duplicate_name(
cls.query,

View File

@ -169,11 +169,12 @@ class PipelineOperationLogService(CommonService):
operation_status=operation_status,
avatar=avatar,
)
log["create_time"] = current_timestamp()
log["create_date"] = datetime_format(datetime.now())
log["update_time"] = current_timestamp()
log["update_date"] = datetime_format(datetime.now())
timestamp = current_timestamp()
datetime_now = datetime_format(datetime.now())
log["create_time"] = timestamp
log["create_date"] = datetime_now
log["update_time"] = timestamp
log["update_date"] = datetime_now
with DB.atomic():
obj = cls.save(**log)

View File

@ -28,10 +28,13 @@ class SearchService(CommonService):
@classmethod
def save(cls, **kwargs):
kwargs["create_time"] = current_timestamp()
kwargs["create_date"] = datetime_format(datetime.now())
kwargs["update_time"] = current_timestamp()
kwargs["update_date"] = datetime_format(datetime.now())
current_ts = current_timestamp()
current_date = datetime_format(datetime.now())
kwargs["create_time"] = current_ts
kwargs["create_date"] = current_date
kwargs["update_time"] = current_ts
kwargs["update_date"] = current_date
obj = cls.model.create(**kwargs)
return obj

View File

@ -116,10 +116,13 @@ class UserService(CommonService):
kwargs["password"] = generate_password_hash(
str(kwargs["password"]))
kwargs["create_time"] = current_timestamp()
kwargs["create_date"] = datetime_format(datetime.now())
kwargs["update_time"] = current_timestamp()
kwargs["update_date"] = datetime_format(datetime.now())
current_ts = current_timestamp()
current_date = datetime_format(datetime.now())
kwargs["create_time"] = current_ts
kwargs["create_date"] = current_date
kwargs["update_time"] = current_ts
kwargs["update_date"] = current_date
obj = cls.model(**kwargs).save(force_insert=True)
return obj

View File

@ -42,7 +42,7 @@ def filename_type(filename):
if re.match(r".*\.pdf$", filename):
return FileType.PDF.value
if re.match(r".*\.(msg|eml|doc|docx|ppt|pptx|yml|xml|htm|json|jsonl|ldjson|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|html|sql)$", filename):
if re.match(r".*\.(msg|eml|doc|docx|ppt|pptx|yml|xml|htm|json|jsonl|ldjson|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|mdx|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|html|sql)$", filename):
return FileType.DOC.value
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus)$", filename):

View File

@ -69,6 +69,7 @@ CONTENT_TYPE_MAP = {
# Web
"md": "text/markdown",
"markdown": "text/markdown",
"mdx": "text/markdown",
"htm": "text/html",
"html": "text/html",
"json": "application/json",

View File

@ -128,7 +128,9 @@ class FileSource(StrEnum):
R2 = "r2"
OCI_STORAGE = "oci_storage"
GOOGLE_CLOUD_STORAGE = "google_cloud_storage"
AIRTABLE = "airtable"
ASANA = "asana"
GITLAB = "gitlab"
class PipelineTaskType(StrEnum):
PARSE = "Parse"
@ -170,7 +172,7 @@ class MemoryStorageType(StrEnum):
class ForgettingPolicy(StrEnum):
FIFO = "fifo"
FIFO = "FIFO"
# environment

View File

@ -36,6 +36,8 @@ from .sharepoint_connector import SharePointConnector
from .teams_connector import TeamsConnector
from .webdav_connector import WebDAVConnector
from .moodle_connector import MoodleConnector
from .airtable_connector import AirtableConnector
from .asana_connector import AsanaConnector
from .config import BlobType, DocumentSource
from .models import Document, TextSection, ImageSection, BasicExpertInfo
from .exceptions import (
@ -70,5 +72,7 @@ __all__ = [
"ConnectorValidationError",
"CredentialExpiredError",
"InsufficientPermissionsError",
"UnexpectedValidationError"
"UnexpectedValidationError",
"AirtableConnector",
"AsanaConnector",
]

View File

@ -0,0 +1,149 @@
from datetime import datetime, timezone
import logging
from typing import Any
import requests
from pyairtable import Api as AirtableApi
from common.data_source.config import AIRTABLE_CONNECTOR_SIZE_THRESHOLD, INDEX_BATCH_SIZE, DocumentSource
from common.data_source.exceptions import ConnectorMissingCredentialError
from common.data_source.interfaces import LoadConnector
from common.data_source.models import Document, GenerateDocumentsOutput
from common.data_source.utils import extract_size_bytes, get_file_ext
class AirtableClientNotSetUpError(PermissionError):
def __init__(self) -> None:
super().__init__(
"Airtable client is not set up. Did you forget to call load_credentials()?"
)
class AirtableConnector(LoadConnector):
"""
Lightweight Airtable connector.
This connector ingests Airtable attachments as raw blobs without
parsing file content or generating text/image sections.
"""
def __init__(
self,
base_id: str,
table_name_or_id: str,
batch_size: int = INDEX_BATCH_SIZE,
) -> None:
self.base_id = base_id
self.table_name_or_id = table_name_or_id
self.batch_size = batch_size
self._airtable_client: AirtableApi | None = None
self.size_threshold = AIRTABLE_CONNECTOR_SIZE_THRESHOLD
# -------------------------
# Credentials
# -------------------------
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self._airtable_client = AirtableApi(credentials["airtable_access_token"])
return None
@property
def airtable_client(self) -> AirtableApi:
if not self._airtable_client:
raise AirtableClientNotSetUpError()
return self._airtable_client
# -------------------------
# Core logic
# -------------------------
def load_from_state(self) -> GenerateDocumentsOutput:
"""
Fetch all Airtable records and ingest attachments as raw blobs.
Each attachment is converted into a single Document(blob=...).
"""
if not self._airtable_client:
raise ConnectorMissingCredentialError("Airtable credentials not loaded")
table = self.airtable_client.table(self.base_id, self.table_name_or_id)
records = table.all()
logging.info(
f"Starting Airtable blob ingestion for table {self.table_name_or_id}, "
f"{len(records)} records found."
)
batch: list[Document] = []
for record in records:
print(record)
record_id = record.get("id")
fields = record.get("fields", {})
created_time = record.get("createdTime")
for field_value in fields.values():
# We only care about attachment fields (lists of dicts with url/filename)
if not isinstance(field_value, list):
continue
for attachment in field_value:
url = attachment.get("url")
filename = attachment.get("filename")
attachment_id = attachment.get("id")
if not url or not filename or not attachment_id:
continue
try:
resp = requests.get(url, timeout=30)
resp.raise_for_status()
content = resp.content
except Exception:
logging.exception(
f"Failed to download attachment {filename} "
f"(record={record_id})"
)
continue
size_bytes = extract_size_bytes(attachment)
if (
self.size_threshold is not None
and isinstance(size_bytes, int)
and size_bytes > self.size_threshold
):
logging.warning(
f"{filename} exceeds size threshold of {self.size_threshold}. Skipping."
)
continue
batch.append(
Document(
id=f"airtable:{record_id}:{attachment_id}",
blob=content,
source=DocumentSource.AIRTABLE,
semantic_identifier=filename,
extension=get_file_ext(filename),
size_bytes=size_bytes if size_bytes else 0,
doc_updated_at=datetime.strptime(created_time, "%Y-%m-%dT%H:%M:%S.%fZ").replace(tzinfo=timezone.utc)
)
)
if len(batch) >= self.batch_size:
yield batch
batch = []
if batch:
yield batch
if __name__ == "__main__":
import os
logging.basicConfig(level=logging.DEBUG)
connector = AirtableConnector("xxx","xxx")
connector.load_credentials({"airtable_access_token": os.environ.get("AIRTABLE_ACCESS_TOKEN")})
connector.validate_connector_settings()
document_batches = connector.load_from_state()
try:
first_batch = next(document_batches)
print(f"Loaded {len(first_batch)} documents in first batch.")
for doc in first_batch:
print(f"- {doc.semantic_identifier} ({doc.size_bytes} bytes)")
except StopIteration:
print("No documents available in Dropbox.")

View File

@ -0,0 +1,454 @@
from collections.abc import Iterator
import time
from datetime import datetime
import logging
from typing import Any, Dict
import asana
import requests
from common.data_source.config import CONTINUE_ON_CONNECTOR_FAILURE, INDEX_BATCH_SIZE, DocumentSource
from common.data_source.interfaces import LoadConnector, PollConnector
from common.data_source.models import Document, GenerateDocumentsOutput, SecondsSinceUnixEpoch
from common.data_source.utils import extract_size_bytes, get_file_ext
# https://github.com/Asana/python-asana/tree/master?tab=readme-ov-file#documentation-for-api-endpoints
class AsanaTask:
def __init__(
self,
id: str,
title: str,
text: str,
link: str,
last_modified: datetime,
project_gid: str,
project_name: str,
) -> None:
self.id = id
self.title = title
self.text = text
self.link = link
self.last_modified = last_modified
self.project_gid = project_gid
self.project_name = project_name
def __str__(self) -> str:
return f"ID: {self.id}\nTitle: {self.title}\nLast modified: {self.last_modified}\nText: {self.text}"
class AsanaAPI:
def __init__(
self, api_token: str, workspace_gid: str, team_gid: str | None
) -> None:
self._user = None
self.workspace_gid = workspace_gid
self.team_gid = team_gid
self.configuration = asana.Configuration()
self.api_client = asana.ApiClient(self.configuration)
self.tasks_api = asana.TasksApi(self.api_client)
self.attachments_api = asana.AttachmentsApi(self.api_client)
self.stories_api = asana.StoriesApi(self.api_client)
self.users_api = asana.UsersApi(self.api_client)
self.project_api = asana.ProjectsApi(self.api_client)
self.project_memberships_api = asana.ProjectMembershipsApi(self.api_client)
self.workspaces_api = asana.WorkspacesApi(self.api_client)
self.api_error_count = 0
self.configuration.access_token = api_token
self.task_count = 0
def get_tasks(
self, project_gids: list[str] | None, start_date: str
) -> Iterator[AsanaTask]:
"""Get all tasks from the projects with the given gids that were modified since the given date.
If project_gids is None, get all tasks from all projects in the workspace."""
logging.info("Starting to fetch Asana projects")
projects = self.project_api.get_projects(
opts={
"workspace": self.workspace_gid,
"opt_fields": "gid,name,archived,modified_at",
}
)
start_seconds = int(time.mktime(datetime.now().timetuple()))
projects_list = []
project_count = 0
for project_info in projects:
project_gid = project_info["gid"]
if project_gids is None or project_gid in project_gids:
projects_list.append(project_gid)
else:
logging.debug(
f"Skipping project: {project_gid} - not in accepted project_gids"
)
project_count += 1
if project_count % 100 == 0:
logging.info(f"Processed {project_count} projects")
logging.info(f"Found {len(projects_list)} projects to process")
for project_gid in projects_list:
for task in self._get_tasks_for_project(
project_gid, start_date, start_seconds
):
yield task
logging.info(f"Completed fetching {self.task_count} tasks from Asana")
if self.api_error_count > 0:
logging.warning(
f"Encountered {self.api_error_count} API errors during task fetching"
)
def _get_tasks_for_project(
self, project_gid: str, start_date: str, start_seconds: int
) -> Iterator[AsanaTask]:
project = self.project_api.get_project(project_gid, opts={})
project_name = project.get("name", project_gid)
team = project.get("team") or {}
team_gid = team.get("gid")
if project.get("archived"):
logging.info(f"Skipping archived project: {project_name} ({project_gid})")
return
if not team_gid:
logging.info(
f"Skipping project without a team: {project_name} ({project_gid})"
)
return
if project.get("privacy_setting") == "private":
if self.team_gid and team_gid != self.team_gid:
logging.info(
f"Skipping private project not in configured team: {project_name} ({project_gid})"
)
return
logging.info(
f"Processing private project in configured team: {project_name} ({project_gid})"
)
simple_start_date = start_date.split(".")[0].split("+")[0]
logging.info(
f"Fetching tasks modified since {simple_start_date} for project: {project_name} ({project_gid})"
)
opts = {
"opt_fields": "name,memberships,memberships.project,completed_at,completed_by,created_at,"
"created_by,custom_fields,dependencies,due_at,due_on,external,html_notes,liked,likes,"
"modified_at,notes,num_hearts,parent,projects,resource_subtype,resource_type,start_on,"
"workspace,permalink_url",
"modified_since": start_date,
}
tasks_from_api = self.tasks_api.get_tasks_for_project(project_gid, opts)
for data in tasks_from_api:
self.task_count += 1
if self.task_count % 10 == 0:
end_seconds = time.mktime(datetime.now().timetuple())
runtime_seconds = end_seconds - start_seconds
if runtime_seconds > 0:
logging.info(
f"Processed {self.task_count} tasks in {runtime_seconds:.0f} seconds "
f"({self.task_count / runtime_seconds:.2f} tasks/second)"
)
logging.debug(f"Processing Asana task: {data['name']}")
text = self._construct_task_text(data)
try:
text += self._fetch_and_add_comments(data["gid"])
last_modified_date = self.format_date(data["modified_at"])
text += f"Last modified: {last_modified_date}\n"
task = AsanaTask(
id=data["gid"],
title=data["name"],
text=text,
link=data["permalink_url"],
last_modified=datetime.fromisoformat(data["modified_at"]),
project_gid=project_gid,
project_name=project_name,
)
yield task
except Exception:
logging.error(
f"Error processing task {data['gid']} in project {project_gid}",
exc_info=True,
)
self.api_error_count += 1
def _construct_task_text(self, data: Dict) -> str:
text = f"{data['name']}\n\n"
if data["notes"]:
text += f"{data['notes']}\n\n"
if data["created_by"] and data["created_by"]["gid"]:
creator = self.get_user(data["created_by"]["gid"])["name"]
created_date = self.format_date(data["created_at"])
text += f"Created by: {creator} on {created_date}\n"
if data["due_on"]:
due_date = self.format_date(data["due_on"])
text += f"Due date: {due_date}\n"
if data["completed_at"]:
completed_date = self.format_date(data["completed_at"])
text += f"Completed on: {completed_date}\n"
text += "\n"
return text
def _fetch_and_add_comments(self, task_gid: str) -> str:
text = ""
stories_opts: Dict[str, str] = {}
story_start = time.time()
stories = self.stories_api.get_stories_for_task(task_gid, stories_opts)
story_count = 0
comment_count = 0
for story in stories:
story_count += 1
if story["resource_subtype"] == "comment_added":
comment = self.stories_api.get_story(
story["gid"], opts={"opt_fields": "text,created_by,created_at"}
)
commenter = self.get_user(comment["created_by"]["gid"])["name"]
text += f"Comment by {commenter}: {comment['text']}\n\n"
comment_count += 1
story_duration = time.time() - story_start
logging.debug(
f"Processed {story_count} stories (including {comment_count} comments) in {story_duration:.2f} seconds"
)
return text
def get_attachments(self, task_gid: str) -> list[dict]:
"""
Fetch full attachment info (including download_url) for a task.
"""
attachments: list[dict] = []
try:
# Step 1: list attachment compact records
for att in self.attachments_api.get_attachments_for_object(
parent=task_gid,
opts={}
):
gid = att.get("gid")
if not gid:
continue
try:
# Step 2: expand to full attachment
full = self.attachments_api.get_attachment(
attachment_gid=gid,
opts={
"opt_fields": "name,download_url,size,created_at"
}
)
if full.get("download_url"):
attachments.append(full)
except Exception:
logging.exception(
f"Failed to fetch attachment detail {gid} for task {task_gid}"
)
self.api_error_count += 1
except Exception:
logging.exception(f"Failed to list attachments for task {task_gid}")
self.api_error_count += 1
return attachments
def get_accessible_emails(
self,
workspace_id: str,
project_ids: list[str] | None,
team_id: str | None,
):
ws_users = self.users_api.get_users(
opts={
"workspace": workspace_id,
"opt_fields": "gid,name,email"
}
)
workspace_users = {
u["gid"]: u.get("email")
for u in ws_users
if u.get("email")
}
if not project_ids:
return set(workspace_users.values())
project_emails = set()
for pid in project_ids:
project = self.project_api.get_project(
pid,
opts={"opt_fields": "team,privacy_setting"}
)
if project["privacy_setting"] == "private":
if team_id and project.get("team", {}).get("gid") != team_id:
continue
memberships = self.project_memberships_api.get_project_membership(
pid,
opts={"opt_fields": "user.gid,user.email"}
)
for m in memberships:
email = m["user"].get("email")
if email:
project_emails.add(email)
return project_emails
def get_user(self, user_gid: str) -> Dict:
if self._user is not None:
return self._user
self._user = self.users_api.get_user(user_gid, {"opt_fields": "name,email"})
if not self._user:
logging.warning(f"Unable to fetch user information for user_gid: {user_gid}")
return {"name": "Unknown"}
return self._user
def format_date(self, date_str: str) -> str:
date = datetime.fromisoformat(date_str)
return time.strftime("%Y-%m-%d", date.timetuple())
def get_time(self) -> str:
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
class AsanaConnector(LoadConnector, PollConnector):
def __init__(
self,
asana_workspace_id: str,
asana_project_ids: str | None = None,
asana_team_id: str | None = None,
batch_size: int = INDEX_BATCH_SIZE,
continue_on_failure: bool = CONTINUE_ON_CONNECTOR_FAILURE,
) -> None:
self.workspace_id = asana_workspace_id
self.project_ids_to_index: list[str] | None = (
asana_project_ids.split(",") if asana_project_ids else None
)
self.asana_team_id = asana_team_id if asana_team_id else None
self.batch_size = batch_size
self.continue_on_failure = continue_on_failure
self.size_threshold = None
logging.info(
f"AsanaConnector initialized with workspace_id: {asana_workspace_id}"
)
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self.api_token = credentials["asana_api_token_secret"]
self.asana_client = AsanaAPI(
api_token=self.api_token,
workspace_gid=self.workspace_id,
team_gid=self.asana_team_id,
)
self.workspace_users_email = self.asana_client.get_accessible_emails(self.workspace_id, self.project_ids_to_index, self.asana_team_id)
logging.info("Asana credentials loaded and API client initialized")
return None
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch | None
) -> GenerateDocumentsOutput:
start_time = datetime.fromtimestamp(start).isoformat()
logging.info(f"Starting Asana poll from {start_time}")
docs_batch: list[Document] = []
tasks = self.asana_client.get_tasks(self.project_ids_to_index, start_time)
for task in tasks:
docs = self._task_to_documents(task)
docs_batch.extend(docs)
if len(docs_batch) >= self.batch_size:
logging.info(f"Yielding batch of {len(docs_batch)} documents")
yield docs_batch
docs_batch = []
if docs_batch:
logging.info(f"Yielding final batch of {len(docs_batch)} documents")
yield docs_batch
logging.info("Asana poll completed")
def load_from_state(self) -> GenerateDocumentsOutput:
logging.info("Starting full index of all Asana tasks")
return self.poll_source(start=0, end=None)
def _task_to_documents(self, task: AsanaTask) -> list[Document]:
docs: list[Document] = []
attachments = self.asana_client.get_attachments(task.id)
for att in attachments:
try:
resp = requests.get(att["download_url"], timeout=30)
resp.raise_for_status()
file_blob = resp.content
filename = att.get("name", "attachment")
size_bytes = extract_size_bytes(att)
if (
self.size_threshold is not None
and isinstance(size_bytes, int)
and size_bytes > self.size_threshold
):
logging.warning(
f"{filename} exceeds size threshold of {self.size_threshold}. Skipping."
)
continue
docs.append(
Document(
id=f"asana:{task.id}:{att['gid']}",
blob=file_blob,
extension=get_file_ext(filename) or "",
size_bytes=size_bytes,
doc_updated_at=task.last_modified,
source=DocumentSource.ASANA,
semantic_identifier=filename,
primary_owners=list(self.workspace_users_email),
)
)
except Exception:
logging.exception(
f"Failed to download attachment {att.get('gid')} for task {task.id}"
)
return docs
if __name__ == "__main__":
import time
import os
logging.info("Starting Asana connector test")
connector = AsanaConnector(
os.environ["WORKSPACE_ID"],
os.environ["PROJECT_IDS"],
os.environ["TEAM_ID"],
)
connector.load_credentials(
{
"asana_api_token_secret": os.environ["API_TOKEN"],
}
)
logging.info("Loading all documents from Asana")
all_docs = connector.load_from_state()
current = time.time()
one_day_ago = current - 24 * 60 * 60 # 1 day
logging.info("Polling for documents updated in the last 24 hours")
latest_docs = connector.poll_source(one_day_ago, current)
for docs in all_docs:
for doc in docs:
print(doc.id)
logging.info("Asana connector test completed")

View File

@ -53,6 +53,10 @@ class DocumentSource(str, Enum):
S3_COMPATIBLE = "s3_compatible"
DROPBOX = "dropbox"
BOX = "box"
AIRTABLE = "airtable"
ASANA = "asana"
GITHUB = "github"
GITLAB = "gitlab"
class FileOrigin(str, Enum):
"""File origins"""
@ -251,6 +255,14 @@ WEB_CONNECTOR_IGNORED_ELEMENTS = os.environ.get(
"WEB_CONNECTOR_IGNORED_ELEMENTS", "nav,footer,meta,script,style,symbol,aside"
).split(",")
AIRTABLE_CONNECTOR_SIZE_THRESHOLD = int(
os.environ.get("AIRTABLE_CONNECTOR_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
ASANA_CONNECTOR_SIZE_THRESHOLD = int(
os.environ.get("ASANA_CONNECTOR_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
_USER_NOT_FOUND = "Unknown Confluence User"
_COMMENT_EXPANSION_FIELDS = ["body.storage.value"]

View File

@ -18,6 +18,7 @@ class UploadMimeTypes:
"text/plain",
"text/markdown",
"text/x-markdown",
"text/mdx",
"text/x-config",
"text/tab-separated-values",
"application/json",

View File

@ -0,0 +1,340 @@
import fnmatch
import itertools
from collections import deque
from collections.abc import Iterable
from collections.abc import Iterator
from datetime import datetime
from datetime import timezone
from typing import Any
from typing import TypeVar
import gitlab
from gitlab.v4.objects import Project
from common.data_source.config import DocumentSource, INDEX_BATCH_SIZE
from common.data_source.exceptions import ConnectorMissingCredentialError
from common.data_source.exceptions import ConnectorValidationError
from common.data_source.exceptions import CredentialExpiredError
from common.data_source.exceptions import InsufficientPermissionsError
from common.data_source.exceptions import UnexpectedValidationError
from common.data_source.interfaces import GenerateDocumentsOutput
from common.data_source.interfaces import LoadConnector
from common.data_source.interfaces import PollConnector
from common.data_source.interfaces import SecondsSinceUnixEpoch
from common.data_source.models import BasicExpertInfo
from common.data_source.models import Document
from common.data_source.utils import get_file_ext
T = TypeVar("T")
# List of directories/Files to exclude
exclude_patterns = [
"logs",
".github/",
".gitlab/",
".pre-commit-config.yaml",
]
def _batch_gitlab_objects(git_objs: Iterable[T], batch_size: int) -> Iterator[list[T]]:
it = iter(git_objs)
while True:
batch = list(itertools.islice(it, batch_size))
if not batch:
break
yield batch
def get_author(author: Any) -> BasicExpertInfo:
return BasicExpertInfo(
display_name=author.get("name"),
)
def _convert_merge_request_to_document(mr: Any) -> Document:
mr_text = mr.description or ""
doc = Document(
id=mr.web_url,
blob=mr_text,
source=DocumentSource.GITLAB,
semantic_identifier=mr.title,
extension=".md",
# updated_at is UTC time but is timezone unaware, explicitly add UTC
# as there is logic in indexing to prevent wrong timestamped docs
# due to local time discrepancies with UTC
doc_updated_at=mr.updated_at.replace(tzinfo=timezone.utc),
size_bytes=len(mr_text.encode("utf-8")),
primary_owners=[get_author(mr.author)],
metadata={"state": mr.state, "type": "MergeRequest", "web_url": mr.web_url},
)
return doc
def _convert_issue_to_document(issue: Any) -> Document:
issue_text = issue.description or ""
doc = Document(
id=issue.web_url,
blob=issue_text,
source=DocumentSource.GITLAB,
semantic_identifier=issue.title,
extension=".md",
# updated_at is UTC time but is timezone unaware, explicitly add UTC
# as there is logic in indexing to prevent wrong timestamped docs
# due to local time discrepancies with UTC
doc_updated_at=issue.updated_at.replace(tzinfo=timezone.utc),
size_bytes=len(issue_text.encode("utf-8")),
primary_owners=[get_author(issue.author)],
metadata={
"state": issue.state,
"type": issue.type if issue.type else "Issue",
"web_url": issue.web_url,
},
)
return doc
def _convert_code_to_document(
project: Project, file: Any, url: str, projectName: str, projectOwner: str
) -> Document:
# Dynamically get the default branch from the project object
default_branch = project.default_branch
# Fetch the file content using the correct branch
file_content_obj = project.files.get(
file_path=file["path"], ref=default_branch # Use the default branch
)
# BoxConnector uses raw bytes for blob. Keep the same here.
file_content_bytes = file_content_obj.decode()
file_url = f"{url}/{projectOwner}/{projectName}/-/blob/{default_branch}/{file['path']}"
# Try to use the last commit timestamp for incremental sync.
# Falls back to "now" if the commit lookup fails.
last_commit_at = None
try:
# Query commit history for this file on the default branch.
commits = project.commits.list(
ref_name=default_branch,
path=file["path"],
per_page=1,
)
if commits:
# committed_date is ISO string like "2024-01-01T00:00:00.000+00:00"
committed_date = commits[0].committed_date
if isinstance(committed_date, str):
last_commit_at = datetime.strptime(
committed_date, "%Y-%m-%dT%H:%M:%S.%f%z"
).astimezone(timezone.utc)
elif isinstance(committed_date, datetime):
last_commit_at = committed_date.astimezone(timezone.utc)
except Exception:
last_commit_at = None
# Create and return a Document object
doc = Document(
# Use a stable ID so reruns don't create duplicates.
id=file_url,
blob=file_content_bytes,
source=DocumentSource.GITLAB,
semantic_identifier=file.get("name"),
extension=get_file_ext(file.get("name")),
doc_updated_at=last_commit_at or datetime.now(tz=timezone.utc),
size_bytes=len(file_content_bytes) if file_content_bytes is not None else 0,
primary_owners=[], # Add owners if needed
metadata={
"type": "CodeFile",
"path": file.get("path"),
"ref": default_branch,
"project": f"{projectOwner}/{projectName}",
"web_url": file_url,
},
)
return doc
def _should_exclude(path: str) -> bool:
"""Check if a path matches any of the exclude patterns."""
return any(fnmatch.fnmatch(path, pattern) for pattern in exclude_patterns)
class GitlabConnector(LoadConnector, PollConnector):
def __init__(
self,
project_owner: str,
project_name: str,
batch_size: int = INDEX_BATCH_SIZE,
state_filter: str = "all",
include_mrs: bool = True,
include_issues: bool = True,
include_code_files: bool = False,
) -> None:
self.project_owner = project_owner
self.project_name = project_name
self.batch_size = batch_size
self.state_filter = state_filter
self.include_mrs = include_mrs
self.include_issues = include_issues
self.include_code_files = include_code_files
self.gitlab_client: gitlab.Gitlab | None = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self.gitlab_client = gitlab.Gitlab(
credentials["gitlab_url"], private_token=credentials["gitlab_access_token"]
)
return None
def validate_connector_settings(self) -> None:
if self.gitlab_client is None:
raise ConnectorMissingCredentialError("GitLab")
try:
self.gitlab_client.auth()
self.gitlab_client.projects.get(
f"{self.project_owner}/{self.project_name}",
lazy=True,
)
except gitlab.exceptions.GitlabAuthenticationError as e:
raise CredentialExpiredError(
"Invalid or expired GitLab credentials."
) from e
except gitlab.exceptions.GitlabAuthorizationError as e:
raise InsufficientPermissionsError(
"Insufficient permissions to access GitLab resources."
) from e
except gitlab.exceptions.GitlabGetError as e:
raise ConnectorValidationError(
"GitLab project not found or not accessible."
) from e
except Exception as e:
raise UnexpectedValidationError(
f"Unexpected error while validating GitLab settings: {e}"
) from e
def _fetch_from_gitlab(
self, start: datetime | None = None, end: datetime | None = None
) -> GenerateDocumentsOutput:
if self.gitlab_client is None:
raise ConnectorMissingCredentialError("Gitlab")
project: Project = self.gitlab_client.projects.get(
f"{self.project_owner}/{self.project_name}"
)
start_utc = start.astimezone(timezone.utc) if start else None
end_utc = end.astimezone(timezone.utc) if end else None
# Fetch code files
if self.include_code_files:
# Fetching using BFS as project.report_tree with recursion causing slow load
queue = deque([""]) # Start with the root directory
while queue:
current_path = queue.popleft()
files = project.repository_tree(path=current_path, all=True)
for file_batch in _batch_gitlab_objects(files, self.batch_size):
code_doc_batch: list[Document] = []
for file in file_batch:
if _should_exclude(file["path"]):
continue
if file["type"] == "blob":
doc = _convert_code_to_document(
project,
file,
self.gitlab_client.url,
self.project_name,
self.project_owner,
)
# Apply incremental window filtering for code files too.
if start_utc is not None and doc.doc_updated_at <= start_utc:
continue
if end_utc is not None and doc.doc_updated_at > end_utc:
continue
code_doc_batch.append(doc)
elif file["type"] == "tree":
queue.append(file["path"])
if code_doc_batch:
yield code_doc_batch
if self.include_mrs:
merge_requests = project.mergerequests.list(
state=self.state_filter,
order_by="updated_at",
sort="desc",
iterator=True,
)
for mr_batch in _batch_gitlab_objects(merge_requests, self.batch_size):
mr_doc_batch: list[Document] = []
for mr in mr_batch:
mr.updated_at = datetime.strptime(
mr.updated_at, "%Y-%m-%dT%H:%M:%S.%f%z"
)
if start_utc is not None and mr.updated_at <= start_utc:
yield mr_doc_batch
return
if end_utc is not None and mr.updated_at > end_utc:
continue
mr_doc_batch.append(_convert_merge_request_to_document(mr))
yield mr_doc_batch
if self.include_issues:
issues = project.issues.list(state=self.state_filter, iterator=True)
for issue_batch in _batch_gitlab_objects(issues, self.batch_size):
issue_doc_batch: list[Document] = []
for issue in issue_batch:
issue.updated_at = datetime.strptime(
issue.updated_at, "%Y-%m-%dT%H:%M:%S.%f%z"
)
# Avoid re-syncing the last-seen item.
if start_utc is not None and issue.updated_at <= start_utc:
yield issue_doc_batch
return
if end_utc is not None and issue.updated_at > end_utc:
continue
issue_doc_batch.append(_convert_issue_to_document(issue))
yield issue_doc_batch
def load_from_state(self) -> GenerateDocumentsOutput:
return self._fetch_from_gitlab()
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
start_datetime = datetime.fromtimestamp(start, tz=timezone.utc)
end_datetime = datetime.fromtimestamp(end, tz=timezone.utc)
return self._fetch_from_gitlab(start_datetime, end_datetime)
if __name__ == "__main__":
import os
connector = GitlabConnector(
# gitlab_url="https://gitlab.com/api/v4",
project_owner=os.environ["PROJECT_OWNER"],
project_name=os.environ["PROJECT_NAME"],
batch_size=INDEX_BATCH_SIZE,
state_filter="all",
include_mrs=True,
include_issues=True,
include_code_files=True,
)
connector.load_credentials(
{
"gitlab_access_token": os.environ["GITLAB_ACCESS_TOKEN"],
"gitlab_url": os.environ["GITLAB_URL"],
}
)
document_batches = connector.load_from_state()
for f in document_batches:
print("Batch:", f)
print("Finished loading from state.")

View File

@ -5,7 +5,7 @@ from abc import ABC, abstractmethod
from enum import IntFlag, auto
from types import TracebackType
from typing import Any, Dict, Generator, TypeVar, Generic, Callable, TypeAlias
from collections.abc import Iterator
from anthropic import BaseModel
from common.data_source.models import (
@ -16,6 +16,7 @@ from common.data_source.models import (
SecondsSinceUnixEpoch, GenerateSlimDocumentOutput
)
GenerateDocumentsOutput = Iterator[list[Document]]
class LoadConnector(ABC):
"""Load connector interface"""

View File

@ -94,7 +94,7 @@ class Document(BaseModel):
blob: bytes
doc_updated_at: datetime
size_bytes: int
primary_owners: list
primary_owners: Optional[list] = None
metadata: Optional[dict[str, Any]] = None

View File

@ -21,7 +21,7 @@ import time
import os
from abc import abstractmethod
from elasticsearch import Elasticsearch, NotFoundError
from elasticsearch import NotFoundError
from elasticsearch_dsl import Index
from elastic_transport import ConnectionTimeout
from common.file_utils import get_project_base_directory
@ -35,28 +35,13 @@ ATTEMPT_TIME = 2
class ESConnectionBase(DocStoreConnection):
def __init__(self, mapping_file_name: str="mapping.json", logger_name: str='ragflow.es_conn'):
from common.doc_store.es_conn_pool import ES_CONN
self.logger = logging.getLogger(logger_name)
self.info = {}
self.logger.info(f"Use Elasticsearch {settings.ES['hosts']} as the doc engine.")
for _ in range(ATTEMPT_TIME):
try:
if self._connect():
break
except Exception as e:
self.logger.warning(f"{str(e)}. Waiting Elasticsearch {settings.ES['hosts']} to be healthy.")
time.sleep(5)
if not self.es.ping():
msg = f"Elasticsearch {settings.ES['hosts']} is unhealthy in 120s."
self.logger.error(msg)
raise Exception(msg)
v = self.info.get("version", {"number": "8.11.3"})
v = v["number"].split(".")[0]
if int(v) < 8:
msg = f"Elasticsearch version must be greater than or equal to 8, current version: {v}"
self.logger.error(msg)
raise Exception(msg)
self.es = ES_CONN.get_conn()
fp_mapping = os.path.join(get_project_base_directory(), "conf", mapping_file_name)
if not os.path.exists(fp_mapping):
msg = f"Elasticsearch mapping file not found at {fp_mapping}"
@ -66,16 +51,12 @@ class ESConnectionBase(DocStoreConnection):
self.logger.info(f"Elasticsearch {settings.ES['hosts']} is healthy.")
def _connect(self):
self.es = Elasticsearch(
settings.ES["hosts"].split(","),
basic_auth=(settings.ES["username"], settings.ES[
"password"]) if "username" in settings.ES and "password" in settings.ES else None,
verify_certs= settings.ES.get("verify_certs", False),
timeout=600 )
if self.es:
self.info = self.es.info()
from common.doc_store.es_conn_pool import ES_CONN
if self.es.ping():
return True
return False
self.es = ES_CONN.refresh_conn()
return True
"""
Database operations

View File

@ -0,0 +1,84 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import time
from elasticsearch import Elasticsearch
from common import settings
from common.decorator import singleton
ATTEMPT_TIME = 2
@singleton
class ElasticSearchConnectionPool:
def __init__(self):
if hasattr(settings, "ES"):
self.ES_CONFIG = settings.ES
else:
self.ES_CONFIG = settings.get_base_config("es", {})
for _ in range(ATTEMPT_TIME):
try:
if self._connect():
break
except Exception as e:
logging.warning(f"{str(e)}. Waiting Elasticsearch {self.ES_CONFIG['hosts']} to be healthy.")
time.sleep(5)
if not hasattr(self, "es_conn") or not self.es_conn or not self.es_conn.ping():
msg = f"Elasticsearch {self.ES_CONFIG['hosts']} is unhealthy in 10s."
logging.error(msg)
raise Exception(msg)
v = self.info.get("version", {"number": "8.11.3"})
v = v["number"].split(".")[0]
if int(v) < 8:
msg = f"Elasticsearch version must be greater than or equal to 8, current version: {v}"
logging.error(msg)
raise Exception(msg)
def _connect(self):
self.es_conn = Elasticsearch(
self.ES_CONFIG["hosts"].split(","),
basic_auth=(self.ES_CONFIG["username"], self.ES_CONFIG[
"password"]) if "username" in self.ES_CONFIG and "password" in self.ES_CONFIG else None,
verify_certs= self.ES_CONFIG.get("verify_certs", False),
timeout=600 )
if self.es_conn:
self.info = self.es_conn.info()
return True
return False
def get_conn(self):
return self.es_conn
def refresh_conn(self):
if self.es_conn.ping():
return self.es_conn
else:
# close current if exist
if self.es_conn:
self.es_conn.close()
self._connect()
return self.es_conn
def __del__(self):
if hasattr(self, "es_conn") and self.es_conn:
self.es_conn.close()
ES_CONN = ElasticSearchConnectionPool()

View File

@ -24,7 +24,6 @@ from abc import abstractmethod
import infinity
from infinity.common import ConflictType
from infinity.index import IndexInfo, IndexType
from infinity.connection_pool import ConnectionPool
from infinity.errors import ErrorCode
import pandas as pd
from common.file_utils import get_project_base_directory
@ -35,6 +34,8 @@ from common.doc_store.doc_store_base import DocStoreConnection, MatchExpr, Order
class InfinityConnectionBase(DocStoreConnection):
def __init__(self, mapping_file_name: str="infinity_mapping.json", logger_name: str="ragflow.infinity_conn"):
from common.doc_store.infinity_conn_pool import INFINITY_CONN
self.dbName = settings.INFINITY.get("db_name", "default_db")
self.mapping_file_name = mapping_file_name
self.logger = logging.getLogger(logger_name)
@ -44,9 +45,9 @@ class InfinityConnectionBase(DocStoreConnection):
infinity_uri = infinity.common.NetworkAddress(host, int(port))
self.connPool = None
self.logger.info(f"Use Infinity {infinity_uri} as the doc engine.")
conn_pool = INFINITY_CONN.get_conn_pool()
for _ in range(24):
try:
conn_pool = ConnectionPool(infinity_uri, max_size=4)
inf_conn = conn_pool.get_conn()
res = inf_conn.show_current_node()
if res.error_code == ErrorCode.OK and res.server_status in ["started", "alive"]:
@ -58,6 +59,7 @@ class InfinityConnectionBase(DocStoreConnection):
self.logger.warning(f"Infinity status: {res.server_status}. Waiting Infinity {infinity_uri} to be healthy.")
time.sleep(5)
except Exception as e:
conn_pool = INFINITY_CONN.refresh_conn_pool()
self.logger.warning(f"{str(e)}. Waiting Infinity {infinity_uri} to be healthy.")
time.sleep(5)
if self.connPool is None:

View File

@ -0,0 +1,85 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import time
import infinity
from infinity.connection_pool import ConnectionPool
from infinity.errors import ErrorCode
from common import settings
from common.decorator import singleton
@singleton
class InfinityConnectionPool:
def __init__(self):
if hasattr(settings, "INFINITY"):
self.INFINITY_CONFIG = settings.INFINITY
else:
self.INFINITY_CONFIG = settings.get_base_config("infinity", {"uri": "infinity:23817"})
infinity_uri = self.INFINITY_CONFIG["uri"]
if ":" in infinity_uri:
host, port = infinity_uri.split(":")
self.infinity_uri = infinity.common.NetworkAddress(host, int(port))
for _ in range(24):
try:
conn_pool = ConnectionPool(self.infinity_uri, max_size=4)
inf_conn = conn_pool.get_conn()
res = inf_conn.show_current_node()
if res.error_code == ErrorCode.OK and res.server_status in ["started", "alive"]:
self.conn_pool = conn_pool
conn_pool.release_conn(inf_conn)
break
except Exception as e:
logging.warning(f"{str(e)}. Waiting Infinity {infinity_uri} to be healthy.")
time.sleep(5)
if self.conn_pool is None:
msg = f"Infinity {infinity_uri} is unhealthy in 120s."
logging.error(msg)
raise Exception(msg)
logging.info(f"Infinity {infinity_uri} is healthy.")
def get_conn_pool(self):
return self.conn_pool
def refresh_conn_pool(self):
try:
inf_conn = self.conn_pool.get_conn()
res = inf_conn.show_current_node()
if res.error_code == ErrorCode.OK and res.server_status in ["started", "alive"]:
return self.conn_pool
else:
raise Exception(f"{res.error_code}: {res.server_status}")
except Exception as e:
logging.error(str(e))
if hasattr(self, "conn_pool") and self.conn_pool:
self.conn_pool.destroy()
self.conn_pool = ConnectionPool(self.infinity_uri, max_size=32)
return self.conn_pool
def __del__(self):
if hasattr(self, "conn_pool") and self.conn_pool:
self.conn_pool.destroy()
INFINITY_CONN = InfinityConnectionPool()

View File

@ -79,7 +79,6 @@ FEISHU_OAUTH = None
OAUTH_CONFIG = None
DOC_ENGINE = os.getenv('DOC_ENGINE', 'elasticsearch')
DOC_ENGINE_INFINITY = (DOC_ENGINE.lower() == "infinity")
MSG_ENGINE = DOC_ENGINE
docStoreConn = None
@ -261,12 +260,12 @@ def init_settings():
else:
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
global MSG_ENGINE, msgStoreConn
MSG_ENGINE = DOC_ENGINE # use the same engine for message store
if MSG_ENGINE == "elasticsearch":
global msgStoreConn
# use the same engine for message store
if DOC_ENGINE == "elasticsearch":
ES = get_base_config("es", {})
msgStoreConn = memory_es_conn.ESConnection()
elif MSG_ENGINE == "infinity":
elif DOC_ENGINE == "infinity":
INFINITY = get_base_config("infinity", {"uri": "infinity:23817"})
msgStoreConn = memory_infinity_conn.InfinityConnection()

View File

@ -78,14 +78,21 @@ class DoclingParser(RAGFlowPdfParser):
def __images__(self, fnm, zoomin: int = 1, page_from=0, page_to=600, callback=None):
self.page_from = page_from
self.page_to = page_to
bytes_io = None
try:
opener = pdfplumber.open(fnm) if isinstance(fnm, (str, PathLike)) else pdfplumber.open(BytesIO(fnm))
if not isinstance(fnm, (str, PathLike)):
bytes_io = BytesIO(fnm)
opener = pdfplumber.open(fnm) if isinstance(fnm, (str, PathLike)) else pdfplumber.open(bytes_io)
with opener as pdf:
pages = pdf.pages[page_from:page_to]
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).original for p in pages]
except Exception as e:
self.page_images = []
self.logger.exception(e)
finally:
if bytes_io:
bytes_io.close()
def _make_line_tag(self,bbox: _BBox) -> str:
if bbox is None:

View File

@ -1206,7 +1206,7 @@ class RAGFlowPdfParser:
start = timer()
self._text_merge()
self._concat_downward()
self._naive_vertical_merge(zoomin)
#self._naive_vertical_merge(zoomin)
if callback:
callback(0.92, "Text merged ({:.2f}s)".format(timer() - start))

View File

@ -16,6 +16,7 @@
import logging
import sys
import ast
import six
import cv2
import numpy as np
@ -108,7 +109,14 @@ class NormalizeImage:
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
if isinstance(scale, str):
scale = eval(scale)
try:
scale = float(scale)
except ValueError:
if '/' in scale:
parts = scale.split('/')
scale = ast.literal_eval(parts[0]) / ast.literal_eval(parts[1])
else:
scale = ast.literal_eval(scale)
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]

View File

@ -1,3 +1,10 @@
# -----------------------------------------------------------------------------
# SECURITY WARNING: DO NOT DEPLOY WITH DEFAULT PASSWORDS
# For non-local deployments, please change all passwords (ELASTIC_PASSWORD,
# MYSQL_PASSWORD, MINIO_PASSWORD, etc.) to strong, unique values.
# You can generate a random string using: openssl rand -hex 32
# -----------------------------------------------------------------------------
# ------------------------------
# docker env var for specifying vector db type at startup
# (based on the vector db type, the corresponding docker
@ -30,6 +37,7 @@ ES_HOST=es01
ES_PORT=1200
# The password for Elasticsearch.
# WARNING: Change this for production!
ELASTIC_PASSWORD=infini_rag_flow
# the hostname where OpenSearch service is exposed, set it not the same as elasticsearch
@ -85,6 +93,7 @@ OB_DATAFILE_SIZE=${OB_DATAFILE_SIZE:-20G}
OB_LOG_DISK_SIZE=${OB_LOG_DISK_SIZE:-20G}
# The password for MySQL.
# WARNING: Change this for production!
MYSQL_PASSWORD=infini_rag_flow
# The hostname where the MySQL service is exposed
MYSQL_HOST=mysql
@ -128,11 +137,11 @@ ADMIN_SVR_HTTP_PORT=9381
SVR_MCP_PORT=9382
# The RAGFlow Docker image to download. v0.22+ doesn't include embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.22.1
RAGFLOW_IMAGE=infiniflow/ragflow:v0.23.0
# If you cannot download the RAGFlow Docker image:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:v0.22.1
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:v0.22.1
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:v0.23.0
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:v0.23.0
#
# - For the `nightly` edition, uncomment either of the following:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly
@ -234,9 +243,8 @@ REGISTER_ENABLED=1
USE_DOCLING=false
# Enable Mineru
USE_MINERU=false
MINERU_EXECUTABLE="$HOME/uv_tools/.venv/bin/mineru"
# Uncommenting these lines will automatically add MinerU to the model provider whenever possible.
# More details see https://ragflow.io/docs/faq#how-to-use-mineru-to-parse-pdf-documents.
# MINERU_DELETE_OUTPUT=0 # keep output directory
# MINERU_BACKEND=pipeline # or another backend you prefer

View File

@ -77,7 +77,7 @@ The [.env](./.env) file contains important environment variables for Docker.
- `SVR_HTTP_PORT`
The port used to expose RAGFlow's HTTP API service to the host machine, allowing **external** access to the service running inside the Docker container. Defaults to `9380`.
- `RAGFLOW-IMAGE`
The Docker image edition. Defaults to `infiniflow/ragflow:v0.22.1`. The RAGFlow Docker image does not include embedding models.
The Docker image edition. Defaults to `infiniflow/ragflow:v0.23.0`. The RAGFlow Docker image does not include embedding models.
> [!TIP]

View File

@ -72,7 +72,7 @@ services:
infinity:
profiles:
- infinity
image: infiniflow/infinity:v0.6.13
image: infiniflow/infinity:v0.6.15
volumes:
- infinity_data:/var/infinity
- ./infinity_conf.toml:/infinity_conf.toml

View File

@ -1,5 +1,5 @@
[general]
version = "0.6.13"
version = "0.6.15"
time_zone = "utc-8"
[network]

View File

@ -99,7 +99,7 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
- `SVR_HTTP_PORT`
The port used to expose RAGFlow's HTTP API service to the host machine, allowing **external** access to the service running inside the Docker container. Defaults to `9380`.
- `RAGFLOW-IMAGE`
The Docker image edition. Defaults to `infiniflow/ragflow:v0.22.1` (the RAGFlow Docker image without embedding models).
The Docker image edition. Defaults to `infiniflow/ragflow:v0.23.0` (the RAGFlow Docker image without embedding models).
:::tip NOTE
If you cannot download the RAGFlow Docker image, try the following mirrors.

View File

@ -47,7 +47,7 @@ After building the infiniflow/ragflow:nightly image, you are ready to launch a f
1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.22.1` to `infiniflow/ragflow:nightly` to use the pre-built image.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.23.0` to `infiniflow/ragflow:nightly` to use the pre-built image.
2. Launch the Service

View File

@ -0,0 +1,48 @@
---
sidebar_position: -6
slug: /auto_metadata
---
# Auto-extract metadata
Automatically extract metadata from uploaded files.
---
RAGFlow v0.23.0 introduces the Auto-metadata feature, which uses large language models to automatically extract and generate metadata for files—eliminating the need for manual entry. In a typical RAG pipeline, metadata serves two key purposes:
- During the retrieval stage: Filters out irrelevant documents, narrowing the search scope to improve retrieval accuracy.
- During the generation stage: If a text chunk is retrieved, its associated metadata is also passed to the LLM, providing richer contextual information about the source document to aid answer generation.
:::danger WARNING
Enabling TOC extraction requires significant memory, computational resources, and tokens.
:::
## Procedure
1. On your dataset's **Configuration** page, select an indexing model, which will be used to generate the knowledge graph, RAPTOR, auto-metadata, auto-keyword, and auto-question features for this dataset.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/indexing_model.png)
2. Click **Auto metadata** **>** **Settings** to go to the configuration page for automatic metadata generation rules.
_The configuration page for rules on automatically generating metadata appears._
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/auto_metadata_settings.png)
3. Click **+** to add new fields and enter the configuration page.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/metadata_field_settings.png)
4. Enter a field name, such as Author, and add a description and examples in the Description section. This provides context to the large language model (LLM) for more accurate value extraction. If left blank, the LLM will extract values based only on the field name.
5. To restrict the LLM to generating metadata from a predefined list, enable the Restrict to defined values mode and manually add the allowed values. The LLM will then only generate results from this preset range.
6. Once configured, turn on the Auto-metadata switch on the Configuration page. All newly uploaded files will have these rules applied during parsing. For files that have already been processed, you must re-parse them to trigger metadata generation. You can then use the filter function to check the metadata generation status of your files.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/enable_auto_metadata.png)

View File

@ -0,0 +1,34 @@
---
sidebar_position: -4
slug: /configure_child_chunking_strategy
---
# Configure child chunking strategy
Set parent-child chunking strategy to improve retrieval.
---
A persistent challenge in practical RAG applications lies in a structural tension within the traditional "chunk-embed-retrieve" pipeline: a single text chunk is tasked with both semantic matching (recall) and contextual understanding (utilization)—two inherently conflicting objectives. Recall demands fine-grained, precise chunks, while answer generation requires coherent, informationally complete context.
To resolve this tension, RAGFlow previously introduced the Table of Contents (TOC) enhancement feature, which uses a large language model (LLM) to generate document structure and automatically supplements missing context during retrieval based on that TOC. In version 0.23.0, this capability has been systematically integrated into the Ingestion Pipeline, and a novel parent-child chunking mechanism has been introduced.
Under this mechanism, a document is first segmented into larger parent chunks, each maintaining a relatively complete semantic unit to ensure logical and background integrity. Each parent chunk can then be further subdivided into multiple child chunks for precise recall. During retrieval, the system first locates the most relevant text segments based on the child chunks while automatically associating and recalling their parent chunk. This approach maintains high recall relevance while providing ample semantic background for the generation phase.
For instance, when processing a *Compliance Handbook*, a user query about "liability for breach" might precisely retrieve a child chunk stating, "The penalty for breach is 20% of the total contract value," but without context, it cannot clarify whether this clause applies to "minor breach" or "material breach." Leveraging the parent-child chunking mechanism, the system returns this child chunk along with its parent chunk, which contains the complete section of the clause. This allows the LLM to make accurate judgments based on broader context, avoiding misinterpretation.
Through this dual-layer structure of "precise localization + contextual supplementation," RAGFlow ensures retrieval accuracy while significantly enhancing the reliability and completeness of generated answers.
## Procedure
1. On your dataset's **Configuration** page, find the **Child chunk are used for retrieval** toggle:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/child_chunking.png)
2. Set the delimiter for child chunks.
3. This configuration applies to the **Chunker** component when it comes to ingestion pipeline settings:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/child_chunking_parser.png)

View File

@ -133,7 +133,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
## Search for dataset
As of RAGFlow v0.22.1, the search feature is still in a rudimentary form, supporting only dataset search by name.
As of RAGFlow v0.23.0, the search feature is still in a rudimentary form, supporting only dataset search by name.
![search dataset](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/search_datasets.jpg)

View File

@ -0,0 +1,47 @@
---
sidebar_position: -5
slug: /manage_metadata
---
# Manage metadata
Manage metadata for your dataset and for your individual documents.
---
From v0.23.0 onwards, RAGFlow allows you to manage metadata both at the dataset level and for individual files.
## Procedure
1. Click on **Metadata** within your dataset to access the **Manage Metadata** page.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/click_metadata.png)
2. On the **Manage Metadata** page, you can do either of the following:
- Edit Values: You can modify existing values. If you rename two values to be identical, they will be automatically merged.
- Delete: You can delete specific values or entire fields. These changes will apply to all associated files.
_The configuration page for rules on automatically generating metadata appears._
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/manage_metadata.png)
3. To manage metadata for a single file, navigate to the file's details page as shown below. Click on the parsing method (e.g., **General**), then select **Set Metadata** to view or edit the file's metadata. Here, you can add, delete, or modify metadata fields for this specific file. Any edits made here will be reflected in the global statistics on the main Metadata management page for the knowledge base.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/set_metadata.png)
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/edit_metadata.png)
4. The filtering function operates at two levels: knowledge base management and retrieval. Within the dataset, click the Filter button to view the number of files associated with each value under existing metadata fields. By selecting specific values, you can display all linked files.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/filter_metadata.png)
5. Metadata filtering is also supported during the retrieval stage. In Chat, for example, you can set metadata filtering rules after configuring a knowledge base:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/metadata_filtering_rules.png)
- **Automatic** Mode: The system automatically filters documents based on the user's query and the existing metadata in the knowledge base.
- **Semi-automatic** Mode: Users first define the filtering scope at the field level (e.g., for **Author**), and then the system automatically filters within that preset range.
- **Manual** Mode: Users manually set precise, value-specific filter conditions, supported by operators such as **Equals**, **Not equals**, **In**, **Not in**, and more.

View File

@ -1,5 +1,5 @@
---
sidebar_position: -4
sidebar_position: -3
slug: /select_pdf_parser
---

View File

@ -0,0 +1,25 @@
---
sidebar_position: -8
slug: /set_context_window
---
# Set context window size
Set context window size for images and tables to improve long-context RAG performances.
---
RAGFlow leverages built-in DeepDoc, along with external document models like MinerU and Docling, to parse document layouts. In previous versions, images and tables extracted based on document layout were treated as independent chunks. Consequently, if a search query did not directly match the content of an image or table, these elements would not be retrieved. However, real-world documents frequently interweave charts and tables with surrounding text, which often describes them. Therefore, recalling charts based on this contextual text is an essential capability.
To address this, RAGFlow 0.23.0 introduces the **Image & table context window** feature. Inspired by key principles of the research-focused, open-source multimodal RAG project RAG-Anything, this functionality allows surrounding text and adjacent visuals to be grouped into a single chunk based on a user-configurable window size. This ensures they are retrieved together, significantly improving the recall accuracy for charts and tables.
## Procedure
1. On your dataset's **Configuration** page, find the **Image & table context window** slider:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/image_table_context_window.png)
2. Adjust the number of context tokens according to your needs.
*The number in the red box indicates that approximately **N tokens** of text from above and below the image/table will be captured and inserted into the image or table chunk as contextual information. The capture process intelligently optimizes boundaries at punctuation marks to preserve semantic integrity. *

View File

@ -5,7 +5,7 @@ slug: /set_metadata
# Set metadata
Add metadata to an uploaded file
Manually add metadata to an uploaded file
---
@ -29,4 +29,4 @@ Ensure that your metadata is in JSON format; otherwise, your updates will not be
### Can I set metadata for multiple documents at once?
No, you must set metadata *individually* for each document, as RAGFlow does not support batch setting of metadata. If you still consider this feature essential, please [raise an issue](https://github.com/infiniflow/ragflow/issues) explaining your use case and its importance.
From v0.23.0 onwards, you can set metadata for each document individually or have the LLM auto-generate metadata for multiple files. See [Extract metadata](./auto_metadata.md) for details.

View File

@ -87,4 +87,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.22.1, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.23.0, bulk download is not supported, nor can you download an entire folder.

View File

@ -46,7 +46,7 @@ The Admin CLI and Admin Service form a client-server architectural suite for RAG
2. Install ragflow-cli.
```bash
pip install ragflow-cli==0.22.1
pip install ragflow-cli==0.23.0
```
3. Launch the CLI client:

View File

@ -7,7 +7,7 @@ slug: /deploy_local_llm
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
Deploy and run local models using Ollama, Xinference, or other frameworks.
Deploy and run local models using Ollama, Xinference, VLLM SGLANG or other frameworks.
---
@ -314,3 +314,41 @@ To enable IPEX-LLM accelerated Ollama in RAGFlow, you must also complete the con
3. [Update System Model Settings](#6-update-system-model-settings)
4. [Update Chat Configuration](#7-update-chat-configuration)
### 5. Deploy VLLM
ubuntu 22.04/24.04
```bash
pip install vllm
```
### 5.1 RUN VLLM WITH BEST PRACTISE
```bash
nohup vllm serve /data/Qwen3-8B --served-model-name Qwen3-8B-FP8 --dtype auto --port 1025 --gpu-memory-utilization 0.90 --tool-call-parser hermes --enable-auto-tool-choice > /var/log/vllm_startup1.log 2>&1 &
```
you can get log info
```bash
tail -f -n 100 /var/log/vllm_startup1.log
```
when see the follow ,it means vllm engine is ready for access
```bash
Starting vLLM API server 0 on http://0.0.0.0:1025
Started server process [19177]
Application startup complete.
```
### 5.2 INTERGRATEING RAGFLOW WITH VLLM CHAT/EM/RERANK LLM WITH WEBUI
setting->model providers->search->vllm->add ,configure as follow:
![add vllm](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ragflow_vllm.png)
select vllm chat model as default llm model as follow:
![chat](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ragflow_vllm1.png)
### 5.3 chat with vllm chat model
create chat->create conversations-chat as follow:
![chat](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ragflow_vllm2.png)

View File

@ -60,16 +60,16 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
git pull
```
3. Switch to the latest, officially published release, e.g., `v0.22.1`:
3. Switch to the latest, officially published release, e.g., `v0.23.0`:
```bash
git checkout -f v0.22.1
git checkout -f v0.23.0
```
4. Update **ragflow/docker/.env**:
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.22.1
RAGFLOW_IMAGE=infiniflow/ragflow:v0.23.0
```
5. Update the RAGFlow image and restart RAGFlow:
@ -90,10 +90,10 @@ No, you do not need to. Upgrading RAGFlow in itself will *not* remove your uploa
1. From an environment with Internet access, pull the required Docker image.
2. Save the Docker image to a **.tar** file.
```bash
docker save -o ragflow.v0.22.1.tar infiniflow/ragflow:v0.22.1
docker save -o ragflow.v0.23.0.tar infiniflow/ragflow:v0.23.0
```
3. Copy the **.tar** file to the target server.
4. Load the **.tar** file into Docker:
```bash
docker load -i ragflow.v0.22.1.tar
docker load -i ragflow.v0.23.0.tar
```

View File

@ -46,7 +46,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.22.1 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
RAGFlow v0.23.0 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs
defaultValue="linux"
@ -186,7 +186,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/docker
$ git checkout -f v0.22.1
$ git checkout -f v0.23.0
```
3. Use the pre-built Docker images and start up the server:
@ -202,7 +202,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
| RAGFlow image tag | Image size (GB) | Stable? |
| ------------------- | --------------- | ------------------------ |
| v0.22.1 | &approx;2 | Stable release |
| v0.23.0 | &approx;2 | Stable release |
| nightly | &approx;2 | _Unstable_ nightly build |
```mdx-code-block

View File

@ -1603,7 +1603,7 @@ In streaming mode, not all responses include a reference, as this depends on the
##### question: `str`
The question to start an AI-powered conversation. Ifthe **Begin** component takes parameters, a question is not required.
The question to start an AI-powered conversation. If the **Begin** component takes parameters, a question is not required.
##### stream: `bool`

View File

@ -7,6 +7,61 @@ slug: /release_notes
Key features, improvements and bug fixes in the latest releases.
## v0.23.0
Released on December 27, 2025.
### New features
- Memory
- Implements a **Memory** interface for managing memory.
- Supports configuring context via the **Retrieval** or **Message** component.
- Agent
- Improves the **Agent** component's performance by refactoring the underlying architecture.
- The **Agent** component can now output structured data for use in downstream components.
- Supports using webhook to trigger agent execution.
- Supports voice input/output.
- Supports configuring multiple **Retrieval** components per **Agent** component.
- Ingestion pipeline
- Supports extracting table of contents in the **Transformer** component to improve long-context RAG performance.
- Dataset
- Supports configuring context window for images and tables.
- Introduces parent-child chunking strategy.
- Supports auto-generation of metadata during file parsing.
- Chat: Supports voice input.
### Improvements
- Bumps RAGFlow's document engine, [Infinity](https://github.com/infiniflow/infinity) to v0.6.15 (backward compatible).
### Data sources
- Google Cloud Storage
- Gmail
- Dropbox
- WebDAV
- Airtable
### Model support
- GPT-5.2
- GPT-5.2 Pro
- GPT-5.1
- GPT-5.1 Instant
- Claude Opus 4.5
- MiniMax M2
- GLM-4.7.
- A MinerU configuration interface.
- AI Badgr (model provider).
### API changes
#### HTTP API
- [Converse with Agent](./references/http_api_reference.md#converse-with-agent) returns complete execution trace logs.
- [Create chat completion](./references/http_api_reference.md#create-chat-completion) supports metadata-based filtering.
- [Converse with chat assistant](./references/http_api_reference.md#converse-with-chat-assistant) supports metadata-based filtering.
## v0.22.1
Released on November 19, 2025.

133
helm/README.md Normal file
View File

@ -0,0 +1,133 @@
# RAGFlow Helm Chart
A Helm chart to deploy RAGFlow and its dependencies on Kubernetes.
- Components: RAGFlow (web/api) and optional dependencies (Infinity/Elasticsearch/OpenSearch, MySQL, MinIO, Redis)
- Requirements: Kubernetes >= 1.24, Helm >= 3.10
## Install
```bash
helm upgrade --install ragflow ./ \
--namespace ragflow --create-namespace
```
Uninstall:
```bash
helm uninstall ragflow -n ragflow
```
## Global Settings
- `global.repo`: Prepend a global image registry prefix for all images.
- Behavior: Replaces the registry part and keeps the image path (e.g., `quay.io/minio/minio` -> `registry.example.com/myproj/minio/minio`).
- Example: `global.repo: "registry.example.com/myproj"`
- `global.imagePullSecrets`: List of image pull secrets applied to all Pods.
- Example:
```yaml
global:
imagePullSecrets:
- name: regcred
```
## External Services (MySQL / MinIO / Redis)
The chart can deploy in-cluster services or connect to external ones. Toggle with `*.enabled`. When disabled, provide host/port via `env.*`.
- MySQL
- `mysql.enabled`: default `true`
- If `false`, set:
- `env.MYSQL_HOST` (required), `env.MYSQL_PORT` (default `3306`)
- `env.MYSQL_DBNAME` (default `rag_flow`), `env.MYSQL_PASSWORD` (required)
- `env.MYSQL_USER` (default `root` if omitted)
- MinIO
- `minio.enabled`: default `true`
- Configure:
- `env.MINIO_HOST` (optional external host), `env.MINIO_PORT` (default `9000`)
- `env.MINIO_ROOT_USER` (default `rag_flow`), `env.MINIO_PASSWORD` (optional)
- Redis (Valkey)
- `redis.enabled`: default `true`
- If `false`, set:
- `env.REDIS_HOST` (required), `env.REDIS_PORT` (default `6379`)
- `env.REDIS_PASSWORD` (optional; empty disables auth if server allows)
Notes:
- When `*.enabled=true`, the chart renders in-cluster resources and injects corresponding `*_HOST`/`*_PORT` automatically.
- Sensitive variables like `MYSQL_PASSWORD` are required; `MINIO_PASSWORD` and `REDIS_PASSWORD` are optional. All secrets are stored in a Secret.
### Example: use external MySQL, MinIO, and Redis
```yaml
# values.override.yaml
mysql:
enabled: false # use external MySQL
minio:
enabled: false # use external MinIO (S3 compatible)
redis:
enabled: false # use external Redis/Valkey
env:
# MySQL
MYSQL_HOST: mydb.example.com
MYSQL_PORT: "3306"
MYSQL_USER: root
MYSQL_DBNAME: rag_flow
MYSQL_PASSWORD: "<your-mysql-password>"
# MinIO
MINIO_HOST: s3.example.com
MINIO_PORT: "9000"
MINIO_ROOT_USER: rag_flow
MINIO_PASSWORD: "<your-minio-secret>"
# Redis
REDIS_HOST: redis.example.com
REDIS_PORT: "6379"
REDIS_PASSWORD: "<your-redis-pass>"
```
Apply:
```bash
helm upgrade --install ragflow ./helm -n ragflow -f values.override.yaml
```
## Document Engine Selection
Choose one of `infinity` (default), `elasticsearch`, or `opensearch` via `env.DOC_ENGINE`. The chart renders only the selected engine and sets the appropriate host variables.
```yaml
env:
DOC_ENGINE: infinity # or: elasticsearch | opensearch
# For elasticsearch
ELASTIC_PASSWORD: "<es-pass>"
# For opensearch
OPENSEARCH_PASSWORD: "<os-pass>"
```
## Ingress
Expose the web UI via Ingress:
```yaml
ingress:
enabled: true
className: nginx
hosts:
- host: ragflow.example.com
paths:
- path: /
pathType: Prefix
```
## Validate the Chart
```bash
helm lint ./helm
helm template ragflow ./helm > rendered.yaml
```
## Notes
- By default, the chart uses `DOC_ENGINE: infinity` and deploys in-cluster MySQL, MinIO, and Redis.
- The chart injects derived `*_HOST`/`*_PORT` and required secrets into a single Secret (`<release>-ragflow-env-config`).
- `global.repo` and `global.imagePullSecrets` apply to all Pods; per-component `*.image.pullSecrets` still work and are merged with global settings.

View File

@ -42,6 +42,31 @@ app.kubernetes.io/version: {{ .Chart.AppVersion | quote }}
app.kubernetes.io/managed-by: {{ .Release.Service }}
{{- end }}
{{/*
Resolve image repository with optional global repo prefix.
If .Values.global.repo is set, replace registry part and keep image path.
Detect existing registry by first segment containing '.' or ':' or being 'localhost'.
Usage: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.foo.image.repository) }}
*/}}
{{- define "ragflow.imageRepo" -}}
{{- $root := .root -}}
{{- $repo := .repo -}}
{{- $global := $root.Values.global -}}
{{- if and $global $global.repo }}
{{- $parts := splitList "/" $repo -}}
{{- $first := index $parts 0 -}}
{{- $hasRegistry := or (regexMatch "\\." $first) (regexMatch ":" $first) (eq $first "localhost") -}}
{{- if $hasRegistry -}}
{{- $path := join "/" (rest $parts) -}}
{{- printf "%s/%s" $global.repo $path -}}
{{- else -}}
{{- printf "%s/%s" $global.repo $repo -}}
{{- end -}}
{{- else -}}
{{- $repo -}}
{{- end -}}
{{- end }}
{{/*
Selector labels
*/}}

View File

@ -32,7 +32,7 @@ spec:
{{- include "ragflow.selectorLabels" . | nindent 6 }}
app.kubernetes.io/component: elasticsearch
{{- with .Values.elasticsearch.deployment.strategy }}
strategy:
updateStrategy:
{{- . | toYaml | nindent 4 }}
{{- end }}
template:
@ -44,9 +44,9 @@ spec:
checksum/config-es: {{ include (print $.Template.BasePath "/elasticsearch-config.yaml") . | sha256sum }}
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.elasticsearch.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.elasticsearch.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.elasticsearch.image.pullSecrets }}
@ -55,7 +55,7 @@ spec:
{{- end }}
initContainers:
- name: fix-data-volume-permissions
image: {{ .Values.elasticsearch.initContainers.alpine.repository }}:{{ .Values.elasticsearch.initContainers.alpine.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.elasticsearch.initContainers.alpine.repository) }}:{{ .Values.elasticsearch.initContainers.alpine.tag }}
{{- with .Values.elasticsearch.initContainers.alpine.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -67,7 +67,7 @@ spec:
- mountPath: /usr/share/elasticsearch/data
name: es-data
- name: sysctl
image: {{ .Values.elasticsearch.initContainers.busybox.repository }}:{{ .Values.elasticsearch.initContainers.busybox.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.elasticsearch.initContainers.busybox.repository) }}:{{ .Values.elasticsearch.initContainers.busybox.tag }}
{{- with .Values.elasticsearch.initContainers.busybox.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -77,7 +77,7 @@ spec:
command: ["sysctl", "-w", "vm.max_map_count=262144"]
containers:
- name: elasticsearch
image: {{ .Values.elasticsearch.image.repository }}:{{ .Values.elasticsearch.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.elasticsearch.image.repository) }}:{{ .Values.elasticsearch.image.tag }}
{{- with .Values.elasticsearch.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}

View File

@ -9,20 +9,39 @@ metadata:
type: Opaque
stringData:
{{- range $key, $val := .Values.env }}
{{- if $val }}
{{- if and $val (ne $key "MYSQL_HOST") (ne $key "MYSQL_PORT") (ne $key "MYSQL_USER") (ne $key "MINIO_HOST") (ne $key "MINIO_PORT") (ne $key "REDIS_HOST") (ne $key "REDIS_PORT") }}
{{ $key }}: {{ quote $val }}
{{- end }}
{{- end }}
{{- /*
Use host names derived from internal cluster DNS
*/}}
{{- if .Values.redis.enabled }}
REDIS_HOST: {{ printf "%s-redis.%s.svc" (include "ragflow.fullname" .) .Release.Namespace }}
REDIS_PORT: "6379"
{{- else }}
REDIS_HOST: {{ required "env.REDIS_HOST is required when redis.enabled=false" .Values.env.REDIS_HOST | quote }}
REDIS_PORT: {{ default "6379" .Values.env.REDIS_PORT | quote }}
{{- end }}
{{- if .Values.mysql.enabled }}
MYSQL_HOST: {{ printf "%s-mysql.%s.svc" (include "ragflow.fullname" .) .Release.Namespace }}
MYSQL_PORT: "3306"
{{- else }}
MYSQL_HOST: {{ required "env.MYSQL_HOST is required when mysql.enabled=false" .Values.env.MYSQL_HOST | quote }}
MYSQL_PORT: {{ default "3306" .Values.env.MYSQL_PORT | quote }}
MYSQL_USER: {{ default "root" .Values.env.MYSQL_USER | quote }}
{{- end }}
{{- if .Values.minio.enabled }}
MINIO_HOST: {{ printf "%s-minio.%s.svc" (include "ragflow.fullname" .) .Release.Namespace }}
MINIO_PORT: "9000"
{{- else }}
MINIO_HOST: {{ default "" .Values.env.MINIO_HOST | quote }}
MINIO_PORT: {{ default "9000" .Values.env.MINIO_PORT | quote }}
{{- end }}
{{- /*
Fail if passwords are not provided in release values
*/}}
REDIS_PASSWORD: {{ .Values.env.REDIS_PASSWORD | required "REDIS_PASSWORD is required" }}
REDIS_PASSWORD: {{ default "" .Values.env.REDIS_PASSWORD }}
{{- /*
NOTE: MySQL uses MYSQL_ROOT_PASSWORD env var but Ragflow container expects
MYSQL_PASSWORD so we need to define both as the same value here.
@ -31,10 +50,9 @@ stringData:
MYSQL_PASSWORD: {{ . }}
MYSQL_ROOT_PASSWORD: {{ . }}
{{- end }}
{{- with .Values.env.MINIO_PASSWORD | required "MINIO_PASSWORD is required" }}
MINIO_PASSWORD: {{ . }}
MINIO_ROOT_PASSWORD: {{ . }}
{{- end }}
{{- $minioPass := default "" .Values.env.MINIO_PASSWORD }}
MINIO_PASSWORD: {{ $minioPass }}
MINIO_ROOT_PASSWORD: {{ $minioPass }}
{{- /*
Only provide env vars for enabled doc engine
*/}}

View File

@ -32,7 +32,7 @@ spec:
{{- include "ragflow.selectorLabels" . | nindent 6 }}
app.kubernetes.io/component: infinity
{{- with .Values.infinity.deployment.strategy }}
strategy:
updateStrategy:
{{- . | toYaml | nindent 4 }}
{{- end }}
template:
@ -43,9 +43,9 @@ spec:
annotations:
checksum/config: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.infinity.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.infinity.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.infinity.image.pullSecrets }}
@ -54,7 +54,7 @@ spec:
{{- end }}
containers:
- name: infinity
image: {{ .Values.infinity.image.repository }}:{{ .Values.infinity.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.infinity.image.repository) }}:{{ .Values.infinity.image.tag }}
{{- with .Values.infinity.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}

View File

@ -35,7 +35,7 @@ spec:
{{- end }}
backend:
service:
name: {{ $.Release.Name }}
name: {{ include "ragflow.fullname" $ }}
port:
name: http
{{- end }}

View File

@ -1,3 +1,4 @@
{{- if .Values.minio.enabled }}
---
apiVersion: v1
kind: PersistentVolumeClaim
@ -43,9 +44,9 @@ spec:
{{- include "ragflow.labels" . | nindent 8 }}
app.kubernetes.io/component: minio
spec:
{{- if or .Values.imagePullSecrets .Values.minio.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.minio.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.minio.image.pullSecrets }}
@ -54,7 +55,7 @@ spec:
{{- end }}
containers:
- name: minio
image: {{ .Values.minio.image.repository }}:{{ .Values.minio.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.minio.image.repository) }}:{{ .Values.minio.image.tag }}
{{- with .Values.minio.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -103,3 +104,4 @@ spec:
port: 9001
targetPort: console
type: {{ .Values.minio.service.type }}
{{- end }}

View File

@ -1,3 +1,4 @@
{{- if .Values.mysql.enabled }}
---
apiVersion: v1
kind: ConfigMap
@ -7,3 +8,4 @@ data:
init.sql: |-
CREATE DATABASE IF NOT EXISTS rag_flow;
USE rag_flow;
{{- end }}

View File

@ -1,3 +1,4 @@
{{- if .Values.mysql.enabled }}
---
apiVersion: v1
kind: PersistentVolumeClaim
@ -32,7 +33,7 @@ spec:
{{- include "ragflow.selectorLabels" . | nindent 6 }}
app.kubernetes.io/component: mysql
{{- with .Values.mysql.deployment.strategy }}
strategy:
updateStrategy:
{{- . | toYaml | nindent 4 }}
{{- end }}
template:
@ -44,9 +45,9 @@ spec:
checksum/config-mysql: {{ include (print $.Template.BasePath "/mysql-config.yaml") . | sha256sum }}
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.mysql.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.mysql.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.mysql.image.pullSecrets }}
@ -55,7 +56,7 @@ spec:
{{- end }}
containers:
- name: mysql
image: {{ .Values.mysql.image.repository }}:{{ .Values.mysql.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.mysql.image.repository) }}:{{ .Values.mysql.image.tag }}
{{- with .Values.mysql.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -108,3 +109,4 @@ spec:
port: 3306
targetPort: mysql
type: {{ .Values.mysql.service.type }}
{{- end }}

View File

@ -32,7 +32,7 @@ spec:
{{- include "ragflow.selectorLabels" . | nindent 6 }}
app.kubernetes.io/component: opensearch
{{- with .Values.opensearch.deployment.strategy }}
strategy:
updateStrategy:
{{- . | toYaml | nindent 4 }}
{{- end }}
template:
@ -44,9 +44,9 @@ spec:
checksum/config-opensearch: {{ include (print $.Template.BasePath "/opensearch-config.yaml") . | sha256sum }}
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.opensearch.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.opensearch.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.opensearch.image.pullSecrets }}
@ -55,7 +55,7 @@ spec:
{{- end }}
initContainers:
- name: fix-data-volume-permissions
image: {{ .Values.opensearch.initContainers.alpine.repository }}:{{ .Values.opensearch.initContainers.alpine.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.opensearch.initContainers.alpine.repository) }}:{{ .Values.opensearch.initContainers.alpine.tag }}
{{- with .Values.opensearch.initContainers.alpine.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -67,7 +67,7 @@ spec:
- mountPath: /usr/share/opensearch/data
name: opensearch-data
- name: sysctl
image: {{ .Values.opensearch.initContainers.busybox.repository }}:{{ .Values.opensearch.initContainers.busybox.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.opensearch.initContainers.busybox.repository) }}:{{ .Values.opensearch.initContainers.busybox.tag }}
{{- with .Values.opensearch.initContainers.busybox.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -77,7 +77,7 @@ spec:
command: ["sysctl", "-w", "vm.max_map_count=262144"]
containers:
- name: opensearch
image: {{ .Values.opensearch.image.repository }}:{{ .Values.opensearch.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.opensearch.image.repository) }}:{{ .Values.opensearch.image.tag }}
{{- with .Values.opensearch.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}

View File

@ -25,9 +25,9 @@ spec:
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
checksum/config-ragflow: {{ include (print $.Template.BasePath "/ragflow_config.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.ragflow.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.ragflow.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.ragflow.image.pullSecrets }}
@ -36,7 +36,7 @@ spec:
{{- end }}
containers:
- name: ragflow
image: {{ .Values.ragflow.image.repository }}:{{ .Values.ragflow.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.ragflow.image.repository) }}:{{ .Values.ragflow.image.tag }}
{{- with .Values.ragflow.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}

View File

@ -1,3 +1,4 @@
{{- if .Values.redis.enabled }}
---
apiVersion: v1
kind: Service
@ -40,9 +41,9 @@ spec:
annotations:
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.redis.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.redis.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.redis.image.pullSecrets }}
@ -52,7 +53,7 @@ spec:
terminationGracePeriodSeconds: 60
containers:
- name: redis
image: {{ .Values.redis.image.repository }}:{{ .Values.redis.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.redis.image.repository) }}:{{ .Values.redis.image.tag }}
{{- with .Values.redis.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -131,3 +132,4 @@ spec:
matchLabels:
{{- include "ragflow.selectorLabels" . | nindent 6 }}
app.kubernetes.io/component: redis
{{- end }}

View File

@ -9,7 +9,7 @@ metadata:
spec:
containers:
- name: wget
image: busybox
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" "busybox") }}
command:
- 'wget'
args:

View File

@ -1,7 +1,14 @@
# Based on docker compose .env file
# Global image pull secrets configuration
imagePullSecrets: []
global:
# Global image repo prefix to render all images from a mirror/registry.
# Example: "registry.example.com/myproj"
# When set, template will replace the registry part of each image and keep the path.
# Leave empty to use per-image repositories as-is.
repo: ""
# Global image pull secrets for all pods
imagePullSecrets: []
env:
# The type of doc engine to use.
@ -27,14 +34,28 @@ env:
MYSQL_PASSWORD: infini_rag_flow_helm
# The database of the MySQL service to use
MYSQL_DBNAME: rag_flow
# External MySQL host (only required when mysql.enabled=false)
# MYSQL_HOST: ""
# External MySQL port (defaults to 3306 if not set)
# MYSQL_PORT: "3306"
# External MySQL user (only when mysql.enabled=false), default is root if omitted
# MYSQL_USER: "root"
# The username for MinIO.
MINIO_ROOT_USER: rag_flow
# The password for MinIO
MINIO_PASSWORD: infini_rag_flow_helm
# External MinIO host
# MINIO_HOST: ""
# External MinIO port (defaults to 9000 if not set)
# MINIO_PORT: "9000"
# The password for Redis
REDIS_PASSWORD: infini_rag_flow_helm
# External Redis host (only required when redis.enabled=false)
# REDIS_HOST: ""
# External Redis port (defaults to 6379 if not set)
# REDIS_PORT: "6379"
# The local time zone.
TZ: "Asia/Shanghai"
@ -56,7 +77,7 @@ env:
ragflow:
image:
repository: infiniflow/ragflow
tag: v0.22.1
tag: v0.23.0
pullPolicy: IfNotPresent
pullSecrets: []
# Optional service configuration overrides
@ -96,7 +117,7 @@ ragflow:
infinity:
image:
repository: infiniflow/infinity
tag: v0.6.13
tag: v0.6.15
pullPolicy: IfNotPresent
pullSecrets: []
storage:
@ -163,6 +184,7 @@ opensearch:
type: ClusterIP
minio:
enabled: true
image:
repository: quay.io/minio/minio
tag: RELEASE.2023-12-20T01-00-02Z
@ -178,6 +200,7 @@ minio:
type: ClusterIP
mysql:
enabled: true
image:
repository: mysql
tag: 8.0.39
@ -193,6 +216,7 @@ mysql:
type: ClusterIP
redis:
enabled: true
image:
repository: valkey/valkey
tag: 8

View File

@ -71,7 +71,7 @@ class MessageService:
filter_dict["session_id"] = keywords
order_by = OrderByExpr()
order_by.desc("valid_at")
res = settings.msgStoreConn.search(
res, total_count = settings.msgStoreConn.search(
select_fields=[
"message_id", "message_type", "source_id", "memory_id", "user_id", "agent_id", "session_id", "valid_at",
"invalid_at", "forget_at", "status"
@ -82,7 +82,12 @@ class MessageService:
offset=(page-1)*page_size, limit=page_size,
index_names=index, memory_ids=[memory_id], agg_fields=[], hide_forgotten=False
)
total_count = settings.msgStoreConn.get_total(res)
if not total_count:
return {
"message_list": [],
"total_count": 0
}
doc_mapping = settings.msgStoreConn.get_fields(res, [
"message_id", "message_type", "source_id", "memory_id", "user_id", "agent_id", "session_id",
"valid_at", "invalid_at", "forget_at", "status"
@ -101,7 +106,7 @@ class MessageService:
}
order_by = OrderByExpr()
order_by.desc("valid_at")
res = settings.msgStoreConn.search(
res, total_count = settings.msgStoreConn.search(
select_fields=[
"message_id", "message_type", "source_id", "memory_id", "user_id", "agent_id", "session_id", "valid_at",
"invalid_at", "forget_at", "status", "content"
@ -112,6 +117,9 @@ class MessageService:
offset=0, limit=limit,
index_names=index_names, memory_ids=memory_ids, agg_fields=[]
)
if not total_count:
return []
doc_mapping = settings.msgStoreConn.get_fields(res, [
"message_id", "message_type", "source_id", "memory_id","user_id", "agent_id", "session_id",
"valid_at", "invalid_at", "forget_at", "status", "content"
@ -127,7 +135,7 @@ class MessageService:
order_by = OrderByExpr()
order_by.desc("valid_at")
res = settings.msgStoreConn.search(
res, total_count = settings.msgStoreConn.search(
select_fields=[
"message_id", "message_type", "source_id", "memory_id", "user_id", "agent_id", "session_id",
"valid_at",
@ -140,6 +148,9 @@ class MessageService:
offset=0, limit=top_n,
index_names=index_names, memory_ids=memory_ids, agg_fields=[]
)
if not total_count:
return []
docs = settings.msgStoreConn.get_fields(res, [
"message_id", "message_type", "source_id", "memory_id", "user_id", "agent_id", "session_id", "valid_at",
"invalid_at", "forget_at", "status", "content"
@ -156,15 +167,19 @@ class MessageService:
order_by = OrderByExpr()
order_by.desc("valid_at")
res = settings.msgStoreConn.search(
res, count = settings.msgStoreConn.search(
select_fields=["memory_id", "content", "content_embed"],
highlight_fields=[],
condition={},
match_expressions=[],
order_by=order_by,
offset=0, limit=2000*len(memory_ids),
offset=0, limit=2048*len(memory_ids),
index_names=index_names, memory_ids=memory_ids, agg_fields=[], hide_forgotten=False
)
if count == 0:
return {}
docs = settings.msgStoreConn.get_fields(res, ["memory_id", "content", "content_embed"])
size_dict = {}
for doc in docs.values():
@ -179,34 +194,35 @@ class MessageService:
select_fields = ["message_id", "content", "content_embed"]
_index_name = index_name(uid)
res = settings.msgStoreConn.get_forgotten_messages(select_fields, _index_name, memory_id)
message_list = settings.msgStoreConn.get_fields(res, select_fields)
current_size = 0
ids_to_remove = []
for message in message_list:
if current_size < size_to_delete:
current_size += cls.calculate_message_size(message)
ids_to_remove.append(message["message_id"])
else:
if res:
message_list = settings.msgStoreConn.get_fields(res, select_fields)
for message in message_list.values():
if current_size < size_to_delete:
current_size += cls.calculate_message_size(message)
ids_to_remove.append(message["message_id"])
else:
return ids_to_remove, current_size
if current_size >= size_to_delete:
return ids_to_remove, current_size
if current_size >= size_to_delete:
return ids_to_remove, current_size
order_by = OrderByExpr()
order_by.asc("valid_at")
res = settings.msgStoreConn.search(
select_fields=["memory_id", "content", "content_embed"],
res, total_count = settings.msgStoreConn.search(
select_fields=select_fields,
highlight_fields=[],
condition={},
match_expressions=[],
order_by=order_by,
offset=0, limit=2000,
offset=0, limit=512,
index_names=[_index_name], memory_ids=[memory_id], agg_fields=[]
)
docs = settings.msgStoreConn.get_fields(res, select_fields)
for doc in docs.values():
if current_size < size_to_delete:
current_size += cls.calculate_message_size(doc)
ids_to_remove.append(doc["memory_id"])
ids_to_remove.append(doc["message_id"])
else:
return ids_to_remove, current_size
return ids_to_remove, current_size
@ -222,7 +238,7 @@ class MessageService:
order_by = OrderByExpr()
order_by.desc("message_id")
index_names = [index_name(uid) for uid in uid_list]
res = settings.msgStoreConn.search(
res, total_count = settings.msgStoreConn.search(
select_fields=["message_id"],
highlight_fields=[],
condition={},
@ -232,6 +248,9 @@ class MessageService:
index_names=index_names, memory_ids=memory_ids,
agg_fields=[], hide_forgotten=False
)
if not total_count:
return 1
docs = settings.msgStoreConn.get_fields(res, ["message_id"])
if not docs:
return 1

View File

@ -127,6 +127,11 @@ class ESConnection(ESConnectionBase):
index_names = index_names.split(",")
assert isinstance(index_names, list) and len(index_names) > 0
assert "_id" not in condition
exist_index_list = [idx for idx in index_names if self.index_exist(idx)]
if not exist_index_list:
return None, 0
bool_query = Q("bool", must=[], must_not=[])
if hide_forgotten:
# filter not forget
@ -134,15 +139,16 @@ class ESConnection(ESConnectionBase):
condition["memory_id"] = memory_ids
for k, v in condition.items():
if k == "session_id" and v:
field_name = self.convert_field_name(k)
if field_name == "session_id" and v:
bool_query.filter.append(Q("query_string", **{"query": f"*{v}*", "fields": ["session_id"], "analyze_wildcard": True}))
continue
if not v:
continue
if isinstance(v, list):
bool_query.filter.append(Q("terms", **{k: v}))
bool_query.filter.append(Q("terms", **{field_name: v}))
elif isinstance(v, str) or isinstance(v, int):
bool_query.filter.append(Q("term", **{k: v}))
bool_query.filter.append(Q("term", **{field_name: v}))
else:
raise Exception(
f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
@ -213,7 +219,7 @@ class ESConnection(ESConnectionBase):
for i in range(ATTEMPT_TIME):
try:
#print(json.dumps(q, ensure_ascii=False))
res = self.es.search(index=index_names,
res = self.es.search(index=exist_index_list,
body=q,
timeout="600s",
# search_type="dfs_query_then_fetch",
@ -222,11 +228,14 @@ class ESConnection(ESConnectionBase):
if str(res.get("timed_out", "")).lower() == "true":
raise Exception("Es Timeout.")
self.logger.debug(f"ESConnection.search {str(index_names)} res: " + str(res))
return res
return res, self.get_total(res)
except ConnectionTimeout:
self.logger.exception("ES request timeout")
self._connect()
continue
except NotFoundError as e:
self.logger.debug(f"ESConnection.search {str(index_names)} query: " + str(q) + str(e))
return None, 0
except Exception as e:
self.logger.exception(f"ESConnection.search {str(index_names)} query: " + str(q) + str(e))
raise e
@ -234,9 +243,9 @@ class ESConnection(ESConnectionBase):
self.logger.error(f"ESConnection.search timeout for {ATTEMPT_TIME} times!")
raise Exception("ESConnection.search timeout.")
def get_forgotten_messages(self, select_fields: list[str], index_name: str, memory_id: str, limit: int=2000):
bool_query = Q("bool", must_not=[])
bool_query.must_not.append(Q("term", forget_at=None))
def get_forgotten_messages(self, select_fields: list[str], index_name: str, memory_id: str, limit: int=512):
bool_query = Q("bool", must=[])
bool_query.must.append(Q("exists", field="forget_at"))
bool_query.filter.append(Q("term", memory_id=memory_id))
# from old to new
order_by = OrderByExpr()
@ -244,7 +253,15 @@ class ESConnection(ESConnectionBase):
# build search
s = Search()
s = s.query(bool_query)
s = s.sort(order_by)
orders = list()
for field, order in order_by.fields:
order = "asc" if order == 0 else "desc"
if field.endswith("_int") or field.endswith("_flt"):
order_info = {"order": order, "unmapped_type": "float"}
else:
order_info = {"order": order, "unmapped_type": "text"}
orders.append({field: order_info})
s = s.sort(*orders)
s = s[:limit]
q = s.to_dict()
# search
@ -259,6 +276,9 @@ class ESConnection(ESConnectionBase):
self.logger.exception("ES request timeout")
self._connect()
continue
except NotFoundError as e:
self.logger.debug(f"ESConnection.search {str(index_name)} query: " + str(q) + str(e))
return None
except Exception as e:
self.logger.exception(f"ESConnection.search {str(index_name)} query: " + str(q) + str(e))
raise e

View File

@ -22,7 +22,6 @@ from infinity.errors import ErrorCode
from common.decorator import singleton
import pandas as pd
from common.constants import PAGERANK_FLD, TAG_FLD
from common.doc_store.doc_store_base import MatchExpr, MatchTextExpr, MatchDenseExpr, FusionExpr, OrderByExpr
from common.doc_store.infinity_conn_base import InfinityConnectionBase
from common.time_utils import date_string_to_timestamp
@ -31,8 +30,7 @@ from common.time_utils import date_string_to_timestamp
@singleton
class InfinityConnection(InfinityConnectionBase):
def __init__(self):
super().__init__()
self.mapping_file_name = "message_infinity_mapping.json"
super().__init__(mapping_file_name="message_infinity_mapping.json")
"""
Dataframe and fields convert
@ -44,12 +42,19 @@ class InfinityConnection(InfinityConnectionBase):
return False
@staticmethod
def convert_message_field_to_infinity(field_name: str):
def convert_message_field_to_infinity(field_name: str, table_fields: list[str]=None):
match field_name:
case "message_type":
return "message_type_kwd"
case "status":
return "status_int"
case "content_embed":
if not table_fields:
raise Exception("Can't convert 'content_embed' to vector field name with empty table fields.")
vector_field = [tf for tf in table_fields if re.match(r"q_\d+_vec", tf)]
if not vector_field:
raise Exception("Can't convert 'content_embed' to vector field name. No match field name found.")
return vector_field[0]
case _:
return field_name
@ -63,15 +68,15 @@ class InfinityConnection(InfinityConnectionBase):
return "content_embed"
return field_name
def convert_select_fields(self, output_fields: list[str]) -> list[str]:
return list({self.convert_message_field_to_infinity(f) for f in output_fields})
def convert_select_fields(self, output_fields: list[str], table_fields: list[str]=None) -> list[str]:
return list({self.convert_message_field_to_infinity(f, table_fields) for f in output_fields})
@staticmethod
def convert_matching_field(field_weight_str: str) -> str:
tokens = field_weight_str.split("^")
field = tokens[0]
if field == "content":
field = "content@ft_contentm_rag_fine"
field = "content@ft_content_rag_fine"
tokens[0] = field
return "^".join(tokens)
@ -123,7 +128,6 @@ class InfinityConnection(InfinityConnectionBase):
if hide_forgotten:
condition.update({"must_not": {"exists": "forget_at_flt"}})
output = select_fields.copy()
output = self.convert_select_fields(output)
if agg_fields is None:
agg_fields = []
for essential_field in ["id"] + agg_fields:
@ -145,8 +149,6 @@ class InfinityConnection(InfinityConnectionBase):
if match_expressions:
if score_func not in output:
output.append(score_func)
if PAGERANK_FLD not in output:
output.append(PAGERANK_FLD)
output = [f for f in output if f != "_score"]
if limit <= 0:
# ElasticSearch default limit is 10000
@ -187,17 +189,6 @@ class InfinityConnection(InfinityConnectionBase):
str_minimum_should_match = str(int(minimum_should_match * 100)) + "%"
matchExpr.extra_options["minimum_should_match"] = str_minimum_should_match
# Add rank_feature support
if rank_feature and "rank_features" not in matchExpr.extra_options:
# Convert rank_feature dict to Infinity's rank_features string format
# Format: "field^feature_name^weight,field^feature_name^weight"
rank_features_list = []
for feature_name, weight in rank_feature.items():
# Use TAG_FLD as the field containing rank features
rank_features_list.append(f"{TAG_FLD}^{feature_name}^{weight}")
if rank_features_list:
matchExpr.extra_options["rank_features"] = ",".join(rank_features_list)
for k, v in matchExpr.extra_options.items():
if not isinstance(v, str):
matchExpr.extra_options[k] = str(v)
@ -214,6 +205,9 @@ class InfinityConnection(InfinityConnectionBase):
del matchExpr.extra_options["similarity"]
self.logger.debug(f"INFINITY search MatchDenseExpr: {json.dumps(matchExpr.__dict__)}")
elif isinstance(matchExpr, FusionExpr):
if matchExpr.method == "weighted_sum":
# The default is "minmax" which gives a zero score for the last doc.
matchExpr.fusion_params["normalize"] = "atan"
self.logger.debug(f"INFINITY search FusionExpr: {json.dumps(matchExpr.__dict__)}")
order_by_expr_list = list()
@ -227,6 +221,7 @@ class InfinityConnection(InfinityConnectionBase):
total_hits_count = 0
# Scatter search tables and gather the results
column_name_list = []
for indexName in index_names:
for memory_id in memory_ids:
table_name = f"{indexName}_{memory_id}"
@ -235,6 +230,9 @@ class InfinityConnection(InfinityConnectionBase):
except Exception:
continue
table_list.append(table_name)
if not column_name_list:
column_name_list = [r[0] for r in table_instance.show_columns().rows()]
output = self.convert_select_fields(output, column_name_list)
builder = table_instance.output(output)
if len(match_expressions) > 0:
for matchExpr in match_expressions:
@ -271,13 +269,13 @@ class InfinityConnection(InfinityConnectionBase):
self.connPool.release_conn(inf_conn)
res = self.concat_dataframes(df_list, output)
if match_expressions:
res["_score"] = res[score_column] + res[PAGERANK_FLD]
res["_score"] = res[score_column]
res = res.sort_values(by="_score", ascending=False).reset_index(drop=True)
res = res.head(limit)
self.logger.debug(f"INFINITY search final result: {str(res)}")
return res, total_hits_count
def get_forgotten_messages(self, select_fields: list[str], index_name: str, memory_id: str, limit: int=2000):
def get_forgotten_messages(self, select_fields: list[str], index_name: str, memory_id: str, limit: int=512):
condition = {"memory_id": memory_id, "exists": "forget_at_flt"}
order_by = OrderByExpr()
order_by.asc("forget_at_flt")
@ -286,7 +284,8 @@ class InfinityConnection(InfinityConnectionBase):
db_instance = inf_conn.get_database(self.dbName)
table_name = f"{index_name}_{memory_id}"
table_instance = db_instance.get_table(table_name)
output_fields = [self.convert_message_field_to_infinity(f) for f in select_fields]
column_name_list = [r[0] for r in table_instance.show_columns().rows()]
output_fields = [self.convert_message_field_to_infinity(f, column_name_list) for f in select_fields]
builder = table_instance.output(output_fields)
filter_cond = self.equivalent_condition_to_str(condition, db_instance.get_table(table_name))
builder.filter(filter_cond)
@ -327,7 +326,7 @@ class InfinityConnection(InfinityConnectionBase):
res = self.concat_dataframes(df_list, ["id"])
fields = set(res.columns.tolist())
res_fields = self.get_fields(res, list(fields))
return res_fields.get(message_id, None)
return {self.convert_infinity_field_to_message(k): v for k, v in res_fields[message_id].items()} if res_fields.get(message_id) else {}
def insert(self, documents: list[dict], index_name: str, memory_id: str = None) -> list[str]:
if not documents:
@ -361,6 +360,10 @@ class InfinityConnection(InfinityConnectionBase):
assert "_id" not in d
assert "id" in d
for k, v in list(d.items()):
if k == "content_embed":
d[f"q_{vector_size}_vec"] = d["content_embed"]
d.pop("content_embed")
continue
field_name = self.convert_message_field_to_infinity(k)
if field_name in ["valid_at", "invalid_at", "forget_at"]:
d[f"{field_name}_flt"] = date_string_to_timestamp(v) if v else 0
@ -374,9 +377,6 @@ class InfinityConnection(InfinityConnectionBase):
elif k == "memory_id":
if isinstance(d[k], list):
d[k] = d[k][0] # since d[k] is a list, but we need a str
elif field_name == "content_embed":
d[f"q_{vector_size}_vec"] = d["content_embed"]
d.pop("content_embed")
else:
d[field_name] = v
if k != field_name:
@ -436,32 +436,32 @@ class InfinityConnection(InfinityConnectionBase):
def get_fields(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, fields: list[str]) -> dict[str, dict]:
if isinstance(res, tuple):
res = res[0]
res_df = res[0]
else:
res_df = res
if not fields:
return {}
fields_all = fields.copy()
fields_all.append("id")
fields_all = {self.convert_message_field_to_infinity(f) for f in fields_all}
fields_all = self.convert_select_fields(fields_all, res_df.columns.tolist())
column_map = {col.lower(): col for col in res.columns}
column_map = {col.lower(): col for col in res_df.columns}
matched_columns = {column_map[col.lower()]: col for col in fields_all if col.lower() in column_map}
none_columns = [col for col in fields_all if col.lower() not in column_map]
res2 = res[matched_columns.keys()]
res2 = res2.rename(columns=matched_columns)
res2.drop_duplicates(subset=["id"], inplace=True)
selected_res = res_df[matched_columns.keys()]
selected_res = selected_res.rename(columns=matched_columns)
selected_res.drop_duplicates(subset=["id"], inplace=True)
for column in list(res2.columns):
for column in list(selected_res.columns):
k = column.lower()
if self.field_keyword(k):
res2[column] = res2[column].apply(lambda v: [kwd for kwd in v.split("###") if kwd])
selected_res[column] = selected_res[column].apply(lambda v: [kwd for kwd in v.split("###") if kwd])
else:
pass
for column in ["content"]:
if column in res2:
del res2[column]
for column in none_columns:
res2[column] = None
res_dict = res2.set_index("id").to_dict(orient="index")
for column in none_columns:
selected_res[column] = None
res_dict = selected_res.set_index("id").to_dict(orient="index")
return {_id: {self.convert_infinity_field_to_message(k): v for k, v in doc.items()} for _id, doc in res_dict.items()}

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow"
version = "0.22.1"
version = "0.23.0"
description = "[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data."
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
license-files = ["LICENSE"]
@ -46,7 +46,7 @@ dependencies = [
"groq==0.9.0",
"grpcio-status==1.67.1",
"html-text==0.6.2",
"infinity-sdk==0.6.13",
"infinity-sdk==0.6.15",
"infinity-emb>=0.0.66,<0.0.67",
"jira==3.10.5",
"json-repair==0.35.0",
@ -115,39 +115,42 @@ dependencies = [
"xpinyin==0.7.6",
"yfinance==0.2.65",
"zhipuai==2.0.1",
# following modules aren't necessary
# "nltk==3.9.1",
# "numpy>=1.26.0,<2.0.0",
# "openai>=1.45.0",
# "openpyxl>=3.1.0,<4.0.0",
# "pandas>=2.2.0,<3.0.0",
# "peewee==3.17.1",
# "pillow>=10.4.0,<13.0.0",
# "protobuf==5.27.2",
# "pymysql>=1.1.1,<2.0.0",
# "python-dotenv==1.0.1",
# "python-dateutil==2.8.2",
# "Quart==0.20.0",
# "requests>=2.32.3,<3.0.0",
# "scikit-learn==1.5.0",
# "selenium==4.22.0",
# "setuptools>=78.1.1,<81.0.0",
# "shapely==2.0.5",
# "six==1.16.0",
# "tabulate==0.9.0",
# "tiktoken==0.7.0",
# "umap_learn==0.5.6",
# "werkzeug==3.0.6",
# "xxhash>=3.5.0,<4.0.0",
# "trio>=0.17.0,<0.29.0",
# "debugpy>=1.8.13",
# "click>=8.1.8",
# "litellm>=1.74.15.post1",
# "lark>=1.2.2",
# "pip>=25.2",
# "imageio-ffmpeg>=0.6.0",
# "cryptography==46.0.3",
# "jinja2>=3.1.0",
# following modules aren't necessary
# "nltk==3.9.1",
# "numpy>=1.26.0,<2.0.0",
# "openai>=1.45.0",
# "openpyxl>=3.1.0,<4.0.0",
# "pandas>=2.2.0,<3.0.0",
# "peewee==3.17.1",
# "pillow>=10.4.0,<13.0.0",
# "protobuf==5.27.2",
# "pymysql>=1.1.1,<2.0.0",
# "python-dotenv==1.0.1",
# "python-dateutil==2.8.2",
# "Quart==0.20.0",
# "requests>=2.32.3,<3.0.0",
# "scikit-learn==1.5.0",
# "selenium==4.22.0",
# "setuptools>=78.1.1,<81.0.0",
# "shapely==2.0.5",
# "six==1.16.0",
# "tabulate==0.9.0",
# "tiktoken==0.7.0",
# "umap_learn==0.5.6",
# "werkzeug==3.0.6",
# "xxhash>=3.5.0,<4.0.0",
# "trio>=0.17.0,<0.29.0",
# "debugpy>=1.8.13",
# "click>=8.1.8",
# "litellm>=1.74.15.post1",
# "lark>=1.2.2",
# "pip>=25.2",
# "imageio-ffmpeg>=0.6.0",
# "cryptography==46.0.3",
# "jinja2>=3.1.0",
"pyairtable>=3.3.0",
"asana>=5.2.2",
"python-gitlab>=7.0.0",
]
[dependency-groups]

View File

@ -34,7 +34,8 @@ def chunk(filename, binary, tenant_id, lang, callback=None, **kwargs):
if not ext:
raise RuntimeError("No extension detected.")
if ext not in [".da", ".wave", ".wav", ".mp3", ".wav", ".aac", ".flac", ".ogg", ".aiff", ".au", ".midi", ".wma", ".realaudio", ".vqf", ".oggvorbis", ".aac", ".ape"]:
if ext not in [".da", ".wave", ".wav", ".mp3", ".wav", ".aac", ".flac", ".ogg", ".aiff", ".au", ".midi", ".wma",
".realaudio", ".vqf", ".oggvorbis", ".aac", ".ape"]:
raise RuntimeError(f"Extension {ext} is not supported yet.")
tmp_path = ""

View File

@ -22,7 +22,7 @@ from deepdoc.parser.utils import get_text
from rag.app import naive
from rag.app.naive import by_plaintext, PARSERS
from common.parser_config_utils import normalize_layout_recognizer
from rag.nlp import bullets_category, is_english,remove_contents_table, \
from rag.nlp import bullets_category, is_english, remove_contents_table, \
hierarchical_merge, make_colon_as_title, naive_merge, random_choices, tokenize_table, \
tokenize_chunks, attach_media_context
from rag.nlp import rag_tokenizer
@ -91,9 +91,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
filename, binary=binary, from_page=from_page, to_page=to_page)
remove_contents_table(sections, eng=is_english(
random_choices([t for t, _ in sections], k=200)))
tbls = vision_figure_parser_docx_wrapper(sections=sections,tbls=tbls,callback=callback,**kwargs)
tbls = vision_figure_parser_docx_wrapper(sections=sections, tbls=tbls, callback=callback, **kwargs)
# tbls = [((None, lns), None) for lns in tbls]
sections=[(item[0],item[1] if item[1] is not None else "") for item in sections if not isinstance(item[1], Image.Image)]
sections = [(item[0], item[1] if item[1] is not None else "") for item in sections if
not isinstance(item[1], Image.Image)]
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
@ -109,14 +110,14 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
callback(0.1, "Start to parse.")
sections, tables, pdf_parser = parser(
filename = filename,
binary = binary,
from_page = from_page,
to_page = to_page,
lang = lang,
callback = callback,
pdf_cls = Pdf,
layout_recognizer = layout_recognizer,
filename=filename,
binary=binary,
from_page=from_page,
to_page=to_page,
lang=lang,
callback=callback,
pdf_cls=Pdf,
layout_recognizer=layout_recognizer,
mineru_llm_name=parser_model_name,
**kwargs
)
@ -126,7 +127,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if name in ["tcadp", "docling", "mineru"]:
parser_config["chunk_token_num"] = 0
callback(0.8, "Finish parsing.")
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
@ -175,7 +176,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
for ck in hierarchical_merge(bull, sections, 5)]
else:
sections = [s.split("@") for s, _ in sections]
sections = [(pr[0], "@" + pr[1]) if len(pr) == 2 else (pr[0], '') for pr in sections ]
sections = [(pr[0], "@" + pr[1]) if len(pr) == 2 else (pr[0], '') for pr in sections]
chunks = naive_merge(
sections,
parser_config.get("chunk_token_num", 256),
@ -199,6 +200,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy)

View File

@ -26,13 +26,13 @@ import io
def chunk(
filename,
binary=None,
from_page=0,
to_page=100000,
lang="Chinese",
callback=None,
**kwargs,
filename,
binary=None,
from_page=0,
to_page=100000,
lang="Chinese",
callback=None,
**kwargs,
):
"""
Only eml is supported
@ -93,7 +93,8 @@ def chunk(
_add_content(msg, msg.get_content_type())
sections = TxtParser.parser_txt("\n".join(text_txt)) + [
(line, "") for line in HtmlParser.parser_txt("\n".join(html_txt), chunk_token_num=parser_config["chunk_token_num"]) if line
(line, "") for line in
HtmlParser.parser_txt("\n".join(html_txt), chunk_token_num=parser_config["chunk_token_num"]) if line
]
st = timer()
@ -126,7 +127,9 @@ def chunk(
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], callback=dummy)

View File

@ -29,8 +29,6 @@ from rag.app.naive import by_plaintext, PARSERS
from common.parser_config_utils import normalize_layout_recognizer
class Docx(DocxParser):
def __init__(self):
pass
@ -58,37 +56,36 @@ class Docx(DocxParser):
return [line for line in lines if line]
def __call__(self, filename, binary=None, from_page=0, to_page=100000):
self.doc = Document(
filename) if not binary else Document(BytesIO(binary))
pn = 0
lines = []
level_set = set()
bull = bullets_category([p.text for p in self.doc.paragraphs])
for p in self.doc.paragraphs:
if pn > to_page:
break
question_level, p_text = docx_question_level(p, bull)
if not p_text.strip("\n"):
self.doc = Document(
filename) if not binary else Document(BytesIO(binary))
pn = 0
lines = []
level_set = set()
bull = bullets_category([p.text for p in self.doc.paragraphs])
for p in self.doc.paragraphs:
if pn > to_page:
break
question_level, p_text = docx_question_level(p, bull)
if not p_text.strip("\n"):
continue
lines.append((question_level, p_text))
level_set.add(question_level)
for run in p.runs:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
continue
lines.append((question_level, p_text))
level_set.add(question_level)
for run in p.runs:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
continue
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
pn += 1
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
pn += 1
sorted_levels = sorted(level_set)
sorted_levels = sorted(level_set)
h2_level = sorted_levels[1] if len(sorted_levels) > 1 else 1
h2_level = sorted_levels[-2] if h2_level == sorted_levels[-1] and len(sorted_levels) > 2 else h2_level
h2_level = sorted_levels[1] if len(sorted_levels) > 1 else 1
h2_level = sorted_levels[-2] if h2_level == sorted_levels[-1] and len(sorted_levels) > 2 else h2_level
root = Node(level=0, depth=h2_level, texts=[])
root.build_tree(lines)
return [element for element in root.get_tree() if element]
root = Node(level=0, depth=h2_level, texts=[])
root.build_tree(lines)
return [element for element in root.get_tree() if element]
def __str__(self) -> str:
return f'''
@ -121,8 +118,7 @@ class Pdf(PdfParser):
start = timer()
self._layouts_rec(zoomin)
callback(0.67, "Layout analysis ({:.2f}s)".format(timer() - start))
logging.debug("layouts:".format(
))
logging.debug("layouts: {}".format((timer() - start)))
self._naive_vertical_merge()
callback(0.8, "Text extraction ({:.2f}s)".format(timer() - start))
@ -154,7 +150,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
chunks = Docx()(filename, binary)
callback(0.7, "Finish parsing.")
return tokenize_chunks(chunks, doc, eng, None)
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
layout_recognizer, parser_model_name = normalize_layout_recognizer(
parser_config.get("layout_recognize", "DeepDOC")
@ -168,14 +164,14 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
callback(0.1, "Start to parse.")
raw_sections, tables, pdf_parser = parser(
filename = filename,
binary = binary,
from_page = from_page,
to_page = to_page,
lang = lang,
callback = callback,
pdf_cls = Pdf,
layout_recognizer = layout_recognizer,
filename=filename,
binary=binary,
from_page=from_page,
to_page=to_page,
lang=lang,
callback=callback,
pdf_cls=Pdf,
layout_recognizer=layout_recognizer,
mineru_llm_name=parser_model_name,
**kwargs
)
@ -185,7 +181,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if name in ["tcadp", "docling", "mineru"]:
parser_config["chunk_token_num"] = 0
for txt, poss in raw_sections:
sections.append(txt + poss)
@ -226,7 +222,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
raise NotImplementedError(
"file type not supported yet(doc, docx, pdf, txt supported)")
# Remove 'Contents' part
remove_contents_table(sections, eng)
@ -234,7 +229,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
bull = bullets_category(sections)
res = tree_merge(bull, sections, 2)
if not res:
callback(0.99, "No chunk parsed out.")
@ -243,9 +237,13 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
# chunks = hierarchical_merge(bull, sections, 5)
# return tokenize_chunks(["\n".join(ck)for ck in chunks], doc, eng, pdf_parser)
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], callback=dummy)

View File

@ -20,15 +20,17 @@ import re
from common.constants import ParserType
from io import BytesIO
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, bullets_category, title_frequency, tokenize_chunks, docx_question_level, attach_media_context
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, bullets_category, title_frequency, tokenize_chunks, \
docx_question_level, attach_media_context
from common.token_utils import num_tokens_from_string
from deepdoc.parser import PdfParser, DocxParser
from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper,vision_figure_parser_docx_wrapper
from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper, vision_figure_parser_docx_wrapper
from docx import Document
from PIL import Image
from rag.app.naive import by_plaintext, PARSERS
from common.parser_config_utils import normalize_layout_recognizer
class Pdf(PdfParser):
def __init__(self):
self.model_speciess = ParserType.MANUAL.value
@ -129,11 +131,11 @@ class Docx(DocxParser):
question_level, p_text = 0, ''
if from_page <= pn < to_page and p.text.strip():
question_level, p_text = docx_question_level(p)
if not question_level or question_level > 6: # not a question
if not question_level or question_level > 6: # not a question
last_answer = f'{last_answer}\n{p_text}'
current_image = self.get_picture(self.doc, p)
last_image = self.concat_img(last_image, current_image)
else: # is a question
else: # is a question
if last_answer or last_image:
sum_question = '\n'.join(question_stack)
if sum_question:
@ -159,14 +161,14 @@ class Docx(DocxParser):
tbls = []
for tb in self.doc.tables:
html= "<table>"
html = "<table>"
for r in tb.rows:
html += "<tr>"
i = 0
while i < len(r.cells):
span = 1
c = r.cells[i]
for j in range(i+1, len(r.cells)):
for j in range(i + 1, len(r.cells)):
if c.text == r.cells[j].text:
span += 1
i = j
@ -211,16 +213,16 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
kwargs.pop("parse_method", None)
kwargs.pop("mineru_llm_name", None)
sections, tbls, pdf_parser = pdf_parser(
filename = filename,
binary = binary,
from_page = from_page,
to_page = to_page,
lang = lang,
callback = callback,
pdf_cls = Pdf,
layout_recognizer = layout_recognizer,
filename=filename,
binary=binary,
from_page=from_page,
to_page=to_page,
lang=lang,
callback=callback,
pdf_cls=Pdf,
layout_recognizer=layout_recognizer,
mineru_llm_name=parser_model_name,
parse_method = "manual",
parse_method="manual",
**kwargs
)
@ -237,10 +239,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if isinstance(poss, str):
poss = pdf_parser.extract_positions(poss)
if poss:
first = poss[0] # tuple: ([pn], x1, x2, y1, y2)
first = poss[0] # tuple: ([pn], x1, x2, y1, y2)
pn = first[0]
if isinstance(pn, list) and pn:
pn = pn[0] # [pn] -> pn
pn = pn[0] # [pn] -> pn
poss[0] = (pn, *first[1:])
return (txt, layoutno, poss)
@ -289,7 +291,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if not rows:
continue
sections.append((rows if isinstance(rows, str) else rows[0], -1,
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
def tag(pn, left, right, top, bottom):
if pn + left + right + top + bottom == 0:
@ -312,7 +314,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
tk_cnt = num_tokens_from_string(txt)
if sec_id > -1:
last_sid = sec_id
tbls = vision_figure_parser_pdf_wrapper(tbls=tbls,callback=callback,**kwargs)
tbls = vision_figure_parser_pdf_wrapper(tbls=tbls, callback=callback, **kwargs)
res = tokenize_table(tbls, doc, eng)
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
table_ctx = max(0, int(parser_config.get("table_context_size", 0) or 0))
@ -325,7 +327,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
docx_parser = Docx()
ti_list, tbls = docx_parser(filename, binary,
from_page=0, to_page=10000, callback=callback)
tbls = vision_figure_parser_docx_wrapper(sections=ti_list,tbls=tbls,callback=callback,**kwargs)
tbls = vision_figure_parser_docx_wrapper(sections=ti_list, tbls=tbls, callback=callback, **kwargs)
res = tokenize_table(tbls, doc, eng)
for text, image in ti_list:
d = copy.deepcopy(doc)

View File

@ -31,16 +31,20 @@ from common.token_utils import num_tokens_from_string
from common.constants import LLMType
from api.db.services.llm_service import LLMBundle
from rag.utils.file_utils import extract_embed_file, extract_links_from_pdf, extract_links_from_docx, extract_html
from deepdoc.parser import DocxParser, ExcelParser, HtmlParser, JsonParser, MarkdownElementExtractor, MarkdownParser, PdfParser, TxtParser
from deepdoc.parser.figure_parser import VisionFigureParser,vision_figure_parser_docx_wrapper,vision_figure_parser_pdf_wrapper
from deepdoc.parser import DocxParser, ExcelParser, HtmlParser, JsonParser, MarkdownElementExtractor, MarkdownParser, \
PdfParser, TxtParser
from deepdoc.parser.figure_parser import VisionFigureParser, vision_figure_parser_docx_wrapper, \
vision_figure_parser_pdf_wrapper
from deepdoc.parser.pdf_parser import PlainParser, VisionParser
from deepdoc.parser.docling_parser import DoclingParser
from deepdoc.parser.tcadp_parser import TCADPParser
from common.parser_config_utils import normalize_layout_recognizer
from rag.nlp import concat_img, find_codec, naive_merge, naive_merge_with_images, naive_merge_docx, rag_tokenizer, tokenize_chunks, tokenize_chunks_with_images, tokenize_table, attach_media_context
from rag.nlp import concat_img, find_codec, naive_merge, naive_merge_with_images, naive_merge_docx, rag_tokenizer, \
tokenize_chunks, tokenize_chunks_with_images, tokenize_table, attach_media_context
def by_deepdoc(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, pdf_cls = None, **kwargs):
def by_deepdoc(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, pdf_cls=None,
**kwargs):
callback = callback
binary = binary
pdf_parser = pdf_cls() if pdf_cls else Pdf()
@ -58,17 +62,17 @@ def by_deepdoc(filename, binary=None, from_page=0, to_page=100000, lang="Chinese
def by_mineru(
filename,
binary=None,
from_page=0,
to_page=100000,
lang="Chinese",
callback=None,
pdf_cls=None,
parse_method: str = "raw",
mineru_llm_name: str | None = None,
tenant_id: str | None = None,
**kwargs,
filename,
binary=None,
from_page=0,
to_page=100000,
lang="Chinese",
callback=None,
pdf_cls=None,
parse_method: str = "raw",
mineru_llm_name: str | None = None,
tenant_id: str | None = None,
**kwargs,
):
pdf_parser = None
if tenant_id:
@ -106,7 +110,8 @@ def by_mineru(
return None, None, None
def by_docling(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, pdf_cls = None, **kwargs):
def by_docling(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, pdf_cls=None,
**kwargs):
pdf_parser = DoclingParser()
parse_method = kwargs.get("parse_method", "raw")
@ -125,7 +130,7 @@ def by_docling(filename, binary=None, from_page=0, to_page=100000, lang="Chinese
return sections, tables, pdf_parser
def by_tcadp(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, pdf_cls = None, **kwargs):
def by_tcadp(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, pdf_cls=None, **kwargs):
tcadp_parser = TCADPParser()
if not tcadp_parser.check_installation():
@ -168,10 +173,10 @@ def by_plaintext(filename, binary=None, from_page=0, to_page=100000, callback=No
PARSERS = {
"deepdoc": by_deepdoc,
"mineru": by_mineru,
"docling": by_docling,
"tcadp": by_tcadp,
"deepdoc": by_deepdoc,
"mineru": by_mineru,
"docling": by_docling,
"tcadp": by_tcadp,
"plaintext": by_plaintext, # default
}
@ -264,7 +269,7 @@ class Docx(DocxParser):
# Find the nearest heading paragraph in reverse order
nearest_title = None
for i in range(len(blocks)-1, -1, -1):
for i in range(len(blocks) - 1, -1, -1):
block_type, pos, block = blocks[i]
if pos >= target_table_pos: # Skip blocks after the table
continue
@ -293,7 +298,7 @@ class Docx(DocxParser):
# Find all parent headings, allowing cross-level search
while current_level > 1:
found = False
for i in range(len(blocks)-1, -1, -1):
for i in range(len(blocks) - 1, -1, -1):
block_type, pos, block = blocks[i]
if pos >= target_table_pos: # Skip blocks after the table
continue
@ -426,7 +431,8 @@ class Docx(DocxParser):
try:
if inline_images:
result = mammoth.convert_to_html(docx_file, convert_image=mammoth.images.img_element(_convert_image_to_base64))
result = mammoth.convert_to_html(docx_file,
convert_image=mammoth.images.img_element(_convert_image_to_base64))
else:
result = mammoth.convert_to_html(docx_file)
@ -621,6 +627,7 @@ class Markdown(MarkdownParser):
return sections, tbls, section_images
return sections, tbls
def load_from_xml_v2(baseURI, rels_item_xml):
"""
Return |_SerializedRelationships| instance loaded with the
@ -636,6 +643,7 @@ def load_from_xml_v2(baseURI, rels_item_xml):
srels._srels.append(_SerializedRelationship(baseURI, rel_elm))
return srels
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
"""
Supported file formats are docx, pdf, excel, txt.
@ -651,7 +659,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
"parser_config", {
"chunk_token_num": 512, "delimiter": "\n!?。;!?", "layout_recognize": "DeepDOC", "analyze_hyperlink": True})
child_deli = (parser_config.get("children_delimiter") or "").encode('utf-8').decode('unicode_escape').encode('latin1').decode('utf-8')
child_deli = (parser_config.get("children_delimiter") or "").encode('utf-8').decode('unicode_escape').encode(
'latin1').decode('utf-8')
cust_child_deli = re.findall(r"`([^`]+)`", child_deli)
child_deli = "|".join(re.sub(r"`([^`]+)`", "", child_deli))
if cust_child_deli:
@ -685,7 +694,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
# Recursively chunk each embedded file and collect results
for embed_filename, embed_bytes in embeds:
try:
sub_res = chunk(embed_filename, binary=embed_bytes, lang=lang, callback=callback, is_root=False, **kwargs) or []
sub_res = chunk(embed_filename, binary=embed_bytes, lang=lang, callback=callback, is_root=False,
**kwargs) or []
embed_res.extend(sub_res)
except Exception as e:
if callback:
@ -704,7 +714,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
sub_url_res = chunk(url, html_bytes, callback=callback, lang=lang, is_root=False, **kwargs)
except Exception as e:
logging.info(f"Failed to chunk url in registered file type {url}: {e}")
sub_url_res = chunk(f"{index}.html", html_bytes, callback=callback, lang=lang, is_root=False, **kwargs)
sub_url_res = chunk(f"{index}.html", html_bytes, callback=callback, lang=lang, is_root=False,
**kwargs)
url_res.extend(sub_url_res)
# fix "There is no item named 'word/NULL' in the archive", referring to https://github.com/python-openxml/python-docx/issues/1105#issuecomment-1298075246
@ -747,14 +758,14 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
callback(0.1, "Start to parse.")
sections, tables, pdf_parser = parser(
filename = filename,
binary = binary,
from_page = from_page,
to_page = to_page,
lang = lang,
callback = callback,
layout_recognizer = layout_recognizer,
mineru_llm_name = parser_model_name,
filename=filename,
binary=binary,
from_page=from_page,
to_page=to_page,
lang=lang,
callback=callback,
layout_recognizer=layout_recognizer,
mineru_llm_name=parser_model_name,
**kwargs
)
@ -812,7 +823,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
parser_config.get("delimiter", "\n!?;。;!?"))
callback(0.8, "Finish parsing.")
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
elif re.search(r"\.(md|markdown|mdx)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
markdown_parser = Markdown(int(parser_config.get("chunk_token_num", 128)))
sections, tables, section_images = markdown_parser(
@ -846,9 +857,11 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
else:
section_images = [None] * len(sections)
section_images[idx] = combined_image
markdown_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data= [((combined_image, ["markdown image"]), [(0, 0, 0, 0, 0)])], **kwargs)
markdown_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=[
((combined_image, ["markdown image"]), [(0, 0, 0, 0, 0)])], **kwargs)
boosted_figures = markdown_vision_parser(callback=callback)
sections[idx] = (section_text + "\n\n" + "\n\n".join([fig[0][1] for fig in boosted_figures]), sections[idx][1])
sections[idx] = (section_text + "\n\n" + "\n\n".join([fig[0][1] for fig in boosted_figures]),
sections[idx][1])
else:
logging.warning("No visual model detected. Skipping figure parsing enhancement.")
@ -945,7 +958,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
has_images = merged_images and any(img is not None for img in merged_images)
if has_images:
res.extend(tokenize_chunks_with_images(chunks, doc, is_english, merged_images, child_delimiters_pattern=child_deli))
res.extend(tokenize_chunks_with_images(chunks, doc, is_english, merged_images,
child_delimiters_pattern=child_deli))
else:
res.extend(tokenize_chunks(chunks, doc, is_english, pdf_parser, child_delimiters_pattern=child_deli))
else:
@ -955,10 +969,11 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
if section_images:
chunks, images = naive_merge_with_images(sections, section_images,
int(parser_config.get(
"chunk_token_num", 128)), parser_config.get(
"delimiter", "\n!?。;!?"))
res.extend(tokenize_chunks_with_images(chunks, doc, is_english, images, child_delimiters_pattern=child_deli))
int(parser_config.get(
"chunk_token_num", 128)), parser_config.get(
"delimiter", "\n!?。;!?"))
res.extend(
tokenize_chunks_with_images(chunks, doc, is_english, images, child_delimiters_pattern=child_deli))
else:
chunks = naive_merge(
sections, int(parser_config.get(
@ -993,7 +1008,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)

View File

@ -26,6 +26,7 @@ from deepdoc.parser.figure_parser import vision_figure_parser_docx_wrapper
from rag.app.naive import by_plaintext, PARSERS
from common.parser_config_utils import normalize_layout_recognizer
class Pdf(PdfParser):
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
@ -95,14 +96,14 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
callback(0.1, "Start to parse.")
sections, tbls, pdf_parser = parser(
filename = filename,
binary = binary,
from_page = from_page,
to_page = to_page,
lang = lang,
callback = callback,
pdf_cls = Pdf,
layout_recognizer = layout_recognizer,
filename=filename,
binary=binary,
from_page=from_page,
to_page=to_page,
lang=lang,
callback=callback,
pdf_cls=Pdf,
layout_recognizer=layout_recognizer,
mineru_llm_name=parser_model_name,
**kwargs
)
@ -112,9 +113,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if name in ["tcadp", "docling", "mineru"]:
parser_config["chunk_token_num"] = 0
callback(0.8, "Finish parsing.")
for (img, rows), poss in tbls:
if not rows:
continue
@ -127,7 +128,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
excel_parser = ExcelParser()
sections = excel_parser.html(binary, 1000000000)
elif re.search(r"\.(txt|md|markdown)$", filename, re.IGNORECASE):
elif re.search(r"\.(txt|md|markdown|mdx)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = get_text(filename, binary)
sections = txt.split("\n")
@ -172,7 +173,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)

View File

@ -20,7 +20,8 @@ import re
from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper
from common.constants import ParserType
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks, attach_media_context
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, \
tokenize_chunks, attach_media_context
from deepdoc.parser import PdfParser
import numpy as np
from rag.app.naive import by_plaintext, PARSERS
@ -66,7 +67,7 @@ class Pdf(PdfParser):
# clean mess
if column_width < self.page_images[0].size[0] / zoomin / 2:
logging.debug("two_column................... {} {}".format(column_width,
self.page_images[0].size[0] / zoomin / 2))
self.page_images[0].size[0] / zoomin / 2))
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
for b in self.boxes:
b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
@ -89,7 +90,7 @@ class Pdf(PdfParser):
title = ""
authors = []
i = 0
while i < min(32, len(self.boxes)-1):
while i < min(32, len(self.boxes) - 1):
b = self.boxes[i]
i += 1
if b.get("layoutno", "").find("title") >= 0:
@ -190,8 +191,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
"tables": tables
}
tbls=paper["tables"]
tbls=vision_figure_parser_pdf_wrapper(tbls=tbls,callback=callback,**kwargs)
tbls = paper["tables"]
tbls = vision_figure_parser_pdf_wrapper(tbls=tbls, callback=callback, **kwargs)
paper["tables"] = tbls
else:
raise NotImplementedError("file type not supported yet(pdf supported)")
@ -329,6 +330,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], callback=dummy)

View File

@ -51,7 +51,8 @@ def chunk(filename, binary, tenant_id, lang, callback=None, **kwargs):
}
)
cv_mdl = LLMBundle(tenant_id, llm_type=LLMType.IMAGE2TEXT, lang=lang)
ans = asyncio.run(cv_mdl.async_chat(system="", history=[], gen_conf={}, video_bytes=binary, filename=filename))
ans = asyncio.run(
cv_mdl.async_chat(system="", history=[], gen_conf={}, video_bytes=binary, filename=filename))
callback(0.8, "CV LLM respond: %s ..." % ans[:32])
ans += "\n" + ans
tokenize(doc, ans, eng)

Some files were not shown because too many files have changed in this diff Show More