Compare commits

..

188 Commits

Author SHA1 Message Date
3413f43b47 Fixed a docusaurus display issue (#1431)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
2024-07-08 19:30:29 +08:00
f8aa31b159 feat: add bedrock icon (#1430)
### What problem does this PR solve?

feat: add bedrock icon #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 19:14:25 +08:00
669d634d74 empty kb id for templates (#1429)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2024-07-08 19:10:27 +08:00
59417016a8 feat: translate graph of header #918 (#1428)
### What problem does this PR solve?

feat: translate graph of header #918
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 18:52:13 +08:00
1eb1f7ad33 feat: translate graph list #918 (#1426)
### What problem does this PR solve?

feat: translate graph list #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 18:14:34 +08:00
98295caffe update Minimax and Azure-Openai icon in setting page (#1420)
### What problem does this PR solve?

update Minimax and Azure-Openai  icon in setting page
#1156 #308 #433

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
2024-07-08 17:55:04 +08:00
f5dc94fc85 feat: highlight the nodes that the workflow passes through #918 (#1423)
### What problem does this PR solve?

feat: highlight the nodes that the workflow passes through #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 17:45:17 +08:00
c889ef6363 examples empty in categorize (#1422)
### What problem does this PR solve?

Examples empty in categorize

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-08 17:40:50 +08:00
593c20889d update docs for release 0.8.0 (#1419)
### What problem does this PR solve?

update docs for release 0.8.0

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2024-07-08 17:06:33 +08:00
fce3f6df8e feat: when Categorize establishes a connection with other operators, it adds the target node to the to field. #918 (#1418)
### What problem does this PR solve?
feat: when Categorize establishes a connection with other operators, it
adds the target node to the to field. #918

feat: modify the Chinese text of loop #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 16:29:54 +08:00
H
61557a101a fix botocore (#1414)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-08 16:20:19 +08:00
1f967191d4 feat: add icon to title of operator form #918 (#1413)
### What problem does this PR solve?
feat: add icon to title of operator form #918


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 12:32:46 +08:00
0f597b9817 feat: node cannot connect to itself #918 (#1412)
### What problem does this PR solve?

feat: node cannot connect to itself #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 11:42:12 +08:00
1cff117dc9 feat: translate graph #918 (#1411)
### What problem does this PR solve?

feat: translate graph #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 10:55:10 +08:00
H
e3f5464457 fix duckduckgosearch.py bug (#1410)
### What problem does this PR solve?

fix duckduckgosearch.py bug

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-08 10:33:26 +08:00
H
6144a109ab Add Support for AWS Bedrock (#1408)
### What problem does this PR solve?

#308 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
2024-07-08 09:37:34 +08:00
b3ebc66b13 be more specific for error message (#1409)
### What problem does this PR solve?

#918 

### Type of change

- [x] Refactoring
2024-07-08 09:32:44 +08:00
dcb3fb2073 fix: use user-defined rerank model's top_k parameter when knowledge Q&A conversation (#1396)
### What problem does this PR solve?

During knowledge Q&A conversations, the user-defined rerank model's
top_k parameter was not used

#1395 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-08 09:25:49 +08:00
H
f4674ae9d0 add Duckduckgo pkg (#1392)
### What problem does this PR solve?

#918 

### Type of change

- [x] Documentation Update
2024-07-08 09:22:50 +08:00
de610091eb feat: after deleting the edge, set the corresponding field in the node's form field to undefined #918 (#1393)
### What problem does this PR solve?

feat: after deleting the edge, set the corresponding field in the node's
form field to undefined #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 19:08:00 +08:00
d57a68bc2a feat: add duckduckgo icon #918 (#1391)
### What problem does this PR solve?
feat: add duckduckgo icon #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 16:59:04 +08:00
H
a2eb0df875 Duckduckgosearch (#1388)
### What problem does this PR solve?

#918 

Add components: Baidu, Duckduckgo

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 16:14:32 +08:00
edc61e9b4c feat: save the parameters of the generate operator to the form field … (#1390)
### What problem does this PR solve?
feat: save the parameters of the generate operator to the form field of
the node #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 15:52:24 +08:00
472fcba7af feat: save graph data before opening the debug drawer #918 (#1387)
### What problem does this PR solve?
feat: save graph data before opening the debug drawer #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 14:16:03 +08:00
74ec3bc4d9 feat: add GraphAvatar to graph list #918 (#1385)
### What problem does this PR solve?

feat: add GraphAvatar to graph list #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 11:04:19 +08:00
a3f4258cfc feat: click on a blank area of ​​the canvas to hide the form drawer #918 (#1384)
### What problem does this PR solve?
feat: click on a blank area of ​​the canvas to hide the form drawer #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 10:44:14 +08:00
GYH
cf542e80b3 Add Graph Baidusearch and dsl_example (#1378)
### What problem does this PR solve?

#918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 09:50:57 +08:00
957cd55e4a feat: deleting a node does not require a confirmation box to pop up #918 (#1380)
### What problem does this PR solve?

feat: deleting a node does not require a confirmation box to pop up #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 19:32:47 +08:00
25a8c076bf feat: add description text to operators and extract the useFetchModelId to logicHooks.ts and drag the operator to the canvas and initialize the form data #918 (#1379)
### What problem does this PR solve?

feat: add description text to operators #918 
feat: drag the operator to the canvas and initialize the form data #918
feat: extract the useFetchModelId to logicHooks.ts
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 19:18:02 +08:00
306108fe0e API: Download doc api (#1354)
### What problem does this PR solve?

Adds download_document api

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 16:33:55 +08:00
daaf6aed50 feat: replace the graph icon in the header #918 (#1376)
### What problem does this PR solve?

feat: replace the graph icon in the header #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 16:31:34 +08:00
3b50389ee7 feat: add graph tab to header #918 (#1374)
### What problem does this PR solve?

feat: add graph tab to header #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 16:26:20 +08:00
258c9ea644 add keyword extraction in graph (#1373)
### What problem does this PR solve?
#918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 15:57:25 +08:00
acd78c5ef2 feat: build nodes and edges from chat bot dsl #918 (#1372)
### What problem does this PR solve?
feat: build nodes and edges from chat bot dsl #918


### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 15:15:14 +08:00
1d3e4844a5 feat: call the reset api before opening the run drawer each time #918 (#1370)
### What problem does this PR solve?

feat:  call the reset api before opening the run drawer each time #918
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 15:10:45 +08:00
4122695a1a refine templates of graph (#1368)
### What problem does this PR solve?

#918 
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 10:33:49 +08:00
3ccb62910b fix: add icon to MiniMax and Mistral #1353 (#1367)
### What problem does this PR solve?

fix: add icon to MiniMax  and Mistral #1353
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-04 10:24:43 +08:00
a6765e9ca4 Integrates LLM Azure OpenAI (#1318)
### What problem does this PR solve?

feat: Integrates LLM Azure OpenAI #716 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

### Other
It's just the back-end code, the front-end needs to provide the Azure
OpenAI model addition form.
   
#### Required parameters

- base_url
- api_key

---------

Co-authored-by: yonghui li <yonghui.li@bondex.com.cn>
2024-07-04 09:57:16 +08:00
dec3bf7503 feat: pull the message list after sending the message successfully #918 (#1364)
### What problem does this PR solve?

feat: pull the message list after sending the message successfully #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 09:55:08 +08:00
745e98e56a feat: create blank canvas #918 (#1356)
### What problem does this PR solve?

feat: create blank canvas #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 17:06:48 +08:00
1defc83506 API: create update_doc method (#1341)
### What problem does this PR solve?

Adds the API method of updating documents.


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 15:14:34 +08:00
65e59862e4 feat: create flow from dsl template #918 (#1351)
### What problem does this PR solve?

feat: create flow from  dsl template #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 14:42:48 +08:00
477a52620f feat: build nodes and edges from customer_service dsl #918 (#1348)
### What problem does this PR solve?

feat: build nodes and edges from customer_service dsl #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 14:03:25 +08:00
7c9ea5cad9 add interpreter to graph (#1347)
### What problem does this PR solve?

#918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 12:15:15 +08:00
f6159ee4d3 feat: add DynamicParameters #918 (#1346)
### What problem does this PR solve?

feat: add DynamicParameters #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 12:00:56 +08:00
a7423e3a94 feat: add RelevantForm #918 (#1344)
### What problem does this PR solve?

feat: add RelevantForm #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 10:15:19 +08:00
25c4c717cb Add Intel IPEX-LLM setup under deploy_local_llm (#1269)
### What problem does this PR solve?

It adds the setup guide for using Intel IPEX-LLM with Ollama to
docs/guide/deploy_local_llm.md

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [x] Other (please describe): adds the setup guide for using Intel
IPEX-LLM with Ollama to docs/guide/deploy_local_llm.md
2024-07-02 18:55:24 +08:00
f9adeb9647 feat: add CreateFlowModal #918 (#1343)
### What problem does this PR solve?

feat: add CreateFlowModal #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-02 16:15:54 +08:00
04487d1bce feat: customize edge arrow #918 (#1338)
### What problem does this PR solve?

feat: customize edge arrow #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-02 11:43:57 +08:00
68b9a857c2 Doc: added doc for three doc methods (#1336)
### What problem does this PR solve?

Adds the documentation for three newly added API methods for content
management.

### Type of change

- [x] Documentation Update
2024-07-02 09:57:44 +08:00
5fa3c2bdce feat: modify the style of the operator #918 (#1335)
### What problem does this PR solve?

feat: modify the style of the operator #918
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 18:58:51 +08:00
b5389f487c API: created list_doc (#1327)
### What problem does this PR solve?

Adds the api of listing documentation.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 18:15:00 +08:00
8b1c145e56 feat: modify the name of an operator #918 (#1333)
### What problem does this PR solve?

feat: modify the name of an operator #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 17:12:04 +08:00
92e9320657 upgrade laws parser of docx (#1332)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-07-01 15:50:24 +08:00
5eb21b9c7c feat: construct the edge of the classification operator from dsl #918 (#1329)
### What problem does this PR solve?

feat: construct the edge of the classification operator from dsl #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 14:37:05 +08:00
4542346f18 feat: get the operator type from id #918 (#1323)
### What problem does this PR solve?

feat: get the operator type from id #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 10:27:32 +08:00
fc7cc1d36c Optimize docx handle method in laws parser (#1302)
### What problem does this PR solve?

Optimize docx handle method in laws parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 17:42:59 +08:00
751447bd4f fix: fixed the issue where spaces could not be entered in the message… (#1320)
### What problem does this PR solve?

fix: fixed the issue where spaces could not be entered in the message
input box #1314
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-28 17:32:38 +08:00
f26d01dfa3 feat: add RelevantForm #918 (#1313)
### What problem does this PR solve?

feat: add RelevantForm #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 17:22:10 +08:00
cd3c739982 feat: add MessageForm #918 (#1312)
### What problem does this PR solve?

feat: add MessageForm #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 16:25:20 +08:00
44c7a0e281 feat: translate fields of CategorizeForm #918 (#1311)
### What problem does this PR solve?

feat: translate fields of CategorizeForm #918
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 15:29:29 +08:00
8c9b54db31 API: completed delete_doc api (#1290)
### What problem does this PR solve?

Adds the functionality of deleting documentation

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 14:27:57 +08:00
6a7c2112f7 feat: limit there to be only one line between two nodes #918 (#1310)
### What problem does this PR solve?

feat: limit there to be only one line between two nodes #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 12:01:06 +08:00
0acf4194ca feat: filter out selected values ​​in other to fields from the curren… (#1307)
### What problem does this PR solve?

feat: filter out selected values ​​in other to fields from the current
drop-down box options #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 11:40:21 +08:00
89004f1faf Update README.md (#1285)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-28 09:00:20 +08:00
5a36866cf2 feat: fix the problem of form entries being deleted when adding a new line #918 and clear the selection box to delete the corresponding edge (#1301)
### What problem does this PR solve?
feat: clear the selection box to delete the corresponding edge. #918
feat: fix the problem of form entries being deleted when adding a new
line #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 08:59:51 +08:00
c8523dc6fd Introduce new features (#1296)
### What problem does this PR solve?

Update README to introduce new features

### Type of change

- [x] Documentation Update
2024-06-27 18:09:59 +08:00
840e921e96 feat: set the edge as the data source to achieve two-way linkage betw… (#1299)
### What problem does this PR solve?

feat: set the edge as the data source to achieve two-way linkage between
the edge and the to field. #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 18:09:02 +08:00
5a1e01d96f feat: delete the edge on the classification node anchor when the anch… (#1297)
### What problem does this PR solve?

feat: delete the edge on the classification node anchor when the anchor
is connected to other nodes #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 15:48:11 +08:00
fbb8cbfc67 feat: restrict classification operators cannot be connected to Answer and other classification #918 (#1294)
### What problem does this PR solve?

feat: restrict classification operators cannot be connected to Answer
and other classification #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 14:57:40 +08:00
0ce720a247 fix mem leak for local reranker (#1295)
### What problem does this PR solve?

#1288
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-27 14:57:24 +08:00
47926a95ae Fix ragflow may encounter an OOM (Out Of Memory) when there are a lot of conversations (#1292)
### What problem does this PR solve?

Fix ragflow may encounter an OOM (Out Of Memory) when there are a lot of
conversations.
#1288

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: zhuhao <zhuhao@linklogis.com>
2024-06-27 14:48:49 +08:00
ff8793a031 Update sdk readme (#1291)
### What problem does this PR solve?

Polish grammar.

### Type of change

- [x] Documentation Update
2024-06-27 14:41:52 +08:00
a95c1d45f0 Support table for markdown file in general parser (#1278)
### What problem does this PR solve?

Support extracting table for markdown file in general parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 14:38:35 +08:00
45853505bb Fix occasional errors in pdf table recognition (#1277)
### What problem does this PR solve?

Fix occasional errors in pdf table recognition

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-27 14:37:58 +08:00
b3f782b3d3 Fix dependency conflict (#1293)
### What problem does this PR solve?

Fix dependency conflict

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-27 14:36:49 +08:00
16a1d24a02 Update README.md (#1286)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-27 13:38:36 +08:00
a943aefa4d feat: use useUpdateNodeInternals to solve the issue that the newly ad… (#1287)
### What problem does this PR solve?

feat: use useUpdateNodeInternals to solve the issue that the newly added
anchor points cannot be connected. #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 11:29:46 +08:00
038ca8c0ea docs: update quickstart.mdx (#1283)
### What problem does this PR solve?

minor fix

### Type of change

- [x] Documentation Update
2024-06-27 09:20:42 +08:00
fa5695c250 feat: add CategorizeHandle #918 (#1282)
### What problem does this PR solve?

feat: add CategorizeHandle #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 09:20:19 +08:00
e43208a1ca feat: change nodes to circular #918 (#1279)
### What problem does this PR solve?
feat: change nodes to circular #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-26 16:57:38 +08:00
fef663a59d feat: build categorize list from object #918 (#1276)
### What problem does this PR solve?

feat: build categorize list from object #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-25 19:28:24 +08:00
83b91d90fe feat: add DynamicCategorize #918 (#1273)
### What problem does this PR solve?

feat: add DynamicCategorize #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-25 16:17:12 +08:00
f6ae8fcb71 API: upload document api (#1264)
### What problem does this PR solve?

API: Adds the feature of uploading document.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-25 12:16:28 +08:00
d1ea429bdd feat: add LLMSelect (#1270)
### What problem does this PR solve?

feat: add LLMSelect #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-25 12:09:07 +08:00
b75bb1d8d3 Support displaying tables in the chunks of pdf file when using QA parser (#1263)
### What problem does this PR solve?

Support displaying tables in the chunks of pdf file when using QA parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 19:02:18 +08:00
6c6f5a3a47 feat: modify the background color of chat messages (#1262)
### What problem does this PR solve?

feat: modify the background color of chat messages #1215

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 18:23:22 +08:00
80163c043e Optimized the chat interface (including the chat API after sharing) (#1215)
### What problem does this PR solve?
Optimized the chat interface (including the chat API after sharing)
1. Change the background color of the dialog box between the assistant
and the user (use the theme color of the interface)
2. Add rounded corners to the dialog box
3. When the input box is empty, you can't click the send button(because
some models will report an error when sending empty data)

Color reference(can be a bit subjective):

![image](https://github.com/infiniflow/ragflow/assets/19431702/8cd6fcd9-8ca1-4160-8bac-9e8ba1a4112e)

### Type of change

- [x] Refactor

Co-authored-by: 海贼宅 <stu_xyx@163.com>
2024-06-24 16:41:45 +08:00
9fcf9a10c6 Update SECURITY.md (#1248)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2024-06-24 16:30:17 +08:00
38bd02f402 Support displaying images in the chunks of docx files when using general parser (#1253)
### What problem does this PR solve?

Support displaying images in chunks of docx files when using general
parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 16:29:36 +08:00
9a0736b20f feat: format code before submitting it #1251 (#1252)
### What problem does this PR solve?

feat: format code before submitting it #1251 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 14:48:21 +08:00
GYH
4fcd05ad23 fix Rerank Vector Similarity Score (#1249)
### What problem does this PR solve?

#1243 
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-24 12:25:50 +08:00
f8fe4154e8 Place pdf's image at the correct position in QA parser (#1235)
### What problem does this PR solve?

Place pdf's image at the correct position in QA parser

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-24 10:41:03 +08:00
57970570ee Let json files support naive parsing methods #1245 (#1247)
### What problem does this PR solve?

Let json files support naive parsing methods #1245

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 10:40:51 +08:00
d185a2e7f2 Create SECURITY.md (#1241)
### What problem does this PR solve?

The restricted_loads function at
[api/utils/init.py#L215](https://github.com/infiniflow/ragflow/blob/main/api/utils/__init__.py#L215)
is still vulnerable leading via code execution. The main reson is that
numpy module has a numpy.f2py.diagnose.run_command function directly
execute commands, but the restricted_loads function allows users import
functions in module numpy.

### Additional Details

[https://github.com/infiniflow/ragflow/issues/1240](https://github.com/infiniflow/ragflow/issues/1240)

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2024-06-24 10:14:57 +08:00
a4ea5a120b feat: grey out the team function #1221 (#1244)
### What problem does this PR solve?

Grey out the team function #1221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 10:03:35 +08:00
15bf9f8c25 refine code to prevent exception (#1231)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-06-21 14:06:46 +08:00
18f4a6b35c feat: support json file (#1217)
### What problem does this PR solve?

feat: support json file.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
2024-06-21 10:42:29 +08:00
f7cdb2678c polished doc for dataset API (#1219)
### What problem does this PR solve?

Added doc for API.

### Type of change

- [x] Documentation Update
2024-06-20 19:02:03 +08:00
3c1444ab19 Add docx support for manual parser (#1227)
### What problem does this PR solve?

Add docx support for manual parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-20 17:03:02 +08:00
fb56a29478 Add docx support for QA parser (#1213)
### What problem does this PR solve?

Add docx support for QA parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-20 16:09:09 +08:00
e99e8b93fb fix:failed to Create new Chunk in database #1159 (#1214)
### What problem does this PR solve?

fix bug: [1159](https://github.com/infiniflow/ragflow/issues/1159)
using embd which user configured at knowledgebase when create new chunk
in database

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-20 09:43:39 +08:00
5ec19b5f53 created get_dataset, update_dataset API and fixed: delete (#1201)
### What problem does this PR solve?

Added get_dataset and update_dataset API.
Fixed delete_dataset.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2024-06-19 18:01:38 +08:00
0b90aab22c fix: using embd which user configured at knowledgebase (#1163)
### What problem does this PR solve?
as title
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-19 14:44:25 +08:00
fe1805fa0e add README to graph (#1211)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2024-06-19 13:05:32 +08:00
f73f7b969c Update requirements_dev.txt 2024-06-19 08:50:32 +08:00
81d1c5a695 Update requirements.txt 2024-06-19 08:50:01 +08:00
8d667d5abd fixed: duplicate name (#1202)
### What problem does this PR solve?

Duplicate method name.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-18 16:28:46 +08:00
01ad2e5296 [doc] Hid new API doc on docusaurus site (#1198)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change
- [x] Documentation Update
2024-06-18 14:57:04 +08:00
fcdda9f8c5 Remove the visibilty of RAGFlow API (#1196)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-18 10:10:27 +08:00
e35f7610e7 fix too long query exception (#1195)
### What problem does this PR solve?

#1161 
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-18 09:50:59 +08:00
7920a5c78d Add markdown support for QA parser (#1180)
### What problem does this PR solve?

Add markdown support for QA parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-18 09:45:13 +08:00
4d957f2d3b added api documentation and added more tests (#1194)
### What problem does this PR solve?

This PR added ragflow_api.md and more tests for API.

### Type of change

- [x] Documentation Update
- [x] Other (please describe): tests
2024-06-17 22:14:50 +08:00
a89389a05a [doc] RAGFlow's api key never expires (#1188)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-17 18:45:27 +08:00
d9a9be4b4c added documentation for api and fixed: duplicate get_dataset() (#1190)
### What problem does this PR solve?

Added the documentation for api and fixed duplicate get_dataset()
methods.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2024-06-17 17:54:06 +08:00
6be3626372 delete_dataset method and tests created (#1186)
### What problem does this PR solve?

This PR have completed both HTTP API and Python SDK for
'delete_dataset". In addition, there are tests for it.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-17 15:10:05 +08:00
1eb4caf02a create list_dataset api and tests (#1138)
### What problem does this PR solve?

This PR have completed both HTTP API and Python SDK for 'list_dataset".
In addition, there are tests for it.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-17 12:19:05 +08:00
f04fb36c26 upgrade version fix security bug (#1173)
### What problem does this PR solve?

due to security problem, need updagre to fix, see bellow


### Type of change

- [x] Other (please describe):

Name| version | CVE | upgrade version
-- | -- | -- | --
PyMySQL | 1.1.0 | CVE-2024-36039 | 1.1.1
Werkzeug | 3.0.1 | CVE-2024-34069 | 3.0.3
aiohttp | 3.9.3 | CVE-2024-30251 | 3.9.4
pillow | 10.2.0 | CVE-2024-28219 | 10.3.0
2024-06-17 10:51:48 +08:00
747e69ef68 Fix Docker image building failure on MacOS (ARM architecture) (#1177)
### What problem does this PR solve?

#1164 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-17 10:46:21 +08:00
c68767acdd Fix VolcEngine BUG (#1165)
### What problem does this PR solve?
- Fix a bug for VolcEngine
- After testing, the current VolcEngine configuration also supports the
Doubao series
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: 海贼宅 <stu_xyx@163.com>
2024-06-14 19:49:28 +08:00
4447039a4c refine doc about supporting PDF for Q&A (#1160)
### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2024-06-14 17:09:42 +08:00
90975460af Add pdf support for QA parser (#1155)
### What problem does this PR solve?

Support extracting questions and answers from PDF files

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-14 15:12:39 +08:00
7dc39cbfa6 add support for mistral (#1153)
### What problem does this PR solve?

#433 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-14 11:32:58 +08:00
a25d32496c support graph (#1152)
### What problem does this PR solve?

#918 
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-14 10:49:36 +08:00
2023fdc13e fix file preview in file management (#1151)
### What problem does this PR solve?

fix file preview in file management

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-14 10:33:59 +08:00
64c83f300a feat: duplicate node #918 (#1136)
### What problem does this PR solve?
feat: duplicate node #918


### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-13 09:09:34 +08:00
3b7b6240c3 feat: add delete menu to graph node #918 (#1133)
### What problem does this PR solve?
feat: add delete menu to graph node #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-12 17:38:41 +08:00
e05395d2a7 fix multi-modual bug (#1127)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-12 14:21:35 +08:00
169281958b feat: when a node of the graph is selected, the border of the node is highlighted. #918 (#1125)
### What problem does this PR solve?

feat: when a node of the graph is selected, the border of the node is
highlighted. #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-12 11:42:48 +08:00
abcd3d2469 refactor (#1124)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-06-12 11:02:15 +08:00
2cc89211f6 Update discord link (#1123)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-12 10:18:46 +08:00
0e3a877e5c feat: set the anchor points of all nodes to be enterable and exitable #918 (#1119)
### What problem does this PR solve?

feat: set the anchor points of all nodes to be enterable and exitable
#918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-11 19:31:52 +08:00
da64cfd173 [doc] Minor editorial updates. (#1115)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-11 18:42:58 +08:00
ff5ea266d2 feat: add icon to graph nodes #918 (#1117)
### What problem does this PR solve?

feat: add icon to graph nodes #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-11 18:01:19 +08:00
8902d92d0e feat: catch errors when sending messages #918 (#1113)
### What problem does this PR solve?

feat: catch errors when sending messages #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-11 15:46:12 +08:00
e28d13e3b4 Updated the doc for configuring api key (#1112)
### What problem does this PR solve?

#720 

### Type of change

- [x] Documentation Update
2024-06-11 13:52:27 +08:00
0b92f02672 feat: generate uuid with human-id #918 (#1111)
### What problem does this PR solve?

feat: generate uuid with human-id #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-11 11:58:49 +08:00
cf2f6592dd API: create dataset (#1106)
### What problem does this PR solve?

This PR have finished 'create dataset' of both HTTP API and Python SDK.
HTTP API:
```
curl --request POST --url http://<HOST_ADDRESS>/api/v1/dataset   --header 'Content-Type: application/json' --header 'Authorization: <ACCESS_KEY>' --data-binary '{
  "name": "<DATASET_NAME>"
}'
```

Python SDK:
```
from ragflow.ragflow import RAGFLow
ragflow = RAGFLow('<ACCESS_KEY>', 'http://127.0.0.1:9380')
ragflow.create_dataset("dataset1")

```

TODO: 
- ACCESS_KEY is the login_token when user login RAGFlow, currently.
RAGFlow should have the function that user can add/delete access_key.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-11 11:16:37 +08:00
97ced2f667 fix: hide web crawl menu item (#1110)
### What problem does this PR solve?

fix: hide web crawl menu item #1107

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-11 10:54:30 +08:00
7eb69fe6d9 Supports obtaining PDF documents from web pages (#1107)
### What problem does this PR solve?

Knowledge base management supports crawling information from web pages
and generating PDF documents

### Type of change
- [x] New Feature (Support document from web pages)
2024-06-11 10:45:19 +08:00
68a698655a infinity: Update embedding_model.py (#1109)
### What problem does this PR solve?

I implemented infinity, a fast vector embeddings engine. 

### Type of change


- [x] Performance Improvement
- [X] Other (please describe):
2024-06-11 08:23:58 +08:00
f900e432f3 Add redis config (#1104)
### What problem does this PR solve?

Redis post config is missing

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-08 23:24:29 +08:00
267d6b28be Update README (#1101)
### What problem does this PR solve?

Update README for build from source.

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-08 19:02:16 +08:00
706985c188 feat: add OperateDropdown and send debug message #918 (#1095)
### What problem does this PR solve?
feat: add OperateDropdown
feat: send debug message #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-07 19:27:27 +08:00
59efba3d87 add preview gif (#1097)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2024-06-07 19:01:09 +08:00
22468a8590 [doc] Updated default value of quote in 'get answers' (#1093)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-07 14:08:59 +08:00
d0951ee27b fix: logger formater is not work (#1090)
### What problem does this PR solve?

as title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-07 13:48:56 +08:00
31da511d1d feat: watch graph change (#1092)
### What problem does this PR solve?

feat: watch graph change #918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-07 13:46:50 +08:00
f8d0d657fb Fixed a Docusaurus display issue (#1089)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-07 10:35:25 +08:00
923c3b8cac fix bug in api (#1088)
### What problem does this PR solve?

#1075 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-07 09:56:14 +08:00
2ff1b410b9 Update .env 2024-06-07 09:09:38 +08:00
f65d6a957b Updated Ollama part of local deployment (#1066)
### What problem does this PR solve?

#720 

### Type of change

- [x] Documentation Update
2024-06-07 09:06:46 +08:00
722c342d56 fix: bug similarity() in YoudaoRerank (#1084)
### What problem does this PR solve?

bix fix

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-07 09:04:53 +08:00
dbdae8e83c feat: add FlowChatBox #918 (#1086)
### What problem does this PR solve?

feat: add FlowChatBox #918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 19:29:36 +08:00
6399a4fde2 Update README.md 2024-06-06 16:06:20 +08:00
631753f1a9 documentaion for self-rag (#1080)
### What problem does this PR solve?

#1069 
### Type of change

- [x] Documentation Update
2024-06-06 16:04:37 +08:00
ad87825a1b The interface supported by Traditional Chinese is not complete #1074 (#1082)
…1074

### What problem does this PR solve?

The interface supported by Traditional Chinese is not complete #1074

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-06 16:03:52 +08:00
b04f0510f9 feat: modify the chinese translation of self-rag #1069 (#1081)
### What problem does this PR solve?

feat: modify the chinese translation of self-rag #1069

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 15:57:58 +08:00
1552dca28d feat: support Self-RAG #1069 (#1079)
### What problem does this PR solve?

feat: support Self-RAG #1069
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-06 15:30:51 +08:00
db35e9df4f feat: run flow (#1076)
### What problem does this PR solve?

feat: run flow #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 15:00:37 +08:00
d9dc183a0e rm wrongly uploaded py (#1073)
### What problem does this PR solve?


### Type of change


- [x] Refactoring
2024-06-06 13:49:48 +08:00
195498daaa feat: Support Password Access for ElasticSearch (#1072)
### What problem does this PR solve?

Using password authentication to access ElasticSearch is essential,
especially in a production environment.

This PR will enable password access support.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 13:19:26 +08:00
4454ba7a1e add self-rag (#1070)
### What problem does this PR solve?

#1069 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 11:13:39 +08:00
72c6784ff8 feat: fetch flow (#1068)
### What problem does this PR solve?
feat: fetch flow #918 
feat: save graph

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 11:01:14 +08:00
b6980d8a16 add version to package volcengine (#1062)
### What problem does this PR solve?

#992 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-05 12:18:36 +08:00
39ac3b1e60 feat: add custom edge (#1061)
### What problem does this PR solve?
feat: add custom edge
feat: add flow card
feat: add store for canvas
#918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-05 10:46:06 +08:00
b8eedbdd86 refine rerank (#1056)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-04 17:27:00 +08:00
8295979bb2 delete SDK repo and edit readme (#1054)
### What problem does this PR solve?

delete SDK repo and edit readme

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-04 11:13:26 +08:00
037657c1ce fix: change the address of the ollama document (#1043)
### What problem does this PR solve?

fix: change the address of the ollama document #1042

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-04 10:42:55 +08:00
4fba0427eb added delete_dataset method (#1051)
### What problem does this PR solve?

Added delete_dataset method and test for it.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-04 09:50:47 +08:00
c74d4d683e Update SDK->sdk, and add create_dataset (#1047)
### What problem does this PR solve?

Add create_dataset method, test for it, and update SDK->sdk.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Signed-off-by: cecilia-uu <konghui1996@163.com>
2024-06-03 20:14:47 +08:00
0b15c47d70 [doc] Updated document on max map count (#1037)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-03 17:01:02 +08:00
7d41de42a1 create the python sdk to return version (#1039)
### What problem does this PR solve?

Create python SDK to return the version of RAGFlow.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: cecilia-uu <konghui1996@163.com>
2024-06-03 15:59:50 +08:00
9517a27844 fix: fixed the problem that the api will be called directly after selecting the chat assistant picture (#1034)
### What problem does this PR solve?

fix: fixed the problem that the api will be called directly after
selecting the chat assistant picture #1033

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-03 13:42:56 +08:00
cc064040a2 refine API request data processing (#1031)
### What problem does this PR solve?

#1024 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-03 09:02:25 +08:00
cdea1d0a85 Update readme and add license (#1018)
### What problem does this PR solve?

- Update readme
- Add license

### Type of change

- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-01 16:24:10 +08:00
1de31ca9f6 refine file select code (#1021)
### What problem does this PR solve?

#1015 

### Type of change

- [x] Refactoring
2024-05-31 19:44:33 +08:00
4ec845c0a6 Add API for moving files (#1016)
### What problem does this PR solve?

Add backend API support for moving files into other directory

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2024-05-31 18:11:25 +08:00
c58a1c48eb Fix: bug #991 (#1013)
### What problem does this PR solve?

issue #991

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
2024-05-31 18:03:47 +08:00
fefe7124a1 Update README (#1014)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-31 17:53:06 +08:00
ebdc283cd5 Update README_zh.md,typo (#997)
typo

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-31 16:44:59 +08:00
260c68f60c Adding the Minimax model (#1009)
### What problem does this PR solve?

Added support for MiniMax LLM

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: cecilia-uu <konghui1996@163.com>
2024-05-31 16:38:53 +08:00
5d2f7136dd fix chunk modification bug (#1011)
### What problem does this PR solve?

As title.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-31 15:45:11 +08:00
GYH
b85c15cc96 Add file rag/svr/discord_svr.py (#1008)
### What problem does this PR solve?

File rag/svr/discord_svr.py is for discord bot.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-31 13:47:15 +08:00
9ed0e50f6b Update info (#1005)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-31 09:53:04 +08:00
b9bb11879f fix #994 (#1006)
### What problem does this PR solve?

#994 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-31 09:46:22 +08:00
dc7afe46fb fix bug 994 ,991 (#1004)
### What problem does this PR solve?

#994 
#991 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-31 09:24:24 +08:00
4f4d8baf49 Update README (#1001)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-30 19:17:58 +08:00
269 changed files with 18130 additions and 1341 deletions

8
.gitignore vendored
View File

@ -29,4 +29,10 @@ Cargo.lock
docker/ragflow-logs/
/flask_session
/logs
rag/res/deepdoc
rag/res/deepdoc
# Exclude sdk generated files
sdk/python/ragflow.egg-info/
sdk/python/build/
sdk/python/dist/
sdk/python/ragflow_sdk.egg-info/

View File

@ -10,6 +10,7 @@ ADD ./api ./api
ADD ./conf ./conf
ADD ./deepdoc ./deepdoc
ADD ./rag ./rag
ADD ./graph ./graph
ENV PYTHONPATH=/ragflow/
ENV HF_ENDPOINT=https://hf-mirror.com

View File

@ -12,7 +12,7 @@ RUN apt-get update && \
rm -rf /var/lib/apt/lists/*
RUN curl -sL https://deb.nodesource.com/setup_20.x | bash - && \
apt-get install -y nodejs nginx ffmpeg libsm6 libxext6 libgl1
apt-get install -y --fix-missing nodejs nginx ffmpeg libsm6 libxext6 libgl1
ADD ./web ./web
RUN cd ./web && npm i --force && npm run build
@ -21,6 +21,7 @@ ADD ./api ./api
ADD ./conf ./conf
ADD ./deepdoc ./deepdoc
ADD ./rag ./rag
ADD ./graph ./graph
ENV PYTHONPATH=/ragflow/
ENV HF_ENDPOINT=https://hf-mirror.com

View File

@ -30,6 +30,7 @@ ADD ./conf ./conf
ADD ./deepdoc ./deepdoc
ADD ./rag ./rag
ADD ./requirements.txt ./requirements.txt
ADD ./graph ./graph
RUN apt install openmpi-bin openmpi-common libopenmpi-dev
ENV LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu/openmpi/lib:$LD_LIBRARY_PATH

View File

@ -30,6 +30,7 @@ ADD ./conf ./conf
ADD ./deepdoc ./deepdoc
ADD ./rag ./rag
ADD ./requirements.txt ./requirements.txt
ADD ./graph ./graph
RUN dnf install -y openmpi openmpi-devel python3-openmpi
ENV C_INCLUDE_PATH /usr/include/openmpi-x86_64:$C_INCLUDE_PATH

View File

@ -17,12 +17,20 @@
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.7.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.7.0"></a>
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.8.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.8.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=2e6cc4" alt="license">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="license">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary></b>📕 Table of Contents</b></summary>
@ -49,22 +57,23 @@
## 🎮 Demo
Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
</div>
## 📌 Latest Updates
- 2024-05-30 Integrates [BCE](https://github.com/netease-youdao/BCEmbedding), [BGE](https://github.com/FlagOpen/FlagEmbedding), and [Colbert](https://github.com/stanford-futuredata/ColBERT) reranker models.
- 2024-07-08 Supports [Graph](./graph/README.md).
- 2024-06-27 Supports Markdown and Docx in the Q&A parsing method. Supports extracting images from Docx files. Supports extracting tables from Markdown files.
- 2024-06-14 Supports PDF in the Q&A parsing method.
- 2024-06-06 Supports [Self-RAG](https://huggingface.co/papers/2310.11511), which is enabled by default in dialog settings.
- 2024-05-30 Integrates [BCE](https://github.com/netease-youdao/BCEmbedding) and [BGE](https://github.com/FlagOpen/FlagEmbedding) reranker models.
- 2024-05-28 Supports LLM Baichuan and VolcanoArk.
- 2024-05-23 Supports [RAPTOR](https://arxiv.org/html/2401.18059v1) for better text retrieval.
- 2024-05-21 Supports streaming output and text chunk retrieval API.
- 2024-05-15 Integrates OpenAI GPT-4o.
- 2024-05-08 Integrates LLM DeepSeek-V2.
- 2024-04-26 Adds file management.
- 2024-04-19 Supports conversation API ([detail](./docs/references/api.md)).
- 2024-04-16 Integrates an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding), and [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.
- 2024-04-11 Supports [Xinference](./docs/guides/deploy_local_llm.md) for local LLM deployment.
- 2024-04-10 Adds a new layout recognition model for analyzing legal documents.
- 2024-04-08 Supports [Ollama](./docs/guides/deploy_local_llm.md) for local LLM deployment.
- 2024-04-07 Supports Chinese UI.
## 🌟 Key Features
@ -112,7 +121,7 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
### 🚀 Start up the server
1. Ensure `vm.max_map_count` >= 262144 ([more](./docs/guides/max_map_count.md)):
1. Ensure `vm.max_map_count` >= 262144:
> To check the value of `vm.max_map_count`:
>
@ -141,7 +150,7 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
3. Build the pre-built Docker images and start up the server:
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.7.0`, before running the following commands.
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.8.0`, before running the following commands.
```bash
$ cd ragflow/docker
@ -176,10 +185,10 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anomaly` error because, at that moment, your RAGFlow may not be fully initialized.
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> With default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
> With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.
> See [./docs/guides/llm_api_key_setup.md](./docs/guides/llm_api_key_setup.md) for more information.
> See [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) for more information.
_The show is now on!_
@ -291,7 +300,7 @@ To launch the service from source:
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ vim .umirc.ts
# Update proxy.target to 127.0.0.1:9380
# Update proxy.target to http://127.0.0.1:9380
$ npm run dev
```
@ -312,8 +321,10 @@ To launch the service from source:
## 📚 Documentation
- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/references/faq.md)
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/user-guides)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
@ -323,6 +334,7 @@ See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 Contributing

View File

@ -17,13 +17,21 @@
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.7.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.7.0"></a>
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.8.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.8.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=2e6cc4" alt="license">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="license">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
## 💡 RAGFlow とは?
[RAGFlow](https://ragflow.io/) は、深い文書理解に基づいたオープンソースの RAG (Retrieval-Augmented Generation) エンジンである。LLM大規模言語モデルを組み合わせることで、様々な複雑なフォーマットのデータから根拠のある引用に裏打ちされた、信頼できる質問応答機能を実現し、あらゆる規模のビジネスに適した RAG ワークフローを提供します。
@ -31,24 +39,21 @@
## 🎮 Demo
デモをお試しください:[https://demo.ragflow.io](https://demo.ragflow.io)。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
</div>
## 📌 最新情報
- 2024-05-30 [BCE](https://github.com/netease-youdao/BCEmbedding)、[BGE](https://github.com/FlagOpen/FlagEmbedding)、[Colbert](https://github.com/stanford-futuredata/ColBERT) reranker を統合
- 2024-07-08 [Graph](./graph/README.md) に対応しました。.
- 2024-06-27 Q&A解析方式はMarkdownファイルとDocxファイルをサポートしています。Docxファイルからの画像の抽出をサポートします。Markdownファイルからテーブルを抽出することをサポートします
- 2024-06-14 Q&A 解析メソッドは PDF ファイルをサポートしています。
- 2024-06-06 会話設定でデフォルトでチェックされている [Self-RAG](https://huggingface.co/papers/2310.11511) をサポートします。
- 2024-05-30 [BCE](https://github.com/netease-youdao/BCEmbedding) 、[BGE](https://github.com/FlagOpen/FlagEmbedding) reranker を統合。
- 2024-05-28 LLM BaichuanとVolcanoArkを統合しました。
- 2024-05-23 より良いテキスト検索のために[RAPTOR](https://arxiv.org/html/2401.18059v1)をサポート。
- 2024-05-23 より良いテキスト検索のために [RAPTOR](https://arxiv.org/html/2401.18059v1) をサポート。
- 2024-05-21 ストリーミング出力とテキストチャンク取得APIをサポート。
- 2024-05-15 OpenAI GPT-4oを統合しました。
- 2024-05-08 LLM DeepSeek-V2を統合しました。
- 2024-04-26 「ファイル管理」機能を追加しました。
- 2024-04-19 会話 API をサポートします ([詳細](./docs/references/api.md))。
- 2024-04-16 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) から埋め込みモデル「bce-embedding-base_v1」を追加します。
- 2024-04-16 [FastEmbed](https://github.com/qdrant/fastembed) は、軽量かつ高速な埋め込み用に設計されています。
- 2024-04-11 ローカル LLM デプロイメント用に [Xinference](./docs/guides/deploy_local_llm.md) をサポートします。
- 2024-04-10 メソッド「Laws」に新しいレイアウト認識モデルを追加します。
- 2024-04-08 [Ollama](./docs/guides/deploy_local_llm.md) を使用した大規模モデルのローカライズされたデプロイメントをサポートします。
- 2024-04-07 中国語インターフェースをサポートします。
## 🌟 主な特徴
@ -96,7 +101,7 @@
### 🚀 サーバーを起動
1. `vm.max_map_count` >= 262144 であることを確認する【[もっと](./docs/guides/max_map_count.md)】:
1. `vm.max_map_count` >= 262144 であることを確認する:
> `vm.max_map_count` の値をチェックするには:
>
@ -131,7 +136,7 @@
$ docker compose up -d
```
> 上記のコマンドを実行すると、RAGFlowの開発版dockerイメージが自動的にダウンロードされます。 特定のバージョンのDockerイメージをダウンロードして実行したい場合は、docker/.envファイルのRAGFLOW_VERSION変数を見つけて、対応するバージョンに変更してください。 例えば、RAGFLOW_VERSION=v0.7.0として、上記のコマンドを実行してください。
> 上記のコマンドを実行すると、RAGFlowの開発版dockerイメージが自動的にダウンロードされます。 特定のバージョンのDockerイメージをダウンロードして実行したい場合は、docker/.envファイルのRAGFLOW_VERSION変数を見つけて、対応するバージョンに変更してください。 例えば、RAGFLOW_VERSION=v0.8.0として、上記のコマンドを実行してください。
> コアイメージのサイズは約 9 GB で、ロードに時間がかかる場合があります。
@ -162,7 +167,7 @@
> デフォルトの設定を使用する場合、デフォルトの HTTP サービングポート `80` は省略できるので、与えられたシナリオでは、`http://IP_OF_YOUR_MACHINE`(ポート番号は省略)だけを入力すればよい。
6. [service_conf.yaml](./docker/service_conf.yaml) で、`user_default_llm` で希望の LLM ファクトリを選択し、`API_KEY` フィールドを対応する API キーで更新する。
> 詳しくは [./docs/guides/llm_api_key_setup.md](./docs/guides/llm_api_key_setup.md) を参照してください。
> 詳しくは [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) を参照してください。
_これで初期設定完了ショーの開幕です_
@ -193,7 +198,7 @@
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v0.7.0 .
$ docker build -t infiniflow/ragflow:v0.8.0 .
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d
@ -261,8 +266,10 @@ $ bash ./entrypoint.sh
## 📚 ドキュメンテーション
- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/references/faq.md)
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/user-guides)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 ロードマップ
@ -272,6 +279,7 @@ $ bash ./entrypoint.sh
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 コントリビュート

View File

@ -17,12 +17,20 @@
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.7.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.7.0"></a>
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.8.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.8.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=2e6cc4" alt="license">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="license">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
## 💡 RAGFlow 是什么?
[RAGFlow](https://ragflow.io/) 是一款基于深度文档理解构建的开源 RAGRetrieval-Augmented Generation引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程结合大语言模型LLM针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。
@ -30,22 +38,22 @@
## 🎮 Demo 试用
请登录网址 [https://demo.ragflow.io](https://demo.ragflow.io) 试用 demo。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
</div>
## 📌 近期更新
- 2024-05-30 集成 [BCE](https://github.com/netease-youdao/BCEmbedding), [BGE](https://github.com/FlagOpen/FlagEmbedding) 和 [Colbert](https://github.com/stanford-futuredata/ColBERT) 重排序模型
- 2024-07-08 支持 [Graph](./graph/README.md)
- 2024-06-27 Q&A 解析方式支持 Markdown 文件和 Docx 文件。支持提取出 Docx 文件中的图片。支持提取出 Markdown 文件中的表格。
- 2024-06-14 Q&A 解析方式支持 PDF 文件。
- 2024-06-06 支持 [Self-RAG](https://huggingface.co/papers/2310.11511) ,在对话设置里面默认勾选。
- 2024-05-30 集成 [BCE](https://github.com/netease-youdao/BCEmbedding) 和 [BGE](https://github.com/FlagOpen/FlagEmbedding) 重排序模型。
- 2024-05-28 集成大模型 Baichuan 和火山方舟。
- 2024-05-23 实现 [RAPTOR](https://arxiv.org/html/2401.18059v1) 提供更好的文本检索。
- 2024-05-21 支持流式结果输出和文本块获取API。
- 2024-05-15 集成大模型 OpenAI GPT-4o。
- 2024-05-08 集成大模型 DeepSeek。
- 2024-04-26 增添了'文件管理'功能。
- 2024-04-19 支持对话 API ([更多](./docs/references/api.md))。
- 2024-04-16 集成嵌入模型 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) 和 专为轻型和高速嵌入而设计的 [FastEmbed](https://github.com/qdrant/fastembed)。
- 2024-04-11 支持用 [Xinference](./docs/guides/deploy_local_llm.md) 本地化部署大模型。
- 2024-04-10 为Laws版面分析增加了底层模型。
- 2024-04-08 支持用 [Ollama](./docs/guides/deploy_local_llm.md) 本地化部署大模型。
- 2024-04-07 支持中文界面。
## 🌟 主要功能
@ -66,7 +74,7 @@
### 🍔 **兼容各类异构数据源**
- 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。
- 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据网页等。
### 🛀 **全程无忧、自动化的 RAG 工作流**
@ -93,7 +101,7 @@
### 🚀 启动服务器
1. 确保 `vm.max_map_count` 不小于 262144 【[更多](./docs/guides/max_map_count.md)】
1. 确保 `vm.max_map_count` 不小于 262144
> 如需确认 `vm.max_map_count` 的大小:
>
@ -128,7 +136,7 @@
$ docker compose -f docker-compose-CN.yml up -d
```
> 请注意,运行上述命令会自动下载 RAGFlow 的开发版本 docker 镜像。如果你想下载并运行特定版本的 docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.7.0,然后运行上述命令。
> 请注意,运行上述命令会自动下载 RAGFlow 的开发版本 docker 镜像。如果你想下载并运行特定版本的 docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.8.0,然后运行上述命令。
> 核心镜像文件大约 9 GB可能需要一定时间拉取。请耐心等待。
@ -159,7 +167,7 @@
> 上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80
6. 在 [service_conf.yaml](./docker/service_conf.yaml) 文件的 `user_default_llm` 栏配置 LLM factory并在 `API_KEY` 栏填写和你选择的大模型相对应的 API key。
> 详见 [./docs/guides/llm_api_key_setup.md](./docs/guides/llm_api_key_setup.md)。
> 详见 [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup)。
_好戏开始接着奏乐接着舞_
@ -190,7 +198,7 @@
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v0.7.0 .
$ docker build -t infiniflow/ragflow:v0.8.0 .
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d
@ -260,7 +268,7 @@ $ bash ./entrypoint.sh
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ vim .umirc.ts
# 修改proxy.target为127.0.0.1:9380
# 修改proxy.target为http://127.0.0.1:9380
$ npm run dev
```
@ -279,8 +287,10 @@ $ systemctl start nginx
```
## 📚 技术文档
- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/references/faq.md)
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/user-guides)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 路线图
@ -290,6 +300,7 @@ $ systemctl start nginx
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 贡献指南

74
SECURITY.md Normal file
View File

@ -0,0 +1,74 @@
# Security Policy
## Supported Versions
Use this section to tell people about which versions of your project are
currently being supported with security updates.
| Version | Supported |
| ------- | ------------------ |
| <=0.7.0 | :white_check_mark: |
## Reporting a Vulnerability
### Branch name
main
### Actual behavior
The restricted_loads function at [api/utils/__init__.py#L215](https://github.com/infiniflow/ragflow/blob/main/api/utils/__init__.py#L215) is still vulnerable leading via code execution.
The main reson is that numpy module has a numpy.f2py.diagnose.run_command function directly execute commands, but the restricted_loads function allows users import functions in module numpy.
### Steps to reproduce
**ragflow_patch.py**
```py
import builtins
import io
import pickle
safe_module = {
'numpy',
'rag_flow'
}
class RestrictedUnpickler(pickle.Unpickler):
def find_class(self, module, name):
import importlib
if module.split('.')[0] in safe_module:
_module = importlib.import_module(module)
return getattr(_module, name)
# Forbid everything else.
raise pickle.UnpicklingError("global '%s.%s' is forbidden" %
(module, name))
def restricted_loads(src):
"""Helper function analogous to pickle.loads()."""
return RestrictedUnpickler(io.BytesIO(src)).load()
```
Then, **PoC.py**
```py
import pickle
from ragflow_patch import restricted_loads
class Exploit:
def __reduce__(self):
import numpy.f2py.diagnose
return numpy.f2py.diagnose.run_command, ('whoami', )
Payload=pickle.dumps(Exploit())
restricted_loads(Payload)
```
**Result**
![image](https://github.com/infiniflow/ragflow/assets/85293841/8e5ed255-2e84-466c-bce4-776f7e4401e8)
### Additional information
#### How to prevent?
Strictly filter the module and name before calling with getattr function.

View File

@ -63,12 +63,17 @@ login_manager.init_app(app)
def search_pages_path(pages_dir):
return [path for path in pages_dir.glob('*_app.py') if not path.name.startswith('.')]
app_path_list = [path for path in pages_dir.glob('*_app.py') if not path.name.startswith('.')]
api_path_list = [path for path in pages_dir.glob('*_api.py') if not path.name.startswith('.')]
app_path_list.extend(api_path_list)
return app_path_list
def register_page(page_path):
page_name = page_path.stem.rstrip('_app')
module_name = '.'.join(page_path.parts[page_path.parts.index('api'):-1] + (page_name, ))
path = f'{page_path}'
page_name = page_path.stem.rstrip('_api') if "_api" in path else page_path.stem.rstrip('_app')
module_name = '.'.join(page_path.parts[page_path.parts.index('api'):-1] + (page_name,))
spec = spec_from_file_location(module_name, page_path)
page = module_from_spec(spec)
@ -76,9 +81,8 @@ def register_page(page_path):
page.manager = Blueprint(page_name, module_name)
sys.modules[module_name] = page
spec.loader.exec_module(page)
page_name = getattr(page, 'page_name', page_name)
url_prefix = f'/{API_VERSION}/{page_name}'
url_prefix = f'/api/{API_VERSION}/{page_name}' if "_api" in path else f'/{API_VERSION}/{page_name}'
app.register_blueprint(page.manager, url_prefix=url_prefix)
return url_prefix
@ -86,7 +90,7 @@ def register_page(page_path):
pages_dir = [
Path(__file__).parent,
Path(__file__).parent.parent / 'api' / 'apps',
Path(__file__).parent.parent / 'api' / 'apps', # FIXME: ragflow/api/api/apps, can be remove?
]
client_urls_prefix = [

View File

@ -198,15 +198,18 @@ def completion():
else: conv.reference[-1] = ans["reference"]
conv.message[-1] = {"role": "assistant", "content": ans["answer"]}
def rename_field(ans):
for chunk_i in ans['reference'].get('chunks', []):
chunk_i['doc_name'] = chunk_i['docnm_kwd']
chunk_i.pop('docnm_kwd')
def stream():
nonlocal dia, msg, req, conv
try:
for ans in chat(dia, msg, True, **req):
fillin_conv(ans)
for chunk_i in ans['reference'].get('chunks', []):
chunk_i['doc_name'] = chunk_i['docnm_kwd']
chunk_i.pop('docnm_kwd')
yield "data:"+json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
rename_field(ans)
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
API4ConversationService.append_message(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
@ -375,19 +378,19 @@ def list_chunks():
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
form_data = request.form
req = request.json
try:
if "doc_name" in form_data.keys():
tenant_id = DocumentService.get_tenant_id_by_name(form_data['doc_name'])
doc_id = DocumentService.get_doc_id_by_doc_name(form_data['doc_name'])
if "doc_name" in req.keys():
tenant_id = DocumentService.get_tenant_id_by_name(req['doc_name'])
doc_id = DocumentService.get_doc_id_by_doc_name(req['doc_name'])
elif "doc_id" in form_data.keys():
tenant_id = DocumentService.get_tenant_id(form_data['doc_id'])
doc_id = form_data['doc_id']
elif "doc_id" in req.keys():
tenant_id = DocumentService.get_tenant_id(req['doc_id'])
doc_id = req['doc_id']
else:
return get_json_result(
data=False,retmsg="Can't find doc_name or doc_id"
data=False, retmsg="Can't find doc_name or doc_id"
)
res = retrievaler.chunk_list(doc_id=doc_id, tenant_id=tenant_id)
@ -414,8 +417,9 @@ def list_kb_docs():
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
req = request.json
tenant_id = objs[0].tenant_id
kb_name = request.form.get("kb_name").strip()
kb_name = req.get("kb_name", "").strip()
try:
e, kb = KnowledgebaseService.get_by_name(kb_name, tenant_id)
@ -427,11 +431,11 @@ def list_kb_docs():
except Exception as e:
return server_error_response(e)
page_number = int(request.form.get("page", 1))
items_per_page = int(request.form.get("page_size", 15))
orderby = request.form.get("orderby", "create_time")
desc = request.form.get("desc", True)
keywords = request.form.get("keywords", "")
page_number = int(req.get("page", 1))
items_per_page = int(req.get("page_size", 15))
orderby = req.get("orderby", "create_time")
desc = req.get("desc", True)
keywords = req.get("keywords", "")
try:
docs, tol = DocumentService.get_by_kb_id(
@ -553,23 +557,24 @@ def completion_faq():
"content": ""
}
]
for ans in chat(dia, msg, stream=False, **req):
# answer = ans
data[0]["content"] += re.sub(r'##\d\$\$', '', ans["answer"])
fillin_conv(ans)
API4ConversationService.append_message(conv.id, conv.to_dict())
chunk_idxs = [int(match[2]) for match in re.findall(r'##\d\$\$', ans["answer"])]
for chunk_idx in chunk_idxs[:1]:
if ans["reference"]["chunks"][chunk_idx]["img_id"]:
try:
bkt, nm = ans["reference"]["chunks"][chunk_idx]["img_id"].split("-")
response = MINIO.get(bkt, nm)
data_type_picture["url"] = base64.b64encode(response).decode('utf-8')
data.append(data_type_picture)
except Exception as e:
return server_error_response(e)
ans = ""
for a in chat(dia, msg, stream=False, **req):
ans = a
break
data[0]["content"] += re.sub(r'##\d\$\$', '', ans["answer"])
fillin_conv(ans)
API4ConversationService.append_message(conv.id, conv.to_dict())
chunk_idxs = [int(match[2]) for match in re.findall(r'##\d\$\$', ans["answer"])]
for chunk_idx in chunk_idxs[:1]:
if ans["reference"]["chunks"][chunk_idx]["img_id"]:
try:
bkt, nm = ans["reference"]["chunks"][chunk_idx]["img_id"].split("-")
response = MINIO.get(bkt, nm)
data_type_picture["url"] = base64.b64encode(response).decode('utf-8')
data.append(data_type_picture)
except Exception as e:
return server_error_response(e)
response = {"code": 200, "msg": "success", "data": data}
return response

162
api/apps/canvas_app.py Normal file
View File

@ -0,0 +1,162 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from functools import partial
from flask import request, Response
from flask_login import login_required, current_user
from api.db.db_models import UserCanvas
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
from api.utils import get_uuid
from api.utils.api_utils import get_json_result, server_error_response, validate_request
from graph.canvas import Canvas
@manager.route('/templates', methods=['GET'])
@login_required
def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.get_all()])
@manager.route('/list', methods=['GET'])
@login_required
def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in \
UserCanvasService.query(user_id=current_user.id)], key=lambda x: x["update_time"]*-1)
)
@manager.route('/rm', methods=['POST'])
@validate_request("canvas_ids")
@login_required
def rm():
for i in request.json["canvas_ids"]:
UserCanvasService.delete_by_id(i)
return get_json_result(data=True)
@manager.route('/set', methods=['POST'])
@validate_request("dsl", "title")
@login_required
def save():
req = request.json
req["user_id"] = current_user.id
if not isinstance(req["dsl"], str): req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
if "id" not in req:
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip()):
return server_error_response(ValueError("Duplicated title."))
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
return server_error_response("Fail to save canvas.")
else:
UserCanvasService.update_by_id(req["id"], req)
return get_json_result(data=req)
@manager.route('/get/<canvas_id>', methods=['GET'])
@login_required
def get(canvas_id):
e, c = UserCanvasService.get_by_id(canvas_id)
if not e:
return server_error_response("canvas not found.")
return get_json_result(data=c.to_dict())
@manager.route('/completion', methods=['POST'])
@validate_request("id")
@login_required
def run():
req = request.json
stream = req.get("stream", True)
e, cvs = UserCanvasService.get_by_id(req["id"])
if not e:
return server_error_response("canvas not found.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
final_ans = {"reference": [], "content": ""}
try:
canvas = Canvas(cvs.dsl, current_user.id)
if "message" in req:
canvas.messages.append({"role": "user", "content": req["message"]})
canvas.add_user_input(req["message"])
answer = canvas.run(stream=stream)
print(canvas)
except Exception as e:
return server_error_response(e)
assert answer, "Nothing. Is it over?"
if stream:
assert isinstance(answer, partial)
def sse():
nonlocal answer, cvs
try:
for ans in answer():
for k in ans.keys():
final_ans[k] = ans[k]
ans = {"answer": ans["content"], "reference": ans.get("reference", [])}
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"]})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(sse(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
canvas.messages.append({"role": "assistant", "content": final_ans["content"]})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
return get_json_result(data=req["dsl"])
@manager.route('/reset', methods=['POST'])
@validate_request("id")
@login_required
def reset():
req = request.json
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
if not e:
return server_error_response("canvas not found.")
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas.reset()
req["dsl"] = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], {"dsl": req["dsl"]})
return get_json_result(data=req["dsl"])
except Exception as e:
return server_error_response(e)

View File

@ -20,7 +20,7 @@ from flask_login import login_required, current_user
from elasticsearch_dsl import Q
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import search, rag_tokenizer
from rag.nlp import search, rag_tokenizer, keyword_extraction
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils import rmSpace
from api.db import LLMType, ParserType
@ -136,8 +136,11 @@ def set():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value)
tenant_id, LLMType.EMBEDDING.value, embd_id)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
@ -221,9 +224,11 @@ def create():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value)
tenant_id, LLMType.EMBEDDING.value, embd_id)
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
DocumentService.increment_chunk_num(req["doc_id"], doc.kb_id, c, 1, 0)
v = 0.1 * v[0] + 0.9 * v[1]
@ -263,6 +268,10 @@ def retrieval_test():
rerank_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)

View File

@ -13,7 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request, Response, jsonify
from copy import deepcopy
from flask import request, Response
from flask_login import login_required
from api.db.services.dialog_service import DialogService, ConversationService, chat
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
@ -121,7 +122,7 @@ def completion():
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
conv.message.append(msg[-1])
conv.message.append(deepcopy(msg[-1]))
e, dia = DialogService.get_by_id(conv.dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")

615
api/apps/dataset_api.py Normal file
View File

@ -0,0 +1,615 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pathlib
import re
import warnings
from io import BytesIO
from flask import request, send_file
from flask_login import login_required, current_user
from httpx import HTTPError
from minio import S3Error
from api.contants import NAME_LENGTH_LIMIT
from api.db import FileType, ParserType, FileSource
from api.db import StatusEnum
from api.db.db_models import File
from api.db.services import duplicate_name
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import construct_json_result, construct_error_response
from api.utils.api_utils import construct_result, validate_request
from api.utils.file_utils import filename_type, thumbnail
from rag.utils.minio_conn import MINIO
MAXIMUM_OF_UPLOADING_FILES = 256
# ------------------------------ create a dataset ---------------------------------------
@manager.route("/", methods=["POST"])
@login_required # use login
@validate_request("name") # check name key
def create_dataset():
# Check if Authorization header is present
authorization_token = request.headers.get("Authorization")
if not authorization_token:
return construct_json_result(code=RetCode.AUTHENTICATION_ERROR, message="Authorization header is missing.")
# TODO: Login or API key
# objs = APIToken.query(token=authorization_token)
#
# # Authorization error
# if not objs:
# return construct_json_result(code=RetCode.AUTHENTICATION_ERROR, message="Token is invalid.")
#
# tenant_id = objs[0].tenant_id
tenant_id = current_user.id
request_body = request.json
# In case that there's no name
if "name" not in request_body:
return construct_json_result(code=RetCode.DATA_ERROR, message="Expected 'name' field in request body")
dataset_name = request_body["name"]
# empty dataset_name
if not dataset_name:
return construct_json_result(code=RetCode.DATA_ERROR, message="Empty dataset name")
# In case that there's space in the head or the tail
dataset_name = dataset_name.strip()
# In case that the length of the name exceeds the limit
dataset_name_length = len(dataset_name)
if dataset_name_length > NAME_LENGTH_LIMIT:
return construct_json_result(
code=RetCode.DATA_ERROR,
message=f"Dataset name: {dataset_name} with length {dataset_name_length} exceeds {NAME_LENGTH_LIMIT}!")
# In case that there are other fields in the data-binary
if len(request_body.keys()) > 1:
name_list = []
for key_name in request_body.keys():
if key_name != "name":
name_list.append(key_name)
return construct_json_result(code=RetCode.DATA_ERROR,
message=f"fields: {name_list}, are not allowed in request body.")
# If there is a duplicate name, it will modify it to make it unique
request_body["name"] = duplicate_name(
KnowledgebaseService.query,
name=dataset_name,
tenant_id=tenant_id,
status=StatusEnum.VALID.value)
try:
request_body["id"] = get_uuid()
request_body["tenant_id"] = tenant_id
request_body["created_by"] = tenant_id
exist, t = TenantService.get_by_id(tenant_id)
if not exist:
return construct_result(code=RetCode.AUTHENTICATION_ERROR, message="Tenant not found.")
request_body["embd_id"] = t.embd_id
if not KnowledgebaseService.save(**request_body):
# failed to create new dataset
return construct_result()
return construct_json_result(code=RetCode.SUCCESS,
data={"dataset_name": request_body["name"], "dataset_id": request_body["id"]})
except Exception as e:
return construct_error_response(e)
# -----------------------------list datasets-------------------------------------------------------
@manager.route("/", methods=["GET"])
@login_required
def list_datasets():
offset = request.args.get("offset", 0)
count = request.args.get("count", -1)
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
datasets = KnowledgebaseService.get_by_tenant_ids_by_offset(
[m["tenant_id"] for m in tenants], current_user.id, int(offset), int(count), orderby, desc)
return construct_json_result(data=datasets, code=RetCode.SUCCESS, message=f"List datasets successfully!")
except Exception as e:
return construct_error_response(e)
except HTTPError as http_err:
return construct_json_result(http_err)
# ---------------------------------delete a dataset ----------------------------
@manager.route("/<dataset_id>", methods=["DELETE"])
@login_required
def remove_dataset(dataset_id):
try:
datasets = KnowledgebaseService.query(created_by=current_user.id, id=dataset_id)
# according to the id, searching for the dataset
if not datasets:
return construct_json_result(message=f"The dataset cannot be found for your current account.",
code=RetCode.OPERATING_ERROR)
# Iterating the documents inside the dataset
for doc in DocumentService.query(kb_id=dataset_id):
if not DocumentService.remove_document(doc, datasets[0].tenant_id):
# the process of deleting failed
return construct_json_result(code=RetCode.DATA_ERROR,
message="There was an error during the document removal process. "
"Please check the status of the RAGFlow server and try the removal again.")
# delete the other files
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc.id)
# delete the dataset
if not KnowledgebaseService.delete_by_id(dataset_id):
return construct_json_result(code=RetCode.DATA_ERROR, message="There was an error during the dataset removal process. "
"Please check the status of the RAGFlow server and try the removal again.")
# success
return construct_json_result(code=RetCode.SUCCESS, message=f"Remove dataset: {dataset_id} successfully")
except Exception as e:
return construct_error_response(e)
# ------------------------------ get details of a dataset ----------------------------------------
@manager.route("/<dataset_id>", methods=["GET"])
@login_required
def get_dataset(dataset_id):
try:
dataset = KnowledgebaseService.get_detail(dataset_id)
if not dataset:
return construct_json_result(code=RetCode.DATA_ERROR, message="Can't find this dataset!")
return construct_json_result(data=dataset, code=RetCode.SUCCESS)
except Exception as e:
return construct_json_result(e)
# ------------------------------ update a dataset --------------------------------------------
@manager.route("/<dataset_id>", methods=["PUT"])
@login_required
def update_dataset(dataset_id):
req = request.json
try:
# the request cannot be empty
if not req:
return construct_json_result(code=RetCode.DATA_ERROR, message="Please input at least one parameter that "
"you want to update!")
# check whether the dataset can be found
if not KnowledgebaseService.query(created_by=current_user.id, id=dataset_id):
return construct_json_result(message=f"Only the owner of knowledgebase is authorized for this operation!",
code=RetCode.OPERATING_ERROR)
exist, dataset = KnowledgebaseService.get_by_id(dataset_id)
# check whether there is this dataset
if not exist:
return construct_json_result(code=RetCode.DATA_ERROR, message="This dataset cannot be found!")
if "name" in req:
name = req["name"].strip()
# check whether there is duplicate name
if name.lower() != dataset.name.lower() \
and len(KnowledgebaseService.query(name=name, tenant_id=current_user.id,
status=StatusEnum.VALID.value)) > 1:
return construct_json_result(code=RetCode.DATA_ERROR, message=f"The name: {name.lower()} is already used by other "
f"datasets. Please choose a different name.")
dataset_updating_data = {}
chunk_num = req.get("chunk_num")
# modify the value of 11 parameters
# 2 parameters: embedding id and chunk method
# only if chunk_num is 0, the user can update the embedding id
if req.get("embedding_model_id"):
if chunk_num == 0:
dataset_updating_data["embd_id"] = req["embedding_model_id"]
else:
construct_json_result(code=RetCode.DATA_ERROR, message="You have already parsed the document in this "
"dataset, so you cannot change the embedding "
"model.")
# only if chunk_num is 0, the user can update the chunk_method
if req.get("chunk_method"):
if chunk_num == 0:
dataset_updating_data['parser_id'] = req["chunk_method"]
else:
construct_json_result(code=RetCode.DATA_ERROR, message="You have already parsed the document "
"in this dataset, so you cannot "
"change the chunk method.")
# convert the photo parameter to avatar
if req.get("photo"):
dataset_updating_data["avatar"] = req["photo"]
# layout_recognize
if "layout_recognize" in req:
if "parser_config" not in dataset_updating_data:
dataset_updating_data['parser_config'] = {}
dataset_updating_data['parser_config']['layout_recognize'] = req['layout_recognize']
# TODO: updating use_raptor needs to construct a class
# 6 parameters
for key in ["name", "language", "description", "permission", "id", "token_num"]:
if key in req:
dataset_updating_data[key] = req.get(key)
# update
if not KnowledgebaseService.update_by_id(dataset.id, dataset_updating_data):
return construct_json_result(code=RetCode.OPERATING_ERROR, message="Failed to update! "
"Please check the status of RAGFlow "
"server and try again!")
exist, dataset = KnowledgebaseService.get_by_id(dataset.id)
if not exist:
return construct_json_result(code=RetCode.DATA_ERROR, message="Failed to get the dataset "
"using the dataset ID.")
return construct_json_result(data=dataset.to_json(), code=RetCode.SUCCESS)
except Exception as e:
return construct_error_response(e)
# --------------------------------content management ----------------------------------------------
# ----------------------------upload files-----------------------------------------------------
@manager.route("/<dataset_id>/documents/", methods=["POST"])
@login_required
def upload_documents(dataset_id):
# no files
if not request.files:
return construct_json_result(
message="There is no file!", code=RetCode.ARGUMENT_ERROR)
# the number of uploading files exceeds the limit
file_objs = request.files.getlist("file")
num_file_objs = len(file_objs)
if num_file_objs > MAXIMUM_OF_UPLOADING_FILES:
return construct_json_result(code=RetCode.DATA_ERROR, message=f"You try to upload {num_file_objs} files, "
f"which exceeds the maximum number of uploading files: {MAXIMUM_OF_UPLOADING_FILES}")
# no dataset
exist, dataset = KnowledgebaseService.get_by_id(dataset_id)
if not exist:
return construct_json_result(message="Can't find this dataset", code=RetCode.DATA_ERROR)
for file_obj in file_objs:
file_name = file_obj.filename
# no name
if not file_name:
return construct_json_result(
message="There is a file without name!", code=RetCode.ARGUMENT_ERROR)
# TODO: support the remote files
if 'http' in file_name:
return construct_json_result(code=RetCode.ARGUMENT_ERROR, message="Remote files have not unsupported.")
# get the root_folder
root_folder = FileService.get_root_folder(current_user.id)
# get the id of the root_folder
parent_file_id = root_folder["id"] # document id
# this is for the new user, create '.knowledgebase' file
FileService.init_knowledgebase_docs(parent_file_id, current_user.id)
# go inside this folder, get the kb_root_folder
kb_root_folder = FileService.get_kb_folder(current_user.id)
# link the file management to the kb_folder
kb_folder = FileService.new_a_file_from_kb(dataset.tenant_id, dataset.name, kb_root_folder["id"])
# grab all the errs
err = []
MAX_FILE_NUM_PER_USER = int(os.environ.get("MAX_FILE_NUM_PER_USER", 0))
uploaded_docs_json = []
for file in file_objs:
try:
# TODO: get this value from the database as some tenants have this limit while others don't
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(dataset.tenant_id) >= MAX_FILE_NUM_PER_USER:
return construct_json_result(code=RetCode.DATA_ERROR,
message="Exceed the maximum file number of a free user!")
# deal with the duplicate name
filename = duplicate_name(
DocumentService.query,
name=file.filename,
kb_id=dataset.id)
# deal with the unsupported type
filetype = filename_type(filename)
if filetype == FileType.OTHER.value:
return construct_json_result(code=RetCode.DATA_ERROR,
message="This type of file has not been supported yet!")
# upload to the minio
location = filename
while MINIO.obj_exist(dataset_id, location):
location += "_"
blob = file.read()
# the content is empty, raising a warning
if blob == b'':
warnings.warn(f"[WARNING]: The file {filename} is empty.")
MINIO.put(dataset_id, location, blob)
doc = {
"id": get_uuid(),
"kb_id": dataset.id,
"parser_id": dataset.parser_id,
"parser_config": dataset.parser_config,
"created_by": current_user.id,
"type": filetype,
"name": filename,
"location": location,
"size": len(blob),
"thumbnail": thumbnail(filename, blob)
}
if doc["type"] == FileType.VISUAL:
doc["parser_id"] = ParserType.PICTURE.value
if re.search(r"\.(ppt|pptx|pages)$", filename):
doc["parser_id"] = ParserType.PRESENTATION.value
DocumentService.insert(doc)
FileService.add_file_from_kb(doc, kb_folder["id"], dataset.tenant_id)
uploaded_docs_json.append(doc)
except Exception as e:
err.append(file.filename + ": " + str(e))
if err:
# return all the errors
return construct_json_result(message="\n".join(err), code=RetCode.SERVER_ERROR)
# success
return construct_json_result(data=uploaded_docs_json, code=RetCode.SUCCESS)
# ----------------------------delete a file-----------------------------------------------------
@manager.route("/<dataset_id>/documents/<document_id>", methods=["DELETE"])
@login_required
def delete_document(document_id, dataset_id): # string
# get the root folder
root_folder = FileService.get_root_folder(current_user.id)
# parent file's id
parent_file_id = root_folder["id"]
# consider the new user
FileService.init_knowledgebase_docs(parent_file_id, current_user.id)
# store all the errors that may have
errors = ""
try:
# whether there is this document
exist, doc = DocumentService.get_by_id(document_id)
if not exist:
return construct_json_result(message=f"Document {document_id} not found!", code=RetCode.DATA_ERROR)
# whether this doc is authorized by this tenant
tenant_id = DocumentService.get_tenant_id(document_id)
if not tenant_id:
return construct_json_result(
message=f"You cannot delete this document {document_id} due to the authorization"
f" reason!", code=RetCode.AUTHENTICATION_ERROR)
# get the doc's id and location
real_dataset_id, location = File2DocumentService.get_minio_address(doc_id=document_id)
if real_dataset_id != dataset_id:
return construct_json_result(message=f"The document {document_id} is not in the dataset: {dataset_id}, "
f"but in the dataset: {real_dataset_id}.", code=RetCode.ARGUMENT_ERROR)
# there is an issue when removing
if not DocumentService.remove_document(doc, tenant_id):
return construct_json_result(
message="There was an error during the document removal process. Please check the status of the "
"RAGFlow server and try the removal again.", code=RetCode.OPERATING_ERROR)
# fetch the File2Document record associated with the provided document ID.
file_to_doc = File2DocumentService.get_by_document_id(document_id)
# delete the associated File record.
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == file_to_doc[0].file_id])
# delete the File2Document record itself using the document ID. This removes the
# association between the document and the file after the File record has been deleted.
File2DocumentService.delete_by_document_id(document_id)
# delete it from minio
MINIO.rm(dataset_id, location)
except Exception as e:
errors += str(e)
if errors:
return construct_json_result(data=False, message=errors, code=RetCode.SERVER_ERROR)
return construct_json_result(data=True, code=RetCode.SUCCESS)
# ----------------------------list files-----------------------------------------------------
@manager.route('/<dataset_id>/documents/', methods=['GET'])
@login_required
def list_documents(dataset_id):
if not dataset_id:
return construct_json_result(
data=False, message="Lack of 'dataset_id'", code=RetCode.ARGUMENT_ERROR)
# searching keywords
keywords = request.args.get("keywords", "")
offset = request.args.get("offset", 0)
count = request.args.get("count", -1)
order_by = request.args.get("order_by", "create_time")
descend = request.args.get("descend", True)
try:
docs, total = DocumentService.list_documents_in_dataset(dataset_id, int(offset), int(count), order_by,
descend, keywords)
return construct_json_result(data={"total": total, "docs": docs}, message=RetCode.SUCCESS)
except Exception as e:
return construct_error_response(e)
# ----------------------------update: enable rename-----------------------------------------------------
@manager.route("/<dataset_id>/documents/<document_id>", methods=["PUT"])
@login_required
def update_document(dataset_id, document_id):
req = request.json
try:
legal_parameters = set()
legal_parameters.add("name")
legal_parameters.add("enable")
legal_parameters.add("template_type")
for key in req.keys():
if key not in legal_parameters:
return construct_json_result(code=RetCode.ARGUMENT_ERROR, message=f"{key} is an illegal parameter.")
# The request body cannot be empty
if not req:
return construct_json_result(
code=RetCode.DATA_ERROR,
message="Please input at least one parameter that you want to update!")
# Check whether there is this dataset
exist, dataset = KnowledgebaseService.get_by_id(dataset_id)
if not exist:
return construct_json_result(code=RetCode.DATA_ERROR, message=f"This dataset {dataset_id} cannot be found!")
# The document does not exist
exist, document = DocumentService.get_by_id(document_id)
if not exist:
return construct_json_result(message=f"This document {document_id} cannot be found!",
code=RetCode.ARGUMENT_ERROR)
# Deal with the different keys
updating_data = {}
if "name" in req:
new_name = req["name"]
updating_data["name"] = new_name
# Check whether the new_name is suitable
# 1. no name value
if not new_name:
return construct_json_result(code=RetCode.DATA_ERROR, message="There is no new name.")
# 2. In case that there's space in the head or the tail
new_name = new_name.strip()
# 3. Check whether the new_name has the same extension of file as before
if pathlib.Path(new_name.lower()).suffix != pathlib.Path(
document.name.lower()).suffix:
return construct_json_result(
data=False,
message="The extension of file cannot be changed",
code=RetCode.ARGUMENT_ERROR)
# 4. Check whether the new name has already been occupied by other file
for d in DocumentService.query(name=new_name, kb_id=document.kb_id):
if d.name == new_name:
return construct_json_result(
message="Duplicated document name in the same dataset.",
code=RetCode.ARGUMENT_ERROR)
if "enable" in req:
enable_value = req["enable"]
if is_illegal_value_for_enum(enable_value, StatusEnum):
return construct_json_result(message=f"Illegal value {enable_value} for 'enable' field.",
code=RetCode.DATA_ERROR)
updating_data["status"] = enable_value
# TODO: Chunk-method - update parameters inside the json object parser_config
if "template_type" in req:
type_value = req["template_type"]
if is_illegal_value_for_enum(type_value, ParserType):
return construct_json_result(message=f"Illegal value {type_value} for 'template_type' field.",
code=RetCode.DATA_ERROR)
updating_data["parser_id"] = req["template_type"]
# The process of updating
if not DocumentService.update_by_id(document_id, updating_data):
return construct_json_result(
code=RetCode.OPERATING_ERROR,
message="Failed to update document in the database! "
"Please check the status of RAGFlow server and try again!")
# name part: file service
if "name" in req:
# Get file by document id
file_information = File2DocumentService.get_by_document_id(document_id)
if file_information:
exist, file = FileService.get_by_id(file_information[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]})
exist, document = DocumentService.get_by_id(document_id)
# Success
return construct_json_result(data=document.to_json(), message="Success", code=RetCode.SUCCESS)
except Exception as e:
return construct_error_response(e)
# Helper method to judge whether it's an illegal value
def is_illegal_value_for_enum(value, enum_class):
return value not in enum_class.__members__.values()
# ----------------------------download a file-----------------------------------------------------
@manager.route("/<dataset_id>/documents/<document_id>", methods=["GET"])
@login_required
def download_document(dataset_id, document_id):
try:
# Check whether there is this dataset
exist, _ = KnowledgebaseService.get_by_id(dataset_id)
if not exist:
return construct_json_result(code=RetCode.DATA_ERROR, message=f"This dataset '{dataset_id}' cannot be found!")
# Check whether there is this document
exist, document = DocumentService.get_by_id(document_id)
if not exist:
return construct_json_result(message=f"This document '{document_id}' cannot be found!",
code=RetCode.ARGUMENT_ERROR)
# The process of downloading
doc_id, doc_location = File2DocumentService.get_minio_address(doc_id=document_id) # minio address
file_stream = MINIO.get(doc_id, doc_location)
if not file_stream:
return construct_json_result(message="This file is empty.", code=RetCode.DATA_ERROR)
file = BytesIO(file_stream)
# Use send_file with a proper filename and MIME type
return send_file(
file,
as_attachment=True,
download_name=document.name,
mimetype='application/octet-stream' # Set a default MIME type
)
# Error
except Exception as e:
return construct_error_response(e)
# ----------------------------start parsing-----------------------------------------------------
# ----------------------------stop parsing-----------------------------------------------------
# ----------------------------show the status of the file-----------------------------------------------------
# ----------------------------list the chunks of the file-----------------------------------------------------
# -- --------------------------delete the chunk-----------------------------------------------------
# ----------------------------edit the status of the chunk-----------------------------------------------------
# ----------------------------insert a new chunk-----------------------------------------------------
# ----------------------------upload a file-----------------------------------------------------
# ----------------------------get a specific chunk-----------------------------------------------------
# ----------------------------retrieval test-----------------------------------------------------

View File

@ -32,6 +32,7 @@ def set_dialog():
dialog_id = req.get("dialog_id")
name = req.get("name", "New Dialog")
description = req.get("description", "A helpful Dialog")
icon = req.get("icon", "")
top_n = req.get("top_n", 6)
top_k = req.get("top_k", 1024)
rerank_id = req.get("rerank_id", "")
@ -90,7 +91,8 @@ def set_dialog():
"top_k": top_k,
"rerank_id": rerank_id,
"similarity_threshold": similarity_threshold,
"vector_similarity_weight": vector_similarity_weight
"vector_similarity_weight": vector_similarity_weight,
"icon": icon
}
if not DialogService.save(**dia):
return get_data_error_result(retmsg="Fail to new a dialog!")

View File

@ -39,6 +39,8 @@ from api.settings import RetCode
from api.utils.api_utils import get_json_result
from rag.utils.minio_conn import MINIO
from api.utils.file_utils import filename_type, thumbnail
from api.utils.web_utils import html2pdf, is_valid_url
from api.utils.web_utils import html2pdf, is_valid_url
@manager.route('/upload', methods=['POST'])
@ -116,6 +118,68 @@ def upload():
return get_json_result(data=True)
@manager.route('/web_crawl', methods=['POST'])
@login_required
@validate_request("kb_id", "name", "url")
def web_crawl():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(
data=False, retmsg='Lack of "KB ID"', retcode=RetCode.ARGUMENT_ERROR)
name = request.form.get("name")
url = request.form.get("url")
if not is_valid_url(url):
return get_json_result(
data=False, retmsg='The URL format is invalid', retcode=RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
blob = html2pdf(url)
if not blob: return server_error_response(ValueError("Download failure."))
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, current_user.id)
kb_root_folder = FileService.get_kb_folder(current_user.id)
kb_folder = FileService.new_a_file_from_kb(kb.tenant_id, kb.name, kb_root_folder["id"])
try:
filename = duplicate_name(
DocumentService.query,
name=name+".pdf",
kb_id=kb.id)
filetype = filename_type(filename)
if filetype == FileType.OTHER.value:
raise RuntimeError("This type of file has not been supported yet!")
location = filename
while MINIO.obj_exist(kb_id, location):
location += "_"
MINIO.put(kb_id, location, blob)
doc = {
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": kb.parser_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"type": filetype,
"name": filename,
"location": location,
"size": len(blob),
"thumbnail": thumbnail(filename, blob)
}
if doc["type"] == FileType.VISUAL:
doc["parser_id"] = ParserType.PICTURE.value
if re.search(r"\.(ppt|pptx|pages)$", filename):
doc["parser_id"] = ParserType.PRESENTATION.value
DocumentService.insert(doc)
FileService.add_file_from_kb(doc, kb_folder["id"], kb.tenant_id)
except Exception as e:
return server_error_response(e)
return get_json_result(data=True)
@manager.route('/create', methods=['POST'])
@login_required
@validate_request("name", "kb_id")
@ -289,7 +353,7 @@ def run():
return get_data_error_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
if str(req["run"]) == TaskStatus.RUNNING.value:
TaskService.filter_delete([Task.doc_id == id])
e, doc = DocumentService.get_by_id(id)

View File

@ -331,8 +331,8 @@ def get(file_id):
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
response = flask.make_response(MINIO.get(file.parent_id, file.location))
b, n = File2DocumentService.get_minio_address(file_id=file_id)
response = flask.make_response(MINIO.get(b, n))
ext = re.search(r"\.([^.]+)$", file.name)
if ext:
if file.type == FileType.VISUAL.value:
@ -343,5 +343,28 @@ def get(file_id):
'application/%s' %
ext.group(1))
return response
except Exception as e:
return server_error_response(e)
@manager.route('/mv', methods=['POST'])
@login_required
@validate_request("src_file_ids", "dest_file_id")
def move():
req = request.json
try:
file_ids = req["src_file_ids"]
parent_id = req["dest_file_id"]
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(retmsg="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
fe, _ = FileService.get_by_id(parent_id)
if not fe:
return get_data_error_result(retmsg="Parent Folder not found!")
FileService.move_file(file_ids, parent_id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -109,15 +109,23 @@ def set_api_key():
def add_llm():
req = request.json
factory = req["llm_factory"]
# For VolcEngine, due to its special authentication method
# Assemble volc_ak, volc_sk, endpoint_id into api_key
if factory == "VolcEngine":
# For VolcEngine, due to its special authentication method
# Assemble volc_ak, volc_sk, endpoint_id into api_key
temp = list(eval(req["llm_name"]).items())[0]
llm_name = temp[0]
endpoint_id = temp[1]
api_key = '{' + f'"volc_ak": "{req.get("volc_ak", "")}", ' \
f'"volc_sk": "{req.get("volc_sk", "")}", ' \
f'"ep_id": "{endpoint_id}", ' + '}'
elif factory == "Bedrock":
# For Bedrock, due to its special authentication method
# Assemble bedrock_ak, bedrock_sk, bedrock_region
llm_name = req["llm_name"]
api_key = '{' + f'"bedrock_ak": "{req.get("bedrock_ak", "")}", ' \
f'"bedrock_sk": "{req.get("bedrock_sk", "")}", ' \
f'"bedrock_region": "{req.get("bedrock_region", "")}", ' + '}'
else:
llm_name = req["llm_name"]
api_key = "xxxxxxxxxxxxxxx"
@ -134,7 +142,9 @@ def add_llm():
msg = ""
if llm["model_type"] == LLMType.EMBEDDING.value:
mdl = EmbeddingModel[factory](
key=None, model_name=llm["llm_name"], base_url=llm["api_base"])
key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
model_name=llm["llm_name"],
base_url=llm["api_base"])
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0 or tc == 0:
@ -143,7 +153,7 @@ def add_llm():
msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
elif llm["model_type"] == LLMType.CHAT.value:
mdl = ChatModel[factory](
key=llm['api_key'] if factory == "VolcEngine" else None,
key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
model_name=llm["llm_name"],
base_url=llm["api_base"]
)

16
api/contants.py Normal file
View File

@ -0,0 +1,16 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
NAME_LENGTH_LIMIT = 2 ** 10

View File

@ -91,4 +91,9 @@ class FileSource(StrEnum):
KNOWLEDGEBASE = "knowledgebase"
S3 = "s3"
class CanvasType(StrEnum):
ChatBot = "chatbot"
DocBot = "docbot"
KNOWLEDGEBASE_FOLDER_NAME=".knowledgebase"

View File

@ -833,6 +833,31 @@ class API4Conversation(DataBaseModel):
db_table = "api_4_conversation"
class UserCanvas(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
avatar = TextField(null=True, help_text="avatar base64 string")
user_id = CharField(max_length=255, null=False, help_text="user_id")
title = CharField(max_length=255, null=True, help_text="Canvas title")
description = TextField(null=True, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type")
dsl = JSONField(null=True, default={})
class Meta:
db_table = "user_canvas"
class CanvasTemplate(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
avatar = TextField(null=True, help_text="avatar base64 string")
title = CharField(max_length=255, null=True, help_text="Canvas title")
description = TextField(null=True, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type")
dsl = JSONField(null=True, default={})
class Meta:
db_table = "canvas_template"
def migrate_db():
with DB.transaction():
migrator = MySQLMigrator(DB)

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
import time
import uuid
@ -21,11 +22,13 @@ from copy import deepcopy
from api.db import LLMType, UserTenantRole
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
from api.db.services import UserService
from api.db.services.canvas_service import CanvasTemplateService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
from api.db.services.user_service import TenantService, UserTenantService
from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL
from api.utils.file_utils import get_project_base_directory
def init_superuser():
@ -152,6 +155,26 @@ factory_infos = [{
"logo": "",
"tags": "TEXT EMBEDDING, TEXT RE-RANK",
"status": "1",
},{
"name": "MiniMax",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
},{
"name": "Mistral",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
},{
"name": "Azure-OpenAI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
},{
"name": "Bedrock",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
}
# {
# "name": "文心一言",
@ -380,8 +403,8 @@ def init_llm_factory():
{
"fid": factory_infos[7]["name"],
"llm_name": "maidalun1020/bce-reranker-base_v1",
"tags": "RE-RANK, 8K",
"max_tokens": 8196,
"tags": "RE-RANK, 512",
"max_tokens": 512,
"model_type": LLMType.RERANK.value
},
# ------------------------ DeepSeek -----------------------
@ -536,6 +559,346 @@ def init_llm_factory():
"max_tokens": 2048,
"model_type": LLMType.RERANK.value
},
# ------------------------ Minimax -----------------------
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5-chat",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5s-chat",
"tags": "LLM,CHAT,245k",
"max_tokens": 245760,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5t-chat",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5g-chat",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab5.5-chat",
"tags": "LLM,CHAT,16k",
"max_tokens": 16384,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab5.5s-chat",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
# ------------------------ Mistral -----------------------
{
"fid": factory_infos[14]["name"],
"llm_name": "open-mixtral-8x22b",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "open-mixtral-8x7b",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "open-mistral-7b",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-large-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-small-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-medium-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "codestral-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-embed",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.EMBEDDING
},
# ------------------------ Azure OpenAI -----------------------
# Please ensure the llm_name is the same as the name in Azure
# OpenAI deployment name (e.g., azure-gpt-4o). And the llm_name
# must different from the OpenAI llm_name
#
# Each model must be deployed in the Azure OpenAI service, otherwise,
# you will receive an error message 'The API deployment for
# this resource does not exist'
{
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4o",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": LLMType.CHAT.value + "," + LLMType.IMAGE2TEXT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-35-turbo",
"tags": "LLM,CHAT,4K",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-35-turbo-16k",
"tags": "LLM,CHAT,16k",
"max_tokens": 16385,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-text-embedding-ada-002",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-text-embedding-3-small",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-text-embedding-3-large",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
},{
"fid": factory_infos[15]["name"],
"llm_name": "azure-whisper-1",
"tags": "SPEECH2TEXT",
"max_tokens": 25 * 1024 * 1024,
"model_type": LLMType.SPEECH2TEXT.value
},
{
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4-turbo",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4-32k",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4-vision-preview",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": LLMType.IMAGE2TEXT.value
},
# ------------------------ Bedrock -----------------------
{
"fid": factory_infos[16]["name"],
"llm_name": "ai21.j2-ultra-v1",
"tags": "LLM,CHAT,8k",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "ai21.j2-mid-v1",
"tags": "LLM,CHAT,8k",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-text-v14",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-light-text-v14",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-r-v1:0",
"tags": "LLM,CHAT,128k",
"max_tokens": 128 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-r-plus-v1:0",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-v2",
"tags": "LLM,CHAT,100k",
"max_tokens": 100 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-v2:1",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-sonnet-20240229-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-5-sonnet-20240620-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-haiku-20240307-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-opus-20240229-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-instant-v1",
"tags": "LLM,CHAT,100k",
"max_tokens": 100 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-text-express-v1",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-text-premier-v1:0",
"tags": "LLM,CHAT,32k",
"max_tokens": 32 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-text-lite-v1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama2-13b-chat-v1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama2-70b-chat-v1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama3-8b-instruct-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama3-70b-instruct-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mistral-7b-instruct-v0:2",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mixtral-8x7b-instruct-v0:1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mistral-large-2402-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mistral-small-2402-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-embed-text-v2:0",
"tags": "TEXT EMBEDDING",
"max_tokens": 8192,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.embed-english-v3",
"tags": "TEXT EMBEDDING",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.embed-multilingual-v3",
"tags": "TEXT EMBEDDING",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
},
]
for info in factory_infos:
try:
@ -584,6 +947,20 @@ def init_llm_factory():
"""
def add_graph_templates():
dir = os.path.join(get_project_base_directory(), "graph", "templates")
for fnm in os.listdir(dir):
try:
cnvs = json.load(open(os.path.join(dir, fnm), "r"))
try:
CanvasTemplateService.save(**cnvs)
except:
CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
except Exception as e:
print("Add graph templates error: ", e)
print("------------", flush=True)
def init_web_data():
start_time = time.time()
@ -591,6 +968,7 @@ def init_web_data():
if not UserService.get_all().count():
init_superuser()
add_graph_templates()
print("init web data success:{}".format(time.time() - start_time))

View File

@ -0,0 +1,26 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from datetime import datetime
import peewee
from api.db.db_models import DB, API4Conversation, APIToken, Dialog, CanvasTemplate, UserCanvas
from api.db.services.common_service import CommonService
class CanvasTemplateService(CommonService):
model = CanvasTemplate
class UserCanvasService(CommonService):
model = UserCanvas

View File

@ -23,6 +23,7 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.settings import chat_logger, retrievaler
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp import keyword_extraction
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
@ -80,7 +81,8 @@ def chat(dialog, messages, stream=True, **kwargs):
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
max_tokens = 1024
else: max_tokens = llm[0].max_tokens
else:
max_tokens = llm[0].max_tokens
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
embd_nms = list(set([kb.embd_id for kb in kbs]))
if len(embd_nms) != 1:
@ -110,20 +112,33 @@ def chat(dialog, messages, stream=True, **kwargs):
prompt_config["system"] = prompt_config["system"].replace(
"{%s}" % p["key"], " ")
rerank_mdl = None
if dialog.rerank_id:
rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
for _ in range(len(questions) // 2):
questions.append(questions[-1])
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
else:
rerank_mdl = None
if dialog.rerank_id:
rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
top=1024, aggs=False, rerank_mdl=rerank_mdl)
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
#self-rag
if dialog.prompt_config.get("self_rag") and not relevant(dialog.tenant_id, dialog.llm_id, questions[-1], knowledges):
questions[-1] = rewrite(dialog.tenant_id, dialog.llm_id, questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
chat_logger.info(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
@ -136,7 +151,7 @@ def chat(dialog, messages, stream=True, **kwargs):
msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
msg.extend([{"role": m["role"], "content": m["content"]}
for m in messages if m["role"] != "system"])
for m in messages if m["role"] != "system"])
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
@ -150,9 +165,9 @@ def chat(dialog, messages, stream=True, **kwargs):
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retrievaler.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
@ -166,7 +181,7 @@ def chat(dialog, messages, stream=True, **kwargs):
for c in refs["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api")>=0:
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
return {"answer": answer, "reference": refs}
@ -204,7 +219,7 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
def get_table():
nonlocal sys_prompt, user_promt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
"temperature": 0.06})
"temperature": 0.06})
print(user_promt, sql)
chat_logger.info(f"{question}”==>{user_promt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
@ -273,17 +288,19 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
# compose markdown table
clmns = "|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"],
tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
tbl["columns"][i]["name"])) for i in
clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
("|------|" if docid_idx and docid_idx else "")
("|------|" if docid_idx and docid_idx else "")
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else: rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
if not docid_idx or not docnm_idx:
@ -303,5 +320,40 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
return {
"answer": "\n".join([clmns, line, rows]),
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()]}
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
doc_aggs.items()]}
}
def relevant(tenant_id, llm_id, question, contents: list):
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
No other words needed except 'yes' or 'no'.
"""
if not contents:return False
contents = "Documents: \n" + " - ".join(contents)
contents = f"Question: {question}\n" + contents
if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
if ans.lower().find("yes") >= 0: return True
return False
def rewrite(tenant_id, llm_id, question):
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
return ans

View File

@ -59,6 +59,35 @@ class DocumentService(CommonService):
return list(docs.dicts()), count
@classmethod
@DB.connection_context()
def list_documents_in_dataset(cls, dataset_id, offset, count, order_by, descend, keywords):
if keywords:
docs = cls.model.select().where(
(cls.model.kb_id == dataset_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
else:
docs = cls.model.select().where(cls.model.kb_id == dataset_id)
total = docs.count()
if descend == 'True':
docs = docs.order_by(cls.model.getter_by(order_by).desc())
if descend == 'False':
docs = docs.order_by(cls.model.getter_by(order_by).asc())
docs = list(docs.dicts())
docs_length = len(docs)
if offset < 0 or offset > docs_length:
raise IndexError("Offset is out of the valid range.")
if count == -1:
return docs[offset:], total
return docs[offset:offset + count], total
@classmethod
@DB.connection_context()
def insert(cls, doc):
@ -182,6 +211,19 @@ class DocumentService(CommonService):
return
return docs[0]["tenant_id"]
@classmethod
@DB.connection_context()
def get_embd_id(cls, doc_id):
docs = cls.model.select(
Knowledgebase.embd_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
return
return docs[0]["embd_id"]
@classmethod
@DB.connection_context()
def get_doc_id_by_doc_name(cls, doc_name):

View File

@ -164,12 +164,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_kb_folder(cls, tenant_id):
for root in cls.model.select().where(cls.model.tenant_id == tenant_id and
cls.model.parent_id == cls.model.id):
for folder in cls.model.select().where(cls.model.tenant_id == tenant_id and
cls.model.parent_id == root.id and
cls.model.name == KNOWLEDGEBASE_FOLDER_NAME
):
for root in cls.model.select().where(
(cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
for folder in cls.model.select().where(
(cls.model.tenant_id == tenant_id), (cls.model.parent_id == root.id),
(cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)):
return folder.to_dict()
assert False, "Can't find the KB folder. Database init error."
@ -304,4 +303,13 @@ class FileService(CommonService):
"source_type": FileSource.KNOWLEDGEBASE
}
cls.save(**file)
File2DocumentService.save(**{"id": get_uuid(), "file_id": file["id"], "document_id": doc["id"]})
File2DocumentService.save(**{"id": get_uuid(), "file_id": file["id"], "document_id": doc["id"]})
@classmethod
@DB.connection_context()
def move_file(cls, file_ids, folder_id):
try:
cls.filter_update((cls.model.id << file_ids, ), { 'parent_id': folder_id })
except Exception as e:
print(e)
raise RuntimeError("Database error (File move)!")

View File

@ -40,6 +40,31 @@ class KnowledgebaseService(CommonService):
return list(kbs.dicts())
@classmethod
@DB.connection_context()
def get_by_tenant_ids_by_offset(cls, joined_tenant_ids, user_id, offset, count, orderby, desc):
kbs = cls.model.select().where(
((cls.model.tenant_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.tenant_id == user_id))
& (cls.model.status == StatusEnum.VALID.value)
)
if desc:
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
else:
kbs = kbs.order_by(cls.model.getter_by(orderby).asc())
kbs = list(kbs.dicts())
kbs_length = len(kbs)
if offset < 0 or offset > kbs_length:
raise IndexError("Offset is out of the valid range.")
if count == -1:
return kbs[offset:]
return kbs[offset:offset+count]
@classmethod
@DB.connection_context()
def get_detail(cls, kb_id):

View File

@ -82,9 +82,9 @@ class TenantLLMService(CommonService):
if model_config: model_config = model_config.to_dict()
if not model_config:
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
llm = LLMService.query(llm_name=llm_name)
llm = LLMService.query(llm_name=llm_name if llm_name else mdlnm)
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": llm_name, "api_base": ""}
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": llm_name if llm_name else mdlnm, "api_base": ""}
if not model_config:
if llm_name == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import random
from api.db.db_utils import bulk_insert_into_db
@ -102,6 +103,15 @@ class TaskService(CommonService):
@classmethod
@DB.connection_context()
def update_progress(cls, id, info):
if os.environ.get("MACOS"):
if info["progress_msg"]:
cls.model.update(progress_msg=cls.model.progress_msg + "\n" + info["progress_msg"]).where(
cls.model.id == id).execute()
if "progress" in info:
cls.model.update(progress=info["progress"]).where(
cls.model.id == id).execute()
return
with DB.lock("update_progress", -1):
if info["progress_msg"]:
cls.model.update(progress_msg=cls.model.progress_msg + "\n" + info["progress_msg"]).where(

View File

@ -69,6 +69,12 @@ default_llm = {
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"Azure-OpenAI": {
"chat_model": "azure-gpt-35-turbo",
"embedding_model": "azure-text-embedding-ada-002",
"image2text_model": "azure-gpt-4-vision-preview",
"asr_model": "azure-whisper-1",
},
"ZHIPU-AI": {
"chat_model": "glm-3-turbo",
"embedding_model": "embedding-2",
@ -239,4 +245,5 @@ class RetCode(IntEnum, CustomEnum):
RUNNING = 106
PERMISSION_ERROR = 108
AUTHENTICATION_ERROR = 109
UNAUTHORIZED = 401
SERVER_ERROR = 500

View File

@ -38,7 +38,6 @@ from base64 import b64encode
from hmac import HMAC
from urllib.parse import quote, urlencode
requests.models.complexjson.dumps = functools.partial(
json.dumps, cls=CustomJSONEncoder)
@ -145,7 +144,7 @@ def server_error_response(e):
if len(e.args) > 1:
return get_json_result(
retcode=RetCode.EXCEPTION_ERROR, retmsg=repr(e.args[0]), data=e.args[1])
if repr(e).find("index_not_found_exception") >=0:
if repr(e).find("index_not_found_exception") >= 0:
return get_json_result(retcode=RetCode.EXCEPTION_ERROR, retmsg="No chunk found, please upload file and parse it.")
return get_json_result(retcode=RetCode.EXCEPTION_ERROR, retmsg=repr(e))
@ -235,3 +234,36 @@ def cors_reponse(retcode=RetCode.SUCCESS,
response.headers["Access-Control-Allow-Headers"] = "*"
response.headers["Access-Control-Expose-Headers"] = "Authorization"
return response
def construct_result(code=RetCode.DATA_ERROR, message='data is missing'):
import re
result_dict = {"code": code, "message": re.sub(r"rag", "seceum", message, flags=re.IGNORECASE)}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
continue
else:
response[key] = value
return jsonify(response)
def construct_json_result(code=RetCode.SUCCESS, message='success', data=None):
if data is None:
return jsonify({"code": code, "message": message})
else:
return jsonify({"code": code, "message": message, "data": data})
def construct_error_response(e):
stat_logger.exception(e)
try:
if e.code == 401:
return construct_json_result(code=RetCode.UNAUTHORIZED, message=repr(e))
except BaseException:
pass
if len(e.args) > 1:
return construct_json_result(code=RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
if repr(e).find("index_not_found_exception") >=0:
return construct_json_result(code=RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.")
return construct_json_result(code=RetCode.EXCEPTION_ERROR, message=repr(e))

80
api/utils/web_utils.py Normal file
View File

@ -0,0 +1,80 @@
import re
import json
import base64
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support.expected_conditions import staleness_of
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.common.by import By
def html2pdf(
source: str,
timeout: int = 2,
install_driver: bool = True,
print_options: dict = {},
):
result = __get_pdf_from_html(source, timeout, install_driver, print_options)
return result
def __send_devtools(driver, cmd, params={}):
resource = "/session/%s/chromium/send_command_and_get_result" % driver.session_id
url = driver.command_executor._url + resource
body = json.dumps({"cmd": cmd, "params": params})
response = driver.command_executor._request("POST", url, body)
if not response:
raise Exception(response.get("value"))
return response.get("value")
def __get_pdf_from_html(
path: str,
timeout: int,
install_driver: bool,
print_options: dict
):
webdriver_options = Options()
webdriver_prefs = {}
webdriver_options.add_argument("--headless")
webdriver_options.add_argument("--disable-gpu")
webdriver_options.add_argument("--no-sandbox")
webdriver_options.add_argument("--disable-dev-shm-usage")
webdriver_options.experimental_options["prefs"] = webdriver_prefs
webdriver_prefs["profile.default_content_settings"] = {"images": 2}
if install_driver:
service = Service(ChromeDriverManager().install())
driver = webdriver.Chrome(service=service, options=webdriver_options)
else:
driver = webdriver.Chrome(options=webdriver_options)
driver.get(path)
try:
WebDriverWait(driver, timeout).until(
staleness_of(driver.find_element(by=By.TAG_NAME, value="html"))
)
except TimeoutException:
calculated_print_options = {
"landscape": False,
"displayHeaderFooter": False,
"printBackground": True,
"preferCSSPageSize": True,
}
calculated_print_options.update(print_options)
result = __send_devtools(
driver, "Page.printToPDF", calculated_print_options)
driver.quit()
return base64.b64decode(result["data"])
def is_valid_url(url: str) -> bool:
return bool(re.match(r"(https?|ftp|file)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]", url))

View File

@ -15,6 +15,8 @@ minio:
host: 'minio:9000'
es:
hosts: 'http://es01:9200'
username: 'elastic'
password: 'infini_rag_flow'
redis:
db: 1
password: 'infini_rag_flow'

View File

@ -1,7 +1,20 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .pdf_parser import RAGFlowPdfParser as PdfParser, PlainParser
from .docx_parser import RAGFlowDocxParser as DocxParser
from .excel_parser import RAGFlowExcelParser as ExcelParser
from .ppt_parser import RAGFlowPptParser as PptParser
from .html_parser import RAGFlowHtmlParser as HtmlParser
from .json_parser import RAGFlowJsonParser as JsonParser
from .markdown_parser import RAGFlowMarkdownParser as MarkdownParser

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from docx import Document
import re
import pandas as pd
@ -101,19 +113,24 @@ class RAGFlowDocxParser:
def __call__(self, fnm, from_page=0, to_page=100000):
self.doc = Document(fnm) if isinstance(
fnm, str) else Document(BytesIO(fnm))
pn = 0
secs = []
pn = 0 # parsed page
secs = [] # parsed contents
for p in self.doc.paragraphs:
if pn > to_page:
break
if from_page <= pn < to_page and p.text.strip():
secs.append((p.text, p.style.name))
runs_within_single_paragraph = [] # save runs within the range of pages
for run in p.runs:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
continue
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
if pn > to_page:
break
if from_page <= pn < to_page and p.text.strip():
runs_within_single_paragraph.append(run.text) # append run.text first
# wrap page break checker into a static method
if RAGFlowDocxParser.has_page_break(run._element.xml):
pn += 1
secs.append(("".join(runs_within_single_paragraph), p.style.name)) # then concat run.text as part of the paragraph
tbls = [self.__extract_table_content(tb) for tb in self.doc.tables]
return secs, tbls

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from openpyxl import load_workbook
import sys
from io import BytesIO

View File

@ -0,0 +1,116 @@
# -*- coding: utf-8 -*-
# The following documents are mainly referenced, and only adaptation modifications have been made
# from https://github.com/langchain-ai/langchain/blob/master/libs/text-splitters/langchain_text_splitters/json.py
import json
from typing import Any, Dict, List, Optional
from rag.nlp import find_codec
class RAGFlowJsonParser:
def __init__(
self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
):
super().__init__()
self.max_chunk_size = max_chunk_size * 2
self.min_chunk_size = (
min_chunk_size
if min_chunk_size is not None
else max(max_chunk_size - 200, 50)
)
def __call__(self, binary):
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
json_data = json.loads(txt)
chunks = self.split_json(json_data, True)
sections = [json.dumps(l, ensure_ascii=False) for l in chunks if l]
return sections
@staticmethod
def _json_size(data: Dict) -> int:
"""Calculate the size of the serialized JSON object."""
return len(json.dumps(data, ensure_ascii=False))
@staticmethod
def _set_nested_dict(d: Dict, path: List[str], value: Any) -> None:
"""Set a value in a nested dictionary based on the given path."""
for key in path[:-1]:
d = d.setdefault(key, {})
d[path[-1]] = value
def _list_to_dict_preprocessing(self, data: Any) -> Any:
if isinstance(data, dict):
# Process each key-value pair in the dictionary
return {k: self._list_to_dict_preprocessing(v) for k, v in data.items()}
elif isinstance(data, list):
# Convert the list to a dictionary with index-based keys
return {
str(i): self._list_to_dict_preprocessing(item)
for i, item in enumerate(data)
}
else:
# Base case: the item is neither a dict nor a list, so return it unchanged
return data
def _json_split(
self,
data: Dict[str, Any],
current_path: Optional[List[str]] = None,
chunks: Optional[List[Dict]] = None,
) -> List[Dict]:
"""
Split json into maximum size dictionaries while preserving structure.
"""
current_path = current_path or []
chunks = chunks or [{}]
if isinstance(data, dict):
for key, value in data.items():
new_path = current_path + [key]
chunk_size = self._json_size(chunks[-1])
size = self._json_size({key: value})
remaining = self.max_chunk_size - chunk_size
if size < remaining:
# Add item to current chunk
self._set_nested_dict(chunks[-1], new_path, value)
else:
if chunk_size >= self.min_chunk_size:
# Chunk is big enough, start a new chunk
chunks.append({})
# Iterate
self._json_split(value, new_path, chunks)
else:
# handle single item
self._set_nested_dict(chunks[-1], current_path, data)
return chunks
def split_json(
self,
json_data: Dict[str, Any],
convert_lists: bool = False,
) -> List[Dict]:
"""Splits JSON into a list of JSON chunks"""
if convert_lists:
chunks = self._json_split(self._list_to_dict_preprocessing(json_data))
else:
chunks = self._json_split(json_data)
# Remove the last chunk if it's empty
if not chunks[-1]:
chunks.pop()
return chunks
def split_text(
self,
json_data: Dict[str, Any],
convert_lists: bool = False,
ensure_ascii: bool = True,
) -> List[str]:
"""Splits JSON into a list of JSON formatted strings"""
chunks = self.split_json(json_data=json_data, convert_lists=convert_lists)
# Convert to string
return [json.dumps(chunk, ensure_ascii=ensure_ascii) for chunk in chunks]

View File

@ -0,0 +1,44 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
class RAGFlowMarkdownParser:
def __init__(self, chunk_token_num=128):
self.chunk_token_num = int(chunk_token_num)
def extract_tables_and_remainder(self, markdown_text):
# Standard Markdown table
table_pattern = re.compile(
r'''
(?:\n|^)
(?:\|.*?\|.*?\|.*?\n)
(?:\|(?:\s*[:-]+[-| :]*\s*)\|.*?\n)
(?:\|.*?\|.*?\|.*?\n)+
''', re.VERBOSE)
tables = table_pattern.findall(markdown_text)
remainder = table_pattern.sub('', markdown_text)
# Borderless Markdown table
no_border_table_pattern = re.compile(
r'''
(?:\n|^)
(?:\S.*?\|.*?\n)
(?:(?:\s*[:-]+[-| :]*\s*).*?\n)
(?:\S.*?\|.*?\n)+
''', re.VERBOSE)
no_border_tables = no_border_table_pattern.findall(remainder)
tables.extend(no_border_tables)
remainder = no_border_table_pattern.sub('', remainder)
return remainder, tables

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import random
@ -940,7 +952,7 @@ class RAGFlowPdfParser:
fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.page_chars = [[c for c in page.chars if self._has_color(c)] for page in
self.page_chars = [[{**c, 'top': max(0, c['top'] - 10), 'bottom': max(0, c['bottom'] - 10)} for c in page.chars if self._has_color(c)] for page in
self.pdf.pages[page_from:page_to]]
self.total_page = len(self.pdf.pages)
except Exception as e:
@ -1009,6 +1021,8 @@ class RAGFlowPdfParser:
self.page_cum_height = np.cumsum(self.page_cum_height)
assert len(self.page_cum_height) == len(self.page_images) + 1
if len(self.boxes) == 0 and zoomin < 9: self.__images__(fnm, zoomin * 3, page_from,
page_to, callback)
def __call__(self, fnm, need_image=True, zoomin=3, return_html=False):
self.__images__(fnm, zoomin)

View File

@ -10,6 +10,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from io import BytesIO
from pptx import Presentation

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re,json,os
import pandas as pd
from rag.nlp import rag_tokenizer

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
TBL = {"94":"EMBA",
"6":"MBA",
"95":"MPA",

View File

@ -1,3 +1,15 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
TBL = {"1":{"name":"IT/通信/电子","parent":"0"},
"2":{"name":"互联网","parent":"0"},

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
TBL = {
"2":{"name":"北京","parent":"1"},
"3":{"name":"天津","parent":"1"},

View File

@ -1,4 +1,16 @@
# -*- coding: UTF-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os, json,re,copy
import pandas as pd
current_file_path = os.path.dirname(os.path.abspath(__file__))

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from deepdoc.parser.resume.entities import degrees, regions, industries

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re, copy, time, datetime, demjson3, \
traceback, signal
import numpy as np

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pdfplumber
from .ocr import OCR

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import re
import numpy as np

View File

@ -1,12 +1,13 @@
# Version of Elastic products
STACK_VERSION=8.11.3
# Set the cluster name
CLUSTER_NAME=rag_flow
# Port to expose Elasticsearch HTTP API to the host
ES_PORT=1200
# Set the Elasticsearch password
ELASTIC_PASSWORD=infini_rag_flow
# Port to expose Kibana to the host
KIBANA_PORT=6601
@ -25,11 +26,12 @@ MINIO_PORT=9000
MINIO_USER=rag_flow
MINIO_PASSWORD=infini_rag_flow
REDIS_PORT=6379
REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
RAGFLOW_VERSION=v0.7.0
RAGFLOW_VERSION=dev
TIMEZONE='Asia/Shanghai'

View File

@ -24,6 +24,7 @@ services:
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=https://hf-mirror.com
- MACOS=${MACOS}
networks:
- ragflow
restart: always

View File

@ -24,6 +24,7 @@ services:
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=https://hf-mirror.com
- MACOS=${MACOS}
networks:
- ragflow
restart: always

View File

@ -8,12 +8,12 @@ services:
- ${ES_PORT}:9200
environment:
- node.name=es01
- cluster.name=${CLUSTER_NAME}
- cluster.initial_master_nodes=es01
- ELASTIC_PASSWORD=${ELASTIC_PASSWORD}
- bootstrap.memory_lock=false
- xpack.security.enabled=false
- cluster.max_shards_per_node=4096
- discovery.type=single-node
- xpack.security.enabled=true
- xpack.security.http.ssl.enabled=false
- xpack.security.transport.ssl.enabled=false
- TZ=${TIMEZONE}
mem_limit: ${MEM_LIMIT}
ulimits:
@ -77,6 +77,8 @@ services:
image: redis:7.2.4
container_name: ragflow-redis
command: redis-server --requirepass ${REDIS_PASSWORD} --maxmemory 128mb --maxmemory-policy allkeys-lru
ports:
- ${REDIS_PORT}:6379
volumes:
- redis_data:/data
networks:

View File

@ -24,6 +24,7 @@ services:
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=https://huggingface.co
- MACOS=${MACOS}
networks:
- ragflow
restart: always

View File

@ -15,6 +15,8 @@ minio:
host: 'minio:9000'
es:
hosts: 'http://es01:9200'
username: 'elastic'
password: 'infini_rag_flow'
redis:
db: 1
password: 'infini_rag_flow'

View File

@ -5,7 +5,7 @@ slug: /configure_knowledge_base
# Configure a knowledge base
Knowledge base, hallucination-free chat, and file management are three pillars of RAGFlow. RAGFlow's AI chats are based on knowledge bases. Each of RAGFlow's knowledge bases serves as a knowledge source, *parsing* files uploaded from your local machine and file references generated in **File Management** into the real 'knowledge' for future AI chats. This guide demonstrates some basic usages of the knowledge base feature, covering the following topics:
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. RAGFlow's AI chats are based on knowledge bases. Each of RAGFlow's knowledge bases serves as a knowledge source, *parsing* files uploaded from your local machine and file references generated in **File Management** into the real 'knowledge' for future AI chats. This guide demonstrates some basic usages of the knowledge base feature, covering the following topics:
- Create a knowledge base
- Configure a knowledge base
@ -124,7 +124,7 @@ RAGFlow uses multiple recall of both full-text search and vector search in its c
## Search for knowledge base
As of RAGFlow v0.7.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
As of RAGFlow v0.8.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)

View File

@ -5,71 +5,279 @@ slug: /deploy_local_llm
# Deploy a local LLM
RAGFlow supports deploying LLMs locally using Ollama or Xinference.
RAGFlow supports deploying models locally using Ollama or Xinference. If you have locally deployed models to leverage or wish to enable GPU or CUDA for inference acceleration, you can bind Ollama or Xinference into RAGFlow and use either of them as a local "server" for interacting with your local models.
## Ollama
RAGFlow seamlessly integrates with Ollama and Xinference, without the need for further environment configurations. You can use them to deploy two types of local models in RAGFlow: chat models and embedding models.
One-click deployment of local LLMs, that is [Ollama](https://github.com/ollama/ollama).
:::tip NOTE
This user guide does not intend to cover much of the installation or configuration details of Ollama or Xinference; its focus is on configurations inside RAGFlow. For the most current information, you may need to check out the official site of Ollama or Xinference.
:::
### Install
## Deploy a local model using Ollama
- [Ollama on Linux](https://github.com/ollama/ollama/blob/main/docs/linux.md)
- [Ollama Windows Preview](https://github.com/ollama/ollama/blob/main/docs/windows.md)
- [Docker](https://hub.docker.com/r/ollama/ollama)
[Ollama](https://github.com/ollama/ollama) enables you to run open-source large language models that you deployed locally. It bundles model weights, configurations, and data into a single package, defined by a Modelfile, and optimizes setup and configurations, including GPU usage.
### Launch Ollama
:::note
- For information about downloading Ollama, see [here](https://github.com/ollama/ollama?tab=readme-ov-file#ollama).
- For information about configuring Ollama server, see [here](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-configure-ollama-server).
- For a complete list of supported models and variants, see the [Ollama model library](https://ollama.com/library).
:::
Decide which LLM you want to deploy ([here's a list for supported LLM](https://ollama.com/library)), say, **mistral**:
To deploy a local model, e.g., **Llama3**, using Ollama:
### 1. Check firewall settings
Ensure that your host machine's firewall allows inbound connections on port 11434. For example:
```bash
$ ollama run mistral
sudo ufw allow 11434/tcp
```
Or,
### 2. Ensure Ollama is accessible
Restart system and use curl or your web browser to check if the service URL of your Ollama service at `http://localhost:11434` is accessible.
```bash
$ docker exec -it ollama ollama run mistral
Ollama is running
```
### Use Ollama in RAGFlow
### 3. Run your local model
- Go to 'Settings > Model Providers > Models to be added > Ollama'.
![](https://github.com/infiniflow/ragflow/assets/12318111/a9df198a-226d-4f30-b8d7-829f00256d46)
```bash
ollama run llama3
```
<details>
<summary>If your Ollama is installed through Docker, run the following instead:</summary>
> Base URL: Enter the base URL where the Ollama service is accessible, like, `http://<your-ollama-endpoint-domain>:11434`.
```bash
docker exec -it ollama ollama run llama3
```
</details>
- Use Ollama Models.
### 4. Add Ollama
![](https://github.com/infiniflow/ragflow/assets/12318111/60ff384e-5013-41ff-a573-9a543d237fd3)
In RAGFlow, click on your logo on the top right of the page **>** **Model Providers** and add Ollama to RAGFlow:
## Xinference
![add ollama](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
Xorbits Inference([Xinference](https://github.com/xorbitsai/inference)) empowers you to unleash the full potential of cutting-edge AI models.
### Install
### 5. Complete basic Ollama settings
- [pip install "xinference[all]"](https://inference.readthedocs.io/en/latest/getting_started/installation.html)
- [Docker](https://inference.readthedocs.io/en/latest/getting_started/using_docker_image.html)
In the popup window, complete basic settings for Ollama:
1. Because **llama3** is a chat model, choose **chat** as the model type.
2. Ensure that the model name you enter here *precisely* matches the name of the local model you are running with Ollama.
3. Ensure that the base URL you enter is accessible to RAGFlow.
4. OPTIONAL: Switch on the toggle under **Does it support Vision?** if your model includes an image-to-text model.
:::caution NOTE
- If your Ollama and RAGFlow run on the same machine, use `http://localhost:11434` as base URL.
- If your Ollama and RAGFlow run on the same machine and Ollama is in Docker, use `http://host.docker.internal:11434` as base URL.
- If your Ollama runs on a different machine from RAGFlow, use `http://<IP_OF_OLLAMA_MACHINE>:11434` as base URL.
:::
:::danger WARNING
If your Ollama runs on a different machine, you may also need to set the `OLLAMA_HOST` environment variable to `0.0.0.0` in **ollama.service** (Note that this is *NOT* the base URL):
```bash
Environment="OLLAMA_HOST=0.0.0.0"
```
See [this guide](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-configure-ollama-server) for more information.
:::
:::caution WARNING
Improper base URL settings will trigger the following error:
```bash
Max retries exceeded with url: /api/chat (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0xffff98b81ff0>: Failed to establish a new connection: [Errno 111] Connection refused'))
```
:::
### 6. Update System Model Settings
Click on your logo **>** **Model Providers** **>** **System Model Settings** to update your model:
*You should now be able to find **llama3** from the dropdown list under **Chat model**.*
> If your local model is an embedding model, you should find your local model under **Embedding model**.
### 7. Update Chat Configuration
Update your chat model accordingly in **Chat Configuration**:
> If your local model is an embedding model, update it on the configruation page of your knowledge base.
## Deploy a local model using Xinference
Xorbits Inference([Xinference](https://github.com/xorbitsai/inference)) enables you to unleash the full potential of cutting-edge AI models.
:::note
- For information about installing Xinference Ollama, see [here](https://inference.readthedocs.io/en/latest/getting_started/).
- For a complete list of supported models, see the [Builtin Models](https://inference.readthedocs.io/en/latest/models/builtin/).
:::
To deploy a local model, e.g., **Mistral**, using Xinference:
### 1. Check firewall settings
Ensure that your host machine's firewall allows inbound connections on port 9997.
### 2. Start an Xinference instance
To start a local instance of Xinference, run the following command:
```bash
$ xinference-local --host 0.0.0.0 --port 9997
```
### Launch Xinference
Decide which LLM you want to deploy ([here's a list for supported LLM](https://inference.readthedocs.io/en/latest/models/builtin/)), say, **mistral**.
Execute the following command to launch the model, remember to replace `${quantization}` with your chosen quantization method from the options listed above:
### 3. Launch your local model
Launch your local model (**Mistral**), ensuring that you replace `${quantization}` with your chosen quantization method
:
```bash
$ xinference launch -u mistral --model-name mistral-v0.1 --size-in-billions 7 --model-format pytorch --quantization ${quantization}
```
### 4. Add Xinference
### Use Xinference in RAGFlow
In RAGFlow, click on your logo on the top right of the page **>** **Model Providers** and add Xinference to RAGFlow:
- Go to 'Settings > Model Providers > Models to be added > Xinference'.
![](https://github.com/infiniflow/ragflow/assets/12318111/bcbf4d7a-ade6-44c7-ad5f-0a92c8a73789)
![add xinference](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
> Base URL: Enter the base URL where the Xinference service is accessible, like, `http://<your-xinference-endpoint-domain>:9997/v1`.
### 5. Complete basic Xinference settings
- Use Xinference Models.
Enter an accessible base URL, such as `http://<your-xinference-endpoint-domain>:9997/v1`.
![](https://github.com/infiniflow/ragflow/assets/12318111/b01fcb6f-47c9-4777-82e0-f1e947ed615a)
![](https://github.com/infiniflow/ragflow/assets/12318111/1763dcd1-044f-438d-badd-9729f5b3a144)
### 6. Update System Model Settings
Click on your logo **>** **Model Providers** **>** **System Model Settings** to update your model.
*You should now be able to find **mistral** from the dropdown list under **Chat model**.*
> If your local model is an embedding model, you should find your local model under **Embedding model**.
### 7. Update Chat Configuration
Update your chat model accordingly in **Chat Configuration**:
> If your local model is an embedding model, update it on the configruation page of your knowledge base.
## Deploy a local model using IPEX-LLM
IPEX-LLM([IPEX-LLM](https://github.com/intel-analytics/ipex-llm)) is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low latency
To deploy a local model, eg., **Qwen2**, using IPEX-LLM, follow the steps below:
### 1. Check firewall settings
Ensure that your host machine's firewall allows inbound connections on port 11434. For example:
```bash
sudo ufw allow 11434/tcp
```
### 2. Install and Start Ollama serve using IPEX-LLM
#### 2.1 Install IPEX-LLM for Ollama
IPEX-LLM's support for `ollama` now is available for Linux system and Windows system.
Visit [Run llama.cpp with IPEX-LLM on Intel GPU Guide](https://github.com/intel-analytics/ipex-llm/blob/main/docs/mddocs/Quickstart/llama_cpp_quickstart.md), and follow the instructions in section [Prerequisites](https://github.com/intel-analytics/ipex-llm/blob/main/docs/mddocs/Quickstart/llama_cpp_quickstart.md#0-prerequisites) to setup and section [Install IPEX-LLM cpp](https://github.com/intel-analytics/ipex-llm/blob/main/docs/mddocs/Quickstart/llama_cpp_quickstart.md#1-install-ipex-llm-for-llamacpp) to install the IPEX-LLM with Ollama binaries.
**After the installation, you should have created a conda environment, named `llm-cpp` for instance, for running `ollama` commands with IPEX-LLM.**
#### 2.2 Initialize Ollama
Activate the `llm-cpp` conda environment and initialize Ollama by executing the commands below. A symbolic link to `ollama` will appear in your current directory.
- For **Linux users**:
```bash
conda activate llm-cpp
init-ollama
```
- For **Windows users**:
Please run the following command with **administrator privilege in Miniforge Prompt**.
```cmd
conda activate llm-cpp
init-ollama.bat
```
> [!NOTE]
> If you have installed higher version `ipex-llm[cpp]` and want to upgrade your ollama binary file, don't forget to remove old binary files first and initialize again with `init-ollama` or `init-ollama.bat`.
**Now you can use this executable file by standard ollama's usage.**
#### 2.3 Run Ollama Serve
You may launch the Ollama service as below:
- For **Linux users**:
```bash
export OLLAMA_NUM_GPU=999
export no_proxy=localhost,127.0.0.1
export ZES_ENABLE_SYSMAN=1
source /opt/intel/oneapi/setvars.sh
export SYCL_CACHE_PERSISTENT=1
./ollama serve
```
- For **Windows users**:
Please run the following command in Miniforge Prompt.
```cmd
set OLLAMA_NUM_GPU=999
set no_proxy=localhost,127.0.0.1
set ZES_ENABLE_SYSMAN=1
set SYCL_CACHE_PERSISTENT=1
ollama serve
```
> Please set environment variable `OLLAMA_NUM_GPU` to `999` to make sure all layers of your model are running on Intel GPU, otherwise, some layers may run on CPU.
> If your local LLM is running on Intel Arc™ A-Series Graphics with Linux OS (Kernel 6.2), it is recommended to additionaly set the following environment variable for optimal performance before executing `ollama serve`:
>
> ```bash
> export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
> ```
> To allow the service to accept connections from all IP addresses, use `OLLAMA_HOST=0.0.0.0 ./ollama serve` instead of just `./ollama serve`.
The console will display messages similar to the following:
![](https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png)
### 3. Pull and Run Ollama Model
Keep the Ollama service on and open another terminal and run `./ollama pull <model_name>` in Linux (`ollama.exe pull <model_name>` in Windows) to automatically pull a model. e.g. `qwen2:latest`:
![](https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png)
#### Run Ollama Model
- For **Linux users**:
```bash
./ollama run qwen2:latest
```
- For **Windows users**:
```cmd
ollama run qwen2:latest
```
### 4. Configure RAGflow to use IPEX-LLM accelerated Ollama
The confiugraiton follows the steps in
Ollama Section 4 [Add Ollama](#4-add-ollama),
Section 5 [Complete basic Ollama settings](#5-complete-basic-ollama-settings),
Section 6 [Update System Model Settings](#6-update-system-model-settings),
Section 7 [Update Chat Configuration](#7-update-chat-configuration)

View File

@ -3,28 +3,61 @@ sidebar_position: 4
slug: /llm_api_key_setup
---
# Set your LLM API key
# Configure your API key
You have two ways to input your LLM API key.
An API key is required for RAGFlow to interact with an online AI model. This guide provides information about setting your API key in RAGFlow.
## Before Starting The System
## Get your API key
In **user_default_llm** of [service_conf.yaml](https://github.com/infiniflow/ragflow/blob/main/docker/service_conf.yaml), you need to specify LLM factory and your own _API_KEY_.
RAGFlow supports the flowing LLMs, with more coming in the pipeline:
For now, RAGFlow supports the following online LLMs. Click the corresponding link to apply for your API key. Most LLM providers grant newly-created accounts trial credit, which will expire in a couple of months, or a promotional amount of free quota.
- [OpenAI](https://platform.openai.com/login?launch)
- [Tongyi-Qianwen](https://dashscope.console.aliyun.com/model),
- [ZHIPU-AI](https://open.bigmodel.cn/),
- [Moonshot](https://platform.moonshot.cn/docs)
- [DeepSeek](https://platform.deepseek.com/api-docs/)
- [Baichuan](https://www.baichuan-ai.com/home)
- [VolcEngine](https://www.volcengine.com/docs/82379)
- [OpenAI](https://platform.openai.com/login?launch),
- [Tongyi-Qianwen](https://dashscope.console.aliyun.com/model),
- [ZHIPU-AI](https://open.bigmodel.cn/),
- [Moonshot](https://platform.moonshot.cn/docs),
- [DeepSeek](https://platform.deepseek.com/api-docs/),
- [Baichuan](https://www.baichuan-ai.com/home),
- [VolcEngine](https://www.volcengine.com/docs/82379).
After sign in these LLM suppliers, create your own API-Key, they all have a certain amount of free quota.
:::note
If you find your online LLM is not on the list, don't feel disheartened. The list is expanding, and you can [file a feature request](https://github.com/infiniflow/ragflow/issues/new?assignees=&labels=feature+request&projects=&template=feature_request.yml&title=%5BFeature+Request%5D%3A+) with us! Alternatively, if you have customized or locally-deployed models, you can [bind them to RAGFlow using Ollama or Xinference](./deploy_local_llm.md).
:::
## After Starting The System
## Configure your API key
You can also set API-Key in **User Setting** as following:
You have two options for configuring your API key:
![](https://github.com/infiniflow/ragflow/assets/12318111/e4e4066c-e964-45ff-bd56-c3fc7fb18bd3)
- Configure it in **service_conf.yaml** before starting RAGFlow.
- Configure it on the **Model Providers** page after logging into RAGFlow.
### Configure API key before starting up RAGFlow
1. Navigate to **./docker/ragflow**.
2. Find entry **user_default_llm**:
- Update `factory` with your chosen LLM.
- Update `api_key` with yours.
- Update `base_url` if you use a proxy to connect to the remote service.
3. Reboot your system for your changes to take effect.
4. Log into RAGFlow.
*After logging into RAGFlow, you will find your chosen model appears under **Added models** on the **Model Providers** page.*
### Configure API key after logging into RAGFlow
:::caution WARNING
After logging into RAGFlow, configuring API key through the **service_conf.yaml** file will no longer take effect.
:::
After logging into RAGFlow, you can *only* configure API Key on the **Model Providers** page:
1. Click on your logo on the top right of the page **>** **Model Providers**.
2. Find your model card under **Models to be added** and click **Add the model**:
![add model](https://github.com/infiniflow/ragflow/assets/93570324/07e43f63-367c-4c9c-8ed3-8a3a24703f4e)
3. Paste your API key.
4. Fill in your base URL if you use a proxy to connect to the remote service.
5. Click **OK** to confirm your changes.
:::note
If you wish to update an existing API key at a later point:
![update api key](https://github.com/infiniflow/ragflow/assets/93570324/0bfba679-33f7-4f6b-9ed6-f0e6e4b228ad)
:::

View File

@ -5,7 +5,7 @@ slug: /manage_files
# Manage files
Knowledge base, hallucination-free chat, and file management are three pillars of RAGFlow. RAGFlow's file management allows you to upload files individually or in bulk. You can then link an uploaded file to multiple target knowledge bases. This guide showcases some basic usages of the file management feature.
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. RAGFlow's file management allows you to upload files individually or in bulk. You can then link an uploaded file to multiple target knowledge bases. This guide showcases some basic usages of the file management feature.
## Create folder
@ -45,11 +45,11 @@ You can link your file to one knowledge base or multiple knowledge bases at one
## Move file to specified folder
As of RAGFlow v0.7.0, this feature is *not* available.
As of RAGFlow v0.8.0, this feature is *not* available.
## Search files or folders
As of RAGFlow v0.7.0, the search feature is still in a rudimentary form, supporting only file and folder search in the current directory by name (files or folders in the child directory will not be retrieved).
As of RAGFlow v0.8.0, the search feature is still in a rudimentary form, supporting only file and folder search in the current directory by name (files or folders in the child directory will not be retrieved).
![search file](https://github.com/infiniflow/ragflow/assets/93570324/77ffc2e5-bd80-4ed1-841f-068e664efffe)
@ -81,4 +81,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.7.0, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.8.0, bulk download is not supported, nor can you download an entire folder.

View File

@ -1,71 +0,0 @@
---
sidebar_position: 7
slug: /max_map_count
---
# Update vm.max_map_count
## Linux
To check the value of `vm.max_map_count`:
```bash
$ sysctl vm.max_map_count
```
Reset `vm.max_map_count` to a value at least 262144 if it is not.
```bash
# In this case, we set it to 262144:
$ sudo sysctl -w vm.max_map_count=262144
```
This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
```bash
vm.max_map_count=262144
```
## Mac
```bash
$ screen ~/Library/Containers/com.docker.docker/Data/vms/0/tty
$ sysctl -w vm.max_map_count=262144
```
To exit the screen session, type Ctrl a d.
## Windows and macOS with Docker Desktop
The vm.max_map_count setting must be set via docker-machine:
```bash
$ docker-machine ssh
$ sudo sysctl -w vm.max_map_count=262144
```
## Windows with Docker Desktop WSL 2 backend
To manually set it every time you reboot, you must run the following commands in a command prompt or PowerShell window every time you restart Docker:
```bash
$ wsl -d docker-desktop -u root
$ sysctl -w vm.max_map_count=262144
```
If you are on these versions of WSL and you do not want to have to run those commands every time you restart Docker, you can globally change every WSL distribution with this setting by modifying your %USERPROFILE%\.wslconfig as follows:
```bash
[wsl2]
kernelCommandLine = "sysctl.vm.max_map_count=262144"
```
This will cause all WSL2 VMs to have that setting assigned when they start.
If you are on Windows 11, or Windows 10 version 22H2 and have installed the Microsoft Store version of WSL, you can modify the /etc/sysctl.conf within the "docker-desktop" WSL distribution, perhaps with commands like this:
```bash
$ wsl -d docker-desktop -u root
$ vi /etc/sysctl.conf
```
and appending a line which reads:
```bash
vm.max_map_count = 262144
```

View File

@ -5,7 +5,7 @@ slug: /start_chat
# Start an AI chat
Knowledge base, hallucination-free chat, and file management are three pillars of RAGFlow. Chats in RAGFlow are based on a particular knowledge base or multiple knowledge bases. Once you have created your knowledge base and finished file parsing, you can go ahead and start an AI conversation.
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. Chats in RAGFlow are based on a particular knowledge base or multiple knowledge bases. Once you have created your knowledge base and finished file parsing, you can go ahead and start an AI conversation.
## Start an AI chat

View File

@ -4,6 +4,8 @@ slug: /
---
# Quick start
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. When integrated with LLMs, it is capable of providing truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
@ -16,38 +18,111 @@ This quick start guide describes a general process from:
## Prerequisites
- CPU >= 4 cores
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
- CPU &ge; 4 cores;
- RAM &ge; 16 GB;
- Disk &ge; 50 GB;
- Docker &ge; 24.0.0 & Docker Compose &ge; v2.26.1.
> If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).
## Start up the server
This section provides instructions on setting up the RAGFlow server on Linux. If you are on a different operating system, no worries. Most steps are alike.
This section provides instructions on setting up the RAGFlow server on Linux. If you are on a different operating system, no worries. Most steps are alike.
1. Ensure `vm.max_map_count` >= 262144:
<details>
<summary>1. Ensure <code>vm.max_map_count</code> &ge; 262144:</summary>
> To check the value of `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Reset `vm.max_map_count` to a value at least 262144 if it is not.
>
> ```bash
> # In this case, we set it to 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
>
> ```bash
> vm.max_map_count=262144
> ```
> See [this guide](./guides/max_map_count.md) for instructions on permanently setting `vm.max_map_count` on an operating system other than Linux.
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abmornal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.8.0 uses Elasticsearch for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs
defaultValue="linux"
values={[
{label: 'Linux', value: 'linux'},
{label: 'macOS', value: 'macos'},
{label: 'Windows', value: 'windows'},
]}>
<TabItem value="linux">
1.1. Check the value of `vm.max_map_count`:
```bash
$ sysctl vm.max_map_count
```
1.2. Reset `vm.max_map_count` to a value at least 262144 if it is not.
```bash
$ sudo sysctl -w vm.max_map_count=262144
```
:::caution WARNING
This change will be reset after a system reboot. If you forget to update the value the next time you start up the server, you may get a `Can't connect to ES cluster` exception.
:::
1.3. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
```bash
vm.max_map_count=262144
```
</TabItem>
<TabItem value="macos">
If you are on macOS with Docker Desktop, then you *must* use docker-machine to update `vm.max_map_count`:
```bash
$ docker-machine ssh
$ sudo sysctl -w vm.max_map_count=262144
```
:::caution WARNING
This change will be reset after a system reboot. If you forget to update the value the next time you start up the server, you may get a `Can't connect to ES cluster` exception.
:::
</TabItem>
<TabItem value="windows">
#### If you are on Windows with Docker Desktop, then you *must* use docker-machine to set `vm.max_map_count`:
```bash
$ docker-machine ssh
$ sudo sysctl -w vm.max_map_count=262144
```
#### If you are on Windows with Docker Desktop WSL 2 backend, then use docker-desktop to set `vm.max_map_count`:
1.1. Run the following in WSL:
```bash
$ wsl -d docker-desktop -u root
$ sysctl -w vm.max_map_count=262144
```
:::caution WARNING
This change will be reset after you restart Docker. If you forget to update the value the next time you start up the server, you may get a `Can't connect to ES cluster` exception.
:::
1.2. If you do not wish to have to run those commands each time you restart Docker, you can update your `%USERPROFILE%.wslconfig` as follows to keep your change permanent and globally for all WSL distributions:
```bash
[wsl2]
kernelCommandLine = "sysctl.vm.max_map_count=262144"
```
*This causes all WSL2 virtual machines to have that setting assigned when they start.*
:::note
If you are on Windows 11 or Windows 10 version 22H2, and have installed the Microsoft Store version of WSL, you can also update the **/etc/sysctl.conf** within the docker-desktop WSL distribution to keep your change permanent:
```bash
$ wsl -d docker-desktop -u root
$ vi /etc/sysctl.conf
```
```bash
# Append a line, which reads:
vm.max_map_count = 262144
```
:::
</TabItem>
</Tabs>
</details>
2. Clone the repo:
@ -57,7 +132,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
3. Build the pre-built Docker images and start up the server:
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.7.0`, before running the following commands.
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.8.0`, before running the following commands.
```bash
$ cd ragflow/docker
@ -93,7 +168,9 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> - With default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
:::caution WARNING
With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
:::
## Configure LLMs
@ -113,7 +190,7 @@ To add and configure an LLM:
1. Click on your logo on the top right of the page **>** **Model Providers**:
![2 add llm](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
![add llm](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
> Each RAGFlow account is able to use **text-embedding-v2** for free, a embedding model of Tongyi-Qianwen. This is why you can see Tongyi-Qianwen in the **Added models** list. And you may need to update your Tongyi-Qianwen API key at a later point.
@ -212,3 +289,4 @@ Conversations in RAGFlow are based on a particular knowledge base or multiple kn
![question1](https://github.com/infiniflow/ragflow/assets/93570324/bb72dd67-b35e-4b2a-87e9-4e4edbd6e677)
![question2](https://github.com/infiniflow/ragflow/assets/93570324/7cc585ae-88d0-4aa2-817d-0370b2ad7230)

View File

@ -14,13 +14,17 @@ https://demo.ragflow.io/v1/
## Authorization
All of RAGFlow's RESTFul APIs use API key for authorization, so keep it safe and do not expose it to the front end.
All of RAGFlow's RESTful APIs use API key for authorization, so keep it safe and do not expose it to the front end.
Put your API key in the request header.
```buildoutcfg
Authorization: Bearer {API_KEY}
```
:::note
In the current design, the RESTful API key you get from RAGFlow does not expire.
:::
To get your API key:
1. In RAGFlow, click **Chat** tab in the middle top of the page.
@ -109,10 +113,10 @@ This method retrieves the history of a specified conversation session.
- `content_with_weight`: Content of the chunk.
- `doc_name`: Name of the *hit* document.
- `img_id`: The image ID of the chunk. It is an optional field only for PDF, PPTX, and images. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the image.
- positions: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
- similarity: The hybrid similarity.
- term_similarity: The keyword simimlarity.
- vector_similarity: The embedding similarity.
- `positions`: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
- `similarity`: The hybrid similarity.
- `term_similarity`: The keyword simimlarity.
- `vector_similarity`: The embedding similarity.
- `doc_aggs`:
- `doc_id`: ID of the *hit* document. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the document.
- `doc_name`: Name of the *hit* document.
@ -224,7 +228,7 @@ This method retrieves from RAGFlow the answer to the user's latest question.
|------------------|--------|----------|---------------|
| `conversation_id`| string | Yes | The ID of the conversation session. Call ['GET' /new_conversation](#create-conversation) to retrieve the ID.|
| `messages` | json | Yes | The latest question in a JSON form, such as `[{"role": "user", "content": "How are you doing!"}]`|
| `quote` | bool | No | Default: true |
| `quote` | bool | No | Default: false|
| `stream` | bool | No | Default: true |
| `doc_ids` | string | No | Document IDs delimited by comma, like `c790da40ea8911ee928e0242ac180005,23dsf34ree928e0242ac180005`. The retrieved contents will be confined to these documents. |

View File

@ -194,11 +194,7 @@ Ignore this warning and continue. All system warnings can be ignored.
![](https://github.com/infiniflow/ragflow/assets/93570324/ef5a6194-084a-4fe3-bdd5-1c025b40865c)
#### 4.3 Why does it take so long to parse a 2MB document?
Parsing requests have to wait in queue due to limited server resources. We are currently enhancing our algorithms and increasing computing power.
#### 4.4 Why does my document parsing stall at under one percent?
#### 4.3 Why does my document parsing stall at under one percent?
![stall](https://github.com/infiniflow/ragflow/assets/93570324/3589cc25-c733-47d5-bbfc-fedb74a3da50)
@ -211,7 +207,7 @@ docker logs -f ragflow-server
2. Check if the **task_executor.py** process exists.
3. Check if your RAGFlow server can access hf-mirror.com or huggingface.com.
#### 4.5 Why does my pdf parsing stall near completion, while the log does not show any error?
#### 4.4 Why does my pdf parsing stall near completion, while the log does not show any error?
If your RAGFlow is deployed *locally*, the parsing process is likely killed due to insufficient RAM. Try increasing your memory allocation by increasing the `MEM_LIMIT` value in **docker/.env**.
@ -225,17 +221,17 @@ If your RAGFlow is deployed *locally*, the parsing process is likely killed due
![nearcompletion](https://github.com/infiniflow/ragflow/assets/93570324/563974c3-f8bb-4ec8-b241-adcda8929cbb)
#### 4.6 `Index failure`
#### 4.5 `Index failure`
An index failure usually indicates an unavailable Elasticsearch service.
#### 4.7 How to check the log of RAGFlow?
#### 4.6 How to check the log of RAGFlow?
```bash
tail -f path_to_ragflow/docker/ragflow-logs/rag/*.log
```
#### 4.8 How to check the status of each component in RAGFlow?
#### 4.7 How to check the status of each component in RAGFlow?
```bash
$ docker ps
@ -249,7 +245,7 @@ d8c86f06c56b mysql:5.7.18 "docker-entrypoint.s…" 7 days ago Up
cd29bcb254bc quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z "/usr/bin/docker-ent…" 2 weeks ago Up 11 hours 0.0.0.0:9001->9001/tcp, :::9001->9001/tcp, 0.0.0.0:9000->9000/tcp, :::9000->9000/tcp ragflow-minio
```
#### 4.9 `Exception: Can't connect to ES cluster`
#### 4.8 `Exception: Can't connect to ES cluster`
1. Check the status of your Elasticsearch component:
@ -276,26 +272,26 @@ $ docker ps
curl http://<IP_OF_ES>:<PORT_OF_ES>
```
#### 4.10 Can't start ES container and get `Elasticsearch did not exit normally`
#### 4.9 Can't start ES container and get `Elasticsearch did not exit normally`
This is because you forgot to update the `vm.max_map_count` value in **/etc/sysctl.conf** and your change to this value was reset after a system reboot.
#### 4.11 `{"data":null,"retcode":100,"retmsg":"<NotFound '404: Not Found'>"}`
#### 4.10 `{"data":null,"retcode":100,"retmsg":"<NotFound '404: Not Found'>"}`
Your IP address or port number may be incorrect. If you are using the default configurations, enter `http://<IP_OF_YOUR_MACHINE>` (**NOT 9380, AND NO PORT NUMBER REQUIRED!**) in your browser. This should work.
#### 4.12 `Ollama - Mistral instance running at 127.0.0.1:11434 but cannot add Ollama as model in RagFlow`
#### 4.11 `Ollama - Mistral instance running at 127.0.0.1:11434 but cannot add Ollama as model in RagFlow`
A correct Ollama IP address and port is crucial to adding models to Ollama:
- If you are on demo.ragflow.io, ensure that the server hosting Ollama has a publicly accessible IP address.Note that 127.0.0.1 is not a publicly accessible IP address.
- If you deploy RAGFlow locally, ensure that Ollama and RAGFlow are in the same LAN and can comunicate with each other.
#### 4.13 Do you offer examples of using deepdoc to parse PDF or other files?
#### 4.12 Do you offer examples of using deepdoc to parse PDF or other files?
Yes, we do. See the Python files under the **rag/app** folder.
#### 4.14 Why did I fail to upload a 10MB+ file to my locally deployed RAGFlow?
#### 4.13 Why did I fail to upload a 10MB+ file to my locally deployed RAGFlow?
You probably forgot to update the **MAX_CONTENT_LENGTH** environment variable:
@ -314,7 +310,7 @@ docker compose up ragflow -d
```
*Now you should be able to upload files of sizes less than 100MB.*
#### 4.15 `Table 'rag_flow.document' doesn't exist`
#### 4.14 `Table 'rag_flow.document' doesn't exist`
This exception occurs when starting up the RAGFlow server. Try the following:
@ -337,7 +333,7 @@ This exception occurs when starting up the RAGFlow server. Try the following:
docker compose up
```
#### 4.16 `hint : 102 Fail to access model Connection error`
#### 4.15 `hint : 102 Fail to access model Connection error`
![hint102](https://github.com/infiniflow/ragflow/assets/93570324/6633d892-b4f8-49b5-9a0a-37a0a8fba3d2)
@ -345,7 +341,7 @@ This exception occurs when starting up the RAGFlow server. Try the following:
2. Do not forget to append **/v1/** to **http://IP:port**:
**http://IP:port/v1/**
#### 4.17 `FileNotFoundError: [Errno 2] No such file or directory`
#### 4.16 `FileNotFoundError: [Errno 2] No such file or directory`
1. Check if the status of your minio container is healthy:
```bash

View File

@ -0,0 +1,535 @@
---
sidebar_class_name: hidden
---
# API reference
RAGFlow offers RESTful APIs for you to integrate its capabilities into third-party applications.
## Base URL
```
http://<host_address>/api/v1/
```
## Dataset URL
```
http://<host_address>/api/v1/dataset
```
## Authorization
All of RAGFlow's RESTFul APIs use API key for authorization, so keep it safe and do not expose it to the front end.
Put your API key in the request header.
```buildoutcfg
Authorization: Bearer {API_KEY}
```
To get your API key:
1. In RAGFlow, click **Chat** tab in the middle top of the page.
2. Hover over the corresponding dialogue **>** **Chat Bot API** to show the chatbot API configuration page.
3. Click **Api Key** **>** **Create new key** to create your API key.
4. Copy and keep your API key safe.
## Create dataset
This method creates (news) a dataset for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-------------|
| POST | `/dataset` |
:::note
You are *required* to save the `data.dataset_id` value returned in the response data, which is the session ID for all upcoming conversations.
:::
#### Request parameter
| Name | Type | Required | Description |
|----------------|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `dataset_name` | string | Yes | The unique identifier assigned to each newly created dataset. `dataset_name` must be less than 2 ** 10 characters and cannot be empty. The following character sets are supported: <br />- 26 lowercase English letters (a-z)<br />- 26 uppercase English letters (A-Z)<br />- 10 digits (0-9)<br />- "_", "-", "." |
### Response
```json
{
"code": 0,
"data": {
"dataset_name": "kb1",
"dataset_id": "375e8ada2d3c11ef98f93043d7ee537e"
},
"message": "success"
}
```
## Get dataset list
This method lists the created datasets for a specific user.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------|
| GET | `/dataset` |
### Response
#### Response parameter
```json
{
"code": 0,
"data": [
{
"avatar": null,
"chunk_num": 0,
"create_date": "Mon, 17 Jun 2024 16:00:05 GMT",
"create_time": 1718611205876,
"created_by": "b48110a0286411ef994a3043d7ee537e",
"description": null,
"doc_num": 0,
"embd_id": "BAAI/bge-large-zh-v1.5",
"id": "9bd6424a2c7f11ef81b83043d7ee537e",
"language": "Chinese",
"name": "dataset3(23)",
"parser_config": {
"pages": [
[
1,
1000000
]
]
},
"parser_id": "naive",
"permission": "me",
"similarity_threshold": 0.2,
"status": "1",
"tenant_id": "b48110a0286411ef994a3043d7ee537e",
"token_num": 0,
"update_date": "Mon, 17 Jun 2024 16:00:05 GMT",
"update_time": 1718611205876,
"vector_similarity_weight": 0.3
}
],
"message": "List datasets successfully!"
}
```
## Delete dataset
This method deletes a dataset for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-------------------------|
| DELETE | `/dataset/{dataset_id}` |
#### Request parameter
| Name | Type | Required | Description |
|--------------|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
### Response
```json
{
"code": 0,
"message": "Remove dataset: 9cefaefc2e2611ef916b3043d7ee537e successfully"
}
```
### Get the details of the specific dataset
This method gets the details of the specific dataset.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------|
| GET | `/dataset/{dataset_id}` |
#### Request parameter
| Name | Type | Required | Description |
|--------------|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
### Response
```json
{
"code": 0,
"data": {
"avatar": null,
"chunk_num": 0,
"description": null,
"doc_num": 0,
"embd_id": "BAAI/bge-large-zh-v1.5",
"id": "060323022e3511efa8263043d7ee537e",
"language": "Chinese",
"name": "test(1)",
"parser_config":
{
"pages": [[1, 1000000]]
},
"parser_id": "naive",
"permission": "me",
"token_num": 0
},
"message": "success"
}
```
### Update the details of the specific dataset
This method updates the details of the specific dataset.
### Request
#### Request URI
| Method | Request URI |
|--------|-------------------------|
| PUT | `/dataset/{dataset_id}` |
#### Request parameter
You are required to input at least one parameter.
| Name | Type | Required | Description |
|----------------------|--------|----------|-----------------------------------------------------------------------|
| `name` | string | No | The name of the knowledge base, from which you get the document list. |
| `description` | string | No | The description of the knowledge base. |
| `permission` | string | No | The permission for the knowledge base, default:me. |
| `language` | string | No | The language of the knowledge base. |
| `chunk_method` | string | No | The chunk method of the knowledge base. |
| `embedding_model_id` | string | No | The embedding model id of the knowledge base. |
| `photo` | string | No | The photo of the knowledge base. |
| `layout_recognize` | bool | No | The layout recognize of the knowledge base. |
| `token_num` | int | No | The token number of the knowledge base. |
| `id` | string | No | The id of the knowledge base. |
### Response
### Successful response
```json
{
"code": 0,
"data": {
"avatar": null,
"chunk_num": 0,
"create_date": "Wed, 19 Jun 2024 20:33:34 GMT",
"create_time": 1718800414518,
"created_by": "b48110a0286411ef994a3043d7ee537e",
"description": "new_description1",
"doc_num": 0,
"embd_id": "BAAI/bge-large-zh-v1.5",
"id": "24f9f17a2e3811ef820e3043d7ee537e",
"language": "English",
"name": "new_name",
"parser_config":
{
"pages": [[1, 1000000]]
},
"parser_id": "naive",
"permission": "me",
"similarity_threshold": 0.2,
"status": "1",
"tenant_id": "b48110a0286411ef994a3043d7ee537e",
"token_num": 0,
"update_date": "Wed, 19 Jun 2024 20:33:34 GMT",
"update_time": 1718800414529,
"vector_similarity_weight": 0.3
},
"message": "success"
}
```
### Response for the operating error
```json
{
"code": 103,
"message": "Only the owner of knowledgebase is authorized for this operation!"
}
```
### Response for no parameter
```json
{
"code": 102,
"message": "Please input at least one parameter that you want to update!"
}
```
------------------------------------------------------------------------------------------------------------------------------
## Upload documents
This method uploads documents for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-----------------------------------|
| POST | `/dataset/{dataset_id}/documents` |
#### Request parameter
| Name | Type | Required | Description |
|--------------|--------|----------|------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
### Response
### Successful response
```json
{
"code": 0,
"data": [
{
"created_by": "b48110a0286411ef994a3043d7ee537e",
"id": "859584a0379211efb1a23043d7ee537e",
"kb_id": "8591349a379211ef92213043d7ee537e",
"location": "test.txt",
"name": "test.txt",
"parser_config": {
"pages": [
[1, 1000000]
]
},
"parser_id": "naive",
"size": 0,
"thumbnail": null,
"type": "doc"
},
{
"created_by": "b48110a0286411ef994a3043d7ee537e",
"id": "8596f18c379211efb1a23043d7ee537e",
"kb_id": "8591349a379211ef92213043d7ee537e",
"location": "test1.txt",
"name": "test1.txt",
"parser_config": {
"pages": [
[1, 1000000]
]
},
"parser_id": "naive",
"size": 0,
"thumbnail": null,
"type": "doc"
}
],
"message": "success"
}
```
### Response for nonexistent files
```json
{
"code": "RetCode.DATA_ERROR",
"message": "The file test_data/imagination.txt does not exist"
}
```
### Response for nonexistent dataset
```json
{
"code": 102,
"message": "Can't find this dataset"
}
```
### Response for the number of files exceeding the limit
```json
{
"code": 102,
"message": "You try to upload 512 files, which exceeds the maximum number of uploading files: 256"
}
```
### Response for uploading without files.
```json
{
"code": 101,
"message": "None is not string."
}
```
## Delete documents
This method deletes documents for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-----------------------------------|
| DELETE | `/dataset/{dataset_id}/documents/{document_id}` |
#### Request parameter
| Name | Type | Required | Description |
|---------------|--------|----------|-------------------------------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
| `document_id` | string | Yes | The ID of the document. Call ['GET' /document](#list-documents) to retrieve the ID. |
### Response
### Successful response
```json
{
"code": 0,
"data": true,
"message": "success"
}
```
### Response for deleting a document that does not exist
```json
{
"code": 102,
"message": "Document 111 not found!"
}
```
### Response for deleting documents from a non-existent dataset
```json
{
"code": 101,
"message": "The document f7aba1ec379b11ef8e853043d7ee537e is not in the dataset: 000, but in the dataset: f7a7ccf2379b11ef83223043d7ee537e."
}
```
## List documents
This method deletes documents for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-----------------------------------|
| GET | `/dataset/{dataset_id}/documents` |
#### Request parameter
| Name | Type | Required | Description |
|--------------|--------|----------|------------------------------------------------------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
| `offset` | int | No | The start of the listed documents. Default: 0 |
| `count` | int | No | The total count of the listed documents. Default: -1, meaning all the later part of documents from the start. |
| `order_by` | string | No | Default: `create_time` |
| `descend` | bool | No | The order of listing documents. Default: True |
| `keywords` | string | No | The searching keywords of listing documents. Default: "" |
### Response
### Successful Response
```json
{
"code": 0,
"data": {
"docs": [
{
"chunk_num": 0,
"create_date": "Mon, 01 Jul 2024 19:24:10 GMT",
"create_time": 1719833050046,
"created_by": "b48110a0286411ef994a3043d7ee537e",
"id": "6fb6f588379c11ef87023043d7ee537e",
"kb_id": "6fb1c9e6379c11efa3523043d7ee537e",
"location": "empty.txt",
"name": "empty.txt",
"parser_config": {
"pages": [
[1, 1000000]
]
},
"parser_id": "naive",
"process_begin_at": null,
"process_duation": 0.0,
"progress": 0.0,
"progress_msg": "",
"run": "0",
"size": 0,
"source_type": "local",
"status": "1",
"thumbnail": null,
"token_num": 0,
"type": "doc",
"update_date": "Mon, 01 Jul 2024 19:24:10 GMT",
"update_time": 1719833050046
},
{
"chunk_num": 0,
"create_date": "Mon, 01 Jul 2024 19:24:10 GMT",
"create_time": 1719833050037,
"created_by": "b48110a0286411ef994a3043d7ee537e",
"id": "6fb59c60379c11ef87023043d7ee537e",
"kb_id": "6fb1c9e6379c11efa3523043d7ee537e",
"location": "test.txt",
"name": "test.txt",
"parser_config": {
"pages": [
[1, 1000000]
]
},
"parser_id": "naive",
"process_begin_at": null,
"process_duation": 0.0,
"progress": 0.0,
"progress_msg": "",
"run": "0",
"size": 0,
"source_type": "local",
"status": "1",
"thumbnail": null,
"token_num": 0,
"type": "doc",
"update_date": "Mon, 01 Jul 2024 19:24:10 GMT",
"update_time": 1719833050037
}
],
"total": 2
},
"message": "success"
}
```
### Response for listing documents with IndexError
```json
{
"code": 100,
"message": "IndexError('Offset is out of the valid range.')"
}
```

45
graph/README.md Normal file
View File

@ -0,0 +1,45 @@
English | [简体中文](./README_zh.md)
# *Graph*
## Introduction
*Graph* is a mathematical concept which is composed of nodes and edges.
It is used to compose a complex work flow or agent.
And this graph is beyond the DAG that we can use circles to describe our agent or work flow.
Under this folder, we propose a test tool ./test/client.py which can test the DSLs such as json files in folder ./test/dsl_examples.
Please use this client at the same folder you start RAGFlow. If it's run by Docker, please go into the container before running the client.
Otherwise, correct configurations in conf/service_conf.yaml is essential.
```bash
PYTHONPATH=path/to/ragflow python graph/test/client.py -h
usage: client.py [-h] -s DSL -t TENANT_ID -m
options:
-h, --help show this help message and exit
-s DSL, --dsl DSL input dsl
-t TENANT_ID, --tenant_id TENANT_ID
Tenant ID
-m, --stream Stream output
```
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/79179c5e-d4d6-464a-b6c4-5721cb329899" width="1000"/>
</div>
## How to gain a TENANT_ID in command line?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/419d8588-87b1-4ab8-ac49-2d1f047a4b97" width="600"/>
</div>
💡 We plan to display it here in the near future.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/c97915de-0091-46a5-afd9-e278946e5fe3" width="600"/>
</div>
## How to set 'kb_ids' for component 'Retrieval' in DSL?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/0a731534-cac8-49fd-8a92-ca247eeef66d" width="600"/>
</div>

46
graph/README_zh.md Normal file
View File

@ -0,0 +1,46 @@
[English](./README.md) | 简体中文
# *Graph*
## 简介
"Graph"是一个由节点和边组成的数学概念。
它被用来构建复杂的工作流或代理。
这个图超越了有向无环图DAG我们可以使用循环来描述我们的代理或工作流。
在这个文件夹下,我们提出了一个测试工具 ./test/client.py
它可以测试像文件夹./test/dsl_examples下一样的DSL文件。
请在启动 RAGFlow 的同一文件夹中使用此客户端。如果它是通过 Docker 运行的,请在运行客户端之前进入容器。
否则,正确配置 conf/service_conf.yaml 文件是必不可少的。
```bash
PYTHONPATH=path/to/ragflow python graph/test/client.py -h
usage: client.py [-h] -s DSL -t TENANT_ID -m
options:
-h, --help show this help message and exit
-s DSL, --dsl DSL input dsl
-t TENANT_ID, --tenant_id TENANT_ID
Tenant ID
-m, --stream Stream output
```
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/05924730-c427-495b-8ee4-90b8b2250681" width="1000"/>
</div>
## 命令行中的TENANT_ID如何获得?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/419d8588-87b1-4ab8-ac49-2d1f047a4b97" width="600"/>
</div>
💡 后面会展示在这里:
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/c97915de-0091-46a5-afd9-e278946e5fe3" width="600"/>
</div>
## DSL里面的Retrieval组件的kb_ids怎么填?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/0a731534-cac8-49fd-8a92-ca247eeef66d" width="600"/>
</div>

0
graph/__init__.py Normal file
View File

295
graph/canvas.py Normal file
View File

@ -0,0 +1,295 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import importlib
import json
import traceback
from abc import ABC
from copy import deepcopy
from functools import partial
import pandas as pd
from graph.component import component_class
from graph.component.base import ComponentBase
from graph.settings import flow_logger, DEBUG
class Canvas(ABC):
"""
dsl = {
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {},
},
"downstream": ["answer_0"],
"upstream": [],
},
"answer_0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval_0"],
"upstream": ["begin", "generate_0"],
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"messages": [],
"reference": [],
"path": [["begin"]],
"answer": []
}
"""
def __init__(self, dsl: str, tenant_id=None):
self.path = []
self.history = []
self.messages = []
self.answer = []
self.components = {}
self.dsl = json.loads(dsl) if dsl else {
"components": {
"begin": {
"obj": {
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": [],
"upstream": []
}
},
"history": [],
"messages": [],
"reference": [],
"path": [],
"answer": []
}
self._tenant_id = tenant_id
self._embed_id = ""
self.load()
def load(self):
self.components = self.dsl["components"]
cpn_nms = set([])
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
assert "Answer" in cpn_nms, "There have to be an 'Answer' component."
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")()
param.update(cpn["obj"]["params"])
param.check()
cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
if cpn["obj"].component_name == "Categorize":
for _, desc in param.category_description.items():
if desc["to"] not in cpn["downstream"]:
cpn["downstream"].append(desc["to"])
self.path = self.dsl["path"]
self.history = self.dsl["history"]
self.messages = self.dsl["messages"]
self.answer = self.dsl["answer"]
self.reference = self.dsl["reference"]
self._embed_id = self.dsl.get("embed_id", "")
def __str__(self):
self.dsl["path"] = self.path
self.dsl["history"] = self.history
self.dsl["messages"] = self.messages
self.dsl["answer"] = self.answer
self.dsl["reference"] = self.reference
self.dsl["embed_id"] = self._embed_id
dsl = {
"components": {}
}
for k in self.dsl.keys():
if k in ["components"]:continue
dsl[k] = deepcopy(self.dsl[k])
for k, cpn in self.components.items():
if k not in dsl["components"]:
dsl["components"][k] = {}
for c in cpn.keys():
if c == "obj":
dsl["components"][k][c] = json.loads(str(cpn["obj"]))
continue
dsl["components"][k][c] = deepcopy(cpn[c])
return json.dumps(dsl, ensure_ascii=False)
def reset(self):
self.path = []
self.history = []
self.messages = []
self.answer = []
self.reference = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
self._embed_id = ""
def run(self, **kwargs):
ans = ""
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
try:
ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
except Exception as e:
ans = ComponentBase.be_output(str(e))
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
assert isinstance(ans, partial)
return ans
self.history.append(("assistant", ans.to_dict("records")))
return ans
if not self.path:
self.components["begin"]["obj"].run(self.history, **kwargs)
self.path.append(["begin"])
self.path.append([])
ran = -1
def prepare2run(cpns):
nonlocal ran, ans
for c in cpns:
cpn = self.components[c]["obj"]
if cpn.component_name == "Answer":
self.answer.append(c)
else:
if DEBUG: print("RUN: ", c)
ans = cpn.run(self.history, **kwargs)
self.path[-1].append(c)
ran += 1
prepare2run(self.components[self.path[-2][-1]]["downstream"])
while 0 <= ran < len(self.path[-1]):
if DEBUG: print(ran, self.path)
cpn_id = self.path[-1][ran]
cpn = self.get_component(cpn_id)
if not cpn["downstream"]: break
loop = self._find_loop()
if loop: raise OverflowError(f"Too much loops: {loop}")
if cpn["obj"].component_name.lower() in ["switch", "categorize", "relevant"]:
switch_out = cpn["obj"].output()[1].iloc[0, 0]
assert switch_out in self.components, \
"{}'s output: {} not valid.".format(cpn_id, switch_out)
try:
prepare2run([switch_out])
except Exception as e:
for p in [c for p in self.path for c in p][::-1]:
if p.lower().find("answer") >= 0:
self.get_component(p)["obj"].set_exception(e)
prepare2run([p])
break
traceback.print_exc()
continue
try:
prepare2run(cpn["downstream"])
except Exception as e:
for p in [c for p in self.path for c in p][::-1]:
if p.lower().find("answer") >= 0:
self.get_component(p)["obj"].set_exception(e)
prepare2run([p])
break
traceback.print_exc()
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
assert isinstance(ans, partial)
return ans
self.history.append(("assistant", ans.to_dict("records")))
return ans
def get_component(self, cpn_id):
return self.components[cpn_id]
def get_tenant_id(self):
return self._tenant_id
def get_history(self, window_size):
convs = []
for role, obj in self.history[window_size * -2:]:
convs.append({"role": role, "content": (obj if role == "user" else
'\n'.join(pd.DataFrame(obj)['content']))})
return convs
def add_user_input(self, question):
self.history.append(("user", question))
def set_embedding_model(self, embed_id):
self._embed_id = embed_id
def get_embedding_model(self):
return self._embed_id
def _find_loop(self, max_loops=2):
path = self.path[-1][::-1]
if len(path) < 2: return False
for i in range(len(path)):
if path[i].lower().find("answer") >= 0:
path = path[:i]
break
if len(path) < 2: return False
for l in range(2, len(path) // 2):
pat = ",".join(path[0:l])
path_str = ",".join(path)
if len(pat) >= len(path_str): return False
loop = max_loops
while path_str.find(pat) == 0 and loop >= 0:
loop -= 1
if len(pat)+1 >= len(path_str):
return False
path_str = path_str[len(pat)+1:]
if loop < 0:
pat = " => ".join([p.split(":")[0] for p in path[0:l]])
return pat + " => " + pat
return False

View File

@ -0,0 +1,19 @@
import importlib
from .begin import Begin, BeginParam
from .generate import Generate, GenerateParam
from .retrieval import Retrieval, RetrievalParam
from .answer import Answer, AnswerParam
from .categorize import Categorize, CategorizeParam
from .switch import Switch, SwitchParam
from .relevant import Relevant, RelevantParam
from .message import Message, MessageParam
from .rewrite import RewriteQuestion, RewriteQuestionParam
from .keyword import KeywordExtract, KeywordExtractParam
from .baidu import Baidu, BaiduParam
from .duckduckgosearch import DuckDuckGoSearch, DuckDuckGoSearchParam
def component_class(class_name):
m = importlib.import_module("graph.component")
c = getattr(m, class_name)
return c

77
graph/component/answer.py Normal file
View File

@ -0,0 +1,77 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
import pandas as pd
from graph.component.base import ComponentBase, ComponentParamBase
class AnswerParam(ComponentParamBase):
"""
Define the Answer component parameters.
"""
def __init__(self):
super().__init__()
self.post_answers = []
def check(self):
return True
class Answer(ComponentBase, ABC):
component_name = "Answer"
def _run(self, history, **kwargs):
if kwargs.get("stream"):
return partial(self.stream_output)
ans = self.get_input()
if self._param.post_answers:
ans = pd.concat([ans, pd.DataFrame([{"content": random.choice(self._param.post_answers)}])], ignore_index=False)
return ans
def stream_output(self):
res = None
if hasattr(self, "exception") and self.exception:
res = {"content": str(self.exception)}
self.exception = None
yield res
self.set_output(res)
return
stream = self.get_stream_input()
if isinstance(stream, pd.DataFrame):
res = stream
for ii, row in stream.iterrows():
yield row.to_dict()
else:
for st in stream():
res = st
yield st
if self._param.post_answers:
res["content"] += random.choice(self._param.post_answers)
yield res
self.set_output(res)
def set_exception(self, e):
self.exception = e

62
graph/component/baidu.py Normal file
View File

@ -0,0 +1,62 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
import pandas as pd
import requests
import re
from graph.component.base import ComponentBase, ComponentParamBase
class BaiduParam(ComponentParamBase):
"""
Define the Baidu component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class Baidu(ComponentBase, ABC):
component_name = "Baidu"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Baidu.be_output(self._param.no)
url = 'https://www.baidu.com/s?wd=' + ans + '&rn=' + str(self._param.top_n)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36'}
response = requests.get(url=url, headers=headers)
url_res = re.findall(r"'url': \\\"(.*?)\\\"}", response.text)
title_res = re.findall(r"'title': \\\"(.*?)\\\",\\n", response.text)
body_res = re.findall(r"\"contentText\":\"(.*?)\"", response.text)
baidu_res = [re.sub('<em>|</em>', '', '<a href="' + url + '">' + title + '</a> ' + body) for url, title, body
in zip(url_res, title_res, body_res)]
del body_res, url_res, title_res
br = pd.DataFrame(baidu_res, columns=['content'])
print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", br)
return br

480
graph/component/base.py Normal file
View File

@ -0,0 +1,480 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import builtins
import json
import os
from copy import deepcopy
from functools import partial
from typing import List, Dict, Tuple, Union
import pandas as pd
from graph import settings
from graph.settings import flow_logger, DEBUG
_FEEDED_DEPRECATED_PARAMS = "_feeded_deprecated_params"
_DEPRECATED_PARAMS = "_deprecated_params"
_USER_FEEDED_PARAMS = "_user_feeded_params"
_IS_RAW_CONF = "_is_raw_conf"
class ComponentParamBase(ABC):
def __init__(self):
self.output_var_name = "output"
self.message_history_window_size = 4
def set_name(self, name: str):
self._name = name
return self
def check(self):
raise NotImplementedError("Parameter Object should be checked.")
@classmethod
def _get_or_init_deprecated_params_set(cls):
if not hasattr(cls, _DEPRECATED_PARAMS):
setattr(cls, _DEPRECATED_PARAMS, set())
return getattr(cls, _DEPRECATED_PARAMS)
def _get_or_init_feeded_deprecated_params_set(self, conf=None):
if not hasattr(self, _FEEDED_DEPRECATED_PARAMS):
if conf is None:
setattr(self, _FEEDED_DEPRECATED_PARAMS, set())
else:
setattr(
self,
_FEEDED_DEPRECATED_PARAMS,
set(conf[_FEEDED_DEPRECATED_PARAMS]),
)
return getattr(self, _FEEDED_DEPRECATED_PARAMS)
def _get_or_init_user_feeded_params_set(self, conf=None):
if not hasattr(self, _USER_FEEDED_PARAMS):
if conf is None:
setattr(self, _USER_FEEDED_PARAMS, set())
else:
setattr(self, _USER_FEEDED_PARAMS, set(conf[_USER_FEEDED_PARAMS]))
return getattr(self, _USER_FEEDED_PARAMS)
def get_user_feeded(self):
return self._get_or_init_user_feeded_params_set()
def get_feeded_deprecated_params(self):
return self._get_or_init_feeded_deprecated_params_set()
@property
def _deprecated_params_set(self):
return {name: True for name in self.get_feeded_deprecated_params()}
def __str__(self):
return json.dumps(self.as_dict(), ensure_ascii=False)
def as_dict(self):
def _recursive_convert_obj_to_dict(obj):
ret_dict = {}
for attr_name in list(obj.__dict__):
if attr_name in [_FEEDED_DEPRECATED_PARAMS, _DEPRECATED_PARAMS, _USER_FEEDED_PARAMS, _IS_RAW_CONF]:
continue
# get attr
attr = getattr(obj, attr_name)
if isinstance(attr, pd.DataFrame):
ret_dict[attr_name] = attr.to_dict()
continue
if attr and type(attr).__name__ not in dir(builtins):
ret_dict[attr_name] = _recursive_convert_obj_to_dict(attr)
else:
ret_dict[attr_name] = attr
return ret_dict
return _recursive_convert_obj_to_dict(self)
def update(self, conf, allow_redundant=False):
update_from_raw_conf = conf.get(_IS_RAW_CONF, True)
if update_from_raw_conf:
deprecated_params_set = self._get_or_init_deprecated_params_set()
feeded_deprecated_params_set = (
self._get_or_init_feeded_deprecated_params_set()
)
user_feeded_params_set = self._get_or_init_user_feeded_params_set()
setattr(self, _IS_RAW_CONF, False)
else:
feeded_deprecated_params_set = (
self._get_or_init_feeded_deprecated_params_set(conf)
)
user_feeded_params_set = self._get_or_init_user_feeded_params_set(conf)
def _recursive_update_param(param, config, depth, prefix):
if depth > settings.PARAM_MAXDEPTH:
raise ValueError("Param define nesting too deep!!!, can not parse it")
inst_variables = param.__dict__
redundant_attrs = []
for config_key, config_value in config.items():
# redundant attr
if config_key not in inst_variables:
if not update_from_raw_conf and config_key.startswith("_"):
setattr(param, config_key, config_value)
else:
setattr(param, config_key, config_value)
# redundant_attrs.append(config_key)
continue
full_config_key = f"{prefix}{config_key}"
if update_from_raw_conf:
# add user feeded params
user_feeded_params_set.add(full_config_key)
# update user feeded deprecated param set
if full_config_key in deprecated_params_set:
feeded_deprecated_params_set.add(full_config_key)
# supported attr
attr = getattr(param, config_key)
if type(attr).__name__ in dir(builtins) or attr is None:
setattr(param, config_key, config_value)
else:
# recursive set obj attr
sub_params = _recursive_update_param(
attr, config_value, depth + 1, prefix=f"{prefix}{config_key}."
)
setattr(param, config_key, sub_params)
if not allow_redundant and redundant_attrs:
raise ValueError(
f"cpn `{getattr(self, '_name', type(self))}` has redundant parameters: `{[redundant_attrs]}`"
)
return param
return _recursive_update_param(param=self, config=conf, depth=0, prefix="")
def extract_not_builtin(self):
def _get_not_builtin_types(obj):
ret_dict = {}
for variable in obj.__dict__:
attr = getattr(obj, variable)
if attr and type(attr).__name__ not in dir(builtins):
ret_dict[variable] = _get_not_builtin_types(attr)
return ret_dict
return _get_not_builtin_types(self)
def validate(self):
self.builtin_types = dir(builtins)
self.func = {
"ge": self._greater_equal_than,
"le": self._less_equal_than,
"in": self._in,
"not_in": self._not_in,
"range": self._range,
}
home_dir = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
param_validation_path_prefix = home_dir + "/param_validation/"
param_name = type(self).__name__
param_validation_path = "/".join(
[param_validation_path_prefix, param_name + ".json"]
)
validation_json = None
try:
with open(param_validation_path, "r") as fin:
validation_json = json.loads(fin.read())
except BaseException:
return
self._validate_param(self, validation_json)
def _validate_param(self, param_obj, validation_json):
default_section = type(param_obj).__name__
var_list = param_obj.__dict__
for variable in var_list:
attr = getattr(param_obj, variable)
if type(attr).__name__ in self.builtin_types or attr is None:
if variable not in validation_json:
continue
validation_dict = validation_json[default_section][variable]
value = getattr(param_obj, variable)
value_legal = False
for op_type in validation_dict:
if self.func[op_type](value, validation_dict[op_type]):
value_legal = True
break
if not value_legal:
raise ValueError(
"Plase check runtime conf, {} = {} does not match user-parameter restriction".format(
variable, value
)
)
elif variable in validation_json:
self._validate_param(attr, validation_json)
@staticmethod
def check_string(param, descr):
if type(param).__name__ not in ["str"]:
raise ValueError(
descr + " {} not supported, should be string type".format(param)
)
@staticmethod
def check_empty(param, descr):
if not param:
raise ValueError(
descr + " does not support empty value."
)
@staticmethod
def check_positive_integer(param, descr):
if type(param).__name__ not in ["int", "long"] or param <= 0:
raise ValueError(
descr + " {} not supported, should be positive integer".format(param)
)
@staticmethod
def check_positive_number(param, descr):
if type(param).__name__ not in ["float", "int", "long"] or param <= 0:
raise ValueError(
descr + " {} not supported, should be positive numeric".format(param)
)
@staticmethod
def check_nonnegative_number(param, descr):
if type(param).__name__ not in ["float", "int", "long"] or param < 0:
raise ValueError(
descr
+ " {} not supported, should be non-negative numeric".format(param)
)
@staticmethod
def check_decimal_float(param, descr):
if type(param).__name__ not in ["float", "int"] or param < 0 or param > 1:
raise ValueError(
descr
+ " {} not supported, should be a float number in range [0, 1]".format(
param
)
)
@staticmethod
def check_boolean(param, descr):
if type(param).__name__ != "bool":
raise ValueError(
descr + " {} not supported, should be bool type".format(param)
)
@staticmethod
def check_open_unit_interval(param, descr):
if type(param).__name__ not in ["float"] or param <= 0 or param >= 1:
raise ValueError(
descr + " should be a numeric number between 0 and 1 exclusively"
)
@staticmethod
def check_valid_value(param, descr, valid_values):
if param not in valid_values:
raise ValueError(
descr
+ " {} is not supported, it should be in {}".format(param, valid_values)
)
@staticmethod
def check_defined_type(param, descr, types):
if type(param).__name__ not in types:
raise ValueError(
descr + " {} not supported, should be one of {}".format(param, types)
)
@staticmethod
def check_and_change_lower(param, valid_list, descr=""):
if type(param).__name__ != "str":
raise ValueError(
descr
+ " {} not supported, should be one of {}".format(param, valid_list)
)
lower_param = param.lower()
if lower_param in valid_list:
return lower_param
else:
raise ValueError(
descr
+ " {} not supported, should be one of {}".format(param, valid_list)
)
@staticmethod
def _greater_equal_than(value, limit):
return value >= limit - settings.FLOAT_ZERO
@staticmethod
def _less_equal_than(value, limit):
return value <= limit + settings.FLOAT_ZERO
@staticmethod
def _range(value, ranges):
in_range = False
for left_limit, right_limit in ranges:
if (
left_limit - settings.FLOAT_ZERO
<= value
<= right_limit + settings.FLOAT_ZERO
):
in_range = True
break
return in_range
@staticmethod
def _in(value, right_value_list):
return value in right_value_list
@staticmethod
def _not_in(value, wrong_value_list):
return value not in wrong_value_list
def _warn_deprecated_param(self, param_name, descr):
if self._deprecated_params_set.get(param_name):
flow_logger.warning(
f"{descr} {param_name} is deprecated and ignored in this version."
)
def _warn_to_deprecate_param(self, param_name, descr, new_param):
if self._deprecated_params_set.get(param_name):
flow_logger.warning(
f"{descr} {param_name} will be deprecated in future release; "
f"please use {new_param} instead."
)
return True
return False
class ComponentBase(ABC):
component_name: str
def __str__(self):
"""
{
"component_name": "Begin",
"params": {}
}
"""
return """{{
"component_name": "{}",
"params": {}
}}""".format(self.component_name,
self._param
)
def __init__(self, canvas, id, param: ComponentParamBase):
self._canvas = canvas
self._id = id
self._param = param
self._param.check()
def run(self, history, **kwargs):
flow_logger.info("{}, history: {}, kwargs: {}".format(self, json.dumps(history, ensure_ascii=False),
json.dumps(kwargs, ensure_ascii=False)))
try:
res = self._run(history, **kwargs)
self.set_output(res)
except Exception as e:
self.set_output(pd.DataFrame([{"content": str(e)}]))
raise e
return res
def _run(self, history, **kwargs):
raise NotImplementedError()
def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
o = getattr(self._param, self._param.output_var_name)
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
if not isinstance(o, list): o = [o]
o = pd.DataFrame(o)
if allow_partial or not isinstance(o, partial):
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
return pd.DataFrame(o if isinstance(o, list) else [o])
return self._param.output_var_name, o
outs = None
for oo in o():
if not isinstance(oo, pd.DataFrame):
outs = pd.DataFrame(oo if isinstance(oo, list) else [oo])
else: outs = oo
return self._param.output_var_name, outs
def reset(self):
setattr(self._param, self._param.output_var_name, None)
def set_output(self, v: pd.DataFrame):
setattr(self._param, self._param.output_var_name, v)
def get_input(self):
upstream_outs = []
reversed_cpnts = []
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
if DEBUG: print(self.component_name, reversed_cpnts[::-1])
for u in reversed_cpnts[::-1]:
if self.get_component_name(u) in ["switch"]: continue
if self.component_name.lower().find("switch") < 0 \
and self.get_component_name(u) in ["relevant", "categorize"]:
continue
if u.lower().find("answer") >= 0:
for r, c in self._canvas.history[::-1]:
if r == "user":
upstream_outs.append(pd.DataFrame([{"content": c}]))
break
break
if self.component_name.lower().find("answer") >= 0:
if self.get_component_name(u) in ["relevant"]: continue
else: upstream_outs.append(self._canvas.get_component(u)["obj"].output(allow_partial=False)[1])
break
return pd.concat(upstream_outs, ignore_index=False)
def get_stream_input(self):
reversed_cpnts = []
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
for u in reversed_cpnts[::-1]:
if self.get_component_name(u) in ["switch", "answer"]: continue
return self._canvas.get_component(u)["obj"].output()[1]
@staticmethod
def be_output(v):
return pd.DataFrame([{"content": v}])
def get_component_name(self, cpn_id):
return self._canvas.get_component(cpn_id)["obj"].component_name.lower()

49
graph/component/begin.py Normal file
View File

@ -0,0 +1,49 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from functools import partial
import pandas as pd
from graph.component.base import ComponentBase, ComponentParamBase
class BeginParam(ComponentParamBase):
"""
Define the Begin component parameters.
"""
def __init__(self):
super().__init__()
self.prologue = "Hi! I'm your smart assistant. What can I do for you?"
def check(self):
return True
class Begin(ComponentBase):
component_name = "Begin"
def _run(self, history, **kwargs):
if kwargs.get("stream"):
return partial(self.stream_output)
return pd.DataFrame([{"content": self._param.prologue}])
def stream_output(self):
res = {"content": self._param.prologue}
yield res
self.set_output(res)

View File

@ -0,0 +1,90 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from graph.component import GenerateParam, Generate
from graph.settings import DEBUG
class CategorizeParam(GenerateParam):
"""
Define the Categorize component parameters.
"""
def __init__(self):
super().__init__()
self.category_description = {}
self.prompt = ""
def check(self):
super().check()
self.check_empty(self.category_description, "[Categorize] Category examples")
for k, v in self.category_description.items():
if not k: raise ValueError(f"[Categorize] Category name can not be empty!")
if not v.get("to"): raise ValueError(f"[Categorize] 'To' of category {k} can not be empty!")
def get_prompt(self):
cate_lines = []
for c, desc in self.category_description.items():
for l in desc.get("examples", "").split("\n"):
if not l: continue
cate_lines.append("Question: {}\tCategory: {}".format(l, c))
descriptions = []
for c, desc in self.category_description.items():
if desc.get("description"):
descriptions.append(
"--------------------\nCategory: {}\nDescription: {}\n".format(c, desc["description"]))
self.prompt = """
You're a text classifier. You need to categorize the users questions into {} categories,
namely: {}
Here's description of each category:
{}
You could learn from the following examples:
{}
You could learn from the above examples.
Just mention the category names, no need for any additional words.
""".format(
len(self.category_description.keys()),
"/".join(list(self.category_description.keys())),
"\n".join(descriptions),
"- ".join(cate_lines)
)
return self.prompt
class Categorize(Generate, ABC):
component_name = "Categorize"
def _run(self, history, **kwargs):
input = self.get_input()
input = "Question: " + ("; ".join(input["content"]) if "content" in input else "") + "Category: "
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": input}],
self._param.gen_conf())
if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::", input)
for c in self._param.category_description.keys():
if ans.lower().find(c.lower()) >= 0:
return Categorize.be_output(self._param.category_description[c]["to"])
return Categorize.be_output(self._param.category_description.items()[-1][1]["to"])

75
graph/component/cite.py Normal file
View File

@ -0,0 +1,75 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from graph.component.base import ComponentBase, ComponentParamBase
class CiteParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.cite_sources = []
def check(self):
self.check_empty(self.cite_source, "Please specify where you want to cite from.")
class Cite(ComponentBase, ABC):
component_name = "Cite"
def _run(self, history, **kwargs):
input = "\n- ".join(self.get_input()["content"])
sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source]
query = []
for role, cnt in history[::-1][:self._param.message_history_window_size]:
if role != "user":continue
query.append(cnt)
query = "\n".join(query)
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
if not kbs:
raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl)
if not kbinfos["chunks"]: return pd.DataFrame()
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
return df

View File

@ -0,0 +1,62 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
from duckduckgo_search import DDGS
import pandas as pd
from graph.component.base import ComponentBase, ComponentParamBase
class DuckDuckGoSearchParam(ComponentParamBase):
"""
Define the DuckDuckGoSearch component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.channel = "text"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.channel, "Web Search or News", ["text", "news"])
class DuckDuckGoSearch(ComponentBase, ABC):
component_name = "DuckDuckGoSearch"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Baidu.be_output(self._param.no)
if self.channel == "text":
with DDGS() as ddgs:
# {'title': '', 'href': '', 'body': ''}
duck_res = ['<a href="' + i["href"] + '">' + i["title"] + '</a> ' + i["body"] for i in
ddgs.text(ans, max_results=self._param.top_n)]
elif self.channel == "news":
with DDGS() as ddgs:
# {'date': '', 'title': '', 'body': '', 'url': '', 'image': '', 'source': ''}
duck_res = ['<a href="' + i["url"] + '">' + i["title"] + '</a> ' + i["body"] for i in
ddgs.news(ans, max_results=self._param.top_n)]
dr = pd.DataFrame(duck_res, columns=['content'])
print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", dr)
return dr

164
graph/component/generate.py Normal file
View File

@ -0,0 +1,164 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from functools import partial
import pandas as pd
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from graph.component.base import ComponentBase, ComponentParamBase
class GenerateParam(ComponentParamBase):
"""
Define the Generate component parameters.
"""
def __init__(self):
super().__init__()
self.llm_id = ""
self.prompt = ""
self.max_tokens = 0
self.temperature = 0
self.top_p = 0
self.presence_penalty = 0
self.frequency_penalty = 0
self.cite = True
self.parameters = []
def check(self):
self.check_decimal_float(self.temperature, "[Generate] Temperature")
self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
self.check_decimal_float(self.top_p, "[Generate] Top P")
self.check_empty(self.llm_id, "[Generate] LLM")
# self.check_defined_type(self.parameters, "Parameters", ["list"])
def gen_conf(self):
conf = {}
if self.max_tokens > 0: conf["max_tokens"] = self.max_tokens
if self.temperature > 0: conf["temperature"] = self.temperature
if self.top_p > 0: conf["top_p"] = self.top_p
if self.presence_penalty > 0: conf["presence_penalty"] = self.presence_penalty
if self.frequency_penalty > 0: conf["frequency_penalty"] = self.frequency_penalty
return conf
class Generate(ComponentBase):
component_name = "Generate"
def _run(self, history, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
prompt = self._param.prompt
retrieval_res = self.get_input()
input = "\n- ".join(retrieval_res["content"])
for para in self._param.parameters:
cpn = self._canvas.get_component(para["component_id"])["obj"]
_, out = cpn.output(allow_partial=False)
if "content" not in out.columns:
kwargs[para["key"]] = "Nothing"
else:
kwargs[para["key"]] = "\n - ".join(out["content"])
kwargs["input"] = input
for n, v in kwargs.items():
# prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt)
prompt = re.sub(r"\{%s\}" % n, str(v), prompt)
if kwargs.get("stream"):
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
if "empty_response" in retrieval_res.columns:
return Generate.be_output(input)
ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size),
self._param.gen_conf())
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
ans, idx = retrievaler.insert_citations(ans,
[ck["content_ltks"]
for _, ck in retrieval_res.iterrows()],
[ck["vector"]
for _, ck in retrieval_res.iterrows()],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()),
tkweight=0.7,
vtweight=0.3)
del retrieval_res["vector"]
retrieval_res = retrieval_res.to_dict("records")
df = []
for i in idx:
df.append(retrieval_res[int(i)])
r = re.search(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), ans)
assert r, f"{i} => {ans}"
df[-1]["content"] = r.group(1)
ans = re.sub(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), "", ans)
if ans: df.append({"content": ans})
return pd.DataFrame(df)
return Generate.be_output(ans)
def stream_output(self, chat_mdl, prompt, retrieval_res):
res = None
if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []}
yield res
self.set_output(res)
return
answer = ""
for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size),
self._param.gen_conf()):
res = {"content": ans, "reference": []}
answer = ans
yield res
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
answer, idx = retrievaler.insert_citations(answer,
[ck["content_ltks"]
for _, ck in retrieval_res.iterrows()],
[ck["vector"]
for _, ck in retrieval_res.iterrows()],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()),
tkweight=0.7,
vtweight=0.3)
doc_ids = set([])
recall_docs = []
for i in idx:
did = retrieval_res.loc[int(i), "doc_id"]
if did in doc_ids: continue
doc_ids.add(did)
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
del retrieval_res["vector"]
del retrieval_res["content_ltks"]
reference = {
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
"doc_aggs": recall_docs
}
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
res = {"content": answer, "reference": reference}
yield res
self.set_output(res)

View File

@ -0,0 +1,65 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from graph.component import GenerateParam, Generate
from graph.settings import DEBUG
class KeywordExtractParam(GenerateParam):
"""
Define the KeywordExtract component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 1
def check(self):
super().check()
self.check_positive_integer(self.top_n, "Top N")
def get_prompt(self):
self.prompt = """
- Role: You're a question analyzer.
- Requirements:
- Summarize user's question, and give top %s important keyword/phrase.
- Use comma as a delimiter to separate keywords/phrases.
- Answer format: (in language of user's question)
- keyword:
""" % self.top_n
return self.prompt
class KeywordExtract(Generate, ABC):
component_name = "KeywordExtract"
def _run(self, history, **kwargs):
q = ""
for r, c in self._canvas.history[::-1]:
if r == "user":
q += c
break
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
self._param.gen_conf())
ans = re.sub(r".*keyword:", "", ans).strip()
if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::")
return KeywordExtract.be_output(ans)

View File

@ -0,0 +1,52 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
import pandas as pd
from graph.component.base import ComponentBase, ComponentParamBase
class MessageParam(ComponentParamBase):
"""
Define the Message component parameters.
"""
def __init__(self):
super().__init__()
self.messages = []
def check(self):
self.check_empty(self.messages, "[Message]")
return True
class Message(ComponentBase, ABC):
component_name = "Message"
def _run(self, history, **kwargs):
if kwargs.get("stream"):
return partial(self.stream_output)
return Message.be_output(random.choice(self._param.messages))
def stream_output(self):
if self._param.messages:
yield {"content": random.choice(self._param.messages)}

View File

@ -0,0 +1,80 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from graph.component import GenerateParam, Generate
from rag.utils import num_tokens_from_string, encoder
class RelevantParam(GenerateParam):
"""
Define the Relevant component parameters.
"""
def __init__(self):
super().__init__()
self.prompt = ""
self.yes = ""
self.no = ""
def check(self):
super().check()
self.check_empty(self.yes, "[Relevant] 'Yes'")
self.check_empty(self.no, "[Relevant] 'No'")
def get_prompt(self):
self.prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
No other words needed except 'yes' or 'no'.
"""
return self.prompt
class Relevant(Generate, ABC):
component_name = "Relevant"
def _run(self, history, **kwargs):
q = ""
for r, c in self._canvas.history[::-1]:
if r == "user":
q = c
break
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Relevant.be_output(self._param.no)
ans = "Documents: \n" + ans
ans = f"Question: {q}\n" + ans
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
if num_tokens_from_string(ans) >= chat_mdl.max_length - 4:
ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4])
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}],
self._param.gen_conf())
print(ans, ":::::::::::::::::::::::::::::::::")
if ans.lower().find("yes") >= 0:
return Relevant.be_output(self._param.yes)
if ans.lower().find("no") >= 0:
return Relevant.be_output(self._param.no)
assert False, f"Relevant component got: {ans}"

View File

@ -0,0 +1,88 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from graph.component.base import ComponentBase, ComponentParamBase
class RetrievalParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.similarity_threshold = 0.2
self.keywords_similarity_weight = 0.5
self.top_n = 8
self.top_k = 1024
self.kb_ids = []
self.rerank_id = ""
self.empty_response = ""
def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight")
self.check_positive_number(self.top_n, "[Retrieval] Top N")
self.check_empty(self.kb_ids, "[Retrieval] Knowledge bases")
class Retrieval(ComponentBase, ABC):
component_name = "Retrieval"
def _run(self, history, **kwargs):
query = []
for role, cnt in history[::-1][:self._param.message_history_window_size]:
if role != "user":continue
query.append(cnt)
query = "\n".join(query)
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
if not kbs:
raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
self._canvas.set_embedding_model(embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl)
if not kbinfos["chunks"]:
df = Retrieval.be_output(self._param.empty_response)
df["empty_response"] = True
return df
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", query, df)
return df

View File

@ -0,0 +1,72 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from graph.component import GenerateParam, Generate
class RewriteQuestionParam(GenerateParam):
"""
Define the QuestionRewrite component parameters.
"""
def __init__(self):
super().__init__()
self.temperature = 0.9
self.prompt = ""
self.loop = 1
def check(self):
super().check()
def get_prompt(self):
self.prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
return self.prompt
class RewriteQuestion(Generate, ABC):
component_name = "RewriteQuestion"
def _run(self, history, **kwargs):
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
if self._loop >= self._param.loop:
self._loop = 0
raise Exception("Maximum loop time exceeds. Can't find relevant information.")
self._loop += 1
q = "Question: "
for r, c in self._canvas.history[::-1]:
if r == "user":
q += c
break
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
self._param.gen_conf())
print(ans, ":::::::::::::::::::::::::::::::::")
return RewriteQuestion.be_output(ans)

82
graph/component/switch.py Normal file
View File

@ -0,0 +1,82 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from graph.component.base import ComponentBase, ComponentParamBase
class SwitchParam(ComponentParamBase):
"""
Define the Switch component parameters.
"""
def __init__(self):
super().__init__()
"""
{
"cpn_id": "categorize:0",
"not": False,
"operator": "gt/gte/lt/lte/eq/in",
"value": "",
"to": ""
}
"""
self.conditions = []
self.default = ""
def check(self):
self.check_empty(self.conditions, "[Switch] conditions")
self.check_empty(self.default, "[Switch] Default path")
for cond in self.conditions:
if not cond["to"]: raise ValueError(f"[Switch] 'To' can not be empty!")
def operators(self, field, op, value):
if op == "gt":
return float(field) > float(value)
if op == "gte":
return float(field) >= float(value)
if op == "lt":
return float(field) < float(value)
if op == "lte":
return float(field) <= float(value)
if op == "eq":
return str(field) == str(value)
if op == "in":
return str(field).find(str(value)) >= 0
return False
class Switch(ComponentBase, ABC):
component_name = "Switch"
def _run(self, history, **kwargs):
for cond in self._param.conditions:
input = self._canvas.get_component(cond["cpn_id"])["obj"].output()[1]
if self._param.operators(input.iloc[0, 0], cond["operator"], cond["value"]):
if not cond["not"]:
return pd.DataFrame([{"content": cond["to"]}])
return pd.DataFrame([{"content": self._param.default}])

34
graph/settings.py Normal file
View File

@ -0,0 +1,34 @@
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Logger
import os
from api.utils.file_utils import get_project_base_directory
from api.utils.log_utils import LoggerFactory, getLogger
DEBUG = 0
LoggerFactory.set_directory(
os.path.join(
get_project_base_directory(),
"logs",
"flow"))
# {CRITICAL: 50, FATAL:50, ERROR:40, WARNING:30, WARN:30, INFO:20, DEBUG:10, NOTSET:0}
LoggerFactory.LEVEL = 30
flow_logger = getLogger("flow")
database_logger = getLogger("database")
FLOAT_ZERO = 1e-8
PARAM_MAXDEPTH = 5

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

49
graph/test/client.py Normal file
View File

@ -0,0 +1,49 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
from functools import partial
import readline
from graph.canvas import Canvas
from graph.settings import DEBUG
if __name__ == '__main__':
parser = argparse.ArgumentParser()
dsl_default_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"dsl_examples",
"retrieval_and_generate.json",
)
parser.add_argument('-s', '--dsl', default=dsl_default_path, help="input dsl", action='store', required=True)
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
parser.add_argument('-m', '--stream', default=False, help="Stream output", action='store_true', required=False)
args = parser.parse_args()
canvas = Canvas(open(args.dsl, "r").read(), args.tenant_id)
while True:
ans = canvas.run(stream=args.stream)
print("==================== Bot =====================\n> ", end='')
if args.stream and isinstance(ans, partial):
cont = ""
for an in ans():
print(an["content"][len(cont):], end='', flush=True)
cont = an["content"]
else:
print(ans["content"])
if DEBUG: print(canvas.path)
question = input("\n==================== User =====================\n> ")
canvas.add_user_input(question)

View File

@ -0,0 +1,45 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?"
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?"
}
}
}
},
"downstream": [],
"upstream": ["answer:0"]
}
},
"history": [],
"path": [],
"answer": []
}

View File

@ -0,0 +1,157 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi! How can I help you?"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin", "generate:0", "generate:casual", "generate:answer", "generate:complain", "generate:ask_contact", "message:get_contact"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?\nException: Can't connect to ES cluster\nHow to build the RAGFlow image from scratch",
"to": "retrieval:0"
},
"casual": {
"description": "The question is not about the product usage, appearance and how it works. Just casual chat.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "generate:casual"
},
"complain": {
"description": "Complain even curse about the product or service you provide. But the comment is not specific enough.",
"examples": "How bad is it.\nIt's really sucks.\nDamn, for God's sake, can it be more steady?\nShit, I just can't use this shit.\nI can't stand it anymore.",
"to": "generate:complain"
},
"answer": {
"description": "This answer provide a specific contact information, like e-mail, phone number, wechat number, line number, twitter, discord, etc,.",
"examples": "My phone number is 203921\nkevinhu.hk@gmail.com\nThis is my discord number: johndowson_29384",
"to": "message:get_contact"
}
},
"message_history_window_size": 8
}
},
"downstream": ["retrieval:0", "generate:casual", "generate:complain", "message:get_contact"],
"upstream": ["answer:0"]
},
"generate:casual": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are a customer support. But the customer wants to have a casual chat with you instead of consulting about the product. Be nice, funny, enthusiasm and concern.",
"temperature": 0.9,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
},
"generate:complain": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are a customer support. the Customers complain even curse about the products but not specific enough. You need to ask him/her what's the specific problem with the product. Be nice, patient and concern to soothe your customers emotions at first place.",
"temperature": 0.9,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"]
}
},
"downstream": ["relevant:0"],
"upstream": ["categorize:0"]
},
"relevant:0": {
"obj": {
"component_name": "Relevant",
"params": {
"llm_id": "deepseek-chat",
"temperature": 0.02,
"yes": "generate:answer",
"no": "generate:ask_contact"
}
},
"downstream": ["generate:answer", "generate:ask_contact"],
"upstream": ["retrieval:0"]
},
"generate:answer": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
"temperature": 0.02
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
},
"generate:ask_contact": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are a customer support. But you can't answer to customers' question. You need to request their contact like E-mail, phone number, Wechat number, LINE number, twitter, discord, etc,. Product experts will contact them later. Please do not ask the same question twice.",
"temperature": 0.9,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
},
"message:get_contact": {
"obj":{
"component_name": "Message",
"params": {
"messages": [
"Okay, I've already write this down. What else I can do for you?",
"Get it. What else I can do for you?",
"Thanks for your trust! Our expert will contact ASAP. So, anything else I can do for you?",
"Thanks! So, anything else I can do for you?"
]
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@ -0,0 +1,210 @@
{
"components": {
"begin": {
"obj": {
"component_name": "Begin",
"params": {
"prologue": "您好我是AGI方向的猎头了解到您是这方面的大佬然后冒昧的就联系到您。这边有个机会想和您分享RAGFlow正在招聘您这个岗位的资深的工程师不知道您那边是不是感兴趣"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin", "message:reject"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"about_job": {
"description": "该问题关于职位本身或公司的信息。",
"examples": "什么岗位?\n汇报对象是谁?\n公司多少人\n公司有啥产品\n具体工作内容是啥\n地点哪里\n双休吗",
"to": "retrieval:0"
},
"casual": {
"description": "该问题不关于职位本身或公司的信息,属于闲聊。",
"examples": "你好\n好久不见\n你男的女的\n你是猴子派来的救兵吗\n上午开会了?\n你叫啥\n最近市场如何?生意好做吗?",
"to": "generate:casual"
},
"interested": {
"description": "该回答表示他对于该职位感兴趣。",
"examples": "嗯\n说吧\n说说看\n还好吧\n是的\n哦\nyes\n具体说说",
"to": "message:introduction"
},
"answer": {
"description": "该回答表示他对于该职位不感兴趣,或感觉受到骚扰。",
"examples": "不需要\n不感兴趣\n暂时不看\n不要\nno\n我已经不干这个了\n我不是这个方向的",
"to": "message:reject"
}
}
}
},
"downstream": [
"message:introduction",
"generate:casual",
"message:reject",
"retrieval:0"
],
"upstream": ["answer:0"]
},
"message:introduction": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"我简单介绍以下:\nRAGFlow 是一款基于深度文档理解构建的开源 RAGRetrieval-Augmented Generation引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程结合大语言模型LLM针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。https://github.com/infiniflow/ragflow\n您那边还有什么要了解的"
]
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:0"]
},
"answer:1": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:1"],
"upstream": [
"message:introduction",
"generate:aboutJob",
"generate:casual",
"generate:get_wechat",
"generate:nowechat"
]
},
"categorize:1": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"about_job": {
"description": "该问题关于职位本身或公司的信息。",
"examples": "什么岗位?\n汇报对象是谁?\n公司多少人\n公司有啥产品\n具体工作内容是啥\n地点哪里\n双休吗",
"to": "retrieval:0"
},
"casual": {
"description": "该问题不关于职位本身或公司的信息,属于闲聊。",
"examples": "你好\n好久不见\n你男的女的\n你是猴子派来的救兵吗\n上午开会了?\n你叫啥\n最近市场如何?生意好做吗?",
"to": "generate:casual"
},
"wechat": {
"description": "该回答表示他愿意加微信,或者已经报了微信号。",
"examples": "嗯\n可以\n是的\n哦\nyes\n15002333453\nwindblow_2231",
"to": "generate:get_wechat"
},
"giveup": {
"description": "该回答表示他不愿意加微信。",
"examples": "不需要\n不感兴趣\n暂时不看\n不要\nno\n不方便\n不知道还要加我微信",
"to": "generate:nowechat"
}
},
"message_history_window_size": 8
}
},
"downstream": [
"retrieval:0",
"generate:casual",
"generate:get_wechat",
"generate:nowechat"
],
"upstream": ["answer:1"]
},
"generate:casual": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头现在候选人的聊了和职位无关的话题请耐心的回应候选人并将话题往该AGI的职位上带最好能要到候选人微信号以便后面保持联系。",
"temperature": 0.9,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:0", "categorize:1"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"]
}
},
"downstream": ["generate:aboutJob"],
"upstream": ["categorize:0", "categorize:1"]
},
"generate:aboutJob": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头候选人问了有关职位或公司的问题你根据以下职位信息回答。如果职位信息中不包含候选人的问题就回答不清楚、不知道、有待确认等。回答完后引导候选人加微信号\n - 方便加一下微信吗我把JD发您看看\n - 微信号多少我把详细职位JD发您\n 职位信息如下:\n {input}\n 职位信息如上。",
"temperature": 0.02
}
},
"downstream": ["answer:1"],
"upstream": ["retrieval:0"]
},
"generate:get_wechat": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头候选人表示不反感加微信如果对方已经报了微信号表示感谢和信任并表示马上会加上如果没有则问对方微信号多少。你的微信号是weixin_kevinE-mail是kkk@ragflow.com。说话不要重复。不要总是您好。",
"temperature": 0.1,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:1"]
},
"generate:nowechat": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头当你提出加微信时对方表示拒绝。你需要耐心礼貌的回应候选人表示对于保护隐私信息给予理解也可以询问他对该职位的看法和顾虑。并在恰当的时机再次询问微信联系方式。也可以鼓励候选人主动与你取得联系。你的微信号是weixin_kevinE-mail是kkk@ragflow.com。说话不要重复。不要总是您好。",
"temperature": 0.1,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:1"]
},
"message:reject": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"好的,祝您生活愉快,工作顺利。",
"哦,好的,感谢您宝贵的时间!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@ -0,0 +1,39 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there! Please enter the text you want to translate in format like: 'text you want to translate' => target language. For an example: 您好! => English"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["generate:0"],
"upstream": ["begin", "generate:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an professional interpreter.\n- Role: an professional interpreter.\n- Input format: content need to be translated => target language. \n- Answer format: => translated content in target language. \n- Examples:\n - user: 您好! => English. assistant: => How are you doing!\n - user: You look good today. => Japanese. assistant: => 今日は調子がいいですね 。\n",
"temperature": 0.5
}
},
"downstream": ["answer:0"],
"upstream": ["answer:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -0,0 +1,39 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there! Please enter the text you want to translate in format like: 'text you want to translate' => target language. For an example: 您好! => English"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["generate:0"],
"upstream": ["begin", "generate:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an professional interpreter.\n- Role: an professional interpreter.\n- Input format: content need to be translated => target language. \n- Answer format: => translated content in target language. \n- Examples:\n - user: 您好! => English. assistant: => How are you doing!\n - user: You look good today. => Japanese. assistant: => 今日は調子がいいですね 。\n",
"temperature": 0.5
}
},
"downstream": ["answer:0"],
"upstream": ["answer:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -0,0 +1,54 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval:0"],
"upstream": ["begin", "generate:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"]
}
},
"downstream": ["generate:0"],
"upstream": ["answer:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n Here is the knowledge base:\n {input}\n The above is the knowledge base.",
"temperature": 0.2
}
},
"downstream": ["answer:0"],
"upstream": ["retrieval:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -0,0 +1,88 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin", "generate:0", "switch:0"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
"to": "retrieval:0"
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "message:0"
}
}
}
},
"downstream": ["retrieval:0", "message:0"],
"upstream": ["answer:0"]
},
"message:0": {
"obj":{
"component_name": "Message",
"params": {
"messages": [
"Sorry, I don't know. I'm an AI bot."
]
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"]
}
},
"downstream": ["generate:0"],
"upstream": ["switch:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n Here is the knowledge base:\n {input}\n The above is the knowledge base.",
"temperature": 0.2
}
},
"downstream": ["answer:0"],
"upstream": ["retrieval:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -0,0 +1,82 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval:0"],
"upstream": ["begin", "generate:0", "switch:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"],
"empty_response": "Sorry, knowledge base has noting related information."
}
},
"downstream": ["relevant:0"],
"upstream": ["answer:0"]
},
"relevant:0": {
"obj": {
"component_name": "Relevant",
"params": {
"llm_id": "deepseek-chat",
"temperature": 0.02,
"yes": "generate:0",
"no": "message:0"
}
},
"downstream": ["message:0", "generate:0"],
"upstream": ["retrieval:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
"temperature": 0.2
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
},
"message:0": {
"obj":{
"component_name": "Message",
"params": {
"messages": [
"Sorry, I don't know. Please leave your contact, our experts will contact you later. What's your e-mail/phone/wechat?",
"I'm an AI bot and not quite sure about this question. Please leave your contact, our experts will contact you later. What's your e-mail/phone/wechat?",
"Can't find answer in my knowledge base. Please leave your contact, our experts will contact you later. What's your e-mail/phone/wechat?"
]
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
}
},
"history": [],
"path": [],
"messages": [],
"reference": {},
"answer": []
}

Some files were not shown because too many files have changed in this diff Show More