Compare commits

..

20 Commits

Author SHA1 Message Date
065917bf1c Feat: enriches Notion connector (#11414)
### What problem does this PR solve?

Enriches rich text (links, mentions, equations), flags to-do blocks with
[x]/[ ], captures block-level equations, builds table HTML, downloads
attachments.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-20 19:51:37 +08:00
820934fc77 Fix: no result if metadata returns none. (#11412)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-20 19:51:25 +08:00
d3d2ccc76c Feat: add more chunking method (#11413)
### What problem does this PR solve?

Feat: add more chunking method #11311

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-20 19:07:17 +08:00
c8ab9079b3 Fix:improve multi-column document detection (#11415)
### What problem does this PR solve?

change:
improve multi-column document detection

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-20 19:00:38 +08:00
0d5589bfda Feat: Outputs data is directly synchronized to the canvas without going through the form. #10427 (#11406)
### What problem does this PR solve?

Feat: Outputs data is directly synchronized to the canvas without going
through the form. #10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-20 15:35:28 +08:00
b846a0f547 Fix: incorrect retrieval total count with pagination enabled (#11400)
### What problem does this PR solve?

Incorrect retrieval total count with pagination enabled.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-20 15:35:09 +08:00
69578ebfce Fix: Change package-lock.json (#11407)
### What problem does this PR solve?

Fix: Change package-lock.json

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-20 15:32:41 +08:00
06cef71ba6 Feat: add or logic operations for meta data filters. (#11404)
### What problem does this PR solve?

#11376 #11387

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-20 14:31:12 +08:00
d2b1da0e26 Fix: Optimize edge check & incorrect parameter usage (#11396)
### What problem does this PR solve?

Fix: incorrect parameter usage #8084
Fix: Optimize edge check #10851

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-20 12:49:47 +08:00
7c6d30f4c8 Fix:RagFlow not starting with Postgres DB (#11398)
### What problem does this PR solve?
issue:
#11293 
change:
RagFlow not starting with Postgres DB
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-20 12:49:13 +08:00
ea0352ee4a Fix: Introducing a new JSON editor (#11401)
### What problem does this PR solve?

Fix: Introducing a new JSON editor

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-20 12:44:32 +08:00
fa5cf10f56 Bump infinity to 0.6.6 (#11399)
Bump infinity to 0.6.6

- [x] Refactoring
2025-11-20 11:23:54 +08:00
3fe71ab7dd Use array syntax for commands in docker-compose-base.yml (#11391)
Use array syntax in order to prevent parameter quoting issues. This also
runs the command directly without a bash process, which means signals
(like SIGTERM) will be delivered directly to the server process.

Fixes issue #11390

### What problem does this PR solve?

`${REDIS_PASSWORD}` was not passed correctly, meaning if it was unset or
contains spaces (or shell code!) it was interpreted wrongly.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-20 10:14:56 +08:00
9f715d6bc2 Feature (canvas): Add mind tagging support (#11359)
### What problem does this PR solve?
Resolve the issue of missing thinking labels when viewing pre-existing
conversations
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-20 10:11:28 +08:00
48de3b26ba locale en add russian language option (#11392)
### What problem does this PR solve?
add russian language option

### Type of change


- [x] Other (please describe):
2025-11-20 10:10:51 +08:00
273c4bc4d3 Locale: update russian language (#11393)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
- [x] Other (please describe):
2025-11-20 10:10:39 +08:00
420c97199a Feat: Add TCADP parser for PPTX and spreadsheet document types. (#11041)
### What problem does this PR solve?

- Added TCADP Parser configuration fields to PDF, PPT, and spreadsheet
parsing forms
- Implemented support for setting table result type (Markdown/HTML) and
Markdown image response type (URL/Text)
- Updated TCADP Parser to handle return format settings from
configuration or parameters
- Enhanced frontend to dynamically show TCADP options based on selected
parsing method
- Modified backend to pass format parameters when calling TCADP API
- Optimized form default value logic for TCADP configuration items
- Updated multilingual resource files for new configuration options

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-20 10:08:42 +08:00
ecf0322165 fix(llm): handle None response in total_token_count_from_response (#10941)
### What problem does this PR solve?

Fixes #10933

This PR fixes a `TypeError` in the Gemini model provider where the
`total_token_count_from_response()` function could receive a `None`
response object, causing the error:

TypeError: argument of type 'NoneType' is not iterable

**Root Cause:**
The function attempted to use the `in` operator to check dictionary keys
(lines 48, 54, 60) without first validating that `resp` was not `None`.
When Gemini's `chat_streamly()` method returns `None`, this triggers the
error.

**Solution:**
1. Added a null check at the beginning of the function to return `0` if
`resp is None`
2. Added `isinstance(resp, dict)` checks before all `in` operations to
ensure type safety
3. This defensive programming approach prevents the TypeError while
maintaining backward compatibility

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

### Changes Made

**File:** `rag/utils/__init__.py`

- Line 36-38: Added `if resp is None: return 0` check
- Line 52: Added `isinstance(resp, dict)` before `'usage' in resp`
- Line 58: Added `isinstance(resp, dict)` before `'usage' in resp`  
- Line 64: Added `isinstance(resp, dict)` before `'meta' in resp`

### Testing

- [x] Code compiles without errors
- [x] Follows existing code style and conventions
- [x] Change is minimal and focused on the specific issue

### Additional Notes

This fix ensures robust handling of various response types from LLM
providers, particularly Gemini, w

---------

Signed-off-by: Zhang Zhefang <zhangzhefang@example.com>
2025-11-20 10:04:03 +08:00
38234aca53 feat: add OceanBase doc engine (#11228)
### What problem does this PR solve?

Add OceanBase doc engine. Close #5350

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-20 10:00:14 +08:00
1c06ec39ca fix cohere rerank base_url default (#11353)
### What problem does this PR solve?

**Cohere rerank base_url default handling**

- Background: When no rerank base URL is configured, the settings
pipeline was passing an empty string through RERANK_CFG →
TenantLLMService → CoHereRerank, so the Cohere client received
base_url="" and produced “missing protocol” errors during rerank calls.

- What changed: The CoHereRerank constructor now only forwards base_url
to the Cohere client when it isn’t empty/whitespace, causing the client
to fall back to its default API endpoint otherwise.

- Why it matters: This prevents invalid URL construction in the rerank
workflow and keeps tests/sanity checks that rely on the default Cohere
endpoint from failing when no custom base URL is specified.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Philipp Heyken Soares <philipp.heyken-soares@am.ai>
2025-11-20 09:46:39 +08:00
64 changed files with 8433 additions and 4301 deletions

View File

@ -132,12 +132,12 @@ class Retrieval(ToolBase, ABC):
metas = DocumentService.get_meta_by_kbs(kb_ids)
if self._param.meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT)
filters = gen_meta_filter(chat_mdl, metas, query)
doc_ids.extend(meta_filter(metas, filters))
filters: dict = gen_meta_filter(chat_mdl, metas, query)
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not doc_ids:
doc_ids = None
elif self._param.meta_data_filter.get("method") == "manual":
filters=self._param.meta_data_filter["manual"]
filters = self._param.meta_data_filter["manual"]
for flt in filters:
pat = re.compile(self.variable_ref_patt)
s = flt["value"]
@ -165,9 +165,9 @@ class Retrieval(ToolBase, ABC):
out_parts.append(s[last:])
flt["value"] = "".join(out_parts)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None
doc_ids.extend(meta_filter(metas, filters, self._param.meta_data_filter.get("logic", "and")))
if filters and not doc_ids:
doc_ids = ["-999"]
if self._param.cross_languages:
query = cross_languages(kbs[0].tenant_id, None, query, self._param.cross_languages)

View File

@ -305,14 +305,14 @@ async def retrieval_test():
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
filters: dict = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
if meta_data_filter["manual"] and not doc_ids:
doc_ids = ["-999"]
try:
tenants = UserTenantService.query(user_id=current_user.id)

View File

@ -159,10 +159,10 @@ async def webhook(tenant_id: str, agent_id: str):
data=False, message=str(e),
code=RetCode.EXCEPTION_ERROR)
def sse():
async def sse():
nonlocal canvas
try:
for ans in canvas.run(query=req.get("query", ""), files=req.get("files", []), user_id=req.get("user_id", tenant_id), webhook_payload=req):
async for ans in canvas.run(query=req.get("query", ""), files=req.get("files", []), user_id=req.get("user_id", tenant_id), webhook_payload=req):
yield "data:" + json.dumps(ans, ensure_ascii=False) + "\n\n"
cvs.dsl = json.loads(str(canvas))

View File

@ -120,7 +120,7 @@ async def retrieval(tenant_id):
retrieval_setting = req.get("retrieval_setting", {})
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
top = int(retrieval_setting.get("top_k", 1024))
metadata_condition = req.get("metadata_condition", {})
metadata_condition = req.get("metadata_condition", {}) or {}
metas = DocumentService.get_meta_by_kbs([kb_id])
doc_ids = []
@ -132,7 +132,7 @@ async def retrieval(tenant_id):
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
if metadata_condition:
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition)))
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition), metadata_condition.get("logic", "and")))
if not doc_ids and metadata_condition:
doc_ids = ["-999"]
ranks = settings.retriever.retrieval(

View File

@ -1442,9 +1442,11 @@ async def retrieval_test(tenant_id):
if doc_id not in doc_ids_list:
return get_error_data_result(f"The datasets don't own the document {doc_id}")
if not doc_ids:
metadata_condition = req.get("metadata_condition", {})
metadata_condition = req.get("metadata_condition", {}) or {}
metas = DocumentService.get_meta_by_kbs(kb_ids)
doc_ids = meta_filter(metas, convert_conditions(metadata_condition))
doc_ids = meta_filter(metas, convert_conditions(metadata_condition), metadata_condition.get("logic", "and"))
if metadata_condition and not doc_ids:
doc_ids = ["-999"]
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))

View File

@ -428,17 +428,15 @@ async def agents_completion_openai_compatibility(tenant_id, agent_id):
return resp
else:
# For non-streaming, just return the response directly
response = next(
completion_openai(
async for response in completion_openai(
tenant_id,
agent_id,
question,
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
stream=False,
**req,
)
)
return jsonify(response)
):
return jsonify(response)
@manager.route("/agents/<agent_id>/completions", methods=["POST"]) # noqa: F821
@ -448,8 +446,8 @@ async def agent_completions(tenant_id, agent_id):
if req.get("stream", True):
def generate():
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
async def generate():
async for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
if isinstance(answer, str):
try:
ans = json.loads(answer[5:]) # remove "data:"
@ -473,7 +471,7 @@ async def agent_completions(tenant_id, agent_id):
full_content = ""
reference = {}
final_ans = ""
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
async for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
try:
ans = json.loads(answer[5:])
@ -875,7 +873,7 @@ async def agent_bot_completions(agent_id):
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
async for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
return get_result(data=answer)
@ -977,14 +975,14 @@ async def retrieval_test_embedded():
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
filters: dict = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
if meta_data_filter["manual"] and not doc_ids:
doc_ids = ["-999"]
try:
tenants = UserTenantService.query(user_id=tenant_id)

View File

@ -177,7 +177,7 @@ class UserCanvasService(CommonService):
return True
def completion(tenant_id, agent_id, session_id=None, **kwargs):
async def completion(tenant_id, agent_id, session_id=None, **kwargs):
query = kwargs.get("query", "") or kwargs.get("question", "")
files = kwargs.get("files", [])
inputs = kwargs.get("inputs", {})
@ -219,10 +219,14 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
"id": message_id
})
txt = ""
for ans in canvas.run(query=query, files=files, user_id=user_id, inputs=inputs):
async for ans in canvas.run(query=query, files=files, user_id=user_id, inputs=inputs):
ans["session_id"] = session_id
if ans["event"] == "message":
txt += ans["data"]["content"]
if ans["data"].get("start_to_think", False):
txt += "<think>"
elif ans["data"].get("end_to_think", False):
txt += "</think>"
yield "data:" + json.dumps(ans, ensure_ascii=False) + "\n\n"
conv.message.append({"role": "assistant", "content": txt, "created_at": time.time(), "id": message_id})
@ -233,7 +237,7 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
API4ConversationService.append_message(conv["id"], conv)
def completion_openai(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
async def completion_openai(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
tiktoken_encoder = tiktoken.get_encoding("cl100k_base")
prompt_tokens = len(tiktoken_encoder.encode(str(question)))
user_id = kwargs.get("user_id", "")
@ -241,7 +245,7 @@ def completion_openai(tenant_id, agent_id, question, session_id=None, stream=Tru
if stream:
completion_tokens = 0
try:
for ans in completion(
async for ans in completion(
tenant_id=tenant_id,
agent_id=agent_id,
session_id=session_id,
@ -300,7 +304,7 @@ def completion_openai(tenant_id, agent_id, question, session_id=None, stream=Tru
try:
all_content = ""
reference = {}
for ans in completion(
async for ans in completion(
tenant_id=tenant_id,
agent_id=agent_id,
session_id=session_id,

View File

@ -15,6 +15,7 @@
#
import logging
from datetime import datetime
import os
from typing import Tuple, List
from anthropic import BaseModel
@ -103,7 +104,8 @@ class SyncLogsService(CommonService):
Knowledgebase.avatar.alias("kb_avatar"),
Connector2Kb.auto_parse,
cls.model.from_beginning.alias("reindex"),
cls.model.status
cls.model.status,
cls.model.update_time
]
if not connector_id:
fields.append(Connector.config)
@ -116,7 +118,11 @@ class SyncLogsService(CommonService):
if connector_id:
query = query.where(cls.model.connector_id == connector_id)
else:
interval_expr = SQL("INTERVAL `t2`.`refresh_freq` MINUTE")
database_type = os.getenv("DB_TYPE", "mysql")
if "postgres" in database_type.lower():
interval_expr = SQL("make_interval(mins => t2.refresh_freq)")
else:
interval_expr = SQL("INTERVAL `t2`.`refresh_freq` MINUTE")
query = query.where(
Connector.input_type == InputType.POLL,
Connector.status == TaskStatus.SCHEDULE,

View File

@ -287,7 +287,7 @@ def convert_conditions(metadata_condition):
]
def meta_filter(metas: dict, filters: list[dict]):
def meta_filter(metas: dict, filters: list[dict], logic: str = "and"):
doc_ids = set([])
def filter_out(v2docs, operator, value):
@ -331,7 +331,10 @@ def meta_filter(metas: dict, filters: list[dict]):
if not doc_ids:
doc_ids = set(ids)
else:
doc_ids = doc_ids & set(ids)
if logic == "and":
doc_ids = doc_ids & set(ids)
else:
doc_ids = doc_ids | set(ids)
if not doc_ids:
return []
return list(doc_ids)
@ -407,14 +410,15 @@ def chat(dialog, messages, stream=True, **kwargs):
if dialog.meta_data_filter:
metas = DocumentService.get_meta_by_kbs(dialog.kb_ids)
if dialog.meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, questions[-1])
attachments.extend(meta_filter(metas, filters))
filters: dict = gen_meta_filter(chat_mdl, metas, questions[-1])
attachments.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not attachments:
attachments = None
elif dialog.meta_data_filter.get("method") == "manual":
attachments.extend(meta_filter(metas, dialog.meta_data_filter["manual"]))
if not attachments:
attachments = None
conds = dialog.meta_data_filter["manual"]
attachments.extend(meta_filter(metas, conds, dialog.meta_data_filter.get("logic", "and")))
if conds and not attachments:
attachments = ["-999"]
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
@ -778,14 +782,14 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
if meta_data_filter:
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
filters: dict = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
if meta_data_filter["manual"] and not doc_ids:
doc_ids = ["-999"]
kbinfos = retriever.retrieval(
question=question,
@ -853,14 +857,14 @@ def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
if meta_data_filter:
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
filters: dict = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
if meta_data_filter["manual"] and not doc_ids:
doc_ids = ["-999"]
ranks = settings.retriever.retrieval(
question=question,

View File

@ -1,38 +1,45 @@
import html
import logging
from collections.abc import Generator
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Optional
from urllib.parse import urlparse
from retry import retry
from common.data_source.config import (
INDEX_BATCH_SIZE,
DocumentSource, NOTION_CONNECTOR_DISABLE_RECURSIVE_PAGE_LOOKUP
NOTION_CONNECTOR_DISABLE_RECURSIVE_PAGE_LOOKUP,
DocumentSource,
)
from common.data_source.exceptions import (
ConnectorMissingCredentialError,
ConnectorValidationError,
CredentialExpiredError,
InsufficientPermissionsError,
UnexpectedValidationError,
)
from common.data_source.interfaces import (
LoadConnector,
PollConnector,
SecondsSinceUnixEpoch
SecondsSinceUnixEpoch,
)
from common.data_source.models import (
Document,
TextSection, GenerateDocumentsOutput
)
from common.data_source.exceptions import (
ConnectorValidationError,
CredentialExpiredError,
InsufficientPermissionsError,
UnexpectedValidationError, ConnectorMissingCredentialError
)
from common.data_source.models import (
NotionPage,
GenerateDocumentsOutput,
NotionBlock,
NotionSearchResponse
NotionPage,
NotionSearchResponse,
TextSection,
)
from common.data_source.utils import (
rl_requests,
batch_generator,
datetime_from_string,
fetch_notion_data,
filter_pages_by_time,
properties_to_str,
filter_pages_by_time, datetime_from_string
rl_requests,
)
@ -61,11 +68,9 @@ class NotionConnector(LoadConnector, PollConnector):
self.recursive_index_enabled = recursive_index_enabled or bool(root_page_id)
@retry(tries=3, delay=1, backoff=2)
def _fetch_child_blocks(
self, block_id: str, cursor: Optional[str] = None
) -> dict[str, Any] | None:
def _fetch_child_blocks(self, block_id: str, cursor: Optional[str] = None) -> dict[str, Any] | None:
"""Fetch all child blocks via the Notion API."""
logging.debug(f"Fetching children of block with ID '{block_id}'")
logging.debug(f"[Notion]: Fetching children of block with ID {block_id}")
block_url = f"https://api.notion.com/v1/blocks/{block_id}/children"
query_params = {"start_cursor": cursor} if cursor else None
@ -79,49 +84,42 @@ class NotionConnector(LoadConnector, PollConnector):
response.raise_for_status()
return response.json()
except Exception as e:
if hasattr(e, 'response') and e.response.status_code == 404:
logging.error(
f"Unable to access block with ID '{block_id}'. "
f"This is likely due to the block not being shared with the integration."
)
if hasattr(e, "response") and e.response.status_code == 404:
logging.error(f"[Notion]: Unable to access block with ID {block_id}. This is likely due to the block not being shared with the integration.")
return None
else:
logging.exception(f"Error fetching blocks: {e}")
logging.exception(f"[Notion]: Error fetching blocks: {e}")
raise
@retry(tries=3, delay=1, backoff=2)
def _fetch_page(self, page_id: str) -> NotionPage:
"""Fetch a page from its ID via the Notion API."""
logging.debug(f"Fetching page for ID '{page_id}'")
logging.debug(f"[Notion]: Fetching page for ID {page_id}")
page_url = f"https://api.notion.com/v1/pages/{page_id}"
try:
data = fetch_notion_data(page_url, self.headers, "GET")
return NotionPage(**data)
except Exception as e:
logging.warning(f"Failed to fetch page, trying database for ID '{page_id}': {e}")
logging.warning(f"[Notion]: Failed to fetch page, trying database for ID {page_id}: {e}")
return self._fetch_database_as_page(page_id)
@retry(tries=3, delay=1, backoff=2)
def _fetch_database_as_page(self, database_id: str) -> NotionPage:
"""Attempt to fetch a database as a page."""
logging.debug(f"Fetching database for ID '{database_id}' as a page")
logging.debug(f"[Notion]: Fetching database for ID {database_id} as a page")
database_url = f"https://api.notion.com/v1/databases/{database_id}"
data = fetch_notion_data(database_url, self.headers, "GET")
database_name = data.get("title")
database_name = (
database_name[0].get("text", {}).get("content") if database_name else None
)
database_name = database_name[0].get("text", {}).get("content") if database_name else None
return NotionPage(**data, database_name=database_name)
@retry(tries=3, delay=1, backoff=2)
def _fetch_database(
self, database_id: str, cursor: Optional[str] = None
) -> dict[str, Any]:
def _fetch_database(self, database_id: str, cursor: Optional[str] = None) -> dict[str, Any]:
"""Fetch a database from its ID via the Notion API."""
logging.debug(f"Fetching database for ID '{database_id}'")
logging.debug(f"[Notion]: Fetching database for ID {database_id}")
block_url = f"https://api.notion.com/v1/databases/{database_id}/query"
body = {"start_cursor": cursor} if cursor else None
@ -129,17 +127,12 @@ class NotionConnector(LoadConnector, PollConnector):
data = fetch_notion_data(block_url, self.headers, "POST", body)
return data
except Exception as e:
if hasattr(e, 'response') and e.response.status_code in [404, 400]:
logging.error(
f"Unable to access database with ID '{database_id}'. "
f"This is likely due to the database not being shared with the integration."
)
if hasattr(e, "response") and e.response.status_code in [404, 400]:
logging.error(f"[Notion]: Unable to access database with ID {database_id}. This is likely due to the database not being shared with the integration.")
return {"results": [], "next_cursor": None}
raise
def _read_pages_from_database(
self, database_id: str
) -> tuple[list[NotionBlock], list[str]]:
def _read_pages_from_database(self, database_id: str) -> tuple[list[NotionBlock], list[str]]:
"""Returns a list of top level blocks and all page IDs in the database."""
result_blocks: list[NotionBlock] = []
result_pages: list[str] = []
@ -158,10 +151,10 @@ class NotionConnector(LoadConnector, PollConnector):
if self.recursive_index_enabled:
if obj_type == "page":
logging.debug(f"Found page with ID '{obj_id}' in database '{database_id}'")
logging.debug(f"[Notion]: Found page with ID {obj_id} in database {database_id}")
result_pages.append(result["id"])
elif obj_type == "database":
logging.debug(f"Found database with ID '{obj_id}' in database '{database_id}'")
logging.debug(f"[Notion]: Found database with ID {obj_id} in database {database_id}")
_, child_pages = self._read_pages_from_database(obj_id)
result_pages.extend(child_pages)
@ -172,44 +165,229 @@ class NotionConnector(LoadConnector, PollConnector):
return result_blocks, result_pages
def _read_blocks(self, base_block_id: str) -> tuple[list[NotionBlock], list[str]]:
"""Reads all child blocks for the specified block, returns blocks and child page ids."""
def _extract_rich_text(self, rich_text_array: list[dict[str, Any]]) -> str:
collected_text: list[str] = []
for rich_text in rich_text_array:
content = ""
r_type = rich_text.get("type")
if r_type == "equation":
expr = rich_text.get("equation", {}).get("expression")
if expr:
content = expr
elif r_type == "mention":
mention = rich_text.get("mention", {}) or {}
mention_type = mention.get("type")
mention_value = mention.get(mention_type, {}) if mention_type else {}
if mention_type == "date":
start = mention_value.get("start")
end = mention_value.get("end")
if start and end:
content = f"{start} - {end}"
elif start:
content = start
elif mention_type in {"page", "database"}:
content = mention_value.get("id", rich_text.get("plain_text", ""))
elif mention_type == "link_preview":
content = mention_value.get("url", rich_text.get("plain_text", ""))
else:
content = rich_text.get("plain_text", "") or str(mention_value)
else:
if rich_text.get("plain_text"):
content = rich_text["plain_text"]
elif "text" in rich_text and rich_text["text"].get("content"):
content = rich_text["text"]["content"]
href = rich_text.get("href")
if content and href:
content = f"{content} ({href})"
if content:
collected_text.append(content)
return "".join(collected_text).strip()
def _build_table_html(self, table_block_id: str) -> str | None:
rows: list[str] = []
cursor = None
while True:
data = self._fetch_child_blocks(table_block_id, cursor)
if data is None:
break
for result in data["results"]:
if result.get("type") != "table_row":
continue
cells_html: list[str] = []
for cell in result["table_row"].get("cells", []):
cell_text = self._extract_rich_text(cell)
cell_html = html.escape(cell_text) if cell_text else ""
cells_html.append(f"<td>{cell_html}</td>")
rows.append(f"<tr>{''.join(cells_html)}</tr>")
if data.get("next_cursor") is None:
break
cursor = data["next_cursor"]
if not rows:
return None
return "<table>\n" + "\n".join(rows) + "\n</table>"
def _download_file(self, url: str) -> bytes | None:
try:
response = rl_requests.get(url, timeout=60)
response.raise_for_status()
return response.content
except Exception as exc:
logging.warning(f"[Notion]: Failed to download Notion file from {url}: {exc}")
return None
def _extract_file_metadata(self, result_obj: dict[str, Any], block_id: str) -> tuple[str | None, str, str | None]:
file_source_type = result_obj.get("type")
file_source = result_obj.get(file_source_type, {}) if file_source_type else {}
url = file_source.get("url")
name = result_obj.get("name") or file_source.get("name")
if url and not name:
parsed_name = Path(urlparse(url).path).name
name = parsed_name or f"notion_file_{block_id}"
elif not name:
name = f"notion_file_{block_id}"
caption = self._extract_rich_text(result_obj.get("caption", [])) if "caption" in result_obj else None
return url, name, caption
def _build_attachment_document(
self,
block_id: str,
url: str,
name: str,
caption: Optional[str],
page_last_edited_time: Optional[str],
) -> Document | None:
file_bytes = self._download_file(url)
if file_bytes is None:
return None
extension = Path(name).suffix or Path(urlparse(url).path).suffix or ".bin"
if extension and not extension.startswith("."):
extension = f".{extension}"
if not extension:
extension = ".bin"
updated_at = datetime_from_string(page_last_edited_time) if page_last_edited_time else datetime.now(timezone.utc)
semantic_identifier = caption or name or f"Notion file {block_id}"
return Document(
id=block_id,
blob=file_bytes,
source=DocumentSource.NOTION,
semantic_identifier=semantic_identifier,
extension=extension,
size_bytes=len(file_bytes),
doc_updated_at=updated_at,
)
def _read_blocks(self, base_block_id: str, page_last_edited_time: Optional[str] = None) -> tuple[list[NotionBlock], list[str], list[Document]]:
result_blocks: list[NotionBlock] = []
child_pages: list[str] = []
attachments: list[Document] = []
cursor = None
while True:
data = self._fetch_child_blocks(base_block_id, cursor)
if data is None:
return result_blocks, child_pages
return result_blocks, child_pages, attachments
for result in data["results"]:
logging.debug(f"Found child block for block with ID '{base_block_id}': {result}")
logging.debug(f"[Notion]: Found child block for block with ID {base_block_id}: {result}")
result_block_id = result["id"]
result_type = result["type"]
result_obj = result[result_type]
if result_type in ["ai_block", "unsupported", "external_object_instance_page"]:
logging.warning(f"Skipping unsupported block type '{result_type}'")
logging.warning(f"[Notion]: Skipping unsupported block type {result_type}")
continue
if result_type == "table":
table_html = self._build_table_html(result_block_id)
if table_html:
result_blocks.append(
NotionBlock(
id=result_block_id,
text=table_html,
prefix="\n\n",
)
)
continue
if result_type == "equation":
expr = result_obj.get("expression")
if expr:
result_blocks.append(
NotionBlock(
id=result_block_id,
text=expr,
prefix="\n",
)
)
continue
cur_result_text_arr = []
if "rich_text" in result_obj:
for rich_text in result_obj["rich_text"]:
if "text" in rich_text:
text = rich_text["text"]["content"]
cur_result_text_arr.append(text)
text = self._extract_rich_text(result_obj["rich_text"])
if text:
cur_result_text_arr.append(text)
if result_type == "bulleted_list_item":
if cur_result_text_arr:
cur_result_text_arr[0] = f"- {cur_result_text_arr[0]}"
else:
cur_result_text_arr = ["- "]
if result_type == "numbered_list_item":
if cur_result_text_arr:
cur_result_text_arr[0] = f"1. {cur_result_text_arr[0]}"
else:
cur_result_text_arr = ["1. "]
if result_type == "to_do":
checked = result_obj.get("checked")
checkbox_prefix = "[x]" if checked else "[ ]"
if cur_result_text_arr:
cur_result_text_arr = [f"{checkbox_prefix} {cur_result_text_arr[0]}"] + cur_result_text_arr[1:]
else:
cur_result_text_arr = [checkbox_prefix]
if result_type in {"file", "image", "pdf", "video", "audio"}:
file_url, file_name, caption = self._extract_file_metadata(result_obj, result_block_id)
if file_url:
attachment_doc = self._build_attachment_document(
block_id=result_block_id,
url=file_url,
name=file_name,
caption=caption,
page_last_edited_time=page_last_edited_time,
)
if attachment_doc:
attachments.append(attachment_doc)
attachment_label = caption or file_name
if attachment_label:
cur_result_text_arr.append(f"{result_type.capitalize()}: {attachment_label}")
if result["has_children"]:
if result_type == "child_page":
child_pages.append(result_block_id)
else:
logging.debug(f"Entering sub-block: {result_block_id}")
subblocks, subblock_child_pages = self._read_blocks(result_block_id)
logging.debug(f"Finished sub-block: {result_block_id}")
logging.debug(f"[Notion]: Entering sub-block: {result_block_id}")
subblocks, subblock_child_pages, subblock_attachments = self._read_blocks(result_block_id, page_last_edited_time)
logging.debug(f"[Notion]: Finished sub-block: {result_block_id}")
result_blocks.extend(subblocks)
child_pages.extend(subblock_child_pages)
attachments.extend(subblock_attachments)
if result_type == "child_database":
inner_blocks, inner_child_pages = self._read_pages_from_database(result_block_id)
@ -231,7 +409,7 @@ class NotionConnector(LoadConnector, PollConnector):
cursor = data["next_cursor"]
return result_blocks, child_pages
return result_blocks, child_pages, attachments
def _read_page_title(self, page: NotionPage) -> Optional[str]:
"""Extracts the title from a Notion page."""
@ -245,9 +423,7 @@ class NotionConnector(LoadConnector, PollConnector):
return None
def _read_pages(
self, pages: list[NotionPage]
) -> Generator[Document, None, None]:
def _read_pages(self, pages: list[NotionPage], start: SecondsSinceUnixEpoch | None = None, end: SecondsSinceUnixEpoch | None = None) -> Generator[Document, None, None]:
"""Reads pages for rich text content and generates Documents."""
all_child_page_ids: list[str] = []
@ -255,11 +431,17 @@ class NotionConnector(LoadConnector, PollConnector):
if isinstance(page, dict):
page = NotionPage(**page)
if page.id in self.indexed_pages:
logging.debug(f"Already indexed page with ID '{page.id}'. Skipping.")
logging.debug(f"[Notion]: Already indexed page with ID {page.id}. Skipping.")
continue
logging.info(f"Reading page with ID '{page.id}', with url {page.url}")
page_blocks, child_page_ids = self._read_blocks(page.id)
if start is not None and end is not None:
page_ts = datetime_from_string(page.last_edited_time).timestamp()
if not (page_ts > start and page_ts <= end):
logging.debug(f"[Notion]: Skipping page {page.id} outside polling window.")
continue
logging.info(f"[Notion]: Reading page with ID {page.id}, with url {page.url}")
page_blocks, child_page_ids, attachment_docs = self._read_blocks(page.id, page.last_edited_time)
all_child_page_ids.extend(child_page_ids)
self.indexed_pages.add(page.id)
@ -268,14 +450,12 @@ class NotionConnector(LoadConnector, PollConnector):
if not page_blocks:
if not raw_page_title:
logging.warning(f"No blocks OR title found for page with ID '{page.id}'. Skipping.")
logging.warning(f"[Notion]: No blocks OR title found for page with ID {page.id}. Skipping.")
continue
text = page_title
if page.properties:
text += "\n\n" + "\n".join(
[f"{key}: {value}" for key, value in page.properties.items()]
)
text += "\n\n" + "\n".join([f"{key}: {value}" for key, value in page.properties.items()])
sections = [TextSection(link=page.url, text=text)]
else:
sections = [
@ -286,45 +466,39 @@ class NotionConnector(LoadConnector, PollConnector):
for block in page_blocks
]
blob = ("\n".join([sec.text for sec in sections])).encode("utf-8")
joined_text = "\n".join(sec.text for sec in sections)
blob = joined_text.encode("utf-8")
yield Document(
id=page.id,
blob=blob,
source=DocumentSource.NOTION,
semantic_identifier=page_title,
extension=".txt",
size_bytes=len(blob),
doc_updated_at=datetime_from_string(page.last_edited_time)
id=page.id, blob=blob, source=DocumentSource.NOTION, semantic_identifier=page_title, extension=".txt", size_bytes=len(blob), doc_updated_at=datetime_from_string(page.last_edited_time)
)
for attachment_doc in attachment_docs:
yield attachment_doc
if self.recursive_index_enabled and all_child_page_ids:
for child_page_batch_ids in batch_generator(all_child_page_ids, INDEX_BATCH_SIZE):
child_page_batch = [
self._fetch_page(page_id)
for page_id in child_page_batch_ids
if page_id not in self.indexed_pages
]
yield from self._read_pages(child_page_batch)
child_page_batch = [self._fetch_page(page_id) for page_id in child_page_batch_ids if page_id not in self.indexed_pages]
yield from self._read_pages(child_page_batch, start, end)
@retry(tries=3, delay=1, backoff=2)
def _search_notion(self, query_dict: dict[str, Any]) -> NotionSearchResponse:
"""Search for pages from a Notion database."""
logging.debug(f"Searching for pages in Notion with query_dict: {query_dict}")
logging.debug(f"[Notion]: Searching for pages in Notion with query_dict: {query_dict}")
data = fetch_notion_data("https://api.notion.com/v1/search", self.headers, "POST", query_dict)
return NotionSearchResponse(**data)
def _recursive_load(self) -> Generator[list[Document], None, None]:
def _recursive_load(self, start: SecondsSinceUnixEpoch | None = None, end: SecondsSinceUnixEpoch | None = None) -> Generator[list[Document], None, None]:
"""Recursively load pages starting from root page ID."""
if self.root_page_id is None or not self.recursive_index_enabled:
raise RuntimeError("Recursive page lookup is not enabled")
logging.info(f"Recursively loading pages from Notion based on root page with ID: {self.root_page_id}")
logging.info(f"[Notion]: Recursively loading pages from Notion based on root page with ID: {self.root_page_id}")
pages = [self._fetch_page(page_id=self.root_page_id)]
yield from batch_generator(self._read_pages(pages), self.batch_size)
yield from batch_generator(self._read_pages(pages, start, end), self.batch_size)
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
"""Applies integration token to headers."""
self.headers["Authorization"] = f'Bearer {credentials["notion_integration_token"]}'
self.headers["Authorization"] = f"Bearer {credentials['notion_integration_token']}"
return None
def load_from_state(self) -> GenerateDocumentsOutput:
@ -348,12 +522,10 @@ class NotionConnector(LoadConnector, PollConnector):
else:
break
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
def poll_source(self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch) -> GenerateDocumentsOutput:
"""Poll Notion for updated pages within a time period."""
if self.recursive_index_enabled and self.root_page_id:
yield from self._recursive_load()
yield from self._recursive_load(start, end)
return
query_dict = {
@ -367,7 +539,7 @@ class NotionConnector(LoadConnector, PollConnector):
pages = filter_pages_by_time(db_res.results, start, end, "last_edited_time")
if pages:
yield from batch_generator(self._read_pages(pages), self.batch_size)
yield from batch_generator(self._read_pages(pages, start, end), self.batch_size)
if db_res.has_more:
query_dict["start_cursor"] = db_res.next_cursor
else:

View File

@ -27,6 +27,7 @@ from common.constants import SVR_QUEUE_NAME, Storage
import rag.utils
import rag.utils.es_conn
import rag.utils.infinity_conn
import rag.utils.ob_conn
import rag.utils.opensearch_conn
from rag.utils.azure_sas_conn import RAGFlowAzureSasBlob
from rag.utils.azure_spn_conn import RAGFlowAzureSpnBlob
@ -103,6 +104,7 @@ INFINITY = {}
AZURE = {}
S3 = {}
MINIO = {}
OB = {}
OSS = {}
OS = {}
@ -227,7 +229,7 @@ def init_settings():
FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")
OAUTH_CONFIG = get_base_config("oauth", {})
global DOC_ENGINE, docStoreConn, ES, OS, INFINITY
global DOC_ENGINE, docStoreConn, ES, OB, OS, INFINITY
DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch")
# DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch")
lower_case_doc_engine = DOC_ENGINE.lower()
@ -240,6 +242,9 @@ def init_settings():
elif lower_case_doc_engine == "opensearch":
OS = get_base_config("os", {})
docStoreConn = rag.utils.opensearch_conn.OSConnection()
elif lower_case_doc_engine == "oceanbase":
OB = get_base_config("oceanbase", {})
docStoreConn = rag.utils.ob_conn.OBConnection()
else:
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")

View File

@ -35,6 +35,12 @@ def num_tokens_from_string(string: str) -> int:
return 0
def total_token_count_from_response(resp):
"""
Extract token count from LLM response in various formats.
Handles None responses and different response structures from various LLM providers.
Returns 0 if token count cannot be determined.
"""
if resp is None:
return 0
@ -50,19 +56,19 @@ def total_token_count_from_response(resp):
except Exception:
pass
if 'usage' in resp and 'total_tokens' in resp['usage']:
if isinstance(resp, dict) and 'usage' in resp and 'total_tokens' in resp['usage']:
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
if 'usage' in resp and 'input_tokens' in resp['usage'] and 'output_tokens' in resp['usage']:
if isinstance(resp, dict) and 'usage' in resp and 'input_tokens' in resp['usage'] and 'output_tokens' in resp['usage']:
try:
return resp["usage"]["input_tokens"] + resp["usage"]["output_tokens"]
except Exception:
pass
if 'meta' in resp and 'tokens' in resp['meta'] and 'input_tokens' in resp['meta']['tokens'] and 'output_tokens' in resp['meta']['tokens']:
if isinstance(resp, dict) and 'meta' in resp and 'tokens' in resp['meta'] and 'input_tokens' in resp['meta']['tokens'] and 'output_tokens' in resp['meta']['tokens']:
try:
return resp["meta"]["tokens"]["input_tokens"] + resp["meta"]["tokens"]["output_tokens"]
except Exception:

View File

@ -28,6 +28,14 @@ os:
infinity:
uri: 'localhost:23817'
db_name: 'default_db'
oceanbase:
scheme: 'oceanbase' # set 'mysql' to create connection using mysql config
config:
db_name: 'test'
user: 'root@ragflow'
password: 'infini_rag_flow'
host: 'localhost'
port: 2881
redis:
db: 1
password: 'infini_rag_flow'
@ -139,5 +147,3 @@ user_default_llm:
# secret_id: 'tencent_secret_id'
# secret_key: 'tencent_secret_key'
# region: 'tencent_region'
# table_result_type: '1'
# markdown_image_response_type: '1'

View File

@ -187,7 +187,7 @@ class DoclingParser(RAGFlowPdfParser):
bbox = _BBox(int(pn), bb[0], bb[1], bb[2], bb[3])
yield (DoclingContentType.EQUATION.value, text, bbox)
def _transfer_to_sections(self, doc) -> list[tuple[str, str]]:
def _transfer_to_sections(self, doc, parse_method: str) -> list[tuple[str, str]]:
sections: list[tuple[str, str]] = []
for typ, payload, bbox in self._iter_doc_items(doc):
if typ == DoclingContentType.TEXT.value:
@ -200,7 +200,12 @@ class DoclingParser(RAGFlowPdfParser):
continue
tag = self._make_line_tag(bbox) if isinstance(bbox,_BBox) else ""
sections.append((section, tag))
if parse_method == "manual":
sections.append((section, typ, tag))
elif parse_method == "paper":
sections.append((section + tag, typ))
else:
sections.append((section, tag))
return sections
def cropout_docling_table(self, page_no: int, bbox: tuple[float, float, float, float], zoomin: int = 1):
@ -282,7 +287,8 @@ class DoclingParser(RAGFlowPdfParser):
output_dir: Optional[str] = None,
lang: Optional[str] = None,
method: str = "auto",
delete_output: bool = True,
delete_output: bool = True,
parse_method: str = "raw"
):
if not self.check_installation():
@ -318,7 +324,7 @@ class DoclingParser(RAGFlowPdfParser):
if callback:
callback(0.7, f"[Docling] Parsed doc: {getattr(doc, 'num_pages', 'n/a')} pages")
sections = self._transfer_to_sections(doc)
sections = self._transfer_to_sections(doc, parse_method=parse_method)
tables = self._transfer_to_tables(doc)
if callback:

View File

@ -476,7 +476,7 @@ class MinerUParser(RAGFlowPdfParser):
item[key] = str((subdir / item[key]).resolve())
return data
def _transfer_to_sections(self, outputs: list[dict[str, Any]]):
def _transfer_to_sections(self, outputs: list[dict[str, Any]], parse_method: str = None):
sections = []
for output in outputs:
match output["type"]:
@ -497,7 +497,11 @@ class MinerUParser(RAGFlowPdfParser):
case MinerUContentType.DISCARDED:
pass
if section:
if section and parse_method == "manual":
sections.append((section, output["type"], self._line_tag(output)))
elif section and parse_method == "paper":
sections.append((section + self._line_tag(output), output["type"]))
else:
sections.append((section, self._line_tag(output)))
return sections
@ -516,6 +520,7 @@ class MinerUParser(RAGFlowPdfParser):
method: str = "auto",
server_url: Optional[str] = None,
delete_output: bool = True,
parse_method: str = "raw"
) -> tuple:
import shutil
@ -565,7 +570,8 @@ class MinerUParser(RAGFlowPdfParser):
self.logger.info(f"[MinerU] Parsed {len(outputs)} blocks from PDF.")
if callback:
callback(0.75, f"[MinerU] Parsed {len(outputs)} blocks from PDF.")
return self._transfer_to_sections(outputs), self._transfer_to_tables(outputs)
return self._transfer_to_sections(outputs, parse_method), self._transfer_to_tables(outputs)
finally:
if temp_pdf and temp_pdf.exists():
try:

View File

@ -33,6 +33,8 @@ import xgboost as xgb
from huggingface_hub import snapshot_download
from PIL import Image
from pypdf import PdfReader as pdf2_read
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from common.file_utils import get_project_base_directory
from common.misc_utils import pip_install_torch
@ -353,7 +355,6 @@ class RAGFlowPdfParser:
def _assign_column(self, boxes, zoomin=3):
if not boxes:
return boxes
if all("col_id" in b for b in boxes):
return boxes
@ -361,61 +362,80 @@ class RAGFlowPdfParser:
for b in boxes:
by_page[b["page_number"]].append(b)
page_info = {} # pg -> dict(page_w, left_edge, cand_cols)
counter = Counter()
page_cols = {}
for pg, bxs in by_page.items():
if not bxs:
page_info[pg] = {"page_w": 1.0, "left_edge": 0.0, "cand": 1}
counter[1] += 1
page_cols[pg] = 1
continue
if hasattr(self, "page_images") and self.page_images and len(self.page_images) >= pg:
page_w = self.page_images[pg - 1].size[0] / max(1, zoomin)
left_edge = 0.0
else:
xs0 = [box["x0"] for box in bxs]
xs1 = [box["x1"] for box in bxs]
left_edge = float(min(xs0))
page_w = max(1.0, float(max(xs1) - left_edge))
x0s_raw = np.array([b["x0"] for b in bxs], dtype=float)
widths = [max(1.0, (box["x1"] - box["x0"])) for box in bxs]
median_w = float(np.median(widths)) if widths else 1.0
min_x0 = np.min(x0s_raw)
max_x1 = np.max([b["x1"] for b in bxs])
width = max_x1 - min_x0
raw_cols = int(page_w / max(1.0, median_w))
INDENT_TOL = width * 0.12
x0s = []
for x in x0s_raw:
if abs(x - min_x0) < INDENT_TOL:
x0s.append([min_x0])
else:
x0s.append([x])
x0s = np.array(x0s, dtype=float)
max_try = min(4, len(bxs))
if max_try < 2:
max_try = 1
best_k = 1
best_score = -1
# cand = raw_cols if (raw_cols >= 2 and median_w < page_w / raw_cols * 0.8) else 1
cand = raw_cols
for k in range(1, max_try + 1):
km = KMeans(n_clusters=k, n_init="auto")
labels = km.fit_predict(x0s)
page_info[pg] = {"page_w": page_w, "left_edge": left_edge, "cand": cand}
counter[cand] += 1
centers = np.sort(km.cluster_centers_.flatten())
if len(centers) > 1:
try:
score = silhouette_score(x0s, labels)
except ValueError:
continue
else:
score = 0
print(f"{k=},{score=}",flush=True)
if score > best_score:
best_score = score
best_k = k
logging.info(f"[Page {pg}] median_w={median_w:.2f}, page_w={page_w:.2f}, raw_cols={raw_cols}, cand={cand}")
page_cols[pg] = best_k
logging.info(f"[Page {pg}] best_score={best_score:.2f}, best_k={best_k}")
global_cols = counter.most_common(1)[0][0]
global_cols = Counter(page_cols.values()).most_common(1)[0][0]
logging.info(f"Global column_num decided by majority: {global_cols}")
for pg, bxs in by_page.items():
if not bxs:
continue
k = page_cols[pg]
if len(bxs) < k:
k = 1
x0s = np.array([[b["x0"]] for b in bxs], dtype=float)
km = KMeans(n_clusters=k, n_init="auto")
labels = km.fit_predict(x0s)
page_w = page_info[pg]["page_w"]
left_edge = page_info[pg]["left_edge"]
centers = km.cluster_centers_.flatten()
order = np.argsort(centers)
if global_cols == 1:
for box in bxs:
box["col_id"] = 0
continue
remap = {orig: new for new, orig in enumerate(order)}
for box in bxs:
w = box["x1"] - box["x0"]
if w >= 0.8 * page_w:
box["col_id"] = 0
continue
cx = 0.5 * (box["x0"] + box["x1"])
norm_cx = (cx - left_edge) / page_w
norm_cx = max(0.0, min(norm_cx, 0.999999))
box["col_id"] = int(min(global_cols - 1, norm_cx * global_cols))
for b, lb in zip(bxs, labels):
b["col_id"] = remap[lb]
grouped = defaultdict(list)
for b in bxs:
grouped[b["col_id"]].append(b)
return boxes
@ -1303,7 +1323,10 @@ class RAGFlowPdfParser:
positions = []
for ii, (pns, left, right, top, bottom) in enumerate(poss):
right = left + max_width
if 0 < ii < len(poss) - 1:
right = max(left + 10, right)
else:
right = left + max_width
bottom *= ZM
for pn in pns[1:]:
if 0 <= pn - 1 < page_count:

View File

@ -192,12 +192,16 @@ class TencentCloudAPIClient:
class TCADPParser(RAGFlowPdfParser):
def __init__(self, secret_id: str = None, secret_key: str = None, region: str = "ap-guangzhou"):
def __init__(self, secret_id: str = None, secret_key: str = None, region: str = "ap-guangzhou",
table_result_type: str = None, markdown_image_response_type: str = None):
super().__init__()
# First initialize logger
self.logger = logging.getLogger(self.__class__.__name__)
# Log received parameters
self.logger.info(f"[TCADP] Initializing with parameters - table_result_type: {table_result_type}, markdown_image_response_type: {markdown_image_response_type}")
# Priority: read configuration from RAGFlow configuration system (service_conf.yaml)
try:
tcadp_parser = get_base_config("tcadp_config", {})
@ -205,14 +209,30 @@ class TCADPParser(RAGFlowPdfParser):
self.secret_id = secret_id or tcadp_parser.get("secret_id")
self.secret_key = secret_key or tcadp_parser.get("secret_key")
self.region = region or tcadp_parser.get("region", "ap-guangzhou")
self.table_result_type = tcadp_parser.get("table_result_type", "1")
self.markdown_image_response_type = tcadp_parser.get("markdown_image_response_type", "1")
self.logger.info("[TCADP] Configuration read from service_conf.yaml")
# Set table_result_type and markdown_image_response_type from config or parameters
self.table_result_type = table_result_type if table_result_type is not None else tcadp_parser.get("table_result_type", "1")
self.markdown_image_response_type = markdown_image_response_type if markdown_image_response_type is not None else tcadp_parser.get("markdown_image_response_type", "1")
else:
self.logger.error("[TCADP] Please configure tcadp_config in service_conf.yaml first")
# If config file is empty, use provided parameters or defaults
self.secret_id = secret_id
self.secret_key = secret_key
self.region = region or "ap-guangzhou"
self.table_result_type = table_result_type if table_result_type is not None else "1"
self.markdown_image_response_type = markdown_image_response_type if markdown_image_response_type is not None else "1"
except ImportError:
self.logger.info("[TCADP] Configuration module import failed")
# If config file is not available, use provided parameters or defaults
self.secret_id = secret_id
self.secret_key = secret_key
self.region = region or "ap-guangzhou"
self.table_result_type = table_result_type if table_result_type is not None else "1"
self.markdown_image_response_type = markdown_image_response_type if markdown_image_response_type is not None else "1"
# Log final values
self.logger.info(f"[TCADP] Final values - table_result_type: {self.table_result_type}, markdown_image_response_type: {self.markdown_image_response_type}")
if not self.secret_id or not self.secret_key:
raise ValueError("[TCADP] Please set Tencent Cloud API keys, configure tcadp_config in service_conf.yaml")
@ -400,6 +420,8 @@ class TCADPParser(RAGFlowPdfParser):
"TableResultType": self.table_result_type,
"MarkdownImageResponseType": self.markdown_image_response_type
}
self.logger.info(f"[TCADP] API request config - TableResultType: {self.table_result_type}, MarkdownImageResponseType: {self.markdown_image_response_type}")
result = client.reconstruct_document_sse(
file_type=file_type,

View File

@ -7,6 +7,7 @@
# Available options:
# - `elasticsearch` (default)
# - `infinity` (https://github.com/infiniflow/infinity)
# - `oceanbase` (https://github.com/oceanbase/oceanbase)
# - `opensearch` (https://github.com/opensearch-project/OpenSearch)
DOC_ENGINE=${DOC_ENGINE:-elasticsearch}
@ -62,6 +63,27 @@ INFINITY_THRIFT_PORT=23817
INFINITY_HTTP_PORT=23820
INFINITY_PSQL_PORT=5432
# The hostname where the OceanBase service is exposed
OCEANBASE_HOST=oceanbase
# The port used to expose the OceanBase service
OCEANBASE_PORT=2881
# The username for OceanBase
OCEANBASE_USER=root@ragflow
# The password for OceanBase
OCEANBASE_PASSWORD=infini_rag_flow
# The doc database of the OceanBase service to use
OCEANBASE_DOC_DBNAME=ragflow_doc
# OceanBase container configuration
OB_CLUSTER_NAME=${OB_CLUSTER_NAME:-ragflow}
OB_TENANT_NAME=${OB_TENANT_NAME:-ragflow}
OB_SYS_PASSWORD=${OCEANBASE_PASSWORD:-infini_rag_flow}
OB_TENANT_PASSWORD=${OCEANBASE_PASSWORD:-infini_rag_flow}
OB_MEMORY_LIMIT=${OB_MEMORY_LIMIT:-10G}
OB_SYSTEM_MEMORY=${OB_SYSTEM_MEMORY:-2G}
OB_DATAFILE_SIZE=${OB_DATAFILE_SIZE:-20G}
OB_LOG_DISK_SIZE=${OB_LOG_DISK_SIZE:-20G}
# The password for MySQL.
MYSQL_PASSWORD=infini_rag_flow
# The hostname where the MySQL service is exposed
@ -208,9 +230,16 @@ REGISTER_ENABLED=1
# SANDBOX_MAX_MEMORY=256m # b, k, m, g
# SANDBOX_TIMEOUT=10s # s, m, 1m30s
# Enable DocLing and Mineru
# Enable DocLing
USE_DOCLING=false
# Enable Mineru
USE_MINERU=false
MINERU_EXECUTABLE="$HOME/uv_tools/.venv/bin/mineru"
MINERU_DELETE_OUTPUT=0 # keep output directory
MINERU_BACKEND=pipeline # or another backend you prefer
# pptx support
DOTNET_SYSTEM_GLOBALIZATION_INVARIANT=1

View File

@ -138,6 +138,15 @@ The [.env](./.env) file contains important environment variables for Docker.
- `password`: The password for MinIO.
- `host`: The MinIO serving IP *and* port inside the Docker container. Defaults to `minio:9000`.
- `oceanbase`
- `scheme`: The connection scheme. Set to `mysql` to use mysql config, or other values to use config below.
- `config`:
- `db_name`: The OceanBase database name.
- `user`: The username for OceanBase.
- `password`: The password for OceanBase.
- `host`: The hostname of the OceanBase service.
- `port`: The port of OceanBase.
- `oss`
- `access_key`: The access key ID used to authenticate requests to the OSS service.
- `secret_key`: The secret access key used to authenticate requests to the OSS service.

View File

@ -72,7 +72,7 @@ services:
infinity:
profiles:
- infinity
image: infiniflow/infinity:v0.6.5
image: infiniflow/infinity:v0.6.6
volumes:
- infinity_data:/var/infinity
- ./infinity_conf.toml:/infinity_conf.toml
@ -96,6 +96,31 @@ services:
retries: 120
restart: on-failure
oceanbase:
profiles:
- oceanbase
image: oceanbase/oceanbase-ce:4.4.1.0-100000032025101610
volumes:
- ./oceanbase/data:/root/ob
- ./oceanbase/conf:/root/.obd/cluster
- ./oceanbase/init.d:/root/boot/init.d
ports:
- ${OCEANBASE_PORT:-2881}:2881
env_file: .env
environment:
- MODE=normal
- OB_SERVER_IP=127.0.0.1
mem_limit: ${MEM_LIMIT}
healthcheck:
test: [ 'CMD-SHELL', 'obclient -h127.0.0.1 -P2881 -uroot@${OB_TENANT_NAME:-ragflow} -p${OB_TENANT_PASSWORD:-infini_rag_flow} -e "CREATE DATABASE IF NOT EXISTS ${OCEANBASE_DOC_DBNAME:-ragflow_doc};"' ]
interval: 10s
retries: 30
start_period: 30s
timeout: 10s
networks:
- ragflow
restart: on-failure
sandbox-executor-manager:
profiles:
- sandbox
@ -154,7 +179,7 @@ services:
minio:
image: quay.io/minio/minio:RELEASE.2025-06-13T11-33-47Z
command: server --console-address ":9001" /data
command: ["server", "--console-address", ":9001", "/data"]
ports:
- ${MINIO_PORT}:9000
- ${MINIO_CONSOLE_PORT}:9001
@ -176,7 +201,7 @@ services:
redis:
# swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/valkey/valkey:8
image: valkey/valkey:8
command: redis-server --requirepass ${REDIS_PASSWORD} --maxmemory 128mb --maxmemory-policy allkeys-lru
command: ["redis-server", "--requirepass", "${REDIS_PASSWORD}", "--maxmemory", "128mb", "--maxmemory-policy", "allkeys-lru"]
env_file: .env
ports:
- ${REDIS_PORT}:6379
@ -256,6 +281,8 @@ volumes:
driver: local
infinity_data:
driver: local
ob_data:
driver: local
mysql_data:
driver: local
minio_data:

View File

@ -1,5 +1,5 @@
[general]
version = "0.6.5"
version = "0.6.6"
time_zone = "utc-8"
[network]

View File

@ -0,0 +1 @@
ALTER SYSTEM SET ob_vector_memory_limit_percentage = 30;

View File

@ -28,6 +28,14 @@ os:
infinity:
uri: '${INFINITY_HOST:-infinity}:23817'
db_name: 'default_db'
oceanbase:
scheme: 'oceanbase' # set 'mysql' to create connection using mysql config
config:
db_name: '${OCEANBASE_DOC_DBNAME:-test}'
user: '${OCEANBASE_USER:-root@ragflow}'
password: '${OCEANBASE_PASSWORD:-infini_rag_flow}'
host: '${OCEANBASE_HOST:-oceanbase}'
port: ${OCEANBASE_PORT:-2881}
redis:
db: 1
password: '${REDIS_PASSWORD:-infini_rag_flow}'
@ -142,5 +150,3 @@ user_default_llm:
# secret_id: '${TENCENT_SECRET_ID}'
# secret_key: '${TENCENT_SECRET_KEY}'
# region: '${TENCENT_REGION}'
# table_result_type: '1'
# markdown_image_response_type: '1'

View File

@ -2085,6 +2085,7 @@ curl --request POST \
"dataset_ids": ["b2a62730759d11ef987d0242ac120004"],
"document_ids": ["77df9ef4759a11ef8bdd0242ac120004"],
"metadata_condition": {
"logic": "and",
"conditions": [
{
"name": "author",

View File

@ -96,7 +96,7 @@ ragflow:
infinity:
image:
repository: infiniflow/infinity
tag: v0.6.5
tag: v0.6.6
pullPolicy: IfNotPresent
pullSecrets: []
storage:

View File

@ -49,7 +49,7 @@ dependencies = [
"html-text==0.6.2",
"httpx[socks]>=0.28.1,<0.29.0",
"huggingface-hub>=0.25.0,<0.26.0",
"infinity-sdk==0.6.5",
"infinity-sdk==0.6.6",
"infinity-emb>=0.0.66,<0.0.67",
"itsdangerous==2.1.2",
"json-repair==0.35.0",
@ -149,6 +149,7 @@ dependencies = [
"captcha>=0.7.1",
"pip>=25.2",
"pypandoc>=1.16",
"pyobvector==0.2.18",
]
[dependency-groups]

View File

@ -213,6 +213,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
lang = lang,
callback = callback,
pdf_cls = Pdf,
parse_method = "manual",
**kwargs
)
@ -225,7 +226,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
elif len(section) != 3:
raise ValueError(f"Unexpected section length: {len(section)} (value={section!r})")
txt, sec_id, poss = section
txt, layoutno, poss = section
if isinstance(poss, str):
poss = pdf_parser.extract_positions(poss)
first = poss[0] # tuple: ([pn], x1, x2, y1, y2)
@ -235,7 +236,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
pn = pn[0] # [pn] -> pn
poss[0] = (pn, *first[1:])
return (txt, sec_id, poss)
return (txt, layoutno, poss)
sections = [_normalize_section(sec) for sec in sections]

View File

@ -59,6 +59,7 @@ def by_mineru(filename, binary=None, from_page=0, to_page=100000, lang="Chinese"
mineru_executable = os.environ.get("MINERU_EXECUTABLE", "mineru")
mineru_api = os.environ.get("MINERU_APISERVER", "http://host.docker.internal:9987")
pdf_parser = MinerUParser(mineru_path=mineru_executable, mineru_api=mineru_api)
parse_method = kwargs.get("parse_method", "raw")
if not pdf_parser.check_installation():
callback(-1, "MinerU not found.")
@ -72,12 +73,14 @@ def by_mineru(filename, binary=None, from_page=0, to_page=100000, lang="Chinese"
backend=os.environ.get("MINERU_BACKEND", "pipeline"),
server_url=os.environ.get("MINERU_SERVER_URL", ""),
delete_output=bool(int(os.environ.get("MINERU_DELETE_OUTPUT", 1))),
parse_method=parse_method
)
return sections, tables, pdf_parser
def by_docling(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, pdf_cls = None ,**kwargs):
pdf_parser = DoclingParser()
parse_method = kwargs.get("parse_method", "raw")
if not pdf_parser.check_installation():
callback(-1, "Docling not found.")
@ -89,6 +92,7 @@ def by_docling(filename, binary=None, from_page=0, to_page=100000, lang="Chinese
callback=callback,
output_dir=os.environ.get("MINERU_OUTPUT_DIR", ""),
delete_output=bool(int(os.environ.get("MINERU_DELETE_OUTPUT", 1))),
parse_method=parse_method
)
return sections, tables, pdf_parser
@ -116,7 +120,7 @@ def by_plaintext(filename, binary=None, from_page=0, to_page=100000, callback=No
else:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT, llm_name=kwargs.get("layout_recognizer", ""), lang=kwargs.get("lang", "Chinese"))
pdf_parser = VisionParser(vision_model=vision_model, **kwargs)
sections, tables = pdf_parser(
filename if not binary else binary,
from_page=from_page,
@ -504,7 +508,7 @@ class Markdown(MarkdownParser):
return images if images else None
def __call__(self, filename, binary=None, separate_tables=True,delimiter=None):
def __call__(self, filename, binary=None, separate_tables=True, delimiter=None):
if binary:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
@ -602,7 +606,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
_SerializedRelationships.load_from_xml = load_from_xml_v2
sections, tables = Docx()(filename, binary)
tables=vision_figure_parser_docx_wrapper(sections=sections,tbls=tables,callback=callback,**kwargs)
tables = vision_figure_parser_docx_wrapper(sections=sections, tbls=tables, callback=callback, **kwargs)
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")
@ -653,18 +657,47 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if name in ["tcadp", "docling", "mineru"]:
parser_config["chunk_token_num"] = 0
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")
elif re.search(r"\.(csv|xlsx?)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = ExcelParser()
if parser_config.get("html4excel"):
sections = [(_, "") for _ in excel_parser.html(binary, 12) if _]
# Check if tcadp_parser is selected for spreadsheet files
layout_recognizer = parser_config.get("layout_recognize", "DeepDOC")
if layout_recognizer == "TCADP Parser":
table_result_type = parser_config.get("table_result_type", "1")
markdown_image_response_type = parser_config.get("markdown_image_response_type", "1")
tcadp_parser = TCADPParser(
table_result_type=table_result_type,
markdown_image_response_type=markdown_image_response_type
)
if not tcadp_parser.check_installation():
callback(-1, "TCADP parser not available. Please check Tencent Cloud API configuration.")
return res
# Determine file type based on extension
file_type = "XLSX" if re.search(r"\.xlsx?$", filename, re.IGNORECASE) else "CSV"
sections, tables = tcadp_parser.parse_pdf(
filepath=filename,
binary=binary,
callback=callback,
output_dir=os.environ.get("TCADP_OUTPUT_DIR", ""),
file_type=file_type
)
parser_config["chunk_token_num"] = 0
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")
else:
sections = [(_, "") for _ in excel_parser(binary) if _]
parser_config["chunk_token_num"] = 12800
# Default DeepDOC parser
excel_parser = ExcelParser()
if parser_config.get("html4excel"):
sections = [(_, "") for _ in excel_parser.html(binary, 12) if _]
else:
sections = [(_, "") for _ in excel_parser(binary) if _]
parser_config["chunk_token_num"] = 12800
elif re.search(r"\.(txt|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|sql)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
@ -676,7 +709,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
markdown_parser = Markdown(int(parser_config.get("chunk_token_num", 128)))
sections, tables = markdown_parser(filename, binary, separate_tables=False,delimiter=parser_config.get("delimiter", "\n!?;。;!?"))
sections, tables = markdown_parser(filename, binary, separate_tables=False, delimiter=parser_config.get("delimiter", "\n!?;。;!?"))
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)

View File

@ -21,8 +21,10 @@ import re
from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper
from common.constants import ParserType
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
from deepdoc.parser import PdfParser, PlainParser
from deepdoc.parser import PdfParser
import numpy as np
from rag.app.naive import by_plaintext, PARSERS
class Pdf(PdfParser):
def __init__(self):
@ -147,19 +149,40 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
"parser_config", {
"chunk_token_num": 512, "delimiter": "\n!?。;!?", "layout_recognize": "DeepDOC"})
if re.search(r"\.pdf$", filename, re.IGNORECASE):
if parser_config.get("layout_recognize", "DeepDOC") == "Plain Text":
pdf_parser = PlainParser()
layout_recognizer = parser_config.get("layout_recognize", "DeepDOC")
if isinstance(layout_recognizer, bool):
layout_recognizer = "DeepDOC" if layout_recognizer else "Plain Text"
name = layout_recognizer.strip().lower()
pdf_parser = PARSERS.get(name, by_plaintext)
callback(0.1, "Start to parse.")
if name == "deepdoc":
pdf_parser = Pdf()
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else:
sections, tables, pdf_parser = pdf_parser(
filename=filename,
binary=binary,
from_page=from_page,
to_page=to_page,
lang=lang,
callback=callback,
pdf_cls=Pdf,
parse_method="paper",
**kwargs
)
paper = {
"title": filename,
"authors": " ",
"abstract": "",
"sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page)[0],
"tables": []
"sections": sections,
"tables": tables
}
else:
pdf_parser = Pdf()
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
tbls=paper["tables"]
tbls=vision_figure_parser_pdf_wrapper(tbls=tbls,callback=callback,**kwargs)
paper["tables"] = tbls

View File

@ -16,6 +16,7 @@ import io
import json
import os
import random
import re
from functools import partial
import trio
@ -83,6 +84,7 @@ class ParserParam(ProcessParamBase):
"output_format": "json",
},
"spreadsheet": {
"parse_method": "deepdoc", # deepdoc/tcadp_parser
"output_format": "html",
"suffix": [
"xls",
@ -102,8 +104,10 @@ class ParserParam(ProcessParamBase):
"output_format": "json",
},
"slides": {
"parse_method": "deepdoc", # deepdoc/tcadp_parser
"suffix": [
"pptx",
"ppt"
],
"output_format": "json",
},
@ -245,7 +249,12 @@ class Parser(ProcessBase):
bboxes.append(box)
elif conf.get("parse_method").lower() == "tcadp parser":
# ADP is a document parsing tool using Tencent Cloud API
tcadp_parser = TCADPParser()
table_result_type = conf.get("table_result_type", "1")
markdown_image_response_type = conf.get("markdown_image_response_type", "1")
tcadp_parser = TCADPParser(
table_result_type=table_result_type,
markdown_image_response_type=markdown_image_response_type
)
sections, _ = tcadp_parser.parse_pdf(
filepath=name,
binary=blob,
@ -301,14 +310,86 @@ class Parser(ProcessBase):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Spreadsheet.")
conf = self._param.setups["spreadsheet"]
self.set_output("output_format", conf["output_format"])
spreadsheet_parser = ExcelParser()
if conf.get("output_format") == "html":
htmls = spreadsheet_parser.html(blob, 1000000000)
self.set_output("html", htmls[0])
elif conf.get("output_format") == "json":
self.set_output("json", [{"text": txt} for txt in spreadsheet_parser(blob) if txt])
elif conf.get("output_format") == "markdown":
self.set_output("markdown", spreadsheet_parser.markdown(blob))
parse_method = conf.get("parse_method", "deepdoc")
# Handle TCADP parser
if parse_method.lower() == "tcadp parser":
table_result_type = conf.get("table_result_type", "1")
markdown_image_response_type = conf.get("markdown_image_response_type", "1")
tcadp_parser = TCADPParser(
table_result_type=table_result_type,
markdown_image_response_type=markdown_image_response_type
)
if not tcadp_parser.check_installation():
raise RuntimeError("TCADP parser not available. Please check Tencent Cloud API configuration.")
# Determine file type based on extension
if re.search(r"\.xlsx?$", name, re.IGNORECASE):
file_type = "XLSX"
else:
file_type = "CSV"
self.callback(0.2, f"Using TCADP parser for {file_type} file.")
sections, tables = tcadp_parser.parse_pdf(
filepath=name,
binary=blob,
callback=self.callback,
file_type=file_type,
file_start_page=1,
file_end_page=1000
)
# Process TCADP parser output based on configured output_format
output_format = conf.get("output_format", "html")
if output_format == "html":
# For HTML output, combine sections and tables into HTML
html_content = ""
for section, position_tag in sections:
if section:
html_content += section + "\n"
for table in tables:
if table:
html_content += table + "\n"
self.set_output("html", html_content)
elif output_format == "json":
# For JSON output, create a list of text items
result = []
# Add sections as text
for section, position_tag in sections:
if section:
result.append({"text": section})
# Add tables as text
for table in tables:
if table:
result.append({"text": table})
self.set_output("json", result)
elif output_format == "markdown":
# For markdown output, combine into markdown
md_content = ""
for section, position_tag in sections:
if section:
md_content += section + "\n\n"
for table in tables:
if table:
md_content += table + "\n\n"
self.set_output("markdown", md_content)
else:
# Default DeepDOC parser
spreadsheet_parser = ExcelParser()
if conf.get("output_format") == "html":
htmls = spreadsheet_parser.html(blob, 1000000000)
self.set_output("html", htmls[0])
elif conf.get("output_format") == "json":
self.set_output("json", [{"text": txt} for txt in spreadsheet_parser(blob) if txt])
elif conf.get("output_format") == "markdown":
self.set_output("markdown", spreadsheet_parser.markdown(blob))
def _word(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
@ -326,22 +407,69 @@ class Parser(ProcessBase):
self.set_output("markdown", markdown_text)
def _slides(self, name, blob):
from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PowerPoint Document")
conf = self._param.setups["slides"]
self.set_output("output_format", conf["output_format"])
ppt_parser = ppt_parser()
txts = ppt_parser(blob, 0, 100000, None)
parse_method = conf.get("parse_method", "deepdoc")
sections = [{"text": section} for section in txts if section.strip()]
# Handle TCADP parser
if parse_method.lower() == "tcadp parser":
table_result_type = conf.get("table_result_type", "1")
markdown_image_response_type = conf.get("markdown_image_response_type", "1")
tcadp_parser = TCADPParser(
table_result_type=table_result_type,
markdown_image_response_type=markdown_image_response_type
)
if not tcadp_parser.check_installation():
raise RuntimeError("TCADP parser not available. Please check Tencent Cloud API configuration.")
# json
assert conf.get("output_format") == "json", "have to be json for ppt"
if conf.get("output_format") == "json":
self.set_output("json", sections)
# Determine file type based on extension
if re.search(r"\.pptx?$", name, re.IGNORECASE):
file_type = "PPTX"
else:
file_type = "PPT"
self.callback(0.2, f"Using TCADP parser for {file_type} file.")
sections, tables = tcadp_parser.parse_pdf(
filepath=name,
binary=blob,
callback=self.callback,
file_type=file_type,
file_start_page=1,
file_end_page=1000
)
# Process TCADP parser output - PPT only supports json format
output_format = conf.get("output_format", "json")
if output_format == "json":
# For JSON output, create a list of text items
result = []
# Add sections as text
for section, position_tag in sections:
if section:
result.append({"text": section})
# Add tables as text
for table in tables:
if table:
result.append({"text": table})
self.set_output("json", result)
else:
# Default DeepDOC parser (supports .pptx format)
from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser
ppt_parser = ppt_parser()
txts = ppt_parser(blob, 0, 100000, None)
sections = [{"text": section} for section in txts if section.strip()]
# json
assert conf.get("output_format") == "json", "have to be json for ppt"
if conf.get("output_format") == "json":
self.set_output("json", sections)
def _markdown(self, name, blob):
from functools import reduce
@ -579,6 +707,7 @@ class Parser(ProcessBase):
"video": self._video,
"email": self._email,
}
try:
from_upstream = ParserFromUpstream.model_validate(kwargs)
except Exception as e:

View File

@ -234,7 +234,11 @@ class CoHereRerank(Base):
def __init__(self, key, model_name, base_url=None):
from cohere import Client
self.client = Client(api_key=key, base_url=base_url)
# Only pass base_url if it's a non-empty string, otherwise use default Cohere API endpoint
client_kwargs = {"api_key": key}
if base_url and base_url.strip():
client_kwargs["base_url"] = base_url
self.client = Client(**client_kwargs)
self.model_name = model_name.split("___")[0]
def similarity(self, query: str, texts: list):

View File

@ -83,6 +83,7 @@ class FulltextQueryer:
return txt
def question(self, txt, tbl="qa", min_match: float = 0.6):
original_query = txt
txt = FulltextQueryer.add_space_between_eng_zh(txt)
txt = re.sub(
r"[ :|\r\n\t,,。??/`!&^%%()\[\]{}<>]+",
@ -127,7 +128,7 @@ class FulltextQueryer:
q.append(txt)
query = " ".join(q)
return MatchTextExpr(
self.query_fields, query, 100
self.query_fields, query, 100, {"original_query": original_query}
), keywords
def need_fine_grained_tokenize(tk):
@ -212,7 +213,7 @@ class FulltextQueryer:
if not query:
query = otxt
return MatchTextExpr(
self.query_fields, query, 100, {"minimum_should_match": min_match}
self.query_fields, query, 100, {"minimum_should_match": min_match, "original_query": original_query}
), keywords
return None, keywords
@ -259,6 +260,7 @@ class FulltextQueryer:
content_tks = [c.strip() for c in content_tks.strip() if c.strip()]
tks_w = self.tw.weights(content_tks, preprocess=False)
origin_keywords = keywords.copy()
keywords = [f'"{k.strip()}"' for k in keywords]
for tk, w in sorted(tks_w, key=lambda x: x[1] * -1)[:keywords_topn]:
tk_syns = self.syn.lookup(tk)
@ -274,4 +276,4 @@ class FulltextQueryer:
keywords.append(f"{tk}^{w}")
return MatchTextExpr(self.query_fields, " ".join(keywords), 100,
{"minimum_should_match": min(3, len(keywords) // 10)})
{"minimum_should_match": min(3, len(keywords) / 10), "original_query": " ".join(origin_keywords)})

View File

@ -355,75 +355,102 @@ class Dealer:
rag_tokenizer.tokenize(ans).split(),
rag_tokenizer.tokenize(inst).split())
def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2,
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True,
rerank_mdl=None, highlight=False,
rank_feature: dict | None = {PAGERANK_FLD: 10}):
def retrieval(
self,
question,
embd_mdl,
tenant_ids,
kb_ids,
page,
page_size,
similarity_threshold=0.2,
vector_similarity_weight=0.3,
top=1024,
doc_ids=None,
aggs=True,
rerank_mdl=None,
highlight=False,
rank_feature: dict | None = {PAGERANK_FLD: 10},
):
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
if not question:
return ranks
# Ensure RERANK_LIMIT is multiple of page_size
RERANK_LIMIT = math.ceil(64/page_size) * page_size if page_size>1 else 1
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "page": math.ceil(page_size*page/RERANK_LIMIT), "size": RERANK_LIMIT,
"question": question, "vector": True, "topk": top,
"similarity": similarity_threshold,
"available_int": 1}
RERANK_LIMIT = math.ceil(64 / page_size) * page_size if page_size > 1 else 1
req = {
"kb_ids": kb_ids,
"doc_ids": doc_ids,
"page": math.ceil(page_size * page / RERANK_LIMIT),
"size": RERANK_LIMIT,
"question": question,
"vector": True,
"topk": top,
"similarity": similarity_threshold,
"available_int": 1,
}
if isinstance(tenant_ids, str):
tenant_ids = tenant_ids.split(",")
sres = self.search(req, [index_name(tid) for tid in tenant_ids],
kb_ids, embd_mdl, highlight, rank_feature=rank_feature)
sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight, rank_feature=rank_feature)
if rerank_mdl and sres.total > 0:
sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
sres, question, 1 - vector_similarity_weight,
vector_similarity_weight,
rank_feature=rank_feature)
sim, tsim, vsim = self.rerank_by_model(
rerank_mdl,
sres,
question,
1 - vector_similarity_weight,
vector_similarity_weight,
rank_feature=rank_feature,
)
else:
lower_case_doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
if lower_case_doc_engine in ["elasticsearch","opensearch"]:
lower_case_doc_engine = os.getenv("DOC_ENGINE", "elasticsearch")
if lower_case_doc_engine in ["elasticsearch", "opensearch"]:
# ElasticSearch doesn't normalize each way score before fusion.
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight,
rank_feature=rank_feature)
sres,
question,
1 - vector_similarity_weight,
vector_similarity_weight,
rank_feature=rank_feature,
)
else:
# Don't need rerank here since Infinity normalizes each way score before fusion.
sim = [sres.field[id].get("_score", 0.0) for id in sres.ids]
sim = [s if s is not None else 0. for s in sim]
sim = [s if s is not None else 0.0 for s in sim]
tsim = sim
vsim = sim
# Already paginated in search function
max_pages = RERANK_LIMIT // page_size
page_index = (page % max_pages) - 1
begin = max(page_index * page_size, 0)
sim = sim[begin : begin + page_size]
sim_np = np.array(sim, dtype=np.float64)
idx = np.argsort(sim_np * -1)
if sim_np.size == 0:
return ranks
sorted_idx = np.argsort(sim_np * -1)
valid_idx = [int(i) for i in sorted_idx if sim_np[i] >= similarity_threshold]
filtered_count = len(valid_idx)
ranks["total"] = int(filtered_count)
if filtered_count == 0:
return ranks
max_pages = max(RERANK_LIMIT // max(page_size, 1), 1)
page_index = (page - 1) % max_pages
begin = page_index * page_size
end = begin + page_size
page_idx = valid_idx[begin:end]
dim = len(sres.query_vector)
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
filtered_count = (sim_np >= similarity_threshold).sum()
ranks["total"] = int(filtered_count) # Convert from np.int64 to Python int otherwise JSON serializable error
for i in idx:
if np.float64(sim[i]) < similarity_threshold:
break
for i in page_idx:
id = sres.ids[i]
chunk = sres.field[id]
dnm = chunk.get("docnm_kwd", "")
did = chunk.get("doc_id", "")
if len(ranks["chunks"]) >= page_size:
if aggs:
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
continue
break
position_int = chunk.get("position_int", [])
d = {
"chunk_id": id,
@ -434,12 +461,12 @@ class Dealer:
"kb_id": chunk["kb_id"],
"important_kwd": chunk.get("important_kwd", []),
"image_id": chunk.get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"similarity": float(sim_np[i]),
"vector_similarity": float(vsim[i]),
"term_similarity": float(tsim[i]),
"vector": chunk.get(vector_column, zero_vector),
"positions": position_int,
"doc_type_kwd": chunk.get("doc_type_kwd", "")
"doc_type_kwd": chunk.get("doc_type_kwd", ""),
}
if highlight and sres.highlight:
if id in sres.highlight:
@ -447,15 +474,30 @@ class Dealer:
else:
d["highlight"] = d["content_with_weight"]
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
ranks["doc_aggs"] = [{"doc_name": k,
"doc_id": v["doc_id"],
"count": v["count"]} for k,
v in sorted(ranks["doc_aggs"].items(),
key=lambda x: x[1]["count"] * -1)]
ranks["chunks"] = ranks["chunks"][:page_size]
if aggs:
for i in valid_idx:
id = sres.ids[i]
chunk = sres.field[id]
dnm = chunk.get("docnm_kwd", "")
did = chunk.get("doc_id", "")
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
ranks["doc_aggs"] = [
{
"doc_name": k,
"doc_id": v["doc_id"],
"count": v["count"],
}
for k, v in sorted(
ranks["doc_aggs"].items(),
key=lambda x: x[1]["count"] * -1,
)
]
else:
ranks["doc_aggs"] = []
return ranks
@ -564,7 +606,7 @@ class Dealer:
ids = relevant_chunks_with_toc(query, toc, chat_mdl, topn*2)
if not ids:
return chunks
vector_size = 1024
id2idx = {ck["chunk_id"]: i for i, ck in enumerate(chunks)}
for cid, sim in ids:

View File

@ -429,7 +429,7 @@ def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[st
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> dict:
sys_prompt = PROMPT_JINJA_ENV.from_string(META_FILTER).render(
current_date=datetime.datetime.today().strftime('%Y-%m-%d'),
metadata_keys=json.dumps(meta_data),
@ -440,11 +440,13 @@ def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL)
try:
ans = json_repair.loads(ans)
assert isinstance(ans, list), ans
assert isinstance(ans, dict), ans
assert "conditions" in ans and isinstance(ans["conditions"], list), ans
return ans
except Exception:
logging.exception(f"Loading json failure: {ans}")
return []
return {"conditions": []}
def gen_json(system_prompt:str, user_prompt:str, chat_mdl, gen_conf = None):

View File

@ -9,11 +9,13 @@ You are a metadata filtering condition generator. Analyze the user's question an
}
2. **Output Requirements**:
- Always output a JSON array of filter objects
- Each object must have:
- Always output a JSON dictionary with only 2 keys: 'conditions'(filter objects) and 'logic' between the conditions ('and' or 'or').
- Each filter object in conditions must have:
"key": (metadata attribute name),
"value": (string value to compare),
"op": (operator from allowed list)
- Logic between all the conditions: 'and'(Intersection of results for each condition) / 'or' (union of results for all conditions)
3. **Operator Guide**:
- Use these operators only: ["contains", "not contains", "start with", "end with", "empty", "not empty", "=", "≠", ">", "<", "≥", "≤"]
@ -32,22 +34,97 @@ You are a metadata filtering condition generator. Analyze the user's question an
- Attribute doesn't exist in metadata
- Value has no match in metadata
5. **Example**:
5. **Example A**:
- User query: "上市日期七月份的有哪些商品不要蓝色的"
- Metadata: { "color": {...}, "listing_date": {...} }
- Output:
[
{
"logic": "and",
"conditions": [
{"key": "listing_date", "value": "2025-07-01", "op": "≥"},
{"key": "listing_date", "value": "2025-08-01", "op": "<"},
{"key": "color", "value": "blue", "op": "≠"}
]
}
6. **Final Output**:
- ONLY output valid JSON array
6. **Example B**:
- User query: "Both blue and red are acceptable."
- Metadata: { "color": {...}, "listing_date": {...} }
- Output:
{
"logic": "or",
"conditions": [
{"key": "color", "value": "blue", "op": "="},
{"key": "color", "value": "red", "op": "="}
]
}
7. **Final Output**:
- ONLY output valid JSON dictionary
- NO additional text/explanations
- Json schema is as following:
```json
{
"type": "object",
"properties": {
"logic": {
"type": "string",
"description": "Logic relationship between all the conditions, the default is 'and'.",
"enum": [
"and",
"or"
]
},
"conditions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"key": {
"type": "string",
"description": "Metadata attribute name."
},
"value": {
"type": "string",
"description": "Value to compare."
},
"op": {
"type": "string",
"description": "Operator from allowed list.",
"enum": [
"contains",
"not contains",
"start with",
"end with",
"empty",
"not empty",
"=",
"≠",
">",
"<",
"≥",
"≤"
]
}
},
"required": [
"key",
"value",
"op"
],
"additionalProperties": false
}
}
},
"required": [
"conditions"
],
"additionalProperties": false
}
```
**Current Task**:
- Today's date: {{current_date}}
- Available metadata keys: {{metadata_keys}}
- User query: "{{user_question}}"
- Today's date: {{ current_date }}
- Available metadata keys: {{ metadata_keys }}
- User query: "{{ user_question }}"

1562
rag/utils/ob_conn.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -69,7 +69,7 @@ class Document(Base):
response = res.json()
actual_keys = set(response.keys())
if actual_keys == error_keys:
raise Exception(res.get("message"))
raise Exception(response.get("message"))
else:
return res.content
except json.JSONDecodeError:

View File

@ -80,6 +80,7 @@ class Session(Base):
def _structure_answer(self, json_data):
answer = ""
if self.__session_type == "agent":
answer = json_data["data"]["content"]
elif self.__session_type == "chat":

6751
uv.lock generated

File diff suppressed because it is too large Load Diff

96
web/package-lock.json generated
View File

@ -66,6 +66,7 @@
"input-otp": "^1.4.1",
"js-base64": "^3.7.5",
"jsencrypt": "^3.3.2",
"jsoneditor": "^10.4.2",
"lexical": "^0.23.1",
"lodash": "^4.17.21",
"lucide-react": "^0.546.0",
@ -8998,6 +8999,12 @@
"@sinonjs/commons": "^3.0.0"
}
},
"node_modules/@sphinxxxx/color-conversion": {
"version": "2.2.2",
"resolved": "https://registry.npmmirror.com/@sphinxxxx/color-conversion/-/color-conversion-2.2.2.tgz",
"integrity": "sha512-XExJS3cLqgrmNBIP3bBw6+1oQ1ksGjFh0+oClDKFYpCCqx/hlqwWO5KO/S63fzUo67SxI9dMrF0y5T/Ey7h8Zw==",
"license": "ISC"
},
"node_modules/@storybook/addon-docs": {
"version": "9.1.4",
"resolved": "https://registry.npmmirror.com/@storybook/addon-docs/-/addon-docs-9.1.4.tgz",
@ -12962,6 +12969,12 @@
"node": ">= 0.6"
}
},
"node_modules/ace-builds": {
"version": "1.43.4",
"resolved": "https://registry.npmmirror.com/ace-builds/-/ace-builds-1.43.4.tgz",
"integrity": "sha512-8hAxVfo2ImICd69BWlZwZlxe9rxDGDjuUhh+WeWgGDvfBCE+r3lkynkQvIovDz4jcMi8O7bsEaFygaDT+h9sBA==",
"license": "BSD-3-Clause"
},
"node_modules/acorn": {
"version": "8.15.0",
"resolved": "https://registry.npmmirror.com/acorn/-/acorn-8.15.0.tgz",
@ -21894,6 +21907,12 @@
"@pkgjs/parseargs": "^0.11.0"
}
},
"node_modules/javascript-natural-sort": {
"version": "0.7.1",
"resolved": "https://registry.npmmirror.com/javascript-natural-sort/-/javascript-natural-sort-0.7.1.tgz",
"integrity": "sha512-nO6jcEfZWQXDhOiBtG2KvKyEptz7RVbpGP4vTD2hLBdmNQSsCiicO2Ioinv6UI4y9ukqnBpy+XZ9H6uLNgJTlw==",
"license": "MIT"
},
"node_modules/javascript-stringify": {
"version": "2.1.0",
"resolved": "https://registry.npmmirror.com/javascript-stringify/-/javascript-stringify-2.1.0.tgz",
@ -24253,6 +24272,15 @@
"jiti": "bin/jiti.js"
}
},
"node_modules/jmespath": {
"version": "0.16.0",
"resolved": "https://registry.npmmirror.com/jmespath/-/jmespath-0.16.0.tgz",
"integrity": "sha512-9FzQjJ7MATs1tSpnco1K6ayiYE3figslrXA72G2HQ/n76RzvYlofyi5QM+iX4YRs/pu3yzxlVQSST23+dMDknw==",
"license": "Apache-2.0",
"engines": {
"node": ">= 0.6.0"
}
},
"node_modules/js-base64": {
"version": "3.7.5",
"resolved": "https://registry.npmmirror.com/js-base64/-/js-base64-3.7.5.tgz",
@ -24357,6 +24385,12 @@
"integrity": "sha512-NM8/P9n3XjXhIZn1lLhkFaACTOURQXjWhV4BA/RnOv8xvgqtqpAX9IO4mRQxSx1Rlo4tqzeqb0sOlruaOy3dug==",
"license": "MIT"
},
"node_modules/json-source-map": {
"version": "0.6.1",
"resolved": "https://registry.npmmirror.com/json-source-map/-/json-source-map-0.6.1.tgz",
"integrity": "sha512-1QoztHPsMQqhDq0hlXY5ZqcEdUzxQEIxgFkKl4WUp2pgShObl+9ovi4kRh2TfvAfxAoHOJ9vIMEqk3k4iex7tg==",
"license": "MIT"
},
"node_modules/json-stable-stringify-without-jsonify": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/json-stable-stringify-without-jsonify/-/json-stable-stringify-without-jsonify-1.0.1.tgz",
@ -24393,6 +24427,44 @@
"node": ">=6"
}
},
"node_modules/jsoneditor": {
"version": "10.4.2",
"resolved": "https://registry.npmmirror.com/jsoneditor/-/jsoneditor-10.4.2.tgz",
"integrity": "sha512-SQPCXlanU4PqdVsYuj2X7yfbLiiJYjklbksGfMKPsuwLhAIPxDlG43jYfXieGXvxpuq1fkw08YoRbkKXKabcLA==",
"license": "Apache-2.0",
"dependencies": {
"ace-builds": "^1.36.2",
"ajv": "^6.12.6",
"javascript-natural-sort": "^0.7.1",
"jmespath": "^0.16.0",
"json-source-map": "^0.6.1",
"jsonrepair": "^3.8.1",
"picomodal": "^3.0.0",
"vanilla-picker": "^2.12.3"
}
},
"node_modules/jsoneditor/node_modules/ajv": {
"version": "6.12.6",
"resolved": "https://registry.npmmirror.com/ajv/-/ajv-6.12.6.tgz",
"integrity": "sha512-j3fVLgvTo527anyYyJOGTYJbG+vnnQYvE0m5mmkc1TK+nxAppkCLMIL0aZ4dblVCNoGShhm+kzE4ZUykBoMg4g==",
"license": "MIT",
"dependencies": {
"fast-deep-equal": "^3.1.1",
"fast-json-stable-stringify": "^2.0.0",
"json-schema-traverse": "^0.4.1",
"uri-js": "^4.2.2"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/epoberezkin"
}
},
"node_modules/jsoneditor/node_modules/json-schema-traverse": {
"version": "0.4.1",
"resolved": "https://registry.npmmirror.com/json-schema-traverse/-/json-schema-traverse-0.4.1.tgz",
"integrity": "sha512-xbbCH5dCYU5T8LcEhhuh7HJ88HXuW3qsI3Y0zOZFKfZEHcpWiHU/Jxzk629Brsab/mMiHQti9wMP+845RPe3Vg==",
"license": "MIT"
},
"node_modules/jsonfile": {
"version": "6.1.0",
"resolved": "https://registry.npmmirror.com/jsonfile/-/jsonfile-6.1.0.tgz",
@ -24404,6 +24476,15 @@
"graceful-fs": "^4.1.6"
}
},
"node_modules/jsonrepair": {
"version": "3.13.1",
"resolved": "https://registry.npmmirror.com/jsonrepair/-/jsonrepair-3.13.1.tgz",
"integrity": "sha512-WJeiE0jGfxYmtLwBTEk8+y/mYcaleyLXWaqp5bJu0/ZTSeG0KQq/wWQ8pmnkKenEdN6pdnn6QtcoSUkbqDHWNw==",
"license": "ISC",
"bin": {
"jsonrepair": "bin/cli.js"
}
},
"node_modules/jsx-ast-utils": {
"version": "3.3.5",
"resolved": "https://registry.npmmirror.com/jsx-ast-utils/-/jsx-ast-utils-3.3.5.tgz",
@ -27499,6 +27580,12 @@
"node": ">=8.6"
}
},
"node_modules/picomodal": {
"version": "3.0.0",
"resolved": "https://registry.npmmirror.com/picomodal/-/picomodal-3.0.0.tgz",
"integrity": "sha512-FoR3TDfuLlqUvcEeK5ifpKSVVns6B4BQvc8SDF6THVMuadya6LLtji0QgUDSStw0ZR2J7I6UGi5V2V23rnPWTw==",
"license": "MIT"
},
"node_modules/pidtree": {
"version": "0.6.0",
"resolved": "https://registry.npmmirror.com/pidtree/-/pidtree-0.6.0.tgz",
@ -36235,6 +36322,15 @@
"dev": true,
"peer": true
},
"node_modules/vanilla-picker": {
"version": "2.12.3",
"resolved": "https://registry.npmmirror.com/vanilla-picker/-/vanilla-picker-2.12.3.tgz",
"integrity": "sha512-qVkT1E7yMbUsB2mmJNFmaXMWE2hF8ffqzMMwe9zdAikd8u2VfnsVY2HQcOUi2F38bgbxzlJBEdS1UUhOXdF9GQ==",
"license": "ISC",
"dependencies": {
"@sphinxxxx/color-conversion": "^2.2.2"
}
},
"node_modules/vary": {
"version": "1.1.2",
"resolved": "https://registry.npmmirror.com/vary/-/vary-1.1.2.tgz",

View File

@ -79,6 +79,7 @@
"input-otp": "^1.4.1",
"js-base64": "^3.7.5",
"jsencrypt": "^3.3.2",
"jsoneditor": "^10.4.2",
"lexical": "^0.23.1",
"lodash": "^4.17.21",
"lucide-react": "^0.546.0",

View File

@ -0,0 +1,132 @@
.ace-tomorrow-night .ace_gutter {
background: var(--bg-card);
color: rgb(var(--text-primary));
}
.ace-tomorrow-night .ace_print-margin {
width: 1px;
background: #25282c;
}
.ace-tomorrow-night {
background: var(--bg-card);
color: rgb(var(--text-primary));
.ace_editor {
background: var(--bg-card);
}
}
.ace-tomorrow-night .ace_cursor {
color: #aeafad;
}
.ace-tomorrow-night .ace_marker-layer .ace_selection {
background: #373b41;
}
.ace-tomorrow-night.ace_multiselect .ace_selection.ace_start {
box-shadow: 0 0 3px 0px #1d1f21;
}
.ace-tomorrow-night .ace_marker-layer .ace_step {
background: rgb(102, 82, 0);
}
.ace-tomorrow-night .ace_marker-layer .ace_bracket {
margin: -1px 0 0 -1px;
border: 1px solid #4b4e55;
}
.ace-tomorrow-night .ace_marker-layer .ace_active-line {
background: var(--bg-card);
}
.ace-tomorrow-night .ace_gutter-active-line {
background-color: var(--bg-card);
}
.ace-tomorrow-night .ace_marker-layer .ace_selected-word {
border: 1px solid #373b41;
}
.ace-tomorrow-night .ace_invisible {
color: #4b4e55;
}
.ace-tomorrow-night .ace_keyword,
.ace-tomorrow-night .ace_meta,
.ace-tomorrow-night .ace_storage,
.ace-tomorrow-night .ace_storage.ace_type,
.ace-tomorrow-night .ace_support.ace_type {
color: #b294bb;
}
.ace-tomorrow-night .ace_keyword.ace_operator {
color: #8abeb7;
}
.ace-tomorrow-night .ace_constant.ace_character,
.ace-tomorrow-night .ace_constant.ace_language,
.ace-tomorrow-night .ace_constant.ace_numeric,
.ace-tomorrow-night .ace_keyword.ace_other.ace_unit,
.ace-tomorrow-night .ace_support.ace_constant,
.ace-tomorrow-night .ace_variable.ace_parameter {
color: #de935f;
}
.ace-tomorrow-night .ace_constant.ace_other {
color: #ced1cf;
}
.ace-tomorrow-night .ace_invalid {
color: #ced2cf;
background-color: #df5f5f;
}
.ace-tomorrow-night .ace_invalid.ace_deprecated {
color: #ced2cf;
background-color: #b798bf;
}
.ace-tomorrow-night .ace_fold {
background-color: #81a2be;
border-color: #c5c8c6;
}
.ace-tomorrow-night .ace_entity.ace_name.ace_function,
.ace-tomorrow-night .ace_support.ace_function,
.ace-tomorrow-night .ace_variable {
color: #81a2be;
}
.ace-tomorrow-night .ace_support.ace_class,
.ace-tomorrow-night .ace_support.ace_type {
color: #f0c674;
}
.ace-tomorrow-night .ace_heading,
.ace-tomorrow-night .ace_markup.ace_heading,
.ace-tomorrow-night .ace_string {
color: #b5bd68;
}
.ace-tomorrow-night .ace_entity.ace_name.ace_tag,
.ace-tomorrow-night .ace_entity.ace_other.ace_attribute-name,
.ace-tomorrow-night .ace_meta.ace_tag,
.ace-tomorrow-night .ace_string.ace_regexp,
.ace-tomorrow-night .ace_variable {
color: #cc6666;
}
.ace-tomorrow-night .ace_comment {
color: #969896;
}
.ace-tomorrow-night .ace_indent-guide {
background: url()
right repeat-y;
}
.ace-tomorrow-night .ace_indent-guide-active {
background: url()
right repeat-y;
}

View File

@ -0,0 +1,83 @@
.jsoneditor {
border: none;
color: rgb(var(--text-primary));
overflow: auto;
scrollbar-width: none;
background-color: var(--bg-base);
.jsoneditor-menu {
background-color: var(--bg-base);
// border-color: var(--border-button);
border-bottom: thin solid var(--border-button);
}
.jsoneditor-navigation-bar {
border-bottom: 1px solid var(--border-button);
background-color: var(--bg-input);
}
.jsoneditor-tree {
background: var(--bg-base);
}
.jsoneditor-highlight {
background-color: var(--bg-card);
}
}
.jsoneditor-popover,
.jsoneditor-schema-error,
div.jsoneditor td,
div.jsoneditor textarea,
div.jsoneditor th,
div.jsoneditor-field,
div.jsoneditor-value,
pre.jsoneditor-preview {
font-family: consolas, menlo, monaco, 'Ubuntu Mono', source-code-pro,
monospace;
font-size: 14px;
color: rgb(var(--text-primary));
}
div.jsoneditor-field.jsoneditor-highlight,
div.jsoneditor-field[contenteditable='true']:focus,
div.jsoneditor-field[contenteditable='true']:hover,
div.jsoneditor-value.jsoneditor-highlight,
div.jsoneditor-value[contenteditable='true']:focus,
div.jsoneditor-value[contenteditable='true']:hover {
background-color: var(--bg-input);
border: 1px solid var(--border-button);
border-radius: 2px;
}
.jsoneditor-selected,
.jsoneditor-contextmenu .jsoneditor-menu li ul {
background: var(--bg-base);
}
.jsoneditor-contextmenu .jsoneditor-menu button {
color: rgb(var(--text-secondary));
}
.jsoneditor-menu a.jsoneditor-poweredBy {
display: none;
}
.ace-jsoneditor .ace_scroller {
background-color: var(--bg-base);
}
.jsoneditor-statusbar {
border-top: 1px solid var(--border-button);
background-color: var(--bg-base);
color: rgb(var(--text-primary));
}
.jsoneditor-menu > .jsoneditor-modes > button,
.jsoneditor-menu > button {
// color: rgb(var(--text-secondary));
background-color: var(--text-disabled);
}
.jsoneditor-menu > .jsoneditor-modes > button:active,
.jsoneditor-menu > .jsoneditor-modes > button:focus,
.jsoneditor-menu > button:active,
.jsoneditor-menu > button:focus {
background-color: rgb(var(--text-secondary));
}
.jsoneditor-menu > .jsoneditor-modes > button:hover,
.jsoneditor-menu > button:hover {
background-color: rgb(var(--text-secondary));
border: 1px solid var(--border-button);
}

View File

@ -0,0 +1,142 @@
import React, { useEffect, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import './css/cloud9_night.less';
import './css/index.less';
import { JsonEditorOptions, JsonEditorProps } from './interface';
const defaultConfig: JsonEditorOptions = {
mode: 'code',
modes: ['tree', 'code'],
history: false,
search: false,
mainMenuBar: false,
navigationBar: false,
enableSort: false,
enableTransform: false,
indentation: 2,
};
const JsonEditor: React.FC<JsonEditorProps> = ({
value,
onChange,
height = '400px',
className = '',
options = {},
}) => {
const containerRef = useRef<HTMLDivElement>(null);
const editorRef = useRef<any>(null);
const { i18n } = useTranslation();
const currentLanguageRef = useRef<string>(i18n.language);
useEffect(() => {
if (typeof window !== 'undefined') {
const JSONEditor = require('jsoneditor');
import('jsoneditor/dist/jsoneditor.min.css');
if (containerRef.current) {
// Default configuration options
const defaultOptions: JsonEditorOptions = {
...defaultConfig,
language: i18n.language === 'zh' ? 'zh-CN' : 'en',
onChange: () => {
if (editorRef.current && onChange) {
try {
const updatedJson = editorRef.current.get();
onChange(updatedJson);
} catch (err) {
// Do not trigger onChange when parsing error occurs
console.error(err);
}
}
},
...options, // Merge user provided options with defaults
};
editorRef.current = new JSONEditor(
containerRef.current,
defaultOptions,
);
if (value) {
editorRef.current.set(value);
}
}
}
return () => {
if (editorRef.current) {
if (typeof editorRef.current.destroy === 'function') {
editorRef.current.destroy();
}
editorRef.current = null;
}
};
}, []);
useEffect(() => {
// Update language when i18n language changes
// Since JSONEditor doesn't have a setOptions method, we need to recreate the editor
if (editorRef.current && currentLanguageRef.current !== i18n.language) {
currentLanguageRef.current = i18n.language;
// Save current data
let currentData;
try {
currentData = editorRef.current.get();
} catch (e) {
// If there's an error getting data, use the passed value or empty object
currentData = value || {};
}
// Destroy the current editor
if (typeof editorRef.current.destroy === 'function') {
editorRef.current.destroy();
}
// Recreate the editor with new language
const JSONEditor = require('jsoneditor');
const newOptions: JsonEditorOptions = {
...defaultConfig,
language: i18n.language === 'zh' ? 'zh-CN' : 'en',
onChange: () => {
if (editorRef.current && onChange) {
try {
const updatedJson = editorRef.current.get();
onChange(updatedJson);
} catch (err) {
// Do not trigger onChange when parsing error occurs
}
}
},
...options, // Merge user provided options with defaults
};
editorRef.current = new JSONEditor(containerRef.current, newOptions);
editorRef.current.set(currentData);
}
}, [i18n.language, value, onChange, options]);
useEffect(() => {
if (editorRef.current && value !== undefined) {
try {
// Only update the editor when the value actually changes
const currentJson = editorRef.current.get();
if (JSON.stringify(currentJson) !== JSON.stringify(value)) {
editorRef.current.set(value);
}
} catch (err) {
// Skip update if there is a syntax error in the current editor
editorRef.current.set(value);
}
}
}, [value]);
return (
<div
ref={containerRef}
style={{ height }}
className={`ace-tomorrow-night w-full border border-border-button rounded-lg overflow-hidden bg-bg-input ${className} `}
/>
);
};
export default JsonEditor;

View File

@ -0,0 +1,339 @@
// JSONEditor configuration options interface see: https://github.com/josdejong/jsoneditor/blob/master/docs/api.md
export interface JsonEditorOptions {
/**
* Editor mode. Available values: 'tree' (default), 'view', 'form', 'text', and 'code'.
*/
mode?: 'tree' | 'view' | 'form' | 'text' | 'code';
/**
* Array of available modes
*/
modes?: Array<'tree' | 'view' | 'form' | 'text' | 'code'>;
/**
* Field name for the root node. Only applicable for modes 'tree', 'view', and 'form'
*/
name?: string;
/**
* Theme for the editor
*/
theme?: string;
/**
* Enable history (undo/redo). True by default. Only applicable for modes 'tree', 'view', and 'form'
*/
history?: boolean;
/**
* Enable search box. True by default. Only applicable for modes 'tree', 'view', and 'form'
*/
search?: boolean;
/**
* Main menu bar visibility
*/
mainMenuBar?: boolean;
/**
* Navigation bar visibility
*/
navigationBar?: boolean;
/**
* Status bar visibility
*/
statusBar?: boolean;
/**
* If true, object keys are sorted before display. false by default.
*/
sortObjectKeys?: boolean;
/**
* Enable transform functionality
*/
enableTransform?: boolean;
/**
* Enable sort functionality
*/
enableSort?: boolean;
/**
* Limit dragging functionality
*/
limitDragging?: boolean;
/**
* A JSON schema object
*/
schema?: any;
/**
* Schemas that are referenced using the `$ref` property from the JSON schema
*/
schemaRefs?: Record<string, any>;
/**
* Array of template objects
*/
templates?: Array<{
text: string;
title?: string;
className?: string;
field?: string;
value: any;
}>;
/**
* Ace editor instance
*/
ace?: any;
/**
* An instance of Ajv JSON schema validator
*/
ajv?: any;
/**
* Switch to enable/disable autocomplete
*/
autocomplete?: {
confirmKey?: string | string[];
caseSensitive?: boolean;
getOptions?: (
text: string,
path: Array<string | number>,
input: string,
editor: any,
) => string[] | Promise<string[]> | null;
};
/**
* Number of indentation spaces. 4 by default. Only applicable for modes 'text' and 'code'
*/
indentation?: number;
/**
* Available languages
*/
languages?: string[];
/**
* Language of the editor
*/
language?: string;
/**
* Callback method, triggered on change of contents. Does not pass the contents itself.
* See also onChangeJSON and onChangeText.
*/
onChange?: () => void;
/**
* Callback method, triggered in modes on change of contents, passing the changed contents as JSON.
* Only applicable for modes 'tree', 'view', and 'form'.
*/
onChangeJSON?: (json: any) => void;
/**
* Callback method, triggered in modes on change of contents, passing the changed contents as stringified JSON.
*/
onChangeText?: (text: string) => void;
/**
* Callback method, triggered when an error occurs
*/
onError?: (error: Error) => void;
/**
* Callback method, triggered when node is expanded
*/
onExpand?: (node: any) => void;
/**
* Callback method, triggered when node is collapsed
*/
onCollapse?: (node: any) => void;
/**
* Callback method, determines if a node is editable
*/
onEditable?: (node: any) => boolean | { field: boolean; value: boolean };
/**
* Callback method, triggered when an event occurs in a JSON field or value.
* Only applicable for modes 'form', 'tree' and 'view'
*/
onEvent?: (node: any, event: Event) => void;
/**
* Callback method, triggered when the editor comes into focus, passing an object {type, target}.
* Applicable for all modes
*/
onFocus?: (node: any) => void;
/**
* Callback method, triggered when the editor goes out of focus, passing an object {type, target}.
* Applicable for all modes
*/
onBlur?: (node: any) => void;
/**
* Callback method, triggered when creating menu items
*/
onCreateMenu?: (menuItems: any[], node: any) => any[];
/**
* Callback method, triggered on node selection change. Only applicable for modes 'tree', 'view', and 'form'
*/
onSelectionChange?: (selection: any) => void;
/**
* Callback method, triggered on text selection change. Only applicable for modes 'text' and 'code'
*/
onTextSelectionChange?: (selection: any) => void;
/**
* Callback method, triggered when a Node DOM is rendered. Function returns a css class name to be set on a node.
* Only applicable for modes 'form', 'tree' and 'view'
*/
onClassName?: (node: any) => string | undefined;
/**
* Callback method, triggered when validating nodes
*/
onValidate?: (
json: any,
) =>
| Array<{ path: Array<string | number>; message: string }>
| Promise<Array<{ path: Array<string | number>; message: string }>>;
/**
* Callback method, triggered when node name is determined
*/
onNodeName?: (parentNode: any, childNode: any, name: string) => string;
/**
* Callback method, triggered when mode changes
*/
onModeChange?: (newMode: string, oldMode: string) => void;
/**
* Color picker options
*/
colorPicker?: boolean;
/**
* Callback method for color picker
*/
onColorPicker?: (
callback: (color: string) => void,
parent: HTMLElement,
) => void;
/**
* If true, shows timestamp tag
*/
timestampTag?: boolean;
/**
* Format for timestamps
*/
timestampFormat?: string;
/**
* If true, unicode characters are escaped. false by default.
*/
escapeUnicode?: boolean;
/**
* Number of children allowed for a node in 'tree', 'view', or 'form' mode before
* the "show more/show all" buttons appear. 100 by default.
*/
maxVisibleChilds?: number;
/**
* Callback method for validation errors
*/
onValidationError?: (
errors: Array<{ path: Array<string | number>; message: string }>,
) => void;
/**
* Callback method for validation warnings
*/
onValidationWarning?: (
warnings: Array<{ path: Array<string | number>; message: string }>,
) => void;
/**
* The anchor element to apply an overlay and display the modals in a centered location. Defaults to document.body
*/
modalAnchor?: HTMLElement | null;
/**
* Anchor element for popups
*/
popupAnchor?: HTMLElement | null;
/**
* Function to create queries
*/
createQuery?: () => void;
/**
* Function to execute queries
*/
executeQuery?: () => void;
/**
* Query description
*/
queryDescription?: string;
/**
* Allow schema suggestions
*/
allowSchemaSuggestions?: boolean;
/**
* Show error table
*/
showErrorTable?: boolean;
/**
* Validate current JSON object against the configured JSON schema
* Must be implemented by tree mode and text mode
*/
validate?: () => Promise<any[]>;
/**
* Refresh the rendered contents
* Can be implemented by tree mode and text mode
*/
refresh?: () => void;
/**
* Callback method triggered when schema changes
*/
_onSchemaChange?: (schema: any, schemaRefs: any) => void;
}
export interface JsonEditorProps {
// JSON data to be displayed in the editor
value?: any;
// Callback function triggered when the JSON data changes
onChange?: (value: any) => void;
// Height of the editor
height?: string;
// Additional CSS class names
className?: string;
// Configuration options for the JSONEditor
options?: JsonEditorOptions;
}

View File

@ -25,6 +25,7 @@ export default {
portugueseBr: 'Portuguese (Brazil)',
chinese: 'Simplified Chinese',
traditionalChinese: 'Traditional Chinese',
russian: 'Russian',
language: 'Language',
languageMessage: 'Please input your language!',
languagePlaceholder: 'select your language',
@ -1752,6 +1753,8 @@ The variable aggregation node (originally the variable assignment node) is a cru
The Indexer will store the content in the corresponding data structures for the selected methods.`,
// file: 'File',
parserMethod: 'PDF parser',
tableResultType: 'Table Result Type',
markdownImageResponseType: 'Markdown Image Response Type',
// systemPrompt: 'System Prompt',
systemPromptPlaceholder:
'Enter system prompt for image analysis, if empty the system default value will be used',
@ -1934,6 +1937,7 @@ Important structured information may include: names, dates, locations, events, k
japanese: 'Japanese',
korean: 'Korean',
vietnamese: 'Vietnamese',
russian: 'Russian',
},
pagination: {
total: 'Total {{total}}',

File diff suppressed because it is too large Load Diff

View File

@ -1629,6 +1629,8 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
Tokenizer 会根据所选方式将内容存储为对应的数据结构。`,
filenameEmbdWeight: '文件名嵌入权重',
parserMethod: '解析方法',
tableResultType: '表格返回形式',
markdownImageResponseType: '图片返回形式',
systemPromptPlaceholder:
'请输入用于图像分析的系统提示词,若为空则使用系统缺省值',
exportJson: '导出 JSON',

View File

@ -169,6 +169,7 @@ export const initialParserValues = {
{
fileFormat: FileType.Spreadsheet,
output_format: SpreadsheetOutputFormat.Html,
parse_method: ParseDocumentType.DeepDOC,
},
{
fileFormat: FileType.Image,
@ -192,6 +193,7 @@ export const initialParserValues = {
{
fileFormat: FileType.PowerPoint,
output_format: PptOutputFormat.Json,
parse_method: ParseDocumentType.DeepDOC,
},
],
};
@ -243,7 +245,7 @@ export const FileTypeSuffixMap = {
[FileType.Email]: ['eml', 'msg'],
[FileType.TextMarkdown]: ['md', 'markdown', 'mdx', 'txt'],
[FileType.Docx]: ['doc', 'docx'],
[FileType.PowerPoint]: ['pptx'],
[FileType.PowerPoint]: ['pptx', 'ppt'],
[FileType.Video]: ['mp4', 'avi', 'mkv'],
[FileType.Audio]: [
'da',

View File

@ -22,7 +22,8 @@ import { Switch } from '@/components/ui/switch';
import { LlmModelType } from '@/constants/knowledge';
import { useFindLlmByUuid } from '@/hooks/use-llm-request';
import { zodResolver } from '@hookform/resolvers/zod';
import { memo, useCallback, useEffect, useMemo } from 'react';
import { get } from 'lodash';
import { memo, useEffect, useMemo } from 'react';
import { useForm, useWatch } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { z } from 'zod';
@ -45,7 +46,10 @@ import { AgentTools, Agents } from './agent-tools';
import { StructuredOutputDialog } from './structured-output-dialog';
import { StructuredOutputPanel } from './structured-output-panel';
import { useBuildPromptExtraPromptOptions } from './use-build-prompt-options';
import { useShowStructuredOutputDialog } from './use-show-structured-output-dialog';
import {
useHandleShowStructuredOutput,
useShowStructuredOutputDialog,
} from './use-show-structured-output-dialog';
import { useValues } from './use-values';
import { useWatchFormChange } from './use-watch-change';
@ -121,22 +125,19 @@ function AgentForm({ node }: INextOperatorForm) {
});
const {
initialStructuredOutput,
showStructuredOutputDialog,
structuredOutputDialogVisible,
hideStructuredOutputDialog,
handleStructuredOutputDialogOk,
} = useShowStructuredOutputDialog(node?.id);
const updateNodeForm = useGraphStore((state) => state.updateNodeForm);
const structuredOutput = get(
node,
`data.form.outputs.${AgentStructuredOutputField}`,
);
const handleShowStructuredOutput = useCallback(
(val: boolean) => {
if (node?.id && val) {
updateNodeForm(node?.id, {}, ['outputs', AgentStructuredOutputField]);
}
},
[node?.id, updateNodeForm],
const { handleShowStructuredOutput } = useHandleShowStructuredOutput(
node?.id,
);
useEffect(() => {
@ -327,7 +328,7 @@ function AgentForm({ node }: INextOperatorForm) {
</div>
<StructuredOutputPanel
value={initialStructuredOutput}
value={structuredOutput}
></StructuredOutputPanel>
</section>
)}
@ -337,7 +338,7 @@ function AgentForm({ node }: INextOperatorForm) {
<StructuredOutputDialog
hideModal={hideStructuredOutputDialog}
onOk={handleStructuredOutputDialogOk}
initialValues={initialStructuredOutput}
initialValues={structuredOutput}
></StructuredOutputDialog>
)}
</>

View File

@ -1,6 +1,8 @@
import { JSONSchema } from '@/components/jsonjoy-builder';
import { AgentStructuredOutputField } from '@/constants/agent';
import { useSetModalState } from '@/hooks/common-hooks';
import { useCallback } from 'react';
import { initialAgentValues } from '../../constant';
import useGraphStore from '../../store';
export function useShowStructuredOutputDialog(nodeId?: string) {
@ -9,15 +11,13 @@ export function useShowStructuredOutputDialog(nodeId?: string) {
showModal: showStructuredOutputDialog,
hideModal: hideStructuredOutputDialog,
} = useSetModalState();
const { updateNodeForm, getNode } = useGraphStore((state) => state);
const initialStructuredOutput = getNode(nodeId)?.data.form.outputs.structured;
const { updateNodeForm } = useGraphStore((state) => state);
const handleStructuredOutputDialogOk = useCallback(
(values: JSONSchema) => {
// Sync data to canvas
if (nodeId) {
updateNodeForm(nodeId, values, ['outputs', 'structured']);
updateNodeForm(nodeId, values, ['outputs', AgentStructuredOutputField]);
}
hideStructuredOutputDialog();
},
@ -25,10 +25,30 @@ export function useShowStructuredOutputDialog(nodeId?: string) {
);
return {
initialStructuredOutput,
structuredOutputDialogVisible,
showStructuredOutputDialog,
hideStructuredOutputDialog,
handleStructuredOutputDialogOk,
};
}
export function useHandleShowStructuredOutput(nodeId?: string) {
const updateNodeForm = useGraphStore((state) => state.updateNodeForm);
const handleShowStructuredOutput = useCallback(
(val: boolean) => {
if (nodeId) {
if (val) {
updateNodeForm(nodeId, {}, ['outputs', AgentStructuredOutputField]);
} else {
updateNodeForm(nodeId, initialAgentValues.outputs, ['outputs']);
}
}
},
[nodeId, updateNodeForm],
);
return {
handleShowStructuredOutput,
};
}

View File

@ -6,8 +6,10 @@ import { initialAgentValues } from '../../constant';
// You need to exclude the mcp and tools fields that are not in the form,
// otherwise the form data update will reset the tools or mcp data to an array
// Exclude data that is not in the form to avoid writing this data to the canvas when using useWatch.
// Outputs, tools, and MCP data are directly synchronized to the canvas without going through the form.
function omitToolsAndMcp(values: Record<string, any>) {
return omit(values, ['mcp', 'tools']);
return omit(values, ['mcp', 'tools', 'outputs']);
}
export function useValues(node?: RAGFlowNodeType) {

View File

@ -1,7 +1,6 @@
import { omit } from 'lodash';
import { useEffect } from 'react';
import { UseFormReturn, useWatch } from 'react-hook-form';
import { AgentStructuredOutputField, PromptRole } from '../../constant';
import { PromptRole } from '../../constant';
import useGraphStore from '../../store';
export function useWatchFormChange(id?: string, form?: UseFormReturn<any>) {
@ -17,14 +16,6 @@ export function useWatchFormChange(id?: string, form?: UseFormReturn<any>) {
prompts: [{ role: PromptRole.User, content: values.prompts }],
};
if (!values.showStructuredOutput) {
nextValues = {
...nextValues,
outputs: omit(values.outputs, [AgentStructuredOutputField]),
};
} else {
nextValues = omit(nextValues, 'outputs');
}
updateNodeForm(id, nextValues);
}
}, [form?.formState.isDirty, id, updateNodeForm, values]);

View File

@ -34,6 +34,8 @@ import { OutputFormatFormField } from './common-form-fields';
import { EmailFormFields } from './email-form-fields';
import { ImageFormFields } from './image-form-fields';
import { PdfFormFields } from './pdf-form-fields';
import { PptFormFields } from './ppt-form-fields';
import { SpreadsheetFormFields } from './spreadsheet-form-fields';
import { buildFieldNameWithPrefix } from './utils';
import { AudioFormFields, VideoFormFields } from './video-form-fields';
@ -41,6 +43,8 @@ const outputList = buildOutputList(initialParserValues.outputs);
const FileFormatWidgetMap = {
[FileType.PDF]: PdfFormFields,
[FileType.Spreadsheet]: SpreadsheetFormFields,
[FileType.PowerPoint]: PptFormFields,
[FileType.Video]: VideoFormFields,
[FileType.Audio]: AudioFormFields,
[FileType.Email]: EmailFormFields,
@ -65,6 +69,8 @@ export const FormSchema = z.object({
fields: z.array(z.string()).optional(),
llm_id: z.string().optional(),
system_prompt: z.string().optional(),
table_result_type: z.string().optional(),
markdown_image_response_type: z.string().optional(),
}),
),
});
@ -184,6 +190,8 @@ const ParserForm = ({ node }: INextOperatorForm) => {
lang: '',
fields: [],
llm_id: '',
table_result_type: '',
markdown_image_response_type: '',
});
}, [append]);

View File

@ -1,13 +1,30 @@
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
import {
SelectWithSearch,
SelectWithSearchFlagOptionType,
} from '@/components/originui/select-with-search';
import { RAGFlowFormItem } from '@/components/ragflow-form';
import { isEmpty } from 'lodash';
import { useEffect, useMemo } from 'react';
import { useFormContext, useWatch } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { LanguageFormField, ParserMethodFormField } from './common-form-fields';
import { CommonProps } from './interface';
import { useSetInitialLanguage } from './use-set-initial-language';
import { buildFieldNameWithPrefix } from './utils';
const tableResultTypeOptions: SelectWithSearchFlagOptionType[] = [
{ label: 'Markdown', value: '0' },
{ label: 'HTML', value: '1' },
];
const markdownImageResponseTypeOptions: SelectWithSearchFlagOptionType[] = [
{ label: 'URL', value: '0' },
{ label: 'Text', value: '1' },
];
export function PdfFormFields({ prefix }: CommonProps) {
const { t } = useTranslation();
const form = useFormContext();
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
@ -25,6 +42,12 @@ export function PdfFormFields({ prefix }: CommonProps) {
);
}, [parseMethod]);
const tcadpOptionsShown = useMemo(() => {
return (
!isEmpty(parseMethod) && parseMethod === ParseDocumentType.TCADPParser
);
}, [parseMethod]);
useSetInitialLanguage({ prefix, languageShown });
useEffect(() => {
@ -36,10 +59,68 @@ export function PdfFormFields({ prefix }: CommonProps) {
}
}, [form, parseMethodName]);
// Set default values for TCADP options when TCADP is selected
useEffect(() => {
if (tcadpOptionsShown) {
const tableResultTypeName = buildFieldNameWithPrefix(
'table_result_type',
prefix,
);
const markdownImageResponseTypeName = buildFieldNameWithPrefix(
'markdown_image_response_type',
prefix,
);
if (isEmpty(form.getValues(tableResultTypeName))) {
form.setValue(tableResultTypeName, '1', {
shouldValidate: true,
shouldDirty: true,
});
}
if (isEmpty(form.getValues(markdownImageResponseTypeName))) {
form.setValue(markdownImageResponseTypeName, '1', {
shouldValidate: true,
shouldDirty: true,
});
}
}
}, [tcadpOptionsShown, form, prefix]);
return (
<>
<ParserMethodFormField prefix={prefix}></ParserMethodFormField>
{languageShown && <LanguageFormField prefix={prefix}></LanguageFormField>}
{tcadpOptionsShown && (
<>
<RAGFlowFormItem
name={buildFieldNameWithPrefix('table_result_type', prefix)}
label={t('flow.tableResultType') || '表格返回形式'}
>
{(field) => (
<SelectWithSearch
value={field.value}
onChange={field.onChange}
options={tableResultTypeOptions}
></SelectWithSearch>
)}
</RAGFlowFormItem>
<RAGFlowFormItem
name={buildFieldNameWithPrefix(
'markdown_image_response_type',
prefix,
)}
label={t('flow.markdownImageResponseType') || '图片返回形式'}
>
{(field) => (
<SelectWithSearch
value={field.value}
onChange={field.onChange}
options={markdownImageResponseTypeOptions}
></SelectWithSearch>
)}
</RAGFlowFormItem>
</>
)}
</>
);
}

View File

@ -0,0 +1,125 @@
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
import {
SelectWithSearch,
SelectWithSearchFlagOptionType,
} from '@/components/originui/select-with-search';
import { RAGFlowFormItem } from '@/components/ragflow-form';
import { isEmpty } from 'lodash';
import { useEffect, useMemo } from 'react';
import { useFormContext, useWatch } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { ParserMethodFormField } from './common-form-fields';
import { CommonProps } from './interface';
import { buildFieldNameWithPrefix } from './utils';
const tableResultTypeOptions: SelectWithSearchFlagOptionType[] = [
{ label: 'Markdown', value: '0' },
{ label: 'HTML', value: '1' },
];
const markdownImageResponseTypeOptions: SelectWithSearchFlagOptionType[] = [
{ label: 'URL', value: '0' },
{ label: 'Text', value: '1' },
];
export function PptFormFields({ prefix }: CommonProps) {
const { t } = useTranslation();
const form = useFormContext();
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
const parseMethod = useWatch({
name: parseMethodName,
});
// PPT only supports DeepDOC and TCADPParser
const optionsWithoutLLM = [
{ label: ParseDocumentType.DeepDOC, value: ParseDocumentType.DeepDOC },
{
label: ParseDocumentType.TCADPParser,
value: ParseDocumentType.TCADPParser,
},
];
const tcadpOptionsShown = useMemo(() => {
return (
!isEmpty(parseMethod) && parseMethod === ParseDocumentType.TCADPParser
);
}, [parseMethod]);
useEffect(() => {
if (isEmpty(form.getValues(parseMethodName))) {
form.setValue(parseMethodName, ParseDocumentType.DeepDOC, {
shouldValidate: true,
shouldDirty: true,
});
}
}, [form, parseMethodName]);
// Set default values for TCADP options when TCADP is selected
useEffect(() => {
if (tcadpOptionsShown) {
const tableResultTypeName = buildFieldNameWithPrefix(
'table_result_type',
prefix,
);
const markdownImageResponseTypeName = buildFieldNameWithPrefix(
'markdown_image_response_type',
prefix,
);
if (isEmpty(form.getValues(tableResultTypeName))) {
form.setValue(tableResultTypeName, '1', {
shouldValidate: true,
shouldDirty: true,
});
}
if (isEmpty(form.getValues(markdownImageResponseTypeName))) {
form.setValue(markdownImageResponseTypeName, '1', {
shouldValidate: true,
shouldDirty: true,
});
}
}
}, [tcadpOptionsShown, form, prefix]);
return (
<>
<ParserMethodFormField
prefix={prefix}
optionsWithoutLLM={optionsWithoutLLM}
></ParserMethodFormField>
{tcadpOptionsShown && (
<>
<RAGFlowFormItem
name={buildFieldNameWithPrefix('table_result_type', prefix)}
label={t('flow.tableResultType') || '表格返回形式'}
>
{(field) => (
<SelectWithSearch
value={field.value}
onChange={field.onChange}
options={tableResultTypeOptions}
></SelectWithSearch>
)}
</RAGFlowFormItem>
<RAGFlowFormItem
name={buildFieldNameWithPrefix(
'markdown_image_response_type',
prefix,
)}
label={t('flow.markdownImageResponseType') || '图片返回形式'}
>
{(field) => (
<SelectWithSearch
value={field.value}
onChange={field.onChange}
options={markdownImageResponseTypeOptions}
></SelectWithSearch>
)}
</RAGFlowFormItem>
</>
)}
</>
);
}

View File

@ -0,0 +1,125 @@
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
import {
SelectWithSearch,
SelectWithSearchFlagOptionType,
} from '@/components/originui/select-with-search';
import { RAGFlowFormItem } from '@/components/ragflow-form';
import { isEmpty } from 'lodash';
import { useEffect, useMemo } from 'react';
import { useFormContext, useWatch } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { ParserMethodFormField } from './common-form-fields';
import { CommonProps } from './interface';
import { buildFieldNameWithPrefix } from './utils';
const tableResultTypeOptions: SelectWithSearchFlagOptionType[] = [
{ label: 'Markdown', value: '0' },
{ label: 'HTML', value: '1' },
];
const markdownImageResponseTypeOptions: SelectWithSearchFlagOptionType[] = [
{ label: 'URL', value: '0' },
{ label: 'Text', value: '1' },
];
export function SpreadsheetFormFields({ prefix }: CommonProps) {
const { t } = useTranslation();
const form = useFormContext();
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
const parseMethod = useWatch({
name: parseMethodName,
});
// Spreadsheet only supports DeepDOC and TCADPParser
const optionsWithoutLLM = [
{ label: ParseDocumentType.DeepDOC, value: ParseDocumentType.DeepDOC },
{
label: ParseDocumentType.TCADPParser,
value: ParseDocumentType.TCADPParser,
},
];
const tcadpOptionsShown = useMemo(() => {
return (
!isEmpty(parseMethod) && parseMethod === ParseDocumentType.TCADPParser
);
}, [parseMethod]);
useEffect(() => {
if (isEmpty(form.getValues(parseMethodName))) {
form.setValue(parseMethodName, ParseDocumentType.DeepDOC, {
shouldValidate: true,
shouldDirty: true,
});
}
}, [form, parseMethodName]);
// Set default values for TCADP options when TCADP is selected
useEffect(() => {
if (tcadpOptionsShown) {
const tableResultTypeName = buildFieldNameWithPrefix(
'table_result_type',
prefix,
);
const markdownImageResponseTypeName = buildFieldNameWithPrefix(
'markdown_image_response_type',
prefix,
);
if (isEmpty(form.getValues(tableResultTypeName))) {
form.setValue(tableResultTypeName, '1', {
shouldValidate: true,
shouldDirty: true,
});
}
if (isEmpty(form.getValues(markdownImageResponseTypeName))) {
form.setValue(markdownImageResponseTypeName, '1', {
shouldValidate: true,
shouldDirty: true,
});
}
}
}, [tcadpOptionsShown, form, prefix]);
return (
<>
<ParserMethodFormField
prefix={prefix}
optionsWithoutLLM={optionsWithoutLLM}
></ParserMethodFormField>
{tcadpOptionsShown && (
<>
<RAGFlowFormItem
name={buildFieldNameWithPrefix('table_result_type', prefix)}
label={t('flow.tableResultType') || '表格返回形式'}
>
{(field) => (
<SelectWithSearch
value={field.value}
onChange={field.onChange}
options={tableResultTypeOptions}
></SelectWithSearch>
)}
</RAGFlowFormItem>
<RAGFlowFormItem
name={buildFieldNameWithPrefix(
'markdown_image_response_type',
prefix,
)}
label={t('flow.markdownImageResponseType') || '图片返回形式'}
>
{(field) => (
<SelectWithSearch
value={field.value}
onChange={field.onChange}
options={markdownImageResponseTypeOptions}
></SelectWithSearch>
)}
</RAGFlowFormItem>
</>
)}
</>
);
}

View File

@ -1,7 +1,7 @@
import JsonEditor from '@/components/json-edit';
import { BlockButton, Button } from '@/components/ui/button';
import { Input } from '@/components/ui/input';
import { Segmented } from '@/components/ui/segmented';
import { Editor } from '@monaco-editor/react';
import { t } from 'i18next';
import { Trash2, X } from 'lucide-react';
import { useCallback } from 'react';
@ -31,32 +31,80 @@ export const useObjectFields = () => {
},
[],
);
const validateKeys = (
obj: any,
path: (string | number)[] = [],
): Array<{ path: (string | number)[]; message: string }> => {
const errors: Array<{ path: (string | number)[]; message: string }> = [];
if (obj !== null && typeof obj === 'object' && !Array.isArray(obj)) {
for (const key in obj) {
if (obj.hasOwnProperty(key)) {
if (!/^[a-zA-Z_]+$/.test(key)) {
errors.push({
path: [...path, key],
message: `Key "${key}" is invalid. Keys can only contain letters and underscores.`,
});
}
const nestedErrors = validateKeys(obj[key], [...path, key]);
errors.push(...nestedErrors);
}
}
} else if (Array.isArray(obj)) {
obj.forEach((item, index) => {
const nestedErrors = validateKeys(item, [...path, index]);
errors.push(...nestedErrors);
});
}
return errors;
};
const objectRender = useCallback((field: FieldValues) => {
const fieldValue =
typeof field.value === 'object'
? JSON.stringify(field.value, null, 2)
: JSON.stringify({}, null, 2);
console.log('object-render-field', field, fieldValue);
// const fieldValue =
// typeof field.value === 'object'
// ? JSON.stringify(field.value, null, 2)
// : JSON.stringify({}, null, 2);
// console.log('object-render-field', field, fieldValue);
return (
<Editor
height={200}
defaultLanguage="json"
theme="vs-dark"
value={fieldValue}
// <Editor
// height={200}
// defaultLanguage="json"
// theme="vs-dark"
// value={fieldValue}
// onChange={field.onChange}
// />
<JsonEditor
value={field.value}
onChange={field.onChange}
height="400px"
options={{
mode: 'code',
navigationBar: false,
mainMenuBar: true,
history: true,
onValidate: (json) => {
return validateKeys(json);
},
}}
/>
);
}, []);
const objectValidate = useCallback((value: any) => {
try {
if (!JSON.parse(value)) {
throw new Error(t('knowledgeDetails.formatTypeError'));
if (validateKeys(value, [])?.length > 0) {
throw new Error(t('flow.formatTypeError'));
}
if (!z.object({}).safeParse(value).success) {
throw new Error(t('flow.formatTypeError'));
}
if (value && typeof value === 'string' && !JSON.parse(value)) {
throw new Error(t('flow.formatTypeError'));
}
return true;
} catch (e) {
throw new Error(t('knowledgeDetails.formatTypeError'));
console.log('object-render-error', e, value);
throw new Error(t('flow.formatTypeError'));
}
}, []);
@ -219,6 +267,10 @@ export const useObjectFields = () => {
};
const handleCustomSchema = (value: TypesWithArray) => {
switch (value) {
case TypesWithArray.Object:
return z.object({});
case TypesWithArray.ArrayObject:
return z.array(z.object({}));
case TypesWithArray.ArrayString:
return z.array(z.string());
case TypesWithArray.ArrayNumber:

View File

@ -214,6 +214,36 @@ function transformParserParams(params: ParserFormSchemaType) {
parse_method: cur.parse_method,
lang: cur.lang,
};
// Only include TCADP parameters if TCADP Parser is selected
if (cur.parse_method?.toLowerCase() === 'tcadp parser') {
filteredSetup.table_result_type = cur.table_result_type;
filteredSetup.markdown_image_response_type =
cur.markdown_image_response_type;
}
break;
case FileType.Spreadsheet:
filteredSetup = {
...filteredSetup,
parse_method: cur.parse_method,
};
// Only include TCADP parameters if TCADP Parser is selected
if (cur.parse_method?.toLowerCase() === 'tcadp parser') {
filteredSetup.table_result_type = cur.table_result_type;
filteredSetup.markdown_image_response_type =
cur.markdown_image_response_type;
}
break;
case FileType.PowerPoint:
filteredSetup = {
...filteredSetup,
parse_method: cur.parse_method,
};
// Only include TCADP parameters if TCADP Parser is selected
if (cur.parse_method?.toLowerCase() === 'tcadp parser') {
filteredSetup.table_result_type = cur.table_result_type;
filteredSetup.markdown_image_response_type =
cur.markdown_image_response_type;
}
break;
case FileType.Image:
filteredSetup = {

View File

View File

@ -0,0 +1,40 @@
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
import { isEmpty } from 'lodash';
import { useEffect } from 'react';
import { useFormContext } from 'react-hook-form';
import { ParserMethodFormField } from './common-form-fields';
import { CommonProps } from './interface';
import { buildFieldNameWithPrefix } from './utils';
export function PptFormFields({ prefix }: CommonProps) {
const form = useFormContext();
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
// PPT only supports DeepDOC and TCADPParser
const optionsWithoutLLM = [
{ label: ParseDocumentType.DeepDOC, value: ParseDocumentType.DeepDOC },
{
label: ParseDocumentType.TCADPParser,
value: ParseDocumentType.TCADPParser,
},
];
useEffect(() => {
if (isEmpty(form.getValues(parseMethodName))) {
form.setValue(parseMethodName, ParseDocumentType.DeepDOC, {
shouldValidate: true,
shouldDirty: true,
});
}
}, [form, parseMethodName]);
return (
<>
<ParserMethodFormField
prefix={prefix}
optionsWithoutLLM={optionsWithoutLLM}
></ParserMethodFormField>
</>
);
}

View File

@ -0,0 +1,40 @@
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
import { isEmpty } from 'lodash';
import { useEffect } from 'react';
import { useFormContext } from 'react-hook-form';
import { ParserMethodFormField } from './common-form-fields';
import { CommonProps } from './interface';
import { buildFieldNameWithPrefix } from './utils';
export function SpreadsheetFormFields({ prefix }: CommonProps) {
const form = useFormContext();
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
// Spreadsheet only supports DeepDOC and TCADPParser
const optionsWithoutLLM = [
{ label: ParseDocumentType.DeepDOC, value: ParseDocumentType.DeepDOC },
{
label: ParseDocumentType.TCADPParser,
value: ParseDocumentType.TCADPParser,
},
];
useEffect(() => {
if (isEmpty(form.getValues(parseMethodName))) {
form.setValue(parseMethodName, ParseDocumentType.DeepDOC, {
shouldValidate: true,
shouldDirty: true,
});
}
}, [form, parseMethodName]);
return (
<>
<ParserMethodFormField
prefix={prefix}
optionsWithoutLLM={optionsWithoutLLM}
></ParserMethodFormField>
</>
);
}

View File