mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-04 03:25:30 +08:00
Compare commits
13 Commits
v0.22.1
...
06cef71ba6
| Author | SHA1 | Date | |
|---|---|---|---|
| 06cef71ba6 | |||
| d2b1da0e26 | |||
| 7c6d30f4c8 | |||
| ea0352ee4a | |||
| fa5cf10f56 | |||
| 3fe71ab7dd | |||
| 9f715d6bc2 | |||
| 48de3b26ba | |||
| 273c4bc4d3 | |||
| 420c97199a | |||
| ecf0322165 | |||
| 38234aca53 | |||
| 1c06ec39ca |
@ -132,8 +132,8 @@ class Retrieval(ToolBase, ABC):
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if self._param.meta_data_filter.get("method") == "auto":
|
||||
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT)
|
||||
filters = gen_meta_filter(chat_mdl, metas, query)
|
||||
doc_ids.extend(meta_filter(metas, filters))
|
||||
filters: dict = gen_meta_filter(chat_mdl, metas, query)
|
||||
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif self._param.meta_data_filter.get("method") == "manual":
|
||||
@ -165,7 +165,7 @@ class Retrieval(ToolBase, ABC):
|
||||
|
||||
out_parts.append(s[last:])
|
||||
flt["value"] = "".join(out_parts)
|
||||
doc_ids.extend(meta_filter(metas, filters))
|
||||
doc_ids.extend(meta_filter(metas, filters, self._param.meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
|
||||
|
||||
@ -305,12 +305,12 @@ async def retrieval_test():
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
|
||||
filters = gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters))
|
||||
filters: dict = gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
|
||||
|
||||
@ -159,10 +159,10 @@ async def webhook(tenant_id: str, agent_id: str):
|
||||
data=False, message=str(e),
|
||||
code=RetCode.EXCEPTION_ERROR)
|
||||
|
||||
def sse():
|
||||
async def sse():
|
||||
nonlocal canvas
|
||||
try:
|
||||
for ans in canvas.run(query=req.get("query", ""), files=req.get("files", []), user_id=req.get("user_id", tenant_id), webhook_payload=req):
|
||||
async for ans in canvas.run(query=req.get("query", ""), files=req.get("files", []), user_id=req.get("user_id", tenant_id), webhook_payload=req):
|
||||
yield "data:" + json.dumps(ans, ensure_ascii=False) + "\n\n"
|
||||
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
|
||||
@ -120,7 +120,7 @@ async def retrieval(tenant_id):
|
||||
retrieval_setting = req.get("retrieval_setting", {})
|
||||
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
|
||||
top = int(retrieval_setting.get("top_k", 1024))
|
||||
metadata_condition = req.get("metadata_condition", {})
|
||||
metadata_condition = req.get("metadata_condition", {}) or {}
|
||||
metas = DocumentService.get_meta_by_kbs([kb_id])
|
||||
|
||||
doc_ids = []
|
||||
@ -132,7 +132,7 @@ async def retrieval(tenant_id):
|
||||
|
||||
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
||||
if metadata_condition:
|
||||
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition)))
|
||||
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition), metadata_condition.get("logic", "and")))
|
||||
if not doc_ids and metadata_condition:
|
||||
doc_ids = ["-999"]
|
||||
ranks = settings.retriever.retrieval(
|
||||
|
||||
@ -1442,9 +1442,9 @@ async def retrieval_test(tenant_id):
|
||||
if doc_id not in doc_ids_list:
|
||||
return get_error_data_result(f"The datasets don't own the document {doc_id}")
|
||||
if not doc_ids:
|
||||
metadata_condition = req.get("metadata_condition", {})
|
||||
metadata_condition = req.get("metadata_condition", {}) or {}
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
doc_ids = meta_filter(metas, convert_conditions(metadata_condition))
|
||||
doc_ids = meta_filter(metas, convert_conditions(metadata_condition), metadata_condition.get("logic", "and"))
|
||||
similarity_threshold = float(req.get("similarity_threshold", 0.2))
|
||||
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
||||
top = int(req.get("top_k", 1024))
|
||||
|
||||
@ -428,17 +428,15 @@ async def agents_completion_openai_compatibility(tenant_id, agent_id):
|
||||
return resp
|
||||
else:
|
||||
# For non-streaming, just return the response directly
|
||||
response = next(
|
||||
completion_openai(
|
||||
async for response in completion_openai(
|
||||
tenant_id,
|
||||
agent_id,
|
||||
question,
|
||||
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
|
||||
stream=False,
|
||||
**req,
|
||||
)
|
||||
)
|
||||
return jsonify(response)
|
||||
):
|
||||
return jsonify(response)
|
||||
|
||||
|
||||
@manager.route("/agents/<agent_id>/completions", methods=["POST"]) # noqa: F821
|
||||
@ -977,12 +975,12 @@ async def retrieval_test_embedded():
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
|
||||
filters = gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters))
|
||||
filters: dict = gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
|
||||
|
||||
@ -177,7 +177,7 @@ class UserCanvasService(CommonService):
|
||||
return True
|
||||
|
||||
|
||||
def completion(tenant_id, agent_id, session_id=None, **kwargs):
|
||||
async def completion(tenant_id, agent_id, session_id=None, **kwargs):
|
||||
query = kwargs.get("query", "") or kwargs.get("question", "")
|
||||
files = kwargs.get("files", [])
|
||||
inputs = kwargs.get("inputs", {})
|
||||
@ -219,10 +219,14 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
|
||||
"id": message_id
|
||||
})
|
||||
txt = ""
|
||||
for ans in canvas.run(query=query, files=files, user_id=user_id, inputs=inputs):
|
||||
async for ans in canvas.run(query=query, files=files, user_id=user_id, inputs=inputs):
|
||||
ans["session_id"] = session_id
|
||||
if ans["event"] == "message":
|
||||
txt += ans["data"]["content"]
|
||||
if ans["data"].get("start_to_think", False):
|
||||
txt += "<think>"
|
||||
elif ans["data"].get("end_to_think", False):
|
||||
txt += "</think>"
|
||||
yield "data:" + json.dumps(ans, ensure_ascii=False) + "\n\n"
|
||||
|
||||
conv.message.append({"role": "assistant", "content": txt, "created_at": time.time(), "id": message_id})
|
||||
@ -233,7 +237,7 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
|
||||
API4ConversationService.append_message(conv["id"], conv)
|
||||
|
||||
|
||||
def completion_openai(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
|
||||
async def completion_openai(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
|
||||
tiktoken_encoder = tiktoken.get_encoding("cl100k_base")
|
||||
prompt_tokens = len(tiktoken_encoder.encode(str(question)))
|
||||
user_id = kwargs.get("user_id", "")
|
||||
@ -241,7 +245,7 @@ def completion_openai(tenant_id, agent_id, question, session_id=None, stream=Tru
|
||||
if stream:
|
||||
completion_tokens = 0
|
||||
try:
|
||||
for ans in completion(
|
||||
async for ans in completion(
|
||||
tenant_id=tenant_id,
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
@ -300,7 +304,7 @@ def completion_openai(tenant_id, agent_id, question, session_id=None, stream=Tru
|
||||
try:
|
||||
all_content = ""
|
||||
reference = {}
|
||||
for ans in completion(
|
||||
async for ans in completion(
|
||||
tenant_id=tenant_id,
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
|
||||
@ -15,6 +15,7 @@
|
||||
#
|
||||
import logging
|
||||
from datetime import datetime
|
||||
import os
|
||||
from typing import Tuple, List
|
||||
|
||||
from anthropic import BaseModel
|
||||
@ -103,7 +104,8 @@ class SyncLogsService(CommonService):
|
||||
Knowledgebase.avatar.alias("kb_avatar"),
|
||||
Connector2Kb.auto_parse,
|
||||
cls.model.from_beginning.alias("reindex"),
|
||||
cls.model.status
|
||||
cls.model.status,
|
||||
cls.model.update_time
|
||||
]
|
||||
if not connector_id:
|
||||
fields.append(Connector.config)
|
||||
@ -116,7 +118,11 @@ class SyncLogsService(CommonService):
|
||||
if connector_id:
|
||||
query = query.where(cls.model.connector_id == connector_id)
|
||||
else:
|
||||
interval_expr = SQL("INTERVAL `t2`.`refresh_freq` MINUTE")
|
||||
database_type = os.getenv("DB_TYPE", "mysql")
|
||||
if "postgres" in database_type.lower():
|
||||
interval_expr = SQL("make_interval(mins => t2.refresh_freq)")
|
||||
else:
|
||||
interval_expr = SQL("INTERVAL `t2`.`refresh_freq` MINUTE")
|
||||
query = query.where(
|
||||
Connector.input_type == InputType.POLL,
|
||||
Connector.status == TaskStatus.SCHEDULE,
|
||||
|
||||
@ -287,7 +287,7 @@ def convert_conditions(metadata_condition):
|
||||
]
|
||||
|
||||
|
||||
def meta_filter(metas: dict, filters: list[dict]):
|
||||
def meta_filter(metas: dict, filters: list[dict], logic: str = "and"):
|
||||
doc_ids = set([])
|
||||
|
||||
def filter_out(v2docs, operator, value):
|
||||
@ -331,7 +331,10 @@ def meta_filter(metas: dict, filters: list[dict]):
|
||||
if not doc_ids:
|
||||
doc_ids = set(ids)
|
||||
else:
|
||||
doc_ids = doc_ids & set(ids)
|
||||
if logic == "and":
|
||||
doc_ids = doc_ids & set(ids)
|
||||
else:
|
||||
doc_ids = doc_ids | set(ids)
|
||||
if not doc_ids:
|
||||
return []
|
||||
return list(doc_ids)
|
||||
@ -407,12 +410,12 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
if dialog.meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(dialog.kb_ids)
|
||||
if dialog.meta_data_filter.get("method") == "auto":
|
||||
filters = gen_meta_filter(chat_mdl, metas, questions[-1])
|
||||
attachments.extend(meta_filter(metas, filters))
|
||||
filters: dict = gen_meta_filter(chat_mdl, metas, questions[-1])
|
||||
attachments.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not attachments:
|
||||
attachments = None
|
||||
elif dialog.meta_data_filter.get("method") == "manual":
|
||||
attachments.extend(meta_filter(metas, dialog.meta_data_filter["manual"]))
|
||||
attachments.extend(meta_filter(metas, dialog.meta_data_filter["manual"], dialog.meta_data_filter.get("logic", "and")))
|
||||
if not attachments:
|
||||
attachments = None
|
||||
|
||||
@ -778,12 +781,12 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
|
||||
if meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
filters = gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters))
|
||||
filters: dict = gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
|
||||
@ -853,12 +856,12 @@ def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
|
||||
if meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
filters = gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters))
|
||||
filters: dict = gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
|
||||
|
||||
@ -27,6 +27,7 @@ from common.constants import SVR_QUEUE_NAME, Storage
|
||||
import rag.utils
|
||||
import rag.utils.es_conn
|
||||
import rag.utils.infinity_conn
|
||||
import rag.utils.ob_conn
|
||||
import rag.utils.opensearch_conn
|
||||
from rag.utils.azure_sas_conn import RAGFlowAzureSasBlob
|
||||
from rag.utils.azure_spn_conn import RAGFlowAzureSpnBlob
|
||||
@ -103,6 +104,7 @@ INFINITY = {}
|
||||
AZURE = {}
|
||||
S3 = {}
|
||||
MINIO = {}
|
||||
OB = {}
|
||||
OSS = {}
|
||||
OS = {}
|
||||
|
||||
@ -227,7 +229,7 @@ def init_settings():
|
||||
FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")
|
||||
OAUTH_CONFIG = get_base_config("oauth", {})
|
||||
|
||||
global DOC_ENGINE, docStoreConn, ES, OS, INFINITY
|
||||
global DOC_ENGINE, docStoreConn, ES, OB, OS, INFINITY
|
||||
DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch")
|
||||
# DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch")
|
||||
lower_case_doc_engine = DOC_ENGINE.lower()
|
||||
@ -240,6 +242,9 @@ def init_settings():
|
||||
elif lower_case_doc_engine == "opensearch":
|
||||
OS = get_base_config("os", {})
|
||||
docStoreConn = rag.utils.opensearch_conn.OSConnection()
|
||||
elif lower_case_doc_engine == "oceanbase":
|
||||
OB = get_base_config("oceanbase", {})
|
||||
docStoreConn = rag.utils.ob_conn.OBConnection()
|
||||
else:
|
||||
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
|
||||
|
||||
|
||||
@ -35,6 +35,12 @@ def num_tokens_from_string(string: str) -> int:
|
||||
return 0
|
||||
|
||||
def total_token_count_from_response(resp):
|
||||
"""
|
||||
Extract token count from LLM response in various formats.
|
||||
|
||||
Handles None responses and different response structures from various LLM providers.
|
||||
Returns 0 if token count cannot be determined.
|
||||
"""
|
||||
if resp is None:
|
||||
return 0
|
||||
|
||||
@ -50,19 +56,19 @@ def total_token_count_from_response(resp):
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if 'usage' in resp and 'total_tokens' in resp['usage']:
|
||||
if isinstance(resp, dict) and 'usage' in resp and 'total_tokens' in resp['usage']:
|
||||
try:
|
||||
return resp["usage"]["total_tokens"]
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if 'usage' in resp and 'input_tokens' in resp['usage'] and 'output_tokens' in resp['usage']:
|
||||
if isinstance(resp, dict) and 'usage' in resp and 'input_tokens' in resp['usage'] and 'output_tokens' in resp['usage']:
|
||||
try:
|
||||
return resp["usage"]["input_tokens"] + resp["usage"]["output_tokens"]
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if 'meta' in resp and 'tokens' in resp['meta'] and 'input_tokens' in resp['meta']['tokens'] and 'output_tokens' in resp['meta']['tokens']:
|
||||
if isinstance(resp, dict) and 'meta' in resp and 'tokens' in resp['meta'] and 'input_tokens' in resp['meta']['tokens'] and 'output_tokens' in resp['meta']['tokens']:
|
||||
try:
|
||||
return resp["meta"]["tokens"]["input_tokens"] + resp["meta"]["tokens"]["output_tokens"]
|
||||
except Exception:
|
||||
|
||||
@ -28,6 +28,14 @@ os:
|
||||
infinity:
|
||||
uri: 'localhost:23817'
|
||||
db_name: 'default_db'
|
||||
oceanbase:
|
||||
scheme: 'oceanbase' # set 'mysql' to create connection using mysql config
|
||||
config:
|
||||
db_name: 'test'
|
||||
user: 'root@ragflow'
|
||||
password: 'infini_rag_flow'
|
||||
host: 'localhost'
|
||||
port: 2881
|
||||
redis:
|
||||
db: 1
|
||||
password: 'infini_rag_flow'
|
||||
@ -139,5 +147,3 @@ user_default_llm:
|
||||
# secret_id: 'tencent_secret_id'
|
||||
# secret_key: 'tencent_secret_key'
|
||||
# region: 'tencent_region'
|
||||
# table_result_type: '1'
|
||||
# markdown_image_response_type: '1'
|
||||
|
||||
@ -192,12 +192,16 @@ class TencentCloudAPIClient:
|
||||
|
||||
|
||||
class TCADPParser(RAGFlowPdfParser):
|
||||
def __init__(self, secret_id: str = None, secret_key: str = None, region: str = "ap-guangzhou"):
|
||||
def __init__(self, secret_id: str = None, secret_key: str = None, region: str = "ap-guangzhou",
|
||||
table_result_type: str = None, markdown_image_response_type: str = None):
|
||||
super().__init__()
|
||||
|
||||
# First initialize logger
|
||||
self.logger = logging.getLogger(self.__class__.__name__)
|
||||
|
||||
# Log received parameters
|
||||
self.logger.info(f"[TCADP] Initializing with parameters - table_result_type: {table_result_type}, markdown_image_response_type: {markdown_image_response_type}")
|
||||
|
||||
# Priority: read configuration from RAGFlow configuration system (service_conf.yaml)
|
||||
try:
|
||||
tcadp_parser = get_base_config("tcadp_config", {})
|
||||
@ -205,14 +209,30 @@ class TCADPParser(RAGFlowPdfParser):
|
||||
self.secret_id = secret_id or tcadp_parser.get("secret_id")
|
||||
self.secret_key = secret_key or tcadp_parser.get("secret_key")
|
||||
self.region = region or tcadp_parser.get("region", "ap-guangzhou")
|
||||
self.table_result_type = tcadp_parser.get("table_result_type", "1")
|
||||
self.markdown_image_response_type = tcadp_parser.get("markdown_image_response_type", "1")
|
||||
self.logger.info("[TCADP] Configuration read from service_conf.yaml")
|
||||
# Set table_result_type and markdown_image_response_type from config or parameters
|
||||
self.table_result_type = table_result_type if table_result_type is not None else tcadp_parser.get("table_result_type", "1")
|
||||
self.markdown_image_response_type = markdown_image_response_type if markdown_image_response_type is not None else tcadp_parser.get("markdown_image_response_type", "1")
|
||||
|
||||
else:
|
||||
self.logger.error("[TCADP] Please configure tcadp_config in service_conf.yaml first")
|
||||
# If config file is empty, use provided parameters or defaults
|
||||
self.secret_id = secret_id
|
||||
self.secret_key = secret_key
|
||||
self.region = region or "ap-guangzhou"
|
||||
self.table_result_type = table_result_type if table_result_type is not None else "1"
|
||||
self.markdown_image_response_type = markdown_image_response_type if markdown_image_response_type is not None else "1"
|
||||
|
||||
except ImportError:
|
||||
self.logger.info("[TCADP] Configuration module import failed")
|
||||
# If config file is not available, use provided parameters or defaults
|
||||
self.secret_id = secret_id
|
||||
self.secret_key = secret_key
|
||||
self.region = region or "ap-guangzhou"
|
||||
self.table_result_type = table_result_type if table_result_type is not None else "1"
|
||||
self.markdown_image_response_type = markdown_image_response_type if markdown_image_response_type is not None else "1"
|
||||
|
||||
# Log final values
|
||||
self.logger.info(f"[TCADP] Final values - table_result_type: {self.table_result_type}, markdown_image_response_type: {self.markdown_image_response_type}")
|
||||
|
||||
if not self.secret_id or not self.secret_key:
|
||||
raise ValueError("[TCADP] Please set Tencent Cloud API keys, configure tcadp_config in service_conf.yaml")
|
||||
@ -400,6 +420,8 @@ class TCADPParser(RAGFlowPdfParser):
|
||||
"TableResultType": self.table_result_type,
|
||||
"MarkdownImageResponseType": self.markdown_image_response_type
|
||||
}
|
||||
|
||||
self.logger.info(f"[TCADP] API request config - TableResultType: {self.table_result_type}, MarkdownImageResponseType: {self.markdown_image_response_type}")
|
||||
|
||||
result = client.reconstruct_document_sse(
|
||||
file_type=file_type,
|
||||
|
||||
22
docker/.env
22
docker/.env
@ -7,6 +7,7 @@
|
||||
# Available options:
|
||||
# - `elasticsearch` (default)
|
||||
# - `infinity` (https://github.com/infiniflow/infinity)
|
||||
# - `oceanbase` (https://github.com/oceanbase/oceanbase)
|
||||
# - `opensearch` (https://github.com/opensearch-project/OpenSearch)
|
||||
DOC_ENGINE=${DOC_ENGINE:-elasticsearch}
|
||||
|
||||
@ -62,6 +63,27 @@ INFINITY_THRIFT_PORT=23817
|
||||
INFINITY_HTTP_PORT=23820
|
||||
INFINITY_PSQL_PORT=5432
|
||||
|
||||
# The hostname where the OceanBase service is exposed
|
||||
OCEANBASE_HOST=oceanbase
|
||||
# The port used to expose the OceanBase service
|
||||
OCEANBASE_PORT=2881
|
||||
# The username for OceanBase
|
||||
OCEANBASE_USER=root@ragflow
|
||||
# The password for OceanBase
|
||||
OCEANBASE_PASSWORD=infini_rag_flow
|
||||
# The doc database of the OceanBase service to use
|
||||
OCEANBASE_DOC_DBNAME=ragflow_doc
|
||||
|
||||
# OceanBase container configuration
|
||||
OB_CLUSTER_NAME=${OB_CLUSTER_NAME:-ragflow}
|
||||
OB_TENANT_NAME=${OB_TENANT_NAME:-ragflow}
|
||||
OB_SYS_PASSWORD=${OCEANBASE_PASSWORD:-infini_rag_flow}
|
||||
OB_TENANT_PASSWORD=${OCEANBASE_PASSWORD:-infini_rag_flow}
|
||||
OB_MEMORY_LIMIT=${OB_MEMORY_LIMIT:-10G}
|
||||
OB_SYSTEM_MEMORY=${OB_SYSTEM_MEMORY:-2G}
|
||||
OB_DATAFILE_SIZE=${OB_DATAFILE_SIZE:-20G}
|
||||
OB_LOG_DISK_SIZE=${OB_LOG_DISK_SIZE:-20G}
|
||||
|
||||
# The password for MySQL.
|
||||
MYSQL_PASSWORD=infini_rag_flow
|
||||
# The hostname where the MySQL service is exposed
|
||||
|
||||
@ -138,6 +138,15 @@ The [.env](./.env) file contains important environment variables for Docker.
|
||||
- `password`: The password for MinIO.
|
||||
- `host`: The MinIO serving IP *and* port inside the Docker container. Defaults to `minio:9000`.
|
||||
|
||||
- `oceanbase`
|
||||
- `scheme`: The connection scheme. Set to `mysql` to use mysql config, or other values to use config below.
|
||||
- `config`:
|
||||
- `db_name`: The OceanBase database name.
|
||||
- `user`: The username for OceanBase.
|
||||
- `password`: The password for OceanBase.
|
||||
- `host`: The hostname of the OceanBase service.
|
||||
- `port`: The port of OceanBase.
|
||||
|
||||
- `oss`
|
||||
- `access_key`: The access key ID used to authenticate requests to the OSS service.
|
||||
- `secret_key`: The secret access key used to authenticate requests to the OSS service.
|
||||
|
||||
@ -72,7 +72,7 @@ services:
|
||||
infinity:
|
||||
profiles:
|
||||
- infinity
|
||||
image: infiniflow/infinity:v0.6.5
|
||||
image: infiniflow/infinity:v0.6.6
|
||||
volumes:
|
||||
- infinity_data:/var/infinity
|
||||
- ./infinity_conf.toml:/infinity_conf.toml
|
||||
@ -96,6 +96,31 @@ services:
|
||||
retries: 120
|
||||
restart: on-failure
|
||||
|
||||
oceanbase:
|
||||
profiles:
|
||||
- oceanbase
|
||||
image: oceanbase/oceanbase-ce:4.4.1.0-100000032025101610
|
||||
volumes:
|
||||
- ./oceanbase/data:/root/ob
|
||||
- ./oceanbase/conf:/root/.obd/cluster
|
||||
- ./oceanbase/init.d:/root/boot/init.d
|
||||
ports:
|
||||
- ${OCEANBASE_PORT:-2881}:2881
|
||||
env_file: .env
|
||||
environment:
|
||||
- MODE=normal
|
||||
- OB_SERVER_IP=127.0.0.1
|
||||
mem_limit: ${MEM_LIMIT}
|
||||
healthcheck:
|
||||
test: [ 'CMD-SHELL', 'obclient -h127.0.0.1 -P2881 -uroot@${OB_TENANT_NAME:-ragflow} -p${OB_TENANT_PASSWORD:-infini_rag_flow} -e "CREATE DATABASE IF NOT EXISTS ${OCEANBASE_DOC_DBNAME:-ragflow_doc};"' ]
|
||||
interval: 10s
|
||||
retries: 30
|
||||
start_period: 30s
|
||||
timeout: 10s
|
||||
networks:
|
||||
- ragflow
|
||||
restart: on-failure
|
||||
|
||||
sandbox-executor-manager:
|
||||
profiles:
|
||||
- sandbox
|
||||
@ -154,7 +179,7 @@ services:
|
||||
|
||||
minio:
|
||||
image: quay.io/minio/minio:RELEASE.2025-06-13T11-33-47Z
|
||||
command: server --console-address ":9001" /data
|
||||
command: ["server", "--console-address", ":9001", "/data"]
|
||||
ports:
|
||||
- ${MINIO_PORT}:9000
|
||||
- ${MINIO_CONSOLE_PORT}:9001
|
||||
@ -176,7 +201,7 @@ services:
|
||||
redis:
|
||||
# swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/valkey/valkey:8
|
||||
image: valkey/valkey:8
|
||||
command: redis-server --requirepass ${REDIS_PASSWORD} --maxmemory 128mb --maxmemory-policy allkeys-lru
|
||||
command: ["redis-server", "--requirepass", "${REDIS_PASSWORD}", "--maxmemory", "128mb", "--maxmemory-policy", "allkeys-lru"]
|
||||
env_file: .env
|
||||
ports:
|
||||
- ${REDIS_PORT}:6379
|
||||
@ -256,6 +281,8 @@ volumes:
|
||||
driver: local
|
||||
infinity_data:
|
||||
driver: local
|
||||
ob_data:
|
||||
driver: local
|
||||
mysql_data:
|
||||
driver: local
|
||||
minio_data:
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
[general]
|
||||
version = "0.6.5"
|
||||
version = "0.6.6"
|
||||
time_zone = "utc-8"
|
||||
|
||||
[network]
|
||||
|
||||
1
docker/oceanbase/init.d/vec_memory.sql
Normal file
1
docker/oceanbase/init.d/vec_memory.sql
Normal file
@ -0,0 +1 @@
|
||||
ALTER SYSTEM SET ob_vector_memory_limit_percentage = 30;
|
||||
@ -28,6 +28,14 @@ os:
|
||||
infinity:
|
||||
uri: '${INFINITY_HOST:-infinity}:23817'
|
||||
db_name: 'default_db'
|
||||
oceanbase:
|
||||
scheme: 'oceanbase' # set 'mysql' to create connection using mysql config
|
||||
config:
|
||||
db_name: '${OCEANBASE_DOC_DBNAME:-test}'
|
||||
user: '${OCEANBASE_USER:-root@ragflow}'
|
||||
password: '${OCEANBASE_PASSWORD:-infini_rag_flow}'
|
||||
host: '${OCEANBASE_HOST:-oceanbase}'
|
||||
port: ${OCEANBASE_PORT:-2881}
|
||||
redis:
|
||||
db: 1
|
||||
password: '${REDIS_PASSWORD:-infini_rag_flow}'
|
||||
@ -142,5 +150,3 @@ user_default_llm:
|
||||
# secret_id: '${TENCENT_SECRET_ID}'
|
||||
# secret_key: '${TENCENT_SECRET_KEY}'
|
||||
# region: '${TENCENT_REGION}'
|
||||
# table_result_type: '1'
|
||||
# markdown_image_response_type: '1'
|
||||
|
||||
@ -2085,6 +2085,7 @@ curl --request POST \
|
||||
"dataset_ids": ["b2a62730759d11ef987d0242ac120004"],
|
||||
"document_ids": ["77df9ef4759a11ef8bdd0242ac120004"],
|
||||
"metadata_condition": {
|
||||
"logic": "and",
|
||||
"conditions": [
|
||||
{
|
||||
"name": "author",
|
||||
|
||||
@ -96,7 +96,7 @@ ragflow:
|
||||
infinity:
|
||||
image:
|
||||
repository: infiniflow/infinity
|
||||
tag: v0.6.5
|
||||
tag: v0.6.6
|
||||
pullPolicy: IfNotPresent
|
||||
pullSecrets: []
|
||||
storage:
|
||||
|
||||
@ -49,7 +49,7 @@ dependencies = [
|
||||
"html-text==0.6.2",
|
||||
"httpx[socks]>=0.28.1,<0.29.0",
|
||||
"huggingface-hub>=0.25.0,<0.26.0",
|
||||
"infinity-sdk==0.6.5",
|
||||
"infinity-sdk==0.6.6",
|
||||
"infinity-emb>=0.0.66,<0.0.67",
|
||||
"itsdangerous==2.1.2",
|
||||
"json-repair==0.35.0",
|
||||
@ -149,6 +149,7 @@ dependencies = [
|
||||
"captcha>=0.7.1",
|
||||
"pip>=25.2",
|
||||
"pypandoc>=1.16",
|
||||
"pyobvector==0.2.18",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
|
||||
@ -116,7 +116,7 @@ def by_plaintext(filename, binary=None, from_page=0, to_page=100000, callback=No
|
||||
else:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT, llm_name=kwargs.get("layout_recognizer", ""), lang=kwargs.get("lang", "Chinese"))
|
||||
pdf_parser = VisionParser(vision_model=vision_model, **kwargs)
|
||||
|
||||
|
||||
sections, tables = pdf_parser(
|
||||
filename if not binary else binary,
|
||||
from_page=from_page,
|
||||
@ -504,7 +504,7 @@ class Markdown(MarkdownParser):
|
||||
|
||||
return images if images else None
|
||||
|
||||
def __call__(self, filename, binary=None, separate_tables=True,delimiter=None):
|
||||
def __call__(self, filename, binary=None, separate_tables=True, delimiter=None):
|
||||
if binary:
|
||||
encoding = find_codec(binary)
|
||||
txt = binary.decode(encoding, errors="ignore")
|
||||
@ -602,7 +602,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
_SerializedRelationships.load_from_xml = load_from_xml_v2
|
||||
sections, tables = Docx()(filename, binary)
|
||||
|
||||
tables=vision_figure_parser_docx_wrapper(sections=sections,tbls=tables,callback=callback,**kwargs)
|
||||
tables = vision_figure_parser_docx_wrapper(sections=sections, tbls=tables, callback=callback, **kwargs)
|
||||
|
||||
res = tokenize_table(tables, doc, is_english)
|
||||
callback(0.8, "Finish parsing.")
|
||||
@ -653,18 +653,47 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
|
||||
if name in ["tcadp", "docling", "mineru"]:
|
||||
parser_config["chunk_token_num"] = 0
|
||||
|
||||
|
||||
res = tokenize_table(tables, doc, is_english)
|
||||
callback(0.8, "Finish parsing.")
|
||||
|
||||
elif re.search(r"\.(csv|xlsx?)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
excel_parser = ExcelParser()
|
||||
if parser_config.get("html4excel"):
|
||||
sections = [(_, "") for _ in excel_parser.html(binary, 12) if _]
|
||||
|
||||
# Check if tcadp_parser is selected for spreadsheet files
|
||||
layout_recognizer = parser_config.get("layout_recognize", "DeepDOC")
|
||||
if layout_recognizer == "TCADP Parser":
|
||||
table_result_type = parser_config.get("table_result_type", "1")
|
||||
markdown_image_response_type = parser_config.get("markdown_image_response_type", "1")
|
||||
tcadp_parser = TCADPParser(
|
||||
table_result_type=table_result_type,
|
||||
markdown_image_response_type=markdown_image_response_type
|
||||
)
|
||||
if not tcadp_parser.check_installation():
|
||||
callback(-1, "TCADP parser not available. Please check Tencent Cloud API configuration.")
|
||||
return res
|
||||
|
||||
# Determine file type based on extension
|
||||
file_type = "XLSX" if re.search(r"\.xlsx?$", filename, re.IGNORECASE) else "CSV"
|
||||
|
||||
sections, tables = tcadp_parser.parse_pdf(
|
||||
filepath=filename,
|
||||
binary=binary,
|
||||
callback=callback,
|
||||
output_dir=os.environ.get("TCADP_OUTPUT_DIR", ""),
|
||||
file_type=file_type
|
||||
)
|
||||
parser_config["chunk_token_num"] = 0
|
||||
res = tokenize_table(tables, doc, is_english)
|
||||
callback(0.8, "Finish parsing.")
|
||||
else:
|
||||
sections = [(_, "") for _ in excel_parser(binary) if _]
|
||||
parser_config["chunk_token_num"] = 12800
|
||||
# Default DeepDOC parser
|
||||
excel_parser = ExcelParser()
|
||||
if parser_config.get("html4excel"):
|
||||
sections = [(_, "") for _ in excel_parser.html(binary, 12) if _]
|
||||
else:
|
||||
sections = [(_, "") for _ in excel_parser(binary) if _]
|
||||
parser_config["chunk_token_num"] = 12800
|
||||
|
||||
elif re.search(r"\.(txt|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|sql)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
@ -676,7 +705,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
markdown_parser = Markdown(int(parser_config.get("chunk_token_num", 128)))
|
||||
sections, tables = markdown_parser(filename, binary, separate_tables=False,delimiter=parser_config.get("delimiter", "\n!?;。;!?"))
|
||||
sections, tables = markdown_parser(filename, binary, separate_tables=False, delimiter=parser_config.get("delimiter", "\n!?;。;!?"))
|
||||
|
||||
try:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
|
||||
|
||||
@ -16,6 +16,7 @@ import io
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
from functools import partial
|
||||
|
||||
import trio
|
||||
@ -83,6 +84,7 @@ class ParserParam(ProcessParamBase):
|
||||
"output_format": "json",
|
||||
},
|
||||
"spreadsheet": {
|
||||
"parse_method": "deepdoc", # deepdoc/tcadp_parser
|
||||
"output_format": "html",
|
||||
"suffix": [
|
||||
"xls",
|
||||
@ -102,8 +104,10 @@ class ParserParam(ProcessParamBase):
|
||||
"output_format": "json",
|
||||
},
|
||||
"slides": {
|
||||
"parse_method": "deepdoc", # deepdoc/tcadp_parser
|
||||
"suffix": [
|
||||
"pptx",
|
||||
"ppt"
|
||||
],
|
||||
"output_format": "json",
|
||||
},
|
||||
@ -245,7 +249,12 @@ class Parser(ProcessBase):
|
||||
bboxes.append(box)
|
||||
elif conf.get("parse_method").lower() == "tcadp parser":
|
||||
# ADP is a document parsing tool using Tencent Cloud API
|
||||
tcadp_parser = TCADPParser()
|
||||
table_result_type = conf.get("table_result_type", "1")
|
||||
markdown_image_response_type = conf.get("markdown_image_response_type", "1")
|
||||
tcadp_parser = TCADPParser(
|
||||
table_result_type=table_result_type,
|
||||
markdown_image_response_type=markdown_image_response_type
|
||||
)
|
||||
sections, _ = tcadp_parser.parse_pdf(
|
||||
filepath=name,
|
||||
binary=blob,
|
||||
@ -301,14 +310,86 @@ class Parser(ProcessBase):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Spreadsheet.")
|
||||
conf = self._param.setups["spreadsheet"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
spreadsheet_parser = ExcelParser()
|
||||
if conf.get("output_format") == "html":
|
||||
htmls = spreadsheet_parser.html(blob, 1000000000)
|
||||
self.set_output("html", htmls[0])
|
||||
elif conf.get("output_format") == "json":
|
||||
self.set_output("json", [{"text": txt} for txt in spreadsheet_parser(blob) if txt])
|
||||
elif conf.get("output_format") == "markdown":
|
||||
self.set_output("markdown", spreadsheet_parser.markdown(blob))
|
||||
|
||||
parse_method = conf.get("parse_method", "deepdoc")
|
||||
|
||||
# Handle TCADP parser
|
||||
if parse_method.lower() == "tcadp parser":
|
||||
table_result_type = conf.get("table_result_type", "1")
|
||||
markdown_image_response_type = conf.get("markdown_image_response_type", "1")
|
||||
tcadp_parser = TCADPParser(
|
||||
table_result_type=table_result_type,
|
||||
markdown_image_response_type=markdown_image_response_type
|
||||
)
|
||||
if not tcadp_parser.check_installation():
|
||||
raise RuntimeError("TCADP parser not available. Please check Tencent Cloud API configuration.")
|
||||
|
||||
# Determine file type based on extension
|
||||
if re.search(r"\.xlsx?$", name, re.IGNORECASE):
|
||||
file_type = "XLSX"
|
||||
else:
|
||||
file_type = "CSV"
|
||||
|
||||
self.callback(0.2, f"Using TCADP parser for {file_type} file.")
|
||||
sections, tables = tcadp_parser.parse_pdf(
|
||||
filepath=name,
|
||||
binary=blob,
|
||||
callback=self.callback,
|
||||
file_type=file_type,
|
||||
file_start_page=1,
|
||||
file_end_page=1000
|
||||
)
|
||||
|
||||
# Process TCADP parser output based on configured output_format
|
||||
output_format = conf.get("output_format", "html")
|
||||
|
||||
if output_format == "html":
|
||||
# For HTML output, combine sections and tables into HTML
|
||||
html_content = ""
|
||||
for section, position_tag in sections:
|
||||
if section:
|
||||
html_content += section + "\n"
|
||||
for table in tables:
|
||||
if table:
|
||||
html_content += table + "\n"
|
||||
|
||||
self.set_output("html", html_content)
|
||||
|
||||
elif output_format == "json":
|
||||
# For JSON output, create a list of text items
|
||||
result = []
|
||||
# Add sections as text
|
||||
for section, position_tag in sections:
|
||||
if section:
|
||||
result.append({"text": section})
|
||||
# Add tables as text
|
||||
for table in tables:
|
||||
if table:
|
||||
result.append({"text": table})
|
||||
|
||||
self.set_output("json", result)
|
||||
|
||||
elif output_format == "markdown":
|
||||
# For markdown output, combine into markdown
|
||||
md_content = ""
|
||||
for section, position_tag in sections:
|
||||
if section:
|
||||
md_content += section + "\n\n"
|
||||
for table in tables:
|
||||
if table:
|
||||
md_content += table + "\n\n"
|
||||
|
||||
self.set_output("markdown", md_content)
|
||||
else:
|
||||
# Default DeepDOC parser
|
||||
spreadsheet_parser = ExcelParser()
|
||||
if conf.get("output_format") == "html":
|
||||
htmls = spreadsheet_parser.html(blob, 1000000000)
|
||||
self.set_output("html", htmls[0])
|
||||
elif conf.get("output_format") == "json":
|
||||
self.set_output("json", [{"text": txt} for txt in spreadsheet_parser(blob) if txt])
|
||||
elif conf.get("output_format") == "markdown":
|
||||
self.set_output("markdown", spreadsheet_parser.markdown(blob))
|
||||
|
||||
def _word(self, name, blob):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
|
||||
@ -326,22 +407,69 @@ class Parser(ProcessBase):
|
||||
self.set_output("markdown", markdown_text)
|
||||
|
||||
def _slides(self, name, blob):
|
||||
from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PowerPoint Document")
|
||||
|
||||
conf = self._param.setups["slides"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
ppt_parser = ppt_parser()
|
||||
txts = ppt_parser(blob, 0, 100000, None)
|
||||
parse_method = conf.get("parse_method", "deepdoc")
|
||||
|
||||
sections = [{"text": section} for section in txts if section.strip()]
|
||||
# Handle TCADP parser
|
||||
if parse_method.lower() == "tcadp parser":
|
||||
table_result_type = conf.get("table_result_type", "1")
|
||||
markdown_image_response_type = conf.get("markdown_image_response_type", "1")
|
||||
tcadp_parser = TCADPParser(
|
||||
table_result_type=table_result_type,
|
||||
markdown_image_response_type=markdown_image_response_type
|
||||
)
|
||||
if not tcadp_parser.check_installation():
|
||||
raise RuntimeError("TCADP parser not available. Please check Tencent Cloud API configuration.")
|
||||
|
||||
# json
|
||||
assert conf.get("output_format") == "json", "have to be json for ppt"
|
||||
if conf.get("output_format") == "json":
|
||||
self.set_output("json", sections)
|
||||
# Determine file type based on extension
|
||||
if re.search(r"\.pptx?$", name, re.IGNORECASE):
|
||||
file_type = "PPTX"
|
||||
else:
|
||||
file_type = "PPT"
|
||||
|
||||
self.callback(0.2, f"Using TCADP parser for {file_type} file.")
|
||||
|
||||
sections, tables = tcadp_parser.parse_pdf(
|
||||
filepath=name,
|
||||
binary=blob,
|
||||
callback=self.callback,
|
||||
file_type=file_type,
|
||||
file_start_page=1,
|
||||
file_end_page=1000
|
||||
)
|
||||
|
||||
# Process TCADP parser output - PPT only supports json format
|
||||
output_format = conf.get("output_format", "json")
|
||||
if output_format == "json":
|
||||
# For JSON output, create a list of text items
|
||||
result = []
|
||||
# Add sections as text
|
||||
for section, position_tag in sections:
|
||||
if section:
|
||||
result.append({"text": section})
|
||||
# Add tables as text
|
||||
for table in tables:
|
||||
if table:
|
||||
result.append({"text": table})
|
||||
|
||||
self.set_output("json", result)
|
||||
else:
|
||||
# Default DeepDOC parser (supports .pptx format)
|
||||
from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser
|
||||
|
||||
ppt_parser = ppt_parser()
|
||||
txts = ppt_parser(blob, 0, 100000, None)
|
||||
|
||||
sections = [{"text": section} for section in txts if section.strip()]
|
||||
|
||||
# json
|
||||
assert conf.get("output_format") == "json", "have to be json for ppt"
|
||||
if conf.get("output_format") == "json":
|
||||
self.set_output("json", sections)
|
||||
|
||||
def _markdown(self, name, blob):
|
||||
from functools import reduce
|
||||
@ -579,6 +707,7 @@ class Parser(ProcessBase):
|
||||
"video": self._video,
|
||||
"email": self._email,
|
||||
}
|
||||
|
||||
try:
|
||||
from_upstream = ParserFromUpstream.model_validate(kwargs)
|
||||
except Exception as e:
|
||||
|
||||
@ -234,7 +234,11 @@ class CoHereRerank(Base):
|
||||
def __init__(self, key, model_name, base_url=None):
|
||||
from cohere import Client
|
||||
|
||||
self.client = Client(api_key=key, base_url=base_url)
|
||||
# Only pass base_url if it's a non-empty string, otherwise use default Cohere API endpoint
|
||||
client_kwargs = {"api_key": key}
|
||||
if base_url and base_url.strip():
|
||||
client_kwargs["base_url"] = base_url
|
||||
self.client = Client(**client_kwargs)
|
||||
self.model_name = model_name.split("___")[0]
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
|
||||
@ -83,6 +83,7 @@ class FulltextQueryer:
|
||||
return txt
|
||||
|
||||
def question(self, txt, tbl="qa", min_match: float = 0.6):
|
||||
original_query = txt
|
||||
txt = FulltextQueryer.add_space_between_eng_zh(txt)
|
||||
txt = re.sub(
|
||||
r"[ :|\r\n\t,,。??/`!!&^%%()\[\]{}<>]+",
|
||||
@ -127,7 +128,7 @@ class FulltextQueryer:
|
||||
q.append(txt)
|
||||
query = " ".join(q)
|
||||
return MatchTextExpr(
|
||||
self.query_fields, query, 100
|
||||
self.query_fields, query, 100, {"original_query": original_query}
|
||||
), keywords
|
||||
|
||||
def need_fine_grained_tokenize(tk):
|
||||
@ -212,7 +213,7 @@ class FulltextQueryer:
|
||||
if not query:
|
||||
query = otxt
|
||||
return MatchTextExpr(
|
||||
self.query_fields, query, 100, {"minimum_should_match": min_match}
|
||||
self.query_fields, query, 100, {"minimum_should_match": min_match, "original_query": original_query}
|
||||
), keywords
|
||||
return None, keywords
|
||||
|
||||
@ -259,6 +260,7 @@ class FulltextQueryer:
|
||||
content_tks = [c.strip() for c in content_tks.strip() if c.strip()]
|
||||
tks_w = self.tw.weights(content_tks, preprocess=False)
|
||||
|
||||
origin_keywords = keywords.copy()
|
||||
keywords = [f'"{k.strip()}"' for k in keywords]
|
||||
for tk, w in sorted(tks_w, key=lambda x: x[1] * -1)[:keywords_topn]:
|
||||
tk_syns = self.syn.lookup(tk)
|
||||
@ -274,4 +276,4 @@ class FulltextQueryer:
|
||||
keywords.append(f"{tk}^{w}")
|
||||
|
||||
return MatchTextExpr(self.query_fields, " ".join(keywords), 100,
|
||||
{"minimum_should_match": min(3, len(keywords) // 10)})
|
||||
{"minimum_should_match": min(3, len(keywords) / 10), "original_query": " ".join(origin_keywords)})
|
||||
|
||||
@ -429,7 +429,7 @@ def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[st
|
||||
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
|
||||
|
||||
|
||||
def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
|
||||
def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> dict:
|
||||
sys_prompt = PROMPT_JINJA_ENV.from_string(META_FILTER).render(
|
||||
current_date=datetime.datetime.today().strftime('%Y-%m-%d'),
|
||||
metadata_keys=json.dumps(meta_data),
|
||||
@ -440,11 +440,13 @@ def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
|
||||
ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL)
|
||||
try:
|
||||
ans = json_repair.loads(ans)
|
||||
assert isinstance(ans, list), ans
|
||||
assert isinstance(ans, dict), ans
|
||||
assert "conditions" in ans and isinstance(ans["conditions"], list), ans
|
||||
return ans
|
||||
except Exception:
|
||||
logging.exception(f"Loading json failure: {ans}")
|
||||
return []
|
||||
|
||||
return {"conditions": []}
|
||||
|
||||
|
||||
def gen_json(system_prompt:str, user_prompt:str, chat_mdl, gen_conf = None):
|
||||
|
||||
@ -9,11 +9,13 @@ You are a metadata filtering condition generator. Analyze the user's question an
|
||||
}
|
||||
|
||||
2. **Output Requirements**:
|
||||
- Always output a JSON array of filter objects
|
||||
- Each object must have:
|
||||
- Always output a JSON dictionary with only 2 keys: 'conditions'(filter objects) and 'logic' between the conditions ('and' or 'or').
|
||||
- Each filter object in conditions must have:
|
||||
"key": (metadata attribute name),
|
||||
"value": (string value to compare),
|
||||
"op": (operator from allowed list)
|
||||
- Logic between all the conditions: 'and'(Intersection of results for each condition) / 'or' (union of results for all conditions)
|
||||
|
||||
|
||||
3. **Operator Guide**:
|
||||
- Use these operators only: ["contains", "not contains", "start with", "end with", "empty", "not empty", "=", "≠", ">", "<", "≥", "≤"]
|
||||
@ -32,22 +34,97 @@ You are a metadata filtering condition generator. Analyze the user's question an
|
||||
- Attribute doesn't exist in metadata
|
||||
- Value has no match in metadata
|
||||
|
||||
5. **Example**:
|
||||
5. **Example A**:
|
||||
- User query: "上市日期七月份的有哪些商品,不要蓝色的"
|
||||
- Metadata: { "color": {...}, "listing_date": {...} }
|
||||
- Output:
|
||||
[
|
||||
{
|
||||
"logic": "and",
|
||||
"conditions": [
|
||||
{"key": "listing_date", "value": "2025-07-01", "op": "≥"},
|
||||
{"key": "listing_date", "value": "2025-08-01", "op": "<"},
|
||||
{"key": "color", "value": "blue", "op": "≠"}
|
||||
]
|
||||
}
|
||||
|
||||
6. **Final Output**:
|
||||
- ONLY output valid JSON array
|
||||
6. **Example B**:
|
||||
- User query: "Both blue and red are acceptable."
|
||||
- Metadata: { "color": {...}, "listing_date": {...} }
|
||||
- Output:
|
||||
{
|
||||
"logic": "or",
|
||||
"conditions": [
|
||||
{"key": "color", "value": "blue", "op": "="},
|
||||
{"key": "color", "value": "red", "op": "="}
|
||||
]
|
||||
}
|
||||
|
||||
7. **Final Output**:
|
||||
- ONLY output valid JSON dictionary
|
||||
- NO additional text/explanations
|
||||
- Json schema is as following:
|
||||
```json
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"logic": {
|
||||
"type": "string",
|
||||
"description": "Logic relationship between all the conditions, the default is 'and'.",
|
||||
"enum": [
|
||||
"and",
|
||||
"or"
|
||||
]
|
||||
},
|
||||
"conditions": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"key": {
|
||||
"type": "string",
|
||||
"description": "Metadata attribute name."
|
||||
},
|
||||
"value": {
|
||||
"type": "string",
|
||||
"description": "Value to compare."
|
||||
},
|
||||
"op": {
|
||||
"type": "string",
|
||||
"description": "Operator from allowed list.",
|
||||
"enum": [
|
||||
"contains",
|
||||
"not contains",
|
||||
"start with",
|
||||
"end with",
|
||||
"empty",
|
||||
"not empty",
|
||||
"=",
|
||||
"≠",
|
||||
">",
|
||||
"<",
|
||||
"≥",
|
||||
"≤"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"key",
|
||||
"value",
|
||||
"op"
|
||||
],
|
||||
"additionalProperties": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"conditions"
|
||||
],
|
||||
"additionalProperties": false
|
||||
}
|
||||
```
|
||||
|
||||
**Current Task**:
|
||||
- Today's date: {{current_date}}
|
||||
- Available metadata keys: {{metadata_keys}}
|
||||
- User query: "{{user_question}}"
|
||||
- Today's date: {{ current_date }}
|
||||
- Available metadata keys: {{ metadata_keys }}
|
||||
- User query: "{{ user_question }}"
|
||||
|
||||
|
||||
1562
rag/utils/ob_conn.py
Normal file
1562
rag/utils/ob_conn.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -69,7 +69,7 @@ class Document(Base):
|
||||
response = res.json()
|
||||
actual_keys = set(response.keys())
|
||||
if actual_keys == error_keys:
|
||||
raise Exception(res.get("message"))
|
||||
raise Exception(response.get("message"))
|
||||
else:
|
||||
return res.content
|
||||
except json.JSONDecodeError:
|
||||
|
||||
@ -80,6 +80,7 @@ class Session(Base):
|
||||
|
||||
|
||||
def _structure_answer(self, json_data):
|
||||
answer = ""
|
||||
if self.__session_type == "agent":
|
||||
answer = json_data["data"]["content"]
|
||||
elif self.__session_type == "chat":
|
||||
|
||||
@ -79,6 +79,7 @@
|
||||
"input-otp": "^1.4.1",
|
||||
"js-base64": "^3.7.5",
|
||||
"jsencrypt": "^3.3.2",
|
||||
"jsoneditor": "^10.4.2",
|
||||
"lexical": "^0.23.1",
|
||||
"lodash": "^4.17.21",
|
||||
"lucide-react": "^0.546.0",
|
||||
|
||||
132
web/src/components/json-edit/css/cloud9_night.less
Normal file
132
web/src/components/json-edit/css/cloud9_night.less
Normal file
@ -0,0 +1,132 @@
|
||||
.ace-tomorrow-night .ace_gutter {
|
||||
background: var(--bg-card);
|
||||
color: rgb(var(--text-primary));
|
||||
}
|
||||
.ace-tomorrow-night .ace_print-margin {
|
||||
width: 1px;
|
||||
background: #25282c;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night {
|
||||
background: var(--bg-card);
|
||||
color: rgb(var(--text-primary));
|
||||
.ace_editor {
|
||||
background: var(--bg-card);
|
||||
}
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_cursor {
|
||||
color: #aeafad;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_marker-layer .ace_selection {
|
||||
background: #373b41;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night.ace_multiselect .ace_selection.ace_start {
|
||||
box-shadow: 0 0 3px 0px #1d1f21;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_marker-layer .ace_step {
|
||||
background: rgb(102, 82, 0);
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_marker-layer .ace_bracket {
|
||||
margin: -1px 0 0 -1px;
|
||||
border: 1px solid #4b4e55;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_marker-layer .ace_active-line {
|
||||
background: var(--bg-card);
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_gutter-active-line {
|
||||
background-color: var(--bg-card);
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_marker-layer .ace_selected-word {
|
||||
border: 1px solid #373b41;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_invisible {
|
||||
color: #4b4e55;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_keyword,
|
||||
.ace-tomorrow-night .ace_meta,
|
||||
.ace-tomorrow-night .ace_storage,
|
||||
.ace-tomorrow-night .ace_storage.ace_type,
|
||||
.ace-tomorrow-night .ace_support.ace_type {
|
||||
color: #b294bb;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_keyword.ace_operator {
|
||||
color: #8abeb7;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_constant.ace_character,
|
||||
.ace-tomorrow-night .ace_constant.ace_language,
|
||||
.ace-tomorrow-night .ace_constant.ace_numeric,
|
||||
.ace-tomorrow-night .ace_keyword.ace_other.ace_unit,
|
||||
.ace-tomorrow-night .ace_support.ace_constant,
|
||||
.ace-tomorrow-night .ace_variable.ace_parameter {
|
||||
color: #de935f;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_constant.ace_other {
|
||||
color: #ced1cf;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_invalid {
|
||||
color: #ced2cf;
|
||||
background-color: #df5f5f;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_invalid.ace_deprecated {
|
||||
color: #ced2cf;
|
||||
background-color: #b798bf;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_fold {
|
||||
background-color: #81a2be;
|
||||
border-color: #c5c8c6;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_entity.ace_name.ace_function,
|
||||
.ace-tomorrow-night .ace_support.ace_function,
|
||||
.ace-tomorrow-night .ace_variable {
|
||||
color: #81a2be;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_support.ace_class,
|
||||
.ace-tomorrow-night .ace_support.ace_type {
|
||||
color: #f0c674;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_heading,
|
||||
.ace-tomorrow-night .ace_markup.ace_heading,
|
||||
.ace-tomorrow-night .ace_string {
|
||||
color: #b5bd68;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_entity.ace_name.ace_tag,
|
||||
.ace-tomorrow-night .ace_entity.ace_other.ace_attribute-name,
|
||||
.ace-tomorrow-night .ace_meta.ace_tag,
|
||||
.ace-tomorrow-night .ace_string.ace_regexp,
|
||||
.ace-tomorrow-night .ace_variable {
|
||||
color: #cc6666;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_comment {
|
||||
color: #969896;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_indent-guide {
|
||||
background: url()
|
||||
right repeat-y;
|
||||
}
|
||||
|
||||
.ace-tomorrow-night .ace_indent-guide-active {
|
||||
background: url()
|
||||
right repeat-y;
|
||||
}
|
||||
83
web/src/components/json-edit/css/index.less
Normal file
83
web/src/components/json-edit/css/index.less
Normal file
@ -0,0 +1,83 @@
|
||||
.jsoneditor {
|
||||
border: none;
|
||||
color: rgb(var(--text-primary));
|
||||
overflow: auto;
|
||||
scrollbar-width: none;
|
||||
background-color: var(--bg-base);
|
||||
.jsoneditor-menu {
|
||||
background-color: var(--bg-base);
|
||||
// border-color: var(--border-button);
|
||||
border-bottom: thin solid var(--border-button);
|
||||
}
|
||||
.jsoneditor-navigation-bar {
|
||||
border-bottom: 1px solid var(--border-button);
|
||||
background-color: var(--bg-input);
|
||||
}
|
||||
.jsoneditor-tree {
|
||||
background: var(--bg-base);
|
||||
}
|
||||
.jsoneditor-highlight {
|
||||
background-color: var(--bg-card);
|
||||
}
|
||||
}
|
||||
.jsoneditor-popover,
|
||||
.jsoneditor-schema-error,
|
||||
div.jsoneditor td,
|
||||
div.jsoneditor textarea,
|
||||
div.jsoneditor th,
|
||||
div.jsoneditor-field,
|
||||
div.jsoneditor-value,
|
||||
pre.jsoneditor-preview {
|
||||
font-family: consolas, menlo, monaco, 'Ubuntu Mono', source-code-pro,
|
||||
monospace;
|
||||
font-size: 14px;
|
||||
color: rgb(var(--text-primary));
|
||||
}
|
||||
|
||||
div.jsoneditor-field.jsoneditor-highlight,
|
||||
div.jsoneditor-field[contenteditable='true']:focus,
|
||||
div.jsoneditor-field[contenteditable='true']:hover,
|
||||
div.jsoneditor-value.jsoneditor-highlight,
|
||||
div.jsoneditor-value[contenteditable='true']:focus,
|
||||
div.jsoneditor-value[contenteditable='true']:hover {
|
||||
background-color: var(--bg-input);
|
||||
border: 1px solid var(--border-button);
|
||||
border-radius: 2px;
|
||||
}
|
||||
|
||||
.jsoneditor-selected,
|
||||
.jsoneditor-contextmenu .jsoneditor-menu li ul {
|
||||
background: var(--bg-base);
|
||||
}
|
||||
|
||||
.jsoneditor-contextmenu .jsoneditor-menu button {
|
||||
color: rgb(var(--text-secondary));
|
||||
}
|
||||
.jsoneditor-menu a.jsoneditor-poweredBy {
|
||||
display: none;
|
||||
}
|
||||
.ace-jsoneditor .ace_scroller {
|
||||
background-color: var(--bg-base);
|
||||
}
|
||||
.jsoneditor-statusbar {
|
||||
border-top: 1px solid var(--border-button);
|
||||
background-color: var(--bg-base);
|
||||
color: rgb(var(--text-primary));
|
||||
}
|
||||
.jsoneditor-menu > .jsoneditor-modes > button,
|
||||
.jsoneditor-menu > button {
|
||||
// color: rgb(var(--text-secondary));
|
||||
background-color: var(--text-disabled);
|
||||
}
|
||||
|
||||
.jsoneditor-menu > .jsoneditor-modes > button:active,
|
||||
.jsoneditor-menu > .jsoneditor-modes > button:focus,
|
||||
.jsoneditor-menu > button:active,
|
||||
.jsoneditor-menu > button:focus {
|
||||
background-color: rgb(var(--text-secondary));
|
||||
}
|
||||
.jsoneditor-menu > .jsoneditor-modes > button:hover,
|
||||
.jsoneditor-menu > button:hover {
|
||||
background-color: rgb(var(--text-secondary));
|
||||
border: 1px solid var(--border-button);
|
||||
}
|
||||
142
web/src/components/json-edit/index.tsx
Normal file
142
web/src/components/json-edit/index.tsx
Normal file
@ -0,0 +1,142 @@
|
||||
import React, { useEffect, useRef } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import './css/cloud9_night.less';
|
||||
import './css/index.less';
|
||||
import { JsonEditorOptions, JsonEditorProps } from './interface';
|
||||
const defaultConfig: JsonEditorOptions = {
|
||||
mode: 'code',
|
||||
modes: ['tree', 'code'],
|
||||
history: false,
|
||||
search: false,
|
||||
mainMenuBar: false,
|
||||
navigationBar: false,
|
||||
enableSort: false,
|
||||
enableTransform: false,
|
||||
indentation: 2,
|
||||
};
|
||||
const JsonEditor: React.FC<JsonEditorProps> = ({
|
||||
value,
|
||||
onChange,
|
||||
height = '400px',
|
||||
className = '',
|
||||
options = {},
|
||||
}) => {
|
||||
const containerRef = useRef<HTMLDivElement>(null);
|
||||
const editorRef = useRef<any>(null);
|
||||
const { i18n } = useTranslation();
|
||||
const currentLanguageRef = useRef<string>(i18n.language);
|
||||
|
||||
useEffect(() => {
|
||||
if (typeof window !== 'undefined') {
|
||||
const JSONEditor = require('jsoneditor');
|
||||
import('jsoneditor/dist/jsoneditor.min.css');
|
||||
|
||||
if (containerRef.current) {
|
||||
// Default configuration options
|
||||
const defaultOptions: JsonEditorOptions = {
|
||||
...defaultConfig,
|
||||
language: i18n.language === 'zh' ? 'zh-CN' : 'en',
|
||||
onChange: () => {
|
||||
if (editorRef.current && onChange) {
|
||||
try {
|
||||
const updatedJson = editorRef.current.get();
|
||||
onChange(updatedJson);
|
||||
} catch (err) {
|
||||
// Do not trigger onChange when parsing error occurs
|
||||
console.error(err);
|
||||
}
|
||||
}
|
||||
},
|
||||
...options, // Merge user provided options with defaults
|
||||
};
|
||||
|
||||
editorRef.current = new JSONEditor(
|
||||
containerRef.current,
|
||||
defaultOptions,
|
||||
);
|
||||
|
||||
if (value) {
|
||||
editorRef.current.set(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return () => {
|
||||
if (editorRef.current) {
|
||||
if (typeof editorRef.current.destroy === 'function') {
|
||||
editorRef.current.destroy();
|
||||
}
|
||||
editorRef.current = null;
|
||||
}
|
||||
};
|
||||
}, []);
|
||||
|
||||
useEffect(() => {
|
||||
// Update language when i18n language changes
|
||||
// Since JSONEditor doesn't have a setOptions method, we need to recreate the editor
|
||||
if (editorRef.current && currentLanguageRef.current !== i18n.language) {
|
||||
currentLanguageRef.current = i18n.language;
|
||||
|
||||
// Save current data
|
||||
let currentData;
|
||||
try {
|
||||
currentData = editorRef.current.get();
|
||||
} catch (e) {
|
||||
// If there's an error getting data, use the passed value or empty object
|
||||
currentData = value || {};
|
||||
}
|
||||
|
||||
// Destroy the current editor
|
||||
if (typeof editorRef.current.destroy === 'function') {
|
||||
editorRef.current.destroy();
|
||||
}
|
||||
|
||||
// Recreate the editor with new language
|
||||
const JSONEditor = require('jsoneditor');
|
||||
|
||||
const newOptions: JsonEditorOptions = {
|
||||
...defaultConfig,
|
||||
language: i18n.language === 'zh' ? 'zh-CN' : 'en',
|
||||
onChange: () => {
|
||||
if (editorRef.current && onChange) {
|
||||
try {
|
||||
const updatedJson = editorRef.current.get();
|
||||
onChange(updatedJson);
|
||||
} catch (err) {
|
||||
// Do not trigger onChange when parsing error occurs
|
||||
}
|
||||
}
|
||||
},
|
||||
...options, // Merge user provided options with defaults
|
||||
};
|
||||
|
||||
editorRef.current = new JSONEditor(containerRef.current, newOptions);
|
||||
editorRef.current.set(currentData);
|
||||
}
|
||||
}, [i18n.language, value, onChange, options]);
|
||||
|
||||
useEffect(() => {
|
||||
if (editorRef.current && value !== undefined) {
|
||||
try {
|
||||
// Only update the editor when the value actually changes
|
||||
const currentJson = editorRef.current.get();
|
||||
if (JSON.stringify(currentJson) !== JSON.stringify(value)) {
|
||||
editorRef.current.set(value);
|
||||
}
|
||||
} catch (err) {
|
||||
// Skip update if there is a syntax error in the current editor
|
||||
editorRef.current.set(value);
|
||||
}
|
||||
}
|
||||
}, [value]);
|
||||
|
||||
return (
|
||||
<div
|
||||
ref={containerRef}
|
||||
style={{ height }}
|
||||
className={`ace-tomorrow-night w-full border border-border-button rounded-lg overflow-hidden bg-bg-input ${className} `}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default JsonEditor;
|
||||
339
web/src/components/json-edit/interface.ts
Normal file
339
web/src/components/json-edit/interface.ts
Normal file
@ -0,0 +1,339 @@
|
||||
// JSONEditor configuration options interface see: https://github.com/josdejong/jsoneditor/blob/master/docs/api.md
|
||||
export interface JsonEditorOptions {
|
||||
/**
|
||||
* Editor mode. Available values: 'tree' (default), 'view', 'form', 'text', and 'code'.
|
||||
*/
|
||||
mode?: 'tree' | 'view' | 'form' | 'text' | 'code';
|
||||
|
||||
/**
|
||||
* Array of available modes
|
||||
*/
|
||||
modes?: Array<'tree' | 'view' | 'form' | 'text' | 'code'>;
|
||||
|
||||
/**
|
||||
* Field name for the root node. Only applicable for modes 'tree', 'view', and 'form'
|
||||
*/
|
||||
name?: string;
|
||||
|
||||
/**
|
||||
* Theme for the editor
|
||||
*/
|
||||
theme?: string;
|
||||
|
||||
/**
|
||||
* Enable history (undo/redo). True by default. Only applicable for modes 'tree', 'view', and 'form'
|
||||
*/
|
||||
history?: boolean;
|
||||
|
||||
/**
|
||||
* Enable search box. True by default. Only applicable for modes 'tree', 'view', and 'form'
|
||||
*/
|
||||
search?: boolean;
|
||||
|
||||
/**
|
||||
* Main menu bar visibility
|
||||
*/
|
||||
mainMenuBar?: boolean;
|
||||
|
||||
/**
|
||||
* Navigation bar visibility
|
||||
*/
|
||||
navigationBar?: boolean;
|
||||
|
||||
/**
|
||||
* Status bar visibility
|
||||
*/
|
||||
statusBar?: boolean;
|
||||
|
||||
/**
|
||||
* If true, object keys are sorted before display. false by default.
|
||||
*/
|
||||
sortObjectKeys?: boolean;
|
||||
|
||||
/**
|
||||
* Enable transform functionality
|
||||
*/
|
||||
enableTransform?: boolean;
|
||||
|
||||
/**
|
||||
* Enable sort functionality
|
||||
*/
|
||||
enableSort?: boolean;
|
||||
|
||||
/**
|
||||
* Limit dragging functionality
|
||||
*/
|
||||
limitDragging?: boolean;
|
||||
|
||||
/**
|
||||
* A JSON schema object
|
||||
*/
|
||||
schema?: any;
|
||||
|
||||
/**
|
||||
* Schemas that are referenced using the `$ref` property from the JSON schema
|
||||
*/
|
||||
schemaRefs?: Record<string, any>;
|
||||
|
||||
/**
|
||||
* Array of template objects
|
||||
*/
|
||||
templates?: Array<{
|
||||
text: string;
|
||||
title?: string;
|
||||
className?: string;
|
||||
field?: string;
|
||||
value: any;
|
||||
}>;
|
||||
|
||||
/**
|
||||
* Ace editor instance
|
||||
*/
|
||||
ace?: any;
|
||||
|
||||
/**
|
||||
* An instance of Ajv JSON schema validator
|
||||
*/
|
||||
ajv?: any;
|
||||
|
||||
/**
|
||||
* Switch to enable/disable autocomplete
|
||||
*/
|
||||
autocomplete?: {
|
||||
confirmKey?: string | string[];
|
||||
caseSensitive?: boolean;
|
||||
getOptions?: (
|
||||
text: string,
|
||||
path: Array<string | number>,
|
||||
input: string,
|
||||
editor: any,
|
||||
) => string[] | Promise<string[]> | null;
|
||||
};
|
||||
|
||||
/**
|
||||
* Number of indentation spaces. 4 by default. Only applicable for modes 'text' and 'code'
|
||||
*/
|
||||
indentation?: number;
|
||||
|
||||
/**
|
||||
* Available languages
|
||||
*/
|
||||
languages?: string[];
|
||||
|
||||
/**
|
||||
* Language of the editor
|
||||
*/
|
||||
language?: string;
|
||||
|
||||
/**
|
||||
* Callback method, triggered on change of contents. Does not pass the contents itself.
|
||||
* See also onChangeJSON and onChangeText.
|
||||
*/
|
||||
onChange?: () => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered in modes on change of contents, passing the changed contents as JSON.
|
||||
* Only applicable for modes 'tree', 'view', and 'form'.
|
||||
*/
|
||||
onChangeJSON?: (json: any) => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered in modes on change of contents, passing the changed contents as stringified JSON.
|
||||
*/
|
||||
onChangeText?: (text: string) => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when an error occurs
|
||||
*/
|
||||
onError?: (error: Error) => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when node is expanded
|
||||
*/
|
||||
onExpand?: (node: any) => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when node is collapsed
|
||||
*/
|
||||
onCollapse?: (node: any) => void;
|
||||
|
||||
/**
|
||||
* Callback method, determines if a node is editable
|
||||
*/
|
||||
onEditable?: (node: any) => boolean | { field: boolean; value: boolean };
|
||||
|
||||
/**
|
||||
* Callback method, triggered when an event occurs in a JSON field or value.
|
||||
* Only applicable for modes 'form', 'tree' and 'view'
|
||||
*/
|
||||
onEvent?: (node: any, event: Event) => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when the editor comes into focus, passing an object {type, target}.
|
||||
* Applicable for all modes
|
||||
*/
|
||||
onFocus?: (node: any) => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when the editor goes out of focus, passing an object {type, target}.
|
||||
* Applicable for all modes
|
||||
*/
|
||||
onBlur?: (node: any) => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when creating menu items
|
||||
*/
|
||||
onCreateMenu?: (menuItems: any[], node: any) => any[];
|
||||
|
||||
/**
|
||||
* Callback method, triggered on node selection change. Only applicable for modes 'tree', 'view', and 'form'
|
||||
*/
|
||||
onSelectionChange?: (selection: any) => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered on text selection change. Only applicable for modes 'text' and 'code'
|
||||
*/
|
||||
onTextSelectionChange?: (selection: any) => void;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when a Node DOM is rendered. Function returns a css class name to be set on a node.
|
||||
* Only applicable for modes 'form', 'tree' and 'view'
|
||||
*/
|
||||
onClassName?: (node: any) => string | undefined;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when validating nodes
|
||||
*/
|
||||
onValidate?: (
|
||||
json: any,
|
||||
) =>
|
||||
| Array<{ path: Array<string | number>; message: string }>
|
||||
| Promise<Array<{ path: Array<string | number>; message: string }>>;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when node name is determined
|
||||
*/
|
||||
onNodeName?: (parentNode: any, childNode: any, name: string) => string;
|
||||
|
||||
/**
|
||||
* Callback method, triggered when mode changes
|
||||
*/
|
||||
onModeChange?: (newMode: string, oldMode: string) => void;
|
||||
|
||||
/**
|
||||
* Color picker options
|
||||
*/
|
||||
colorPicker?: boolean;
|
||||
|
||||
/**
|
||||
* Callback method for color picker
|
||||
*/
|
||||
onColorPicker?: (
|
||||
callback: (color: string) => void,
|
||||
parent: HTMLElement,
|
||||
) => void;
|
||||
|
||||
/**
|
||||
* If true, shows timestamp tag
|
||||
*/
|
||||
timestampTag?: boolean;
|
||||
|
||||
/**
|
||||
* Format for timestamps
|
||||
*/
|
||||
timestampFormat?: string;
|
||||
|
||||
/**
|
||||
* If true, unicode characters are escaped. false by default.
|
||||
*/
|
||||
escapeUnicode?: boolean;
|
||||
|
||||
/**
|
||||
* Number of children allowed for a node in 'tree', 'view', or 'form' mode before
|
||||
* the "show more/show all" buttons appear. 100 by default.
|
||||
*/
|
||||
maxVisibleChilds?: number;
|
||||
|
||||
/**
|
||||
* Callback method for validation errors
|
||||
*/
|
||||
onValidationError?: (
|
||||
errors: Array<{ path: Array<string | number>; message: string }>,
|
||||
) => void;
|
||||
|
||||
/**
|
||||
* Callback method for validation warnings
|
||||
*/
|
||||
onValidationWarning?: (
|
||||
warnings: Array<{ path: Array<string | number>; message: string }>,
|
||||
) => void;
|
||||
|
||||
/**
|
||||
* The anchor element to apply an overlay and display the modals in a centered location. Defaults to document.body
|
||||
*/
|
||||
modalAnchor?: HTMLElement | null;
|
||||
|
||||
/**
|
||||
* Anchor element for popups
|
||||
*/
|
||||
popupAnchor?: HTMLElement | null;
|
||||
|
||||
/**
|
||||
* Function to create queries
|
||||
*/
|
||||
createQuery?: () => void;
|
||||
|
||||
/**
|
||||
* Function to execute queries
|
||||
*/
|
||||
executeQuery?: () => void;
|
||||
|
||||
/**
|
||||
* Query description
|
||||
*/
|
||||
queryDescription?: string;
|
||||
|
||||
/**
|
||||
* Allow schema suggestions
|
||||
*/
|
||||
allowSchemaSuggestions?: boolean;
|
||||
|
||||
/**
|
||||
* Show error table
|
||||
*/
|
||||
showErrorTable?: boolean;
|
||||
|
||||
/**
|
||||
* Validate current JSON object against the configured JSON schema
|
||||
* Must be implemented by tree mode and text mode
|
||||
*/
|
||||
validate?: () => Promise<any[]>;
|
||||
|
||||
/**
|
||||
* Refresh the rendered contents
|
||||
* Can be implemented by tree mode and text mode
|
||||
*/
|
||||
refresh?: () => void;
|
||||
|
||||
/**
|
||||
* Callback method triggered when schema changes
|
||||
*/
|
||||
_onSchemaChange?: (schema: any, schemaRefs: any) => void;
|
||||
}
|
||||
|
||||
export interface JsonEditorProps {
|
||||
// JSON data to be displayed in the editor
|
||||
value?: any;
|
||||
|
||||
// Callback function triggered when the JSON data changes
|
||||
onChange?: (value: any) => void;
|
||||
|
||||
// Height of the editor
|
||||
height?: string;
|
||||
|
||||
// Additional CSS class names
|
||||
className?: string;
|
||||
|
||||
// Configuration options for the JSONEditor
|
||||
options?: JsonEditorOptions;
|
||||
}
|
||||
@ -25,6 +25,7 @@ export default {
|
||||
portugueseBr: 'Portuguese (Brazil)',
|
||||
chinese: 'Simplified Chinese',
|
||||
traditionalChinese: 'Traditional Chinese',
|
||||
russian: 'Russian',
|
||||
language: 'Language',
|
||||
languageMessage: 'Please input your language!',
|
||||
languagePlaceholder: 'select your language',
|
||||
@ -1752,6 +1753,8 @@ The variable aggregation node (originally the variable assignment node) is a cru
|
||||
The Indexer will store the content in the corresponding data structures for the selected methods.`,
|
||||
// file: 'File',
|
||||
parserMethod: 'PDF parser',
|
||||
tableResultType: 'Table Result Type',
|
||||
markdownImageResponseType: 'Markdown Image Response Type',
|
||||
// systemPrompt: 'System Prompt',
|
||||
systemPromptPlaceholder:
|
||||
'Enter system prompt for image analysis, if empty the system default value will be used',
|
||||
@ -1934,6 +1937,7 @@ Important structured information may include: names, dates, locations, events, k
|
||||
japanese: 'Japanese',
|
||||
korean: 'Korean',
|
||||
vietnamese: 'Vietnamese',
|
||||
russian: 'Russian',
|
||||
},
|
||||
pagination: {
|
||||
total: 'Total {{total}}',
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -1629,6 +1629,8 @@ General:实体和关系提取提示来自 GitHub - microsoft/graphrag:基于
|
||||
Tokenizer 会根据所选方式将内容存储为对应的数据结构。`,
|
||||
filenameEmbdWeight: '文件名嵌入权重',
|
||||
parserMethod: '解析方法',
|
||||
tableResultType: '表格返回形式',
|
||||
markdownImageResponseType: '图片返回形式',
|
||||
systemPromptPlaceholder:
|
||||
'请输入用于图像分析的系统提示词,若为空则使用系统缺省值',
|
||||
exportJson: '导出 JSON',
|
||||
|
||||
@ -169,6 +169,7 @@ export const initialParserValues = {
|
||||
{
|
||||
fileFormat: FileType.Spreadsheet,
|
||||
output_format: SpreadsheetOutputFormat.Html,
|
||||
parse_method: ParseDocumentType.DeepDOC,
|
||||
},
|
||||
{
|
||||
fileFormat: FileType.Image,
|
||||
@ -192,6 +193,7 @@ export const initialParserValues = {
|
||||
{
|
||||
fileFormat: FileType.PowerPoint,
|
||||
output_format: PptOutputFormat.Json,
|
||||
parse_method: ParseDocumentType.DeepDOC,
|
||||
},
|
||||
],
|
||||
};
|
||||
@ -243,7 +245,7 @@ export const FileTypeSuffixMap = {
|
||||
[FileType.Email]: ['eml', 'msg'],
|
||||
[FileType.TextMarkdown]: ['md', 'markdown', 'mdx', 'txt'],
|
||||
[FileType.Docx]: ['doc', 'docx'],
|
||||
[FileType.PowerPoint]: ['pptx'],
|
||||
[FileType.PowerPoint]: ['pptx', 'ppt'],
|
||||
[FileType.Video]: ['mp4', 'avi', 'mkv'],
|
||||
[FileType.Audio]: [
|
||||
'da',
|
||||
|
||||
@ -34,6 +34,8 @@ import { OutputFormatFormField } from './common-form-fields';
|
||||
import { EmailFormFields } from './email-form-fields';
|
||||
import { ImageFormFields } from './image-form-fields';
|
||||
import { PdfFormFields } from './pdf-form-fields';
|
||||
import { PptFormFields } from './ppt-form-fields';
|
||||
import { SpreadsheetFormFields } from './spreadsheet-form-fields';
|
||||
import { buildFieldNameWithPrefix } from './utils';
|
||||
import { AudioFormFields, VideoFormFields } from './video-form-fields';
|
||||
|
||||
@ -41,6 +43,8 @@ const outputList = buildOutputList(initialParserValues.outputs);
|
||||
|
||||
const FileFormatWidgetMap = {
|
||||
[FileType.PDF]: PdfFormFields,
|
||||
[FileType.Spreadsheet]: SpreadsheetFormFields,
|
||||
[FileType.PowerPoint]: PptFormFields,
|
||||
[FileType.Video]: VideoFormFields,
|
||||
[FileType.Audio]: AudioFormFields,
|
||||
[FileType.Email]: EmailFormFields,
|
||||
@ -65,6 +69,8 @@ export const FormSchema = z.object({
|
||||
fields: z.array(z.string()).optional(),
|
||||
llm_id: z.string().optional(),
|
||||
system_prompt: z.string().optional(),
|
||||
table_result_type: z.string().optional(),
|
||||
markdown_image_response_type: z.string().optional(),
|
||||
}),
|
||||
),
|
||||
});
|
||||
@ -184,6 +190,8 @@ const ParserForm = ({ node }: INextOperatorForm) => {
|
||||
lang: '',
|
||||
fields: [],
|
||||
llm_id: '',
|
||||
table_result_type: '',
|
||||
markdown_image_response_type: '',
|
||||
});
|
||||
}, [append]);
|
||||
|
||||
|
||||
@ -1,13 +1,30 @@
|
||||
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
|
||||
import {
|
||||
SelectWithSearch,
|
||||
SelectWithSearchFlagOptionType,
|
||||
} from '@/components/originui/select-with-search';
|
||||
import { RAGFlowFormItem } from '@/components/ragflow-form';
|
||||
import { isEmpty } from 'lodash';
|
||||
import { useEffect, useMemo } from 'react';
|
||||
import { useFormContext, useWatch } from 'react-hook-form';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { LanguageFormField, ParserMethodFormField } from './common-form-fields';
|
||||
import { CommonProps } from './interface';
|
||||
import { useSetInitialLanguage } from './use-set-initial-language';
|
||||
import { buildFieldNameWithPrefix } from './utils';
|
||||
|
||||
const tableResultTypeOptions: SelectWithSearchFlagOptionType[] = [
|
||||
{ label: 'Markdown', value: '0' },
|
||||
{ label: 'HTML', value: '1' },
|
||||
];
|
||||
|
||||
const markdownImageResponseTypeOptions: SelectWithSearchFlagOptionType[] = [
|
||||
{ label: 'URL', value: '0' },
|
||||
{ label: 'Text', value: '1' },
|
||||
];
|
||||
|
||||
export function PdfFormFields({ prefix }: CommonProps) {
|
||||
const { t } = useTranslation();
|
||||
const form = useFormContext();
|
||||
|
||||
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
|
||||
@ -25,6 +42,12 @@ export function PdfFormFields({ prefix }: CommonProps) {
|
||||
);
|
||||
}, [parseMethod]);
|
||||
|
||||
const tcadpOptionsShown = useMemo(() => {
|
||||
return (
|
||||
!isEmpty(parseMethod) && parseMethod === ParseDocumentType.TCADPParser
|
||||
);
|
||||
}, [parseMethod]);
|
||||
|
||||
useSetInitialLanguage({ prefix, languageShown });
|
||||
|
||||
useEffect(() => {
|
||||
@ -36,10 +59,68 @@ export function PdfFormFields({ prefix }: CommonProps) {
|
||||
}
|
||||
}, [form, parseMethodName]);
|
||||
|
||||
// Set default values for TCADP options when TCADP is selected
|
||||
useEffect(() => {
|
||||
if (tcadpOptionsShown) {
|
||||
const tableResultTypeName = buildFieldNameWithPrefix(
|
||||
'table_result_type',
|
||||
prefix,
|
||||
);
|
||||
const markdownImageResponseTypeName = buildFieldNameWithPrefix(
|
||||
'markdown_image_response_type',
|
||||
prefix,
|
||||
);
|
||||
|
||||
if (isEmpty(form.getValues(tableResultTypeName))) {
|
||||
form.setValue(tableResultTypeName, '1', {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
if (isEmpty(form.getValues(markdownImageResponseTypeName))) {
|
||||
form.setValue(markdownImageResponseTypeName, '1', {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
}
|
||||
}, [tcadpOptionsShown, form, prefix]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<ParserMethodFormField prefix={prefix}></ParserMethodFormField>
|
||||
{languageShown && <LanguageFormField prefix={prefix}></LanguageFormField>}
|
||||
{tcadpOptionsShown && (
|
||||
<>
|
||||
<RAGFlowFormItem
|
||||
name={buildFieldNameWithPrefix('table_result_type', prefix)}
|
||||
label={t('flow.tableResultType') || '表格返回形式'}
|
||||
>
|
||||
{(field) => (
|
||||
<SelectWithSearch
|
||||
value={field.value}
|
||||
onChange={field.onChange}
|
||||
options={tableResultTypeOptions}
|
||||
></SelectWithSearch>
|
||||
)}
|
||||
</RAGFlowFormItem>
|
||||
<RAGFlowFormItem
|
||||
name={buildFieldNameWithPrefix(
|
||||
'markdown_image_response_type',
|
||||
prefix,
|
||||
)}
|
||||
label={t('flow.markdownImageResponseType') || '图片返回形式'}
|
||||
>
|
||||
{(field) => (
|
||||
<SelectWithSearch
|
||||
value={field.value}
|
||||
onChange={field.onChange}
|
||||
options={markdownImageResponseTypeOptions}
|
||||
></SelectWithSearch>
|
||||
)}
|
||||
</RAGFlowFormItem>
|
||||
</>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
125
web/src/pages/agent/form/parser-form/ppt-form-fields.tsx
Normal file
125
web/src/pages/agent/form/parser-form/ppt-form-fields.tsx
Normal file
@ -0,0 +1,125 @@
|
||||
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
|
||||
import {
|
||||
SelectWithSearch,
|
||||
SelectWithSearchFlagOptionType,
|
||||
} from '@/components/originui/select-with-search';
|
||||
import { RAGFlowFormItem } from '@/components/ragflow-form';
|
||||
import { isEmpty } from 'lodash';
|
||||
import { useEffect, useMemo } from 'react';
|
||||
import { useFormContext, useWatch } from 'react-hook-form';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { ParserMethodFormField } from './common-form-fields';
|
||||
import { CommonProps } from './interface';
|
||||
import { buildFieldNameWithPrefix } from './utils';
|
||||
|
||||
const tableResultTypeOptions: SelectWithSearchFlagOptionType[] = [
|
||||
{ label: 'Markdown', value: '0' },
|
||||
{ label: 'HTML', value: '1' },
|
||||
];
|
||||
|
||||
const markdownImageResponseTypeOptions: SelectWithSearchFlagOptionType[] = [
|
||||
{ label: 'URL', value: '0' },
|
||||
{ label: 'Text', value: '1' },
|
||||
];
|
||||
|
||||
export function PptFormFields({ prefix }: CommonProps) {
|
||||
const { t } = useTranslation();
|
||||
const form = useFormContext();
|
||||
|
||||
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
|
||||
|
||||
const parseMethod = useWatch({
|
||||
name: parseMethodName,
|
||||
});
|
||||
|
||||
// PPT only supports DeepDOC and TCADPParser
|
||||
const optionsWithoutLLM = [
|
||||
{ label: ParseDocumentType.DeepDOC, value: ParseDocumentType.DeepDOC },
|
||||
{
|
||||
label: ParseDocumentType.TCADPParser,
|
||||
value: ParseDocumentType.TCADPParser,
|
||||
},
|
||||
];
|
||||
|
||||
const tcadpOptionsShown = useMemo(() => {
|
||||
return (
|
||||
!isEmpty(parseMethod) && parseMethod === ParseDocumentType.TCADPParser
|
||||
);
|
||||
}, [parseMethod]);
|
||||
|
||||
useEffect(() => {
|
||||
if (isEmpty(form.getValues(parseMethodName))) {
|
||||
form.setValue(parseMethodName, ParseDocumentType.DeepDOC, {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
}, [form, parseMethodName]);
|
||||
|
||||
// Set default values for TCADP options when TCADP is selected
|
||||
useEffect(() => {
|
||||
if (tcadpOptionsShown) {
|
||||
const tableResultTypeName = buildFieldNameWithPrefix(
|
||||
'table_result_type',
|
||||
prefix,
|
||||
);
|
||||
const markdownImageResponseTypeName = buildFieldNameWithPrefix(
|
||||
'markdown_image_response_type',
|
||||
prefix,
|
||||
);
|
||||
|
||||
if (isEmpty(form.getValues(tableResultTypeName))) {
|
||||
form.setValue(tableResultTypeName, '1', {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
if (isEmpty(form.getValues(markdownImageResponseTypeName))) {
|
||||
form.setValue(markdownImageResponseTypeName, '1', {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
}
|
||||
}, [tcadpOptionsShown, form, prefix]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<ParserMethodFormField
|
||||
prefix={prefix}
|
||||
optionsWithoutLLM={optionsWithoutLLM}
|
||||
></ParserMethodFormField>
|
||||
{tcadpOptionsShown && (
|
||||
<>
|
||||
<RAGFlowFormItem
|
||||
name={buildFieldNameWithPrefix('table_result_type', prefix)}
|
||||
label={t('flow.tableResultType') || '表格返回形式'}
|
||||
>
|
||||
{(field) => (
|
||||
<SelectWithSearch
|
||||
value={field.value}
|
||||
onChange={field.onChange}
|
||||
options={tableResultTypeOptions}
|
||||
></SelectWithSearch>
|
||||
)}
|
||||
</RAGFlowFormItem>
|
||||
<RAGFlowFormItem
|
||||
name={buildFieldNameWithPrefix(
|
||||
'markdown_image_response_type',
|
||||
prefix,
|
||||
)}
|
||||
label={t('flow.markdownImageResponseType') || '图片返回形式'}
|
||||
>
|
||||
{(field) => (
|
||||
<SelectWithSearch
|
||||
value={field.value}
|
||||
onChange={field.onChange}
|
||||
options={markdownImageResponseTypeOptions}
|
||||
></SelectWithSearch>
|
||||
)}
|
||||
</RAGFlowFormItem>
|
||||
</>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
125
web/src/pages/agent/form/parser-form/spreadsheet-form-fields.tsx
Normal file
125
web/src/pages/agent/form/parser-form/spreadsheet-form-fields.tsx
Normal file
@ -0,0 +1,125 @@
|
||||
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
|
||||
import {
|
||||
SelectWithSearch,
|
||||
SelectWithSearchFlagOptionType,
|
||||
} from '@/components/originui/select-with-search';
|
||||
import { RAGFlowFormItem } from '@/components/ragflow-form';
|
||||
import { isEmpty } from 'lodash';
|
||||
import { useEffect, useMemo } from 'react';
|
||||
import { useFormContext, useWatch } from 'react-hook-form';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { ParserMethodFormField } from './common-form-fields';
|
||||
import { CommonProps } from './interface';
|
||||
import { buildFieldNameWithPrefix } from './utils';
|
||||
|
||||
const tableResultTypeOptions: SelectWithSearchFlagOptionType[] = [
|
||||
{ label: 'Markdown', value: '0' },
|
||||
{ label: 'HTML', value: '1' },
|
||||
];
|
||||
|
||||
const markdownImageResponseTypeOptions: SelectWithSearchFlagOptionType[] = [
|
||||
{ label: 'URL', value: '0' },
|
||||
{ label: 'Text', value: '1' },
|
||||
];
|
||||
|
||||
export function SpreadsheetFormFields({ prefix }: CommonProps) {
|
||||
const { t } = useTranslation();
|
||||
const form = useFormContext();
|
||||
|
||||
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
|
||||
|
||||
const parseMethod = useWatch({
|
||||
name: parseMethodName,
|
||||
});
|
||||
|
||||
// Spreadsheet only supports DeepDOC and TCADPParser
|
||||
const optionsWithoutLLM = [
|
||||
{ label: ParseDocumentType.DeepDOC, value: ParseDocumentType.DeepDOC },
|
||||
{
|
||||
label: ParseDocumentType.TCADPParser,
|
||||
value: ParseDocumentType.TCADPParser,
|
||||
},
|
||||
];
|
||||
|
||||
const tcadpOptionsShown = useMemo(() => {
|
||||
return (
|
||||
!isEmpty(parseMethod) && parseMethod === ParseDocumentType.TCADPParser
|
||||
);
|
||||
}, [parseMethod]);
|
||||
|
||||
useEffect(() => {
|
||||
if (isEmpty(form.getValues(parseMethodName))) {
|
||||
form.setValue(parseMethodName, ParseDocumentType.DeepDOC, {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
}, [form, parseMethodName]);
|
||||
|
||||
// Set default values for TCADP options when TCADP is selected
|
||||
useEffect(() => {
|
||||
if (tcadpOptionsShown) {
|
||||
const tableResultTypeName = buildFieldNameWithPrefix(
|
||||
'table_result_type',
|
||||
prefix,
|
||||
);
|
||||
const markdownImageResponseTypeName = buildFieldNameWithPrefix(
|
||||
'markdown_image_response_type',
|
||||
prefix,
|
||||
);
|
||||
|
||||
if (isEmpty(form.getValues(tableResultTypeName))) {
|
||||
form.setValue(tableResultTypeName, '1', {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
if (isEmpty(form.getValues(markdownImageResponseTypeName))) {
|
||||
form.setValue(markdownImageResponseTypeName, '1', {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
}
|
||||
}, [tcadpOptionsShown, form, prefix]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<ParserMethodFormField
|
||||
prefix={prefix}
|
||||
optionsWithoutLLM={optionsWithoutLLM}
|
||||
></ParserMethodFormField>
|
||||
{tcadpOptionsShown && (
|
||||
<>
|
||||
<RAGFlowFormItem
|
||||
name={buildFieldNameWithPrefix('table_result_type', prefix)}
|
||||
label={t('flow.tableResultType') || '表格返回形式'}
|
||||
>
|
||||
{(field) => (
|
||||
<SelectWithSearch
|
||||
value={field.value}
|
||||
onChange={field.onChange}
|
||||
options={tableResultTypeOptions}
|
||||
></SelectWithSearch>
|
||||
)}
|
||||
</RAGFlowFormItem>
|
||||
<RAGFlowFormItem
|
||||
name={buildFieldNameWithPrefix(
|
||||
'markdown_image_response_type',
|
||||
prefix,
|
||||
)}
|
||||
label={t('flow.markdownImageResponseType') || '图片返回形式'}
|
||||
>
|
||||
{(field) => (
|
||||
<SelectWithSearch
|
||||
value={field.value}
|
||||
onChange={field.onChange}
|
||||
options={markdownImageResponseTypeOptions}
|
||||
></SelectWithSearch>
|
||||
)}
|
||||
</RAGFlowFormItem>
|
||||
</>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
@ -1,7 +1,7 @@
|
||||
import JsonEditor from '@/components/json-edit';
|
||||
import { BlockButton, Button } from '@/components/ui/button';
|
||||
import { Input } from '@/components/ui/input';
|
||||
import { Segmented } from '@/components/ui/segmented';
|
||||
import { Editor } from '@monaco-editor/react';
|
||||
import { t } from 'i18next';
|
||||
import { Trash2, X } from 'lucide-react';
|
||||
import { useCallback } from 'react';
|
||||
@ -31,32 +31,80 @@ export const useObjectFields = () => {
|
||||
},
|
||||
[],
|
||||
);
|
||||
const validateKeys = (
|
||||
obj: any,
|
||||
path: (string | number)[] = [],
|
||||
): Array<{ path: (string | number)[]; message: string }> => {
|
||||
const errors: Array<{ path: (string | number)[]; message: string }> = [];
|
||||
|
||||
if (obj !== null && typeof obj === 'object' && !Array.isArray(obj)) {
|
||||
for (const key in obj) {
|
||||
if (obj.hasOwnProperty(key)) {
|
||||
if (!/^[a-zA-Z_]+$/.test(key)) {
|
||||
errors.push({
|
||||
path: [...path, key],
|
||||
message: `Key "${key}" is invalid. Keys can only contain letters and underscores.`,
|
||||
});
|
||||
}
|
||||
const nestedErrors = validateKeys(obj[key], [...path, key]);
|
||||
errors.push(...nestedErrors);
|
||||
}
|
||||
}
|
||||
} else if (Array.isArray(obj)) {
|
||||
obj.forEach((item, index) => {
|
||||
const nestedErrors = validateKeys(item, [...path, index]);
|
||||
errors.push(...nestedErrors);
|
||||
});
|
||||
}
|
||||
|
||||
return errors;
|
||||
};
|
||||
const objectRender = useCallback((field: FieldValues) => {
|
||||
const fieldValue =
|
||||
typeof field.value === 'object'
|
||||
? JSON.stringify(field.value, null, 2)
|
||||
: JSON.stringify({}, null, 2);
|
||||
console.log('object-render-field', field, fieldValue);
|
||||
// const fieldValue =
|
||||
// typeof field.value === 'object'
|
||||
// ? JSON.stringify(field.value, null, 2)
|
||||
// : JSON.stringify({}, null, 2);
|
||||
// console.log('object-render-field', field, fieldValue);
|
||||
return (
|
||||
<Editor
|
||||
height={200}
|
||||
defaultLanguage="json"
|
||||
theme="vs-dark"
|
||||
value={fieldValue}
|
||||
// <Editor
|
||||
// height={200}
|
||||
// defaultLanguage="json"
|
||||
// theme="vs-dark"
|
||||
// value={fieldValue}
|
||||
// onChange={field.onChange}
|
||||
// />
|
||||
<JsonEditor
|
||||
value={field.value}
|
||||
onChange={field.onChange}
|
||||
height="400px"
|
||||
options={{
|
||||
mode: 'code',
|
||||
navigationBar: false,
|
||||
mainMenuBar: true,
|
||||
history: true,
|
||||
onValidate: (json) => {
|
||||
return validateKeys(json);
|
||||
},
|
||||
}}
|
||||
/>
|
||||
);
|
||||
}, []);
|
||||
|
||||
const objectValidate = useCallback((value: any) => {
|
||||
try {
|
||||
if (!JSON.parse(value)) {
|
||||
throw new Error(t('knowledgeDetails.formatTypeError'));
|
||||
if (validateKeys(value, [])?.length > 0) {
|
||||
throw new Error(t('flow.formatTypeError'));
|
||||
}
|
||||
if (!z.object({}).safeParse(value).success) {
|
||||
throw new Error(t('flow.formatTypeError'));
|
||||
}
|
||||
if (value && typeof value === 'string' && !JSON.parse(value)) {
|
||||
throw new Error(t('flow.formatTypeError'));
|
||||
}
|
||||
return true;
|
||||
} catch (e) {
|
||||
throw new Error(t('knowledgeDetails.formatTypeError'));
|
||||
console.log('object-render-error', e, value);
|
||||
throw new Error(t('flow.formatTypeError'));
|
||||
}
|
||||
}, []);
|
||||
|
||||
@ -219,6 +267,10 @@ export const useObjectFields = () => {
|
||||
};
|
||||
const handleCustomSchema = (value: TypesWithArray) => {
|
||||
switch (value) {
|
||||
case TypesWithArray.Object:
|
||||
return z.object({});
|
||||
case TypesWithArray.ArrayObject:
|
||||
return z.array(z.object({}));
|
||||
case TypesWithArray.ArrayString:
|
||||
return z.array(z.string());
|
||||
case TypesWithArray.ArrayNumber:
|
||||
|
||||
@ -214,6 +214,36 @@ function transformParserParams(params: ParserFormSchemaType) {
|
||||
parse_method: cur.parse_method,
|
||||
lang: cur.lang,
|
||||
};
|
||||
// Only include TCADP parameters if TCADP Parser is selected
|
||||
if (cur.parse_method?.toLowerCase() === 'tcadp parser') {
|
||||
filteredSetup.table_result_type = cur.table_result_type;
|
||||
filteredSetup.markdown_image_response_type =
|
||||
cur.markdown_image_response_type;
|
||||
}
|
||||
break;
|
||||
case FileType.Spreadsheet:
|
||||
filteredSetup = {
|
||||
...filteredSetup,
|
||||
parse_method: cur.parse_method,
|
||||
};
|
||||
// Only include TCADP parameters if TCADP Parser is selected
|
||||
if (cur.parse_method?.toLowerCase() === 'tcadp parser') {
|
||||
filteredSetup.table_result_type = cur.table_result_type;
|
||||
filteredSetup.markdown_image_response_type =
|
||||
cur.markdown_image_response_type;
|
||||
}
|
||||
break;
|
||||
case FileType.PowerPoint:
|
||||
filteredSetup = {
|
||||
...filteredSetup,
|
||||
parse_method: cur.parse_method,
|
||||
};
|
||||
// Only include TCADP parameters if TCADP Parser is selected
|
||||
if (cur.parse_method?.toLowerCase() === 'tcadp parser') {
|
||||
filteredSetup.table_result_type = cur.table_result_type;
|
||||
filteredSetup.markdown_image_response_type =
|
||||
cur.markdown_image_response_type;
|
||||
}
|
||||
break;
|
||||
case FileType.Image:
|
||||
filteredSetup = {
|
||||
|
||||
0
web/src/pages/data-flow/constant.tsx
Normal file
0
web/src/pages/data-flow/constant.tsx
Normal file
0
web/src/pages/data-flow/form/parser-form/index.tsx
Normal file
0
web/src/pages/data-flow/form/parser-form/index.tsx
Normal file
40
web/src/pages/data-flow/form/parser-form/ppt-form-fields.tsx
Normal file
40
web/src/pages/data-flow/form/parser-form/ppt-form-fields.tsx
Normal file
@ -0,0 +1,40 @@
|
||||
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
|
||||
import { isEmpty } from 'lodash';
|
||||
import { useEffect } from 'react';
|
||||
import { useFormContext } from 'react-hook-form';
|
||||
import { ParserMethodFormField } from './common-form-fields';
|
||||
import { CommonProps } from './interface';
|
||||
import { buildFieldNameWithPrefix } from './utils';
|
||||
|
||||
export function PptFormFields({ prefix }: CommonProps) {
|
||||
const form = useFormContext();
|
||||
|
||||
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
|
||||
|
||||
// PPT only supports DeepDOC and TCADPParser
|
||||
const optionsWithoutLLM = [
|
||||
{ label: ParseDocumentType.DeepDOC, value: ParseDocumentType.DeepDOC },
|
||||
{
|
||||
label: ParseDocumentType.TCADPParser,
|
||||
value: ParseDocumentType.TCADPParser,
|
||||
},
|
||||
];
|
||||
|
||||
useEffect(() => {
|
||||
if (isEmpty(form.getValues(parseMethodName))) {
|
||||
form.setValue(parseMethodName, ParseDocumentType.DeepDOC, {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
}, [form, parseMethodName]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<ParserMethodFormField
|
||||
prefix={prefix}
|
||||
optionsWithoutLLM={optionsWithoutLLM}
|
||||
></ParserMethodFormField>
|
||||
</>
|
||||
);
|
||||
}
|
||||
@ -0,0 +1,40 @@
|
||||
import { ParseDocumentType } from '@/components/layout-recognize-form-field';
|
||||
import { isEmpty } from 'lodash';
|
||||
import { useEffect } from 'react';
|
||||
import { useFormContext } from 'react-hook-form';
|
||||
import { ParserMethodFormField } from './common-form-fields';
|
||||
import { CommonProps } from './interface';
|
||||
import { buildFieldNameWithPrefix } from './utils';
|
||||
|
||||
export function SpreadsheetFormFields({ prefix }: CommonProps) {
|
||||
const form = useFormContext();
|
||||
|
||||
const parseMethodName = buildFieldNameWithPrefix('parse_method', prefix);
|
||||
|
||||
// Spreadsheet only supports DeepDOC and TCADPParser
|
||||
const optionsWithoutLLM = [
|
||||
{ label: ParseDocumentType.DeepDOC, value: ParseDocumentType.DeepDOC },
|
||||
{
|
||||
label: ParseDocumentType.TCADPParser,
|
||||
value: ParseDocumentType.TCADPParser,
|
||||
},
|
||||
];
|
||||
|
||||
useEffect(() => {
|
||||
if (isEmpty(form.getValues(parseMethodName))) {
|
||||
form.setValue(parseMethodName, ParseDocumentType.DeepDOC, {
|
||||
shouldValidate: true,
|
||||
shouldDirty: true,
|
||||
});
|
||||
}
|
||||
}, [form, parseMethodName]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<ParserMethodFormField
|
||||
prefix={prefix}
|
||||
optionsWithoutLLM={optionsWithoutLLM}
|
||||
></ParserMethodFormField>
|
||||
</>
|
||||
);
|
||||
}
|
||||
0
web/src/pages/data-flow/utils.ts
Normal file
0
web/src/pages/data-flow/utils.ts
Normal file
Reference in New Issue
Block a user