Compare commits

...

1060 Commits

Author SHA1 Message Date
552023ee4b Fix: catch non-begin component output (#7827)
### What problem does this PR solve?

Catch non-begin component output

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 20:29:23 +08:00
6c9b8ec860 Refa: update gemini2.5 (#7822)
### What problem does this PR solve?

Update gemini2.5

### Type of change

- [x] Refactoring
2025-05-23 20:29:10 +08:00
f9e6ad86b7 Fix: Fixed the issue that the script text of the code operator is not displayed after refreshing the page after saving the script text of the code operator #4977 (#7825)
### What problem does this PR solve?

Fix: Fixed the issue that the script text of the code operator is not
displayed after refreshing the page after saving the script text of the
code operator #4977

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 18:57:45 +08:00
e604634d2a Feat: Refactor the MessageForm with shadcn #3221 (#7820)
### What problem does this PR solve?

Feat: Refactor the MessageForm with shadcn #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:45:13 +08:00
590b9dabab Docs: update for v0.19.0 (#7823)
### What problem does this PR solve?

update for v0.19.0

### Type of change

- [x] Documentation Update
2025-05-23 18:25:47 +08:00
c283ea57fd Docs: Added v0.19.0 release notes (#7818)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-23 18:25:33 +08:00
50ff16e7a4 Feat: add claude4 models (#7809)
### What problem does this PR solve?

Add claude4 models.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:25:13 +08:00
453287b06b Feat: more robust fallbacks for citations (#7801)
### What problem does this PR solve?

Add more robust fallbacks for citations

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:24:55 +08:00
e166f132b3 Feat: change default models (#7777)
### What problem does this PR solve?

change default models to buildin models
https://github.com/infiniflow/ragflow/issues/7774

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:21:25 +08:00
42f4d4dbc8 Fix: wrong type hint (#7738)
### What problem does this PR solve?

Wrong hint type. #7729.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 18:21:06 +08:00
7cb8368e0f Feat: sandox enhancement (#7739)
### What problem does this PR solve?

1. Add sandbox options for max memory and timeout.
2. ​Malicious code detection for Python only.​​

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:20:51 +08:00
Sol
0d7cfce6e1 Update rag/nlp/query.py (#7816)
### What problem does this PR solve?
Fix tokenizer resulting in low recall

![37743d3a495f734aa69f1e173fa77457](https://github.com/user-attachments/assets/1394757e-8fcb-4f87-96af-a92716144884)

![4aba633a17f34269a4e17e84fafb34c4](https://github.com/user-attachments/assets/a1828e32-3e17-4394-a633-ba3f09bd506d)

![image](https://github.com/user-attachments/assets/61308f32-2a4f-44d5-a034-d65bbec554ef)



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-23 17:13:37 +08:00
2d7c1368f0 Feat: add code_executor_manager (#7814)
### What problem does this PR solve?

Add code_executor_manager. #4977.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 16:33:38 +08:00
db4371c745 Fix: Improve First Chunk Size (#7806)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7790

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 14:30:19 +08:00
e6cd799d8a Feat: Translate the begin operator #3221 (#7811)
### What problem does this PR solve?

Feat: Translate the begin operator #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 14:18:27 +08:00
ab29b58316 Docs: Added instructions on cross-language search (#7812)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-05-23 14:18:14 +08:00
3f037c9786 Feat: Reconstruct the QueryTable of BeginForm using shandcn #3221 (#7807)
### What problem does this PR solve?

Feat: Reconstruct the QueryTable of BeginForm using shandcn #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 12:31:05 +08:00
Sol
53b991aa0e Fix backquotes in text2sql causing execution errors (#7793)
### What problem does this PR solve?
Remove the backquotes in the sql generated by LLM to prevent it from
causing execution errors.

![image](https://github.com/user-attachments/assets/40d57ef7-b812-402a-b469-5793e466b83d)


![image](https://github.com/user-attachments/assets/d0a9bc17-ff5a-43cb-90cb-b2b3827b00b0)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 09:49:45 +08:00
9e80f39caa Feat: Synchronize BeginForm's query data to the canvas #3221 (#7798)
### What problem does this PR solve?

Feat: Synchronize BeginForm's query data to the canvas #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 09:49:14 +08:00
bdc2b74e8f Fix baidu request error (#7799)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: xiaohzho <xiaohzho@cisco.com>
2025-05-23 09:48:55 +08:00
1fd92e6bee Docs: RAGFlow does not suppport batch metadata setting (#7795)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
2025-05-22 17:02:23 +08:00
02fd381072 Feat: Verify the parameters of the begin operator #3221 (#7794)
### What problem does this PR solve?

Feat: Verify the parameters of the begin operator #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-22 16:58:47 +08:00
b6f3a6a68a Feat: Refactor BeginForm with shadcn #3221 (#7792)
### What problem does this PR solve?

Feat: Refactor BeginForm with shadcn #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-22 15:33:40 +08:00
ae70512f5d fix:When creating a new assistant, an avatar was uploaded, but when selecting the assistant to start a new chat, the default avatar still appears in the chat window instead of the one uploaded during creation (#7769)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-22 11:50:02 +08:00
d4a123d6dd Fix: resolve regex library warnings (#7782)
### What problem does this PR solve?
This small PR resolves the regex library warnings showing in Python3.11:
```python
DeprecationWarning: 'count' is passed as positional argument
```

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-05-22 10:06:28 +08:00
ce816edb5f Fix: improve task cancel lag (#7765)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7761

but it may be difficult to achieve 0 delay (which need to pass the
cancel token to all parts)

Another solution is just 0 delay effect at UI.
And task will stop latter

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-22 09:28:08 +08:00
ac2643700b Feat: Add return value widget to CodeForm #3221 (#7776)
### What problem does this PR solve?
Feat: Add return value widget  to CodeForm #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-21 19:35:27 +08:00
558b252c5a Feat: Switching the programming language of the code operator will switch the corresponding language template #3221 (#7770)
### What problem does this PR solve?

Feat: Switching the programming language of the code operator will
switch the corresponding language template #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-21 18:22:06 +08:00
754a5e1cee Feat: Fixed the issue where the page would refresh continuously when opening the sheet on the right side of the canvas #3221 (#7756)
### What problem does this PR solve?

Feat: Fixed the issue where the page would refresh continuously when
opening the sheet on the right side of the canvas #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-21 17:03:16 +08:00
e3e7c7ddaa Feat: delete useless image blobs when task executor meet edge cases (#7727)
### What problem does this PR solve?

delete useless image blobs when the task executor meets edge cases

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-21 10:22:30 +08:00
76b278af8e 0519 pdfparser (#7747)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-05-20 19:41:55 +08:00
1c6320828c Feat: Rename agent #3221 (#7740)
### What problem does this PR solve?

Feat: Rename agent #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 19:13:19 +08:00
d72468426e Feat: Render the agent list page by page #3221 (#7736)
### What problem does this PR solve?

Feat: Render the agent list page by page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 16:03:55 +08:00
796f4032b8 Feat: Migrate the code operator to the new agent. #3221 (#7731)
### What problem does this PR solve?

Feat: Migrate the code operator to the new agent. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 15:30:56 +08:00
1ae7b942d9 Feat: The image displayed in the reply message can also be clicked to display the location of the source document where the slice is located #7623 (#7723)
### What problem does this PR solve?

Feat: The image displayed in the reply message can also be clicked to
display the location of the source document where the slice is located
#7623

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 10:40:53 +08:00
fed1221302 Refa: HTTP API list datasets / test cases / docs (#7720)
### What problem does this PR solve?

This PR introduces Pydantic-based validation for the list datasets HTTP
API, improving code clarity and robustness. Key changes include:

Pydantic Validation
Error Handling
Test Updates
Documentation Updates

### Type of change

- [x] Documentation Update
- [x] Refactoring
2025-05-20 09:58:26 +08:00
6ed81d6774 Feat: Add OAuth state parameter for CSRF protection (#7709)
### What problem does this PR solve?

Add OAuth `state` parameter for CSRF protection:
- Updated `get_authorization_url()` to accept an optional state
parameter
- Generated a unique state value during OAuth login and stored in
session
- Verified state parameter in callback to ensure request legitimacy

This PR follows OAuth 2.0 security best practices by ensuring that the
authorization request originates from the same user who initiated the
flow.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 09:40:31 +08:00
115850945e Fix:When you create a new API module named xxxa_api, the access route will become xxx instead of xxxa. For example, when I create a new API module named 'data_api', the access route will become 'dat' instead of 'data (#7325)
### What problem does this PR solve?

Fix:When you create a new API module named xxxa_api, the access route
will become xxx instead of xxxa. For example, when I create a new API
module named 'data_api', the access route will become 'dat' instead of
'data'
Fix:Fixed the issue where the new knowledge base would not be renamed
when there was a knowledge base with the same name

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: tangyu <1@1.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-20 09:39:26 +08:00
8e87436725 Feat: Modify the Python language template code of the code operator #4977 (#7714)
### What problem does this PR solve?

Feat: Modify the Python language template code of the code operator
#4977
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-19 19:34:43 +08:00
e8e2a95165 Refa: more fallbacks for bad citation format (#7710)
### What problem does this PR solve?

More fallbacks for bad citation format

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
2025-05-19 19:34:05 +08:00
b908c33464 Fix: uncaptured image data with position information (#7683)
### What problem does this PR solve?

Fixed uncaptured figure data with position information. #7466, #7681

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-19 19:33:28 +08:00
0ebf05440e Feat: repair corrupted PDF files on upload automatically (#7693)
### What problem does this PR solve?

Try the best to repair corrupted PDF files on upload automatically.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-19 14:54:06 +08:00
7df1bd4b4a When creating an assistant, no dataset is specified, a different default system promt is used (#7690)
### What problem does this PR solve?

- Updated the dialog settings function to add a default prompt
configuration for no dataset.
- The prompt configuration will be determined based on the presence of
`kb_ids` in the request.


### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (Non-breaking change, adding functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-05-19 11:33:54 +08:00
5d21cc3660 fix: Fix the problem that concurrent execution limit in task executor fails and causes OOM (issue#7580) (#7700)
### What problem does this PR solve?

## Cause of the bug:
During the execution process, due to improper use of trio
CapacityLimiter, the configuration parameter MAX_CONCURRENT_TASKS is
invalid, causing the executor to take out a large number of tasks from
the Redis queue at one time.

This behavior will cause the task executor to occupy too much memory and
be killed by the OS when a large number of tasks exist at the same time.
As a result, all executing tasks are suspended.

## Fix:
Added the task_manager method to the entry of /rag/svr/task_executor.py
to make CapacityLimiter effective. Deleted the invalid async with
statement.

## Fix result:
After testing, the task executor execution meets expectations, that is:
concurrent execution of up to $MAX_CONCURRENT_TASKS tasks.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-19 10:25:56 +08:00
b0275b8483 Fix: value too long error for chat name (#7697)
### What problem does this PR solve?

Hello, when I input a very long line in the chat input box, it will fail
with following error:

```
2025-05-17 16:11:26,004 ERROR    182558 value too long for type character varying(255)
Traceback (most recent call last):
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3291, in execute_sql
    cursor.execute(sql, params or ())
psycopg2.errors.StringDataRightTruncation: value too long for type character varying(255)


During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/var/home/sfc/Projects/ragflow/api/apps/conversation_app.py", line 68, in set_conversation
    ConversationService.save(**conv)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3128, in inner
    return fn(*args, **kwargs)
  File "/var/home/sfc/Projects/ragflow/api/db/services/common_service.py", line 145, in save
    return cls.save_n(**kwargs)
  File "/var/home/sfc/Projects/ragflow/api/db/services/common_service.py", line 139, in save_n
    sample_obj = cls.model(**kwargs).save(force_insert=True)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 6923, in save
    pk = self.insert(**field_dict).execute()
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2011, in inner
    return method(self, database, *args, **kwargs)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2082, in execute
    return self._execute(database)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2887, in _execute
    return super(Insert, self)._execute(database)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2598, in _execute
    cursor = self.execute_returning(database)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2605, in execute_returning
    cursor = database.execute(self)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3299, in execute
    return self.execute_sql(sql, params)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3289, in execute_sql
    with __exception_wrapper__:
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3059, in __exit__
    reraise(new_type, new_type(exc_value, *exc_args), traceback)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 192, in reraise
    raise value.with_traceback(tb)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3291, in execute_sql
    cursor.execute(sql, params or ())
peewee.DataError: value too long for type character varying(255)
```

This PR fix it by truncate the `name` field in the `set_conversation`
method in the `conversation_app.py`.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-19 10:25:41 +08:00
86c6fee320 Docs: Added an FAQ (#7694)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-19 09:58:10 +08:00
c0bee906d2 Docs: Added a guide on switching document engine (#7692)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-16 19:02:36 +08:00
bfaa469b9a Feat: Rendering recall test page #3221 (#7689)
### What problem does this PR solve?

Feat: Rendering recall test page #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 18:56:48 +08:00
d73a08b9eb Fix: Fixed the issue where message references could not be displayed (#7691)
### What problem does this PR solve?

Fix: Fixed the issue where message references could not be displayed

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-16 18:56:25 +08:00
a1f06a4fdc Feat: Support tool calling in Generate component (#7572)
### What problem does this PR solve?

Hello, our use case requires LLM agent to invoke some tools, so I made a
simple implementation here.

This PR does two things:

1. A simple plugin mechanism based on `pluginlib`:

This mechanism lives in the `plugin` directory. It will only load
plugins from `plugin/embedded_plugins` for now.

A sample plugin `bad_calculator.py` is placed in
`plugin/embedded_plugins/llm_tools`, it accepts two numbers `a` and `b`,
then give a wrong result `a + b + 100`.

In the future, it can load plugins from external location with little
code change.

Plugins are divided into different types. The only plugin type supported
in this PR is `llm_tools`, which must implement the `LLMToolPlugin`
class in the `plugin/llm_tool_plugin.py`.
More plugin types can be added in the future.

2. A tool selector in the `Generate` component:

Added a tool selector to select one or more tools for LLM:


![image](https://github.com/user-attachments/assets/74a21fdf-9333-4175-991b-43df6524c5dc)

And with the `bad_calculator` tool, it results this with the `qwen-max`
model:


![image](https://github.com/user-attachments/assets/93aff9c4-8550-414a-90a2-1a15a5249d94)


### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-05-16 16:32:19 +08:00
cb26564d50 Docs: Added contribution guidelines and sandbox-related tips (#7685)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-16 16:28:21 +08:00
59705a1c1d Test: change variable for ZHIPU_AI_API_KEY (#7684)
### What problem does this PR solve?

change variable for ZHIPU_AI_API_KEY

### Type of change

- [x] Update test case
2025-05-16 15:58:54 +08:00
205974c359 Docs: Improve oauth configuration documentation and examples (#7675)
### What problem does this PR solve?

Improve oauth configuration documentation and examples.

- Related pull requests: 
  - #7379
  - #7553
  - #7587
- Related issues:
  -  #3495
### Type of change

- [x] Documentation Update
2025-05-16 14:17:39 +08:00
04edf9729f Test: use environment variable for ZHIPU_AI_API_KEY (#7680)
### What problem does this PR solve?

use environment variable for ZHIPU_AI_API_KEY

### Type of change

- [x] Test update
2025-05-16 13:51:21 +08:00
bb1268ef4b Fix: Fixed the issue where the height of the chat page shared externally did not fill the window #7460 (#7682)
### What problem does this PR solve?
Fix: Fixed the issue where the height of the chat page shared externally
did not fill the window #7460
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 13:45:44 +08:00
c5826d4720 Feat: launch sandbox from docker-compose (#7671)
### What problem does this PR solve?

Launch sandbox from docker-compose.
#4977
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-05-16 11:14:57 +08:00
deb2faf7aa Fix:Fail to get list_sessions (#7678)
### What problem does this PR solve?

Close #7655

Based on the codes atthe api_app, I think the reference is one-to-one
with the message
`
    def fillin_conv(ans):
        nonlocal conv, message_id
        if not conv.reference:
            conv.reference.append(ans["reference"])
        else:
            conv.reference[-1] = ans["reference"]
conv.message[-1] = {"role": "assistant", "content": ans["answer"], "id":
message_id}
        ans["id"] = message_id
`



### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-16 10:58:28 +08:00
2777941b4e Feat: add code agent component (#7672)
### What problem does this PR solve?

Add code agent component.
#4977
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 10:27:47 +08:00
ae8b628f0a Refa: HTTP API delete dataset / test cases / docs (#7657)
### What problem does this PR solve?

This PR introduces Pydantic-based validation for the delete dataset HTTP
API, improving code clarity and robustness. Key changes include:

1. Pydantic Validation
2. Error Handling
3. Test Updates
4. Documentation Updates

### Type of change

- [x] Documentation Update
- [x] Refactoring
2025-05-16 10:16:43 +08:00
0e9ff8c1f7 Feat: Fixed the issue where the dataset configuration page kept refreshing #3221 (#7666)
### What problem does this PR solve?

Feat: Fixed the issue where the dataset configuration page kept
refreshing #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 09:53:47 +08:00
d373c46976 Fix: Use DOMPurify to filter out dangerous HTML #7668 (#7669)
### What problem does this PR solve?

Fix: Use DOMPurify to filter out dangerous HTML #7668

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-16 09:53:34 +08:00
008e55a65e Feat: Add the JS code (or other) executor component to Agent. #4977 (#7677)
### What problem does this PR solve?

Feat: Add the JS code (or other) executor component to Agent. #4977

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 09:53:00 +08:00
772992812a Docs: Added a guide on AI search (#7674)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-15 18:41:39 +08:00
a8542508b7 Refa: Deprecate /github_callback in favor of /oauth/callback/<channel> for GitHub OAuth integration (#7587)
### What problem does this PR solve?

Deprecate `/github_callback` route in favor of
`/oauth/callback/<channel>` for GitHub OAuth integration:

- Added GitHub OAuth support in the authentication module
- Introduced `GithubOAuthClient` with methods to fetch and normalize
user info
  - Updated `CLIENT_TYPES` to include GitHub OAuth client
- Deprecated `/github_callback` route and suggested using the generic
`/oauth/callback/<channel>` route

---
- Related pull requests: 
  - #7379
  - #7553 

### Usage

- [Create a GitHub OAuth
App](https://github.com/settings/applications/new) to obtain the
`client_id` and `client_secret`, configure the authorization callback
url: `https://your-app.com/v1/user/oauth/callback/github`
- Edit `service_conf.yaml.template`:
  ```yaml
  # ...
  oauth:
    github:
      type: "github"
      icon: "github"
      display_name: "Github"
      client_id: "your_client_id"
      client_secret: "your_client_secret"
      redirect_uri: "https://your-app.com/v1/user/oauth/callback/github"
  # ...
  ```

### Type of change

- [x] Documentation Update
- [x] Refactoring (non-breaking change)
2025-05-15 14:39:37 +08:00
0b4d366514 Fix: Setuptools project.license as a TOML table deprecation (#7652)
TOML-table-based project.license is deprecated as per PEP 639, see:
https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license-and-license-files

### What problem does this PR solve?

The following error when building project (e.g. `uv build`)

```
SetuptoolsDeprecationWarning: `project.license` as a TOML table is deprecated
!!

        ********************************************************************************
        Please use a simple string containing a SPDX expression for `project.license`. You can also use `project.license-files`. (Both options available on setuptools>=77.0.0).

        By 2026-Feb-18, you need to update your project and remove deprecated calls
        or your builds will no longer be supported.

        See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details.
        ********************************************************************************

!!
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-15 12:23:29 +08:00
e7a84bdac2 Fix: setuptools package definitions (#7654)
### What problem does this PR solve?
For `uv package`/`uv pip install ".[full]"`, bug introduced in #6370:

* Removes erroneous (non-package) directories (`helm`, `flask_session`)
* Adds `mcp.server` package
* Resolves "warning: package would be ignored" ambiguity by changing
`sdk` to `sdk.python.ragflow_sdk`
* Resolves "error: package directory 'intergrations' does not exist" by
including `intergrations.chatgpt-on-wechat.plugins` explicitly
* Also rearranges packages in alphabetical order, for DX.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-15 12:22:56 +08:00
d2b346cf9e Feat: When Delete Chunk Will Also Delete Chunk Related Image (#7656)
### What problem does this PR solve?

When Delete Chunk Will Also Delete Chunk Related Image

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-05-15 11:53:47 +08:00
1d0dcddf61 Docs: Miscellaneous UI updates (#7648)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-05-15 11:35:52 +08:00
d49025b501 Trival. (#7653)
### What problem does this PR solve?

#7623

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-15 11:03:05 +08:00
dd0fd13ea8 Fix: Anonymize profile input defaults (#7649)
Remove PII from webapp profile page input defaults

### Type of change

- [x] Other (please describe): Chore
2025-05-15 09:19:35 +08:00
36e32dde1a Feat: update llm factories for SILICONFLOW (#7620)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Other (please describe): llm factories update
2025-05-14 19:46:27 +08:00
53a2c8e452 Docs: Chat assistant relative time expressions were enabled in 0.17.1. (#7647)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
2025-05-14 19:42:27 +08:00
5218ff775c Feat: Add data set configuration form #3221 (#7646)
### What problem does this PR solve?

Feat: Add data set configuration form #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-14 19:09:01 +08:00
5d5dbb3bcb Feat: Display inline (non-quoted) images in the chat and search modules #7623 (#7638)
### What problem does this PR solve?

Feat: Display inline (non-quoted) images in the chat and search modules
#7623

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-14 15:44:54 +08:00
5a0273e3ea Docs: update 7 readme (#7639)
### What problem does this PR solve?

Update 7 readme

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-14 15:44:24 +08:00
ce81e470e3 Fix:Agent running message i10n (#7635)
### What problem does this PR solve?

Close #7612

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-14 14:27:12 +08:00
4ac61fc470 Docs: Update README.md (#7607)
### What problem does this PR solve?

Add libjemalloc installation command. If the operating system does not
have the libjemalloc library, the execution of entrypoint.sh and
launch_backend_service.sh will be interrupted, and the
rag/svr/task_executor.py script will not be started normally.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-14 14:24:30 +08:00
bfe97d896d Fix: docx get image exception. (#7636)
### What problem does this PR solve?

Close #7631

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-14 12:24:48 +08:00
e7a6a9e47e Feat: Add frontend support for third-party login integration (#7553)
### What problem does this PR solve?

Add frontend support for third-party login integration:

- Used `getLoginChannels` API to fetch available login channels from the
server
- Used `loginWithChannel` function to initiate login based on the
selected channel
- Refactored `useLoginWithGithub` hook to `useOAuthCallback` for
generalized OAuth callback handling
- Updated the login page to dynamically render third-party login buttons
based on the fetched channel list
- Styled third-party login buttons to improve user experience
- Removed unused code snippets

> This PR removes the previously hardcoded GitHub login button. Since
the functionality only worked when `location.host` was equal to
`demo.ragflow.io`, and the authentication logic is now based on
`login.ragflow.io`, this change does not affect the existing logic and
is considered a non-breaking change
---
#### Frontend Screenshot && Backend Configuration


![image](https://github.com/user-attachments/assets/190ad3a5-3718-409a-ad0e-01e7aca39069)

```yaml
# docker/service_conf.yaml.template

# ...
oauth:
  github:
    icon: github
    display_name: "Github"
    # ...

  custom_channel:
    display_name: "OIDC"
    # ...

  custom_channel_2:
    display_name: "OAuth2"
    # ...
```
---
- Related pull requests:
  - #7379
  - #7521 
- Related issues:
  - #3495 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Refactoring
- [x] Performance Improvement
2025-05-14 12:19:28 +08:00
d06431f670 FIX: knowledge will not render a paginator when count is greater than 30 (#7596)
### What problem does this PR solve?

as https://github.com/infiniflow/ragflow/issues/7538
and https://github.com/infiniflow/ragflow/pull/7550

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-14 11:53:11 +08:00
2fa8e3309f Fix: file name length limit mismtach (#7630)
### What problem does this PR solve?

Close #7597

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-14 10:13:03 +08:00
fe3b2acde0 Feat: Show images in reply messages #7608 (#7625)
### What problem does this PR solve?

Feat: Show images in reply messages #7608

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 19:30:17 +08:00
01330fa428 Feat: let image citation being shown. (#7624)
### What problem does this PR solve?

#7623

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 19:30:05 +08:00
b4cc37f3c1 Feat: Fixed the issue where the chat page would jump after entering the homepage #3221 (#7616)
### What problem does this PR solve?

Feat: Fixed the issue where the chat page would jump after entering the
homepage #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 17:57:28 +08:00
a8dbb5d3b0 Docs: Restructured docs (#7614)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-05-13 15:49:08 +08:00
321a280031 Feat: add image preview to retrieval test. (#7610)
### What problem does this PR solve?

#7608

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 14:30:36 +08:00
5c9025918a Feat: Adjust the display position of recall test item images #7608 (#7609)
### What problem does this PR solve?
Feat: Adjust the display position of recall test item images #7608


### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 14:09:51 +08:00
573d46a4ef FIX:ZeroDivisionError when using large page_size in client.retrieve() (#7595)
### What problem does this PR solve?

Close #7592

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-13 10:46:31 +08:00
4ae8f87754 Fix: missing graph resolution and community extraction in graphrag tasks (#7586)
### What problem does this PR solve?

Info of whether applying graph resolution and community extraction is
storage in `task["kb_parser_config"]`. However, previous code get
`graphrag_conf` from `task["parser_config"]`, making `with_resolution`
and `with_community` are always false.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-13 09:21:03 +08:00
63af158086 Docs: Guide on enabling Excel2HTML (#7590)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-05-12 19:44:29 +08:00
3877bcfc21 Feat: Add FormContainer component #3221 (#7588)
### What problem does this PR solve?

Feat: Add FormContainer component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-12 19:39:37 +08:00
f8cc557892 Fix(api): correct default value handling in dataset parser config (#7589)
### What problem does this PR solve?

Fix  HTTP API Create/Update dataset parser config default value error

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-12 19:39:18 +08:00
e39ceb2bd1 Feat: add support for OpenAi gpt 4.1 series (#7540)
### What problem does this PR solve?

Adds support for the GPT-4.1 series from OpenAI.

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-12 18:24:53 +08:00
992398bca3 Feat: Add http api to create, update, or delete agents. (#7515)
### What problem does this PR solve?

Hello, we are using ragflow as a backend service, so we need to manage
agents from our own frontend. So adding these http APIs to manage
agents.

The code logic is copied and modified from the `rm` and `save` methods
in `api/apps/canvas_app.py`.

btw, I found that the `save` method in `canvas_app.py` actually allows
to modify an agent to an existing title, so I kept the behavior in the
http api. I'm not sure if this is intentional.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-12 17:59:53 +08:00
baa108f5cc Fix: markdown table conversion error (#7570)
### What problem does this PR solve?

Since `import markdown.markdown` has been changed to `import markdown`
in `rag/app/naive.py`, previous code for converting markdown tables
would call a markdown module instead of a callable function. This cause
error.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-12 17:16:55 +08:00
4a891f2d67 Fix: InfiniteScroll sometimes can not fetch next page (#7550)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7538

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-12 17:15:55 +08:00
514c08a932 add show debug (#7390)
### What problem does this PR solve?

add show debug
![Recording2025-04-28142829-ezgif
com-video-to-gif-converter](https://github.com/user-attachments/assets/0c67da34-c2b6-428f-ae9b-b5b21464885c)

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-12 17:15:19 +08:00
d05e8a173d Docs:Updated langfuse guide (#7583)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-12 11:28:14 +08:00
ad412380cb Fix:Discrepancy between Document.list_chunks() API documentation and implementation (#7575)
### What problem does this PR solve?


Close #7567

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-12 11:05:32 +08:00
af35e84655 Set helm resource-policy to be keep (#7574)
Modified the chart to retain persistent volumes by default when the
chart is uninstalled, following established best practices in the Helm
community (e.g., Bitnami charts)

### What problem does this PR solve?

Previously, deleting the helm chart would automatically remove all
persistent data, which poses a risk of accidental data loss.

### Rationale

This change aligns with industry standards to safeguard data by
requiring explicit action to remove persistence, rather than making
deletion the default behavior.

### Impact: 

Users who intentionally want to remove persistent data will need to do
so manually or by setting appropriate flags during chart uninstallation.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-12 10:23:49 +08:00
29f45a85e4 docs: add langfuse documentation (#7568)
### What problem does this PR solve?

As RAGFlow has an integration with Langfuse, this docs page shows how to
configure Langfuse tracing.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-12 09:55:34 +08:00
ea5e8caa69 feat: Enable antialiasing for PDF image extraction to improve OCR accuracy (#7562)
### What problem does this PR solve?

When the PDF uses vector fonts, the rendered text in the captured page
image often has missing strokes, leading to numerous OCR errors and
incorrect characters. Similar issues also occur in the extracted chart
images.

**Before**

![0089e1f76205b5b3](https://github.com/user-attachments/assets/a84f8cd7-48ae-4da4-81ca-fc0bd93320f1)

**After**

![03053149e919773a](https://github.com/user-attachments/assets/45fa5ebb-a2de-42b1-9535-1ea087877eb2)

You can use the following document for testing.

[Casio说明书.pdf](https://github.com/user-attachments/files/20119690/Casio.pdf)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-05-12 09:50:21 +08:00
473aa28422 Docs: Restructured MCP-specific documents (#7565)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-05-12 09:49:54 +08:00
ef0c4b134d Test: skip unstable test cases (#7578)
### What problem does this PR solve?

Skip unstable test cases to ensure daily testing stability

### Type of change

- [x] Update test cases
2025-05-12 09:49:14 +08:00
35e36cb945 Refa: HTTP API update dataset / test cases / docs (#7564)
### What problem does this PR solve?

This PR introduces Pydantic-based validation for the update dataset HTTP
API, improving code clarity and robustness. Key changes include:
1. Pydantic Validation
2. ​​Error Handling
3. Test Updates
4. Documentation Updates
5. fix bug: #5915

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Refactoring
2025-05-09 19:17:08 +08:00
31718581b5 Fix: helm template redis (#7563)
### What problem does this PR solve?

Fixes bug & regression introduced by [PR #7187 - refactor: Update Redis
configuration to use StatefulSet instead of deployment with
pvc](https://github.com/infiniflow/ragflow/pull/7187):

1. Fixes bug #7403 - `redis.persistence.enabled` missing from
`helm/values.yaml` causes helm error:

[ERROR] templates/: template: ragflow/templates/redis.yaml:55:24:
executing "ragflow/templates/redis.yaml" at
<.Values.redis.persistence.enabled>: nil pointer evaluating interface
{}.enabled

2. Fixes regression: reverts hardcoded redis.storage.capacity value back
to using variable `redis.storage.capacity` from `helm/values.yaml`.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-09 19:04:50 +08:00
6bd7d572ec Perf: Increase database connection pool size (#7559)
### What problem does this PR solve?

1. The MySQL instance is configured with max_connections=1000,
but our connection pool was limited to max_connections: 100.
This mismatch caused connection pool exhaustion during performance
testing.

2.  Increase stale_timeout to resolve #6548

### Type of change

- [x] Performance Improvement
2025-05-09 17:52:03 +08:00
5b626870d0 Refa: remove ollama keep alive. (#7560)
### What problem does this PR solve?

#7518

### Type of change

- [x] Refactoring
2025-05-09 17:51:49 +08:00
2ccec93d71 Feat: support cross-lang search. (#7557)
### What problem does this PR solve?

#7376
#4503
#5710 
#7470

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-09 15:32:02 +08:00
2fe332d01d Feat: Cross-language query #7376 #4503 #5710 #7470 (#7554)
### What problem does this PR solve?

Feat: Cross-language query #7376 #4503  #5710 #7470
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-09 15:01:57 +08:00
a14865e6bb Fix: empty query issue. (#7551)
### What problem does this PR solve?

#5214

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-09 12:20:19 +08:00
d66c17ab5c Feat: add document enabled (#7549)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-09 12:20:07 +08:00
b781207752 Feat: KB detail supports document total size (#7546)
### What problem does this PR solve?

Kb detail supports return document total size now.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-09 11:48:54 +08:00
34ec550014 CI: add daily test (#7548)
### What problem does this PR solve?

Add scheduled workflow for daily HTTP API full tests
Configure cron job to trigger at 16:00:00Z(00:00:00+08:00)

### Type of change

- [X] CI update
2025-05-09 11:48:40 +08:00
c2c63b07c3 Feat: Replace the submit form button with ButtonLoading #3221 (#7547)
### What problem does this PR solve?

Feat: Replace the submit form button with ButtonLoading #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-09 10:17:36 +08:00
332e6ffbd4 Fix:local_es_tag (#7534)
Two Case when local  Es tag search has result which is filtered by score
1: Doc has empty tag,and not visi LLM
2: Code may use empty examples in Prompt for LLM search tag

Co-authored-by: huangfuqunze <huangfuqunze.hfqz@alibaba-inc.com>
2025-05-09 10:17:24 +08:00
5352bdf4da Error storing tag in Redis (#7541)
### What problem does this PR solve?

The parameter positions were incorrect and have been corrected to use
keyword argument passing

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-09 10:17:09 +08:00
138778b51b Docs: UI updates (#7536)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-09 09:37:46 +08:00
17e7571639 Updated MCP (#7533)
### What problem does this PR solve?


### Type of change


- [x ] Documentation Update
2025-05-09 09:37:05 +08:00
0fbca63e9d Test: Configure test case priorities to reduce CI execution time (#7532)
### What problem does this PR solve?

Configure test case priorities to reduce CI execution time

### Type of change

- [x] Test cases update
2025-05-08 19:22:52 +08:00
1657755b5d Feat: Adjust the operation cell of the table on the file management page and dataset page #3221. (#7526)
### What problem does this PR solve?

Feat: Adjust the operation cell of the table on the file management page
and dataset page #3221.
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-08 15:25:26 +08:00
9d3dd13fef Refa: text order be robuster. (#7525)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-05-08 12:58:10 +08:00
3827c47515 Feat: Add API to support get chunk by id (#7522)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/7519
### Type of change
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-08 12:24:38 +08:00
e9053b6ed4 fix bug #7309 deepseek-ai/deepseek-vl2 model can not be select as a VL model to parse pdf image (#7312)
### What problem does this PR solve?
fix deepseek-ai/deepseek-vl2 model can not be select as a VL model to
parse pdf image . And add other vl models config from siliconflow
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: unknown <taoshi.ln@chinatelecom.cn>
2025-05-08 11:24:39 +08:00
e349635a3d Feat: Add /login/channels route and improve auth logic for frontend third-party login integration (#7521)
### What problem does this PR solve?

Add `/login/channels` route and improve auth logic to support frontend
integration with third-party login providers:

- Add `/login/channels` route to provide authentication channel list
with `display_name` and `icon`
- Optimize user info parsing logic by prioritizing `avatar_url` and
falling back to `picture`
- Simplify OIDC token validation by removing unnecessary `kid` checks
- Ensure `client_id` is safely cast to string during `audience`
validation
- Fix typo

---
- Related pull request: #7379 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-05-08 10:23:19 +08:00
014a1535f2 Docs: correct wrong URL for related_questions HTTP API (#7507)
### What problem does this PR solve?

Correct wrong URL for related_questions HTTP API. #7282

### Type of change

- [x] Documentation Update
2025-05-08 09:32:21 +08:00
7b57ab5dea Fix: retrieval component for shared KB issue. (#7513)
### What problem does this PR solve?

#7483

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-08 09:20:34 +08:00
e300d90c00 Docs: minor format updates (#7514)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-05-07 19:49:01 +08:00
87317bcfc4 Docs: Initial editorial pass to MCP server (#7359)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-05-07 19:40:45 +08:00
9849230a04 Fix: remove deprecated novitaAI. (#7511)
### What problem does this PR solve?

#7484

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-07 19:36:16 +08:00
fa32a2d0fd Fix:When sharing the knowledge base of multiple tenants with one person, when this person queries the knowledge base of both tenants, they will only query the question of the first person's knowledge base (#7500)
Fix:When sharing the knowledge base of multiple tenants with one person,
when this person queries the knowledge base of both tenants, they will
only query the question of the first person's knowledge base

Co-authored-by: 杜有强 <duyq@internal.ths.com.cn>
2025-05-07 16:05:40 +08:00
27ffc0ed74 Feat: Improve 'user_canvan_version' delete and 'document' delete performance (#6553)
### What problem does this PR solve?

1.  Add delete_by_ids method
2. Add get_doc_ids_by_doc_names
3. Improve user_canvan_version's logic (avoid O(n) db IO)
4. Improve document delete logic (avoid O(n) db IO)

### Type of change

- [x] Performance Improvement
2025-05-07 10:55:08 +08:00
539876af11 docs: add API key instructions for MCP host mode (#7496)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: 马继龙 <majilong@ideal.com>
2025-05-07 10:38:21 +08:00
b1c8746984 fix: After the file is deleted, it still remains in the bucket. (#7482)
### What problem does this PR solve?

Fix: After deleting the file from the file management menu, it was not
removed from the MinIO bucket.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-05-06 19:30:42 +08:00
bc3160f75a Feat: Support knowledge base type input in agent flow debugger (#7471)
### What problem does this PR solve?

This is a follow-up of #7088 , adding a knowledge base type input to the
`Begin` component, and a knowledge base selector to the agent flow debug
input panel:


![image](https://github.com/user-attachments/assets/e4cd35f1-1c8e-4f69-bed4-5d613b96d148)

then you can select one or more knowledge bases when testing the agent:


![image](https://github.com/user-attachments/assets/724b547e-4790-4cd8-83d3-67e02f2e76d8)

Note: the lines changed in `agent/component/retrieval.py` after line 94
are modified by `ruff format` from the `pre-commit` hooks, no functional
change.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-06 19:30:27 +08:00
75b24ba02a Fix: chat solo issue. (#7479)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 19:30:00 +08:00
953b3e1b3f Fix: Sometimes VisionFigureParser.figures may is tuple (#7477)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/7466
I think due to some times we can not get position 

### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 17:38:22 +08:00
c98933499a refa: Optimize create dataset validation (#7451)
### What problem does this PR solve?

Optimize dataset validation and add function docs

### Type of change

- [x] Refactoring
2025-05-06 17:38:06 +08:00
2f768b96e8 perf: optimze figure parser (#7392)
### What problem does this PR solve?

When parsing documents containing images, the current code uses a
single-threaded approach to call the VL model, resulting in extremely
slow parsing speed (e.g., parsing a Word document with dozens of images
takes over 20 minutes).

By switching to a multithreaded approach to call the VL model, the
parsing speed can be improved to an acceptable level.

### Type of change

- [x] Performance Improvement

---------

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-05-06 14:39:45 +08:00
d6cc6453d1 fixed errror when vars of cnt begin declare with key contain "begin" (#7457)
### What problem does this PR solve?
fixed errror when vars of cnt begin  declare with key contain "begin"

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 14:39:22 +08:00
45dfaf230c fix(deps): incorrect nltk download dir (#7447)
### What problem does this PR solve?

Fix https://github.com/infiniflow/ragflow/issues/7224 and
https://github.com/infiniflow/ragflow/issues/6793

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)a
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-06 14:39:05 +08:00
65537b8200 Fix:Set CUDA_VISIBLE_DEVICES In DefaultEmbedding (#7465)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/7420

### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 14:38:36 +08:00
60787f8d5d Fix Ollama instructions (#7478)
Fix instructions for Ollama

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-06 13:57:39 +08:00
c4b3d3af95 Fix instructions for Ollama (#7468)
1. Use `host.docker.internal` as base URL
2. Fix numbers in list
3. Make clear what is the console input and what is the output

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-06 09:47:19 +08:00
f29a5de9f5 Fix: filed_map was incorrectly persisted (#7443)
### What problem does this PR solve?

Fix `filed_map` was incorrectly persisted. #7412 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 09:44:38 +08:00
cb37f00a8f Feat: Modify the style of the dataset page #3221 (#7446)
### What problem does this PR solve?

Feat:  Modify the style of the dataset page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-02 21:27:21 +08:00
fc379e90d1 Fix: change create dataset htto api delimiter default value to r'\n' (#7434)
### What problem does this PR solve?

change create dataset delimiter default value to r'\n'

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 17:43:42 +08:00
fea9d970ec Feat: Modify the dataset list page style #3221 (#7437)
### What problem does this PR solve?

Feat: Modify the dataset list page style #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 15:37:16 +08:00
6e7dd54a50 Feat: Support passing knowledge base id as variable in retrieval component (#7088)
### What problem does this PR solve?

Fix #6600

Hello, I have the same business requirement as #6600. My use case is: 

We have many departments (> 20 now and increasing), and each department
has its own knowledge base. Because the agent workflow is the same, so I
want to change the knowledge base on the fly, instead of creating agents
for every department.

It now looks like this:


![屏幕截图_20250416_212622](https://github.com/user-attachments/assets/5cb3dade-d4fb-4591-ade3-4b9c54387911)

Knowledge bases can be selected from the dropdown, and passed through
the variables in the table. All selected knowledge bases are used for
retrieval.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-30 15:32:14 +08:00
f56b651acb Built-in reranker models have been removed from official deliveries. (#7439)
### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2025-04-30 15:28:03 +08:00
2dbcc0a1bf Fix: Tried to fix the fid mis match under some cases (#7426)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7407

Based on this context, I think there should be some reasons that let
some LLMs have a mismatch (add the wrong "@xxx"),
So I think when use fid can not fetch llm then tried to just use name
should can fetch it.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-30 14:55:21 +08:00
1f82889001 Fix: create dataset remove unnecessary parameter constraints (#7432)
### What problem does this PR solve?

Remove unnecessary parameter restrictions in dataset creation API

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-30 14:50:23 +08:00
e6c824e606 Test: Update tests to use new fixture instead of deprecated one (#7431)
### What problem does this PR solve?

Deprecate get_dataset_id_and_document_id fixture, use add_document
instead

### Type of change

- [x] Update test cases
2025-04-30 14:49:26 +08:00
e2b0bceb1b Feat: filler list by user change input (#7389)
### What problem does this PR solve?

filler list by user change input

![Recording2025-04-28163440-ezgif
com-video-to-gif-converter](https://github.com/user-attachments/assets/6ff2cfea-dea9-4293-b9a6-b4c61ab9a549)

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 14:48:41 +08:00
713c055e04 DOC: Added a UI tip for document parsing (#7430)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-04-30 13:10:13 +08:00
1fc52033ba Feat: Using IconFont as an additional icon library #3221 (#7427)
### What problem does this PR solve?
Feat: Using IconFont as an additional icon library #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 13:09:42 +08:00
ab27609a64 Fix: whole knowledge graph lost after removing any document in the knowledge base (#7151)
### What problem does this PR solve?

When you removed any document in a knowledge base using knowledge graph,
the graph's `removed_kwd` is set to "Y".
However, in the function `graphrag.utils.get_gaph`, `rebuild_graph`
method is passed and directly return `None` while `removed_kwd=Y`,
making residual part of the graph abandoned (but old entity data still
exist in db).

Besides, infinity instance actually pass deleting graph components'
`source_id` when removing document. It may cause wrong graph after
rebuild.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-30 09:43:17 +08:00
538a408608 Feat: Modify background color of Card #3221 (#7421)
### What problem does this PR solve?

Feat: Modify background color of Card #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 09:12:28 +08:00
093d280528 Feat: add Qwen3 and OpenAI o series (#7415)
### What problem does this PR solve?

Qwen3 and more LLMs.

Close #7296

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-29 18:26:29 +08:00
de166d0ff2 Feat: Add a language switch drop-down box to the top navigation bar #3221 (#7416)
### What problem does this PR solve?

Feat: Add a language switch drop-down box to the top navigation bar
#3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 18:20:46 +08:00
942b94fc3c feat: dataset filter by parsing status (#7404)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/5931

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 17:29:58 +08:00
77bb7750e9 Feat: Modify the segmented component style #3221 (#7409)
### What problem does this PR solve?

Feat: Modify the segmented component style #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 17:05:23 +08:00
78380fa181 Refa: http API create dataset and test cases (#7393)
### What problem does this PR solve?

This PR introduces Pydantic-based validation for the create dataset HTTP
API, improving code clarity and robustness. Key changes include:
1. Pydantic Validation
2. ​​Error Handling
3. Test Updates
4. Documentation

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Refactoring
2025-04-29 16:53:57 +08:00
c88e4b3fc0 Fix: improve recover_pending_tasks timeout (#7408)
### What problem does this PR solve?

Fix the redis lock will always timeout (change the logic order release
lock first)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-29 16:50:39 +08:00
552475dd5c Feat: Adjust the style of the home page #3221 (#7405)
### What problem does this PR solve?

Feat: Adjust the style of the home page #3321

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 15:32:50 +08:00
c69fbca24f fixed missing list input ref in query (#7375)
### What problem does this PR solve?

fixed missing list input ref in query

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-29 13:03:36 +08:00
5bb1c383ac Feat: Bind data to the agent module of the home page #3221 (#7385)
### What problem does this PR solve?

Feat: Bind data to the agent module of the home page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 09:50:54 +08:00
c7310f7fb2 Refa: similarity calculations. (#7381)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-04-28 19:17:11 +08:00
3a43043c8a Feat: Add support for OAuth2 and OpenID Connect (OIDC) authentication (#7379)
### What problem does this PR solve?

Add support for OAuth2 and OpenID Connect (OIDC) authentication,
allowing OAuth/OIDC authentication using the specified routes:
- `/login/<channel>`: Initiates the OAuth flow for the specified channel
- `/oauth/callback/<channel>`: Handles the OAuth callback after
successful authentication

The callback URL should be configured in your OAuth provider as:
```
https://your-app.com/oauth/callback/<channel>
```

For detailed instructions on configuring **service_conf.yaml.template**,
see: `./api/apps/auth/README.md#usage`.

- Related issues
#3495  

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-04-28 16:15:52 +08:00
dbfa859ca3 Knowledge graph no longer exists as a chunking method (#7382)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-04-28 15:58:20 +08:00
Qi
53c59c47a1 Fix:Update chat assistant with an empty dataset (#7354)
### What problem does this PR solve?

When updating a chat assistant using API,if the dataset attached by the
current chat assistant is not empty,setting dataset to
null("dataset_ids":[]) will cause update failure:'dataset_ids' can't be
empty

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-28 15:19:21 +08:00
af393b0003 Feat: Add AsyncTreeSelect component #3221 (#7377)
### What problem does this PR solve?

Feat: Add AsyncTreeSelect component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-28 14:58:33 +08:00
1a5608d0f8 Fix: Add title_tks for Pictures (#7365)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/7362

append title_tks
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-28 13:35:34 +08:00
23dcbc94ef feat: replace models of novita (#7360)
### What problem does this PR solve?

Replace models of novita

### Type of change

- [x] Other (please describe): Replace models of novita
2025-04-28 13:35:09 +08:00
af770c5ced perf: Optimize GraphRAG’s LOOP_PROMPT (#7356)
### What problem does this PR solve?

当前graphrag的LOOP_PROMPT,会导致模型输出Y之后,继续补充了实体和关系,比较浪费时间。参照[graph
rag](https://github.com/microsoft/graphrag/blob/main/graphrag/prompts/index/extract_graph.py)最新的代码,修改了LOOP_PROMPT,经过验证,修改后可以稳定的输出Y停止。

Currently, GraphRAG’s LOOP_PROMPT causes the model to keep appending
entities and relationships even after outputting “Y,” which wastes time.
Referring to the latest code in
[graphRAG](https://github.com/microsoft/graphrag/blob/main/graphrag/prompts/index/extract_graph.py),
I modified the LOOP_PROMPT, and after verification the updated prompt
reliably outputs “Y” and stops.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [x] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-04-28 13:31:04 +08:00
8ce5e69b2f Feat: Preview the file #3221 (#7355)
### What problem does this PR solve?

Feat: Preview the file #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-27 18:50:24 +08:00
1aa97600df Fix mcp server startup failure (#7329)
### What problem does this PR solve?
0.18.0 mcp server can not start with upgrade from 0.17.2 or new install
except rebuild all docker

Close #7321

mcp server can not start auto from docker :
2025-04-25 17:30:44,512 INFO 25 task_executor_2a9f3e2de99a_0 reported
heartbeat: {"name": "task_executor_2a9f3e2de99a_0", "now":
"2025-04-25T17:30:44.509+08:00", "boot_at":
"2025-04-25T16:43:33.038+08:00", "pending": 0, "lag": 0, "done": 0,
"failed": 0, "current": {}}
usage: server.py [-h] [--base_url BASE_URL] [--host HOST] [--port PORT]
                 [--mode MODE] [--api_key API_KEY]
server.py: error: unrecognized arguments:

problem:
server.py in docker start arguments not correct , so mcp server start
fail
reason:
```
1. docker-copose.yaml
     example  - --mcp-host-api-key="ragflow-12345678" is wrong.  do not add "" to key or it says:"api-key wrong"
2.docker file  entrypoint.sh  can not translate config to exec command , we need mapping file from host to docker
     - ./entrypoint.sh:/ragflow/entrypoint.sh
3.just add one code raw fix all probelm 
```
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Performance Improvement

---------

Co-authored-by: Yongteng Lei <yongtengrey@outlook.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-27 18:47:12 +08:00
969c596d4c Fix: tenant_id spelling error. (#7331)
### What problem does this PR solve?

In the generate_confirmation_token method, a spelling error was found
with 'tenent_id'. The correct spelling should be 'tenant_id'.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: shengliang xiao <shengliangxiao2024@gmail.com>
2025-04-27 17:34:13 +08:00
67b087019c Update Groq AI Model Config (#7335)
With current config will get error "Fail to access model(gemma-7b-it)
using this api key"
Since the model has been removed, according to Groq official document:
https://console.groq.com/docs/models

### Type of change

- [ x] Bug Fix (non-breaking change which fixes an issue)
2025-04-27 17:05:25 +08:00
6a45d93005 Feat: Batch operations on documents in a dataset #3221 (#7352)
### What problem does this PR solve?

Feat: Batch operations on documents in a dataset #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-27 17:00:41 +08:00
43e507d554 Updated RAPTOR-specific UI (#7348)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-04-27 16:49:14 +08:00
a4be6c50cf [BREAKING CHANGE] GET to POST: enhance document list capability (#7349)
### What problem does this PR solve?

Enhance capability of `list_docs`.

Breaking change: change method from `GET` to `POST`.

### Type of change

- [x] Refactoring
- [x] Enhancement with breaking change
2025-04-27 16:48:27 +08:00
5043143bc5 Feat: Create empty document. #3221 (#7343)
### What problem does this PR solve?

Feat: Create empty document. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-27 16:12:10 +08:00
bdebd1b2e3 Feat: Filter document by running status and file type. #3221 (#7340)
### What problem does this PR solve?
Feat: Filter document by running status and file type. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-27 14:39:05 +08:00
dadd8d9f94 DOC: Miscellaneous UI and editorial updates (#7324)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-04-27 11:44:08 +08:00
3da8776a3c Fix: Creating Knowledge Base Support Enter Key (#7258)
### What problem does this PR solve?


[https://github.com/infiniflow/ragflow/issues/7180](https://github.com/infiniflow/ragflow/issues/7180)
When creating a knowledge base, support the enter key
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-25 18:53:52 +08:00
3052006ba8 Feat: Save document metadata #3221 (#7323)
### What problem does this PR solve?

Feat: Save document metadata #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-25 18:38:15 +08:00
1662c7eda3 Feat: Markdown add image (#7124)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/6984

1. Markdown parser supports get pictures
2. For Native, when handling Markdown, it will handle images
3. improve merge and 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-25 18:35:28 +08:00
fef44a71c5 Feat: Save the configuration information of the knowledge base document #3221 (#7317)
### What problem does this PR solve?

Feat: Save the configuration information of the knowledge base document
#3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-25 17:31:28 +08:00
b271cc34b3 Fix: LLM generated tag issue. (#7301)
### What problem does this PR solve?
#7298

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-25 14:38:34 +08:00
eead838353 Fix pymysql interface error (#7295)
### What problem does this PR solve?

According to the
[[Rucongzhang](https://github.com/Rucongzhang)](https://github.com/infiniflow/ragflow/pull/7057#issuecomment-2827410047)
I added DB reconnection strategy in function `update_by_id`
2025-04-25 13:29:47 +08:00
02cc867c06 Feat: Display the document configuration dialog with shadcn #3221 (#7302)
### What problem does this PR solve?

Feat: Display the document configuration dialog with shadcn #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-25 11:15:44 +08:00
6e98cd311c Doc: Updated sharing behavior in the open-source editions. (#7293)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-04-25 09:21:33 +08:00
97a13ef1ab Fix: Qwen-vl-plus url error (#7281)
### What problem does this PR solve?

Fix Qwen-vl-* url error. #7277

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-25 09:20:10 +08:00
7e1464a950 Feat: Replace the logo of novita (#7287)
### What problem does this PR solve?

Replace the logo of novita

### Type of change

- [x] Other (please describe): Update logo
2025-04-24 21:20:36 +08:00
e6a4d6bcf0 DocsHow to disable user registration (#7265)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-04-24 18:02:32 +08:00
c8c3b756b0 Feat: Adds OpenSearch2.19.1 as the vector_database support (#7140)
### What problem does this PR solve?

This PR adds the support for latest OpenSearch2.19.1 as the store engine
& search engine option for RAGFlow.

### Main Benefit

1. OpenSearch2.19.1 is licensed under the [Apache v2.0 License] which is
much better than Elasticsearch
2. For search, OpenSearch2.19.1 supports full-text
search、vector_search、hybrid_search those are similar with Elasticsearch
on schema
3. For store, OpenSearch2.19.1 stores text、vector those are quite
simliar with Elasticsearch on schema

### Changes

- Support opensearch_python_connetor. I make a lot of adaptions since
the schema and api/method between ES and Opensearch differs in many
ways(especially the knn_search has a significant gap) :
rag/utils/opensearch_coon.py
- Support static config adaptions by changing:
conf/service_conf.yaml、api/settings.py、rag/settings.py
- Supprt some store&search schema changes between OpenSearch and ES:
conf/os_mapping.json
- Support OpenSearch python sdk : pyproject.toml
- Support docker config for OpenSearch2.19.1 :
docker/.env、docker/docker-compose-base.yml、docker/service_conf.yaml.template

### How to use
- I didn't change the priority that ES as the default doc/search engine.
Only if in docker/.env , we set DOC_ENGINE=${DOC_ENGINE:-opensearch}, it
will work.


### Others
Our team tested a lot of docs in our environment by using OpenSearch as
the vector database ,it works very well.
All the conifg for OpenSearch is necessary.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Yongteng Lei <yongtengrey@outlook.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-04-24 16:03:31 +08:00
9a8dda8fc7 Feat: Delete and rename files in the knowledge base #3221 (#7268)
### What problem does this PR solve?

Feat: Delete and rename files in the knowledge base #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-24 14:51:20 +08:00
ff442c48b5 Feat: Display document parsing status #3221 (#7241)
### What problem does this PR solve?

Feat: Display document parsing status #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-24 11:45:37 +08:00
216cd7474b fix: task_executor bug fix (#7253)
### What problem does this PR solve?

The lock is not released correctly when task_exectuor is abnormal

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-24 11:44:34 +08:00
2c62652ea8 <think> tag is missing. (#7256)
### What problem does this PR solve?

Some models force thinking, resulting in the absence of the think tag in
the returned content

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-24 11:44:10 +08:00
4e8fd73a20 chore: adds pre-commit (#7242)
### What problem does this PR solve?

Sometimes after we commit the code and open the PR the CI pipeline fails
in Ruff checks. Including a pre-commit we can identify this problem
early and avoid time loss.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [X] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-24 11:25:33 +08:00
19931cd9ed Fix: mcp server start (#7251)
### What problem does this PR solve?

Fix the entrypoint file from the docker container to solve #7249 

Here is the important part from the logs:
```
docker logs -f ragflow-server
...
usage: server.py [-h] [--base_url BASE_URL] [--host HOST] [--port PORT]
[--mode MODE] [--api_key API_KEY]
server.py: error: unrecognized arguments:
...
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-24 10:52:12 +08:00
0b460a9a12 Fix: improve retrieval API (#6744)
### What problem does this PR solve?

Get the highlight parameter from the request to keep consistency with
the document

> 
- Method: POST
- URL: `/api/v1/retrieval`
- Headers:
  - `'content-Type: application/json'`
  - `'Authorization: Bearer <YOUR_API_KEY>'`
- Body:
  - `"question"`: `string`  
  - `"dataset_ids"`: `list[string]`  
  - `"document_ids"`: `list[string]`
  - `"page"`: `integer`  
  - `"page_size"`: `integer`  
  - `"similarity_threshold"`: `float`  
  - `"vector_similarity_weight"`: `float`  
  - `"top_k"`: `integer`  
  - `"rerank_id"`: `string`  
  - `"keyword"`: `boolean`  
  - `"highlight"`: `boolean`
>

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-24 09:29:00 +08:00
4e31eea55f Fix/mcp doc (#7239)
### What problem does this PR solve?

This PR fixes an issue with the MCP server configuration in RAGFlow's
Docker deployment where:
1. Incorrect parameter naming (`--mcp--host-api-key` with double
hyphens) caused server startup failures
2. Port binding conflicts occurred due to unexposed MCP ports in Docker
3. Inconsistent host addressing between `0.0.0.0` and `127.0.0.1` led to
connectivity issues

The changes ensure proper MCP server initialization and reliable
inter-service communication.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

### Key Changes

1. **Parameter Correction**:
   - Fixed `--mcp--host-api-key` → `--mcp-host-api-key`
2025-04-24 09:20:26 +08:00
1366712560 Feat: Deleting files in batches. #3221 (#7234)
### What problem does this PR solve?
Feat: Deleting files in batches. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-23 19:03:02 +08:00
51d9bde5a3 Feat: Create a folder #3221 (#7228)
### What problem does this PR solve?

Feat: Create a folder #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-23 15:21:09 +08:00
94181a990b Refa: knowledge_graph chunk method is deprecated (#7220)
### What problem does this PR solve?

The knowledge_graph chunk method is deprecated and should no longer be
used. #7184.

### Type of change

- [x] Refactoring
2025-04-23 13:01:46 +08:00
03672df691 Docs: update for v0.18.0 (#7223)
### What problem does this PR solve?

update for v0.18.0

### Type of change

- [x] Documentation Update
2025-04-23 12:02:50 +08:00
e9669e7fb1 Updated v0.18.0 release notes (#7221)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-04-23 11:12:14 +08:00
9a1ac8020d v0.18.0 release notes (#7185)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2025-04-23 10:41:58 +08:00
b44bbd11b8 Feat: Upload document #3221 (#7209)
### What problem does this PR solve?

Feat: Upload document #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-23 10:39:09 +08:00
1e91318445 Added a RAPTOR guide (#7211)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-04-22 20:56:30 +08:00
f35ff65c36 [BREAKING CHANGE] GET to POST: enhance kb list capability (#7205)
### What problem does this PR solve?

Enhance capability of `list_kbs`.

Breaking change: change method from `GET` to `POST`.

### Type of change

- [x] Refactoring
- [x] Enhancement with breaking change
2025-04-22 17:54:12 +08:00
ba0e363d5a Feat: Show the owner of this knowledge base on the list card. #3221 (#7204)
### What problem does this PR solve?

Feat: Show the owner of this knowledge base on the list card. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 16:46:13 +08:00
dde8c26feb Feat: Even if the knowledge base has slices, the chunk method can be changed #7115 (#7201)
### What problem does this PR solve?

Feat: Even if the knowledge base has slices, the chunk method can be
changed #7115

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 16:04:49 +08:00
64dd187498 Fix: Knowledge Graph Extraction Conflict Between Dataset-Level and File-Specific Configurations #7198 (#7199)
### What problem does this PR solve?

Fix: Knowledge Graph Extraction Conflict Between Dataset-Level and
File-Specific Configurations #7198

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-22 16:00:55 +08:00
67dee2d74e Fix: fix retrieval tesing wrong pagination (#7174)
### What problem does this PR solve?

Fix retrieval testing wrong pagination. #7171 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-22 15:16:04 +08:00
bcac195a0c Put the knowledge base list related hooks into use-knowledge-request.ts #3221 (#7197)
### What problem does this PR solve?

Put the knowledge base list related hooks into use-knowledge-request.ts
#3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 15:01:35 +08:00
8fca8faa7d Feat: Move langfuse configuration to api page #6155 (#7196)
### What problem does this PR solve?

Feat: Move langfuse configuration to api page #6155

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 14:08:20 +08:00
1cc17eb611 Feat: Filter the knowledge base list using owner #3221 (#7191)
### What problem does this PR solve?

Feat: Filter the knowledge base list using owner #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 13:44:41 +08:00
c8194f5fd0 refactor: Update Redis configuration to use StatefulSet instead of deployment with pvc (#7187)
### What problem does this PR solve?

This PR changes Redis to be a statefulset. In some situation when we
Redis pod gets rescheduled to another Node, it gets stuck in pending
state due to the PVC attached to another Kubernetes node.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [X] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-22 12:53:30 +08:00
f2c9ffc056 Fix: KG search issue. (#7186)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-22 12:10:30 +08:00
10432a1be7 Refa: Optimize pptx shape extraction to reduce content loss (#6703)
### What problem does this PR solve?

When parsing pptx files, some shapes do not contain the `shape_type`
attribute, which causes the original code to throw an exception during
extraction, leading to failure in content extraction. This optimization
introduces handling logic for such anomalous shapes, providing a safer
and more robust processing mechanism.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [x] Performance Improvement
- [ ] Other (please describe):
2025-04-22 10:16:24 +08:00
e7f83b13ca Feat: Rename a dataset #3221 (#7162)
### What problem does this PR solve?

Feat: Rename a dataset #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 10:09:41 +08:00
ad220a0a3c Feat: add mcp self-host mode (#7157)
### What problem does this PR solve?

Add mcp self-host mode, a complement of #7084.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 10:04:21 +08:00
91c5a5c08f Docs: add mcp self-host mode (#7163)
### What problem does this PR solve?

Add mcp self-host mode documentation, a complement of #7141.

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-04-22 10:03:38 +08:00
8362ab405c Fix: don't modify S3 file name when not using prefix_path (#7152)
### What problem does this PR solve?

Hello, I encountered a problem when trying to use a S3 backend
(seaweedfs) for storage in RAGFlow: when calling
`STORAGE_IMPL.get("bucket", "key")`, the actual request sent to S3 is
`bucket/bucket/key`, causing a `NoSuchKey` error.

I compared the code in `s3_conn.py` to `minio_conn.py` and
`oss_conn.py`, then decided to remove the `else` branch in
`use_prefix_path` method, and it works. I didn't configure `prefix_path`
or `bucket` in `s3` section of the `service_conf.yaml`.

I think this is a bug, but not sure.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-21 11:55:50 +08:00
68b9dae6c0 Feat: mcp server (#7084)
### What problem does this PR solve?

Add MCP support with a client example.

Issue link: #4344

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-21 09:43:20 +08:00
9b956ac1a9 Docs: MCP server (#7141)
### What problem does this PR solve?

Documentation for MCP server

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-04-21 09:42:32 +08:00
d4dbdfb61d feat: Recover pending tasks while pod restart. (#7073)
### What problem does this PR solve?

If you deploy Ragflow using Kubernetes, the hostname will change during
a rolling update. This causes the consumer name of the task executor to
change, making it impossible to schedule tasks that were previously in a
pending state.
To address this, I introduced a recovery task that scans these pending
messages and re-publishes them, allowing the tasks to continue being
processed.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-04-19 16:18:51 +08:00
487aed419e Fix: cite disfunction for G component. (#7117)
### What problem does this PR solve?

#7097

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-18 18:05:26 +08:00
8b8a2f2949 fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106)
## Problem Description
Multiple files in the RAGFlow project contain closure trap issues when
using lambda functions with `trio.open_nursery()`. This problem causes
concurrent tasks created in loops to reference the same variable,
resulting in all tasks processing the same data (the data from the last
iteration) rather than each task processing its corresponding data from
the loop.

## Issue Details
When using a `lambda` to create a closure function and passing it to
`nursery.start_soon()` within a loop, the lambda function captures a
reference to the loop variable rather than its value. For example:

```python
# Problematic code
async with trio.open_nursery() as nursery:
    for d in docs:
        nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn))
```

In this pattern, when concurrent tasks begin execution, `d` has already
become the value after the loop ends (typically the last element),
causing all tasks to use the same data.

## Fix Solution
Changed the way concurrent tasks are created with `nursery.start_soon()`
by leveraging Trio's API design to directly pass the function and its
arguments separately:

```python
# Fixed code
async with trio.open_nursery() as nursery:
    for d in docs:
        nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn)
```

This way, each task uses the parameter values at the time of the
function call, rather than references captured through closures.

## Fixed Files
Fixed closure traps in the following files:

1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword
extraction, question generation, and tag processing
2. `rag/raptor.py`: 1 fix, involving document summarization
3. `graphrag/utils.py`: 2 fixes, involving graph node and edge
processing
4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution
and graph node merging
5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document
processing
6. `graphrag/general/extractor.py`: 3 fixes, involving content
processing and graph node/edge merging
7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving
community report extraction

## Potential Impact
This fix resolves a serious concurrency issue that could have caused:
- Data processing errors (processing duplicate data)
- Performance degradation (all tasks working on the same data)
- Inconsistent results (some data not being processed)

After the fix, all concurrent tasks should correctly process their
respective data, improving system correctness and reliability.
2025-04-18 18:00:20 +08:00
42e236f464 Feat: Rendering a search test list with real data #3221 (#7138)
### What problem does this PR solve?

Feat: Rendering a search test list with real data #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-18 16:29:41 +08:00
1b4016317e fix bug chunking:expected string or bytes-like object (#7116)
… bytes-like object

### What problem does this PR solve?
fix bug #6990 internal server error ehile chunking:expected string or
bytes-like object
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: unknown <taoshi.ln@chinatelecom.cn>
2025-04-18 14:42:36 +08:00
b1798bafb0 Fix: handle sometimes graph index will miss explanation (#7127)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7053

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-18 14:24:36 +08:00
86f76df586 Feat: Retrieval test #3221 (#7121)
### What problem does this PR solve?

Feat: Retrieval test #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-17 19:03:55 +08:00
db82c15de4 Fix: wrong “available” property when list chunk (#7093)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7083

Internal due to when returning from ES, fields changed to str, so the
bool conversion does not work as expected.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-17 17:17:35 +08:00
627fd002ae Update utils.py (#7091)
### What problem does this PR solve?

when there are multiple entities, the variable `v` may be a list, which
will lead to this error:
```
| File "/mnt/d/wrf/ragflow/ragflow/graphrag/utils.py", line 59, in replace_all
| result = result.replace(f"{{{k}}}", v)
| TypeError: replace() argument 2 must be str, not list
```
this pr assign this `v` to be a str

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-17 17:17:09 +08:00
9e7d052c8d Fix: knowledge graph resolution with infinity raise error tokenizing in specific situations (#7048)
### What problem does this PR solve?

When running graph resolution with infinity, if single quotation marks
appeared in the entities name that to be delete, an error tokenizing of
sqlglot might occur after calling infinity.

For example:
```
INFINITY delete table ragflow_xxx, filter knowledge_graph_kwd IN ('entity') AND entity_kwd IN ('86 IMAGES FROM PREVIOUS CONTESTS', 'ADAM OPTIMIZATION', 'BACKGROUND'ESTIMATION')
```
may raise error
```
Error tokenizing 'TS', 'ADAM OPTIMIZATION', 'BACKGROUND'ESTIMATION''
```
and make the document parsing failed。

Replace one single quotation mark with double single quotation marks can
let sqlglot tokenize the entity name correctly.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-17 16:15:21 +08:00
d9927f5185 Fix: Error in sending placeholder words in Chinese and Chinese-Traditional (#7094)
### What problem does this PR solve?

The assistant message placeholder is incorrect, I have finished
modifying both Chinese and traditional Chinese characters

### Type of change


- [x] Bug Fix
2025-04-17 15:52:03 +08:00
5d253e0a34 Fix: pymysql.err.InterfaceError: (0, '') during long time streaming chat responses (#6548) (#7057)
### Related Issue:
https://github.com/infiniflow/ragflow/issues/6548

### Related PR:
https://github.com/infiniflow/ragflow/pull/6861


### Environment:
Commit version:
[[48730e0](48730e00a8)]

### Bug Description:
Unexpected `pymysql.err.InterfaceError: (0, '') `when using Peewee +
PyMySQL + PooledMySQLDatabase after a long-running `chat streamly`
operation.

This is a common issue with Peewee + PyMySQL + connection pooling: you
end up using a connection that was silently closed by the server, but
Peewee doesn't realize it's dead.

**I found that the error only occurs during longer streaming outputs**
and is unrelated to the database connection context, so it's likely
because:

- The prolonged streaming response caused the database connection to
time out

- The original database connection might have been disconnected by the
server during the streaming process

### Why This Happens
This error happens even when using `@DB.connection_context() `after the
stream is done. After investigation, I found this is caused by MySQL
connection pools that appear to be open but are actually dead (expired
due to` wait_timeout`).

1. `@DB.connection_context()` (as a decorator or context manager) pulls
a connection from the pool.

2. If this connection was idle and expired on the MySQL server (e.g.,
due to `wait_timeout`), but not closed in Python, it will still be
considered “open” (`DB.is_closed() == False`).

3. The real error will occur only when I execute a SQL command (such as
.`get_or_none()`), and PyMySQL tries to send it to the server via a
broken socket.


### Changes Made:

1. I implemented manual connection checks before executing SQL:
```
    try:
        DB.execute_sql("SELECT 1")
    except Exception:
        print("Connection dead, reconnecting...")
        DB.close()
        DB.connect()
```
2. Delayed the token count update until after the streaming response is
completed to ensure the streaming output isn't interrupted by database
operations.
```
        total_tokens = 0 
        for txt in chat_streamly(system, history, gen_conf):
            if isinstance(txt, int):
                total_tokens = txt
......
                break
......
        if total_tokens > 0:
            if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
                logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
```
2025-04-16 19:15:35 +08:00
de5727f90a Fix: Files being parsed are not allowed to be deleted in batches #7065 (#7066)
### What problem does this PR solve?

Fix: Files being parsed are not allowed to be deleted in batches #7065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-16 16:46:24 +08:00
9c2dd70839 Miscellaneous editorial updates. (#7047)
### What problem does this PR solve?

#6910 

### Type of change

- [x] Documentation Update
2025-04-16 10:31:10 +08:00
e0e78112a2 Docs: Change DELETE to POST in Related Questions curl example (#7054)
### What problem does this PR solve?

docs(api): Fix request method in Related Questions example (DELETE→POST)

### Type of change

- [x] Documentation Update
2025-04-16 10:29:59 +08:00
48730e00a8 Docs: updates. (#7042)
### What problem does this PR solve?

#7019

### Type of change

- [x] Documentation Update
2025-04-15 17:45:52 +08:00
e5f9d148e7 Test: Added test cases for Delete Sessions With Chat Assistant HTTP API (#7025)
### What problem does this PR solve?

cover [Delete chat assistant's
sessions](https://ragflow.io/docs/dev/http_api_reference#delete-chat-assistants-sessions)
endpoints

### Type of change

- [x] Add test cases
2025-04-15 14:54:26 +08:00
f6b280e372 Fix: when remove document do not delete the file in storage if the source is not knowledge base (#7005)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/6905

When deleting a document will check before removing it from storage

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-15 12:11:41 +08:00
5af2d57086 Refa. (#7022)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-04-15 10:20:33 +08:00
7a34159737 Fix: add fallback for bad citation output (#7014)
### What problem does this PR solve?

Add fallback for bad citation output. #6948

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-15 09:33:53 +08:00
b1fa5a0754 Fix Helm Ingress template (#7018)
### What problem does this PR solve?

Fix Helm Ingress template; Trying to access a global variable within a
loop
Fix #6191

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-15 09:19:37 +08:00
018ff4dd0a Refa: update llms (#7007)
### What problem does this PR solve?

Update LLM models

### Type of change

- [x] Refactoring
2025-04-15 09:19:07 +08:00
ed352710ec Feat: Remove the rotation state of the button that parses the document #7008 (#7009)
### What problem does this PR solve?

Feat: Remove the rotation state of the button that parses the document
#7008
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-14 18:50:11 +08:00
0a0c1edce3 Docs: readme updating. (#7002)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-04-14 14:45:37 +08:00
18eb76f6b8 Fix: The selected state of the TreeView node cannot be seen on Mac #7000 (#7001)
### What problem does this PR solve?

Fix: The selected state of the TreeView node cannot be seen on Mac #7000

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-14 14:23:26 +08:00
ed5f81b02e Fix: abnormal cell mergeing. (#6991)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-14 11:00:11 +08:00
23c5ce48d1 Fix update_progress issue (#6992)
### What problem does this PR solve?

Fix update_progress issue introduced by #6975 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-14 10:23:13 +08:00
de766ba628 Fix: Fix api page translation issue. #3221 (#6993)
### What problem does this PR solve?

Fix: Fix api page translation issue. #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-14 10:23:00 +08:00
5aae73c230 Make error messages during PPT processing clearer. (#6980)
### What problem does this PR solve?

Sometimes a slide may trigger a Proxy error (ArgumentException:
Parameter is not valid) due to issues in the original file, and this
error message can be confusing for users.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [x] Other (please describe):
2025-04-14 10:10:20 +08:00
b578451e6a docs: update Docker build commands to specify platform as linux/amd64 (#6977)
### What problem does this PR solve?

Considering the ragflow_deps image is only available for `linux/amd64`
platform, if we try to run the docker build commands in ,macOS for
instance, without the platform flag, we get an error due to the
different platform. Specifying the platform in the docker build command
fixes this issue.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [X] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-14 10:07:39 +08:00
53c653b099 fix RAGFlowPdfParser AttributeError: 'PdfReader' object has no attribute 'close' err (#6859)
i use PdfParser in local(refer to this case:
https://github.com/infiniflow/ragflow/blob/main/rag/app/paper.py) like
this:
```
import re
import openpyxl

from ragflow.api.db import ParserType
from ragflow.rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, \
    title_frequency, \
    tokenize_chunks
from ragflow.rag.utils import num_tokens_from_string
from ragflow.deepdoc.parser import PdfParser, ExcelParser, DocxParser,PlainParser


def logger(prog=None, msg=""):
    print(msg)


class Pdf(PdfParser):
    def __init__(self):
        self.model_speciess = ParserType.MANUAL.value
        super().__init__()

    def __call__(self, filename, binary=None, from_page=0,
                 to_page=100000, zoomin=3, callback=None):
        from timeit import default_timer as timer
        start = timer()
        callback(msg="OCR is running...")

        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback
        )
        callback(msg="OCR finished.")
        print("OCR:", timer() - start)
   
        self._layouts_rec(zoomin)
        callback(0.65, "Layout analysis finished.")
        print("layouts:", timer() - start)

        self._table_transformer_job(zoomin)
        callback(0.67, "Table analysis finished.")


        self._text_merge()
        tbls = self._extract_table_figure(True, zoomin, True, True)
        self._concat_downward()  
        self._filter_forpages()   
        callback(0.68, "Text merging finished")

        # clean mess
        for b in self.boxes:
            b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())

        return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
                for i, b in enumerate(self.boxes)], tbls


```

show err like this:
```
  File "xxxxx/third_party/ragflow/deepdoc/parser/pdf_parser.py", line 1039, in __images__
    self.pdf.close()
AttributeError: 'PdfReader' object has no attribute 'close'
```

i found ragflow source code use
`pdfplumber.open`(https://github.com/infiniflow/ragflow/blob/main/deepdoc/parser/pdf_parser.py#L1007C28-L1007C43)

and replace` self.pdf `with ` pdf2_read` (from pypdf import PdfReader as
pdf2_read)in line 1024
(https://github.com/infiniflow/ragflow/blob/main/deepdoc/parser/pdf_parser.py#L1024)
```
self.pdf = pdf2_read
```


---
and I found that `pdfplumber` can be used in this way:
```
file_path="xxx.pdf"
res = pdfplumber.open(file_path)
res.close()
```

but `pypdf.PdfReader` source code do not has `close` func, source code
use like this

```
 with open(stream, "rb") as fh:
         stream = BytesIO(fh.read())
          self._stream_opened = True
```
> https://github.com/py-pdf/pypdf/blob/main/pypdf/_reader.py#L156

so I moved the `self.pdf.close` function call and fixed this problem
hoping to help the project😊
2025-04-14 09:40:13 +08:00
b70abe52b2 Fix: Ensure lock is released in update_progress using context manager (#6975)
ragflow: v0.17 also encountered this problem. #1453 The task table shows
that the actual task has been completed. Since the process_msg of the
task is not synchronized to the document table, there is no progress
update on the page.
This may be caused by the lock not being released when the exception
occurs.

ragflow:v0.17同样碰到这个问题, 看task表实际任务已经完成,由于没有把task的process_msg同步给document表,
所以在页面看没有进度更新。
可能是这里异常时没有释放锁导致的。

```/api/ragflow_server.py
def update_progress():
    lock_value = str(uuid.uuid4())
    redis_lock = RedisDistributedLock("update_progress", lock_value=lock_value, timeout=60)
    logging.info(f"update_progress lock_value: {lock_value}")
    while not stop_event.is_set():
        try:
            if redis_lock.acquire():
                DocumentService.update_progress()
                redis_lock.release()
            stop_event.wait(6)
        except Exception:
            logging.exception("update_progress exception")
++       if redis_lock.acquired:
++               redis_lock.release()
```
2025-04-11 20:46:19 +08:00
98670c3755 Fix: KB update_time changed whenever system relaunched (#6959)
### What problem does this PR solve?

Fix KB update_time changed whenever system relaunched. #6953 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-11 20:10:49 +08:00
9b789c2ae9 Test: Added test cases for Update Session With Chat Assistant HTTP API (#6968)
### What problem does this PR solve?

cover [Update chat assistant's
sessions](https://ragflow.io/docs/dev/http_api_reference#update-chat-assistants-session)
endpoints

### Type of change

- [x] Update test cases
2025-04-11 20:10:24 +08:00
ffb9f01bea Test: Update test cases for PR 6906 ISSUE 6875 (#6971)
### What problem does this PR solve?

PR #6906 ISSUE #6875

### Type of change

- [ ] Update test cases
2025-04-11 20:09:44 +08:00
ed7244f5f5 Fix: Delete unused pages (#6973)
### What problem does this PR solve?

Fix: Delete unused pages

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-11 20:06:58 +08:00
e54c0e39b5 fix bug [ERROR][Exception]: 8 vs. 9 (#6955)
### What problem does this PR solve?

Sometimes, the **s** in **chunks (s, a)** is an empty string. This
causes the condition **if s and len(a) > 0** in the line **chunks = [(s,
a) for s, a in chunks if s and len(a) > 0]** to fail, which changes the
length of the new chunks. As a result, the final assertion **assert
len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end,
n_clusters)** fails and raises a confusing error like 7 vs. 8

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-11 17:01:49 +08:00
056ea68e52 Fix: In the dark night theme, the message input box is not displayed correctly. #6950 (#6951)
### What problem does this PR solve?

Fix: In the dark night theme, the message input box is not displayed
correctly. #6950

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-11 12:37:16 +08:00
d9266ed65a Fix: incorrect total chunks count in retrieval function after similarity filtering (#6741) (#6932)
### Related Issue:
https://github.com/infiniflow/ragflow/issues/6741

### Environment:
Using nightly version
Commit version:
[[6051abb](6051abb4a3)]

### Bug Description:
The retrieval function in rag/nlp/search.py returns the original total
chunks number
even after chunks are filtered by similarity_threshold. This creates
inconsistency
between the actual returned chunks and the reported total.

### Changes Made:
Added code to count how many search results actually meet or exceed the
configured similarity threshold
Positioned the calculation after the doc_ids conditional logic to ensure
special cases are handled correctly
Updated the ranks["total"] value to store this filtered count instead of
using the raw search result count
Using NumPy leverages optimized C-level batch operations to optimize
speed
2025-04-11 12:31:36 +08:00
6051abb4a3 Miscellaneous UI updates (#6947)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-04-10 20:09:46 +08:00
4b125f0ffe Feat: Add translation text to the prompt word of the generate operator to distinguish it from the prompt word of the knowledge base #6934 (#6935)
### What problem does this PR solve?

Feat: Add translation text to the prompt word of the generate operator
to distinguish it from the prompt word of the knowledge base #6934

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-10 19:24:04 +08:00
43cf321942 Added similarity scores in reference chunks (#6918)
- Returning 3 similarity scores to the chat completion's `reference`
field. It gives the user more transparency and added flexibility to
display/rerank the reference when needed

Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-04-10 19:17:45 +08:00
9283e91aa0 Fix: remove deprecated permission field (#6912)
### What problem does this PR solve?

Fix: remove deprecated KB updating `permission` field. #6911 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-10 18:56:41 +08:00
dc59aba132 Test: Added test cases for List Sessions With Chat Assistant HTTP API (#6938)
### What problem does this PR solve?

cover [List chat assistant's
sessions](https://ragflow.io/docs/dev/http_api_reference#list-chat-assistants-sessions)
endpoints

### Type of change

- [x] Update test cases
2025-04-10 17:31:01 +08:00
8fb5edd927 Test: Update test cases for PR 6906 (#6929)
### What problem does this PR solve?

PR #6906

### Type of change

- [x] Update test cases
2025-04-10 12:28:56 +08:00
3bb1e012e6 Fix: assistant deleteion issue. (#6906)
### What problem does this PR solve?

#6875

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-09 20:29:40 +08:00
22758a2763 Test: Update test cases for PR 6888 ISSUE 6876 (#6907)
### What problem does this PR solve?

PR #6888 ISSUE #6876

### Type of change

- [x] Update test case
2025-04-09 20:29:29 +08:00
a008b38cf5 Fix: local variable referenced before assignment (#6909)
### What problem does this PR solve?

Fix: local variable referenced before assignment. #6803 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-09 20:29:12 +08:00
d0897312ac Added a guide on setting chat variables (#6904)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2025-04-09 19:32:25 +08:00
aa99c6b896 Fix delete duplicate assistant (#6888)
### What problem does this PR solve?

resolve this issue:https://github.com/infiniflow/ragflow/issues/6876

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-04-09 19:10:08 +08:00
ae107f31d9 Test: Added test cases for Create Session With Chat Assistant HTTP API (#6902)
### What problem does this PR solve?

cover [create session with chat
assistant](https://ragflow.io/docs/dev/http_api_reference#create-session-with-chat-assistant)
endpoints

### Type of change

- [x] add test cases
2025-04-09 17:21:48 +08:00
9d9f2dacd2 fix Conversation roles must alternate user/assistant/user/assistant/... bug (#6880)
### What problem does this PR solve?

The old logic filters out all assistant messages from messages, which,
in multi-turn conversations, results in only user messages being
retained. This leads to an error in locally deployed models:
Conversation roles must alternate user/assistant/user/assistant/...

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-09 17:21:27 +08:00
08bc5d3521 Feat: Install sonner library #3221 (#6898)
### What problem does this PR solve?

Feat: Install sonner library #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-09 17:21:01 +08:00
6e7fb75618 Fix: handle waiting tasks when upstream is switch/categorize/relevant and normal path fails (#6874)
### What problem does this PR solve?

Fix the issue where waiting tasks couldn't be processed when upstream
components were "switch", "categorize", or "relevant" and the normal
processing path couldn't continue.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-09 12:37:21 +08:00
c26c38ee12 Test: Added test cases for Delete Chat Assistants HTTP API (#6879)
### What problem does this PR solve?

cover [delete chat
assistants](https://ragflow.io/docs/dev/http_api_reference#delete-chat-assistants)
endpoints

### Type of change

- [x] add test cases
2025-04-08 18:53:02 +08:00
dc2c74b249 Feat: add primitive support for function calls (#6840)
### What problem does this PR solve?

This PR introduces ​**​primitive support for function calls​**​,
enabling the system to handle basic function call capabilities.
However, this feature is currently experimental and ​**​not yet enabled
for general use​**​, as it is only supported by a subset of models,
namely, Qwen and OpenAI models.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-08 16:09:03 +08:00
a20439bf81 fix: add exception handling for get_by_id method (#6861)
### What problem does this PR solve?

Fixes #6548 

Add exception handling to prevent exceptions from propagating back to
the web, which may lead to failure in displaying conversation content.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: cm <caiming@sict.ac.cn>
2025-04-08 16:06:57 +08:00
a1fb32908d Fix: Error message is incorrect when updating chat name #6850 (#6851)
### What problem does this PR solve?

#6850 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-07 17:13:17 +08:00
0b89458eb8 Test: Added test cases for Update Chat Assistant HTTP API (#6843)
### What problem does this PR solve?

cover [update chat
assistant](https://ragflow.io/docs/v0.17.2/http_api_reference#update-chat-assistant)
endpoints

### Type of change

- [x] add test cases
2025-04-07 15:04:23 +08:00
14a3efd756 Fix: docx image exceptions. (#6839)
### What problem does this PR solve?

Close #6784

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-07 12:33:34 +08:00
d64c6870bb Fix:When parsing documents with graph, an error occurred:[ERROR][Exception]: 'method' (#6836)
[When parsing documents with graph, an error
occurred:[ERROR][Exception]: 'method']
(https://github.com/infiniflow/ragflow/issues/6835)
### What problem does this PR solve?

Close #6786

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: cm <caiming@sict.ac.cn>
2025-04-07 12:29:25 +08:00
dc87c91f9d Update broken discord link (#6841)
### Type of change

- [x] Documentation Update
2025-04-07 12:18:43 +08:00
d4574ffb49 Fix: improve Dockerfile build for China (#6812)
### What problem does this PR solve?
This PR addresses the build and dependency issues faced by developers in
regions with poor connectivity to official Ubuntu repositories and
standard dependency sources. Currently, developers in these regions
experience slow or failed Docker builds and dependency downloads,
significantly impacting development efficiency.

### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

The changes include:
1. Modified Dockerfile to use alternative Ubuntu mirrors with better
connectivity in affected regions
2. Added a new script (download_deps_CN.py) that provides
region-specific alternative download links for dependencies
2025-04-07 11:58:46 +08:00
5a8c479ff3 Miscellaneous editorial updates (#6805)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2025-04-07 09:33:55 +08:00
c6b26a3159 update some setting to README_zh.md (#6737)
### What problem does this PR solve?
#6731 #6722 
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Documentation Update

---------

Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
2025-04-03 22:12:49 +08:00
2a5ad74ac6 Test: Update test cases for #6800 (#6804)
### What problem does this PR solve?

update test case for PR #6800 issue #6539

### Type of change

- [x] update test cases
2025-04-03 21:22:41 +08:00
2caf15b24c Refa: trival. (#6802)
### What problem does this PR solve?


### Type of change


- [x] Refactoring
2025-04-03 19:01:24 +08:00
f49588756e Feat: Load the dialog page, prohibit calling the dialog/get interface #6798 (#6799)
### What problem does this PR solve?

Feat: Load the dialog page, prohibit calling the dialog/get interface
#6798

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-03 18:04:40 +08:00
57e760883e Fix: update chunk, empty question issue. (#6800)
### What problem does this PR solve?

fix issue #6539, refer to pr #6405

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-03 18:04:19 +08:00
b213e88cca Test: Added test cases for List Chat Assistants HTTP API (#6792)
### What problem does this PR solve?

cover [list chat
assistant](https://ragflow.io/docs/v0.17.2/http_api_reference#list-chat-assistants)
endpoints

### Type of change

- [x] add test cases
2025-04-03 17:22:23 +08:00
e8f46c9207 Fix: missing redis pvc storageclass in helm (#6788)
fix redis pvc in helm deployment

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-03 16:55:47 +08:00
cded812b97 Feat: add OpenAI compatible API for agent (#6329)
### What problem does this PR solve?
add openai agent
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-03 16:51:37 +08:00
2acb02366e Feat: Clarify the use of OpenAI-API-compatible #6782 (#6783)
### What problem does this PR solve?

Feat: Clarify the use of OpenAI-API-compatible #6782

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-03 11:38:21 +08:00
9ecc78feeb Refa: copywriting refinement. (#6779)
### What problem does this PR solve?

Close #6762

### Type of change

- [x] Refactoring
2025-04-03 11:38:02 +08:00
fdc410e743 Fix set_graph on non-existing edge (#6777)
### What problem does this PR solve?

Fix set_graph on non-existing edge

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-03 11:09:04 +08:00
5b5558300a Feat: add gemini-2.5-pro-exp-03-25 (#6774)
### What problem does this PR solve?

#6733

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-03 10:48:58 +08:00
b5918e7158 Docs: Fix for issue #6713 (#6775)
### What problem does this PR solve?

update fo issue #6713

### Type of change

- [x] Documentation Update
2025-04-03 10:19:58 +08:00
58f8026632 Test: Update test cases for PR #6643 (#6766)
### What problem does this PR solve?

Update test cases for PR #6643 issue #6607

### Type of change

- [x] update test cases
2025-04-03 10:10:40 +08:00
a73fbc61ff Fix: Handle the case of deleting empty blocks. Update the relevant message (#6643)
…gic to return the correct deletion message. Add handling for empty
arrays to ensure no errors occur during the deletion operation. Update
the test cases to verify the new logic.

### What problem does this PR solve?

fix this bug:https://github.com/infiniflow/ragflow/issues/6607

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-04-02 19:20:17 +08:00
0d1c5fdd2f Test: Added test cases for Create Chat Assistant HTTP API (#6763)
### What problem does this PR solve?

cover [create chat
assistant](https://ragflow.io/docs/v0.17.2/http_api_reference#create-chat-assistant)
endpoints

### Type of change

- [x] add test cases
2025-04-02 18:49:59 +08:00
6c77ef5a5e Docs(api): align default values in create chat assistant HTTP API dos with implementation (#6764)
### What problem does this PR solve?

align default values in create chat assistant HTTP API dos with
implementation.
llm.presence_penalty  0.2 -> 0.4
prompt.top_n  8->6


### Type of change

- [x] Documentation Update
2025-04-02 18:48:31 +08:00
e7a2a4b7ff Log llm response on exception (#6750)
### What problem does this PR solve?

Log llm response on exception

### Type of change

- [x] Refactoring
2025-04-02 17:10:57 +08:00
724a36fcdb Fix: Issue with Markdown Code Blocks Breaking Frontend Layout #5789 (#6758)
### What problem does this PR solve?

Fix: Issue with Markdown Code Blocks Breaking Frontend Layout #5789

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-02 16:28:55 +08:00
9ce6521582 Fix: Change the field name of the document ID from "documents" to "do… (#6753)
…cument_ids" to maintain consistency.

### What problem does this PR solve?

Close #6752

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-04-02 15:52:52 +08:00
160bf4ccb3 Fix: The file upload prompt indicates "No authorization." #6516 (#6756)
### What problem does this PR solve?

Fix: The file upload prompt indicates "No authorization." #6516

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-02 15:52:35 +08:00
aa25d09b0c Fix: Using the Enter key does not send a complete message #6754 (#6755)
### What problem does this PR solve?

Fix: Using the Enter key does not send a complete message #6754

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-02 15:02:16 +08:00
2471a6e115 Updated max_tokens descriptions (#6751)
### What problem does this PR solve?

#6721 

### Type of change


- [x] Documentation Update
2025-04-02 13:56:55 +08:00
fc02929946 Feat: Support deleting knowledge graph #6747 (#6748)
### What problem does this PR solve?

Feat: Support deleting knowledge graph #6747

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-02 11:20:37 +08:00
3ae1e9e3c4 Test: Skip test case for PR 6443 (#6724)
### What problem does this PR solve?

Skip test case for PR #6443

### Type of change

- [x] update test cases
2025-04-02 10:41:01 +08:00
117f18240d Feat: Add a notification logic to the team member invite feature #6610 (#6729)
### What problem does this PR solve?
Feat: Add a notification logic to the team member invite feature #6610

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-02 09:15:13 +08:00
31296ad70f Miscellaneous doc updates and refactored team management doc. (#6730)
### What problem does this PR solve?

#5576, #6672

### Type of change


- [x] Documentation and UI Update
2025-04-01 19:05:30 +08:00
132eae9d5b Feat: Interrupt streaming #6515 (#6723)
### What problem does this PR solve?

Feat: Interrupt streaming #6515
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-01 17:26:54 +08:00
ead5f7aba9 Fix infinite recursion in RagTokenizer when processing repetitive characters (#6109)
### What problem does this PR solve?
fix #6085 
RagTokenizer's dfs_() function falls into infinite recursion when
processing text with repetitive Chinese characters (e.g.,
"一一一一一十一十一十一..." or "一一一一一一十十十十十十十二十二十二..."), causing memory leaks.
### Type of change
Implemented three optimizations to the dfs_() function:
1.Added memoization with _memo dictionary to cache computed results
2.Added recursion depth limiting with _depth parameter (max 10 levels)
3.Implemented special handling for repetitive character sequences
- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-01 13:59:52 +08:00
58e6e7b668 Test: Refactor test fixtures and test cases (#6709)
### What problem does this PR solve?

 Refactor test fixtures and test cases

### Type of change

- [ ] Refactoring test cases
2025-04-01 13:39:07 +08:00
20b8ccd1e9 Hotfix ece5903 (#6705)
I'm really sorry, I found that in graphrag/general/extractor.py under
def __call__, the line change.removed_nodes.extend(nodes[1:]) causes an
AttributeError: 'set' object has no attribute 'extend'. Could you please
merge the branch e666528 again? I made some modifications.
2025-04-01 12:06:28 +08:00
d0dca16fee Feat: Allows users to search for models in the model selection drop-down box #3221 (#6708)
### What problem does this PR solve?

Feat: Allows users to search for models in the model selection drop-down
box #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-01 11:53:48 +08:00
fc21dd0a4a Feat: add qwq-plus-latest (#6702)
### What problem does this PR solve?

#6697

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-01 11:06:03 +08:00
61c0dfab70 Fix: Email error. (#6701)
### What problem does this PR solve?

#6695

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-01 10:37:04 +08:00
67330833af fix: correct [AttributeError: 'set' object has no attribute 'nodes' T… (#6699)
### Related Issue: 
https://github.com/infiniflow/ragflow/issues/6653 

### Environment:
Using nightly version [ece5903]

Elasticsearch database

Thanks for the review! My fault! I realize my initial testing wasn't
passed.

In graphrag/entity_resolution.py 
 `sub_connect_graph` is a set like` {'HELLO', 'Hi', 'How are you'}`, 
Neither accessing `.nodes` nor `.nodes()` will work, **it still causes
`AttributeError: 'set' object has no attribute 'nodes'`**

In graphrag/general/extractor.py  
The `list.extend() `method performs an in-place operation, directly
modifying the original list and returning ‘None’ rather than the
modified list.
Neither accessing
`sorted(set(node0_attrs[attr].extend(node1_attrs.get(attr, []))))` nor
`sorted(set(node0_attrs[attr].extend(node1_attrs[attr])))` will work,
**it still causes `TypeError: 'NoneType' object is not iterable`**
### Type of change

- [ ] Bug Fix AttributeError: graphrag/entity_resolution.py 
- [ ] Bug Fix TypeError: graphrag/general/extractor.py
2025-04-01 09:38:21 +08:00
ece59034f7 fix: Resolve KnowledgeGraph entity resolution errors (#6653) (#6691)
### Related Issue: #6653
### Environment:

Using nightly version

Elasticsearch database

### Bug Description:
When clicking the "Entity Resolution" button in KnowledgeGraph,
encountered the following errors:

graphrag/entity_resolution.py

```
list(sub_connect_graph.nodes) AttributeError
```

graphrag/general/extractor.py
```
node0_attrs[attr] = sorted(set(node0_attrs[attr].extend(node1_attrs[attr])))
TypeError: 'NoneType' object is not iterable
```
```
for attr in ["keywords", "source_id"]:  
 KeyError I think attribute "keywords" is in edges not nodes
```
graphrag/utils.py
```
settings.docStoreConn.delete()  # Sync function called as async
```
### Changes Made:

Fixed AttributeError in entity_resolution.py by properly handling graph
nodes

Fixed TypeError and KeyError in extractor.py by separate operations

Corrected async/sync mismatch in document deletion call
2025-03-31 22:31:35 +08:00
0a42e5777e Refa: docker/.env comment refinement. (#6689)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-03-31 18:26:20 +08:00
e2b66628f4 Feat: extend S3 storage compatibility and add knowledge base ID prefix (#6355)
### What problem does this PR solve?

- Added support for S3-compatible protocols.
- Enabled the use of knowledge base ID as a file prefix when storing
files in S3.
- Updated docker/README.md to include detailed S3 and OSS configuration
instructions.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-31 16:09:43 +08:00
46b5e32cd7 Feat: support vision llm for gpustack (#6636)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/6138

This PR is going to support vision llm for gpustack, modify url path
from `/v1-openai` to `/v1`

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-31 15:33:52 +08:00
7d9dd1e5d3 Refa: remove default build-in rerank model. (#6682)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
- [x] Performance Improvement
2025-03-31 15:33:19 +08:00
1985ff7918 add type canvas (#6680)
add type canvas
### Type of change
- [x] Refactoring
2025-03-31 14:46:29 +08:00
60b9c027c8 Refa: add meta data to retrieval. (#6676)
### What problem does this PR solve?

#6619
### Type of change


- [x] Performance Improvement
2025-03-31 11:45:56 +08:00
2793c8e4fe Added a guide on setting page rank. (#6645)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update

---------

Co-authored-by: balibabu <cike8899@users.noreply.github.com>
2025-03-31 11:44:18 +08:00
805a8f1f47 Update broken discord (#6678)
### Type of change

- [x] Documentation Update
2025-03-31 11:29:34 +08:00
d4a3e9a7cc Fix table migration on non-exist-yet indexed columns. (#6666)
### What problem does this PR solve?

Fix #6334

Hello, I encountered the same problem in #6334. In the
`api/db/db_models.py`, it calls `obj.create_table()` unconditionally in
`init_database_tables`, before the `migrate_db()`. Specially for the
`permission` field of `user_canvas` table, it has `index=True`, which
causes `peewee` to issue a SQL trying to create the index when the field
does not exist (the `user_canvas` table already exists), so
`psycopg2.errors.UndefinedColumn: column "permission" does not exist`
occurred.

I've added a judgement in the code, to only call `create_table()` when
the table does not exist, delegate the migration process to
`migrate_db()`.

Then another problem occurs: the `migrate_db()` actually does nothing
because it failed on the first migration! The `playhouse` blindly issue
DDLs without things like `IF NOT EXISTS`, so it fails... even if the
exception is `pass`, the transaction is still rolled back. So I removed
the transaction in `migrate_db()` to make it work.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-31 11:27:20 +08:00
ad4e59edb2 Don't split and strip input in retrieval component. (#6662)
### What problem does this PR solve?

Actually fix #6241 

Hello, I ran into the same problem as #6241. When I'm testing my agent
flow in the web ui using `Run` button with a file input, the retrieval
component always gave an empty output.

In the code I found that:

`web/src/pages/flow/debug-content/index.tsx`:

```tsx
const onOk = useCallback(async () => {
    const values = await form.validateFields();
    const nextValues = Object.entries(values).map(([key, value]) => {
      const item = parameters[Number(key)];
      let nextValue = value;
      if (Array.isArray(value)) {
        nextValue = ``;

        value.forEach((x) => {
          nextValue +=
            x?.originFileObj instanceof File
              ? `${x.name}\n${x.response?.data}\n----\n`    // Here, the file content always ends in '\n'
              : `${x.url}\n${x.result}\n----\n`;
        });
      }
      return { ...item, value: nextValue };
    });

    ok(nextValues);
  }, [form, ok, parameters]);
```

while in the `agent/component/retrieval.py`:

```python
def _run(self, history, **kwargs):
        query = self.get_input()
        query = str(query["content"][0]) if "content" in query else ""
        lines = query.split('\n')                     # inputs are split to ['xxx','yyy','----','']
        query = lines[-1] if lines else ""      # Here we always get '', thus no result
        kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
        if not kbs:
            return Retrieval.be_output("")
```

so the code will never got correct result.

I'm not sure why the input needs such a split here, so I just removed
the splitting, and it works well on my side.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-31 11:26:49 +08:00
aca4cf4369 Test: Added test cases for Retrieval Chunks HTTP API (#6649)
### What problem does this PR solve?

cover [retrieval
chunk](https://ragflow.io/docs/v0.17.2/http_api_reference#retrieve-chunks)
endpoints

### Type of change

- [x]  add test cases
2025-03-31 10:05:35 +08:00
9aa047257a Fix agent completion requiring calling twice with parameters in begin component (#6659)
### What problem does this PR solve?

Fix #5418

Actually, the fix #4329 also works for agent flows with parameters, so
this PR just relaxes the `else` branch of that. With this PR, it works
fine on my side, may need more testing to make sure this does not break
something.

I guess the real problem may be deeply hidden in the code which relates
to conversation and canvas execution. After a few hours of debugging, I
see the only difference between with and without parameters in `begin`
component, is the `history` field of canvas data. When the `begin`
component contains some parameters, the debug log shows:

```
025-03-29 19:50:38,521 DEBUG    356590 {
            "component_name": "Begin",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [{"type": "fileUrls", "key": "fileUrls", "name": "files", "optional": true, "value": "问题.txt\n今天天气怎么样"}], "inputs": [], "debug_inputs": [], "prologue": "你好! 我是你的助理,有什么可以帮到你的吗?", "output": null},
            "output": null,
            "inputs": []
        }, history: [["user", "请回答我上传文件中的问题。"]], kwargs: {"stream": false}
2025-03-29 19:50:38,523 DEBUG    356590 {
            "component_name": "Answer",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "post_answers": [], "output": null},
            "output": null,
            "inputs": []
        }, history: [["user", "请回答我上传文件中的问题。"]], kwargs: {"stream": false}
```

Then it does not go further along the flow.

When the `begin` component does not contain any parameter, the debug log
shows:

```
2025-03-29 19:41:13,518 DEBUG    353596 {
            "component_name": "Begin",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "prologue": "你好! 我是你的助理,有什么可以帮到你的吗?", "output": null},
            "output": null,
            "inputs": []
        }, history: [], kwargs: {"stream": false}
2025-03-29 19:41:13,520 DEBUG    353596 {
            "component_name": "Answer",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "post_answers": [], "output": null},
            "output": null,
            "inputs": []
        }, history: [], kwargs: {"stream": false}
2025-03-29 19:41:13,556 INFO     353596 127.0.0.1 - - [29/Mar/2025 19:41:13] "POST /api/v1/agents/fee6886a0c6f11f09b48eb8798e9aa9b/sessions?user_id=123 HTTP/1.1" 200 -
2025-03-29 19:41:21,115 DEBUG    353596 Canvas.prepare2run: Retrieval:LateGuestsNotice
2025-03-29 19:41:21,116 DEBUG    353596 {
            "component_name": "Retrieval",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "similarity_threshold": 0.2, "keywords_similarity_weight": 0.3, "top_n": 8, "top_k": 1024, "kb_ids": ["9aca3c700c5911f0811caf35658b9385"], "rerank_id": "", "empty_response": "", "tavily_api_key": "", "use_kg": false, "output": null},
            "output": null,
            "inputs": []
        }, history: [["user", "请回答我上传文件中的问题。"]], kwargs: {"stream": false}
```

It correctly goes along the flow and generates correct answer.

You can see the difference: when the `begin` component has any
parameter, the `history` field is filled from the beginning, while it is
just `[]` if the `begin` component has no parameter.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-31 09:57:56 +08:00
65a8cd1772 Fix knowledge_graph_kwd on infinity. Close #6476 and #6624 (#6651)
### What problem does this PR solve?

Fix knowledge_graph_kwd on infinity. Close #6476 and #6624

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-28 22:05:40 +08:00
563a84beaf Docs: fix retrieval docs. (#6633)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-03-28 16:03:37 +08:00
d32a35d8fd Fix entity_types. Close #6287 and #6608 (#6632)
### What problem does this PR solve?

Fix entity_types. Close #6287 and #6608

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-28 15:00:24 +08:00
2632493c8b Consolidate entrypoint to support broader deployment scenarios (#6566)
### What problem does this PR solve?

This PR gives better control over how we distribute which service will
be loaded. With this approach, we can create containers to run only the
web server and others to run the task executor. It also introduces the
unique ID per task executor host, this will be important when scaling
task executors horizontally, considering unique task executor ids will
be required.

This new `entrypoint.sh` maintains the default behavior of starting the
web server and task executor in the same host.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [X] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-28 12:39:34 +08:00
c61df5dd25 Dynamic Context Window Size for Ollama Chat (#6582)
# Dynamic Context Window Size for Ollama Chat

## Problem Statement
Previously, the Ollama chat implementation used a fixed context window
size of 32768 tokens. This caused two main issues:
1. Performance degradation due to unnecessarily large context windows
for small conversations
2. Potential business logic failures when using smaller fixed sizes
(e.g., 2048 tokens)

## Solution
Implemented a dynamic context window size calculation that:
1. Uses a base context size of 8192 tokens
2. Applies a 1.2x buffer ratio to the total token count
3. Adds multiples of 8192 tokens based on the buffered token count
4. Implements a smart context size update strategy

## Implementation Details

### Token Counting Logic
```python
def count_tokens(text):
    """Calculate token count for text"""
    # Simple calculation: 1 token per ASCII character
    # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
    total = 0
    for char in text:
        if ord(char) < 128:  # ASCII characters
            total += 1
        else:  # Non-ASCII characters
            total += 2
    return total
```

### Dynamic Context Calculation
```python
def _calculate_dynamic_ctx(self, history):
    """Calculate dynamic context window size"""
    # Calculate total tokens for all messages
    total_tokens = 0
    for message in history:
        content = message.get("content", "")
        content_tokens = count_tokens(content)
        role_tokens = 4  # Role marker token overhead
        total_tokens += content_tokens + role_tokens

    # Apply 1.2x buffer ratio
    total_tokens_with_buffer = int(total_tokens * 1.2)
    
    # Calculate context size in multiples of 8192
    if total_tokens_with_buffer <= 8192:
        ctx_size = 8192
    else:
        ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
        ctx_size = ctx_multiplier * 8192
    
    return ctx_size
```

### Integration in Chat Method
```python
def chat(self, system, history, gen_conf):
    if system:
        history.insert(0, {"role": "system", "content": system})
    if "max_tokens" in gen_conf:
        del gen_conf["max_tokens"]
    try:
        # Calculate new context size
        new_ctx_size = self._calculate_dynamic_ctx(history)
        
        # Prepare options with context size
        options = {
            "num_ctx": new_ctx_size
        }
        # Add other generation options
        if "temperature" in gen_conf:
            options["temperature"] = gen_conf["temperature"]
        if "max_tokens" in gen_conf:
            options["num_predict"] = gen_conf["max_tokens"]
        if "top_p" in gen_conf:
            options["top_p"] = gen_conf["top_p"]
        if "presence_penalty" in gen_conf:
            options["presence_penalty"] = gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf:
            options["frequency_penalty"] = gen_conf["frequency_penalty"]
            
        # Make API call with dynamic context size
        response = self.client.chat(
            model=self.model_name,
            messages=history,
            options=options,
            keep_alive=60
        )
        return response["message"]["content"].strip(), response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
    except Exception as e:
        return "**ERROR**: " + str(e), 0
```

## Benefits
1. **Improved Performance**: Uses appropriate context windows based on
conversation length
2. **Better Resource Utilization**: Context window size scales with
content
3. **Maintained Compatibility**: Works with existing business logic
4. **Predictable Scaling**: Context growth in 8192-token increments
5. **Smart Updates**: Context size updates are optimized to reduce
unnecessary model reloads

## Future Considerations
1. Fine-tune buffer ratio based on usage patterns
2. Add monitoring for context window utilization
3. Consider language-specific token counting optimizations
4. Implement adaptive threshold based on conversation patterns
5. Add metrics for context size update frequency

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-28 12:38:27 +08:00
1fbc4870f0 Fix: HTTP API delete_chunks issue. (#6621)
### What problem does this PR solve?

#6611

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-28 12:13:43 +08:00
f304492716 Fix: binlog_expire_logs_seconds (#6626)
This PR updates the MySQL container configuration by setting the
parameter --binlog_expire_logs_seconds to 604800 seconds (7 days). This
change ensures that MySQL automatically purges binary logs older than 7
days, helping to conserve disk space and maintain precise log
management.

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-28 11:37:53 +08:00
f35c226ce7 Feat: Add RadioGroup component #3221 (#6622)
### What problem does this PR solve?

Feat: Add RadioGroup component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-28 10:20:49 +08:00
0b48a2e0d1 Fix: When Excel is a formula, the parsed result is a formula, but cannot be correctly parsed as a value type (#6613)
### What problem does this PR solve?

Fix: When Excel is a formula, the parsed result is a formula, but cannot
be correctly parsed as a value type

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: tangyu <1@1.com>
2025-03-28 09:33:49 +08:00
fd614a7aef Test: Added test cases for Delete Chunks HTTP API (#6612)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] add test cases
2025-03-28 09:33:23 +08:00
0758c04941 Refa: token similarity calculations. (#6614)
### What problem does this PR solve?

#6507

### Type of change

- [x] Performance Improvement
2025-03-28 09:33:08 +08:00
fe0396bbb9 Introduced delete_knowledge_graph (#6605)
### What problem does this PR solve?

Introduced delete_knowledge_graph

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] Documentation Update
2025-03-27 17:16:48 +08:00
974a467cf6 Fix: The rule of Categorize operator is adjusted. (#6599)
### What problem does this PR solve?

When I use the categorization operator, I find that if the keyword I
want to Categorize appears repeatedly in the input, then I cannot judge
the word that appears most frequently. Instead, I simply get the word
that matches and return all the ones that have made the following
changes to the categorize filter.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Refactoring
- [x] Performance Improvement
2025-03-27 17:02:21 +08:00
36b62e0fab EntityResolution batch. Close #6570 (#6602)
### What problem does this PR solve?

EntityResolution batch

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-27 16:40:36 +08:00
d2043ff9f2 Fix: LmStudioChat issue. (#6591)
### What problem does this PR solve?

#6577

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-27 14:59:15 +08:00
ecc9605a32 Fix: team doc deletion issue. (#6589)
### What problem does this PR solve?

#6557

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-27 13:26:38 +08:00
70dc56d26b Feat: Add logo-with-text-white.svg #3221 (#6588)
### What problem does this PR solve?

Feat: Add logo-with-text-white.svg #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-27 12:28:17 +08:00
82ccbd2cba fix:  Remove unnecessary minio initialization (#6544)
### What problem does this PR solve?

Prevent applications from failing to start due to calling non-existent
or incorrect Minio connection configurations when using file storage
outside of Minio

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-27 09:54:25 +08:00
c4998d0e09 Rename graphrag task lock (#6576)
### What problem does this PR solve?

Rename graphrag task lock

### Type of change

- [x] Refactoring
2025-03-26 23:48:47 +08:00
5eabfe3912 Update values.yaml image to infiniflow/infinity:v0.6.0-dev3 issue#5882 (#6568)
related issue #5882

### What problem does this PR solve?

update helm infinity image version from v0.5.0 
 image to infiniflow/infinity:v0.6.0-dev3 

to solve issue #5882

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-26 21:15:26 +08:00
df3890827d Refa: change LLM chat output from full to delta (incremental) (#6534)
### What problem does this PR solve?

Change LLM chat output from full to delta (incremental)

### Type of change

- [x] Refactoring
2025-03-26 19:33:14 +08:00
6599db1e99 Test: Update test cases for PR #6405 #6504 #6538 (#6565)
### What problem does this PR solve?

PR #6405 #6504 #6538

### Type of change

- [x] update test cases
2025-03-26 19:23:13 +08:00
b7d7ad536a AI search vs. chat (#6569)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-03-26 18:46:34 +08:00
24d8ff7425 Fix:flow DB Assistant module translate to zh (#6562)
### What problem does this PR solve?

Fix:flow DB Assistant module translate to zh

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-26 17:32:05 +08:00
735d9dd949 Feat: add "tools" to llm_factories.json (#6552)
### What problem does this PR solve?



### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Chenzy <chenzy901@gmail.com>
2025-03-26 17:31:18 +08:00
cc5f4a5efa Fix: python_api_reference.md update dataset bug (#6527)
### What problem does this PR solve?

There is a small bug in the update dataset of this document. The return
type of rag_oobject.list_datasets is a list type, and the first item
should be taken as' ragflow_stdk.modules.dataset ' DataSet`, Adapt to
the update.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 17:30:09 +08:00
93c26ae1ef Test: Added test cases for Update Chunk HTTP API (#6556)
### What problem does this PR solve?

cover [update
chunk](https://ragflow.io/docs/v0.17.2/http_api_reference#update-chunk)
endpoints

### Type of change

- [x] add test cases
2025-03-26 16:47:47 +08:00
cc8029a732 Fix: uploading in chat box issue. (#6547)
### What problem does this PR solve?

#6228

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 15:37:48 +08:00
6bf26e2a81 Optimize graphrag again (#6513)
### What problem does this PR solve?

Removed set_entity and set_relation to avoid accessing doc engine during
graph computation.
Introduced GraphChange to avoid writing unchanged chunks.

### Type of change

- [x] Performance Improvement
2025-03-26 15:34:42 +08:00
7a677cb095 Fix: image_id is None. (#6538)
### What problem does this PR solve?

#6499

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 12:04:21 +08:00
12ad746ee6 Fix: Bedrock model invocation error. (#6533)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 11:27:12 +08:00
163e71d06f Fix: Hunyuan model adding error. (#6531)
### What problem does this PR solve?

#6523
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 10:33:33 +08:00
c8c91fd827 Fix: link to KB from filemanager. (#6530)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 09:41:14 +08:00
d17970ebd0 0321 chunkmethods (#6520)
### What problem does this PR solve?

#6061 

### Type of change


- [x] Documentation Update
2025-03-26 09:03:18 +08:00
bf483fdf02 Fix: describe parameter error. (#6519)
### What problem does this PR solve?
#6228

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 09:02:48 +08:00
b2b7ed8927 Fix: abnormal chunk id (#6506)
### What problem does this PR solve?

#6500

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 19:03:29 +08:00
0a79dfd5cf Test: Added test cases for List Chunks HTTP API (#6514)
### What problem does this PR solve?

cover [list
chunks](https://ragflow.io/docs/v0.17.2/http_api_reference#list-chunks)
endpoints

### Type of change

- [x] update test cases
2025-03-25 17:28:58 +08:00
1d73baf3d8 Feat: improve '/mv' '/list' API performance (#6502)
### What problem does this PR solve?

1. for /mv API use get by ids to avoid O(n) DB IO

2. for /list remove one useless call
### Type of change

- [x] Performance Improvement
2025-03-25 16:30:25 +08:00
f3ae4a3bae Fix: img_id errror. (#6504)
### What problem does this PR solve?

#6499

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 15:57:03 +08:00
814a210f5d Fix: failed to acquire lock exception with retry mechanism for postgres and mysql (#6483)
Added the with_retry decorator in db_models.py to add a retry mechanism
for database operations. Applied the retry mechanism to the lock and
unlock methods of the PostgresDatabaseLock and MysqlDatabaseLock classes
to enhance the reliability of lock operations.

### What problem does this PR solve?
resolve failed to acquire lock exception with retry mechanism

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-03-25 15:09:56 +08:00
60c3a253ad Fix: api-key issue for xinference. (#6490)
### What problem does this PR solve?

#2792

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 15:01:13 +08:00
384b6549a6 Fix: remove doc status checking while creating an assistant. (#6486)
### What problem does this PR solve?

#6461

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 11:13:22 +08:00
b2ec39c59d Fix: Resolve FlowSetting not reading Title from .ts files (#6469)
### What problem does this PR solve?

Fix: Resolve FlowSetting not reading Title from .ts files

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 11:07:29 +08:00
095fc84cf2 Fix: claude max tokens. (#6484)
### What problem does this PR solve?

#6458

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 10:41:55 +08:00
542cf16292 Feat: add project_id and project_name to Langfuse API (#6481)
### What problem does this PR solve?

Enhance Langfuse API: add project_id and project_name

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-25 10:36:34 +08:00
27989eb9a5 Test: Add list chunk checkpoint for the add chunk API (#6482)
### What problem does this PR solve?

Add list chunk checkpoint for the add chunk API

### Type of change

- [x] update test cases
2025-03-25 10:36:21 +08:00
05997e8215 Remove thinking block from keyword node's result (#6474)
### What problem does this PR solve?

For now, if you use thinking model (deepseek-r1:32b with ollama server
in my case) in "Keyword" node, result contains all <think> block and so
node return not only keywords

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-25 10:22:41 +08:00
5d9afce12d Feat: improve the performance for '/upload' API (#6479)
### What problem does this PR solve?
improve the logic to fetch parent folder, remove the useless DB IO logic

### Type of change

- [x] Performance Improvement
2025-03-25 10:22:19 +08:00
ee6a0bd9db Refa: enhancement: enhance the prompt of related_question API (#6463)
### What problem does this PR solve?

Enhance the prompt of `related_question` API.

### Type of change

- [x] Enhancement
- [x] Documentation Update
2025-03-25 10:00:10 +08:00
b6f3242c6c Test: Update test cases to reduce execution time (#6470)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] update test cases
2025-03-25 09:17:05 +08:00
390086c6ab Fix: split process bug in graphrag extract (#6423)
### What problem does this PR solve?

1. miss completion delimiter.
2. miss bracket process.
3. doc_ids return by update_graph is a set, and insert operation in
extract_community need a list.


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 21:41:20 +08:00
a40c5aea83 Miscellaneous UI updates (#6471)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-24 19:36:47 +08:00
f691b4ddd2 Feat: Improve "/convert" API's performance (#6465)
### What problem does this PR solve?

for batch requests based on get_by_ids to fetch all files first replace
the O(n) IO logic.

### Type of change


- [x] Performance Improvement
2025-03-24 19:08:22 +08:00
3c57a9986c Feat: Add LangfuseCard component. #6155 (#6468)
### What problem does this PR solve?

Feat: Add LangfuseCard component. #6155

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 19:07:55 +08:00
5e0a77df2b Feat: add Langfuse APIs (#6460)
### What problem does this PR solve?

Add Langfuse APIs

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 18:25:43 +08:00
66e557b6c0 Fix: Langfuse update model has no fields attribute (#6453)
### What problem does this PR solve?

Langfuse update model has no fields attribute

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 15:37:14 +08:00
200b6f55c6 Fix: NameError: free variable 'langfuse_generation' referenced before assignment in enclosing scope (#6451)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: lizheng@ssc-hn.com <lizheng@ssc-hn.com>
2025-03-24 15:14:36 +08:00
b77ce4e846 Feat: support api-key for Ollama. (#6448)
### What problem does this PR solve?

#6189

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 14:53:17 +08:00
85eb367ede Feat: add basic Langfuse support for LLM module (#6443)
### What problem does this PR solve?

#6155

Add basic Langfuse support for LLM module.

A trace example:

<img width="755" alt="image"
src="https://github.com/user-attachments/assets/25c1f852-5116-486c-a47f-6097187142ca"
/>


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 13:18:47 +08:00
0b63346a1a Test: Update test case for #6081 (#6446)
### What problem does this PR solve?

Update test case for #6081

### Type of change

- [x] Update test case
2025-03-24 13:18:12 +08:00
85eb3775d6 Refa: update Anthropic models. (#6445)
### What problem does this PR solve?

#6421

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 12:34:57 +08:00
e4c8d703b5 Test: Update test cases for PR #6194 #6259 #6376 (#6444)
### What problem does this PR solve?

PR #6194 #6259 #6376

### Type of change

- [x] Update test cases
2025-03-24 12:01:33 +08:00
60afb63d44 Feat: Add background-core-standard to tailwind.css #3221 (#6437)
### What problem does this PR solve?

Feat: Add background-core-standard to tailwind.css #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 10:51:46 +08:00
ee5aa51d43 Fix: point in tag issue. (#6436)
### What problem does this PR solve?

#6414

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 10:45:29 +08:00
a6aed0da46 Fix: rerank with YoudaoRerank issue. (#6396)
### What problem does this PR solve?

Fix rerank with YoudaoRerank issue,"'YoudaoRerank' object has no
attribute '_dynamic_batch_size'"


![17425412353825](https://github.com/user-attachments/assets/9ed304c7-317a-440e-acff-fe895fc20f07)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 10:09:16 +08:00
d77380f024 Feat: support pic base bullet for PPT (#6406)
### What problem does this PR solve?

support pic base bullet for PPT

modify one mistake in document

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 09:31:31 +08:00
efc4796f01 Fix ratelimit errors during document parsing (#6413)
### What problem does this PR solve?

When using the online large model API knowledge base to extract
knowledge graphs, frequent Rate Limit Errors were triggered,
causing document parsing to fail. This commit fixes the issue by
optimizing API calls in the following way:
Added exponential backoff and jitter to the API call to reduce the
frequency of Rate Limit Errors.


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-22 23:07:03 +08:00
d869e4d43f Fix: Preserve quotes while handling variable substitution withTemplate component. (#6410)
###Address Problem:
The original implementation used re.sub(r"(\\\"|\")", "", content) which
stripped all quotes from the processed content. While this worked for
simple Jinja2-rendered templates, it caused formatting issues when :
-Quotes were required in the final output (e.g., JSON, Python Code
strings)

###Solution:
    1. Selective JSON Serialization.
    2. Removed Global Quote Removal

### What problem does this PR solve?

This PR addresses an issue in template processing where all quotation
marks (" and \") were being removed from content, potentially corrupting
string formatting in rendered outputs. **In fact, extra quotes is
generated by json.dumps(v, ensure_ascii=False).**

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 19:44:03 +08:00
8eefc8b5fe Test: Added test cases for Add Chunk HTTP API (#6408)
### What problem does this PR solve?

cover [add
chunk](https://ragflow.io/docs/v0.17.2/http_api_reference#add-chunk)
endpoints

### Type of change

- [x] Add test cases
2025-03-21 19:16:30 +08:00
4091af4560 Fix: multiple top-level packages error in Python project (#6370)
### What problem does this PR solve?

This PR resolves the issue of multiple top-level packages being detected
in the Python project, which caused errors when using uv pip install.
The problem occurred because the project had multiple directories files
at the root level, leading to a flat-layout error.
To fix this, the pyproject.toml file was updated to explicitly list the
packages using the [tool.setuptools] section. This ensures that the
correct packages are included during installation, avoiding the
flat-layout error.
Type of change

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 18:44:49 +08:00
394d1a86f6 Fix: add chunk, empty question issue. (#6405)
### What problem does this PR solve?

#6404

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 18:44:12 +08:00
d88964f629 Feat: If the Transfer item is disabled, the item cannot be edited. #3221 (#6409)
### What problem does this PR solve?

Feat: If the Transfer item is disabled, the item cannot be edited. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-21 18:42:52 +08:00
0e0ebaac5f Feat: Adds hierarchical title path tracking for tables in DOCX documents to improve context association (#6374)
### What problem does this PR solve?

Adds hierarchical title path tracking for tables in DOCX documents to
improve context association. Previously, extracted tables lacked
positional context within document structure.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-21 18:42:36 +08:00
8b7e53e643 Fix: miss calculate of token number. (#6401)
### What problem does this PR solve?

#6308

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 17:30:38 +08:00
979cdc3626 UI updates. (#6398)
### What problem does this PR solve?

Updated UI descriptions for delimiters and recommended chunk size

### Type of change

- [x] Documentation Update
2025-03-21 16:50:20 +08:00
a2a4bfe3e3 Fix: change ollama default num_ctx. (#6395)
### What problem does this PR solve?

#6163

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 16:22:03 +08:00
85480f6292 Fix: the error of Ollama embeddings interface returning "500 Internal Server Error" (#6350)
### What problem does this PR solve?

Fix the error where the Ollama embeddings interface returns a “500
Internal Server Error” when using models such as xiaobu-embedding-v2 for
embedding.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 15:25:48 +08:00
f537b6ca00 Fix: flow list translate to zh (#6371)
### What problem does this PR solve?

Add the Chinese translation of 'noMoreData' on the flow list page

### Type of change

- [x] Refactoring
2025-03-21 14:54:12 +08:00
b5471978b0 Fix: add chunk api, empty content issue (#6390)
### What problem does this PR solve?

#6387

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 14:05:59 +08:00
efdfb39a33 Feat: Add Duplicate ID Check and Update Deletion Logic (#6376)
- Introduce the `check_duplicate_ids` function in `dataset.py` and
`doc.py` to check for and handle duplicate IDs.
- Update the deletion operation to ensure that when deleting datasets
and documents, error messages regarding duplicate IDs can be returned.
- Implement the `check_duplicate_ids` function in `api_utils.py` to
return unique IDs and error messages for duplicate IDs.


### What problem does this PR solve?

Close https://github.com/infiniflow/ragflow/issues/6234

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-21 14:05:17 +08:00
7cc5603a82 Fix broken discord invitation links (#6388)
### Type of change

- [x] Documentation Update
2025-03-21 13:38:34 +08:00
9ed004e90d Refa: control the simi for entity resolution. (#6386)
### What problem does this PR solve?

#6352

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 13:16:34 +08:00
d83911b632 Fix: huggingface rerank model issue. (#6385)
### What problem does this PR solve?

#6348

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 12:43:32 +08:00
bc58ecbfd7 Remove feature_request.md (#6383)
### What problem does this PR solve?


### Type of change


- [x] Refactoring
2025-03-21 12:03:38 +08:00
221eae2c59 Refa: refine template. (#6382)
### What problem does this PR solve?

### Type of change


- [x] Refactoring
2025-03-21 11:58:10 +08:00
37303e38ec Refa: refine template. (#6381)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-03-21 11:55:01 +08:00
b754bd523a Fix: let quot stay. (#6377)
### What problem does this PR solve?

#6337

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 11:47:42 +08:00
1bb990719e Feat: Add user registration toggle feature (#6327)
### What problem does this PR solve?

Feat: Add user registration toggle feature. Added a user registration
toggle REGISTER_ENABLED in the settings and .env config file. The user
creation interface now checks the state of this toggle to control the
enabling and disabling of the user registration feature.

the front-end implementation is done, the registration button does not
appear if registration is not allowed. I did the actual tests on my
local server and it worked smoothly.
### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-21 09:38:15 +08:00
7f80d7304d Fix: Optimized the get_by_id method to resolve the issue of missing exceptions and improve query performance (#6320)
Fix: Optimized the get_by_id method to resolve the issue of missing
exceptions and improve query performance

### What problem does this PR solve?

Optimized the get_by_id method to resolve the issue of missing
exceptions and improve query performance.
Optimization details:
1. The original method used a custom query method that required
concatenating SQL, which impacted performance.
2. The query method returned a list, which needed to be accessed by
index, posing a risk of index out-of-bounds errors.
3. The original method used except Exception to catch all errors, which
is not a best practice in Python programming and may lead to missing
exceptions. The get_or_none method accurately catches DoesNotExist
errors while allowing other errors to be raised normally.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Performance Improvement
2025-03-20 23:23:48 +08:00
ca9c3e59fa Call register_scripts on connecting redis (#6361)
### What problem does this PR solve?

Call register_scripts on connecting redis

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 23:20:37 +08:00
674f94228b Chore: unify Ruff config and enable async checks (ASYNC, TRIO) (#6351)
### What problem does this PR solve?

Unify Ruff config and enable async checks (ASYNC, TRIO)

### Type of change

- [x] CI/CD or tooling improvement
2025-03-20 22:31:18 +08:00
ef7e96e486 Feat: Add the functionality to load environment variables from a .env file (#6331)
### Change Content

- A new function `load_env_file` has been added to load environment
variables from a .env file in the current script directory.
- If the .env file exists, the variables within it will be loaded; if it
does not exist, a warning message will be output.

I found this issue while testing this pr:
https://github.com/infiniflow/ragflow/pull/6327. The locally started
server did not read the REGISTER_ENABLED variables in the .env. The
result has always been the default True
### What problem does this PR solve?

Follow the tutorial in the README.md to start from source code. base's
container that is es、redis,etc will load .env. Therefore,
`launch_backend_service.sh` should also load .env to be consistent with
the configuration of the docker container when it was started

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-20 18:35:04 +08:00
dba0caa00b Fix update_progress (#6340)
### What problem does this PR solve?

Fix update_progress

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 17:01:28 +08:00
1d9ca172e3 Fix(api): correct document parsing progress check logic (#6318)
- Fix incorrect progress check condition that prevented re-parsing of
completed documents
- Allow parsing for documents with progress 0.0 (not started) or 1.0
(completed)
- Only block parsing for documents currently in progress (0.0 < progress
< 1.0)

Close #6312

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-20 16:00:17 +08:00
f0c4b28c6b Fix: type import (#6328)
### What problem does this PR solve?

fixed type import .

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 15:23:15 +08:00
6784e0dfee Fix: Resolved a bug where sibling components in Canvas were not restricted to fetching data from the upstream when parallel components were present. (#6315)
### What problem does this PR solve?

Fix: Resolved a bug where sibling components in Canvas were not
restricted to fetching data from the upstream when parallel components
were present.
Issue: When parallel components existed in Canvas, sibling components
incorrectly fetched data without being limited to the upstream scope,
causing data retrieval issues.
Solution: Adjusted the data fetching logic to ensure sibling components
only retrieve data from the upstream scope.
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 15:06:18 +08:00
95497b4aab Fix: adapt to old configurations. (#6321)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 14:50:59 +08:00
5b04b7d972 Fix: rerank with vllm issue. (#6306)
### What problem does this PR solve?

#6301

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 11:52:42 +08:00
4eb3a8e1cc Test: Skip unstable 'stop parse documents' test cases (#6310)
### What problem does this PR solve?

 Skip unstable 'stop parse documents' test cases

### Type of change

- [x] update test cases
2025-03-20 11:35:19 +08:00
9611185eb4 Feat: add VLM-boosted DocX parser (#6307)
### What problem does this PR solve?

Add VLM-boosted DocX parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-20 11:24:44 +08:00
e4380843c4 Feat: add fallback for PDF figure parser (#6305)
### What problem does this PR solve?

Add fallback for PDF figure parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-20 10:48:38 +08:00
046f0bba74 Fix: optimize setting config initialization to resolve Minio initialization error (#6282)
### What problem does this PR solve?

Optimize setting configuration initialization to resolve Minio
initialization error caused by using a specific storage.

Reproduction Scenario:
Using Aliyun OSS as the backend storage with the STORAGE_IMPL
environment variable set to OSS.
The service_conf.yaml.template configuration file contains OSS-related
configurations, while other storage configurations are commented out.
When the service starts, it still attempts to initialize the Minio
storage. Since there is no Minio configuration in
service_conf.yaml.template, it results in an error due to the missing
configuration file.

Optimization Measures:
Automatically determine the required initialization configuration based
on the environment variable.
Do not initialize configurations for unused resources.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 10:45:40 +08:00
e0c436b616 UI updates (#6290)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-20 10:26:16 +08:00
dbf2ee56c6 Test: Added test cases for Stop Parse Documents HTTP API (#6285)
### What problem does this PR solve?

cover [stop parse
documents](https://ragflow.io/docs/dev/http_api_reference#stop-parsing-documents)
endpoints

### Type of change

- [x] Add test cases
2025-03-20 09:42:50 +08:00
1d6760dd84 Feat: add VLM-boosted PDF parser (#6278)
### What problem does this PR solve?

Add VLM-boosted PDF parser if VLM is set.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-20 09:39:32 +08:00
344727f9ba Feat: add agent share team viewer (#6222)
### What problem does this PR solve?
Allow member view agent  
#  Canvas editor

![image](https://github.com/user-attachments/assets/042af36d-5fd1-43e2-acf7-05869220a1c1)
# List agent

![image](https://github.com/user-attachments/assets/8b9c7376-780b-47ff-8f5c-6c0e7358158d)
# Setting 

![image](https://github.com/user-attachments/assets/6cb7d12a-7a66-4dd7-9acc-5b53ff79a10a)
 
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-19 19:04:13 +08:00
d17ec26c56 Fix: In the Agent's workflow, the input content cannot be wrapped, and \n will not work, otherwise an error will be reported #6241 (#6284)
### What problem does this PR solve?

Fix: In the Agent's workflow, the input content cannot be wrapped, and
\n will not work, otherwise an error will be reported #6241

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 18:54:23 +08:00
lei
4236d81cfc Docs: Update accelerate_doc_indexing.mdx (#6268)
### What problem does this PR solve?
The word is written incorrectly

### Type of change

- [x] Documentation Update
2025-03-19 18:04:03 +08:00
bb869aca33 Fix get_unacked_iterator (#6280)
### What problem does this PR solve?

Fix get_unacked_iterator. Close #6132 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 17:46:58 +08:00
9cad60fa6d Fix: Add a basic example when the example of content_tagging is empty (#6276)
### What problem does this PR solve?

When using LLM for auto-tag, if there are no examples, the tag format
generated by LLM may be wrong. This will cause Elasticsearch insert
errors. Adding basic examples can avoid this problem.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 17:30:47 +08:00
42e89e4a92 Fix: swich follow interact issue. (#6279)
### What problem does this PR solve?

#6188

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 17:30:12 +08:00
8daec9a4c5 Feat: Alter TreeView component #3221 (#6272)
### What problem does this PR solve?

Feat: Alter TreeView component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-19 15:44:59 +08:00
53ac27c3ff Feat: support agent version history. (#6130)
### What problem does this PR solve?
Add history version save
- Allows users to view and download agent files by version revision
history

![image](https://github.com/user-attachments/assets/c300375d-8b97-4230-9fc4-83d148137132)

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-19 15:22:53 +08:00
e689532e6e Fix: long api key issue. (#6267)
### What problem does this PR solve?

#6248

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 13:30:40 +08:00
c2302abaf1 Fix: remove dup ids for APIs. (#6263)
### What problem does this PR solve?

#6234

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 13:10:59 +08:00
8157285a79 Fix: Nan response for retrieval component. (#6265)
### What problem does this PR solve?

#6247

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 13:10:45 +08:00
c6e1a2ca8a Feat: add TTS support for SILICONFLOW. (#6264)
### What problem does this PR solve?

#6244

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-19 12:52:12 +08:00
41e112294b Fix: let parsing continue. (#6259)
### What problem does this PR solve?

#6229

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 12:18:19 +08:00
49086964b8 Fix: type violations. (#6262)
### What problem does this PR solve?

#6238
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 12:12:34 +08:00
dd81c30976 Fix: tag_feas deletion error. (#6257)
### What problem does this PR solve?

#6218

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 11:25:11 +08:00
1d8daad223 Fix: read flow blank template strings from i18n file (#6240)
### What problem does this PR solve?

Blank and createFromNothing were not read from the i18n file when Agent
was created
创建Agent的时候 Blank 和 createFromNothing  没从i18n文件中读取

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 10:56:35 +08:00
f540559c41 Miscellaneous updates (#6245)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-03-18 19:49:06 +08:00
d16033dd2c Fix: #5719 Added type check for parser_config (#6243)
### What problem does this PR solve?

Fix #5719 
Add data type validation for parser_config

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 18:40:06 +08:00
7eb417b24f Fix: Nan issue. (#6242)
### What problem does this PR solve?

#6065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 17:58:54 +08:00
9515ed401f Test: Added test cases for Parse Documents HTTP API (#6235)
### What problem does this PR solve?

cover [parse
documents](https://ragflow.io/docs/dev/http_api_reference#parse-documents)
endpoints

### Type of change

- [x] add test cases
2025-03-18 17:39:24 +08:00
f982771131 Fix: empty retrieval kb ids. (#6236)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 17:39:10 +08:00
a087d13ccb Feat: text file support position retaining. (#6231)
### What problem does this PR solve?

#5832

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-18 16:55:11 +08:00
6e5cbd0196 Feat: Alter TransferList props #3221 (#6226)
### What problem does this PR solve?

Feat: Alter TransferList props #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-18 16:07:49 +08:00
6e8d0e3177 Fix: rank feat issue. (#6225)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 16:07:29 +08:00
5cf610af40 Feat: add vision LLM PDF parser (#6173)
### What problem does this PR solve?

Add vision LLM PDF parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-18 14:52:20 +08:00
897fe85b5c Fix: add support for non-stream response with session.ask_without_stream (#6207)
Add support for non-stream response with session.ask_without_stream and
fix a typo mistake in python API doc
There are requirements for non-stream response, especially for commands
exection, e.g. text2SQL. The commands have to be completed before the
agent is triggered.

### What problem does this PR solve?

It's to fix the [Issue:
6206](https://github.com/infiniflow/ragflow/issues/6206)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Howard WU <yuanhao.wu@ifudata.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-18 14:20:19 +08:00
57cbefa589 Feat: Add TreeView component #3221 (#6214)
### What problem does this PR solve?

Feat: Add TreeView component #3221

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-18 14:03:12 +08:00
09291db805 Fix: miss url path. (#6211)
### What problem does this PR solve?

#6210

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 14:02:57 +08:00
e9a6675c40 Fix: enable ollama api-key. (#6205)
### What problem does this PR solve?

#6189

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 13:37:34 +08:00
1333d3c02a Fix: float transfer exception. (#6197)
### What problem does this PR solve?

#6177

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 11:13:44 +08:00
222a2c8fa5 Docs: rm max token (#6202)
### What problem does this PR solve?

#6178

### Type of change

- [x] Documentation Update
2025-03-18 11:13:24 +08:00
5841aa8189 Docs: remove max tokens. (#6198)
### What problem does this PR solve?

#6178

### Type of change

- [x] Documentation Update
2025-03-18 11:05:06 +08:00
1b9f63f799 Fix: doc deletion failure with invalid docid. (#6194)
### What problem does this PR solve?

#6174

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 10:44:50 +08:00
1b130546f8 Fix: NaN data error. (#6192)
### What problem does this PR solve?

#6065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 10:23:29 +08:00
7e4d693054 Fix: in case response.choices[0].message.content is None. (#6190)
### What problem does this PR solve?

#6164

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 10:00:27 +08:00
b0b4b7ba33 Feat: Improve Recognizer.py performance (#6185)
### What problem does this PR solve?

For the create_inputs method based on np operation to replace for loop

### Type of change

- [x] Performance Improvement
2025-03-18 09:39:49 +08:00
d0eda83697 Fix: none item while concating df. (#6176)
### What problem does this PR solve?

#6065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-17 18:17:25 +08:00
503e5829bb Test: Added test cases for Delete Documents HTTP API (#6175)
### What problem does this PR solve?

cover [delete
documents](https://ragflow.io/docs/dev/http_api_reference#delete-documents)
endpoints

### Type of change

- [x] add test cases
2025-03-17 18:17:03 +08:00
79482ff672 Refa: Improve ppt_parser better handle list (#6162)
### What problem does this PR solve?
This pull request (PR) incorporates codes for parsing PPTX files, aiming
to more precisely depict text in list formats (hint list by .).

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-17 17:02:39 +08:00
3a99c2b5f4 Refa: PARALLEL_DEVICES is a static parameter. (#6168)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-03-17 16:49:54 +08:00
45fe02c8b3 Test: update test cases per pr #6144 (#6166)
### What problem does this PR solve?

fix check point per pr #6144 

### Type of change

- [x] update test case
2025-03-17 16:49:34 +08:00
2c3c4274be Fix: Correct parameter retrieval in thumbup api (#6114)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/5546

up_down was using req.get("set") to retrieve the parameter, but
according to the frontend code, it should be req.get("thumbup").



![image](https://github.com/user-attachments/assets/7189c982-f80e-48c9-a0a3-40f8a5d9e47b)



1842ca0334/web/src/interfaces/request/chat.ts (L3)


1842ca0334/api/apps/conversation_app.py (L327)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: zhaozhicheng <zhicheng.zhao@fastonetech.com>
2025-03-17 16:02:53 +08:00
501c017a26 Test: Added test cases for List Documents HTTP API (#6158)
### What problem does this PR solve?

cover [list
documents](https://ragflow.io/docs/dev/http_api_reference#list-documents)
endpoints

### Type of change

- [x] add test cases
2025-03-17 15:36:57 +08:00
d36420a87a Test: fix expected value validation for list dataset endpoint (#6160)
### What problem does this PR solve?

fix function is_sort() usage error

### Type of change

- [ ] update test cases
2025-03-17 15:36:48 +08:00
5983803c8b Miscellaneous UI updates (#6094)
### What problem does this PR solve?

#6049 

### Type of change

- [x] Documentation Update
- [x] Other (please describe): UI updates
2025-03-17 14:17:34 +08:00
fabc5e9259 Refa: fix re-rank scope. (#6152)
### What problem does this PR solve?

#6140

### Type of change


- [x] Refactoring
2025-03-17 13:26:29 +08:00
5748d58c74 Refa: refine the error message. (#6151)
### What problem does this PR solve?

#6138

### Type of change

- [x] Refactoring
2025-03-17 13:07:22 +08:00
bfa8d342b3 Fix: retrieval debug mode issue. (#6150)
### What problem does this PR solve?

#6139

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-17 13:07:13 +08:00
37f3486483 Fix: validation of readonly fields. (#6144)
### What problem does this PR solve?

#6104

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-17 12:22:49 +08:00
3e19044dee Feat: add OCR's muti-gpus and parallel processing support (#5972)
### What problem does this PR solve?

Add OCR's muti-gpus and parallel processing support

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

@yuzhichang I've tried to resolve the comments in #5697. OCR jobs can
now be done on both CPU and GPU. ( By the way, I've encountered a
“Generate embedding error” issue #5954 that might be due to my outdated
GPUs? idk. ) Please review it and give me suggestions.

GPU:

![gpu_ocr](https://github.com/user-attachments/assets/0ee2ecfb-a665-4e50-8bc7-15941b9cd80e)

![smi](https://github.com/user-attachments/assets/a2312f8c-cf24-443d-bf89-bec50503546d)

CPU:

![cpu_ocr](https://github.com/user-attachments/assets/1ba6bb0b-94df-41ea-be79-790096da4bf1)
2025-03-17 11:58:40 +08:00
8495036ff9 Feat: Limit view with more knowledge when list knowledge so many (#6093)
### What problem does this PR solve?

Limit view with more knowledge when list knowledge so many.

### Type of change

- [x] Refactoring
2025-03-17 10:50:25 +08:00
7f701a5756 Test: update test cases per pr #6095 to fix issue #6039 (#6143)
### What problem does this PR solve?

update test case per pr #6095 to fix issue #6039

### Type of change

- [x] update test case
2025-03-17 10:49:40 +08:00
634e7a41c5 Doc: Update readme document (#6052)
### What problem does this PR solve?

Added GPU startup script in the readme document

### Type of change

- [x] Documentation Update
2025-03-17 09:51:13 +08:00
d1d651080a Test: Added test cases for Update Documents HTTP API (#6106)
### What problem does this PR solve?

cover [update documents
endpoints](https://ragflow.io/docs/dev/http_api_reference#update-document)

### Type of change

- [x] add test cases
2025-03-17 09:36:32 +08:00
0fa44c5dd3 Fix: update link of deploy_local_llm.mdx (#6110)
### What problem does this PR solve?

Links of [How to integrate with
Ollama](https://github.com/infiniflow/ragflow/blob/main/docs/guides/models/deploy_local_llm.mdx)
need to be update after #5555

```
https://github.com/infiniflow/ragflow/blob/main/docs/guides/deploy_local_llm.mdx
->
https://github.com/infiniflow/ragflow/blob/main/docs/guides/models/deploy_local_llm.mdx
```



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: jingfelix <jingfelix@outlook.com>
2025-03-17 09:35:37 +08:00
89a69eed72 Introduced task priority (#6118)
### What problem does this PR solve?

Introduced task priority

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 23:43:46 +08:00
1842ca0334 Fix: Fixed the issue that events cannot be triggered after the shadcn-ui dialog is closed #3221. (#6108)
### What problem does this PR solve?

Fix: Fixed the issue that events cannot be triggered after the shadcn-ui
dialog is closed #3221.

Refer to [Combobox in a form in a dialog isn't working.
#1748](https://github.com/shadcn-ui/ui/issues/1748#issuecomment-2720130543)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 17:36:24 +08:00
e5a8b23684 Fix: empty tag field issue. (#6103)
### What problem does this PR solve?

#6102

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 17:35:57 +08:00
4fffee6695 Regards kb_id at ElasticSearch insert, update, delete. (#6105)
### What problem does this PR solve?

Regards kb_id at ElasticSearch insert, update, delete. Close #6066

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 17:34:02 +08:00
485bc7d7d6 Fix: limit the depth of DFS (#6101)
### What problem does this PR solve?

#6085

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 17:10:38 +08:00
b5ba8b783a Refa: enlarge http body size. (#6100)
### What problem does this PR solve?



### Type of change


- [x] Refactoring
2025-03-14 16:47:39 +08:00
d7774cf049 Fix: fix document concurrent upload issue (#6095)
### What problem does this PR solve?

Resolve document concurrent upload issue. #6039 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 16:31:44 +08:00
9d94acbedb Fix: Knowledge base page cannot upload folders #6062 (#6096)
### What problem does this PR solve?

Fix: Knowledge base page cannot upload folders #6062

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 16:17:10 +08:00
b77e844fc3 Fix: none parse_config updating. (#6092)
### What problem does this PR solve?

#6081

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 16:06:16 +08:00
a6ab2c71c3 Refa: enlarge default max request body size. (#6088)
### What problem does this PR solve?


### Type of change


- [x] Refactoring
2025-03-14 15:21:08 +08:00
5c8ad6702a Fix: check the file name length. (#6083)
### What problem does this PR solve?

#6060

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 15:01:37 +08:00
f0601afa75 Doc: update launch from source. (#6074)
### What problem does this PR solve?

#6050

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-03-14 14:20:18 +08:00
56e984f657 Fix: Prevent password boxes other than login passwords from displaying passwords saved in the browser's password manager by default. #6033 (#6084)
### What problem does this PR solve?

Fix: Prevent password boxes other than login passwords from displaying
passwords saved in the browser's password manager by default. #6033

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 14:15:43 +08:00
5d75b6be62 Fix executor name (#6080)
### What problem does this PR solve?

Fix executor name

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 14:13:47 +08:00
12c3023a22 Fix: remove NaN output of components. (#6079)
### What problem does this PR solve?

#6065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 13:58:42 +08:00
56b228f187 Refa: remove max toekns for image2txt models. (#6078)
### What problem does this PR solve?

#6063

### Type of change


- [x] Refactoring
2025-03-14 13:51:45 +08:00
42eb99554f Feat: add token comsumption & speed to little lamp. (#6077)
### What problem does this PR solve?

#6059

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 13:37:31 +08:00
c85b468b8d Feat: Change “Document parser” to "PDF parser" #6072 (#6073)
### What problem does this PR solve?

Feat: Change “Document parser” to "PDF parser" #6072

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 12:03:35 +08:00
7463241896 Fix: empty doc id validation. (#6064)
### What problem does this PR solve?

#6031

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 11:45:44 +08:00
c00def5b71 Fix 6030 (#6070)
### What problem does this PR solve?

Close #6030 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 11:29:22 +08:00
f16418ccf7 Feat: Add deepseek to llm_factories (#6051)
### What problem does this PR solve?

AWS Bedrock has made deepseek-r1 available on its serverless inference.

This adds the R1 serverless model for use via the bedrock model
abilities.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 10:35:44 +08:00
2d4a60cae6 Fix: Reduce excessive IO operations by loading LLM factory configurations (#6047)
…ions

### What problem does this PR solve?

This PR fixes an issue where the application was repeatedly reading the
llm_factories.json file from disk in multiple places, which could lead
to "Too many open files" errors under high load conditions. The fix
centralizes the file reading operation in the settings.py module and
stores the data in a global variable that can be accessed by other
modules.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [x] Performance Improvement
- [ ] Other (please describe):
2025-03-14 09:54:38 +08:00
47926f7d21 Improve API Documentation, Standardize Error Handling, and Enhance Comments (#5990)
### What problem does this PR solve?  
- The API documentation lacks detailed error code explanations. Added
error code tables to `python_api_reference.md` and
`http_api_reference.md` to clarify possible error codes and their
meanings.
- Error handling in the codebase is inconsistent. Standardized error
handling logic in `sdk/python/ragflow_sdk/modules/chunk.py`.
- Improved API comments by adding standardized docstrings to enhance
code readability and maintainability.

### Type of change  
- [x] Documentation Update  
- [x] Refactoring
2025-03-13 19:06:50 +08:00
940072592f Fix: chat_completion answer data incorrect (#6041)
### What problem does this PR solve?

fix chat_completion answer data incorrect

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: renqi <renqi08266@fxomail.com>
2025-03-13 18:59:59 +08:00
4ff609b6a8 Fix: optimize OCR garbage identification to reduce unnecessary filtering (#6027)
### What problem does this PR solve?

Optimize OCR garbage identification to reduce unnecessary filtering.
#5713

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-13 18:48:32 +08:00
0a877941f4 Test: Added test cases for Download Documents HTTP API (#6032)
### What problem does this PR solve?

cover [download docments
endpoints](https://ragflow.io/docs/dev/http_api_reference#download-document)

### Type of change

- [x] add test cases
2025-03-13 18:32:57 +08:00
baf3b9be7c Added 0.17.2 release notes (#6028)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2025-03-13 15:59:58 +08:00
4df4bf68a2 DOCS: for release. (#6023)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-03-13 15:09:29 +08:00
471bd92b4c Fix: empty api-key causes problems. (#6022)
### What problem does this PR solve?
#5926

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-13 14:57:47 +08:00
3af1063737 Feat: Set the default value of Chunk token number to 512 #6016 (#6017)
### What problem does this PR solve?

Feat: Set the default value of Chunk token number to 512 #6016

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-13 14:51:55 +08:00
9c8060f619 0.17.1 release notes (#6021)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2025-03-13 14:43:24 +08:00
e213873852 Optimize graphrag cache get entity (#6018)
### What problem does this PR solve?

Optimize graphrag cache get entity

### Type of change

- [x] Performance Improvement
2025-03-13 14:37:59 +08:00
56acb340d2 Test: update test cases per issue #5920 #5923 (#6007)
### What problem does this PR solve?

update test cases per issue #5920 #5923

### Type of change

- [x] update test case
2025-03-13 10:53:07 +08:00
e05cdc2f9c Fix: encode detect error. (#6006)
### What problem does this PR solve?

#5967

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-13 10:47:58 +08:00
3571270191 Refa: refine the context window size warning. (#5993)
### What problem does this PR solve?


### Type of change
- [x] Refactoring
2025-03-12 19:40:54 +08:00
bd5eb47441 TEST: Added test cases for Upload Documents HTTP API (#5991)
### What problem does this PR solve?

cover upload docments endpoints

### Type of change

- [x] add test cases
2025-03-12 19:38:52 +08:00
7cd37c37cd Feat: add CSV file parsing support (#5989)
### What problem does this PR solve?

Add CSV file parsing support #4552, #5849, #5870

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-12 19:20:50 +08:00
d660f6b9a5 Feat: add use KG to retrieval component. (#5988)
### What problem does this PR solve?

#5973

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-12 19:10:07 +08:00
80389ae61e Feat: Alter Item to TransferListItemType #3221 (#5986)
### What problem does this PR solve?

Feat: Alter Item to TransferListItemType #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-12 18:54:41 +08:00
6e13922bdc Feat: Add qwq model support to Tongyi-Qianwen factory (#5981)
### What problem does this PR solve?

add qwq model support to Tongyi-Qianwen factory
https://github.com/infiniflow/ragflow/issues/5869

### Type of change

- [x] New Feature (non-breaking change which adds functionality)


![image](https://github.com/user-attachments/assets/49f5c6a0-ecaf-41dd-a23a-2009f854d62c)


![image](https://github.com/user-attachments/assets/93ffa303-920e-4942-8188-bcd6b7209204)


![1741774779438](https://github.com/user-attachments/assets/25f2fd1d-8640-4df0-9a08-78ee9daaa8fe)


![image](https://github.com/user-attachments/assets/4763cf6c-1f76-43c4-80ee-74dfd666a184)

Co-authored-by: zhaozhicheng <zhicheng.zhao@fastonetech.com>
2025-03-12 18:54:15 +08:00
c57f16d16f Feat: Why can't Retrieval component support internet web search. #5973 (#5978)
### What problem does this PR solve?

Feat: Why can't Retrieval component support internet web search. #5973

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-12 18:47:22 +08:00
3c43a7aee8 For an Agent with an Input Begin value, on the first call the return … (#5957)
…session_id does not exist in the session

For an Agent with an Input Begin value, on the first call the return
session_id does not exist in the session

### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-12 17:01:44 +08:00
dd8779b257 Feat: Retrieval supports internet search. (#5974)
### What problem does this PR solve?

#5973

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-12 16:51:01 +08:00
46bdfb9661 TEST: Remove unstable assertion introduced in PR #5924 (#5968)
### What problem does this PR solve?

Remove unstable assertion introduced in PR #5924

### Type of change

- [x] update test cases
2025-03-12 16:09:45 +08:00
e3ea4b7ec2 Fix: Add Knowledge Base Document Parsing Status Check (#5966)
When creating and updating chats, add a check for the parsing status of
knowledge base documents. Ensure that all documents have been parsed
before allowing chat creation to improve user experience and system
stability.

**Main Changes:**

- Add document parsing status check logic in `chat.py`.
- Implement the `is_parsed_done` method in `knowledgebase_service.py`.
- Prevent chat creation when documents are being parsed or parsing has
failed.

### What problem does this PR solve?

fix this bug:https://github.com/infiniflow/ragflow/issues/5960

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-03-12 16:07:45 +08:00
41c67ce8dd Fixed a Docusaurus display issue. (#5969)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-12 16:07:22 +08:00
870a6e93da Refactoring: Optimization of the Deep Research Module Code Structure (#5959)
This commit refactors the deep research module (deep_research.py), with
the following major improvements: The complex thinking and retrieval
logic has been broken down into multiple independent private methods,
enhancing code readability and maintainability. Static methods and class
methods have been introduced to simplify the logic for tag processing.
The search and reasoning processes have been optimized, increasing the
modularity of the code. The flexibility of information retrieval and
processing has been improved. The refactored code structure is now
clearer, making it easier to understand and extend the functionality of
the deep research module.

### What problem does this PR solve?

increase  the modularity of the code

### Type of change

- [x] Refactoring

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-03-12 15:34:52 +08:00
80f87913bb Fix: empty value updating. (#5949)
### What problem does this PR solve?

#5920

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-12 11:25:17 +08:00
45123dcc0a Fix: ollama model add error. (#5947)
### What problem does this PR solve?

#5944

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-12 10:56:05 +08:00
49d560583f Fix: HTTP API Updates Read-Only Dataset Fields During Modification #5923 (#5937)
### What problem does this PR solve?

Fixes #5923 

Fixes the readonly variables from payload at
 /datasets/<dataset_id> 

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

Now if user tries to modify readonly values then it will show " The
input parameters are invalid. "

invalid_keys = {"id", "embd_id", "chunk_num", "doc_num", "parser_id",
"create_date", "create_time", "created_by",
"status","token_num","update_date","update_time"}
    if any(key in req for key in invalid_keys):
return get_error_data_result(message="The input parameters are
invalid.")
i have include those readonly keys in invalid_keys

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Raghav <2020csb1115@iitrpr.ac.in>
2025-03-12 10:27:02 +08:00
1c663b32b9 Fix:signal.SIGUSR1 and signal.SIGUSR2 can't use in window. so don't bind signal.SIGUSR1 and signal.SIGUSR2 in the windows env (#5941)
### What problem does this PR solve?
Fix:signal.SIGUSR1 and signal.SIGUSR2 can't use in window. so don't bind
signal.SIGUSR1 and signal.SIGUSR2 in the windows env

### Type of change

- [✓ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: tangyu <1@1.com>
2025-03-12 09:43:18 +08:00
caecaa7562 Feat: apply LLM to optimize citations. (#5935)
### What problem does this PR solve?

#5905

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-11 19:56:21 +08:00
ed11be23bf Fix: When calling the Create chat completion API, the response data… (#5928)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: renqi <renqi08266@fxomail.com>
2025-03-11 19:56:07 +08:00
7bd5a52019 Feat: Add Breadcrumb component #3221 (#5929)
### What problem does this PR solve?

Feat: Add Breadcrumb component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-11 18:55:25 +08:00
87763ef0a0 TEST: Added test cases for Update Dataset HTTP API (#5924)
### What problem does this PR solve?

cover dataset update endpoints

### Type of change

- [x] Add test cases
2025-03-11 18:55:11 +08:00
939e668096 Optimized graphrag again (#5927)
### What problem does this PR solve?

Optimized graphrag again

### Type of change

- [x] Performance Improvement
2025-03-11 18:36:10 +08:00
45318e7575 Docs: updates. (#5921)
### What problem does this PR solve?


### Type of change

- [x] Other (please describe):
2025-03-11 16:43:50 +08:00
8250b9f6b0 Feat: Add german translations (#5866)
### What problem does this PR solve?

Add Support for german language 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-11 16:13:58 +08:00
1abf03351d Docs: reformat. (#5914)
### What problem does this PR solve?


### Type of change

- [x] Other (please describe):
2025-03-11 16:11:27 +08:00
46b95d5cfe Reverted some of the version changes (#5908)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-11 16:03:11 +08:00
59ba4777ee Docs: updates issue templates. (#5913)
### What problem does this PR solve?


### Type of change

- [x] Other (please describe):
2025-03-11 16:02:28 +08:00
d44739283c Docs: prepare docs for release v0.17.1 (#5900)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-03-11 14:39:41 +08:00
9c953a67a6 UI updates (#5899)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-11 14:14:37 +08:00
bd3fa317e7 Add docs for tag sets (#5890)
### What problem does this PR solve?

#5716, #5529

### Type of change

- [x] Documentation Update
2025-03-11 13:57:36 +08:00
715e2b48ca Test: Update test cases per PR #5748 #5878 (#5894)
### What problem does this PR solve?

update test cases per PR #5748 #5878  issue #5709 

### Type of change

- [x] update test cases
2025-03-11 13:35:28 +08:00
90d18143ba Refa: add prompt to empty retrieved answwer. (#5892)
### What problem does this PR solve?

#5883

### Type of change

- [x] Refactoring
2025-03-11 13:11:14 +08:00
4b6809b32d Fix: docs updates. (#5889)
### What problem does this PR solve?

#5852

### Type of change

- [x] Documentation Update
2025-03-11 11:55:39 +08:00
7b96146d3f Fix: check desc parameter value. (#5884)
### What problem does this PR solve?

#5851

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-11 11:43:21 +08:00
21c55a2e0f Test: Update test cases per PR #5778 (#5880)
### What problem does this PR solve?

update test cases per PR https://github.com/infiniflow/ragflow/pull/5778

### Type of change

- [x] update test cases
2025-03-11 11:07:09 +08:00
8e965040ce Fix: rm <think> for ES sql generation. (#5881)
### What problem does this PR solve?

#5850

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-11 10:41:19 +08:00
780ee2b2be Fix: empty dataset parser id. (#5878)
### What problem does this PR solve?

#5709

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-11 10:23:08 +08:00
6f9cd96ec5 Fix: dataset_ids parameter (#5864)
### What problem does this PR solve?

Fixed  #5839
This PR fix  error code 102, stating dataset_ids is required.

curl --request POST \
     --url http://{address}/api/v1/chats \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer <YOUR_API_KEY>' \
     --data '{
         "name": "test_chat"
     }'
     
     this is not getting datasetids , fix for it. 

file location : sdk\python\ragflow_sdk\ragflow.py

added : "dataset_ids": dataset_list if dataset_list else [],



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Raghav <2020csb1115@iitrpr.ac.in>
2025-03-11 09:44:06 +08:00
47e244ee9f Test: Update test cases per PR #5755 (#5857)
### What problem does this PR solve?

 Update test cases per PR #5755

### Type of change

- [x] update test cases
2025-03-10 19:04:39 +08:00
df11fe75d3 Feat: Add AvatarGroup component. #3221 (#5858)
### What problem does this PR solve?
Feat: Add AvatarGroup component. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-10 19:03:48 +08:00
bf0d516e49 Agent Update: Fix Role Issue and Enhance KB Search (#5842)
### What problem does this PR solve?

**generate.py 更新:**
问题:部分模型提供商对输入对话内容的格式有严格校验,要求第一条内容的 role 不能为 assistant,否则会报错。
解决:删除了系统设置的 agent 开场白,确保传递给模型的对话内容中,第一条内容的 role 不为 assistant。

**retrieval.py 更新:**
问题:当前知识库检索使用全部对话内容作为输入,可能导致检索结果不准确。
解决:改为仅使用用户最后提出的一个问题进行知识库检索,提高检索的准确性。

**Update generate.py:**
Issue: Some model providers have strict validation rules for the format
of input conversation content, requiring that the role of the first
content must not be assistant. Otherwise, an error will occur.
Solution: Removed the system-set agent opening statement to ensure that
the role of the first content in the conversation passed to the model is
not assistant.

**Update retrieval.py:**
Issue: The current knowledge base retrieval uses the entire conversation
content as input, which may lead to inaccurate retrieval results.
Solution: Changed the retrieval logic to use only the last question
asked by the user for knowledge base retrieval, improving retrieval
accuracy.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Performance Improvement
2025-03-10 18:29:58 +08:00
b18da35da6 TEST: Added test cases for List Dataset HTTP API (#5856)
### What problem does this PR solve?

cover dataset list endpoints

### Type of change

- [x] Add test cases
2025-03-10 18:29:33 +08:00
8ba1e6c183 Feat: add sync_dsl parameter to support synchronizing modifications to existing sessions (#5843)
When accessing the /api/v1/agents/{agent_id}/completions API, sessions
created before agent modifications retain the old DSL data. To use the
latest agent configuration (like new prompts) in historical sessions, I
added the sync_dsl parameter. It defaults to False to maintain existing
behavior and only synchronizes when set to True. If needed, a manual
synchronization API can be created to trigger the sync explicitly.
2025-03-10 17:46:08 +08:00
d4f84f0b54 Fix: keyword compont display issue #5794 (#5844)
### What problem does this PR solve?

Fix: keyword compont display issue #5794

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-10 16:15:44 +08:00
6ec6ca6971 Refactor graphrag to remove redis lock (#5828)
### What problem does this PR solve?

Refactor graphrag to remove redis lock

### Type of change

- [x] Refactoring
2025-03-10 15:15:06 +08:00
1163e9e409 Feat: When selecting a reordering model, give a prompt that it takes too long. #5834 (#5835)
### What problem does this PR solve?

Feat: When selecting a reordering model, give a prompt that it takes too
long. #5834

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-10 14:14:38 +08:00
15736c57c3 Fix: empty query issue. (#5830)
### What problem does this PR solve?

#5214

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-10 13:56:56 +08:00
fa817a8ab3 Refa: SiliconFlow model list refresh. (#5825)
### What problem does this PR solve?

#5806

### Type of change


- [x] Refactoring
2025-03-10 12:51:12 +08:00
8b99635eb3 Feat: Add TransferList component. #3221 (#5822)
### What problem does this PR solve?

Feat: Add TransferList component. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-10 11:22:06 +08:00
1919780880 Refa: reduce default value of MAX_CONCURRENT_CHATS (#5821)
### What problem does this PR solve?

#5786

### Type of change

- [x] Refactoring
2025-03-10 11:22:06 +08:00
82f5d901c8 Refa: add model. (#5820)
### What problem does this PR solve?

#5783

### Type of change

- [x] Refactoring
2025-03-10 11:22:06 +08:00
dek
dc4d4342cd Fix: broken /api/v1/chats endpoint (#5785)
### What problem does this PR solve?

The `/api/v1/chats` API endpoint was broken, any GET request got the
following response:
```
{"code":100,"data":null,"message":"TypeError(\"'int' object is not callable\")"}
```

With this log ragflow-server side:

```
2025-03-07 14:36:26,297 ERROR    20 'int' object is not callable
Traceback (most recent call last):
  File "/ragflow/.venv/lib/python3.10/site-packages/flask/app.py", line 880, in full_dispatch_request
    rv = self.dispatch_request()
  File "/ragflow/.venv/lib/python3.10/site-packages/flask/app.py", line 865, in dispatch_request
    return self.ensure_sync(self.view_functions[rule.endpoint])(**view_args)  # type: ignore[no-any-return]
  File "/ragflow/api/utils/api_utils.py", line 303, in decorated_function
    return func(*args, **kwargs)
  File "/ragflow/api/apps/sdk/chat.py", line 323, in list_chat
    logging.WARN(f"Don't exist the kb {kb_id}")
TypeError: 'int' object is not callable
2025-03-07 14:36:26,298 INFO     20 172.18.0.6 - - [07/Mar/2025 14:36:26] "GET /api/v1/chats HTTP/1.1" 200 -
``` 
This was caused by the incorrect use of `logging.WARN` as a method (it's
a loglevel object), instead of the correct `logging.warning()` method.

This PR fixes that, and also rewrites the message to be grammaticaly
correct.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-10 11:22:06 +08:00
e05658685c Refa: update mistral model list. (#5818)
### What problem does this PR solve?

#5782

### Type of change

- [x] Refactoring
2025-03-10 11:22:06 +08:00
b29539b442 Fix: CoHereRerank not respecting base_url when provided (#5784)
### What problem does this PR solve?

vLLM provider with a reranking model does not work : as vLLM uses under
the hood the [CoHereRerank
provider](https://github.com/infiniflow/ragflow/blob/v0.17.0/rag/llm/__init__.py#L250)
with a `base_url`, if this URL [is not passed to the Cohere
client](https://github.com/infiniflow/ragflow/blob/v0.17.0/rag/llm/rerank_model.py#L379-L382)
any attempt will endup on the Cohere SaaS (sending your private api key
in the process) instead of your vLLM instance.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-10 11:22:06 +08:00
b1a46d5adc Fix:when start with source code not in docker env report 'UnicodeDec… (#5802)
### What problem does this PR solve?

fix:when start with  source code not in docker env report
"UnicodeDecodeError: 'gbk' codec can't decode byte 0xad in position 5:
illegal multibyte sequence" in windows

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: tangyu <1@1.com>
2025-03-10 11:22:06 +08:00
50c510d16b Fix: bugs mentioned by#5760 (#5778)
### What problem does this PR solve?

Fixed the issue of "stop deleting when encountering invalid dataset ID"

#5760

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-10 11:22:06 +08:00
8a84d1048c TEST: Added test cases for Delete Dataset HTTP API (#5770)
### What problem does this PR solve?

1. cover dataset deletion endpoints
2. format code with ruff

### Type of change

- [x] add testcases
- [ ] style
2025-03-07 17:44:51 +08:00
2ad852d8df Fix: truncate message issue. (#5776)
### What problem does this PR solve?

Close #5761
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-07 17:41:56 +08:00
ca39f5204d Initial draft of Implemnt deep research (#5774)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-07 17:06:49 +08:00
5b0e38060a Feat:Optimize the table extraction logic in the Markdown parser: (#5663)
Enhance the recognition of both borderless and bordered Markdown tables.
Add support for extracting HTML tables, including various scenarios with
nested HTML tags. Improve performance by using conditional checks to
reduce unnecessary regular expression matching.

### What problem does this PR solve?

Optimize the table extraction logic in the Markdown parser:
Enhance the recognition of both borderless and bordered Markdown tables.
Add support for extracting HTML tables, including various scenarios with
nested HTML tags.
Improve performance by using conditional checks to reduce unnecessary
regular expression matching.

### Type of change

- [x] Performance Improvement

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-03-07 17:02:35 +08:00
66938e0b68 Feat(api): Add dsl parameters to control whether dsl fields are included (#5769)
1. **Issue**: When calling `list_agent_session` via the HTTP API, users
may only need to display conversation messages, and do not want to see
the associated dsl, which can be very large. Therefore, consider adding
a control option to determine whether the DSL should be returned, with
the default being to return it.

2. **Documentation Discrepancy**: In the HTTP API documentation, under
"List agent sessions," the "Response" section states that the "data"
field is a dictionary when "success" is returned. However, the actual
returned data is a list. This discrepancy has been corrected.
2025-03-07 16:58:00 +08:00
64c6cc4cf3 Fix: truncate message issue. (#5765)
### What problem does this PR solve?

Close #5761

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-07 16:33:25 +08:00
3418984848 Fix: meta fields updata issue, (#5764)
### What problem does this PR solve?

#4789

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-07 16:21:27 +08:00
3c79990934 Fix: Fixed the issue that files cannot be uploaded on the file management page. #5730 (#5763)
### What problem does this PR solve?

Fix: Fixed the issue that files cannot be uploaded on the file
management page. #5730

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-07 16:09:20 +08:00
da3f279495 Fix: add the validation for parser_config. (#5755)
### What problem does this PR solve?

#5719

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-07 15:34:34 +08:00
b1bbb9e210 Refa: make Rewrite component effective to relative data expression. (#5752)
### What problem does this PR solve?

#5716

### Type of change

- [x] Refactoring
2025-03-07 13:48:13 +08:00
0e3e129a83 Fix: Resolve inconsistency in APIToken dialog_id field definition (#5749)
The `dialog_id` field was inconsistently defined:
- In the `migrate_db()` function, it was set to `null=True`.
- In the model class, it was defined as `null=False`.

This inconsistency caused an issue during the initial deployment where
the database table did not allow `dialog_id` to be null. As a result,
calling `APITokenService.save(**obj)` in `system_app.py` raised the
following error:

```
peewee.IntegrityError: null value in column "dialog_id" violates not-null constraint
```

### What problem does this PR solve?

Error: peewee.IntegrityError: null value in column "dialog_id" violates
not-null constraint

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-07 13:26:08 +08:00
c87b58511e Fix: API empty field input. (#5748)
### What problem does this PR solve?

#5709

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-07 13:11:07 +08:00
8d61dcc8ab Fix: can not upload file close #5730 (#5742)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

close #5730 

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-03-07 11:24:23 +08:00
06b29d7da4 Fix: empty description (#5747)
### What problem does this PR solve?

#5705

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-07 11:23:37 +08:00
5229a76f68 Fix: Remove the document language parameter. #5640 (#5728)
### What problem does this PR solve?

Fix: Remove the document language parameter. #5686

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-07 11:03:58 +08:00
4f9504305a TEST: Added test cases for Create Dataset HTTP API (#5724)
### What problem does this PR solve?

1. add test cases
2. integrate workflows/tests.yml into CI pipeline

### Type of change

- [x] add testcases
2025-03-06 20:22:17 +08:00
27153dde85 Updated instructions in the UI (#5733)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-06 19:56:15 +08:00
9fc7174612 Fix: too long context during KG issue. (#5723)
### What problem does this PR solve?

#5088

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-06 19:21:07 +08:00
8fb8374dfc Fix: delimiter issue. (#5720)
### What problem does this PR solve?

#5704

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-06 17:51:22 +08:00
ff35c140dc Refa: remove dataset language and validate dataset name length. (#5707)
### What problem does this PR solve?

#5686
#5702

### Type of change

- [x] Refactoring
2025-03-06 17:08:28 +08:00
df9b7b2fe9 Fix: rerank issue. (#5696)
### What problem does this PR solve?

#5673

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-06 15:05:19 +08:00
48f3f49e80 Fix: docs inconsistency. (#5695)
### What problem does this PR solve?

#5662

### Type of change

- [x] Documentation Update
2025-03-06 11:48:31 +08:00
94d7af00b8 Fix: Remove the max token parameter. #5640 #5646 (#5693)
### What problem does this PR solve?

Fix: Remove the max token parameter. #5640 #5646

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-06 11:44:27 +08:00
251ba7f058 Refa: remove max tokens since no one needs it. (#5690)
### What problem does this PR solve?

#5646 #5640

### Type of change

- [x] Refactoring
2025-03-06 11:29:40 +08:00
28296955f1 Minor: improve tips display (#5631)
### What problem does this PR solve?

1. Add the missing translations.  
![CleanShot 2025-03-05 at 10 29
32](https://github.com/user-attachments/assets/85e95372-07d9-47a1-82cf-6eb4d0e1c831)

2. Shorten overly long tips.  
![CleanShot 2025-03-05 at 10 34
49](https://github.com/user-attachments/assets/fae8ce4c-6495-4abf-958d-2febeb38b893)

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [x] Other (please describe):
2025-03-06 11:03:49 +08:00
1b2fc3cc9a Feat: Add rerank option to huggingface's model type drop-down box. #5658 (#5689)
### What problem does this PR solve?

Feat: Add rerank option to huggingface's model type drop-down box. #5658

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-06 11:03:08 +08:00
b8da2eeb69 Feat: support huggingface re-rank model. (#5684)
### What problem does this PR solve?

#5658

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-06 10:44:04 +08:00
5f62f0c9d7 Miscellaneous updates (#5670)
### What problem does this PR solve?

#5625 #5614 

### Type of change


- [x] Documentation Update
2025-03-06 09:55:27 +08:00
a54843cc65 Feat: Use react-hook-form to synchronize the data of the categorize form to the agent node. #3221 (#5665)
### What problem does this PR solve?

Feat: Use react-hook-form to synchronize the data of the categorize form
to the agent node. #3221

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-05 19:43:08 +08:00
4326873af6 refactor: no need to inherit in python3 clean the code (#5659)
### What problem does this PR solve?

As title

### Type of change


- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-03-05 18:03:53 +08:00
a64f4539e7 Docs: updates. (#5661)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2025-03-05 17:54:34 +08:00
ec68ab1c8c Fix: search citation issue. (#5657)
### What problem does this PR solve?
#5649
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-05 17:25:47 +08:00
e5041749a2 Fix: tavily search error. (#5653)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-05 17:03:05 +08:00
78b2e0be89 fix: issue #5600 (#5645)
fix: issue https://github.com/infiniflow/ragflow/issues/5600

### What problem does this PR solve?

close issue https://github.com/infiniflow/ragflow/issues/5600 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-05 16:50:37 +08:00
b6aded378d Feat: The parsing method is paper and needs to display Document parser. #5467 (#5652)
### What problem does this PR solve?

Feat: The parsing method is paper and needs to display Document parser.
#5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-05 16:25:34 +08:00
11e3f5e8b2 Feat: Upload file UI/UX enhancements (#5359)
### What problem does this PR solve?

Modifies the UX for uploading process on the website.

- Adds option to parse on creation the files
- Adds progress bar to display progress of chunk
- Adds per file feedback on uploading operation

#### Screenshots:

- Show files uploading:

![image](https://github.com/user-attachments/assets/a5693f42-8232-4d5c-a240-20ed343634a5)

- Errors on specific files

![image](https://github.com/user-attachments/assets/986a7f54-ab32-4634-89ab-a098fe1954aa)


### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-03-05 15:20:32 +08:00
f65c3ae62b Refactored DocumentService.update_progress (#5642)
### What problem does this PR solve?

Refactored DocumentService.update_progress

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-05 14:48:03 +08:00
02c955babb Fix: parameter error. (#5641)
### What problem does this PR solve?

#5600

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-05 14:37:51 +08:00
ca04ae9540 Minor: improve doc and rm unused file (#5634)
### What problem does this PR solve?

The `ocr.res` file is already included in the model directory
`rag/res/deepdoc`, but it doesn't seem to be utilized here.

### Type of change

- [x] Documentation Update
2025-03-05 12:59:54 +08:00
b0c21b00d9 Refactor: Optimize error handling and support parsing of XLS(EXCEL97—2003) files. (#5633)
Optimize error handling and support parsing of XLS(EXCEL97—2003) files.
2025-03-05 11:55:27 +08:00
47684fa17c Fix: image file can't preview (#5626)
### What problem does this PR solve?

![CleanShot 2025-03-05 at 10 12
28](https://github.com/user-attachments/assets/412b1663-5d65-4dca-9137-63d0ec5eaadd)
the preview botton of image not work for me.

request url:
`http://127.0.0.1:9222/document/af570920f80e11efb8e967fd67f0d8c7?ext=jpg&prefix=file`
response: `{"code":401,"data":null,"message":"<Unauthorized '401:
Unauthorized'>"}`


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-05 11:30:41 +08:00
148a7e7002 fix: issue #5600 (#5620)
### What problem does this PR solve?

close issue #5600 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-03-05 11:10:04 +08:00
76e8285904 use to_df replace to_pl when get infinity Result (#5604)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Performance Improvement

---------

Co-authored-by: wangwei <dwxiayi@163.com>
2025-03-05 09:35:40 +08:00
555c70672e Fix:Fix the bug of incorrectly gets the APIToken. (#5597)
### What problem does this PR solve?

Fix the issue where, when getting a user's APIToken, if the user is part
of another user's team, it incorrectly gets the Team owner's APIToken
instead.


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-04 19:35:42 +08:00
850e218051 Feat: Render DynamicCategorize with shadcn-ui. #3221 (#5610)
### What problem does this PR solve?

Feat: Render DynamicCategorize with shadcn-ui. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-04 19:31:32 +08:00
fb4b5b0a06 Added 0.17.0 release notes (#5608)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-04 19:21:28 +08:00
f256e1a59a Feat: Render MessageForm with shadcn-ui. #3221 (#5596)
### What problem does this PR solve?

Feat: Render MessageForm with shadcn-ui. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-04 15:47:05 +08:00
9816b868f9 Docs: about meta files in API reference. (#5594)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-03-04 15:43:09 +08:00
6e828f0fcb Fix: better start experience PYTHONPATH in shell (#5593)
### What problem does this PR solve?

As title export PYTHONPATH in the shell

### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-03-04 15:23:44 +08:00
4d6484b03e Fix nursery.start_soon. Close #5575 (#5591)
### What problem does this PR solve?

Fix nursery.start_soon. Close #5575

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-04 14:46:54 +08:00
afe9269534 Introduced jemalloc (#5590)
### What problem does this PR solve?

Introduced jemalloc.
Python uses pymalloc (which is an reimplementation of gblibc malloc) to
manage RES. It has pools for small objects to avoid returning memory to
OS aggressively. My experience is: Replacing pymalloc with
[jemalloc](https://github.com/jemalloc/jemalloc) can reduce RES and
speedup task_executor.py.

### Type of change

- [x] Performance Improvement
2025-03-04 12:49:39 +08:00
688cb8f19d Fix: remove KB id restriction while creating chat. (#5588)
### What problem does this PR solve?

#5586

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-04 12:36:37 +08:00
f6dd2cd1af Fix: fix may lose part of information of last stream chunck (#5584)
### What problem does this PR solve?

 Fix may lose part of information of last stream chunck

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-04 11:58:10 +08:00
69dc14f5d6 Add separate API service resource to Helm chart (#5572)
### What problem does this PR solve?

Adds a new Kubernetes Service resource to the Helm chart which
specifically targets the RAGFlow API. This feature useful for cases
where you want to expose the RAGFlow HTTP API separately from the web
interface, for example if RAGFlow is running behind an authenticating
proxy it allows a route to bypass the proxy (e.g. by defining a separate
ingress resource which forwards to the separate API-only k8s service
added here) to provide RAGFlow API access. This is still secure since
API access is already authenticated by API keys inside RAGFlow itself.

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-03-04 11:35:43 +08:00
202acbd628 Perf: update novita.ai LLM library (#5574)
### What problem does this PR solve?

LLM library update

### Type of change

- [x] Other : config update
2025-03-04 11:35:25 +08:00
a283fefd18 Fix: LLM with ___ return cannot be deleted #5585 (#5587)
### What problem does this PR solve?

Fix: LLM with ___ return cannot be deleted #5585

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-04 11:35:12 +08:00
d9bbaf5d6c Minor: Fixed broken links (#5565)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-03 19:24:28 +08:00
1075b975c5 Feat: Render WikipediaForm and BaiduForm with shadcn-ui. #3221 (#5564)
### What problem does this PR solve?

Feat: Render WikipediaForm and BaiduForm with shadcn-ui. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-03 19:01:15 +08:00
c813c1ff4c Made task_executor async to speedup parsing (#5530)
### What problem does this PR solve?

Made task_executor async to speedup parsing

### Type of change

- [x] Performance Improvement
2025-03-03 18:59:49 +08:00
abac2ca2c5 Feat: add toc to api doc (#5552)
### What problem does this PR solve?

the api doc is too long,  add a toc might be better

![CleanShot 2025-03-03 at 16 53
17](https://github.com/user-attachments/assets/9dfbc682-fdbf-4b37-8a01-87049db51f86)


### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-03 18:54:01 +08:00
64e9702a26 Feat: Render QWeatherForm with shadcn-ui. #3221 (#5558)
### What problem does this PR solve?

Feat: Render QWeatherForm with shadcn-ui. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-03 17:59:55 +08:00
76cb4cd174 Feat: add 'delete' for agent's sessions api and unify apis of agent sdk (#5525)
### What problem does this PR solve?

Add sessions deletion support for agent in http and python api

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-03 17:15:16 +08:00
65d7c19979 Feat: Render RewriteQuestionForm with shadcn-ui #3221 (#5551)
### What problem does this PR solve?

Feat: Render RewriteQuestionForm with shadcn-ui #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-03 17:14:19 +08:00
b67697b6f2 Restructured guides (#5555)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-03-03 17:13:37 +08:00
131f272e69 Feat: Combine Select and LlmSettingFieldItems into LLMSelect. #3221 (#5548)
### What problem does this PR solve?

Feat: Combine Select and LlmSettingFieldItems into LLMSelect. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-03 15:44:37 +08:00
03d1265cfd Restructured guides (#5549)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-03-03 15:42:39 +08:00
c190086707 Fix: bad case for tokenizer. (#5543)
### What problem does this PR solve?

#5492

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-03 15:36:16 +08:00
5d89a8010b Feat: Add NextLLMSelect with shadcn-ui. #3221 (#5542)
### What problem does this PR solve?
Feat: Add NextLLMSelect with shadcn-ui. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-03 13:54:06 +08:00
7a81fa00e9 Optimize prompt. (#5541)
### What problem does this PR solve?

#5526

### Type of change

- [x] Performance Improvement
2025-03-03 13:12:38 +08:00
606ed0c8ab Fix: in case running KG repeatly. (#5538)
### What problem does this PR solve?

#5512

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-03 12:22:36 +08:00
8b1a4365ed Fix email validation regex (#5533)
### What problem does this PR solve?

This pull request aims to fix a bug that prevents certain email
addresses from signing up. The affected TLDs were returning 'invalid
email address' errors:

.museum
.software
.photography
.technology
.marketing
.education
.international
.community
.construction
.government
.consulting
....

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
2025-03-03 10:55:10 +08:00
8a2542157f Fix: possible memory leaks close #5277 (#5500)
### What problem does this PR solve?

close #5277 by make sure the file close

### Type of change

- [x] Performance Improvement

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-03-03 10:26:45 +08:00
d6836444c9 DOC: for release. (#5472)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update

---------

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
2025-03-02 18:47:06 +08:00
3b30799b7e minor (#5497)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-02-28 19:36:50 +08:00
e61da33672 Moved agent components into the agent folder (#5496)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-28 19:27:57 +08:00
6a71314d70 Feat: Add the Experimental text to the option of the large model of the Image2text type of LayoutRecognizeItem (#5495)
### What problem does this PR solve?
Feat: Add the Experimental text to the option of the large model of the
Image2text type of LayoutRecognizeItem

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 18:44:04 +08:00
06e0c7d1a9 Feat: multiline text input for chat (#5317)
### What problem does this PR solve?

Improves the chat interface by adding a multiline chat area that grows
when multiple lines exists.

Some images:

* Empty:
<img width="1334" alt="image"
src="https://github.com/user-attachments/assets/e8a68b46-def9-45af-b5b1-db0f0b67e6d8"
/>

* With multiple lines and documents:
<img width="1070" alt="image"
src="https://github.com/user-attachments/assets/ff976c5c-08fa-492f-9fc0-17512c95f9f2"
/>


### Type of change
- [X] New Feature (non-breaking change which adds functionality)
2025-02-28 18:05:50 +08:00
7600ebd263 Feat: Hide the suffix of the large model name. #5433 (#5494)
### What problem does this PR solve?

Feat: Hide the suffix of the large model name. #5433

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 18:02:33 +08:00
21943ce0e2 Refine error message while embedding model error, (#5490)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-28 17:52:38 +08:00
aa313e112a Feat: Wrap MaxTokenNumber with DatasetConfigurationContainer. #5467 (#5491)
### What problem does this PR solve?

Feat: Wrap MaxTokenNumber with DatasetConfigurationContainer. #5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 17:52:18 +08:00
2c7428e2ee Feat: Put the configuration of different parsing methods into separate components. #5467 (#5487)
### What problem does this PR solve?

Feat: Put the configuration of different parsing methods into separate
components. #5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 16:54:04 +08:00
014f2ef900 Fix typo and error (#5479)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-02-28 16:09:40 +08:00
b418ce5643 Fix table parser issue. (#5482)
### What problem does this PR solve?

#1475
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 16:09:12 +08:00
fe1c48178e Refa: better gitignore (#5473)
### What problem does this PR solve?

when develop ragflow local there would be a hash file generate that is
kind of not good for develop
this patch add a regex to `.gitignore` for better developing 

### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 15:07:39 +08:00
35f13e882e Fix typos (#5476)
### What problem does this PR solve?

Fix lots of typos.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-02-28 15:01:54 +08:00
85924e898e Fix: enhance aliyun oss access with adding prefix path (#5475)
### What problem does this PR solve?

Enhance aliyun oss access with adding prefix path.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 15:00:00 +08:00
622b72db4b Fix: add ctrl+c signal for better exit (#5469)
### What problem does this PR solve?

This patch add signal for ctrl + c that can exit the code friendly
cause code base use thread daemon can not exit friendly for being
started.

how to reproduce
1. docker-compose -f docker/docker-compose-base.yml up
2. other window `bash docker/launch_backend_service.sh`
3. stop 1 first
4. try to stop 2 then two thread can not exit which must use `kill pid`

This patch fix it 
and should fix most the related issues in the `issues`

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 14:52:40 +08:00
a0a7b46cff DOCS: amend docker image building page and more hints for mac users (#5461)
### What problem does this PR solve?

Amend docker image building page and more hints for mac users

### Type of change

- [x] Documentation Update
2025-02-28 14:46:22 +08:00
37aacb3960 Refa: drop useless fasttext (#5470)
### What problem does this PR solve?

This patch drop useless fastext which is seems useless in the code base 
and its very kind of hard install
should close #4498


### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 14:30:56 +08:00
79bc9d97c9 Refa: better service conf (#5471)
### What problem does this PR solve?

This patch fix most of the issues like #4853 #5038 and so on

the root reason is that we need to add the hostname to the `/etc/hosts`
which is not wrote in main README
and the code side read `conf/service_conf.yaml` as settings 
and its hard for developers to debug, this patch fix it, or maybe can
discuss better solution here
 
### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 14:28:00 +08:00
f150687dbc Fix: language selection display on the profile settings page (#5459)
### What problem does this PR solve?

Improve the language selection display on the profile settings page.

| before | after |
| --- | --- |
|![截屏2025-02-28 上午8 46
54](https://github.com/user-attachments/assets/0924275c-99d4-4ddd-8935-693286c0d07f)|![CleanShot
2025-02-28 at 09 58
21](https://github.com/user-attachments/assets/a96c9d73-8e16-40a8-aa80-d31fecc18edf)|

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 11:20:52 +08:00
b2a5482d2c Feat: Modify the parsing method string to an enumeration type. #5467 (#5468)
### What problem does this PR solve?

Feat: Modify the parsing method string to an enumeration type. #5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 11:13:56 +08:00
5fdfb8d465 Fix: rm think if stream is Flase. (#5458)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 10:05:18 +08:00
8b2c04abc4 Feat: If the user is not logged in, jump to the login page by refreshing. (#5451)
### What problem does this PR solve?

Feat: If the user is not logged in, jump to the login page by
refreshing.
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-27 18:48:53 +08:00
83d0949498 Fix: fix special delimiter parsing issue (#5448)
### What problem does this PR solve?

Fix special delimiter parsing issue #5382 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 18:33:55 +08:00
244cf49ba4 Feat: Use shadcn-ui to build GenerateForm. #3221 (#5449)
### What problem does this PR solve?

Feat: Use shadcn-ui to build GenerateForm. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-27 18:13:41 +08:00
651422127c Feat: Accessing Alibaba Cloud OSS with Amazon S3 SDK (#5438)
Accessing Alibaba Cloud OSS with Amazon S3 SDK
2025-02-27 17:02:42 +08:00
11de7599e5 Feat: add data type invoke (#5126)
### What problem does this PR solve?
```
Invoke agent
To be able to interact dynamically with the API, there is a customizable Data Type JSON or FormData, the default is JSON 
```

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-27 16:15:33 +08:00
7a6e70d6b3 Feat: Wrap DynamicVariableForm with Collapsible. #3221 (#5440)
### What problem does this PR solve?

Feat: Wrap DynamicVariableForm with Collapsible. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-27 16:09:12 +08:00
230865c4f7 Fix: stream post body (#5434)
### What problem does this PR solve?

Fix stream post body

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 16:08:54 +08:00
4c9a3e918f Fix: add image2text issue. (#5431)
### What problem does this PR solve?

#5356

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 14:06:49 +08:00
5beb022ee1 Fix: string format error. (#5422)
### What problem does this PR solve?

#5404

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 12:01:46 +08:00
170abf9b7f Fix: drop useless ABC method (#5408)
### What problem does this PR solve?

seems  no need use ABC here, there's no `abstractmethod` here

### Type of change

- [x] Performance Improvement

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-27 11:03:21 +08:00
afaa7144a5 Fix: issue of no id for /datasets/<dataset_id>/documents (#5420)
### What problem does this PR solve?

#5401

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 10:39:34 +08:00
eaa1adb3b2 ci: remove may expand into attacker-controllable code (#5407)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

This patch remove dangerous code that `may expand into
attacker-controllable code`

more:

```cli
error[template-injection]: code injection via template expansion
  --> /Users/hyi/prs/ragflow/.github/workflows/tests.yml:35:9
   |
35 |         - name: Show PR labels
   |           ^^^^^^^^^^^^^^^^^^^^ this step
36 |           run: |
   |  _________^
37 | |           echo "Workflow triggered by ${{ github.event_name }}"
38 | |           if [[ ${{ github.event_name }} == 'pull_request' ]]; then
39 | |             echo "PR labels: ${{ join(github.event.pull_request.labels.*.name, ', ') }}"
40 | |           fi
   | |____________^ github.event.pull_request.labels.*.name may expand into attacker-controllable code
   |
   = note: audit confidence → High

```

using zizmor to check 
https://woodruffw.github.io/zizmor/

but this patch do not fix them all, just remove high audit confidence →
High

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [x] Other (please describe):

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
2025-02-27 10:20:04 +08:00
fa76974e24 Fix issue of ask API. (#5400)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 19:45:22 +08:00
f372bd8809 Miscelleneous editorial updates (#5390)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-02-26 19:03:50 +08:00
0284248c93 Fix: correct wrong vLLM rerank model (#5399)
### What problem does this PR solve?

Correct wrong vLLM rerank model #4316 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 18:59:36 +08:00
d9dd1171a3 Feat: Support vLLM #4316 (#5395)
### What problem does this PR solve?
Feat: Support vLLM #4316

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 18:33:43 +08:00
fefea3a2a5 Fixed OpenAI compatibility stream [DONE] (#5389)
Fixed OpenAI compatibility stream [DONE]



- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-26 17:55:12 +08:00
0e920a91dd FIX: correct typo (#5387)
### What problem does this PR solve?

Correct typo in supported_models file

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 17:21:09 +08:00
63e3398f49 Feat: Add DualRangeSlider #3221 (#5386)
### What problem does this PR solve?

Feat: Add DualRangeSlider #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 17:02:42 +08:00
cdcaae17c6 Feat: add VLLM (#5380)
### What problem does this PR solve?

Read to add VLMM.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 16:04:53 +08:00
96e9d50060 Let parallism of RAPTOR controlable. (#5379)
### What problem does this PR solve?

#4874
### Type of change

- [x] Refactoring
2025-02-26 15:58:06 +08:00
k
5cab6c4ccb Fix:HTTP API -> Stop parsing documents(AttributeError: ‘list‘ object … (#5375)
…has no attribute ‘id‘)

### What problem does this PR solve?

No PR

![image](https://github.com/user-attachments/assets/988d31bc-6551-4bb8-846c-cbbc1883d804)


![image](https://github.com/user-attachments/assets/8b09681b-1239-4ed9-8bc3-11436c5e90bc)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-02-26 15:57:50 +08:00
b3b341173f DOCS: add OpenAI-compatible http and python api reference (#5374)
### What problem does this PR solve?

Add OpenAI-compatible http and python api reference

### Type of change

- [x] Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-02-26 15:52:26 +08:00
a9e4695b74 Fix:validate knowledge base association before document upload (#5373)
### What problem does this PR solve?

fix this bug: https://github.com/infiniflow/ragflow/issues/5368

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-26 15:47:34 +08:00
4f40f685d9 Code refactor (#5371)
### What problem does this PR solve?

#5173

### Type of change

- [x] Refactoring
2025-02-26 15:40:52 +08:00
ffb4cda475 Run keyword_extraction, question_proposal, content_tagging in thread pool (#5376)
### What problem does this PR solve?

Run keyword_extraction, question_proposal, content_tagging in threads

### Type of change

- [x] Performance Improvement
2025-02-26 15:21:14 +08:00
5859a3df72 Feat: Add FormSheet. #3221 (#5377)
### What problem does this PR solve?

Feat: Add FormSheet. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 15:03:09 +08:00
5c6a7cb4b8 Added OpenAI-like completion api (#5351)
### What problem does this PR solve?

Added OpenAI-like completion api, related to #4672, #4705 

This function allows users to interact with a model to get responses
based on a series of messages.
If `stream` is set to True, the response will be streamed in chunks,
mimicking the OpenAI-style API.

#### Example usage:

```bash
curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer $RAGFLOW_API_KEY" \
    -d '{
        "model": "model",
        "messages": [{"role": "user", "content": "Say this is a test!"}],
        "stream": true
    }'
```

Alternatively, you can use Python's `OpenAI` client:

```python
from openai import OpenAI

model = "model"
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")

completion = client.chat.completions.create(
    model=model,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who you are?"},
        {"role": "assistant", "content": "I am an AI assistant named..."},
        {"role": "user", "content": "Can you tell me how to install neovim"},
    ],
    stream=True
)

stream = True
if stream:
    for chunk in completion:
        print(chunk)
else:
    print(completion.choices[0].message.content)
```
### Type of change
- [x] New Feature (non-breaking change which adds functionality)

### Related Issues
Related to #4672, #4705
2025-02-26 11:37:29 +08:00
4e2afcd3b8 Fix FlagRerank max_length issue. (#5366)
### What problem does this PR solve?

#5352

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 11:01:13 +08:00
11e6d84d46 Fix: 'Chunk not found!' error in team-sharing knowledge base. (#5361)
### What problem does this PR solve?

As issue #3268 mentioned, "Chun not found!" exception will occur,
especially during the teamwork of knowledge bases.

### The reason of this bug

"tenants" are the people on current_user's team, including the team
owner itself. The old one only checks the first "tenant", tenants[0],
which will cause error when anyone editing the chunk that is not in
tenants[0]'s knowledge base.

My modification won't introduce new errors while iterate all the tenant
then retrieve knowledge bases of each.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 10:24:35 +08:00
53b9e7b52f Add tavily as web searh tool. (#5349)
### What problem does this PR solve?

#5198

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 10:21:04 +08:00
e5e9ca0015 Feat: Add Tavily Api Key to chat configuration modal. #5198 (#5347)
### What problem does this PR solve?

Feat: Add Tavily Api Key to chat configuration modal. #5198

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 10:20:40 +08:00
150ab9c6a4 Fix: Prevent message sending during IME composition and block new submissions while waiting for a response (#5331)
### What problem does this PR solve?

This pull request addresses an issue where the "Enter" key would send
the message prematurely while using Input Method Editor (IME) for text
composition. This problem occurs when users are typing with a non-Latin
input method, such as Chinese(Zhuyin), and press "Enter" to confirm
their selection, which unintentionally triggers message submission. Also
fixed the issue of blocking new submissions while waiting for a response

Before:


https://github.com/user-attachments/assets/233f3ac9-4b4b-4424-b4ab-ea2e31bb0663

After:


https://github.com/user-attachments/assets/f1c01af6-d1d7-4a79-9e81-5bdf3c0b3529

Block new submissions while waiting for a response:



https://github.com/user-attachments/assets/10a45b5f-44b9-4e36-9342-b1bbb4096312


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 18:49:08 +08:00
f789463982 Fix: Due to the reference to tailwindcss, the height attribute setting of the image is invalid, resulting in an uneven model list #5339 (#5340)
### What problem does this PR solve?

Fix: Due to the reference to tailwindcss, the height attribute setting
of the image is invalid, resulting in an uneven model list #5339

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 17:52:31 +08:00
955801db2e Resolve super class invokation error. (#5337)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 17:42:29 +08:00
93b2e80eb8 Feat: Add DynamicVariableForm with shadcn-ui. #3221 (#5336)
### What problem does this PR solve?

Feat: Add DynamicVariableForm with shadcn-ui. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-25 16:57:46 +08:00
1a41b92f77 More robust community report. (#5328)
### What problem does this PR solve?

#5289
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 12:58:10 +08:00
58a8f1f1b0 Fix release.yml (#5327)
### What problem does this PR solve?

Fix release.yml

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 12:41:34 +08:00
daddfc9e1b Remove dup gb2312, solve currupt error. (#5326)
### What problem does this PR solve?

#5252 
#5325

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 12:22:37 +08:00
ecf5f6976f Make node merging parallel. (#5324)
### What problem does this PR solve?

#5314

### Type of change

- [x] Performance Improvement
2025-02-25 12:02:44 +08:00
e2448fb6dd Fix: type-script new change (#5159)
### What problem does this PR solve?
```
fixed type-script on MessageInput change to TextArea
```
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 11:42:31 +08:00
9c9f2dbe3f Feat: Add FormDrawer to agent page. #3221 (#5323)
### What problem does this PR solve?

Feat: Add FormDrawer to agent page. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-25 11:32:01 +08:00
b3d579e2c1 Refine prompt of agentic search. (#5312)
### What problem does this PR solve?

#5173

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-25 09:21:52 +08:00
eb72d598b1 Replaced pypi.tuna.tsinghua.edu.cn with mirrors.aliyun.com/pypi (#5309)
### What problem does this PR solve?

Replaced pypi.tuna.tsinghua.edu.cn with mirrors.aliyun.com/pypi.
I notice aliyun.com sometimes is much faster than tsinghua.edu.

### Type of change

- [x] Refactoring
2025-02-24 20:15:40 +08:00
033a4cf21e Feat: Upload agent file #3221 (#5311)
### What problem does this PR solve?

Feat: Upload agent file #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 19:30:33 +08:00
fda9b58ab7 Feat: Render agent details #3221 (#5307)
### What problem does this PR solve?

Feat: Render agent details #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 17:19:06 +08:00
ca865df87f Feat: Render operator menu by category. #3221 (#5302)
### What problem does this PR solve?
Feat: Render operator menu by category. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 16:51:44 +08:00
f9f75aa119 Added a file size limit (#5301)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-24 16:38:11 +08:00
db42d0e0ae Optimize ocr (#5297)
### What problem does this PR solve?

Introduced OCR.recognize_batch

### Type of change

- [x] Performance Improvement
2025-02-24 16:21:55 +08:00
df3d0f61bd Fix base url missing for deepseek from Tongyi. (#5294)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-24 15:43:32 +08:00
c6bc69cbc5 Feat: Add AgentSidebar #3221 (#5296)
### What problem does this PR solve?

Feat: Add AgentSidebar #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 15:43:20 +08:00
8c9df482ab Added a prerequisite for ARM platforms (#5295)
### What problem does this PR solve?

#5114 

### Type of change


- [x] Documentation Update
2025-02-24 15:15:11 +08:00
1137b04154 Feat: Disable Max_token by default #5283 (#5290)
### What problem does this PR solve?

Feat: Disable Max_token by default #5283

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 14:22:15 +08:00
ec96426c00 Tongyi adapts deepseek. (#5285)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 14:04:25 +08:00
4d22daefa7 Feat: Add PageHeader to DatasetWrapper #3221 (#5284)
### What problem does this PR solve?

Feat: Add PageHeader to DatasetWrapper #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 13:50:21 +08:00
bcc92e04c9 Remove <think> content for Generate if it's not stream output. (#5281)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-24 13:44:11 +08:00
9aa222f738 Let list_chat go without kb checking. (#5280)
### What problem does this PR solve?

#5278 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-24 13:21:05 +08:00
605cfdb8dc Refine error message for re-rank model. (#5278)
### What problem does this PR solve?

#5261

### Type of change

- [x] Refactoring
2025-02-24 13:01:34 +08:00
041d72b755 Refine the error message. (#5275)
### What problem does this PR solve?

#5265

### Type of change

- [x] Refactoring
2025-02-24 12:42:52 +08:00
569e40544d Refactor rerank model with dynamic batch processing and memory manage… (#5273)
…ment

### What problem does this PR solve?
Issue:https://github.com/infiniflow/ragflow/issues/5262
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-24 11:32:08 +08:00
3d605a23fe Feat: add partition of file uploads (#5248)
### What problem does this PR solve?

Partitions the upload of documents in parts of 20 to avoid the size
limit error. Allows uploading 100s of documents on a single interaction.

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-02-24 11:12:12 +08:00
4f2816c01c Add support to boto3 default connection (#5246)
### What problem does this PR solve?
 
This pull request includes changes to the initialization logic of the
`ChatModel` and `EmbeddingModel` classes to enhance the handling of AWS
credentials.

Use cases:
- Use env variables for credentials instead of managing them on the DB 
- Easy connection when deploying on an AWS machine

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-02-24 11:01:14 +08:00
a0b461a18e Add configuration to choose default llm models (#5245)
### What problem does this PR solve?

This pull request includes changes to the `api/settings.py` and
`docker/service_conf.yaml.template` files to add support for default
models in the LLM configuration (specially for LIGHTEN builds). The most
important changes include adding default model configurations and
updating the initialization settings to use these defaults.

For example:
With this configuration Bedrock will be enable by default with claude
and titan embeddings.

```
user_default_llm:
  factory: 'Bedrock'
  api_key: '{}' 
  base_url: ''
  default_models:
    chat_model: 'anthropic.claude-3-5-sonnet-20240620-v1:0'
    embedding_model: 'amazon.titan-embed-text-v2:0'
    rerank_model: ''
    asr_model: ''
    image2text_model: ''
```


### Type of change

- [X] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-24 10:13:39 +08:00
7ce675030b Support downloading models from ModelScope Community. (#5073)
This PR supports downloading models from ModelScope. The main
modifications are as follows:
-New Feature (non-breaking change which adds functionality)
-Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-24 10:12:20 +08:00
217caecfda Added a guide on running a retrieval test, with and without knowledge graph (#5200)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-21 19:36:20 +08:00
ef8847eda7 Double check error of adding llm. (#5237)
### What problem does this PR solve?

#5227

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 19:09:49 +08:00
d78010c376 Fixed similarity on infinity (#5236)
### What problem does this PR solve?

Fixed similarity on infinity

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 18:50:54 +08:00
3444cb15e3 Refine search query. (#5235)
### What problem does this PR solve?

#5173
#5214

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 18:32:32 +08:00
0151d42156 Reuse loaded modules if possible (#5231)
### What problem does this PR solve?

Reuse loaded modules if possible

### Type of change

- [x] Refactoring
2025-02-21 17:21:01 +08:00
392f28882f Feat: Add RAGFlowSelect component #3221 (#5228)
### What problem does this PR solve?

Feat: Add RAGFlowSelect component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-21 16:37:50 +08:00
cdb3e6434a Fix empty question issue. (#5225)
### What problem does this PR solve?

#5241

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 15:47:39 +08:00
bf5f6ec262 Fix spelling errors (#5224)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 15:47:27 +08:00
1a755e75c5 Remove v1 (#5220)
### What problem does this PR solve?

#5201

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 15:15:38 +08:00
46ff897107 Feat: Chat without KB. #5216 (#5217)
### What problem does this PR solve?
Feat: Chat without KB. #5216

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-21 12:24:13 +08:00
f5d63bb7df Support chat solo. (#5218)
### What problem does this PR solve?

#5216

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-21 12:24:02 +08:00
c54ec09519 Fix session.ask return generator bug when stream=False on python sdk (#5209)
add non-stream mode support to session.ask function

### What problem does this PR solve?

same as title, I do not know why the stream=False is not work on the
server side also, when stream=False, the response in the
session._ask_chat is a fully connnected SSE string.

This is a quick fix on the sdk side to make the response format align
with API docs

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 11:50:08 +08:00
7b3d700d5f Apply agentic searching. (#5196)
### What problem does this PR solve?

#5173

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 17:41:01 +08:00
744ff55c62 Feat: Add AgentTemplates component. #3221 (#5194)
### What problem does this PR solve?

Feat: Add AgentTemplates component. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 17:02:42 +08:00
c326f14fed Optimized Recognizer.sort_X_firstly and Recognizer.sort_Y_firstly (#5182)
### What problem does this PR solve?

Optimized Recognizer.sort_X_firstly and Recognizer.sort_Y_firstly

### Type of change

- [x] Performance Improvement
2025-02-20 15:41:12 +08:00
07ddb8fcff Feat: Add SearchPage component. #3221 (#5184)
### What problem does this PR solve?

Feat: Add SearchPage component. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 15:37:53 +08:00
84bcd8b3bc Feat: Add agent page. #3221 (#5179)
### What problem does this PR solve?

Feat: Add agent page. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 15:02:53 +08:00
f52970b038 Feat: Add reasoning item to chat configuration modal #5173 (#5177)
### What problem does this PR solve?

Feat: Add reasoning item to chat configuration modal #5173

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 14:05:52 +08:00
39b96849a9 Fix window size issue of ES. (#5175)
### What problem does this PR solve?

#5152

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-20 12:54:29 +08:00
f298e55ded Fix: Normalize embedding model ID comparison across datasets (#5169)
Modify embedding model ID comparison to remove vendor suffixes, ensuring
consistent model identification when working with multiple knowledge
bases. This change affects dialog creation, chat operations, and
document retrieval test functions.

### What problem does this PR solve?

resolve this bug: https://github.com/infiniflow/ragflow/issues/5166

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-20 12:40:59 +08:00
ed943b1b5b Feat: Show formulas when answering, show reference labels in style, remove cursor flashing effect. #5173 (#5174)
### What problem does this PR solve?

Feat: Show formulas when answering, show reference labels in style,
remove cursor flashing effect. #5173

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 12:19:53 +08:00
0c6d787f92 Iframe should support input variables (#5156)
### What problem does this PR solve?

Right now we cannot embed a chat in website when it has variables in the
begin component.
This PR tries to read the variables values from the query string via a
data_ prefixed variable.

#5016 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: gstrat88 <gstrat@innews.gr>
2025-02-20 11:52:44 +08:00
a4f9aa2172 Fix: Improve message input handling with Shift+Enter support (#5129)
### What problem does this PR solve?

just resolve issue: [Improve message input handling with Shift+Enter
support](https://github.com/infiniflow/ragflow/issues/5116)
### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-19 19:32:35 +08:00
c432ce6be5 Feat: Add insert variable icon in the header of prompt editor. #4764 (#5142)
### What problem does this PR solve?

Feat: Add insert variable icon in the header of prompt editor. #4764

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-19 19:20:00 +08:00
c5b32b2211 Docs: Add note about docker volume deletion in README files,will be more novice-friendly (#5133)
### What problem does this PR solve?


Docs: Add note about docker volume deletion in README files
refer to this question:
https://github.com/infiniflow/ragflow/issues/5132
### Type of change

- [x] Documentation Update

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-02-19 16:51:33 +08:00
24efa86f26 Feat: Support preview of HTML files #5096 (#5134)
### What problem does this PR solve?

Feat: Support preview of HTML files #5096
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-19 16:28:48 +08:00
38e551cc3d Feat: Allow the Rewrite operator to connect to the Generate operator #1739 (#5128)
### What problem does this PR solve?

Feat: Allow the Rewrite operator to connect to the Generate operator
#1739

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-19 15:47:48 +08:00
ef95f08c48 Remove redandent code. (#5121)
### What problem does this PR solve?

#5107

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 15:46:52 +08:00
3ced290eb5 Feat: Add support for document meta fields update through api (#5120)
### What problem does this PR solve?

add support for update document meta data through  api
### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-19 13:39:31 +08:00
fab0f07379 fix: Ensure that the commands are executed in the correct directory s… (#5089)
…o that all services (including the es and infinity containers) can be
started correctly, and resolve the Failed to resolve 'es01' #4875

### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/4875

### Type of change

- [x] Documentation Update
2025-02-19 13:19:36 +08:00
8525f55ad0 Fix: Option ineffective in Chat API (#5118)
### What problem does this PR solve?

API options like `stream` was ignored when no session_id was provided.

This PR fixes the issue.

Test command and expected result:
```
curl  --request POST \
     --url http://:9222/api/v1/chats/2f2e1d30ee6111efafe211749b004925/completions \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer ragflow-xxx' \
     --data '{
   "question":"Who are you",
   "stream":false
}'
{"code":0,"data":"data:{\"code\": 0, \"message\": \"\", \"data\": {\"answer\": \"Hi! I'm your assistant, what can I do for you?\", \"reference\": {}, \"audio_binary\": null, \"id\": null, \"session_id\": \"82ceb0fcee7111efafe211749b004925\"}}\n\n"}

```



### Type of change

- [*] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 13:18:51 +08:00
e6c024f8bf Fix too many clause while searching. (#5119)
### What problem does this PR solve?

#5100

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 13:18:39 +08:00
c28bc41a96 Fix docx table issue. (#5117)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 12:40:06 +08:00
29a59ed7e2 Fix: Use self.dataStore.indexExist in all_tags method of Dealer (#5108)
### What problem does this PR solve?

This PR fixes an AttributeError in the all_tags method of the Dealer
class. Previously, the method incorrectly called
self.docStoreConn.indexExist instead of self.dataStore.indexExist. Since
self.docStoreConn was never set (and self.dataStore is already
initialized in init), this resulted in an error when attempting to check
if the index exists. This change ensures that the proper connector is
used for the index existence check, thereby resolving the issue._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 11:50:57 +08:00
f8b80f3f93 Feat: Write the thinking style in the MarkdownContent layer #4930 (#5091)
### What problem does this PR solve?

Feat: Write the thinking style in the MarkdownContent layer #4930

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 19:34:54 +08:00
189007e44d Fix: PUT method does not work as expected with Invoke component (#5081)
### What problem does this PR solve?
Invoke component can be used to call third party services.
Tried GET/POST/PUT from web UI, and found PUT request failed like this:
(test api: api/v1/chats/<assistant_id>)
 ```
{"code":100,"data":null,"message":"AttributeError("'NoneType' object has
no attribute 'get'")"}
```

Root cause: Invoke PUT with a 'data=args' parameter, which is a form-encoded data, however the default content type setting of request header is application/json. The test api could not deal with such case.

Fix: use the 'json' parameter of reqeusts.put(), same as Invoke POST. Do not use the 'data' parameter.
Another way is to use 'data=json.dumps(args)'.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-18 19:34:22 +08:00
3cffadc7a2 Added an FAQ (#5092)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-02-18 19:29:40 +08:00
18e43831bc Feat: Add ChunkedResultPanel #3221 (#5085)
### What problem does this PR solve?

Feat: Add ChunkedResultPanel #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 17:53:51 +08:00
3356de55ed Fix: Chunk problem tag content cannot be displayed completely. #5076 (#5077)
### What problem does this PR solve?

Fix: Chunk problem tag content cannot be displayed completely. #5076

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-18 15:26:24 +08:00
375e727f9a Feat: Extract the common parts of groupImage2TextOptions and groupOptionsByModelType #5063 (#5074)
### What problem does this PR solve?

Feat: Extract the common parts of groupImage2TextOptions and
groupOptionsByModelType #5063

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 15:13:55 +08:00
a2b8ba472f Feat: Add LanguageAbbreviation to simplify language resource files. #5065 (#5072)
### What problem does this PR solve?

Feat: Add LanguageAbbreviation to simplify language resource files.
#5065

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 15:06:53 +08:00
00c7ddbc9b Fix: The max tokens defined by the tenant are not used (#4297) (#2817) (#5066)
### What problem does this PR solve?

Fix: The max tokens defined by the tenant are not used (#4297) (#2817)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-18 13:42:22 +08:00
3e0bc9e36b Added a graphrag guide (#4978)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-18 13:42:06 +08:00
d6ba4bd255 add option Embed into webpage (#5065)
add option Embed into webpage

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-18 13:41:19 +08:00
84b4b38cbb Remove <think> for exeSql component. (#5069)
### What problem does this PR solve?

#5061
#5067

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-18 13:39:37 +08:00
4694604836 Specify img2text model by tag (#5063)
### What problem does this PR solve?

The current design is not well-suited for multimodal models, as each
model can only be configured for a single purpose—either chat or
Img2txt. To work around this limitation, we use model aliases such as
gpt-4o-mini and gpt-4o-mini-2024-07-18.

To fix this, this PR allows specifying the Img2txt model by tag instead
of model_type.

### Type of change
- [x] Refactoring
2025-02-18 11:14:48 +08:00
224c5472c8 update locale vi (#5035)
update locale vi
2025-02-18 10:16:03 +08:00
409310aae9 Update agent session API, to support uploading files while create a new session (#5039)
### What problem does this PR solve?
Update the agent session API "POST /api/v1/agents/{agent_id}/sessions",
to support uploading files while create a new session:
- currently, the API only supports requesting with a json body. If user
wants to upload a doc or image when create session, like what is already
supported on the web client, we need to update the API.
- if upload an image, ragflow will call image2text, and a user_id is
needed for the image2text model. So we need to send user_id in the API
request. As form-data is needed to upload files, not json body, seems we
need to put the user_id in the url as an optional parameter (currently
user_id is an optional in json body).


### Type of change

- [x] Documentation Update
- [x] Other (please describe):
2025-02-18 09:45:40 +08:00
9ff825f39d Ignore exceptions when no index ahead. (#5047)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-18 09:09:22 +08:00
7b5d831296 Fix: Starting the source code on Windows, the 'HTTP API' returns 404 (#5042)
Fix: When starting the backend service from source code on Windows, the
"HTTP API" no longer returns 404.
2025-02-17 19:33:49 +08:00
42ee209084 Feat: Replace next-login-bg.svg #3221 (#5046)
### What problem does this PR solve?

Feat: Replace next-login-bg.svg #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-17 19:33:34 +08:00
e4096fbc33 Add another decrypt function. (#5043)
### What problem does this PR solve?



### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-17 18:09:11 +08:00
3aa5c2a699 Ignore exception of empty index. (#5030)
### What problem does this PR solve?

### Type of change


- [x] Refactoring
2025-02-17 15:59:55 +08:00
2ddf278e2d Fix: Cannot distinguish between export and import icons #5025 (#5031)
### What problem does this PR solve?

Fix: Cannot distinguish between export and import icons #5025

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 15:25:34 +08:00
f46448d04c Remove <think> for KG extraction. (#5027)
### What problem does this PR solve?

#4946

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 14:06:06 +08:00
ab17606e79 Rewrite Support specified language or language according to initial question (#4990)
Support specified language or language according to initial question

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-17 13:33:43 +08:00
7c90b87715 Fix window size of ES issue. (#5026)
### What problem does this PR solve?

#5015

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 12:48:56 +08:00
d2929e432e Feat: add LLM provider PPIO (#5013)
### What problem does this PR solve?

Add a LLM provider: PPIO

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-02-17 12:03:26 +08:00
88daa349f9 Optimize conversation when uploading attachments (#4964)
### What problem does this PR solve?

#4929

### Type of change

- [x] Performance Improvement
2025-02-17 12:03:04 +08:00
f29da49893 Fix keyerror issue while rebuilding graph. (#5022)
### What problem does this PR solve?

#4995

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 12:02:44 +08:00
194e8ea696 Fix knowledge graph node not found (#4968) (#4970)
### What problem does this PR solve?

Fix knowledge graph node not found (#4968)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 11:49:27 +08:00
810f997276 Fix <think> in keywords or question auto-generations. (#5021)
### What problem does this PR solve?

**#4983**

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 11:20:57 +08:00
6daae7f226 Added PEP 723 metadata to download_deps.py (#4988)
### What problem does this PR solve?

Added PEP 723 metadata to download_deps.py

### Type of change

- [x] Refactoring
2025-02-15 14:54:21 +08:00
f9fe6ac642 Feat: Add background color to GraphRag configuration #4980 (#4981)
### What problem does this PR solve?

Feat: Add background color to GraphRag configuration #4980

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 18:57:09 +08:00
b4ad565df6 Feat: Add ParsedPageCard component #3221 (#4976)
### What problem does this PR solve?

Feat: Add ParsedPageCard component #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 18:12:39 +08:00
754d5ea364 add gemini-2.0-flash-thinking-exp-01-21 (#4957)
add gemini-2.0-flash-thinking-exp-01-21
2025-02-14 13:31:07 +08:00
26add87c3d Feat: Jump from the chunk page to the dataset page #3221 (#4961)
### What problem does this PR solve?
Feat: Jump from the chunk page to the dataset page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 13:30:55 +08:00
986062a604 format number float (#4954)
format number float
2025-02-14 12:00:34 +08:00
29ceeba95f Fix hit cache error while raptoring. (#4955)
### What problem does this PR solve?

#4126

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-14 12:00:19 +08:00
849d9eb463 Ignore tenant not found error while increasing token usage. (#4950)
### What problem does this PR solve?

#4940

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-14 11:10:49 +08:00
dce7053c24 Feat: Add an id to the dataset testing route #3221 (#4951)
### What problem does this PR solve?

Feat: Add an id to the dataset testing route #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 10:43:59 +08:00
042f4c90c6 Fixes KeyError: 'content' when using stream=False (#4944)
### 🛠 Fixes `KeyError: 'content'` when using `stream=False`

#### 🔍 Problem  
When calling the chat API with `stream=False`, the code attempts to
access `msg[-1]["content"]` without verifying if the key exists. This
causes a `KeyError` when the message structure does not contain
`"content"`.

This issue was discussed in
[#4885](https://github.com/infiniflow/ragflow/issues/4885), where we
analyzed the root cause. The error does not occur with `stream=True`, as
the response is processed differently.

####  Solution  
- **Logging Fix:**  
  - Before accessing `msg[-1]["content"]`, we check if the key exists.  
- If it does not exist, a default value (`"[content not available]"`) is
used to prevent errors.

- **Structural Fix in `msg` Construction:**  
- Ensured that every message in `msg` contains the `"content"` key, even
if empty.
- This fixes the issue at its root and ensures consistent behavior
between `stream=True` and `stream=False`.

#### 🔄 Impact  
- Prevents the `KeyError` without affecting normal application flow.  
- Ensures the integrity of the `msg` structure, avoiding future
failures.



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-14 10:27:01 +08:00
c1583a3e1d Feat: Bind data to datasets page #3221 (#4938)
### What problem does this PR solve?

Feat: Bind data to datasets page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 09:38:48 +08:00
17fa2e9e8e Added a guide on setting metadata (#4935)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-02-13 18:16:45 +08:00
ff237f2dbc Feat: Display Think for Deepseek R1 model #4903 (#4930)
### What problem does this PR solve?

Feat: Display Think for Deepseek R1 model #4903

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-13 15:59:42 +08:00
50c99599f2 Fix DB assistant template error. (#4925)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-13 11:33:25 +08:00
891ee85fa6 Feat: Add ChatInput component #3221 (#4915)
### What problem does this PR solve?

Feat: Add ChatInput component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 19:32:49 +08:00
a03f5dd9f6 Add a list of large language models of deepseek and image2text models… (#4914)
### What problem does this PR solve?

#4870 
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 17:52:29 +08:00
415c4b7ed5 Organized and add a list of large language models of Nvidia.v1.1 (#4910)
### What problem does this PR solve?

#4870

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 17:10:19 +08:00
d599707154 Fix: After deleting all conversation lists, the chat input box can still be used for input. #4907 (#4909)
### What problem does this PR solve?

Fix: After deleting all conversation lists, the chat input box can still
be used for input. #4907

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 16:54:14 +08:00
7f06712a30 Feat: Add LlmSettingFieldItems component #3221 (#4906)
### What problem does this PR solve?

Feat: Add LlmSettingFieldItems component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 15:43:31 +08:00
b08bb56f6c Display thinking for deepseek r1 (#4904)
### What problem does this PR solve?
#4903
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 15:43:13 +08:00
9bcccadebd Remove use of eval() from search.py (#4887)
Use `json.loads()` instead.

### What problem does this PR solve?

Using `eval()` can lead to code injections. I think this loads a JSON
field, right? If yes, why is this done via `eval()` and not
`json.loads()`?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 13:15:38 +08:00
1287558f24 Fix xinference chat role order issue. (#4898)
### What problem does this PR solve?

#4831

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 13:15:23 +08:00
6b389e01b5 Remove use of eval() from operators.py (#4888)
Use `np.float32()` instead.

### What problem does this PR solve?

Using `eval()` can lead to code injections.

I think `eval()` is only used to parse a floating point number here.
This change preserves the correct behavior if the string `"None"` is
supplied. But if that behavior isn't intended then this part could be
just deleted instead, since `np.float32()` is parsing strings anyway:

```Python
        if isinstance(scale, str):
            scale = eval(scale)
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 12:53:42 +08:00
8fcca1b958 fix: big xls file error (#4859)
### What problem does this PR solve?

if *.xls file is too large, .eg >50M, I get error.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 12:39:25 +08:00
a1cf792245 Changed elasticsearch image url (#4897)
### What problem does this PR solve?

Changed elasticsearch image url to speed up image downloading. 

### Type of change

- [x] Refactoring
2025-02-12 12:38:13 +08:00
978b580dcf Fix: Knowledge base page crashes when network connection is lost. #4894 (#4895)
### What problem does this PR solve?

Fix: Knowledge base page crashes when network connection is lost. #4894
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 11:26:26 +08:00
d197f33646 Feat: Add hatPromptEngine component #3221 (#4881)
### What problem does this PR solve?

Feat: Add hatPromptEngine component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-11 19:04:10 +08:00
521d25d4e6 Feat: Add ChatBasicSetting component #3221 (#4876)
### What problem does this PR solve?

Feat: Add ChatBasicSetting component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-11 15:45:24 +08:00
ca1648052a fix categorize agent input content not format error (#4842)
### What problem does this PR solve?

Fix categorize agent input content not format error

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wangrui <wangrui@haima.me>
2025-02-11 13:32:42 +08:00
f34b913bd8 Feat: Add Sessions component #3221 (#4865)
### What problem does this PR solve?

Feat: Add Sessions component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-11 13:11:15 +08:00
0d3ed37b48 Make the update script shorter. (#4854)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 18:18:49 +08:00
bc68f18c48 Feat: Add ChatCard #3221 (#4852)
### What problem does this PR solve?
Feat: Add  ChatCard #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-10 17:38:10 +08:00
6e42687e65 Added a release notes (#4848)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-10 17:05:24 +08:00
e4bd879686 Feat: Modify the Preset configurations item style to distinguish it from other fields #4844 (#4845)
### What problem does this PR solve?

Feat: Modify the Preset configurations item style to distinguish it from
other fields #4844

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-10 16:49:07 +08:00
78982d88e0 Reformat error message. (#4829)
### What problem does this PR solve?

#4828

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 16:47:53 +08:00
fa5c7edab4 Fix: Fail to open console with Firefox #4816 (#4838)
### What problem does this PR solve?

Fix: Fail to open console with Firefox #4816

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 14:33:10 +08:00
6fa34d5532 Fix KG circle. (#4823)
### What problem does this PR solve?

#4760

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 11:02:29 +08:00
9e5427dc6e Feat: Remove begin's width from agent templates #4764 (#4809)
### What problem does this PR solve?

Feat: Remove begin's width from agent templates #4764
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-10 09:59:59 +08:00
a357190eff Feat: Fixed the issue where the prompt always displayed the initial value when switching between different generate operators #4764 (#4808)
### What problem does this PR solve?

Feat: Fixed the issue where the prompt always displayed the initial
value when switching between different generate operators #4764

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 18:25:25 +08:00
bfcc2abe47 Feat: Add VariablePickerMenuPlugin to select variables in the prompt text box by menu #4764 (#4765)
### What problem does this PR solve?

Feat: Add VariablePickerMenuPlugin to select variables in the prompt
text box by menu #4764

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 18:09:13 +08:00
f64ae9dc33 Inner prompt parameter setting. (#4806)
### What problem does this PR solve?

#4764

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 18:09:02 +08:00
5a51bdd824 Fix: The requested interface timeout will cause the page to crash #4787 (#4788)
### What problem does this PR solve?

Fix: The requested interface timeout will cause the page to crash #4787

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-08 11:26:36 +08:00
b48c85dcf9 Increase ES update script length. (#4785)
### What problem does this PR solve?

#4749

### Type of change

- [x] Performance Improvement
2025-02-08 11:03:31 +08:00
f374dd38b6 Fix divided by zero issue. (#4784)
### What problem does this PR solve?

#4779

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-08 10:36:26 +08:00
ccb72e6787 Add a comment to valkey. (#4783)
### What problem does this PR solve?
#4775

### Type of change

- [x] Documentation Update
2025-02-08 10:31:50 +08:00
55823dbdf6 Refresh Gemini model list. (#4780)
### What problem does this PR solve?

#4761

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 10:19:51 +08:00
588207d7c1 optimize TenantLLMService.increase_usage for "can't update token usag… (#4755)
…e error " message

### What problem does this PR solve?

optimize TenantLLMService.increase_usage Performance

### Type of change

- [x] Performance Improvement

Co-authored-by: che_shuai <che_shuai@massclouds.com>
2025-02-07 12:16:17 +08:00
2aa0cdde8f Fix Gemini chat issue. (#4757)
### What problem does this PR solve?

#4753

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-07 12:00:19 +08:00
44d798d8f0 Config chat share (#4700)
Config chat share
2025-02-07 10:35:49 +08:00
4150805073 More models for siliconflow. (#4756)
### What problem does this PR solve?

#4751

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-07 10:32:52 +08:00
448fa1c4d4 Robust for abnormal response from LLMs. (#4747)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-06 17:34:53 +08:00
e786f596e2 Updated template description (#4744)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-06 17:14:13 +08:00
fe9e9a644f Preparation for release. (#4739)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-02-06 15:15:13 +08:00
d2961b2d25 Feat: Supports docx in the MANUAL chunk method and docx, markdown, and PDF in the Q&A chunk method #3957 (#4741)
### What problem does this PR solve?

Feat: Supports docx in the MANUAL chunk method and docx, markdown, and
PDF in the Q&A chunk method #3957
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-06 14:41:46 +08:00
a73e1750b6 Resume content flow ExecSQL (#4738)
resume content flow, instead of closed with errors.
2025-02-06 12:09:47 +08:00
c1d71e9a3f Fix: New user can't accept invite without configuring LLM API #4379 (#4736)
### What problem does this PR solve?

Fix: New user can't accept invite without configuring LLM API #4379

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-06 11:41:02 +08:00
2a07eb69a7 Fix too long context issue. (#4735)
### What problem does this PR solve?

#4728

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-06 11:37:23 +08:00
a3a70431f3 Avoid misunderstanding LLMs about the numbers value (#4724)
Avoid misunderstanding LLMs about the numbers value
2025-02-06 10:17:56 +08:00
6f2c3a3c3c Fix too long query exception. (#4729)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-06 10:11:52 +08:00
54803c4ef2 Fix: pt_br translation and adding pt to knoledg-add (#4674)
### What problem does this PR solve?

Fix Portuguese (Brazil) translation
Adding portuguese to Knowledge adding settings.

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
- [X] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-02-05 18:20:24 +08:00
efbaa484d7 Fix: Chat Assistant page goes blank #4566 (#4727)
### What problem does this PR solve?

Fix: Chat Assistant page goes blank #4566

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-05 18:19:38 +08:00
3411d0a2ce Added cuda_is_available (#4725)
### What problem does this PR solve?

Added cuda_is_available

### Type of change

- [x] Refactoring
2025-02-05 18:01:23 +08:00
283d036cba Fitin for infinity. (#4722)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-05 16:47:05 +08:00
307717b045 Fix exesql re-generate SQL issue. (#4717)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-05 16:23:48 +08:00
8e74bc8e42 Update readme. (#4715)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-02-05 14:24:30 +08:00
4b9c4c0705 Update deepseek model provider info. (#4714)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-02-05 13:43:40 +08:00
b2bb560007 Import akshare lazzily. (#4708)
### What problem does this PR solve?

#4696

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-05 12:04:11 +08:00
e1526846da Fixed GPU detection on CPU only environment (#4711)
### What problem does this PR solve?

Fixed GPU detection on CPU only environment. Close #4692

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-05 12:02:43 +08:00
7a7f98b1a9 Reverted build slim image documentation (#4687)
### Fixed documentation for building docker image

I'm assuming that this was a mistake (but I could be missing something)
[here](https://github.com/infiniflow/ragflow/pull/4658/files#:~:text=docker%20build%20%2D%2Dbuild%2Darg%20LIGHTEN%3D1%20%2Df%20Dockerfile%20%2Dt%20infiniflow/ragflow%3Anightly%2Dslim%20.)
when the docker building instructions for the slim image was just
changed away from an actual `docker build` command to the mac os `docker
compose up` command. This is just reverting the change.

### Type of change

- [X] Documentation Update
2025-02-05 10:35:08 +08:00
036f37a627 fix: err object has no attribute 'iter_lines' (#4686)
### What problem does this PR solve?

ERROR: 'Stream' object has no attribute 'iter_lines' with reference to
Claude/Anthropic chat streams

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kyle Olmstead <k.olmstead@offensive-security.com>
2025-02-01 22:39:30 +08:00
191587346c Fix macOS startup (#4658)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/4319

This pull request includes several changes to improve the Docker setup
and documentation for the project. The most important changes include
updating the Dockerfile to support modern versions of Rust, adding a new
Docker Compose configuration for macOS, and updating the build
instructions in the documentation.

Improvements to Docker setup:

*
[`Dockerfile`](diffhunk://#diff-dd2c0eb6ea5cfc6c4bd4eac30934e2d5746747af48fef6da689e85b752f39557L80-R107):
Added installation steps for a modern version of Rust and updated the
logic for installing the correct ODBC driver based on the architecture.
*
[`docker/docker-compose-macos.yml`](diffhunk://#diff-8e8587143bb2442c02f6dff4caa217ebbe3ba4ec8e7c23b2e568886a67b00eafR1-R56):
Added a new Docker Compose configuration file specifically for macOS,
including service dependencies, environment variables, and volume
mappings.

Updates to documentation:

*
[`docs/guides/develop/build_docker_image.mdx`](diffhunk://#diff-d6136bb897f7245aae33b0accbcf7c508ceaef005c545f9f09cad3cada840a19L44-R44):
Updated the build instructions to use the new Docker Compose
configuration for macOS instead of the previous Docker build command.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update

---------

Signed-off-by: Samuel Giffard <samuel.giffard@mytomorrows.com>
2025-01-28 16:51:16 +08:00
50055c47ec Infinity mapping refine. (#4665)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-01-27 18:53:49 +08:00
6f30397bb5 Infinity adapt to graphrag. (#4663)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-27 18:35:18 +08:00
d970d0ef39 Fix typos (#4662)
### What problem does this PR solve?

Fix typos in the documents

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-01-27 15:45:16 +08:00
ce8658aa84 Update FAQ (#4661)
### What problem does this PR solve?

Update FAQ

### Type of change

- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-01-27 12:56:48 +08:00
bc6a768b90 Refactor the delimiter name (#4659)
### What problem does this PR solve?

Rename from 'Diagonal' to 'Forward slash'
Rename from 'Minus' to 'Dash'

issue: #4655 

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-27 11:04:43 +08:00
656a2fab41 Refresh deepseek models. (#4660)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-27 11:01:39 +08:00
47b28a27a6 Added description of the Iteration component (#4656)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-27 10:12:23 +08:00
c354239b79 Make infinity adapt to condition exist. (#4657)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 18:45:36 +08:00
b4303f6010 Update README. (#4654)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-01-26 14:14:58 +08:00
4776fa5e4e Refactor for total_tokens. (#4652)
### What problem does this PR solve?

#4567
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 13:54:26 +08:00
c24137bd11 Fix too long integer for Table. (#4651)
### What problem does this PR solve?

#4594

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 12:54:58 +08:00
4011c8f68c Fix potential error. (#4650)
### What problem does this PR solve?
#4622

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 12:38:32 +08:00
2cb8edc42c Added GPUStack (#4649)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-26 12:25:02 +08:00
284b4d4430 Align table heading with 'System Model Settings' (#4646)
…the 'System Model Settings'

### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2025-01-26 11:12:38 +08:00
42f7261509 Fix param error. (#4645)
### What problem does this PR solve?

#4633

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 10:40:02 +08:00
f33415b751 refactor: better vertical alignment for icon and text in some setting buttons (#4615)
### What problem does this PR solve?

Fixed vertical alignment issues between icons and text in API-Key and
System Model Settings buttons. This improves visual consistency across
the settings interface.

### Type of change

- [x] Refactoring

Before: Icons and text were slightly misaligned vertically
<img width="635" alt="Screenshot 2025-01-23 at 20 22 46"
src="https://github.com/user-attachments/assets/28f15637-d3fd-45a2-aae8-ca72fb12a88e"
/>

After: Icons and text are now properly centered with consistent spacing
<img width="540" alt="Screenshot 2025-01-23 at 20 23 02"
src="https://github.com/user-attachments/assets/98bb0ca5-6995-42d8-bd23-8a8f44ec0209"
/>
2025-01-26 10:36:03 +08:00
530b0dab17 Make infinity able to cal embedding sim only. (#4644)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 10:29:52 +08:00
c4b1c4e6f4 Fix onnxruntime-gpu marks (#4643)
### What problem does this PR solve?

Fix onnxruntime-gpu marks

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 09:37:59 +08:00
3c2c8942d5 Removed onnxruntime (#4632)
### What problem does this PR solve?

Removed onnxruntime. It conflicts with the onnxruntime-gpu.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 23:41:52 +08:00
71c132f76d Make infinity adapt (#4635)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 17:45:04 +08:00
9d717f0b6e Fix csv reader exception. (#4628)
### What problem does this PR solve?

#4552
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 14:47:19 +08:00
8b49734241 Added onnxruntime-gpu (#4631)
### What problem does this PR solve?

Added onnxruntime-gpu

### Type of change

- [x] Refactoring
2025-01-24 14:33:21 +08:00
898ae7fa80 Fix missplace for vector sim weight and token sim weight. (#4627)
### What problem does this PR solve?

#4610

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 12:41:06 +08:00
fa4277225d Added document: Accelerate document indexing and retrieval (#4600)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-24 11:58:15 +08:00
1bff6b7333 Fix t_ocr.py for PNG image. (#4625)
### What problem does this PR solve?
#4586

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 11:47:27 +08:00
e9ccba0395 Add timestamp to messages (#4624)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-24 11:07:55 +08:00
f1d9f4290e Fix TogetherAIEmbed. (#4623)
### What problem does this PR solve?

#4567

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 10:29:30 +08:00
4230402fbb deepdoc use GPU if possible (#4618)
### What problem does this PR solve?

deepdoc use GPU if possible

### Type of change

- [x] Refactoring
2025-01-24 09:48:02 +08:00
e14d6ae441 Refactor. (#4612)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-01-23 18:56:02 +08:00
55f2b7c4d5 Code format. (#4611)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-01-23 18:43:32 +08:00
07b3e55903 Feat: Set the style of the header tag #3221 (#4608)
### What problem does this PR solve?

Feat: Set the style of the header tag #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-23 18:16:52 +08:00
86892959a0 Rebuild graph when it's out of time. (#4607)
### What problem does this PR solve?

#4543

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
2025-01-23 17:26:20 +08:00
bbc1d02c96 Template conversion adds Jinjia2 syntax support (#4545)
### What problem does this PR solve?

Template conversion adds Jinjia2 syntax support

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: wangrui <wangrui@haima.me>
Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-01-23 17:11:14 +08:00
b23a4a8fea Feat: Add keyword item to AssistantSetting #4543 (#4603)
### What problem does this PR solve?

Feat: Add keyword item to AssistantSetting #4543

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-23 15:58:22 +08:00
240e7d7c22 Unified user_service.py (#4606)
### What problem does this PR solve?

Unified user_service.py

### Type of change

- [x] Refactoring
2025-01-23 15:49:21 +08:00
52fa8bdcf3 fix bug KGSearch.search() got an unexpected keyword argument 'rank_feature' (#4601)
`graphrag/search.py`中`search`方法缺少参数`rank_feature`

Co-authored-by: xubh <xubh@wikiflyer.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-01-23 14:03:18 +08:00
13f04b7cca Fix pdf applying Q&A issue. (#4599)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-23 12:30:46 +08:00
c4b9e903c8 Fix index not found for new user. (#4597)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-23 11:45:22 +08:00
15f9406e7b Fix: Capture the problem that the knowledge graph interface returns null and causes page errors #4543 (#4598)
### What problem does this PR solve?

Fix: Capture the problem that the knowledge graph interface returns null
and causes page errors #4543

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-23 11:32:49 +08:00
c5c0dd2da0 Feat: Display the knowledge graph on the knowledge base page #4543 (#4587)
### What problem does this PR solve?

Feat: Display the knowledge graph on the knowledge base page #4543

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-22 19:43:27 +08:00
dd0ebbea35 Light GraphRAG (#4585)
### What problem does this PR solve?

#4543

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-22 19:43:14 +08:00
1a367664f1 Remove usage of eval() from postprocess.py (#4571)
Remove usage of `eval()` from postprocess.py

### What problem does this PR solve?

The use of `eval()` is a potential security risk. While the use of
`eval()` is guarded and thus not a security risk normally, `assert`s
aren't run if `-O` or `-OO` is passed to the interpreter, and as such
then the guard would not apply. In any case there is no reason to use
`eval()` here at all.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Other (please describe):

Potential security fix if somehow the passed `modul_name` could be user
controlled.
2025-01-22 19:37:24 +08:00
336e5fb37f Renamed entrypoint_task_executor.sh entrypoint-parser.sh (#4583)
### What problem does this PR solve?

Renamed entrypoint_task_executor.sh entrypoint-parser.sh

### Type of change

- [x] Refactoring
2025-01-22 18:21:51 +08:00
598e142c85 re-fix (#4584)
re-fix docs
2025-01-22 18:13:26 +08:00
cbc3c5297e Revert the chat history for rewrite. (#4579)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-22 16:55:11 +08:00
4b82275ae5 Fix Latest Release button on PT README (#4572)
### What problem does this PR solve?

Latest Release button on Portugese Read me is not looking like it shuld 

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
2025-01-22 11:46:55 +08:00
3894de895b Update comments (#4569)
### What problem does this PR solve?

Add license statement.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-21 20:52:28 +08:00
583050a876 minor (#4568)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-21 20:02:04 +08:00
a2946b0fb0 Added descriptions of the Note and Template components (#4560)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-21 19:51:30 +08:00
21052b2972 Feat: Support for Portuguese language #4557 (#4558)
### What problem does this PR solve?

Feat: Support for Portuguese language #4557

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-21 11:32:47 +08:00
5632613eb5 Add language portugese br (#4550)
### What problem does this PR solve?

Add language Portugese from Brazil

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-01-21 11:22:29 +08:00
fc35821f81 Feat: Make the scroll bar of the DatasetSettings page appear inside #3221 (#4548)
### What problem does this PR solve?

Feat: Make the scroll bar of the DatasetSettings page appear inside
#3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-21 10:19:38 +08:00
db80376427 Added entrypoint for task executor (#4551)
### What problem does this PR solve?

Added entrypoint for task executor

### Type of change

- [x] Refactoring
2025-01-20 22:49:46 +08:00
99430a7db7 Added description of the Concentrator component (#4549)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-20 19:54:02 +08:00
a3391c4d55 Feat: Rename document name #3221 (#4544)
### What problem does this PR solve?

Feat: Rename document name #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-20 16:49:45 +08:00
e0f52eebc6 Added descriptions of Rewrite and Switch components. To be continued (#4526)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-01-20 15:56:21 +08:00
367babda2f Make Categorize see more chat hisotry. (#4538)
### What problem does this PR solve?

#4521

### Type of change
- [x] Performance Improvement
2025-01-20 11:57:56 +08:00
2962284c79 Bump akshare (#4536)
### What problem does this PR solve?

Bump akshare. Close #4525 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-20 11:17:59 +08:00
75e1981e13 Remove use of eval() from recognizer.py (#4480)
`eval(op_type)` -> `getattr(operators, op_type)`

### What problem does this PR solve?

Using `eval()` can lead to code injections and is entirely unnecessary
here.

### Type of change

- [x] Other (please describe):

Best practice code improvement, preventing the possibility of code
injection.
2025-01-20 09:52:47 +08:00
4f9f9405b8 Remove use of eval() from ocr.py (#4481)
`eval(op_name)` -> `getattr(operators, op_name)`

### What problem does this PR solve?

Using `eval()` can lead to code injections and is entirely unnecessary
here.

### Type of change

- [x] Other (please describe):

Best practice code improvement, preventing the possibility of code
injection.
2025-01-20 09:52:30 +08:00
938492cbae Fix: Rename segmented.tsx #3221 (#4522)
### What problem does this PR solve?

Fix: Rename segmented.tsx #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-17 19:01:09 +08:00
f4d084bcf1 Fix doc progress issue. (#4520)
### What problem does this PR solve?

#4516
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-17 18:28:15 +08:00
69984554a5 Fix: Translate the operator options of the Switch operator #1739 (#4519)
### What problem does this PR solve?

Fix: Translate the operator options of the Switch operator #1739

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-17 18:23:08 +08:00
03d7a51d49 add file README_tzh.md (#4513)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Other (please describe):
2025-01-17 18:22:02 +08:00
0efe7a544b Change index url per NEED_MIRROR (#4515)
### What problem does this PR solve?

Change index url per NEED_MIRROR. Close #4507

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-17 12:01:04 +08:00
c0799c53b3 Added descriptions of Message and Keyword agent components (#4512)
### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2025-01-16 19:47:15 +08:00
4946e43941 Feat: Make the category operator form displayed in collapsed mode by default #4505 (#4510)
### What problem does this PR solve?

Feat: Make the category operator form displayed in collapsed mode by
default #4505

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-16 17:16:58 +08:00
37235315e1 Fix: Fixed an issue where math formulas could not be displayed correctly #4405 (#4506)
### What problem does this PR solve?

[remarkjs/react-markdown/issues/785](https://github.com/remarkjs/react-markdown/issues/785)
Fix: Fixed an issue where math formulas could not be displayed correctly
#4405

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-16 15:13:40 +08:00
39be08c83d Feat: Add the MessageHistoryWindowSizeItem to RewriteQuestionForm #1739 (#4502)
### What problem does this PR solve?

Feat: Add the MessageHistoryWindowSizeItem to RewriteQuestionForm #1739
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-16 15:01:15 +08:00
3805621564 Fix xinference rerank issue. (#4499)
### What problem does this PR solve?
#4495
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-16 11:35:51 +08:00
a75cda4957 Feat: Add LinkToDatasetDialog #3221 (#4500)
### What problem does this PR solve?

Feat: Add LinkToDatasetDialog #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-16 11:35:39 +08:00
961e8c4980 Fix: the Display when the knowledge base empty. (#4496)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-16 10:27:45 +08:00
57b4e0c464 Bump infinity to v0.6.0-dev2 (#4497)
### What problem does this PR solve?

Bump infinity to v0.6.0-dev2. Close #4477 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-16 10:07:17 +08:00
c852a6dfbf Accelerate titles' embeddings. (#4492)
### What problem does this PR solve?


### Type of change

- [x] Performance Improvement
2025-01-15 15:20:29 +08:00
b4614e9517 Feat: Add FilesTable #3221 (#4491)
### What problem does this PR solve?

Feat: Add FilesTable #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-15 14:39:33 +08:00
be5f830878 Truncate text for zhipu embedding. (#4490)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-15 14:36:27 +08:00
7944aacafa Feat: add gpustack model provider (#4469)
### What problem does this PR solve?

Add GPUStack as a new model provider.
[GPUStack](https://github.com/gpustack/gpustack) is an open-source GPU
cluster manager for running LLMs. Currently, locally deployed models in
GPUStack cannot integrate well with RAGFlow. GPUStack provides both
OpenAI compatible APIs (Models / Chat Completions / Embeddings /
Speech2Text / TTS) and other APIs like Rerank. We would like to use
GPUStack as a model provider in ragflow.

[GPUStack Docs](https://docs.gpustack.ai/latest/quickstart/)

Related issue: https://github.com/infiniflow/ragflow/issues/4064.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)



### Testing Instructions
1. Install GPUStack and deploy the `llama-3.2-1b-instruct` llm, `bge-m3`
text embedding model, `bge-reranker-v2-m3` rerank model,
`faster-whisper-medium` Speech-to-Text model, `cosyvoice-300m-sft` in
GPUStack.
2. Add provider in ragflow settings.
3. Testing in ragflow.
2025-01-15 14:15:58 +08:00
e478586a8e Refactor. (#4487)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-01-15 14:06:46 +08:00
713f38090b Sync prerequisites with Helm Charts (#4483)
### What problem does this PR solve?

Address #4391 

### Type of change

- [x] Other (please describe):
2025-01-15 11:57:47 +08:00
8f7ecde908 Update description (#4468)
### What problem does this PR solve?

Update description

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-14 18:35:06 +08:00
23ad459136 Feat: Add background to next login page #3221 (#4474)
### What problem does this PR solve?

Feat: Add background to next login page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-14 13:43:18 +08:00
f556f0239c Fix dify retrieval issue. (#4473)
### What problem does this PR solve?

#4464
#4469 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-14 13:16:05 +08:00
f318342c8e Recalling the file uploaded while chatting. (#4472)
### What problem does this PR solve?

#4445

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-14 12:05:20 +08:00
d3c07794b5 Replace poetry with uv (#4471)
### What problem does this PR solve?

Replace poetry with uv

### Type of change

- [x] Refactoring
2025-01-14 11:49:43 +08:00
fd0bf3adf0 Format: dos2unix (#4467)
### What problem does this PR solve?

Format the code

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-13 18:19:01 +08:00
c08382099a Check meta data format in json map (#4461)
### What problem does this PR solve?

#3690

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-13 17:34:50 +08:00
d8346cb7a6 Feat: Metadata in documents for improve the prompt #3690 (#4462)
### What problem does this PR solve?

Feat: Metadata in documents for improve the prompt #3690

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-13 17:13:37 +08:00
46c52d65b7 Add meta data while chatting. (#4455)
### What problem does this PR solve?

#3690

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-13 14:35:24 +08:00
e098fcf6ad Fix csv for TAG. (#4454)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-13 12:03:18 +08:00
ecdb2a88bd Fix: Can not select GPT-4o / 4o mini as Chat Model #4421 (#4453)
### What problem does this PR solve?

Fix: Can not select GPT-4o / 4o mini as Chat Model #4421

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-13 11:54:16 +08:00
2c7ba90cb4 Fix: In order to distinguish the keys of a pair of messages, add a prefix to the id when rendering the message. #4409 (#4451)
### What problem does this PR solve?

Fix: In order to distinguish the keys of a pair of messages, add a
prefix to the id when rendering the message. #4409

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-13 10:51:59 +08:00
95261f17f6 Bump infinity to v0.6.0-dev1 (#4448)
### What problem does this PR solve?

Bump infinity to v0.6.0-dev1 and poetry to 2.0.1

### Type of change

- [x] Refactoring
2025-01-12 19:54:33 +08:00
7d909d4d1b Add doc meta data. (#4442)
### What problem does this PR solve?

#3690

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-10 19:06:59 +08:00
4dde73f897 Error message: Infinity not support table parsing method (#4439)
### What problem does this PR solve?

Specific error message.

### Type of change

- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
2025-01-10 16:39:13 +08:00
93b30b2fb5 update res vi (#4437)
update typo vi
2025-01-10 11:35:58 +08:00
06c54367fa Feat: Display tag word cloud on recall test page #4368 (#4438)
### What problem does this PR solve?

Feat: Display tag word cloud on recall test page #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-10 11:35:07 +08:00
6acbd374d8 fix duckduckgo search subsection error (#4430)
### What problem does this PR solve?

duckduckgo search 6.3.0 still has error sometimes, need to update to
7.2.0, after updated, it works ok.
this PR is going to fix this issue
https://github.com/infiniflow/ragflow/issues/4396

### Type of change

 Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: xiaohzho <xiaohzho@cisco.com>
2025-01-10 09:34:20 +08:00
48bca0ca01 Fix: Modify the text of the category operator form #4412 (#4433)
### What problem does this PR solve?

Fix: Modify the text of the category operator form #4412

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-09 19:17:22 +08:00
300d8ecf51 Feat: Add TagFeatureItem #4368 (#4432)
### What problem does this PR solve?

Feat: Add TagFeatureItem #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-09 18:24:27 +08:00
dac54ded96 Added a description of the Categorize agent component (#4428)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-01-09 18:10:18 +08:00
c5da3cdd97 Tagging (#4426)
### What problem does this PR solve?

#4367

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-09 17:07:21 +08:00
f892d7d426 Let the agent talk while there's pre-set param. (#4423)
### What problem does this PR solve?

#4385

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-09 14:07:57 +08:00
f86d8906e7 Fixed code error when mssql returns multiple columns (#4420)
Fixed code error when mssql returns multiple columns
2025-01-09 11:55:18 +08:00
bc681e2ee9 Remove redundant param of rewrite component. (#4422)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-09 11:54:31 +08:00
b6c71c1e01 Fix typo in helm charts (#4419)
### What problem does this PR solve?

Fix typo in helm chart

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-09 10:20:27 +08:00
7bebf4b7bf Added descriptions of the retrieval agent component (#4416)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update

---------

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
2025-01-09 10:11:05 +08:00
d64df4de9c Update error message (#4417)
### What problem does this PR solve?

1. Update error message
2. Remove space characters

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-08 20:18:27 +08:00
af43cb04e8 Feat: Add tag_kwd parameter to chunk configuration modal #4368 (#4414)
### What problem does this PR solve?

Feat: Add tag_kwd parameter to chunk configuration modal  #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-08 19:45:34 +08:00
3d66d78304 Fix API retrieval error. (#4408)
### What problem does this PR solve?

#4403

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-08 11:27:46 +08:00
b7ce4e7e62 fix:t_recognizer TypeError: 'super' object is not callable (#4404)
### What problem does this PR solve?

[Bug]: layout recognizer failed for wrong boxes class type #4230
(https://github.com/infiniflow/ragflow/issues/4230)

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: youzhiqiang <zhiqiang.you@aminer.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-01-08 10:59:35 +08:00
5e64d79587 Added generate component description (#4399)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-01-07 19:56:11 +08:00
49cebd9fec Feat: Add description for tag parsing method #4368 (#4402)
### What problem does this PR solve?

Feat: Add description for tag parsing method #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-07 19:33:53 +08:00
d9a4e4cc3b Fix page size error. (#4401)
### What problem does this PR solve?

#4400

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-07 19:06:31 +08:00
ac89a2dda1 [Fix] fix duckduck go search 202 ratelimit failed (#4398)
this PR is going to fix issue
https://github.com/infiniflow/ragflow/issues/4396

### Type of change

 Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: xiaohzho <xiaohzho@cisco.com>
2025-01-07 18:40:46 +08:00
01a122dc9d fix bug, agent invoke can not get params from begin (#4390)
### What problem does this PR solve?

fix bug, agent invoke can not get params from begin

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wangrui <wangrui@haima.me>
2025-01-07 18:40:27 +08:00
8ec392adb0 Feat: Add TagWorkCloud #4368 (#4393)
### What problem does this PR solve?

Feat: Add TagWorkCloud #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-07 18:03:41 +08:00
de822a108f Refine variable display name. (#4397)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-01-07 18:02:33 +08:00
2e40c2a6f6 Fix t_recognizer issue. (#4387)
### What problem does this PR solve?

#4230

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-07 13:17:46 +08:00
d088a34fe2 Feat: Add LoadingButton #4368 (#4384)
### What problem does this PR solve?

Feat: Add LoadingButton #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-07 12:53:06 +08:00
16e1681fa4 Refine DB assistant template. (#4383)
### What problem does this PR solve?

#4326

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-07 11:30:15 +08:00
bb24e5f739 Added instructions on embedding agent or assistant into a third-party webpage (#4369)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-01-06 20:25:47 +08:00
1d93eb81ae Feat: Add TagTable #4367 (#4368)
### What problem does this PR solve?

Feat: Add TagTable #4367

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-06 18:58:42 +08:00
439d20e41f Use LTS polars to resolve some machines don't support AVX CPU flag (#4364)
### What problem does this PR solve?

Some old types of machine or virtual machine doesn't support AVX CPU
flag. This PR is to use lts polars module to avoid this fault.

fix issue: #4349

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
2025-01-06 18:52:17 +08:00
45619702ff Updated outdated descriptions and added multi-turn optimization (#4362)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2025-01-06 16:54:22 +08:00
b93c136797 Fix gemini embedding error. (#4356)
### What problem does this PR solve?

#4314

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-06 14:41:29 +08:00
983ec0666c Fix param error. (#4355)
### What problem does this PR solve?

#4230

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-06 13:54:17 +08:00
a9ba051582 Adds a research report generator. (#4354)
### What problem does this PR solve?

#4242

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-06 13:28:54 +08:00
bad764bcda Improve storage engine (#4341)
### What problem does this PR solve?

- Bring `STORAGE_IMPL` back in `rag/svr/cache_file_svr.py`
- Simplify storage connection when working with AWS S3

### Type of change

- [x] Refactoring
2025-01-06 12:06:24 +08:00
9c6cf12137 Refactor model list. (#4346)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-01-03 19:55:42 +08:00
6288b6d02b chrome extensions (#4308)
Build chrome extensions that allow interaction with browser content
2025-01-03 10:15:36 +08:00
52c20033d7 Fix total number error. (#4339)
### What problem does this PR solve?

#4328

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-03 10:02:30 +08:00
5dad15600c Feat: Add FileUploadDialog #3221 (#4327) (#4335)
### What problem does this PR solve?

Feat: Add ConfirmDeleteDialog #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-03 09:47:05 +08:00
8674156d1c Fix potential SSRF attack vulnerability (#4334)
### What problem does this PR solve?

Fix potential SSRF attack vulnerability

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2025-01-02 18:45:45 +08:00
5083d92998 Feat: Add model id to ExeSql operator form. #1739 (#4333)
### What problem does this PR solve?

Feat: Add model id to ExeSql operator form. #1739

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-02 17:38:01 +08:00
59a78408be Fix t_recognizer.py after model updating. (#4330)
### What problem does this PR solve?

#4230

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-02 17:00:11 +08:00
df22ead841 Fix agent_completion bug (#4329)
### What problem does this PR solve?

Fix agent_completion bug  #4320

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-01-02 16:59:54 +08:00
5883493c7d Feat: Add FileUploadDialog #3221 (#4327)
### What problem does this PR solve?

Feat: Add FileUploadDialog #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-02 16:10:41 +08:00
50f209204e Synchronize with enterprise version (#4325)
### Type of change

- [x] Refactoring
2025-01-02 13:44:44 +08:00
564277736a Update exesql component for agent (#4307)
### What problem does this PR solve?

Update exesql component for agent

### Type of change

- [x] Refactoring

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-31 19:58:56 +08:00
061a22588a Feat: Add DatasetCreatingDialog #3221 (#4313)
### What problem does this PR solve?

Feat: Add DatasetCreatingDialog #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-31 19:17:09 +08:00
5071df9de1 Fix parameter name error. (#4312)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-31 17:38:01 +08:00
419b546f03 Update displayed_name to display_name (#4311)
### What problem does this PR solve?

Update displayed_name to display_name

### Type of change

- [x] Refactoring

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-31 17:25:24 +08:00
e5b1511c66 Fix: Fixed the issue that the graph could not display the grouping #4180 (#4306)
### What problem does this PR solve?

Fix: Fixed the issue that the graph could not display the grouping #4180

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-31 15:32:14 +08:00
0e5124ec99 Show the errors out. (#4305)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-12-31 15:32:02 +08:00
7c7b7d2689 Update error message for agent name conflict (#4299)
### What problem does this PR solve?

Update error message for agent name conflict

### Type of change

- [x] Refactoring

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-31 14:36:23 +08:00
accd3a6c7e Support OpenAI gpt-4o and gpt-4o-mini for img2text (#4300)
### What problem does this PR solve?

OpenAI has deprecated the gpt-4-vision-preview model. This PR adds
support for the newer gpt-4o and gpt-4o-mini models in the img2text
feature.


![image](https://github.com/user-attachments/assets/6dddf2dc-1b9e-4e94-bf07-6bf77d39122b)

This PR add addtional 4o/4o-mini entry for img2text besides original
ones. Utilized [alias](https://platform.openai.com/docs/models#gpt-4o)
model names (e.g., gpt-4o-2024-08-06) because the database schema uses
the model name as the primary key.



- [x] Other (please describe): model update
2024-12-31 14:36:06 +08:00
4ba4f622a5 Refactor (#4303)
### What problem does this PR solve?

### Type of change
- [x] Refactoring
2024-12-31 14:31:31 +08:00
b52b0f68fc Add top_k for create_chat and update_chat api (#4294)
### What problem does this PR solve?

Add top_k for create_chat and update_chat api #4157

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-30 19:22:57 +08:00
d42e78bce2 Fix bugs in chunk api (#4293)
### What problem does this PR solve?

Fix bugs in chunk api #4149

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-30 19:01:44 +08:00
8fb18f37f6 Code refactor. (#4291)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2024-12-30 18:38:51 +08:00
f619d5a9b6 Fix: After executing npm i --force locally, the login page cannot be opened #4290 (#4292)
### What problem does this PR solve?

Fix: After executing npm i --force locally, the login page cannot be
opened #4290

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-30 18:19:58 +08:00
d1971e988a Feat: The Begin and IterationStart operators cannot be deleted using shortcut keys #4287 (#4288)
### What problem does this PR solve?

Feat: The Begin and IterationStart operators cannot be deleted using
shortcut keys #4287

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-30 17:47:47 +08:00
54908ebd30 Fix the bug in create_dataset function (#4284)
### What problem does this PR solve?

Fix the bug in create_dataset function #4136

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-30 13:04:51 +08:00
3ba2b8d80f Fix agent session list by user_id. (#4285)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-30 12:18:16 +08:00
713b837276 Feat: Translate the system prompt of the generate operator #3993 (#4283)
### What problem does this PR solve?

 Feat: Translate the system prompt of the generate operator #3993

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-30 12:07:06 +08:00
8feb4c1a99 Fix BaiduFanyi TestRun parameter validation and debug method missing … (#4275)
### What problem does this PR solve?

Fix BaiduFanyi TestRun parameter validation and debug method missing
errors
![Uploading Snipaste_2024-12-27_19-56-31.png…]()


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wangrui <wangrui@haima.me>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-12-30 10:34:57 +08:00
dd13a5d05c Fix some bugs in text2sql.(#4279)(#4281) (#4280)
Fix some bugs in text2sql.(#4279)(#4281)

### What problem does this PR solve?
- The incorrect results in parsing CSV files of the QA knowledge base in
the text2sql scenario. Process CSV files using the csv library. Decouple
CSV parsing from TXT parsing
- Most llm return results in markdown format ```sql query ```, Fix
execution error caused by LLM output SQLmarkdown format.### Type of
change
- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-30 10:32:19 +08:00
8cdf10148d Initial draft of the begin component reference (#4272)
### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2024-12-27 17:07:31 +08:00
7773afa561 Update text2sql agent manual document (#4226) (#4271)
### What problem does this PR solve?
- Create a text2sql agent document: Receipe, procedure, debug (
including step run), run.

### Type of change
- [ ] Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-12-27 16:48:17 +08:00
798eb3647c Fix chat listing error. (#4270)
### What problem does this PR solve?

#4220
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-27 16:03:59 +08:00
2d17e5aa04 Feat: Delete useless code #4242 (#4267)
### What problem does this PR solve?

Feat: Delete useless code #4242

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-27 15:09:03 +08:00
c75aa11ae6 Fix: The edit box for the headers parameter of the invoke operator is always loading. #4265 (#4266)
### What problem does this PR solve?

Fix: The edit box for the headers parameter of the invoke operator is
always loading. #4265

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-27 15:03:42 +08:00
c7818770f4 Fix Python SDK example error. (#4263)
### What problem does this PR solve?

#4253
### Type of change

- [x] Documentation Update
2024-12-27 14:49:43 +08:00
6f6303d017 Fix Python SDK example error. (#4262)
### What problem does this PR solve?

#4252

### Type of change

- [x] Documentation Update
2024-12-27 14:40:00 +08:00
146e8bb793 Feat: Limit the iteration start node to only be the source node #4242 (#4260)
### What problem does this PR solve?

Feat: Limit the iteration start node to only be the source node #4242

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-27 14:25:15 +08:00
f948c0d9f1 Clean query. (#4259)
### What problem does this PR solve?

#4239

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-27 14:25:03 +08:00
c3e3f0fbb4 Add iteration for agent. (#4258)
### What problem does this PR solve?

#4242
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-12-27 11:38:33 +08:00
a1a825c830 Feat: Add the iteration Node #4242 (#4247)
### What problem does this PR solve?

Feat: Add the iteration Node #4242

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-27 11:24:17 +08:00
a6f4153775 Update UI text (#4248)
### What problem does this PR solve?

Update UI text

### Type of change

- [x] Refactoring

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-12-27 10:48:11 +08:00
097aab09a2 Replace image2text model check with internal image. (#4250)
### What problem does this PR solve?

#4243

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-26 19:46:42 +08:00
600f435d27 Fix text (#4244)
### What problem does this PR solve?

Fix frontend text

### Type of change

- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-12-26 17:03:48 +08:00
722545e5e0 Fix bugs (#4241)
### What problem does this PR solve?

1. Refactor error message
2. Fix knowledges are created on ES and can't be found in Infinity. The
document chunk fetch error.

### Type of change

- [x] Fix bug
- [x] Refactoring

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-12-26 16:08:17 +08:00
9fa73771ee Fixed invoke component parameters #4236 (#4237)
### What problem does this PR solve?

to fixed issue https://github.com/infiniflow/ragflow/issues/4236

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-26 16:06:19 +08:00
fe279754ac Update version info (#4232)
### What problem does this PR solve?

Update version info to 0.15.1

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-12-26 12:15:28 +08:00
7e063283ba Removing invisible chars before tokenization. (#4233)
### What problem does this PR solve?

#4223

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-26 11:48:16 +08:00
28eeb29b88 Fix component input error. (#4231)
### What problem does this PR solve?

#4108

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-26 10:13:47 +08:00
85511cb1fd Miscellaneous updates (#4228)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2024-12-25 20:21:38 +08:00
a3eeb5de32 Fix: Q&A chunk modification (#4227)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-25 19:11:16 +08:00
1112 changed files with 101029 additions and 40855 deletions

3
.gitattributes vendored
View File

@ -1 +1,2 @@
*.sh text eol=lf
*.sh text eol=lf
docker/entrypoint.sh text eol=lf executable

View File

@ -1,15 +1,21 @@
name: Bug Report
name: "🐞 Bug Report"
description: Create a bug issue for RAGFlow
title: "[Bug]: "
labels: [bug]
labels: ["🐞 bug"]
body:
- type: checkboxes
attributes:
label: Is there an existing issue for the same bug?
description: Please check if an issue already exists for the bug you encountered.
label: Self Checks
description: "Please check the following in order to be responded in time :)"
options:
- label: I have checked the existing issues.
required: true
- label: I have searched for existing issues [search for existing issues](https://github.com/infiniflow/ragflow/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report ([Language Policy](https://github.com/infiniflow/ragflow/issues/5910)).
required: true
- label: Non-english title submitions will be closed directly ( 非英文标题的提交将会被直接关闭 ) ([Language Policy](https://github.com/infiniflow/ragflow/issues/5910)).
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
- type: markdown
attributes:
value: "Please provide the following information to help us understand the issue."

View File

@ -1,10 +0,0 @@
---
name: Feature request
title: '[Feature Request]: '
about: Suggest an idea for RAGFlow
labels: ''
---
**Summary**
Description for this feature.

View File

@ -1,14 +1,20 @@
name: Feature request
name: "💞 Feature request"
description: Propose a feature request for RAGFlow.
title: "[Feature Request]: "
labels: [feature request]
labels: ["💞 feature"]
body:
- type: checkboxes
attributes:
label: Is there an existing issue for the same feature request?
description: Please check if an issue already exists for the feature you request.
label: Self Checks
description: "Please check the following in order to be responded in time :)"
options:
- label: I have checked the existing issues.
- label: I have searched for existing issues [search for existing issues](https://github.com/infiniflow/ragflow/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report ([Language Policy](https://github.com/infiniflow/ragflow/issues/5910)).
required: true
- label: Non-english title submitions will be closed directly ( 非英文标题的提交将会被直接关闭 ) ([Language Policy](https://github.com/infiniflow/ragflow/issues/5910)).
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
- type: textarea
attributes:

View File

@ -1,8 +1,21 @@
name: Question
name: "🙋‍♀️ Question"
description: Ask questions on RAGFlow
title: "[Question]: "
labels: [question]
labels: ["🙋‍♀️ question"]
body:
- type: checkboxes
attributes:
label: Self Checks
description: "Please check the following in order to be responded in time :)"
options:
- label: I have searched for existing issues [search for existing issues](https://github.com/infiniflow/ragflow/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report ([Language Policy](https://github.com/infiniflow/ragflow/issues/5910)).
required: true
- label: Non-english title submitions will be closed directly ( 非英文标题的提交将会被直接关闭 ) ([Language Policy](https://github.com/infiniflow/ragflow/issues/5910)).
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
- type: markdown
attributes:
value: |

View File

@ -75,12 +75,6 @@ jobs:
# The body field does not support environment variable substitution directly.
body_path: release_body.md
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
# https://github.com/marketplace/actions/docker-login
- name: Login to Docker Hub
uses: docker/login-action@v3
@ -113,7 +107,7 @@ jobs:
if: startsWith(github.ref, 'refs/tags/v')
run: |
cd sdk/python && \
poetry build
uv build
- name: Publish package distributions to PyPI
if: startsWith(github.ref, 'refs/tags/v')

View File

@ -15,6 +15,8 @@ on:
- 'docs/**'
- '*.md'
- '*.mdx'
schedule:
- cron: '0 16 * * *' # This schedule runs every 16:00:00Z(00:00:00+08:00)
# https://docs.github.com/en/actions/using-jobs/using-concurrency
concurrency:
@ -32,12 +34,9 @@ jobs:
# https://github.com/hmarr/debug-action
#- uses: hmarr/debug-action@v2
- name: Show PR labels
- name: Show who triggered this workflow
run: |
echo "Workflow triggered by ${{ github.event_name }}"
if [[ ${{ github.event_name }} == 'pull_request' ]]; then
echo "PR labels: ${{ join(github.event.pull_request.labels.*.name, ', ') }}"
fi
- name: Ensure workspace ownership
run: echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
@ -51,10 +50,10 @@ jobs:
# https://github.com/astral-sh/ruff-action
- name: Static check with Ruff
uses: astral-sh/ruff-action@v2
uses: astral-sh/ruff-action@v3
with:
version: ">=0.8.2"
args: "check --ignore E402"
version: ">=0.11.x"
args: "check"
- name: Build ragflow:nightly-slim
run: |
@ -68,7 +67,7 @@ jobs:
- name: Start ragflow:nightly-slim
run: |
echo "RAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Stop ragflow:nightly-slim
@ -78,7 +77,7 @@ jobs:
- name: Start ragflow:nightly
run: |
echo "RAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Run sdk tests against Elasticsearch
@ -89,7 +88,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
cd sdk/python && uv sync --python 3.10 --group test --frozen && uv pip install . && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
- name: Run frontend api tests against Elasticsearch
run: |
@ -99,8 +98,22 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
cd sdk/python && uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
- name: Run http api tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
cd sdk/python && uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_http_api && pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL}
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed
@ -119,7 +132,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
cd sdk/python && uv sync --python 3.10 --group test --frozen && uv pip install . && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
- name: Run frontend api tests against Infinity
run: |
@ -129,7 +142,22 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
cd sdk/python && uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
- name: Run http api tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
cd sdk/python && uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_http_api && DOC_ENGINE=infinity pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL}
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed

149
.gitignore vendored
View File

@ -38,3 +38,152 @@ sdk/python/dist/
sdk/python/ragflow_sdk.egg-info/
huggingface.co/
nltk_data/
# Exclude hash-like temporary files like 9b5ad71b2ce5302211f9c61530b329a4922fc6a4
*[0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f]*
.lh/
.venv
docker/data
#--------------------------------------------------#
# The following was generated with gitignore.nvim: #
#--------------------------------------------------#
# Gitignore for the following technologies: Node
# Logs
logs
*.log
npm-debug.log*
yarn-debug.log*
yarn-error.log*
lerna-debug.log*
.pnpm-debug.log*
# Diagnostic reports (https://nodejs.org/api/report.html)
report.[0-9]*.[0-9]*.[0-9]*.[0-9]*.json
# Runtime data
pids
*.pid
*.seed
*.pid.lock
# Directory for instrumented libs generated by jscoverage/JSCover
lib-cov
# Coverage directory used by tools like istanbul
coverage
*.lcov
# nyc test coverage
.nyc_output
# Grunt intermediate storage (https://gruntjs.com/creating-plugins#storing-task-files)
.grunt
# Bower dependency directory (https://bower.io/)
bower_components
# node-waf configuration
.lock-wscript
# Compiled binary addons (https://nodejs.org/api/addons.html)
build/Release
# Dependency directories
node_modules/
jspm_packages/
# Snowpack dependency directory (https://snowpack.dev/)
web_modules/
# TypeScript cache
*.tsbuildinfo
# Optional npm cache directory
.npm
# Optional eslint cache
.eslintcache
# Optional stylelint cache
.stylelintcache
# Microbundle cache
.rpt2_cache/
.rts2_cache_cjs/
.rts2_cache_es/
.rts2_cache_umd/
# Optional REPL history
.node_repl_history
# Output of 'npm pack'
*.tgz
# Yarn Integrity file
.yarn-integrity
# dotenv environment variable files
.env
.env.development.local
.env.test.local
.env.production.local
.env.local
# parcel-bundler cache (https://parceljs.org/)
.cache
.parcel-cache
# Next.js build output
.next
out
# Nuxt.js build / generate output
.nuxt
dist
# Gatsby files
.cache/
# Comment in the public line in if your project uses Gatsby and not Next.js
# https://nextjs.org/blog/next-9-1#public-directory-support
# public
# vuepress build output
.vuepress/dist
# vuepress v2.x temp and cache directory
.temp
# Docusaurus cache and generated files
.docusaurus
# Serverless directories
.serverless/
# FuseBox cache
.fusebox/
# DynamoDB Local files
.dynamodb/
# TernJS port file
.tern-port
# Stores VSCode versions used for testing VSCode extensions
.vscode-test
# yarn v2
.yarn/cache
.yarn/unplugged
.yarn/build-state.yml
.yarn/install-state.gz
.pnp.*
# Serverless Webpack directories
.webpack/
# SvelteKit build / generate output
.svelte-kit

19
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,19 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.6.0
hooks:
- id: check-yaml
- id: check-json
- id: end-of-file-fixer
- id: trailing-whitespace
- id: check-case-conflict
- id: check-merge-conflict
- id: mixed-line-ending
- id: check-symlinks
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.6
hooks:
- id: ruff
args: [ --fix ]
- id: ruff-format

View File

@ -21,9 +21,7 @@ RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/huggingface.co
if [ "$LIGHTEN" != "1" ]; then \
(tar -cf - \
/huggingface.co/BAAI/bge-large-zh-v1.5 \
/huggingface.co/BAAI/bge-reranker-v2-m3 \
/huggingface.co/maidalun1020/bce-embedding-base_v1 \
/huggingface.co/maidalun1020/bce-reranker-base_v1 \
| tar -xf - --strip-components=2 -C /root/.ragflow) \
fi
@ -46,7 +44,8 @@ ENV DEBIAN_FRONTEND=noninteractive
# Building C extensions: libpython3-dev libgtk-4-1 libnss3 xdg-utils libgbm-dev
RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
if [ "$NEED_MIRROR" == "1" ]; then \
sed -i 's|http://archive.ubuntu.com|https://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list; \
sed -i 's|http://ports.ubuntu.com|http://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list; \
sed -i 's|http://archive.ubuntu.com|http://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list; \
fi; \
rm -f /etc/apt/apt.conf.d/docker-clean && \
echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache && \
@ -59,33 +58,46 @@ RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
apt install -y default-jdk && \
apt install -y libatk-bridge2.0-0 && \
apt install -y libpython3-dev libgtk-4-1 libnss3 xdg-utils libgbm-dev && \
apt install -y python3-pip pipx nginx unzip curl wget git vim less
apt install -y libjemalloc-dev && \
apt install -y python3-pip pipx nginx unzip curl wget git vim less && \
apt install -y ghostscript
RUN if [ "$NEED_MIRROR" == "1" ]; then \
pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && \
pip3 config set global.trusted-host pypi.tuna.tsinghua.edu.cn; \
pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple && \
pip3 config set global.trusted-host mirrors.aliyun.com; \
mkdir -p /etc/uv && \
echo "[[index]]" > /etc/uv/uv.toml && \
echo 'url = "https://mirrors.aliyun.com/pypi/simple"' >> /etc/uv/uv.toml && \
echo "default = true" >> /etc/uv/uv.toml; \
fi; \
pipx install poetry; \
if [ "$NEED_MIRROR" == "1" ]; then \
pipx inject poetry poetry-plugin-pypi-mirror; \
fi
pipx install uv
ENV PYTHONDONTWRITEBYTECODE=1 DOTNET_SYSTEM_GLOBALIZATION_INVARIANT=1
ENV PATH=/root/.local/bin:$PATH
# Configure Poetry
ENV POETRY_NO_INTERACTION=1
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
ENV POETRY_VIRTUALENVS_CREATE=true
ENV POETRY_REQUESTS_TIMEOUT=15
# nodejs 12.22 on Ubuntu 22.04 is too old
RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
curl -fsSL https://deb.nodesource.com/setup_20.x | bash - && \
apt purge -y nodejs npm && \
apt autoremove && \
apt purge -y nodejs npm cargo && \
apt autoremove -y && \
apt update && \
apt install -y nodejs cargo
apt install -y nodejs
# A modern version of cargo is needed for the latest version of the Rust compiler.
RUN apt update && apt install -y curl build-essential \
&& if [ "$NEED_MIRROR" == "1" ]; then \
# Use TUNA mirrors for rustup/rust dist files
export RUSTUP_DIST_SERVER="https://mirrors.tuna.tsinghua.edu.cn/rustup"; \
export RUSTUP_UPDATE_ROOT="https://mirrors.tuna.tsinghua.edu.cn/rustup/rustup"; \
echo "Using TUNA mirrors for Rustup."; \
fi; \
# Force curl to use HTTP/1.1
curl --proto '=https' --tlsv1.2 --http1.1 -sSf https://sh.rustup.rs | bash -s -- -y --profile minimal \
&& echo 'export PATH="/root/.cargo/bin:${PATH}"' >> /root/.bashrc
ENV PATH="/root/.cargo/bin:${PATH}"
RUN cargo --version && rustc --version
# Add msssql ODBC driver
# macOS ARM64 environment, install msodbcsql18.
@ -94,11 +106,12 @@ RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
curl https://packages.microsoft.com/keys/microsoft.asc | apt-key add - && \
curl https://packages.microsoft.com/config/ubuntu/22.04/prod.list > /etc/apt/sources.list.d/mssql-release.list && \
apt update && \
if [ -n "$ARCH" ] && [ "$ARCH" = "arm64" ]; then \
# MacOS ARM64
arch="$(uname -m)"; \
if [ "$arch" = "arm64" ] || [ "$arch" = "aarch64" ]; then \
# ARM64 (macOS/Apple Silicon or Linux aarch64)
ACCEPT_EULA=Y apt install -y unixodbc-dev msodbcsql18; \
else \
# (x86_64)
# x86_64 or others
ACCEPT_EULA=Y apt install -y unixodbc-dev msodbcsql17; \
fi || \
{ echo "Failed to install ODBC driver"; exit 1; }
@ -131,23 +144,27 @@ USER root
WORKDIR /ragflow
# install dependencies from poetry.lock file
COPY pyproject.toml poetry.toml poetry.lock ./
# install dependencies from uv.lock file
COPY pyproject.toml uv.lock ./
RUN --mount=type=cache,id=ragflow_poetry,target=/root/.cache/pypoetry,sharing=locked \
# https://github.com/astral-sh/uv/issues/10462
# uv records index url into uv.lock but doesn't failover among multiple indexes
RUN --mount=type=cache,id=ragflow_uv,target=/root/.cache/uv,sharing=locked \
if [ "$NEED_MIRROR" == "1" ]; then \
export POETRY_PYPI_MIRROR_URL=https://pypi.tuna.tsinghua.edu.cn/simple/; \
sed -i 's|pypi.org|mirrors.aliyun.com/pypi|g' uv.lock; \
else \
sed -i 's|mirrors.aliyun.com/pypi|pypi.org|g' uv.lock; \
fi; \
if [ "$LIGHTEN" == "1" ]; then \
poetry install --no-root; \
uv sync --python 3.10 --frozen; \
else \
poetry install --no-root --with=full; \
uv sync --python 3.10 --frozen --all-extras; \
fi
COPY web web
COPY docs docs
RUN --mount=type=cache,id=ragflow_npm,target=/root/.npm,sharing=locked \
cd web && npm install --force && npm run build
cd web && npm install && npm run build
COPY .git /ragflow/.git
@ -180,11 +197,14 @@ COPY deepdoc deepdoc
COPY rag rag
COPY agent agent
COPY graphrag graphrag
COPY pyproject.toml poetry.toml poetry.lock ./
COPY agentic_reasoning agentic_reasoning
COPY pyproject.toml uv.lock ./
COPY mcp mcp
COPY plugin plugin
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template
COPY docker/entrypoint.sh ./entrypoint.sh
RUN chmod +x ./entrypoint.sh
COPY docker/entrypoint.sh ./
RUN chmod +x ./entrypoint*.sh
# Copy compiled web pages
COPY --from=builder /ragflow/web/dist /ragflow/web/dist

View File

@ -33,6 +33,7 @@ ADD ./rag ./rag
ADD ./requirements.txt ./requirements.txt
ADD ./agent ./agent
ADD ./graphrag ./graphrag
ADD ./plugin ./plugin
RUN dnf install -y openmpi openmpi-devel python3-openmpi
ENV C_INCLUDE_PATH /usr/include/openmpi-x86_64:$C_INCLUDE_PATH

145
README.md
View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -32,14 +34,14 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary></b>📕 Table of Contents</b></summary>
<summary><b>📕 Table of Contents</b></summary>
- 💡 [What is RAGFlow?](#-what-is-ragflow)
- 🎮 [Demo](#-demo)
@ -68,6 +70,7 @@ data.
## 🎮 Demo
Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
@ -75,17 +78,18 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Latest Updates
- 2024-12-18 Upgrades Document Layout Analysis model in Deepdoc.
- 2024-12-04 Adds support for pagerank score in knowledge base.
- 2024-11-22 Adds more variables to Agent.
- 2025-03-19 Supports using a multi-modal model to make sense of images within PDF or DOCX files.
- 2025-02-28 Combined with Internet search (Tavily), supports reasoning like Deep Research for any LLMs.
- 2025-01-26 Optimizes knowledge graph extraction and application, offering various configuration options.
- 2024-12-18 Upgrades Document Layout Analysis model in DeepDoc.
- 2024-11-01 Adds keyword extraction and related question generation to the parsed chunks to improve the accuracy of retrieval.
- 2024-08-22 Support text to SQL statements through RAG.
- 2024-08-02 Supports GraphRAG inspired by [graphrag](https://github.com/microsoft/graphrag) and mind map.
## 🎉 Stay Tuned
⭐️ Star our repository to stay up-to-date with exciting new features and improvements! Get instant notifications for new
releases! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
@ -133,8 +137,10 @@ releases! 🌟
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> If you have not installed Docker on your local machine (Windows, Mac, or Linux),
see [Install Docker Engine](https://docs.docker.com/engine/install/).
- [gVisor](https://gvisor.dev/docs/user_guide/install/): Required only if you intend to use the code executor (sandbox) feature of RAGFlow.
> [!TIP]
> If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Start up the server
@ -154,7 +160,7 @@ releases! 🌟
> ```
>
> This change will be reset after a system reboot. To ensure your change remains permanent, add or update the
`vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
> `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
>
> ```bash
> vm.max_map_count=262144
@ -168,19 +174,27 @@ releases! 🌟
3. Start up the server using the pre-built Docker images:
> The command below downloads the `v0.15.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download an RAGFlow edition different from `v0.15.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0` for the full edition `v0.15.0`.
> [!CAUTION]
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.19.0-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.19.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` for the full edition `v0.19.0`.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. Check the server status after having the server up and running:
@ -192,23 +206,21 @@ releases! 🌟
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anormal`
error because, at that moment, your RAGFlow may not be fully initialized.
> error because, at that moment, your RAGFlow may not be fully initialized.
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default
HTTP serving port `80` can be omitted when using the default configurations.
> HTTP serving port `80` can be omitted when using the default configurations.
6. In [service_conf.yaml.template](./docker/service_conf.yaml.template), select the desired LLM factory in `user_default_llm` and update
the `API_KEY` field with the corresponding API key.
@ -234,7 +246,7 @@ to `<YOUR_SERVING_PORT>:80`.
Updates to the above configurations require a reboot of all containers to take effect:
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Switch doc engine from Elasticsearch to Infinity
@ -247,15 +259,18 @@ RAGFlow uses Elasticsearch by default for storing full text and vectors. To swit
$ docker compose -f docker/docker-compose.yml down -v
```
> [!WARNING]
> `-v` will delete the docker container volumes, and the existing data will be cleared.
2. Set `DOC_ENGINE` in **docker/.env** to `infinity`.
3. Start the containers:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> [!WARNING]
> Switching to Infinity on a Linux/arm64 machine is not yet officially supported.
## 🔧 Build a Docker image without embedding models
@ -265,7 +280,7 @@ This image is approximately 2 GB in size and relies on external LLM and embeddin
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Build a Docker image including embedding models
@ -275,33 +290,38 @@ This image is approximately 9 GB in size. As it includes embedding models, it re
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Launch service from source for development
1. Install Poetry, or skip this step if it is already installed:
1. Install uv, or skip this step if it is already installed:
```bash
pipx install poetry
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
pipx install uv pre-commit
```
2. Clone the source code and install Python dependencies:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root --with=full # install RAGFlow dependent python modules
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Add the following line to `/etc/hosts` to resolve all hosts specified in **docker/.env** to `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
127.0.0.1 es01 infinity mysql minio redis
```
4. If you cannot access HuggingFace, set the `HF_ENDPOINT` environment variable to use a mirror site:
@ -309,45 +329,68 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
export HF_ENDPOINT=https://hf-mirror.com
```
5. Launch backend service:
5. If your operating system does not have jemalloc, please install it as follows:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. Launch backend service:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. Install frontend dependencies:
7. Install frontend dependencies:
```bash
cd web
npm install --force
```
7. Launch frontend service:
npm install
```
8. Launch frontend service:
```bash
npm run dev
```
npm run dev
```
_The following output confirms a successful launch of the system:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Stop RAGFlow front-end and back-end service after development is complete:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Documentation
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)
See the [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🏄 Community
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 Contributing
RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community.
If you would like to be a part, review our [Contribution Guidelines](./CONTRIBUTING.md) first.
If you would like to be a part, review our [Contribution Guidelines](https://ragflow.io/docs/dev/contributing) first.

View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -32,14 +34,14 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Dokumentasi</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Peta Jalan</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Peta Jalan</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary></b>📕 Daftar Isi</b></summary>
<summary><b>📕 Daftar Isi </b> </summary>
- 💡 [Apa Itu RAGFlow?](#-apa-itu-ragflow)
- 🎮 [Demo](#-demo)
@ -65,6 +67,7 @@
## 🎮 Demo
Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
@ -72,16 +75,17 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Pembaruan Terbaru
- 2024-12-18 Meningkatkan model Analisis Tata Letak Dokumen di Deepdoc.
- 2024-12-04 Mendukung skor pagerank ke basis pengetahuan.
- 2024-11-22 Peningkatan definisi dan penggunaan variabel di Agen.
- 2025-03-19 Mendukung penggunaan model multi-modal untuk memahami gambar di dalam file PDF atau DOCX.
- 2025-02-28 dikombinasikan dengan pencarian Internet (TAVILY), mendukung penelitian mendalam untuk LLM apa pun.
- 2025-01-26 Optimalkan ekstraksi dan penerapan grafik pengetahuan dan sediakan berbagai opsi konfigurasi.
- 2024-12-18 Meningkatkan model Analisis Tata Letak Dokumen di DeepDoc.
- 2024-11-01 Penambahan ekstraksi kata kunci dan pembuatan pertanyaan terkait untuk meningkatkan akurasi pengambilan.
- 2024-08-22 Dukungan untuk teks ke pernyataan SQL melalui RAG.
- 2024-08-02 Dukungan GraphRAG yang terinspirasi oleh [graphrag](https://github.com/microsoft/graphrag) dan mind map.
## 🎉 Tetap Terkini
⭐️ Star repositori kami untuk tetap mendapat informasi tentang fitur baru dan peningkatan menarik! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
@ -128,6 +132,10 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
- [gVisor](https://gvisor.dev/docs/user_guide/install/): Hanya diperlukan jika Anda ingin menggunakan fitur eksekutor kode (sandbox) dari RAGFlow.
> [!TIP]
> Jika Anda belum menginstal Docker di komputer lokal Anda (Windows, Mac, atau Linux), lihat [Install Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Menjalankan Server
@ -147,7 +155,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> ```
>
> Perubahan ini akan hilang setelah sistem direboot. Untuk membuat perubahan ini permanen, tambahkan atau perbarui nilai
`vm.max_map_count` di **/etc/sysctl.conf**:
> `vm.max_map_count` di **/etc/sysctl.conf**:
>
> ```bash
> vm.max_map_count=262144
@ -161,21 +169,29 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
3. Bangun image Docker pre-built dan jalankan server:
> Perintah di bawah ini mengunduh edisi v0.15.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.15.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0 untuk edisi lengkap v0.15.0.
> [!CAUTION]
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
```
> Perintah di bawah ini mengunduh edisi v0.19.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.19.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0 untuk edisi lengkap v0.19.0.
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
4. Periksa status server setelah server aktif dan berjalan:
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
1. Periksa status server setelah server aktif dan berjalan:
```bash
$ docker logs -f ragflow-server
@ -185,24 +201,22 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network anormal`
karena RAGFlow mungkin belum sepenuhnya siap.
5. Buka browser web Anda, masukkan alamat IP server Anda, dan login ke RAGFlow.
> Dengan pengaturan default, Anda hanya perlu memasukkan `http://IP_DEVICE_ANDA` (**tanpa** nomor port) karena
port HTTP default `80` bisa dihilangkan saat menggunakan konfigurasi default.
6. Dalam [service_conf.yaml.template](./docker/service_conf.yaml.template), pilih LLM factory yang diinginkan di `user_default_llm` dan perbarui
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network anormal`
> karena RAGFlow mungkin belum sepenuhnya siap.
2. Buka browser web Anda, masukkan alamat IP server Anda, dan login ke RAGFlow.
> Dengan pengaturan default, Anda hanya perlu memasukkan `http://IP_DEVICE_ANDA` (**tanpa** nomor port) karena
> port HTTP default `80` bisa dihilangkan saat menggunakan konfigurasi default.
3. Dalam [service_conf.yaml.template](./docker/service_conf.yaml.template), pilih LLM factory yang diinginkan di `user_default_llm` dan perbarui
bidang `API_KEY` dengan kunci API yang sesuai.
> Lihat [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) untuk informasi lebih lanjut.
@ -224,7 +238,7 @@ menjadi `<YOUR_SERVING_PORT>:80`.
Pembaruan konfigurasi ini memerlukan reboot semua kontainer agar efektif:
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
## 🔧 Membangun Docker Image tanpa Model Embedding
@ -234,7 +248,7 @@ Image ini berukuran sekitar 2 GB dan bergantung pada aplikasi LLM eksternal dan
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Membangun Docker Image Termasuk Model Embedding
@ -244,33 +258,38 @@ Image ini berukuran sekitar 9 GB. Karena sudah termasuk model embedding, ia hany
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal Poetry, atau lewati langkah ini jika sudah terinstal:
1. Instal uv, atau lewati langkah ini jika sudah terinstal:
```bash
pipx install poetry
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
pipx install uv pre-commit
```
2. Clone kode sumber dan instal dependensi Python:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root # install modul python RAGFlow
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Jalankan aplikasi yang diperlukan (MinIO, Elasticsearch, Redis, dan MySQL) menggunakan Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Tambahkan baris berikut ke `/etc/hosts` untuk memetakan semua host yang ditentukan di **conf/service_conf.yaml** ke `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
127.0.0.1 es01 infinity mysql minio redis
```
4. Jika Anda tidak dapat mengakses HuggingFace, atur variabel lingkungan `HF_ENDPOINT` untuk menggunakan situs mirror:
@ -278,45 +297,69 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
export HF_ENDPOINT=https://hf-mirror.com
```
5. Jalankan aplikasi backend:
5. Jika sistem operasi Anda tidak memiliki jemalloc, instal sebagai berikut:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. Jalankan aplikasi backend:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. Instal dependensi frontend:
7. Instal dependensi frontend:
```bash
cd web
npm install --force
npm install
```
7. Jalankan aplikasi frontend:
8. Jalankan aplikasi frontend:
```bash
npm run dev
```
npm run dev
```
_Output berikut menandakan bahwa sistem berhasil diluncurkan:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Hentikan layanan front-end dan back-end RAGFlow setelah pengembangan selesai:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Dokumentasi
- [Quickstart](https://ragflow.io/docs/dev/)
- [Panduan Pengguna](https://ragflow.io/docs/dev/category/guides)
- [Referensi](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
Lihat [Roadmap RAGFlow 2024](https://github.com/infiniflow/ragflow/issues/162)
Lihat [Roadmap RAGFlow 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🏄 Komunitas
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 Kontribusi
RAGFlow berkembang melalui kolaborasi open-source. Dalam semangat ini, kami menerima kontribusi dari komunitas.
Jika Anda ingin berpartisipasi, tinjau terlebih dahulu [Panduan Kontribusi](./CONTRIBUTING.md).
Jika Anda ingin berpartisipasi, tinjau terlebih dahulu [Panduan Kontribusi](https://ragflow.io/docs/dev/contributing).

View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -30,12 +32,11 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
@ -46,23 +47,25 @@
## 🎮 Demo
デモをお試しください:[https://demo.ragflow.io](https://demo.ragflow.io)。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 最新情報
- 2024-12-18 Deepdoc のドキュメント レイアウト分析モデルをアップグレードします。
- 2024-12-04 ナレッジ ベースへのページランク スコアをサポートしました
- 2024-11-22 エージェントでの変数の定義と使用法を改善しました
- 2025-03-19 PDFまたはDOCXファイル内の画像を理解するために、多モーダルモデルを使用することをサポートします。
- 2025-02-28 インターネット検索 (TAVILY) と組み合わせて、あらゆる LLM の詳細な調査をサポートしま
- 2025-01-26 ナレッジ グラフの抽出と適用を最適化し、さまざまな構成オプションを提供します
- 2024-12-18 DeepDoc のドキュメント レイアウト分析モデルをアップグレードします。
- 2024-11-01 再現の精度を向上させるために、解析されたチャンクにキーワード抽出と関連質問の生成を追加しました。
- 2024-08-22 RAG を介して SQL ステートメントへのテキストをサポートします。
- 2024-08-02 [graphrag](https://github.com/microsoft/graphrag) からインスピレーションを得た GraphRAG とマインド マップをサポートします。
## 🎉 続きを楽しみに
⭐️ リポジトリをスター登録して、エキサイティングな新機能やアップデートを最新の状態に保ちましょう!すべての新しいリリースに関する即時通知を受け取れます! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
@ -109,7 +112,10 @@
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> ローカルマシンWindows、Mac、または Linuxに Docker をインストールしていない場合は、[Docker Engine のインストール](https://docs.docker.com/engine/install/) を参照してください
- [gVisor](https://gvisor.dev/docs/user_guide/install/): RAGFlowのコード実行サンドボックス機能を利用する場合のみ必要です
> [!TIP]
> ローカルマシンWindows、Mac、または Linuxに Docker をインストールしていない場合は、[Docker Engine のインストール](https://docs.docker.com/engine/install/) を参照してください。
### 🚀 サーバーを起動
@ -142,21 +148,29 @@
3. ビルド済みの Docker イメージをビルドし、サーバーを起動する:
> 以下のコマンドは、RAGFlow Dockerイメージの v0.15.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.15.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.15.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0 と設定します。
> [!CAUTION]
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.19.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.19.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.19.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0 と設定します。
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. サーバーを立ち上げた後、サーバーの状態を確認する:
1. サーバーを立ち上げた後、サーバーの状態を確認する:
```bash
$ docker logs -f ragflow-server
@ -165,22 +179,20 @@
_以下の出力は、システムが正常に起動したことを確認するものです:_
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> もし確認ステップをスキップして直接 RAGFlow にログインした場合、その時点で RAGFlow が完全に初期化されていない可能性があるため、ブラウザーがネットワーク異常エラーを表示するかもしれません。
5. ウェブブラウザで、プロンプトに従ってサーバーの IP アドレスを入力し、RAGFlow にログインします。
2. ウェブブラウザで、プロンプトに従ってサーバーの IP アドレスを入力し、RAGFlow にログインします。
> デフォルトの設定を使用する場合、デフォルトの HTTP サービングポート `80` は省略できるので、与えられたシナリオでは、`http://IP_OF_YOUR_MACHINE`(ポート番号は省略)だけを入力すればよい。
6. [service_conf.yaml.template](./docker/service_conf.yaml.template) で、`user_default_llm` で希望の LLM ファクトリを選択し、`API_KEY` フィールドを対応する API キーで更新する。
3. [service_conf.yaml.template](./docker/service_conf.yaml.template) で、`user_default_llm` で希望の LLM ファクトリを選択し、`API_KEY` フィールドを対応する API キーで更新する。
> 詳しくは [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) を参照してください。
@ -203,7 +215,7 @@
> すべてのシステム設定のアップデートを有効にするには、システムの再起動が必要です:
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Elasticsearch から Infinity にドキュメントエンジンを切り替えます
@ -214,104 +226,133 @@ RAGFlow はデフォルトで Elasticsearch を使用して全文とベクトル
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
2. **docker/.env** の「DOC _ ENGINE」を「infinity」に設定します。
Note: `-v` は docker コンテナのボリュームを削除し、既存のデータをクリアします。
2. **docker/.env** の「DOC \_ ENGINE」を「infinity」に設定します。
3. 起動コンテナ:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。
## 🔧 ソースコードでDockerイメージを作成埋め込みモデルなし
## 🔧 ソースコードで Docker イメージを作成(埋め込みモデルなし)
この Docker イメージのサイズは約 1GB で、外部の大モデルと埋め込みサービスに依存しています。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 ソースコードをコンパイルしたDockerイメージ埋め込みモデルを含む
## 🔧 ソースコードをコンパイルした Docker イメージ(埋め込みモデルを含む)
この Docker のサイズは約 9GB で、埋め込みモデルを含むため、外部の大モデルサービスのみが必要です。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 ソースコードからサービスを起動する方法
1. Poetry をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
1. uv をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
```bash
pipx install poetry
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
pipx install uv pre-commit
```
2. ソースコードをクローンし、Python の依存関係をインストールする:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Docker Compose を使用して依存サービスMinIO、Elasticsearch、Redis、MySQLを起動する:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
`/etc/hosts` に以下の行を追加して、**conf/service_conf.yaml** に指定されたすべてのホストを `127.0.0.1` に解決します:
`/etc/hosts` に以下の行を追加して、**conf/service_conf.yaml** に指定されたすべてのホストを `127.0.0.1` に解決します:
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
127.0.0.1 es01 infinity mysql minio redis
```
4. HuggingFace にアクセスできない場合は、`HF_ENDPOINT` 環境変数を設定してミラーサイトを使用してください:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. バックエンドサービスを起動する:
5. オペレーティングシステムにjemallocがない場合は、次のようにインストールします:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. バックエンドサービスを起動する:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. フロントエンドの依存関係をインストールする:
7. フロントエンドの依存関係をインストールする:
```bash
cd web
npm install --force
```
7. フロントエンドサービスを起動する:
```bash
npm run dev
npm install
```
_以下の画面で、システムが正常に起動したことを示します:_
8. フロントエンドサービスを起動する:
```bash
npm run dev
```
_以下の画面で、システムが正常に起動したことを示します:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. 開発が完了したら、RAGFlow のフロントエンド サービスとバックエンド サービスを停止します:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 ドキュメンテーション
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 ロードマップ
[RAGFlow ロードマップ 2024](https://github.com/infiniflow/ragflow/issues/162) を参照
[RAGFlow ロードマップ 2025](https://github.com/infiniflow/ragflow/issues/4214) を参照
## 🏄 コミュニティ
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 コントリビュート
RAGFlow はオープンソースのコラボレーションによって発展してきました。この精神に基づき、私たちはコミュニティからの多様なコントリビュートを受け入れています。 参加を希望される方は、まず [コントリビューションガイド](./CONTRIBUTING.md)をご覧ください。
RAGFlow はオープンソースのコラボレーションによって発展してきました。この精神に基づき、私たちはコミュニティからの多様なコントリビュートを受け入れています。 参加を希望される方は、まず [コントリビューションガイド](https://ragflow.io/docs/dev/contributing)をご覧ください。

View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -30,78 +32,72 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
## 💡 RAGFlow란?
[RAGFlow](https://ragflow.io/)는 심층 문서 이해에 기반한 오픈소스 RAG (Retrieval-Augmented Generation) 엔진입니다. 이 엔진은 대규모 언어 모델(LLM)과 결합하여 정확한 질문 응답 기능을 제공하며, 다양한 복잡한 형식의 데이터에서 신뢰할 수 있는 출처를 바탕으로 한 인용을 통해 이를 뒷받침합니다. RAGFlow는 규모에 상관없이 모든 기업에 최적화된 RAG 워크플로우를 제공합니다.
## 🎮 데모
데모를 [https://demo.ragflow.io](https://demo.ragflow.io)에서 실행해 보세요.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 업데이트
- 2024-12-18 Deepdoc의 문서 레이아웃 분석 모델 업그레이드.
- 2024-12-04 지식베이스에 대한 페이지랭크 점수를 지원합니다.
- 2024-11-22 에이전트의 변수 정의 및 사용을 개선했습니다.
- 2025-03-19 PDF 또는 DOCX 파일 내의 이미지를 이해하기 위해 다중 모드 모델을 사용하는 것을 지원합니다.
- 2025-02-28 인터넷 검색(TAVILY)과 결합되어 모든 LLM에 대한 심층 연구를 지원합니다.
- 2025-01-26 지식 그래프 추출 및 적용을 최적화하고 다양한 구성 옵션을 제공합니다.
- 2024-12-18 DeepDoc의 문서 레이아웃 분석 모델 업그레이드.
- 2024-11-01 파싱된 청크에 키워드 추출 및 관련 질문 생성을 추가하여 재현율을 향상시킵니다.
- 2024-08-22 RAG를 통해 SQL 문에 텍스트를 지원합니다.
- 2024-08-02: [graphrag](https://github.com/microsoft/graphrag)와 마인드맵에서 영감을 받은 GraphRAG를 지원합니다.
## 🎉 계속 지켜봐 주세요
⭐️우리의 저장소를 즐겨찾기에 등록하여 흥미로운 새로운 기능과 업데이트를 최신 상태로 유지하세요! 모든 새로운 릴리스에 대한 즉시 알림을 받으세요! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 주요 기능
### 🍭 **"Quality in, quality out"**
- [심층 문서 이해](./deepdoc/README.md)를 기반으로 복잡한 형식의 비정형 데이터에서 지식을 추출합니다.
- 문자 그대로 무한한 토큰에서 "데이터 속의 바늘"을 찾아냅니다.
### 🍱 **템플릿 기반의 chunking**
- 똑똑하고 설명 가능한 방식.
- 다양한 템플릿 옵션을 제공합니다.
### 🌱 **할루시네이션을 줄인 신뢰할 수 있는 인용**
- 텍스트 청킹을 시각화하여 사용자가 개입할 수 있도록 합니다.
- 중요한 참고 자료와 추적 가능한 인용을 빠르게 확인하여 신뢰할 수 있는 답변을 지원합니다.
### 🍔 **다른 종류의 데이터 소스와의 호환성**
- 워드, 슬라이드, 엑셀, 텍스트 파일, 이미지, 스캔본, 구조화된 데이터, 웹 페이지 등을 지원합니다.
### 🛀 **자동화되고 손쉬운 RAG 워크플로우**
- 개인 및 대규모 비즈니스에 맞춘 효율적인 RAG 오케스트레이션.
- 구성 가능한 LLM 및 임베딩 모델.
- 다중 검색과 결합된 re-ranking.
- 비즈니스와 원활하게 통합할 수 있는 직관적인 API.
## 🔎 시스템 아키텍처
<div align="center" style="margin-top:20px;margin-bottom:20px;">
@ -109,17 +105,22 @@
</div>
## 🎬 시작하기
### 📝 사전 준비 사항
- CPU >= 4 cores
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> 로컬 머신(Windows, Mac, Linux)에 Docker가 설치되지 않은 경우, [Docker 엔진 설치]((https://docs.docker.com/engine/install/))를 참조하세요.
- [gVisor](https://gvisor.dev/docs/user_guide/install/): RAGFlow의 코드 실행기(샌드박스) 기능을 사용하려는 경우에만 필요합니다.
> [!TIP]
> 로컬 머신(Windows, Mac, Linux)에 Docker가 설치되지 않은 경우, [Docker 엔진 설치](<(https://docs.docker.com/engine/install/)>)를 참조하세요.
### 🚀 서버 시작하기
1. `vm.max_map_count`가 262144 이상인지 확인하세요:
> `vm.max_map_count`의 값을 아래 명령어를 통해 확인하세요:
>
> ```bash
@ -147,21 +148,29 @@
3. 미리 빌드된 Docker 이미지를 생성하고 서버를 시작하세요:
> 아래 명령어는 RAGFlow Docker 이미지의 v0.15.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.15.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.15.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0로 설정합니다.
> [!CAUTION]
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.19.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.19.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.19.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0로 설정합니다.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. 서버가 시작된 후 서버 상태를 확인하세요:
1. 서버가 시작된 후 서버 상태를 확인하세요:
```bash
$ docker logs -f ragflow-server
@ -170,22 +179,21 @@
_다음 출력 결과로 시스템이 성공적으로 시작되었음을 확인합니다:_
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 만약 확인 단계를 건너뛰고 바로 RAGFlow에 로그인하면, RAGFlow가 완전히 초기화되지 않았기 때문에 브라우저에서 `network anormal` 오류가 발생할 수 있습니다.
5. 웹 브라우저에 서버의 IP 주소를 입력하고 RAGFlow에 로그인하세요.
2. 웹 브라우저에 서버의 IP 주소를 입력하고 RAGFlow에 로그인하세요.
> 기본 설정을 사용할 경우, `http://IP_OF_YOUR_MACHINE`만 입력하면 됩니다 (포트 번호는 제외). 기본 HTTP 서비스 포트 `80`은 기본 구성으로 사용할 때 생략할 수 있습니다.
6. [service_conf.yaml.template](./docker/service_conf.yaml.template) 파일에서 원하는 LLM 팩토리를 `user_default_llm`에 선택하고, `API_KEY` 필드를 해당 API 키로 업데이트하세요.
3. [service_conf.yaml.template](./docker/service_conf.yaml.template) 파일에서 원하는 LLM 팩토리를 `user_default_llm`에 선택하고, `API_KEY` 필드를 해당 API 키로 업데이트하세요.
> 자세한 내용은 [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup)를 참조하세요.
_이제 쇼가 시작됩니다!_
@ -207,24 +215,26 @@
> 모든 시스템 구성 업데이트는 적용되기 위해 시스템 재부팅이 필요합니다.
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Elasticsearch 에서 Infinity 로 문서 엔진 전환
RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및 벡터를 저장합니다. [Infinity]로 전환(https://github.com/infiniflow/infinity/), 다음 절차를 따르십시오.
1. 실행 중인 모든 컨테이너를 중지합니다.
```bash
$docker compose-f docker/docker-compose.yml down -v
```
Note: `-v` 는 docker 컨테이너의 볼륨을 삭제하고 기존 데이터를 지우며, 이 작업은 컨테이너를 중지하는 것과 동일합니다.
2. **docker/.env**의 "DOC_ENGINE" 을 "infinity" 로 설정합니다.
3. 컨테이너 부팅:
```bash
$docker compose-f docker/docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 시스템에서 Infinity로 전환하는 것은 공식적으로 지원되지 않습니다.
```
> [!WARNING]
> Linux/arm64 시스템에서 Infinity로 전환하는 것은 공식적으로 지원되지 않습니다.
## 🔧 소스 코드로 Docker 이미지를 컴파일합니다(임베딩 모델 포함하지 않음)
이 Docker 이미지의 크기는 약 1GB이며, 외부 대형 모델과 임베딩 서비스에 의존합니다.
@ -232,7 +242,7 @@ RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 소스 코드로 Docker 이미지를 컴파일합니다(임베딩 모델 포함)
@ -242,78 +252,107 @@ docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-s
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 소스 코드로 서비스를 시작합니다.
1. Poetry를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다:
1. uv를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다:
```bash
pipx install poetry
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
pipx install uv pre-commit
```
2. 소스 코드를 클론하고 Python 의존성을 설치합니다:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Docker Compose를 사용하여 의존 서비스(MinIO, Elasticsearch, Redis 및 MySQL)를 시작합니다:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
`/etc/hosts` 에 다음 줄을 추가하여 **conf/service_conf.yaml** 에 지정된 모든 호스트를 `127.0.0.1` 로 해결합니다:
`/etc/hosts` 에 다음 줄을 추가하여 **conf/service_conf.yaml** 에 지정된 모든 호스트를 `127.0.0.1` 로 해결합니다:
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
127.0.0.1 es01 infinity mysql minio redis
```
4. HuggingFace에 접근할 수 없는 경우, `HF_ENDPOINT` 환경 변수를 설정하여 미러 사이트를 사용하세요:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. 백엔드 서비스를 시작합니다:
5. 만약 운영 체제에 jemalloc이 없으면 다음 방식으로 설치하세요:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. 백엔드 서비스를 시작합니다:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. 프론트엔드 의존성을 설치합니다:
7. 프론트엔드 의존성을 설치합니다:
```bash
cd web
npm install --force
```
7. 프론트엔드 서비스를 시작합니다:
```bash
npm run dev
npm install
```
_다음 인터페이스는 시스템이 성공적으로 시작되었음을 나타냅니다:_
8. 프론트엔드 서비스를 시작합니다:
```bash
npm run dev
```
_다음 인터페이스는 시스템이 성공적으로 시작되었음을 나타냅니다:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. 개발이 완료된 후 RAGFlow 프론트엔드 및 백엔드 서비스를 중지합니다.
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 문서
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 로드맵
[RAGFlow 로드맵 2024](https://github.com/infiniflow/ragflow/issues/162)을 확인하세요.
[RAGFlow 로드맵 2025](https://github.com/infiniflow/ragflow/issues/4214)을 확인하세요.
## 🏄 커뮤니티
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 컨트리뷰션
RAGFlow는 오픈소스 협업을 통해 발전합니다. 이러한 정신을 바탕으로, 우리는 커뮤니티의 다양한 기여를 환영합니다. 참여하고 싶으시다면, 먼저 [가이드라인](./CONTRIBUTING.md)을 검토해 주세요.
RAGFlow는 오픈소스 협업을 통해 발전합니다. 이러한 정신을 바탕으로, 우리는 커뮤니티의 다양한 기여를 환영합니다. 참여하고 싶으시다면, 먼저 [가이드라인](https://ragflow.io/docs/dev/contributing)을 검토해 주세요.

382
README_pt_br.md Normal file
View File

@ -0,0 +1,382 @@
<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
</a>
</div>
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
<a href="https://x.com/intent/follow?screen_name=infiniflowai" target="_blank">
<img src="https://img.shields.io/twitter/follow/infiniflow?logo=X&color=%20%23f5f5f5" alt="seguir no X(Twitter)">
</a>
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
</a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="licença">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Documentação</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary><b>📕 Índice</b></summary>
- 💡 [O que é o RAGFlow?](#-o-que-é-o-ragflow)
- 🎮 [Demo](#-demo)
- 📌 [Últimas Atualizações](#-últimas-atualizações)
- 🌟 [Principais Funcionalidades](#-principais-funcionalidades)
- 🔎 [Arquitetura do Sistema](#-arquitetura-do-sistema)
- 🎬 [Primeiros Passos](#-primeiros-passos)
- 🔧 [Configurações](#-configurações)
- 🔧 [Construir uma imagem docker sem incorporar modelos](#-construir-uma-imagem-docker-sem-incorporar-modelos)
- 🔧 [Construir uma imagem docker incluindo modelos](#-construir-uma-imagem-docker-incluindo-modelos)
- 🔨 [Lançar serviço a partir do código-fonte para desenvolvimento](#-lançar-serviço-a-partir-do-código-fonte-para-desenvolvimento)
- 📚 [Documentação](#-documentação)
- 📜 [Roadmap](#-roadmap)
- 🏄 [Comunidade](#-comunidade)
- 🙌 [Contribuindo](#-contribuindo)
</details>
## 💡 O que é o RAGFlow?
[RAGFlow](https://ragflow.io/) é um mecanismo RAG (Geração Aumentada por Recuperação) de código aberto baseado em entendimento profundo de documentos. Ele oferece um fluxo de trabalho RAG simplificado para empresas de qualquer porte, combinando LLMs (Modelos de Linguagem de Grande Escala) para fornecer capacidades de perguntas e respostas verídicas, respaldadas por citações bem fundamentadas de diversos dados complexos formatados.
## 🎮 Demo
Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 Últimas Atualizações
- 19-03-2025 Suporta o uso de um modelo multi-modal para entender imagens dentro de arquivos PDF ou DOCX.
- 28-02-2025 combinado com a pesquisa na Internet (T AVI LY), suporta pesquisas profundas para qualquer LLM.
- 26-01-2025 Otimize a extração e aplicação de gráficos de conhecimento e forneça uma variedade de opções de configuração.
- 18-12-2024 Atualiza o modelo de Análise de Layout de Documentos no DeepDoc.
- 01-11-2024 Adiciona extração de palavras-chave e geração de perguntas relacionadas aos blocos analisados para melhorar a precisão da recuperação.
- 22-08-2024 Suporta conversão de texto para comandos SQL via RAG.
## 🎉 Fique Ligado
⭐️ Dê uma estrela no nosso repositório para se manter atualizado com novas funcionalidades e melhorias empolgantes! Receba notificações instantâneas sobre novos lançamentos! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 Principais Funcionalidades
### 🍭 **"Qualidade entra, qualidade sai"**
- Extração de conhecimento baseada em [entendimento profundo de documentos](./deepdoc/README.md) a partir de dados não estruturados com formatos complicados.
- Encontra a "agulha no palheiro de dados" de literalmente tokens ilimitados.
### 🍱 **Fragmentação baseada em templates**
- Inteligente e explicável.
- Muitas opções de templates para escolher.
### 🌱 **Citações fundamentadas com menos alucinações**
- Visualização da fragmentação de texto para permitir intervenção humana.
- Visualização rápida das referências chave e citações rastreáveis para apoiar respostas fundamentadas.
### 🍔 **Compatibilidade com fontes de dados heterogêneas**
- Suporta Word, apresentações, excel, txt, imagens, cópias digitalizadas, dados estruturados, páginas da web e mais.
### 🛀 **Fluxo de trabalho RAG automatizado e sem esforço**
- Orquestração RAG simplificada voltada tanto para negócios pessoais quanto grandes empresas.
- Modelos LLM e de incorporação configuráveis.
- Múltiplas recuperações emparelhadas com reclassificação fundida.
- APIs intuitivas para integração sem problemas com os negócios.
## 🔎 Arquitetura do Sistema
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>
## 🎬 Primeiros Passos
### 📝 Pré-requisitos
- CPU >= 4 núcleos
- RAM >= 16 GB
- Disco >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
- [gVisor](https://gvisor.dev/docs/user_guide/install/): Necessário apenas se você pretende usar o recurso de executor de código (sandbox) do RAGFlow.
> [!TIP]
> Se você não instalou o Docker na sua máquina local (Windows, Mac ou Linux), veja [Instalar Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Iniciar o servidor
1. Certifique-se de que `vm.max_map_count` >= 262144:
> Para verificar o valor de `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Se necessário, redefina `vm.max_map_count` para um valor de pelo menos 262144:
>
> ```bash
> # Neste caso, defina para 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> Essa mudança será resetada após a reinicialização do sistema. Para garantir que a alteração permaneça permanente, adicione ou atualize o valor de `vm.max_map_count` em **/etc/sysctl.conf**:
>
> ```bash
> vm.max_map_count=262144
> ```
2. Clone o repositório:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Inicie o servidor usando as imagens Docker pré-compiladas:
> [!CAUTION]
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.19.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.19.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` para a edição completa `v0.19.0`.
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.19.0 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.19.0-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
4. Verifique o status do servidor após tê-lo iniciado:
```bash
$ docker logs -f ragflow-server
```
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
```bash
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Rodando em todos os endereços (0.0.0.0)
```
> Se você pular essa etapa de confirmação e acessar diretamente o RAGFlow, seu navegador pode exibir um erro `network anormal`, pois, nesse momento, seu RAGFlow pode não estar totalmente inicializado.
5. No seu navegador, insira o endereço IP do seu servidor e faça login no RAGFlow.
> Com as configurações padrão, você só precisa digitar `http://IP_DO_SEU_MÁQUINA` (**sem** o número da porta), pois a porta HTTP padrão `80` pode ser omitida ao usar as configurações padrão.
6. Em [service_conf.yaml.template](./docker/service_conf.yaml.template), selecione a fábrica LLM desejada em `user_default_llm` e atualize o campo `API_KEY` com a chave de API correspondente.
> Consulte [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) para mais informações.
_O show está no ar!_
## 🔧 Configurações
Quando se trata de configurações do sistema, você precisará gerenciar os seguintes arquivos:
- [.env](./docker/.env): Contém as configurações fundamentais para o sistema, como `SVR_HTTP_PORT`, `MYSQL_PASSWORD` e `MINIO_PASSWORD`.
- [service_conf.yaml.template](./docker/service_conf.yaml.template): Configura os serviços de back-end. As variáveis de ambiente neste arquivo serão automaticamente preenchidas quando o contêiner Docker for iniciado. Quaisquer variáveis de ambiente definidas dentro do contêiner Docker estarão disponíveis para uso, permitindo personalizar o comportamento do serviço com base no ambiente de implantação.
- [docker-compose.yml](./docker/docker-compose.yml): O sistema depende do [docker-compose.yml](./docker/docker-compose.yml) para iniciar.
> O arquivo [./docker/README](./docker/README.md) fornece uma descrição detalhada das configurações do ambiente e dos serviços, que podem ser usadas como `${ENV_VARS}` no arquivo [service_conf.yaml.template](./docker/service_conf.yaml.template).
Para atualizar a porta HTTP de serviço padrão (80), vá até [docker-compose.yml](./docker/docker-compose.yml) e altere `80:80` para `<SUA_PORTA_DE_SERVIÇO>:80`.
Atualizações nas configurações acima exigem um reinício de todos os contêineres para que tenham efeito:
> ```bash
> $ docker compose -f docker-compose.yml up -d
> ```
### Mudar o mecanismo de documentos de Elasticsearch para Infinity
O RAGFlow usa o Elasticsearch por padrão para armazenar texto completo e vetores. Para mudar para o [Infinity](https://github.com/infiniflow/infinity/), siga estas etapas:
1. Pare todos os contêineres em execução:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` irá deletar os volumes do contêiner, e os dados existentes serão apagados.
2. Defina `DOC_ENGINE` no **docker/.env** para `infinity`.
3. Inicie os contêineres:
```bash
$ docker compose -f docker-compose.yml up -d
```
> [!ATENÇÃO]
> A mudança para o Infinity em uma máquina Linux/arm64 ainda não é oficialmente suportada.
## 🔧 Criar uma imagem Docker sem modelos de incorporação
Esta imagem tem cerca de 2 GB de tamanho e depende de serviços externos de LLM e incorporação.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Criar uma imagem Docker incluindo modelos de incorporação
Esta imagem tem cerca de 9 GB de tamanho. Como inclui modelos de incorporação, depende apenas de serviços externos de LLM.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
1. Instale o `uv`, ou pule esta etapa se ele já estiver instalado:
```bash
pipx install uv pre-commit
```
2. Clone o código-fonte e instale as dependências Python:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # instala os módulos Python dependentes do RAGFlow
uv run download_deps.py
pre-commit install
```
3. Inicie os serviços dependentes (MinIO, Elasticsearch, Redis e MySQL) usando Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Adicione a seguinte linha ao arquivo `/etc/hosts` para resolver todos os hosts especificados em **docker/.env** para `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. Se não conseguir acessar o HuggingFace, defina a variável de ambiente `HF_ENDPOINT` para usar um site espelho:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. Se o seu sistema operacional não tiver jemalloc, instale-o da seguinte maneira:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum instalar jemalloc
```
6. Lance o serviço de back-end:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. Instale as dependências do front-end:
```bash
cd web
npm install
```
8. Lance o serviço de front-end:
```bash
npm run dev
```
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Pare os serviços de front-end e back-end do RAGFlow após a conclusão do desenvolvimento:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Documentação
- [Quickstart](https://ragflow.io/docs/dev/)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
Veja o [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🏄 Comunidade
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 Contribuindo
O RAGFlow prospera por meio da colaboração de código aberto. Com esse espírito, abraçamos contribuições diversas da comunidade.
Se você deseja fazer parte, primeiro revise nossas [Diretrizes de Contribuição](https://ragflow.io/docs/dev/contributing).

383
README_tzh.md Normal file
View File

@ -0,0 +1,383 @@
<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo">
</a>
</div>
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
<a href="https://x.com/intent/follow?screen_name=infiniflowai" target="_blank">
<img src="https://img.shields.io/twitter/follow/infiniflow?logo=X&color=%20%23f5f5f5" alt="follow on X(Twitter)">
</a>
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
</a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="license">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
## 💡 RAGFlow 是什麼?
[RAGFlow](https://ragflow.io/) 是一款基於深度文件理解所建構的開源 RAGRetrieval-Augmented Generation引擎。 RAGFlow 可以為各種規模的企業及個人提供一套精簡的 RAG 工作流程結合大語言模型LLM針對用戶各類不同的複雜格式數據提供可靠的問答以及有理有據的引用。
## 🎮 Demo 試用
請登入網址 [https://demo.ragflow.io](https://demo.ragflow.io) 試用 demo。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 近期更新
- 2025-03-19 PDF和DOCX中的圖支持用多模態大模型去解析得到描述.
- 2025-02-28 結合網路搜尋Tavily對於任意大模型實現類似 Deep Research 的推理功能.
- 2025-01-26 最佳化知識圖譜的擷取與應用,提供了多種配置選擇。
- 2024-12-18 升級了 DeepDoc 的文檔佈局分析模型。
- 2024-11-01 對解析後的 chunk 加入關鍵字抽取和相關問題產生以提高回想的準確度。
- 2024-08-22 支援用 RAG 技術實現從自然語言到 SQL 語句的轉換。
## 🎉 關注項目
⭐️ 點擊右上角的 Star 追蹤 RAGFlow可以取得最新發布的即時通知 !🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 主要功能
### 🍭 **"Quality in, quality out"**
- 基於[深度文件理解](./deepdoc/README.md),能夠從各類複雜格式的非結構化資料中提取真知灼見。
- 真正在無限上下文token的場景下快速完成大海撈針測試。
### 🍱 **基於模板的文字切片**
- 不只是智能,更重要的是可控可解釋。
- 多種文字範本可供選擇
### 🌱 **有理有據、最大程度降低幻覺hallucination**
- 文字切片過程視覺化,支援手動調整。
- 有理有據:答案提供關鍵引用的快照並支持追根溯源。
### 🍔 **相容各類異質資料來源**
- 支援豐富的文件類型,包括 Word 文件、PPT、excel 表格、txt 檔案、圖片、PDF、影印件、影印件、結構化資料、網頁等。
### 🛀 **全程無憂、自動化的 RAG 工作流程**
- 全面優化的 RAG 工作流程可以支援從個人應用乃至超大型企業的各類生態系統。
- 大語言模型 LLM 以及向量模型皆支援配置。
- 基於多路召回、融合重排序。
- 提供易用的 API可輕鬆整合到各類企業系統。
## 🔎 系統架構
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>
## 🎬 快速開始
### 📝 前提條件
- CPU >= 4 核
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
- [gVisor](https://gvisor.dev/docs/user_guide/install/): 僅在您打算使用 RAGFlow 的代碼執行器(沙箱)功能時才需要安裝。
> [!TIP]
> 如果你並沒有在本機安裝 DockerWindows、Mac或 Linux, 可以參考文件 [Install Docker Engine](https://docs.docker.com/engine/install/) 自行安裝。
### 🚀 啟動伺服器
1. 確保 `vm.max_map_count` 不小於 262144
> 如需確認 `vm.max_map_count` 的大小:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> 如果 `vm.max_map_count` 的值小於 262144可以進行重設
>
> ```bash
> # 這裡我們設為 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> 你的改動會在下次系統重新啟動時被重置。如果希望做永久改動,還需要在 **/etc/sysctl.conf** 檔案裡把 `vm.max_map_count` 的值再相應更新一遍:
>
> ```bash
> vm.max_map_count=262144
> ```
2. 克隆倉庫:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. 進入 **docker** 資料夾,利用事先編譯好的 Docker 映像啟動伺服器:
> [!CAUTION]
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.19.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.19.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` 來下載 RAGFlow 鏡像的 `v0.19.0` 完整發行版。
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
> [!TIP]
> 如果你遇到 Docker 映像檔拉不下來的問題,可以在 **docker/.env** 檔案內根據變數 `RAGFLOW_IMAGE` 的註解提示選擇華為雲或阿里雲的對應映像。
>
> - 華為雲鏡像名:`swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow`
> - 阿里雲鏡像名:`registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow`
4. 伺服器啟動成功後再次確認伺服器狀態:
```bash
$ docker logs -f ragflow-server
```
_出現以下介面提示說明伺服器啟動成功_
```bash
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
```
> 如果您跳過這一步驟系統確認步驟就登入 RAGFlow你的瀏覽器有可能會提示 `network anormal` 或 `網路異常`,因為 RAGFlow 可能並未完全啟動成功。
5. 在你的瀏覽器中輸入你的伺服器對應的 IP 位址並登入 RAGFlow。
> 上面這個範例中,您只需輸入 http://IP_OF_YOUR_MACHINE 即可:未改動過設定則無需輸入連接埠(預設的 HTTP 服務連接埠 80
6. 在 [service_conf.yaml.template](./docker/service_conf.yaml.template) 檔案的 `user_default_llm` 欄位設定 LLM factory並在 `API_KEY` 欄填入和你選擇的大模型相對應的 API key。
> 詳見 [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup)。
_好戲開始接著奏樂接著舞 _
## 🔧 系統配置
系統配置涉及以下三份文件:
- [.env](./docker/.env):存放一些系統環境變量,例如 `SVR_HTTP_PORT`、`MYSQL_PASSWORD`、`MINIO_PASSWORD` 等。
- [service_conf.yaml.template](./docker/service_conf.yaml.template):設定各類別後台服務。
- [docker-compose.yml](./docker/docker-compose.yml): 系統依賴該檔案完成啟動。
請務必確保 [.env](./docker/.env) 檔案中的變數設定與 [service_conf.yaml.template](./docker/service_conf.yaml.template) 檔案中的設定保持一致!
如果無法存取映像網站 hub.docker.com 或模型網站 huggingface.co請依照 [.env](./docker/.env) 註解修改 `RAGFLOW_IMAGE` 和 `HF_ENDPOINT`。
> [./docker/README](./docker/README.md) 解釋了 [service_conf.yaml.template](./docker/service_conf.yaml.template) 用到的環境變數設定和服務配置。
如需更新預設的 HTTP 服務連接埠(80), 可以在[docker-compose.yml](./docker/docker-compose.yml) 檔案中將配置`80:80` 改為`<YOUR_SERVING_PORT>:80` 。
> 所有系統配置都需要透過系統重新啟動生效:
>
> ```bash
> $ docker compose -f docker-compose.yml up -d
> ```
###把文檔引擎從 Elasticsearch 切換成為 Infinity
RAGFlow 預設使用 Elasticsearch 儲存文字和向量資料. 如果要切換為 [Infinity](https://github.com/infiniflow/infinity/), 可以按照下面步驟進行:
1. 停止所有容器運作:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` 將會刪除 docker 容器的 volumes已有的資料會被清空。
2. 設定 **docker/.env** 目錄中的 `DOC_ENGINE` 為 `infinity`.
3. 啟動容器:
```bash
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> Infinity 目前官方並未正式支援在 Linux/arm64 架構下的機器上運行.
## 🔧 原始碼編譯 Docker 映像(不含 embedding 模型)
本 Docker 映像大小約 2 GB 左右並且依賴外部的大模型和 embedding 服務。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 原始碼編譯 Docker 映像(包含 embedding 模型)
本 Docker 大小約 9 GB 左右。由於已包含 embedding 模型,所以只需依賴外部的大模型服務即可。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以原始碼啟動服務
1. 安裝 uv。如已安裝可跳過此步驟
```bash
pipx install uv pre-commit
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
2. 下載原始碼並安裝 Python 依賴:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. 透過 Docker Compose 啟動依賴的服務MinIO, Elasticsearch, Redis, and MySQL
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
在 `/etc/hosts` 中加入以下程式碼,將 **conf/service_conf.yaml** 檔案中的所有 host 位址都解析為 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. 如果無法存取 HuggingFace可以把環境變數 `HF_ENDPOINT` 設為對應的鏡像網站:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. 如果你的操作系统没有 jemalloc请按照如下方式安装
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. 啟動後端服務:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. 安裝前端依賴:
```bash
cd web
npm install
```
8. 啟動前端服務:
```bash
npm run dev
```
以下界面說明系統已成功啟動_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
```
9. 開發完成後停止 RAGFlow 前端和後端服務:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 技術文檔
- [Quickstart](https://ragflow.io/docs/dev/)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 路線圖
詳見 [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214) 。
## 🏄 開源社群
- [Discord](https://discord.gg/zd4qPW6t)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 貢獻指南
RAGFlow 只有透過開源協作才能蓬勃發展。秉持這項精神,我們歡迎來自社區的各種貢獻。如果您有意參與其中,請查閱我們的 [貢獻者指南](https://ragflow.io/docs/dev/contributing) 。
## 🤝 商務合作
- [預約諮詢](https://aao615odquw.feishu.cn/share/base/form/shrcnjw7QleretCLqh1nuPo1xxh)
## 👥 加入社區
掃二維碼加入 RAGFlow 小助手,進 RAGFlow 交流群。
<p align="center">
<img src="https://github.com/infiniflow/ragflow/assets/7248/bccf284f-46f2-4445-9809-8f1030fb7585" width=50% height=50%>
</p>

View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -30,12 +32,11 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
@ -46,28 +47,29 @@
## 🎮 Demo 试用
请登录网址 [https://demo.ragflow.io](https://demo.ragflow.io) 试用 demo。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 近期更新
- 2024-12-18 升级了 Deepdoc 的文档布局分析模型。
- 2024-12-04 支持知识库的 Pagerank 分数。
- 2024-11-22 完善了 Agent 中的变量定义和使用
- 2025-03-19 PDF和DOCX中的图支持用多模态大模型去解析得到描述.
- 2025-02-28 结合互联网搜索Tavily对于任意大模型实现类似 Deep Research 的推理功能.
- 2025-01-26 优化知识图谱的提取和应用,提供了多种配置选择
- 2024-12-18 升级了 DeepDoc 的文档布局分析模型。
- 2024-11-01 对解析后的 chunk 加入关键词抽取和相关问题生成以提高召回的准确度。
- 2024-08-22 支持用 RAG 技术实现从自然语言到 SQL 语句的转换。
- 2024-08-02 支持 GraphRAG 启发于 [graphrag](https://github.com/microsoft/graphrag) 和思维导图。
## 🎉 关注项目
⭐️点击右上角的 Star 关注RAGFlow可以获取最新发布的实时通知 !🌟
⭐️ 点击右上角的 Star 关注 RAGFlow可以获取最新发布的实时通知 !🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 主要功能
### 🍭 **"Quality in, quality out"**
@ -110,7 +112,10 @@
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> 如果你并没有在本机安装 DockerWindows、Mac或者 Linux, 可以参考文档 [Install Docker Engine](https://docs.docker.com/engine/install/) 自行安装。
- [gVisor](https://gvisor.dev/docs/user_guide/install/): 仅在你打算使用 RAGFlow 的代码执行器(沙箱)功能时才需要安装。
> [!TIP]
> 如果你并没有在本机安装 DockerWindows、Mac或者 Linux, 可以参考文档 [Install Docker Engine](https://docs.docker.com/engine/install/) 自行安装。
### 🚀 启动服务器
@ -143,22 +148,31 @@
3. 进入 **docker** 文件夹,利用提前编译好的 Docker 镜像启动服务器:
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.15.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.15.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0` 来下载 RAGFlow 镜像的 `v0.15.0` 完整发行版。
> [!CAUTION]
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.19.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.19.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` 来下载 RAGFlow 镜像的 `v0.19.0` 完整发行版。
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
> [!TIP]
> [!TIP]
> 如果你遇到 Docker 镜像拉不下来的问题,可以在 **docker/.env** 文件内根据变量 `RAGFLOW_IMAGE` 的注释提示选择华为云或者阿里云的相应镜像。
>
> - 华为云镜像名:`swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow`
> - 阿里云镜像名:`registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow`
@ -171,18 +185,16 @@
_出现以下界面提示说明服务器启动成功_
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 如果您跳过这一步系统确认步骤就登录 RAGFlow你的浏览器有可能会提示 `network anormal` 或 `网络异常`,因为 RAGFlow 可能并未完全启动成功。
> 如果您在没有看到上面的提示信息出来之前,就尝试登录 RAGFlow你的浏览器有可能会提示 `network anormal` 或 `网络异常`。
5. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。
> 上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80
@ -211,7 +223,7 @@
> 所有系统配置都需要通过系统重启生效:
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### 把文档引擎从 Elasticsearch 切换成为 Infinity
@ -223,19 +235,19 @@ RAGFlow 默认使用 Elasticsearch 存储文本和向量数据. 如果要切换
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` 将会删除 docker 容器的 volumes已有的数据会被清空。
2. 设置 **docker/.env** 目录中的 `DOC_ENGINE` 为 `infinity`.
3. 启动容器:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> [!WARNING]
> Infinity 目前官方并未正式支持在 Linux/arm64 架构下的机器上运行.
## 🔧 源码编译 Docker 镜像(不含 embedding 模型)
本 Docker 镜像大小约 2 GB 左右并且依赖外部的大模型和 embedding 服务。
@ -243,7 +255,7 @@ RAGFlow 默认使用 Elasticsearch 存储文本和向量数据. 如果要切换
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 源码编译 Docker 镜像(包含 embedding 模型)
@ -253,83 +265,109 @@ docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t in
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以源代码启动服务
1. 安装 Poetry。如已经安装,可跳过本步骤:
1. 安装 uv。如已经安装,可跳过本步骤:
```bash
pipx install poetry
pipx inject poetry poetry-plugin-pypi-mirror
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
export POETRY_PYPI_MIRROR_URL=https://pypi.tuna.tsinghua.edu.cn/simple/
pipx install uv pre-commit
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
2. 下载源代码并安装 Python 依赖:
2. 下载源代码并安装 Python 依赖:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. 通过 Docker Compose 启动依赖的服务MinIO, Elasticsearch, Redis, and MySQL
3. 通过 Docker Compose 启动依赖的服务MinIO, Elasticsearch, Redis, and MySQL
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
在 `/etc/hosts` 中添加以下代码,将 **conf/service_conf.yaml** 文件中的所有 host 地址都解析为 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis
```
在 `/etc/hosts` 中添加以下代码,目的是将 **conf/service_conf.yaml** 文件中的所有 host 地址都解析为 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. 如果无法访问 HuggingFace可以把环境变量 `HF_ENDPOINT` 设成相应的镜像站点:
4. 如果无法访问 HuggingFace可以把环境变量 `HF_ENDPOINT` 设成相应的镜像站点:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. 启动后端服务:
5. 如果你的操作系统没有 jemalloc请按照如下方式安装
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. 启动后端服务:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. 安装前端依赖:
7. 安装前端依赖:
```bash
cd web
npm install --force
```
7. 启动前端服务:
```bash
npm run dev
```
npm install
```
_以下界面说明系统已经成功启动_
8. 启动前端服务:
```bash
npm run dev
```
_以下界面说明系统已经成功启动_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. 开发完成后停止 RAGFlow 前端和后端服务:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 技术文档
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 路线图
详见 [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162) 。
详见 [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214) 。
## 🏄 开源社区
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/zd4qPW6t)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 贡献指南
RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的 [贡献者指南](./CONTRIBUTING.md) 。
RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的 [贡献者指南](https://ragflow.io/docs/dev/contributing) 。
## 🤝 商务合作
@ -342,4 +380,3 @@ RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们
<p align="center">
<img src="https://github.com/infiniflow/ragflow/assets/7248/bccf284f-46f2-4445-9809-8f1030fb7585" width=50% height=50%>
</p>

View File

@ -1,2 +1,18 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from beartype.claw import beartype_this_package
beartype_this_package()

View File

@ -15,14 +15,15 @@
#
import logging
import json
from abc import ABC
from copy import deepcopy
from functools import partial
import pandas as pd
from agent.component import component_class
from agent.component.base import ComponentBase
class Canvas(ABC):
class Canvas:
"""
dsl = {
"components": {
@ -83,7 +84,8 @@ class Canvas(ABC):
}
},
"downstream": [],
"upstream": []
"upstream": [],
"parent_id": ""
}
},
"history": [],
@ -158,13 +160,16 @@ class Canvas(ABC):
self.components[k]["obj"].reset()
self._embed_id = ""
def get_compnent_name(self, cid):
def get_component_name(self, cid):
for n in self.dsl["graph"]["nodes"]:
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
def run(self, running_hint_text = "is running...🕞", **kwargs):
if not running_hint_text or not isinstance(running_hint_text, str):
running_hint_text = "is running...🕞"
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
@ -206,7 +211,15 @@ class Canvas(ABC):
if c not in waiting:
waiting.append(c)
continue
yield "*'{}'* is running...🕞".format(self.get_compnent_name(c))
yield "*'{}'* {}".format(self.get_component_name(c), running_hint_text)
if cpn.component_name.lower() == "iteration":
st_cpn = cpn.get_start()
assert st_cpn, "Start component not found for Iteration."
if not st_cpn["obj"].end():
cpn = st_cpn["obj"]
c = cpn._id
try:
ans = cpn.run(self.history, **kwargs)
except Exception as e:
@ -215,31 +228,49 @@ class Canvas(ABC):
ran += 1
raise e
self.path[-1].append(c)
ran += 1
for m in prepare2run(self.components[self.path[-2][-1]]["downstream"]):
downstream = self.components[self.path[-2][-1]]["downstream"]
if not downstream and self.components[self.path[-2][-1]].get("parent_id"):
cid = self.path[-2][-1]
pid = self.components[cid]["parent_id"]
o, _ = self.components[cid]["obj"].output(allow_partial=False)
oo, _ = self.components[pid]["obj"].output(allow_partial=False)
self.components[pid]["obj"].set_output(pd.concat([oo, o], ignore_index=True).dropna())
downstream = [pid]
for m in prepare2run(downstream):
yield {"content": m, "running_status": True}
while 0 <= ran < len(self.path[-1]):
logging.debug(f"Canvas.run: {ran} {self.path}")
cpn_id = self.path[-1][ran]
cpn = self.get_component(cpn_id)
if not cpn["downstream"]:
if not any([cpn["downstream"], cpn.get("parent_id"), waiting]):
break
loop = self._find_loop()
if loop:
raise OverflowError(f"Too much loops: {loop}")
downstream = []
if cpn["obj"].component_name.lower() in ["switch", "categorize", "relevant"]:
switch_out = cpn["obj"].output()[1].iloc[0, 0]
assert switch_out in self.components, \
"{}'s output: {} not valid.".format(cpn_id, switch_out)
for m in prepare2run([switch_out]):
yield {"content": m, "running_status": True}
continue
downstream = [switch_out]
else:
downstream = cpn["downstream"]
for m in prepare2run(cpn["downstream"]):
if not downstream and cpn.get("parent_id"):
pid = cpn["parent_id"]
_, o = cpn["obj"].output(allow_partial=False)
_, oo = self.components[pid]["obj"].output(allow_partial=False)
self.components[pid]["obj"].set_output(pd.concat([oo.dropna(axis=1), o.dropna(axis=1)], ignore_index=True).dropna())
downstream = [pid]
for m in prepare2run(downstream):
yield {"content": m, "running_status": True}
if ran >= len(self.path[-1]) and waiting:
@ -247,6 +278,7 @@ class Canvas(ABC):
waiting = []
for m in prepare2run(without_dependent_checking):
yield {"content": m, "running_status": True}
without_dependent_checking = []
ran -= 1
if self.answer:
@ -294,7 +326,7 @@ class Canvas(ABC):
return False
for i in range(len(path)):
if path[i].lower().find("answer") >= 0:
if path[i].lower().find("answer") == 0 or path[i].lower().find("iterationitem") == 0:
path = path[:i]
break
@ -332,4 +364,7 @@ class Canvas(ABC):
return self.components["begin"]["obj"]._param.query
def get_component_input_elements(self, cpnnm):
return self.components[cpnnm]["obj"].get_input_elements()
return self.components[cpnnm]["obj"].get_input_elements()
def set_component_infor(self, cpn_id, infor):
self.components[cpn_id]["obj"].set_infor(infor)

View File

@ -1,3 +1,19 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import importlib
from .begin import Begin, BeginParam
from .generate import Generate, GenerateParam
@ -32,7 +48,9 @@ from .crawler import Crawler, CrawlerParam
from .invoke import Invoke, InvokeParam
from .template import Template, TemplateParam
from .email import Email, EmailParam
from .iteration import Iteration, IterationParam
from .iterationitem import IterationItem, IterationItemParam
from .code import Code, CodeParam
def component_class(class_name):
@ -40,6 +58,7 @@ def component_class(class_name):
c = getattr(m, class_name)
return c
__all__ = [
"Begin",
"BeginParam",
@ -103,9 +122,15 @@ __all__ = [
"CrawlerParam",
"Invoke",
"InvokeParam",
"Iteration",
"IterationParam",
"IterationItem",
"IterationItemParam",
"Template",
"TemplateParam",
"Email",
"EmailParam",
"Code",
"CodeParam",
"component_class"
]

View File

@ -1,56 +1,56 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
import akshare as ak
from agent.component.base import ComponentBase, ComponentParamBase
class AkShareParam(ComponentParamBase):
"""
Define the AkShare component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class AkShare(ComponentBase, ABC):
component_name = "AkShare"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return AkShare.be_output("")
try:
ak_res = []
stock_news_em_df = ak.stock_news_em(symbol=ans)
stock_news_em_df = stock_news_em_df.head(self._param.top_n)
ak_res = [{"content": '<a href="' + i["新闻链接"] + '">' + i["新闻标题"] + '</a>\n 新闻内容: ' + i[
"新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
except Exception as e:
return AkShare.be_output("**ERROR**: " + str(e))
if not ak_res:
return AkShare.be_output("")
return pd.DataFrame(ak_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class AkShareParam(ComponentParamBase):
"""
Define the AkShare component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class AkShare(ComponentBase, ABC):
component_name = "AkShare"
def _run(self, history, **kwargs):
import akshare as ak
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return AkShare.be_output("")
try:
ak_res = []
stock_news_em_df = ak.stock_news_em(symbol=ans)
stock_news_em_df = stock_news_em_df.head(self._param.top_n)
ak_res = [{"content": '<a href="' + i["新闻链接"] + '">' + i["新闻标题"] + '</a>\n 新闻内容: ' + i[
"新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
except Exception as e:
return AkShare.be_output("**ERROR**: " + str(e))
if not ak_res:
return AkShare.be_output("")
return pd.DataFrame(ak_res)

View File

@ -16,6 +16,7 @@
import random
from abc import ABC
from functools import partial
from typing import Tuple, Union
import pandas as pd
@ -76,4 +77,13 @@ class Answer(ComponentBase, ABC):
def set_exception(self, e):
self.exception = e
def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
if allow_partial:
return super.output()
for r, c in self._canvas.history[::-1]:
if r == "user":
return self._param.output_var_name, pd.DataFrame([{"content": c}])
self._param.output_var_name, pd.DataFrame([])

View File

@ -17,6 +17,7 @@ import logging
from abc import ABC
import pandas as pd
import requests
from bs4 import BeautifulSoup
import re
from agent.component.base import ComponentBase, ComponentParamBase
@ -46,15 +47,26 @@ class Baidu(ComponentBase, ABC):
try:
url = 'https://www.baidu.com/s?wd=' + ans + '&rn=' + str(self._param.top_n)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36'}
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8',
'Connection': 'keep-alive',
}
response = requests.get(url=url, headers=headers)
url_res = re.findall(r"'url': \\\"(.*?)\\\"}", response.text)
title_res = re.findall(r"'title': \\\"(.*?)\\\",\\n", response.text)
body_res = re.findall(r"\"contentText\":\"(.*?)\"", response.text)
baidu_res = [{"content": re.sub('<em>|</em>', '', '<a href="' + url + '">' + title + '</a> ' + body)} for
url, title, body in zip(url_res, title_res, body_res)]
del body_res, url_res, title_res
# check if request success
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
url_res = []
title_res = []
body_res = []
for item in soup.select('.result.c-container'):
# extract title
title_res.append(item.select_one('h3 a').get_text(strip=True))
url_res.append(item.select_one('h3 a')['href'])
body_res.append(item.select_one('.c-abstract').get_text(strip=True) if item.select_one('.c-abstract') else '')
baidu_res = [{"content": re.sub('<em>|</em>', '', '<a href="' + url + '">' + title + '</a> ' + body)} for
url, title, body in zip(url_res, title_res, body_res)]
del body_res, url_res, title_res
except Exception as e:
return Baidu.be_output("**ERROR**: " + str(e))

View File

@ -39,9 +39,6 @@ class BaiduFanyiParam(ComponentParamBase):
self.check_empty(self.appid, "BaiduFanyi APPID")
self.check_empty(self.secret_key, "BaiduFanyi Secret Key")
self.check_valid_value(self.trans_type, "Translate type", ['translate', 'fieldtranslate'])
self.check_valid_value(self.trans_type, "Translate domain",
['it', 'finance', 'machinery', 'senimed', 'novel', 'academic', 'aerospace', 'wiki',
'news', 'law', 'contract'])
self.check_valid_value(self.source_lang, "Source language",
['auto', 'zh', 'en', 'yue', 'wyw', 'jp', 'kor', 'fra', 'spa', 'th', 'ara', 'ru', 'pt',
'de', 'it', 'el', 'nl', 'pl', 'bul', 'est', 'dan', 'fin', 'cs', 'rom', 'slo', 'swe',
@ -96,3 +93,4 @@ class BaiduFanyi(ComponentBase, ABC):
except Exception as e:
BaiduFanyi.be_output("**Error**:" + str(e))

View File

@ -19,7 +19,7 @@ import json
import os
import logging
from functools import partial
from typing import Tuple, Union
from typing import Any, Tuple, Union
import pandas as pd
@ -34,6 +34,7 @@ _IS_RAW_CONF = "_is_raw_conf"
class ComponentParamBase(ABC):
def __init__(self):
self.output_var_name = "output"
self.infor_var_name = "infor"
self.message_history_window_size = 22
self.query = []
self.inputs = []
@ -384,6 +385,11 @@ class ComponentBase(ABC):
"params": {}
}
"""
out = getattr(self._param, self._param.output_var_name)
if isinstance(out, pd.DataFrame) and "chunks" in out:
del out["chunks"]
setattr(self._param, self._param.output_var_name, out)
return """{{
"component_name": "{}",
"params": {},
@ -396,6 +402,8 @@ class ComponentBase(ABC):
)
def __init__(self, canvas, id, param: ComponentParamBase):
from agent.canvas import Canvas # Local import to avoid cyclic dependency
assert isinstance(canvas, Canvas), "canvas must be an instance of Canvas"
self._canvas = canvas
self._id = id
self._param = param
@ -426,22 +434,26 @@ class ComponentBase(ABC):
def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
o = getattr(self._param, self._param.output_var_name)
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
if not isinstance(o, list):
o = [o]
o = pd.DataFrame(o)
if not isinstance(o, partial):
if not isinstance(o, pd.DataFrame):
if isinstance(o, list):
return self._param.output_var_name, pd.DataFrame(o).dropna()
if o is None:
return self._param.output_var_name, pd.DataFrame()
return self._param.output_var_name, pd.DataFrame([{"content": str(o)}])
return self._param.output_var_name, o
if allow_partial or not isinstance(o, partial):
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
return pd.DataFrame(o if isinstance(o, list) else [o])
return pd.DataFrame(o if isinstance(o, list) else [o]).dropna()
return self._param.output_var_name, o
outs = None
for oo in o():
if not isinstance(oo, pd.DataFrame):
outs = pd.DataFrame(oo if isinstance(oo, list) else [oo])
outs = pd.DataFrame(oo if isinstance(oo, list) else [oo]).dropna()
else:
outs = oo
outs = oo.dropna()
return self._param.output_var_name, outs
def reset(self):
@ -451,46 +463,66 @@ class ComponentBase(ABC):
def set_output(self, v):
setattr(self._param, self._param.output_var_name, v)
def set_infor(self, v):
setattr(self._param, self._param.infor_var_name, v)
def _fetch_outputs_from(self, sources: list[dict[str, Any]]) -> list[pd.DataFrame]:
outs = []
for q in sources:
if q.get("component_id"):
if "@" in q["component_id"] and q["component_id"].split("@")[0].lower().find("begin") >= 0:
cpn_id, key = q["component_id"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
outs.append(pd.DataFrame([{"content": p.get("value", "")}]))
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
if q["component_id"].lower().find("answer") == 0:
txt = []
for r, c in self._canvas.history[::-1][:self._param.message_history_window_size][::-1]:
txt.append(f"{r.upper()}:{c}")
txt = "\n".join(txt)
outs.append(pd.DataFrame([{"content": txt}]))
continue
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
elif q.get("value"):
outs.append(pd.DataFrame([{"content": q["value"]}]))
return outs
def get_input(self):
if self._param.debug_inputs:
return pd.DataFrame([{"content": v["value"]} for v in self._param.debug_inputs])
return pd.DataFrame([{"content": v["value"]} for v in self._param.debug_inputs if v.get("value")])
reversed_cpnts = []
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
up_cpns = self.get_upstream()
reversed_up_cpnts = [cpn for cpn in reversed_cpnts if cpn in up_cpns]
if self._param.query:
self._param.inputs = []
outs = []
for q in self._param.query:
if q.get("component_id"):
if q["component_id"].split("@")[0].lower().find("begin") >= 0:
cpn_id, key = q["component_id"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
outs.append(pd.DataFrame([{"content": p.get("value", "")}]))
self._param.inputs.append({"component_id": q["component_id"],
"content": p.get("value", "")})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
outs = self._fetch_outputs_from(self._param.query)
if q["component_id"].lower().find("answer") == 0:
for r, c in self._canvas.history[::-1]:
if r == "user":
self._param.inputs.append(pd.DataFrame([{"content": c, "component_id": q["component_id"]}]))
break
continue
for out in outs:
records = out.to_dict("records")
content: str
if len(records) > 1:
content = "\n".join(
[str(d["content"]) for d in records]
)
else:
content = records[0]["content"]
self._param.inputs.append({
"component_id": records[0].get("component_id"),
"content": content
})
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
self._param.inputs.append({"component_id": q["component_id"],
"content": "\n".join(
[str(d["content"]) for d in outs[-1].to_dict('records')])})
elif q.get("value"):
self._param.inputs.append({"component_id": None, "content": q["value"]})
outs.append(pd.DataFrame([{"content": q["value"]}]))
if outs:
df = pd.concat(outs, ignore_index=True)
if "content" in df:
@ -499,7 +531,7 @@ class ComponentBase(ABC):
upstream_outs = []
for u in reversed_cpnts[::-1]:
for u in reversed_up_cpnts[::-1]:
if self.get_component_name(u) in ["switch", "concentrator"]:
continue
if self.component_name.lower() == "generate" and self.get_component_name(u) == "retrieval":
@ -539,7 +571,7 @@ class ComponentBase(ABC):
return df
def get_input_elements(self):
assert self._param.query, "Please identify input parameters firstly."
assert self._param.query, "Please verify the input parameters first."
eles = []
for q in self._param.query:
if q.get("component_id"):
@ -549,7 +581,7 @@ class ComponentBase(ABC):
eles.extend(self._canvas.get_component(cpn_id)["obj"]._param.query)
continue
eles.append({"name": self._canvas.get_compnent_name(cpn_id), "key": cpn_id})
eles.append({"name": self._canvas.get_component_name(cpn_id), "key": cpn_id})
else:
eles.append({"key": q["value"], "name": q["value"], "value": q["value"]})
return eles
@ -559,8 +591,10 @@ class ComponentBase(ABC):
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
up_cpns = self.get_upstream()
reversed_up_cpnts = [cpn for cpn in reversed_cpnts if cpn in up_cpns]
for u in reversed_cpnts[::-1]:
for u in reversed_up_cpnts[::-1]:
if self.get_component_name(u) in ["switch", "answer"]:
continue
return self._canvas.get_component(u)["obj"].output()[1]
@ -573,4 +607,12 @@ class ComponentBase(ABC):
return self._canvas.get_component(cpn_id)["obj"].component_name.lower()
def debug(self, **kwargs):
return self._run([], **kwargs)
return self._run([], **kwargs)
def get_parent(self):
pid = self._canvas.get_component(self._id)["parent_id"]
return self._canvas.get_component(pid)["obj"]
def get_upstream(self):
cpn_nms = self._canvas.get_component(self._id)['upstream']
return cpn_nms

View File

@ -39,34 +39,41 @@ class CategorizeParam(GenerateParam):
if not v.get("to"):
raise ValueError(f"[Categorize] 'To' of category {k} can not be empty!")
def get_prompt(self):
def get_prompt(self, chat_hist):
cate_lines = []
for c, desc in self.category_description.items():
for line in desc.get("examples", "").split("\n"):
if not line:
continue
cate_lines.append("Question: {}\tCategory: {}".format(line, c))
cate_lines.append("USER: {}\nCategory: {}".format(line, c))
descriptions = []
for c, desc in self.category_description.items():
if desc.get("description"):
descriptions.append(
"--------------------\nCategory: {}\nDescription: {}\n".format(c, desc["description"]))
"\nCategory: {}\nDescription: {}".format(c, desc["description"]))
self.prompt = """
You're a text classifier. You need to categorize the users questions into {} categories,
namely: {}
Here's description of each category:
{}
Role: You're a text classifier.
Task: You need to categorize the users questions into {} categories, namely: {}
You could learn from the following examples:
{}
You could learn from the above examples.
Just mention the category names, no need for any additional words.
Here's description of each category:
{}
You could learn from the following examples:
{}
You could learn from the above examples.
Requirements:
- Just mention the category names, no need for any additional words.
---- Real Data ----
USER: {}\n
""".format(
len(self.category_description.keys()),
"/".join(list(self.category_description.keys())),
"\n".join(descriptions),
"- ".join(cate_lines)
"\n\n- ".join(cate_lines),
chat_hist
)
return self.prompt
@ -76,19 +83,28 @@ class Categorize(Generate, ABC):
def _run(self, history, **kwargs):
input = self.get_input()
input = "Question: " + (list(input["content"])[-1] if "content" in input else "") + "\tCategory: "
input = " - ".join(input["content"]) if "content" in input else ""
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": input}],
self._canvas.set_component_infor(self._id, {"prompt":self._param.get_prompt(input),"messages": [{"role": "user", "content": "\nCategory: "}],"conf": self._param.gen_conf()})
ans = chat_mdl.chat(self._param.get_prompt(input), [{"role": "user", "content": "\nCategory: "}],
self._param.gen_conf())
logging.debug(f"input: {input}, answer: {str(ans)}")
logging.debug(f"input: {input}, answer: {str(ans)}")
# Count the number of times each category appears in the answer.
category_counts = {}
for c in self._param.category_description.keys():
if ans.lower().find(c.lower()) >= 0:
return Categorize.be_output(self._param.category_description[c]["to"])
count = ans.lower().count(c.lower())
category_counts[c] = count
# If a category is found, return the category with the highest count.
if any(category_counts.values()):
max_category = max(category_counts.items(), key=lambda x: x[1])
return Categorize.be_output(self._param.category_description[max_category[0]]["to"])
return Categorize.be_output(list(self._param.category_description.items())[-1][1]["to"])
def debug(self, **kwargs):
df = self._run([], **kwargs)
cpn_id = df.iloc[0, 0]
return Categorize.be_output(self._canvas.get_compnent_name(cpn_id))
return Categorize.be_output(self._canvas.get_component_name(cpn_id))

138
agent/component/code.py Normal file
View File

@ -0,0 +1,138 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
from abc import ABC
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field, field_validator
from agent.component.base import ComponentBase, ComponentParamBase
from api import settings
class Language(str, Enum):
PYTHON = "python"
NODEJS = "nodejs"
class CodeExecutionRequest(BaseModel):
code_b64: str = Field(..., description="Base64 encoded code string")
language: Language = Field(default=Language.PYTHON, description="Programming language")
arguments: Optional[dict] = Field(default={}, description="Arguments")
@field_validator("code_b64")
@classmethod
def validate_base64(cls, v: str) -> str:
try:
base64.b64decode(v, validate=True)
return v
except Exception as e:
raise ValueError(f"Invalid base64 encoding: {str(e)}")
@field_validator("language", mode="before")
@classmethod
def normalize_language(cls, v) -> str:
if isinstance(v, str):
low = v.lower()
if low in ("python", "python3"):
return "python"
elif low in ("javascript", "nodejs"):
return "nodejs"
raise ValueError(f"Unsupported language: {v}")
class CodeParam(ComponentParamBase):
"""
Define the code sandbox component parameters.
"""
def __init__(self):
super().__init__()
self.lang = "python"
self.script = ""
self.arguments = []
self.address = f"http://{settings.SANDBOX_HOST}:9385/run"
self.enable_network = True
def check(self):
self.check_valid_value(self.lang, "Support languages", ["python", "python3", "nodejs", "javascript"])
self.check_defined_type(self.enable_network, "Enable network", ["bool"])
class Code(ComponentBase, ABC):
component_name = "Code"
def _run(self, history, **kwargs):
arguments = {}
for input in self._param.arguments:
if "@" in input["component_id"]:
component_id = input["component_id"].split("@")[0]
refered_component_key = input["component_id"].split("@")[1]
refered_component = self._canvas.get_component(component_id)["obj"]
for param in refered_component._param.query:
if param["key"] == refered_component_key:
if "value" in param:
arguments[input["name"]] = param["value"]
else:
cpn = self._canvas.get_component(input["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
arguments[input["name"]] = self._canvas.get_history(1)[0]["content"]
continue
_, out = cpn.output(allow_partial=False)
if not out.empty:
arguments[input["name"]] = "\n".join(out["content"])
return self._execute_code(
language=self._param.lang,
code=self._param.script,
arguments=arguments,
address=self._param.address,
enable_network=self._param.enable_network,
)
def _execute_code(self, language: str, code: str, arguments: dict, address: str, enable_network: bool):
import requests
try:
code_b64 = self._encode_code(code)
code_req = CodeExecutionRequest(code_b64=code_b64, language=language, arguments=arguments).model_dump()
except Exception as e:
return Code.be_output("**Error**: construct code request error: " + str(e))
try:
resp = requests.post(url=address, json=code_req, timeout=10)
body = resp.json()
if body:
stdout = body.get("stdout")
stderr = body.get("stderr")
return Code.be_output(stdout or stderr)
else:
return Code.be_output("**Error**: There is no response from sanbox")
except Exception as e:
return Code.be_output("**Error**: Internal error in sanbox: " + str(e))
def _encode_code(self, code: str) -> str:
return base64.b64encode(code.encode("utf-8")).decode("utf-8")
def get_input_elements(self):
elements = []
for input in self._param.arguments:
cpn_id = input["component_id"]
elements.append({"key": cpn_id, "name": input["name"]})
return elements

View File

@ -1,36 +1,36 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class ConcentratorParam(ComponentParamBase):
"""
Define the Concentrator component parameters.
"""
def __init__(self):
super().__init__()
def check(self):
return True
class Concentrator(ComponentBase, ABC):
component_name = "Concentrator"
def _run(self, history, **kwargs):
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class ConcentratorParam(ComponentParamBase):
"""
Define the Concentrator component parameters.
"""
def __init__(self):
super().__init__()
def check(self):
return True
class Concentrator(ComponentBase, ABC):
component_name = "Concentrator"
def _run(self, history, **kwargs):
return Concentrator.be_output("")

View File

@ -41,7 +41,7 @@ class Crawler(ComponentBase, ABC):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not is_valid_url(ans):
return Crawler.be_output("")
return Crawler.be_output("URL not valid")
try:
result = asyncio.run(self.get_web(ans))

View File

@ -82,7 +82,10 @@ class Email(ComponentBase, ABC):
logging.info(f"Connecting to SMTP server {self._param.smtp_server}:{self._param.smtp_port}")
context = smtplib.ssl.create_default_context()
with smtplib.SMTP_SSL(self._param.smtp_server, self._param.smtp_port, context=context) as server:
with smtplib.SMTP(self._param.smtp_server, self._param.smtp_port) as server:
server.ehlo()
server.starttls(context=context)
server.ehlo()
# Login
logging.info(f"Attempting to login with email: {self._param.email}")
server.login(self._param.email, self._param.password)

View File

@ -15,14 +15,17 @@
#
from abc import ABC
import re
from copy import deepcopy
import pandas as pd
import pymysql
import psycopg2
from agent.component.base import ComponentBase, ComponentParamBase
from agent.component import GenerateParam, Generate
import pyodbc
import logging
class ExeSQLParam(ComponentParamBase):
class ExeSQLParam(GenerateParam):
"""
Define the ExeSQL component parameters.
"""
@ -39,6 +42,7 @@ class ExeSQLParam(ComponentParamBase):
self.top_n = 30
def check(self):
super().check()
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgresql', 'mariadb', 'mssql'])
self.check_empty(self.database, "Database name")
self.check_empty(self.username, "database username")
@ -48,43 +52,33 @@ class ExeSQLParam(ComponentParamBase):
self.check_positive_integer(self.top_n, "Number of records")
if self.database == "rag_flow":
if self.host == "ragflow-mysql":
raise ValueError("The host is not accessible.")
raise ValueError("For the security reason, it dose not support database named rag_flow.")
if self.password == "infini_rag_flow":
raise ValueError("The host is not accessible.")
raise ValueError("For the security reason, it dose not support database named rag_flow.")
class ExeSQL(ComponentBase, ABC):
class ExeSQL(Generate, ABC):
component_name = "ExeSQL"
def _run(self, history, **kwargs):
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
if self._loop >= self._param.loop:
self._loop = 0
raise Exception("Maximum loop time exceeds. Can't query the correct data via SQL statement.")
self._loop += 1
ans = self.get_input()
ans = "".join([str(a) for a in ans["content"]]) if "content" in ans else ""
if self._param.db_type == 'mssql':
# improve the information extraction, most llm return results in markdown format ```sql query ```
match = re.search(r"```sql\s*(.*?)\s*```", ans, re.DOTALL)
if match:
ans = match.group(1) # Query content
print(ans)
else:
print("no markdown")
ans = re.sub(r'^.*?SELECT ', 'SELECT ', (ans), flags=re.IGNORECASE)
def _refactor(self, ans):
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
match = re.search(r"```sql\s*(.*?)\s*```", ans, re.DOTALL)
if match:
ans = match.group(1) # Query content
return ans
else:
ans = re.sub(r'^.*?SELECT ', 'SELECT ', repr(ans), flags=re.IGNORECASE)
print("no markdown")
ans = re.sub(r'^.*?SELECT ', 'SELECT ', (ans), flags=re.IGNORECASE)
ans = re.sub(r';.*?SELECT ', '; SELECT ', ans, flags=re.IGNORECASE)
ans = re.sub(r';[^;]*$', r';', ans)
if not ans:
raise Exception("SQL statement not found!")
return ans
logging.info("db_type: ",self._param.db_type)
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join([str(a) for a in ans["content"]]) if "content" in ans else ""
ans = self._refactor(ans)
if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
@ -93,36 +87,69 @@ class ExeSQL(ComponentBase, ABC):
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'mssql':
conn_str = (
r'DRIVER={ODBC Driver 17 for SQL Server};'
r'SERVER=' + self._param.host + ',' + str(self._param.port) + ';'
r'DATABASE=' + self._param.database + ';'
r'UID=' + self._param.username + ';'
r'PWD=' + self._param.password
r'DRIVER={ODBC Driver 17 for SQL Server};'
r'SERVER=' + self._param.host + ',' + str(self._param.port) + ';'
r'DATABASE=' + self._param.database + ';'
r'UID=' + self._param.username + ';'
r'PWD=' + self._param.password
)
db = pyodbc.connect(conn_str)
try:
cursor = db.cursor()
except Exception as e:
raise Exception("Database Connection Failed! \n" + str(e))
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
self._loop += 1
input_list = re.split(r';', ans.replace(r"\n", " "))
sql_res = []
for single_sql in re.split(r';', ans.replace(r"\n", " ")):
if not single_sql:
continue
try:
logging.info("single_sql: ",single_sql)
cursor.execute(single_sql)
if cursor.rowcount == 0:
sql_res.append({"content": "\nTotal: 0\n No record in the database!"})
continue
single_res = pd.DataFrame([i for i in cursor.fetchmany(self._param.top_n)])
single_res.columns = [i[0] for i in cursor.description]
sql_res.append({"content": "\nTotal: " + str(cursor.rowcount) + "\n" + single_res.to_markdown()})
except Exception as e:
sql_res.append({"content": "**Error**:" + str(e) + "\nError SQL Statement:" + single_sql})
pass
for i in range(len(input_list)):
single_sql = input_list[i]
single_sql = single_sql.replace('```','')
while self._loop <= self._param.loop:
self._loop += 1
if not single_sql:
break
try:
cursor.execute(single_sql)
if cursor.rowcount == 0:
sql_res.append({"content": "No record in the database!"})
break
if self._param.db_type == 'mssql':
single_res = pd.DataFrame.from_records(cursor.fetchmany(self._param.top_n),
columns=[desc[0] for desc in cursor.description])
else:
single_res = pd.DataFrame([i for i in cursor.fetchmany(self._param.top_n)])
single_res.columns = [i[0] for i in cursor.description]
sql_res.append({"content": single_res.to_markdown(index=False, floatfmt=".6f")})
break
except Exception as e:
single_sql = self._regenerate_sql(single_sql, str(e), **kwargs)
single_sql = self._refactor(single_sql)
if self._loop > self._param.loop:
sql_res.append({"content": "Can't query the correct data via SQL statement."})
db.close()
if not sql_res:
return ExeSQL.be_output("")
return pd.DataFrame(sql_res)
def _regenerate_sql(self, failed_sql, error_message, **kwargs):
prompt = f'''
## You are the Repair SQL Statement Helper, please modify the original SQL statement based on the SQL query error report.
## The original SQL statement is as follows:{failed_sql}.
## The contents of the SQL query error report is as follows:{error_message}.
## Answer only the modified SQL statement. Please do not give any explanation, just answer the code.
'''
self._param.prompt = prompt
kwargs_ = deepcopy(kwargs)
kwargs_["stream"] = False
response = Generate._run(self, [], **kwargs_)
try:
regenerated_sql = response.loc[0, "content"]
return regenerated_sql
except Exception as e:
logging.error(f"Failed to regenerate SQL: {e}")
return None
def debug(self, **kwargs):
return self._run([], **kwargs)

View File

@ -13,15 +13,30 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
from functools import partial
from typing import Any
import pandas as pd
from api.db import LLMType
from api.db.services.conversation_service import structure_answer
from api.db.services.dialog_service import message_fit_in
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from plugin import GlobalPluginManager
from plugin.llm_tool_plugin import llm_tool_metadata_to_openai_tool
from rag.llm.chat_model import ToolCallSession
from rag.prompts import message_fit_in
class LLMToolPluginCallSession(ToolCallSession):
def tool_call(self, name: str, arguments: dict[str, Any]) -> str:
tool = GlobalPluginManager.get_llm_tool_by_name(name)
if tool is None:
raise ValueError(f"LLM tool {name} does not exist")
return tool().invoke(**arguments)
class GenerateParam(ComponentParamBase):
@ -40,6 +55,7 @@ class GenerateParam(ComponentParamBase):
self.frequency_penalty = 0
self.cite = True
self.parameters = []
self.llm_enabled_tools = []
def check(self):
self.check_decimal_float(self.temperature, "[Generate] Temperature")
@ -69,36 +85,35 @@ class Generate(ComponentBase):
component_name = "Generate"
def get_dependent_components(self):
cpnts = set([para["component_id"].split("@")[0] for para in self._param.parameters \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
inputs = self.get_input_elements()
cpnts = set([i["key"] for i in inputs[1:] if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
return list(cpnts)
def set_cite(self, retrieval_res, answer):
retrieval_res = retrieval_res.dropna(subset=["vector", "content_ltks"]).reset_index(drop=True)
if "empty_response" in retrieval_res.columns:
retrieval_res["empty_response"].fillna("", inplace=True)
chunks = json.loads(retrieval_res["chunks"][0])
answer, idx = settings.retrievaler.insert_citations(answer,
[ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
[ck["vector"] for _, ck in retrieval_res.iterrows()],
[ck["content_ltks"] for ck in chunks],
[ck["vector"] for ck in chunks],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()), tkweight=0.7,
vtweight=0.3)
doc_ids = set([])
recall_docs = []
for i in idx:
did = retrieval_res.loc[int(i), "doc_id"]
did = chunks[int(i)]["doc_id"]
if did in doc_ids:
continue
doc_ids.add(did)
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
recall_docs.append({"doc_id": did, "doc_name": chunks[int(i)]["docnm_kwd"]})
del retrieval_res["vector"]
del retrieval_res["content_ltks"]
for c in chunks:
del c["vector"]
del c["content_ltks"]
reference = {
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
"chunks": chunks,
"doc_aggs": recall_docs
}
@ -110,33 +125,56 @@ class Generate(ComponentBase):
return res
def get_input_elements(self):
if self._param.parameters:
return [{"key": "user", "name": "User"}, *self._param.parameters]
return [{"key": "user", "name": "User"}]
key_set = set([])
res = [{"key": "user", "name": "Input your question here:"}]
for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.prompt, flags=re.IGNORECASE):
cpn_id = r.group(1)
if cpn_id in key_set:
continue
if cpn_id.lower().find("begin@") == 0:
cpn_id, key = cpn_id.split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] != key:
continue
res.append({"key": r.group(1), "name": p["name"]})
key_set.add(r.group(1))
continue
cpn_nm = self._canvas.get_component_name(cpn_id)
if not cpn_nm:
continue
res.append({"key": cpn_id, "name": cpn_nm})
key_set.add(cpn_id)
return res
def _run(self, history, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
if len(self._param.llm_enabled_tools) > 0:
tools = GlobalPluginManager.get_llm_tools_by_names(self._param.llm_enabled_tools)
chat_mdl.bind_tools(
LLMToolPluginCallSession(),
[llm_tool_metadata_to_openai_tool(t.get_metadata()) for t in tools]
)
prompt = self._param.prompt
retrieval_res = []
self._param.inputs = []
for para in self._param.parameters:
if not para.get("component_id"):
continue
component_id = para["component_id"].split("@")[0]
if para["component_id"].lower().find("@") >= 0:
cpn_id, key = para["component_id"].split("@")
for para in self.get_input_elements()[1:]:
if para["key"].lower().find("begin@") == 0:
cpn_id, key = para["key"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
kwargs[para["key"]] = p.get("value", "")
self._param.inputs.append(
{"component_id": para["component_id"], "content": kwargs[para["key"]]})
{"component_id": para["key"], "content": kwargs[para["key"]]})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
component_id = para["key"]
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
@ -152,8 +190,8 @@ class Generate(ComponentBase):
else:
if cpn.component_name.lower() == "retrieval":
retrieval_res.append(out)
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
kwargs[para["key"]] = " - " + "\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["key"], "content": kwargs[para["key"]]})
if retrieval_res:
retrieval_res = pd.concat(retrieval_res, ignore_index=True)
@ -175,19 +213,20 @@ class Generate(ComponentBase):
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
return pd.DataFrame([res])
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
self._canvas.set_component_infor(self._id, {"prompt":msg[0]["content"],"messages": msg[1:],"conf": self._param.gen_conf()})
if self._param.cite and "chunks" in retrieval_res.columns:
res = self.set_cite(retrieval_res, ans)
return pd.DataFrame([res])
@ -196,28 +235,30 @@ class Generate(ComponentBase):
def stream_output(self, chat_mdl, prompt, retrieval_res):
res = None
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
yield res
self.set_output(res)
return
msg = self._canvas.get_history(self._param.message_history_window_size)
if msg and msg[0]['role'] == 'assistant':
msg.pop(0)
if len(msg) < 1:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
answer = ""
for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
res = {"content": ans, "reference": []}
answer = ans
yield res
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
if self._param.cite and "chunks" in retrieval_res.columns:
res = self.set_cite(retrieval_res, answer)
yield res
self._canvas.set_component_infor(self._id, {"prompt":msg[0]["content"],"messages": msg[1:],"conf": self._param.gen_conf()})
self.set_output(Generate.be_output(res))
def debug(self, **kwargs):
@ -230,5 +271,6 @@ class Generate(ComponentBase):
for n, v in kwargs.items():
prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)
ans = chat_mdl.chat(prompt, [{"role": "user", "content": kwargs.get("user", "")}], self._param.gen_conf())
u = kwargs.get("user")
ans = chat_mdl.chat(prompt, [{"role": "user", "content": u if u else "Output: "}], self._param.gen_conf())
return pd.DataFrame([ans])

View File

@ -35,12 +35,14 @@ class InvokeParam(ComponentParamBase):
self.url = ""
self.timeout = 60
self.clean_html = False
self.datatype = "json" # New parameter to determine data posting type
def check(self):
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ['get', 'post', 'put'])
self.check_empty(self.url, "End point URL")
self.check_positive_integer(self.timeout, "Timeout time in second")
self.check_boolean(self.clean_html, "Clean HTML")
self.check_valid_value(self.datatype.lower(), "Data post type", ['json', 'formdata']) # Check for valid datapost value
class Invoke(ComponentBase, ABC):
@ -50,14 +52,24 @@ class Invoke(ComponentBase, ABC):
args = {}
for para in self._param.variables:
if para.get("component_id"):
cpn = self._canvas.get_component(para["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
args[para["key"]] = self._canvas.get_history(1)[0]["content"]
continue
_, out = cpn.output(allow_partial=False)
args[para["key"]] = "\n".join(out["content"])
if '@' in para["component_id"]:
component = para["component_id"].split('@')[0]
field = para["component_id"].split('@')[1]
cpn = self._canvas.get_component(component)["obj"]
for param in cpn._param.query:
if param["key"] == field:
if "value" in param:
args[para["key"]] = param["value"]
else:
cpn = self._canvas.get_component(para["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
args[para["key"]] = self._canvas.get_history(1)[0]["content"]
continue
_, out = cpn.output(allow_partial=False)
if not out.empty:
args[para["key"]] = "\n".join(out["content"])
else:
args[para["key"]] = "\n".join(para["value"])
args[para["key"]] = para["value"]
url = self._param.url.strip()
if url.find("http") != 0:
@ -84,22 +96,36 @@ class Invoke(ComponentBase, ABC):
return Invoke.be_output(response.text)
if method == 'put':
response = requests.put(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.datatype.lower() == 'json':
response = requests.put(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
else:
response = requests.put(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.clean_html:
sections = HtmlParser()(None, response.content)
return Invoke.be_output("\n".join(sections))
return Invoke.be_output(response.text)
if method == 'post':
response = requests.post(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.datatype.lower() == 'json':
response = requests.post(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
else:
response = requests.post(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.clean_html:
sections = HtmlParser()(None, response.content)
return Invoke.be_output("\n".join(sections))

View File

@ -0,0 +1,45 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class IterationParam(ComponentParamBase):
"""
Define the Iteration component parameters.
"""
def __init__(self):
super().__init__()
self.delimiter = ","
def check(self):
self.check_empty(self.delimiter, "Delimiter")
class Iteration(ComponentBase, ABC):
component_name = "Iteration"
def get_start(self):
for cid in self._canvas.components.keys():
if self._canvas.get_component(cid)["obj"].component_name.lower() != "iterationitem":
continue
if self._canvas.get_component(cid)["parent_id"] == self._id:
return self._canvas.get_component(cid)
def _run(self, history, **kwargs):
return self.output(allow_partial=False)[1]

View File

@ -0,0 +1,53 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class IterationItemParam(ComponentParamBase):
"""
Define the IterationItem component parameters.
"""
def check(self):
return True
class IterationItem(ComponentBase, ABC):
component_name = "IterationItem"
def __init__(self, canvas, id, param: ComponentParamBase):
super().__init__(canvas, id, param)
self._idx = 0
def _run(self, history, **kwargs):
parent = self.get_parent()
ans = parent.get_input()
ans = parent._param.delimiter.join(ans["content"]) if "content" in ans else ""
ans = [a.strip() for a in ans.split(parent._param.delimiter)]
if not ans:
self._idx = -1
return pd.DataFrame()
df = pd.DataFrame([{"content": ans[self._idx]}])
self._idx += 1
if self._idx >= len(ans):
self._idx = -1
return df
def end(self):
return self._idx == -1

View File

@ -1,130 +1,130 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class Jin10Param(ComponentParamBase):
"""
Define the Jin10 component parameters.
"""
def __init__(self):
super().__init__()
self.type = "flash"
self.secret_key = "xxx"
self.flash_type = '1'
self.calendar_type = 'cj'
self.calendar_datatype = 'data'
self.symbols_type = 'GOODS'
self.symbols_datatype = 'symbols'
self.contain = ""
self.filter = ""
def check(self):
self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
class Jin10(ComponentBase, ABC):
component_name = "Jin10"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Jin10.be_output("")
jin10_res = []
headers = {'secret-key': self._param.secret_key}
try:
if self._param.type == "flash":
params = {
'category': self._param.flash_type,
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
headers=headers, data=json.dumps(params))
response = response.json()
for i in response['data']:
jin10_res.append({"content": i['data']['content']})
if self._param.type == "calendar":
params = {
'category': self._param.calendar_type
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "symbols":
params = {
'type': self._param.symbols_type
}
if self._param.symbols_datatype == "quotes":
params['codes'] = 'BTCUSD'
response = requests.get(
url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
headers=headers, data=json.dumps(params))
response = response.json()
if self._param.symbols_datatype == "symbols":
for i in response['data']:
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Commodity Name'] = i['n']
i['Commodity Type'] = i['t']
del i['c'], i['e'], i['n'], i['t']
if self._param.symbols_datatype == "quotes":
for i in response['data']:
i['Selling Price'] = i['a']
i['Buying Price'] = i['b']
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Highest Price'] = i['h']
i['Yesterdays Closing Price'] = i['hc']
i['Lowest Price'] = i['l']
i['Opening Price'] = i['o']
i['Latest Price'] = i['p']
i['Market Quote Time'] = i['t']
del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "news":
params = {
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/news',
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
except Exception as e:
return Jin10.be_output("**ERROR**: " + str(e))
if not jin10_res:
return Jin10.be_output("")
return pd.DataFrame(jin10_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class Jin10Param(ComponentParamBase):
"""
Define the Jin10 component parameters.
"""
def __init__(self):
super().__init__()
self.type = "flash"
self.secret_key = "xxx"
self.flash_type = '1'
self.calendar_type = 'cj'
self.calendar_datatype = 'data'
self.symbols_type = 'GOODS'
self.symbols_datatype = 'symbols'
self.contain = ""
self.filter = ""
def check(self):
self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
class Jin10(ComponentBase, ABC):
component_name = "Jin10"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Jin10.be_output("")
jin10_res = []
headers = {'secret-key': self._param.secret_key}
try:
if self._param.type == "flash":
params = {
'category': self._param.flash_type,
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
headers=headers, data=json.dumps(params))
response = response.json()
for i in response['data']:
jin10_res.append({"content": i['data']['content']})
if self._param.type == "calendar":
params = {
'category': self._param.calendar_type
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "symbols":
params = {
'type': self._param.symbols_type
}
if self._param.symbols_datatype == "quotes":
params['codes'] = 'BTCUSD'
response = requests.get(
url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
headers=headers, data=json.dumps(params))
response = response.json()
if self._param.symbols_datatype == "symbols":
for i in response['data']:
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Commodity Name'] = i['n']
i['Commodity Type'] = i['t']
del i['c'], i['e'], i['n'], i['t']
if self._param.symbols_datatype == "quotes":
for i in response['data']:
i['Selling Price'] = i['a']
i['Buying Price'] = i['b']
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Highest Price'] = i['h']
i['Yesterdays Closing Price'] = i['hc']
i['Lowest Price'] = i['l']
i['Opening Price'] = i['o']
i['Latest Price'] = i['p']
i['Market Quote Time'] = i['t']
del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "news":
params = {
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/news',
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
except Exception as e:
return Jin10.be_output("**ERROR**: " + str(e))
if not jin10_res:
return Jin10.be_output("")
return pd.DataFrame(jin10_res)

View File

@ -51,15 +51,22 @@ class KeywordExtract(Generate, ABC):
def _run(self, history, **kwargs):
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
if hasattr(query, "to_dict") and "content" in query:
query = ", ".join(map(str, query["content"].dropna()))
else:
query = str(query)
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
self._canvas.set_component_infor(self._id, {"prompt":self._param.get_prompt(),"messages": [{"role": "user", "content": query}],"conf": self._param.gen_conf()})
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": query}],
self._param.gen_conf())
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r".*keyword:", "", ans).strip()
logging.debug(f"ans: {ans}")
return KeywordExtract.be_output(ans)
def debug(self, **kwargs):
return self._run([], **kwargs)
return self._run([], **kwargs)

View File

@ -13,7 +13,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import re
from abc import ABC
import pandas as pd
@ -23,13 +25,16 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.app.tag import label_question
from rag.prompts import kb_prompt
from rag.utils.tavily_conn import Tavily
class RetrievalParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.similarity_threshold = 0.2
@ -37,12 +42,15 @@ class RetrievalParam(ComponentParamBase):
self.top_n = 8
self.top_k = 1024
self.kb_ids = []
self.kb_vars = []
self.rerank_id = ""
self.empty_response = ""
self.tavily_api_key = ""
self.use_kg = False
def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
self.check_positive_number(self.top_n, "[Retrieval] Top N")
@ -52,25 +60,68 @@ class Retrieval(ComponentBase, ABC):
def _run(self, history, **kwargs):
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
query = re.split(r"(USER:|ASSISTANT:)", query)[-1]
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
kb_ids: list[str] = self._param.kb_ids or []
kb_vars = self._fetch_outputs_from(self._param.kb_vars)
if len(kb_vars) > 0:
for kb_var in kb_vars:
if len(kb_var) == 1:
kb_var_value = str(kb_var["content"][0])
for v in kb_var_value.split(","):
kb_ids.append(v)
else:
for v in kb_var.to_dict("records"):
kb_ids.append(v["content"])
filtered_kb_ids: list[str] = [kb_id for kb_id in kb_ids if kb_id]
kbs = KnowledgebaseService.get_by_ids(filtered_kb_ids)
if not kbs:
return Retrieval.be_output("")
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
self._canvas.set_embedding_model(embd_nms[0])
embd_mdl = None
if embd_nms:
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
self._canvas.set_embedding_model(embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl)
if kbs:
kbinfos = settings.retrievaler.retrieval(
query,
embd_mdl,
[kb.tenant_id for kb in kbs],
filtered_kb_ids,
1,
self._param.top_n,
self._param.similarity_threshold,
1 - self._param.keywords_similarity_weight,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs),
)
else:
kbinfos = {"chunks": [], "doc_aggs": []}
if self._param.use_kg and kbs:
ck = settings.kg_retrievaler.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
if self._param.tavily_api_key:
tav = Tavily(self._param.tavily_api_key)
tav_res = tav.retrieve_chunks(query)
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if not kbinfos["chunks"]:
df = Retrieval.be_output("")
@ -78,10 +129,6 @@ class Retrieval(ComponentBase, ABC):
df["empty_response"] = self._param.empty_response
return df
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
df = pd.DataFrame({"content": kb_prompt(kbinfos, 200000), "chunks": json.dumps(kbinfos["chunks"])})
logging.debug("{} {}".format(query, df))
return df
return df.dropna()

View File

@ -13,101 +13,82 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from agent.component import GenerateParam, Generate
from rag.prompts import full_question
class RewriteQuestionParam(GenerateParam):
"""
Define the QuestionRewrite component parameters.
"""
def __init__(self):
super().__init__()
self.temperature = 0.9
self.prompt = ""
self.loop = 1
self.language = ""
def check(self):
super().check()
def get_prompt(self, conv):
self.prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
return f"""
Role: A helpful assistant
Task: Generate a full user question that would follow the conversation.
Requirements & Restrictions:
- Text generated MUST be in the same language of the original user's question.
- If the user's latest question is completely, don't do anything, just return the original question.
- DON'T generate anything except a refined question.
######################
-Examples-
######################
# Example 1
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
###############
Output: What's the name of Donald Trump's mother?
------------
# Example 2
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
ASSISTANT: Mary Trump.
User: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
######################
# Real Data
## Conversation
{conv}
###############
"""
return self.prompt
class RewriteQuestion(Generate, ABC):
component_name = "RewriteQuestion"
def _run(self, history, **kwargs):
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
if self._loop >= self._param.loop:
self._loop = 0
raise Exception("Sorry! Nothing relevant found.")
self._loop += 1
hist = self._canvas.get_history(4)
conv = []
for m in hist:
if m["role"] not in ["user", "assistant"]:
continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conv = "\n".join(conv)
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(conv), [{"role": "user", "content": "Output: "}],
self._param.gen_conf())
hist = self._canvas.get_history(self._param.message_history_window_size)
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
messages = [h for h in hist if h["role"]!="system"]
if messages[-1]["role"] != "user":
messages.append({"role": "user", "content": query})
ans = full_question(self._canvas.get_tenant_id(), self._param.llm_id, messages, self.gen_lang(self._param.language))
self._canvas.history.pop()
self._canvas.history.append(("user", ans))
logging.debug(ans)
return RewriteQuestion.be_output(ans)
@staticmethod
def gen_lang(language):
# convert code lang to language word for the prompt
language_dict = {'af': 'Afrikaans', 'ak': 'Akan', 'sq': 'Albanian', 'ws': 'Samoan', 'am': 'Amharic',
'ar': 'Arabic', 'hy': 'Armenian', 'az': 'Azerbaijani', 'eu': 'Basque', 'be': 'Belarusian',
'bem': 'Bemba', 'bn': 'Bengali', 'bh': 'Bihari',
'xx-bork': 'Bork', 'bs': 'Bosnian', 'br': 'Breton', 'bg': 'Bulgarian', 'bt': 'Bhutani',
'km': 'Cambodian', 'ca': 'Catalan', 'chr': 'Cherokee', 'ny': 'Chichewa', 'zh-cn': 'Chinese',
'zh-tw': 'Chinese', 'co': 'Corsican',
'hr': 'Croatian', 'cs': 'Czech', 'da': 'Danish', 'nl': 'Dutch', 'xx-elmer': 'Elmer',
'en': 'English', 'eo': 'Esperanto', 'et': 'Estonian', 'ee': 'Ewe', 'fo': 'Faroese',
'tl': 'Filipino', 'fi': 'Finnish', 'fr': 'French',
'fy': 'Frisian', 'gaa': 'Ga', 'gl': 'Galician', 'ka': 'Georgian', 'de': 'German',
'el': 'Greek', 'kl': 'Greenlandic', 'gn': 'Guarani', 'gu': 'Gujarati', 'xx-hacker': 'Hacker',
'ht': 'Haitian Creole', 'ha': 'Hausa', 'haw': 'Hawaiian',
'iw': 'Hebrew', 'hi': 'Hindi', 'hu': 'Hungarian', 'is': 'Icelandic', 'ig': 'Igbo',
'id': 'Indonesian', 'ia': 'Interlingua', 'ga': 'Irish', 'it': 'Italian', 'ja': 'Japanese',
'jw': 'Javanese', 'kn': 'Kannada', 'kk': 'Kazakh', 'rw': 'Kinyarwanda',
'rn': 'Kirundi', 'xx-klingon': 'Klingon', 'kg': 'Kongo', 'ko': 'Korean', 'kri': 'Krio',
'ku': 'Kurdish', 'ckb': 'Kurdish (Sorani)', 'ky': 'Kyrgyz', 'lo': 'Laothian', 'la': 'Latin',
'lv': 'Latvian', 'ln': 'Lingala', 'lt': 'Lithuanian',
'loz': 'Lozi', 'lg': 'Luganda', 'ach': 'Luo', 'mk': 'Macedonian', 'mg': 'Malagasy',
'ms': 'Malay', 'ml': 'Malayalam', 'mt': 'Maltese', 'mv': 'Maldivian', 'mi': 'Maori',
'mr': 'Marathi', 'mfe': 'Mauritian Creole', 'mo': 'Moldavian', 'mn': 'Mongolian',
'sr-me': 'Montenegrin', 'my': 'Burmese', 'ne': 'Nepali', 'pcm': 'Nigerian Pidgin',
'nso': 'Northern Sotho', 'no': 'Norwegian', 'nn': 'Norwegian Nynorsk', 'oc': 'Occitan',
'or': 'Oriya', 'om': 'Oromo', 'ps': 'Pashto', 'fa': 'Persian',
'xx-pirate': 'Pirate', 'pl': 'Polish', 'pt': 'Portuguese', 'pt-br': 'Portuguese (Brazilian)',
'pt-pt': 'Portuguese (Portugal)', 'pa': 'Punjabi', 'qu': 'Quechua', 'ro': 'Romanian',
'rm': 'Romansh', 'nyn': 'Runyankole', 'ru': 'Russian', 'gd': 'Scots Gaelic',
'sr': 'Serbian', 'sh': 'Serbo-Croatian', 'st': 'Sesotho', 'tn': 'Setswana',
'crs': 'Seychellois Creole', 'sn': 'Shona', 'sd': 'Sindhi', 'si': 'Sinhalese', 'sk': 'Slovak',
'sl': 'Slovenian', 'so': 'Somali', 'es': 'Spanish', 'es-419': 'Spanish (Latin America)',
'su': 'Sundanese',
'sw': 'Swahili', 'sv': 'Swedish', 'tg': 'Tajik', 'ta': 'Tamil', 'tt': 'Tatar', 'te': 'Telugu',
'th': 'Thai', 'ti': 'Tigrinya', 'to': 'Tongan', 'lua': 'Tshiluba', 'tum': 'Tumbuka',
'tr': 'Turkish', 'tk': 'Turkmen', 'tw': 'Twi',
'ug': 'Uyghur', 'uk': 'Ukrainian', 'ur': 'Urdu', 'uz': 'Uzbek', 'vu': 'Vanuatu',
'vi': 'Vietnamese', 'cy': 'Welsh', 'wo': 'Wolof', 'xh': 'Xhosa', 'yi': 'Yiddish',
'yo': 'Yoruba', 'zu': 'Zulu'}
if language in language_dict:
return language_dict[language]
else:
return ""

View File

@ -54,7 +54,7 @@ class Switch(ComponentBase, ABC):
for item in cond["items"]:
if not item["cpn_id"]:
continue
if item["cpn_id"].find("begin") >= 0:
if item["cpn_id"].lower().find("begin") >= 0 or item["cpn_id"].lower().find("answer") >= 0:
continue
cid = item["cpn_id"].split("@")[0]
res.append(cid)
@ -75,7 +75,7 @@ class Switch(ComponentBase, ABC):
res.append(self.process_operator(p.get("value",""), item["operator"], item.get("value", "")))
break
else:
out = self._canvas.get_component(cid)["obj"].output()[1]
out = self._canvas.get_component(cid)["obj"].output(allow_partial=False)[1]
cpn_input = "" if "content" not in out.columns else " ".join([str(s) for s in out["content"]])
res.append(self.process_operator(cpn_input, item["operator"], item.get("value", "")))

View File

@ -13,8 +13,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
from agent.component.base import ComponentBase, ComponentParamBase
from jinja2 import Template as Jinja2Template
class TemplateParam(ComponentParamBase):
@ -36,32 +38,49 @@ class Template(ComponentBase):
component_name = "Template"
def get_dependent_components(self):
cpnts = set([para["component_id"].split("@")[0] for para in self._param.parameters \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
inputs = self.get_input_elements()
cpnts = set([i["key"] for i in inputs if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
return list(cpnts)
def get_input_elements(self):
key_set = set([])
res = []
for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.content, flags=re.IGNORECASE):
cpn_id = r.group(1)
if cpn_id in key_set:
continue
if cpn_id.lower().find("begin@") == 0:
cpn_id, key = cpn_id.split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] != key:
continue
res.append({"key": r.group(1), "name": p["name"]})
key_set.add(r.group(1))
continue
cpn_nm = self._canvas.get_component_name(cpn_id)
if not cpn_nm:
continue
res.append({"key": cpn_id, "name": cpn_nm})
key_set.add(cpn_id)
return res
def _run(self, history, **kwargs):
content = self._param.content
self._param.inputs = []
for para in self._param.parameters:
if not para.get("component_id"):
continue
component_id = para["component_id"].split("@")[0]
if para["component_id"].lower().find("@") >= 0:
cpn_id, key = para["component_id"].split("@")
for para in self.get_input_elements():
if para["key"].lower().find("begin@") == 0:
cpn_id, key = para["key"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
kwargs[para["key"]] = p.get("value", "")
self._param.inputs.append(
{"component_id": para["component_id"], "content": kwargs[para["key"]]})
value = p.get("value", "")
self.make_kwargs(para, kwargs, value)
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
component_id = para["key"]
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
@ -69,18 +88,47 @@ class Template(ComponentBase):
hist = hist[0]["content"]
else:
hist = ""
kwargs[para["key"]] = hist
self.make_kwargs(para, kwargs, hist)
continue
_, out = cpn.output(allow_partial=False)
if "content" not in out.columns:
kwargs[para["key"]] = ""
else:
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
result = ""
if "content" in out.columns:
result = "\n".join(
[o if isinstance(o, str) else str(o) for o in out["content"]]
)
self.make_kwargs(para, kwargs, result)
template = Jinja2Template(content)
try:
content = template.render(kwargs)
except Exception:
pass
for n, v in kwargs.items():
content = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), content)
if not isinstance(v, str):
try:
v = json.dumps(v, ensure_ascii=False)
except Exception:
pass
content = re.sub(
r"\{%s\}" % re.escape(n), v, content
)
content = re.sub(
r"(#+)", r" \1 ", content
)
return Template.be_output(content)
def make_kwargs(self, para, kwargs, value):
self._param.inputs.append(
{"component_id": para["key"], "content": value}
)
try:
value = json.loads(value)
except Exception:
pass
kwargs[para["key"]] = value

View File

@ -1,72 +1,72 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import time
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class TuShareParam(ComponentParamBase):
"""
Define the TuShare component parameters.
"""
def __init__(self):
super().__init__()
self.token = "xxx"
self.src = "eastmoney"
self.start_date = "2024-01-01 09:00:00"
self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
self.keyword = ""
def check(self):
self.check_valid_value(self.src, "Quick News Source",
["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
class TuShare(ComponentBase, ABC):
component_name = "TuShare"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return TuShare.be_output("")
try:
tus_res = []
params = {
"api_name": "news",
"token": self._param.token,
"params": {"src": self._param.src, "start_date": self._param.start_date,
"end_date": self._param.end_date}
}
response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
response = response.json()
if response['code'] != 0:
return TuShare.be_output(response['msg'])
df = pd.DataFrame(response['data']['items'])
df.columns = response['data']['fields']
tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
except Exception as e:
return TuShare.be_output("**ERROR**: " + str(e))
if not tus_res:
return TuShare.be_output("")
return pd.DataFrame(tus_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import time
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class TuShareParam(ComponentParamBase):
"""
Define the TuShare component parameters.
"""
def __init__(self):
super().__init__()
self.token = "xxx"
self.src = "eastmoney"
self.start_date = "2024-01-01 09:00:00"
self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
self.keyword = ""
def check(self):
self.check_valid_value(self.src, "Quick News Source",
["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
class TuShare(ComponentBase, ABC):
component_name = "TuShare"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return TuShare.be_output("")
try:
tus_res = []
params = {
"api_name": "news",
"token": self._param.token,
"params": {"src": self._param.src, "start_date": self._param.start_date,
"end_date": self._param.end_date}
}
response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
response = response.json()
if response['code'] != 0:
return TuShare.be_output(response['msg'])
df = pd.DataFrame(response['data']['items'])
df.columns = response['data']['fields']
tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
except Exception as e:
return TuShare.be_output("**ERROR**: " + str(e))
if not tus_res:
return TuShare.be_output("")
return pd.DataFrame(tus_res)

View File

@ -1,80 +1,80 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
import pywencai
from agent.component.base import ComponentBase, ComponentParamBase
class WenCaiParam(ComponentParamBase):
"""
Define the WenCai component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.query_type = "stock"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.query_type, "Query type",
['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
'futures', 'lccp',
'foreign_exchange'])
class WenCai(ComponentBase, ABC):
component_name = "WenCai"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return WenCai.be_output("")
try:
wencai_res = []
res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
if isinstance(res, pd.DataFrame):
wencai_res.append({"content": res.to_markdown()})
if isinstance(res, dict):
for item in res.items():
if isinstance(item[1], list):
wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
continue
if isinstance(item[1], str):
wencai_res.append({"content": item[0] + "\n" + item[1]})
continue
if isinstance(item[1], dict):
if "meta" in item[1].keys():
continue
wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
continue
if isinstance(item[1], pd.DataFrame):
if "image_url" in item[1].columns:
continue
wencai_res.append({"content": item[1].to_markdown()})
continue
wencai_res.append({"content": item[0] + "\n" + str(item[1])})
except Exception as e:
return WenCai.be_output("**ERROR**: " + str(e))
if not wencai_res:
return WenCai.be_output("")
return pd.DataFrame(wencai_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
import pywencai
from agent.component.base import ComponentBase, ComponentParamBase
class WenCaiParam(ComponentParamBase):
"""
Define the WenCai component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.query_type = "stock"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.query_type, "Query type",
['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
'futures', 'lccp',
'foreign_exchange'])
class WenCai(ComponentBase, ABC):
component_name = "WenCai"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return WenCai.be_output("")
try:
wencai_res = []
res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
if isinstance(res, pd.DataFrame):
wencai_res.append({"content": res.to_markdown()})
if isinstance(res, dict):
for item in res.items():
if isinstance(item[1], list):
wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
continue
if isinstance(item[1], str):
wencai_res.append({"content": item[0] + "\n" + item[1]})
continue
if isinstance(item[1], dict):
if "meta" in item[1].keys():
continue
wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
continue
if isinstance(item[1], pd.DataFrame):
if "image_url" in item[1].columns:
continue
wencai_res.append({"content": item[1].to_markdown()})
continue
wencai_res.append({"content": item[0] + "\n" + str(item[1])})
except Exception as e:
return WenCai.be_output("**ERROR**: " + str(e))
if not wencai_res:
return WenCai.be_output("")
return pd.DataFrame(wencai_res)

View File

@ -1,84 +1,84 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
import yfinance as yf
class YahooFinanceParam(ComponentParamBase):
"""
Define the YahooFinance component parameters.
"""
def __init__(self):
super().__init__()
self.info = True
self.history = False
self.count = False
self.financials = False
self.income_stmt = False
self.balance_sheet = False
self.cash_flow_statement = False
self.news = True
def check(self):
self.check_boolean(self.info, "get all stock info")
self.check_boolean(self.history, "get historical market data")
self.check_boolean(self.count, "show share count")
self.check_boolean(self.financials, "show financials")
self.check_boolean(self.income_stmt, "income statement")
self.check_boolean(self.balance_sheet, "balance sheet")
self.check_boolean(self.cash_flow_statement, "cash flow statement")
self.check_boolean(self.news, "show news")
class YahooFinance(ComponentBase, ABC):
component_name = "YahooFinance"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join(ans["content"]) if "content" in ans else ""
if not ans:
return YahooFinance.be_output("")
yohoo_res = []
try:
msft = yf.Ticker(ans)
if self._param.info:
yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"})
if self._param.history:
yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"})
if self._param.financials:
yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"})
if self._param.balance_sheet:
yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"})
if self._param.cash_flow_statement:
yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
if self._param.news:
yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
except Exception:
logging.exception("YahooFinance got exception")
if not yohoo_res:
return YahooFinance.be_output("")
return pd.DataFrame(yohoo_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
import yfinance as yf
class YahooFinanceParam(ComponentParamBase):
"""
Define the YahooFinance component parameters.
"""
def __init__(self):
super().__init__()
self.info = True
self.history = False
self.count = False
self.financials = False
self.income_stmt = False
self.balance_sheet = False
self.cash_flow_statement = False
self.news = True
def check(self):
self.check_boolean(self.info, "get all stock info")
self.check_boolean(self.history, "get historical market data")
self.check_boolean(self.count, "show share count")
self.check_boolean(self.financials, "show financials")
self.check_boolean(self.income_stmt, "income statement")
self.check_boolean(self.balance_sheet, "balance sheet")
self.check_boolean(self.cash_flow_statement, "cash flow statement")
self.check_boolean(self.news, "show news")
class YahooFinance(ComponentBase, ABC):
component_name = "YahooFinance"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join(ans["content"]) if "content" in ans else ""
if not ans:
return YahooFinance.be_output("")
yohoo_res = []
try:
msft = yf.Ticker(ans)
if self._param.info:
yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"})
if self._param.history:
yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"})
if self._param.financials:
yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"})
if self._param.balance_sheet:
yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"})
if self._param.cash_flow_statement:
yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
if self._param.news:
yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
except Exception:
logging.exception("YahooFinance got exception")
if not yohoo_res:
return YahooFinance.be_output("")
return pd.DataFrame(yohoo_res)

View File

@ -1,5 +1,5 @@
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,113 +1,113 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
"to": "concentrator:0"
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "concentrator:1"
}
}
}
},
"downstream": ["concentrator:0","concentrator:1"],
"upstream": ["answer:0"]
},
"concentrator:0": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:0"],
"upstream": ["categorize:0"]
},
"concentrator:1": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:1_0","message:1_1","message:1_2"],
"upstream": ["categorize:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 0_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:0"]
},
"message:1_0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_1": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_1!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_2": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_2!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
"to": "concentrator:0"
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "concentrator:1"
}
}
}
},
"downstream": ["concentrator:0","concentrator:1"],
"upstream": ["answer:0"]
},
"concentrator:0": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:0"],
"upstream": ["categorize:0"]
},
"concentrator:1": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:1_0","message:1_1","message:1_2"],
"upstream": ["categorize:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 0_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:0"]
},
"message:1_0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_1": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_1!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_2": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_2!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@ -0,0 +1 @@
from .deep_research import DeepResearcher as DeepResearcher

View File

@ -0,0 +1,223 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
from functools import partial
from agentic_reasoning.prompts import BEGIN_SEARCH_QUERY, BEGIN_SEARCH_RESULT, END_SEARCH_RESULT, MAX_SEARCH_LIMIT, \
END_SEARCH_QUERY, REASON_PROMPT, RELEVANT_EXTRACTION_PROMPT
from api.db.services.llm_service import LLMBundle
from rag.nlp import extract_between
from rag.prompts import kb_prompt
from rag.utils.tavily_conn import Tavily
class DeepResearcher:
def __init__(self,
chat_mdl: LLMBundle,
prompt_config: dict,
kb_retrieve: partial = None,
kg_retrieve: partial = None
):
self.chat_mdl = chat_mdl
self.prompt_config = prompt_config
self._kb_retrieve = kb_retrieve
self._kg_retrieve = kg_retrieve
@staticmethod
def _remove_query_tags(text):
"""Remove query tags from text"""
pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY)
return re.sub(pattern, "", text)
@staticmethod
def _remove_result_tags(text):
"""Remove result tags from text"""
pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT)
return re.sub(pattern, "", text)
def _generate_reasoning(self, msg_history):
"""Generate reasoning steps"""
query_think = ""
if msg_history[-1]["role"] != "user":
msg_history.append({"role": "user", "content": "Continues reasoning with the new information.\n"})
else:
msg_history[-1]["content"] += "\n\nContinues reasoning with the new information.\n"
for ans in self.chat_mdl.chat_streamly(REASON_PROMPT, msg_history, {"temperature": 0.7}):
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
if not ans:
continue
query_think = ans
yield query_think
return query_think
def _extract_search_queries(self, query_think, question, step_index):
"""Extract search queries from thinking"""
queries = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)
if not queries and step_index == 0:
# If this is the first step and no queries are found, use the original question as the query
queries = [question]
return queries
def _truncate_previous_reasoning(self, all_reasoning_steps):
"""Truncate previous reasoning steps to maintain a reasonable length"""
truncated_prev_reasoning = ""
for i, step in enumerate(all_reasoning_steps):
truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n"
prev_steps = truncated_prev_reasoning.split('\n\n')
if len(prev_steps) <= 5:
truncated_prev_reasoning = '\n\n'.join(prev_steps)
else:
truncated_prev_reasoning = ''
for i, step in enumerate(prev_steps):
if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step:
truncated_prev_reasoning += step + '\n\n'
else:
if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n':
truncated_prev_reasoning += '...\n\n'
return truncated_prev_reasoning.strip('\n')
def _retrieve_information(self, search_query):
"""Retrieve information from different sources"""
# 1. Knowledge base retrieval
kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []}
# 2. Web retrieval (if Tavily API is configured)
if self.prompt_config.get("tavily_api_key"):
tav = Tavily(self.prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(search_query)
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
# 3. Knowledge graph retrieval (if configured)
if self.prompt_config.get("use_kg") and self._kg_retrieve:
ck = self._kg_retrieve(question=search_query)
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
return kbinfos
def _update_chunk_info(self, chunk_info, kbinfos):
"""Update chunk information for citations"""
if not chunk_info["chunks"]:
# If this is the first retrieval, use the retrieval results directly
for k in chunk_info.keys():
chunk_info[k] = kbinfos[k]
else:
# Merge newly retrieved information, avoiding duplicates
cids = [c["chunk_id"] for c in chunk_info["chunks"]]
for c in kbinfos["chunks"]:
if c["chunk_id"] not in cids:
chunk_info["chunks"].append(c)
dids = [d["doc_id"] for d in chunk_info["doc_aggs"]]
for d in kbinfos["doc_aggs"]:
if d["doc_id"] not in dids:
chunk_info["doc_aggs"].append(d)
def _extract_relevant_info(self, truncated_prev_reasoning, search_query, kbinfos):
"""Extract and summarize relevant information"""
summary_think = ""
for ans in self.chat_mdl.chat_streamly(
RELEVANT_EXTRACTION_PROMPT.format(
prev_reasoning=truncated_prev_reasoning,
search_query=search_query,
document="\n".join(kb_prompt(kbinfos, 4096))
),
[{"role": "user",
"content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}],
{"temperature": 0.7}):
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
if not ans:
continue
summary_think = ans
yield summary_think
return summary_think
def thinking(self, chunk_info: dict, question: str):
executed_search_queries = []
msg_history = [{"role": "user", "content": f'Question:\"{question}\"\n'}]
all_reasoning_steps = []
think = "<think>"
for step_index in range(MAX_SEARCH_LIMIT + 1):
# Check if the maximum search limit has been reached
if step_index == MAX_SEARCH_LIMIT - 1:
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n"
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
all_reasoning_steps.append(summary_think)
msg_history.append({"role": "assistant", "content": summary_think})
break
# Step 1: Generate reasoning
query_think = ""
for ans in self._generate_reasoning(msg_history):
query_think = ans
yield {"answer": think + self._remove_query_tags(query_think) + "</think>", "reference": {}, "audio_binary": None}
think += self._remove_query_tags(query_think)
all_reasoning_steps.append(query_think)
# Step 2: Extract search queries
queries = self._extract_search_queries(query_think, question, step_index)
if not queries and step_index > 0:
# If not the first step and no queries, end the search process
break
# Process each search query
for search_query in queries:
logging.info(f"[THINK]Query: {step_index}. {search_query}")
msg_history.append({"role": "assistant", "content": search_query})
think += f"\n\n> {step_index + 1}. {search_query}\n\n"
yield {"answer": think + "</think>", "reference": {}, "audio_binary": None}
# Check if the query has already been executed
if search_query in executed_search_queries:
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n"
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
all_reasoning_steps.append(summary_think)
msg_history.append({"role": "user", "content": summary_think})
think += summary_think
continue
executed_search_queries.append(search_query)
# Step 3: Truncate previous reasoning steps
truncated_prev_reasoning = self._truncate_previous_reasoning(all_reasoning_steps)
# Step 4: Retrieve information
kbinfos = self._retrieve_information(search_query)
# Step 5: Update chunk information
self._update_chunk_info(chunk_info, kbinfos)
# Step 6: Extract relevant information
think += "\n\n"
summary_think = ""
for ans in self._extract_relevant_info(truncated_prev_reasoning, search_query, kbinfos):
summary_think = ans
yield {"answer": think + self._remove_result_tags(summary_think) + "</think>", "reference": {}, "audio_binary": None}
all_reasoning_steps.append(summary_think)
msg_history.append(
{"role": "user", "content": f"\n\n{BEGIN_SEARCH_RESULT}{summary_think}{END_SEARCH_RESULT}\n\n"})
think += self._remove_result_tags(summary_think)
logging.info(f"[THINK]Summary: {step_index}. {summary_think}")
yield think + "</think>"

View File

@ -0,0 +1,113 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
BEGIN_SEARCH_QUERY = "<|begin_search_query|>"
END_SEARCH_QUERY = "<|end_search_query|>"
BEGIN_SEARCH_RESULT = "<|begin_search_result|>"
END_SEARCH_RESULT = "<|end_search_result|>"
MAX_SEARCH_LIMIT = 6
REASON_PROMPT = (
"You are a reasoning assistant with the ability to perform dataset searches to help "
"you answer the user's question accurately. You have special tools:\n\n"
f"- To perform a search: write {BEGIN_SEARCH_QUERY} your query here {END_SEARCH_QUERY}.\n"
f"Then, the system will search and analyze relevant content, then provide you with helpful information in the format {BEGIN_SEARCH_RESULT} ...search results... {END_SEARCH_RESULT}.\n\n"
f"You can repeat the search process multiple times if necessary. The maximum number of search attempts is limited to {MAX_SEARCH_LIMIT}.\n\n"
"Once you have all the information you need, continue your reasoning.\n\n"
"-- Example 1 --\n" ########################################
"Question: \"Are both the directors of Jaws and Casino Royale from the same country?\"\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Who is the director of Jaws?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nThe director of Jaws is Steven Spielberg...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information.\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Where is Steven Spielberg from?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nSteven Allan Spielberg is an American filmmaker...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Who is the director of Casino Royale?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nCasino Royale is a 2006 spy film directed by Martin Campbell...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Where is Martin Campbell from?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nMartin Campbell (born 24 October 1943) is a New Zealand film and television director...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\nIt's enough to answer the question\n"
"-- Example 2 --\n" #########################################
"Question: \"When was the founder of craigslist born?\"\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Who was the founder of craigslist?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nCraigslist was founded by Craig Newmark...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information.\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY} When was Craig Newmark born?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nCraig Newmark was born on December 6, 1952...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\nIt's enough to answer the question\n"
"**Remember**:\n"
f"- You have a dataset to search, so you just provide a proper search query.\n"
f"- Use {BEGIN_SEARCH_QUERY} to request a dataset search and end with {END_SEARCH_QUERY}.\n"
"- The language of query MUST be as the same as 'Question' or 'search result'.\n"
"- If no helpful information can be found, rewrite the search query to be less and precise keywords.\n"
"- When done searching, continue your reasoning.\n\n"
'Please answer the following question. You should think step by step to solve it.\n\n'
)
RELEVANT_EXTRACTION_PROMPT = """**Task Instruction:**
You are tasked with reading and analyzing web pages based on the following inputs: **Previous Reasoning Steps**, **Current Search Query**, and **Searched Web Pages**. Your objective is to extract relevant and helpful information for **Current Search Query** from the **Searched Web Pages** and seamlessly integrate this information into the **Previous Reasoning Steps** to continue reasoning for the original question.
**Guidelines:**
1. **Analyze the Searched Web Pages:**
- Carefully review the content of each searched web page.
- Identify factual information that is relevant to the **Current Search Query** and can aid in the reasoning process for the original question.
2. **Extract Relevant Information:**
- Select the information from the Searched Web Pages that directly contributes to advancing the **Previous Reasoning Steps**.
- Ensure that the extracted information is accurate and relevant.
3. **Output Format:**
- **If the web pages provide helpful information for current search query:** Present the information beginning with `**Final Information**` as shown below.
- The language of query **MUST BE** as the same as 'Search Query' or 'Web Pages'.\n"
**Final Information**
[Helpful information]
- **If the web pages do not provide any helpful information for current search query:** Output the following text.
**Final Information**
No helpful information found.
**Inputs:**
- **Previous Reasoning Steps:**
{prev_reasoning}
- **Current Search Query:**
{search_query}
- **Searched Web Pages:**
{document}
"""

View File

@ -1,2 +1,18 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from beartype.claw import beartype_this_package
beartype_this_package()

View File

@ -83,7 +83,7 @@ app.errorhandler(Exception)(server_error_response)
app.config["SESSION_PERMANENT"] = False
app.config["SESSION_TYPE"] = "filesystem"
app.config["MAX_CONTENT_LENGTH"] = int(
os.environ.get("MAX_CONTENT_LENGTH", 128 * 1024 * 1024)
os.environ.get("MAX_CONTENT_LENGTH", 1024 * 1024 * 1024)
)
Session(app)
@ -107,7 +107,7 @@ def search_pages_path(pages_dir):
def register_page(page_path):
path = f"{page_path}"
page_name = page_path.stem.rstrip("_app")
page_name = page_path.stem.removesuffix("_app")
module_name = ".".join(
page_path.parts[page_path.parts.index("api"): -1] + (page_name,)
)
@ -119,8 +119,9 @@ def register_page(page_path):
sys.modules[module_name] = page
spec.loader.exec_module(page)
page_name = getattr(page, "page_name", page_name)
sdk_path = "\\sdk\\" if sys.platform.startswith("win") else "/sdk/"
url_prefix = (
f"/api/{API_VERSION}" if "/sdk/" in path else f"/{API_VERSION}/{page_name}"
f"/api/{API_VERSION}" if sdk_path in path else f"/{API_VERSION}/{page_name}"
)
app.register_blueprint(page.manager, url_prefix=url_prefix)
@ -152,8 +153,8 @@ def load_user(web_request):
return user[0]
else:
return None
except Exception:
logging.exception("load_user got exception")
except Exception as e:
logging.warning(f"load_user got exception {e}")
return None
else:
return None

View File

@ -21,11 +21,11 @@ from flask import request, Response
from api.db.services.llm_service import TenantLLMService
from flask_login import login_required, current_user
from api.db import FileType, LLMType, ParserType, FileSource
from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileType, LLMType, ParserType, FileSource
from api.db.db_models import APIToken, Task, File
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
from api.db.services.dialog_service import DialogService, chat, keyword_extraction
from api.db.services.dialog_service import DialogService, chat
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
@ -38,6 +38,8 @@ from api.utils.api_utils import server_error_response, get_data_error_result, ge
generate_confirmation_token
from api.utils.file_utils import filename_type, thumbnail
from rag.app.tag import label_question
from rag.prompts import keyword_extraction
from rag.utils.storage_factory import STORAGE_IMPL
from api.db.services.canvas_service import UserCanvasService
@ -141,7 +143,7 @@ def set_conversation():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
try:
if objs[0].source == "agent":
e, cvs = UserCanvasService.get_by_id(objs[0].dialog_id)
@ -182,7 +184,7 @@ def completion():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
@ -343,12 +345,12 @@ def completion():
@manager.route('/conversation/<conversation_id>', methods=['GET']) # noqa: F821
# @login_required
def get(conversation_id):
def get_conversation(conversation_id):
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, conv = API4ConversationService.get_by_id(conversation_id)
@ -357,7 +359,7 @@ def get(conversation_id):
conv = conv.to_dict()
if token != APIToken.query(dialog_id=conv['dialog_id'])[0].token:
return get_json_result(data=False, message='Token is not valid for this conversation_id!"',
return get_json_result(data=False, message='Authentication error: API key is invalid for this conversation_id!"',
code=settings.RetCode.AUTHENTICATION_ERROR)
for referenct_i in conv['reference']:
@ -379,7 +381,7 @@ def upload():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
kb_name = request.form.get("kb_name").strip()
tenant_id = objs[0].tenant_id
@ -477,7 +479,7 @@ def upload():
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
queue_tasks(doc, bucket, name, 0)
except Exception as e:
return server_error_response(e)
@ -491,7 +493,7 @@ def upload_parse():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
if 'file' not in request.files:
return get_json_result(
@ -514,7 +516,7 @@ def list_chunks():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
@ -546,6 +548,31 @@ def list_chunks():
return get_json_result(data=res)
@manager.route('/get_chunk/<chunk_id>', methods=['GET']) # noqa: F821
# @login_required
def get_chunk(chunk_id):
from rag.nlp import search
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
try:
tenant_id = objs[0].tenant_id
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
if chunk is None:
return server_error_response(Exception("Chunk not found"))
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
k.append(n)
for n in k:
del chunk[n]
return get_json_result(data=chunk)
except Exception as e:
return server_error_response(e)
@manager.route('/list_kb_docs', methods=['POST']) # noqa: F821
# @login_required
@ -554,7 +581,7 @@ def list_kb_docs():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
tenant_id = objs[0].tenant_id
@ -575,10 +602,23 @@ def list_kb_docs():
orderby = req.get("orderby", "create_time")
desc = req.get("desc", True)
keywords = req.get("keywords", "")
status = req.get("status", [])
if status:
invalid_status = {s for s in status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(
message=f"Invalid filter status conditions: {', '.join(invalid_status)}"
)
types = req.get("types", [])
if types:
invalid_types = {t for t in types if t not in VALID_FILE_TYPES}
if invalid_types:
return get_data_error_result(
message=f"Invalid filter conditions: {', '.join(invalid_types)} type{'s' if len(invalid_types) > 1 else ''}"
)
try:
docs, tol = DocumentService.get_by_kb_id(
kb_id, page_number, items_per_page, orderby, desc, keywords)
kb_id, page_number, items_per_page, orderby, desc, keywords, status, types)
docs = [{"doc_id": doc['id'], "doc_name": doc['name']} for doc in docs]
return get_json_result(data={"total": tol, "docs": docs})
@ -594,7 +634,7 @@ def docinfos():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
doc_ids = req["doc_ids"]
docs = DocumentService.get_by_ids(doc_ids)
@ -608,12 +648,12 @@ def document_rm():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
tenant_id = objs[0].tenant_id
req = request.json
try:
doc_ids = [DocumentService.get_doc_id_by_doc_name(doc_name) for doc_name in req.get("doc_names", [])]
doc_ids = DocumentService.get_doc_ids_by_doc_names(req.get("doc_names", []))
for doc_id in req.get("doc_ids", []):
if doc_id not in doc_ids:
doc_ids.append(doc_id)
@ -631,11 +671,16 @@ def document_rm():
FileService.init_knowledgebase_docs(pf_id, tenant_id)
errors = ""
docs = DocumentService.get_by_ids(doc_ids)
doc_dic = {}
for doc in docs:
doc_dic[doc.id] = doc
for doc_id in doc_ids:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
if doc_id not in doc_dic:
return get_data_error_result(message="Document not found!")
doc = doc_dic[doc_id]
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
@ -670,7 +715,7 @@ def completion_faq():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
@ -809,17 +854,18 @@ def retrieval():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
kb_ids = req.get("kb_id", [])
doc_ids = req.get("doc_ids", [])
question = req.get("question")
page = int(req.get("page", 1))
size = int(req.get("size", 30))
size = int(req.get("page_size", 30))
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))
highlight = bool(req.get("highlight", False))
try:
kbs = KnowledgebaseService.get_by_ids(kb_ids)
@ -840,7 +886,8 @@ def retrieval():
question += keyword_extraction(chat_mdl, question)
ranks = settings.retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)
doc_ids, rerank_mdl=rerank_mdl, highlight= highlight,
rank_feature=label_question(question, kbs))
for c in ranks["chunks"]:
c.pop("vector", None)
return get_json_result(data=ranks)

76
api/apps/auth/README.md Normal file
View File

@ -0,0 +1,76 @@
# Auth
The Auth module provides implementations of OAuth2 and OpenID Connect (OIDC) authentication for integration with third-party identity providers.
**Features**
- Supports both OAuth2 and OIDC authentication protocols
- Automatic OIDC configuration discovery (via `/.well-known/openid-configuration`)
- JWT token validation
- Unified user information handling
## Usage
```python
# OAuth2 configuration
oauth_config = {
"type": "oauth2",
"client_id": "your_client_id",
"client_secret": "your_client_secret",
"authorization_url": "https://your-oauth-provider.com/oauth/authorize",
"token_url": "https://your-oauth-provider.com/oauth/token",
"userinfo_url": "https://your-oauth-provider.com/oauth/userinfo",
"redirect_uri": "https://your-app.com/v1/user/oauth/callback/<channel>"
}
# OIDC configuration
oidc_config = {
"type": "oidc",
"issuer": "https://your-oauth-provider.com/oidc",
"client_id": "your_client_id",
"client_secret": "your_client_secret",
"redirect_uri": "https://your-app.com/v1/user/oauth/callback/<channel>"
}
# Github OAuth configuration
github_config = {
"type": "github"
"client_id": "your_client_id",
"client_secret": "your_client_secret",
"redirect_uri": "https://your-app.com/v1/user/oauth/callback/<channel>"
}
# Get client instance
client = get_auth_client(oauth_config)
```
### Authentication Flow
1. Get authorization URL:
```python
auth_url = client.get_authorization_url()
```
2. After user authorization, exchange authorization code for token:
```python
token_response = client.exchange_code_for_token(authorization_code)
access_token = token_response["access_token"]
```
3. Fetch user information:
```python
user_info = client.fetch_user_info(access_token)
```
## User Information Structure
All authentication methods return user information following this structure:
```python
{
"email": "user@example.com",
"username": "username",
"nickname": "User Name",
"avatar_url": "https://example.com/avatar.jpg"
}
```

40
api/apps/auth/__init__.py Normal file
View File

@ -0,0 +1,40 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .oauth import OAuthClient
from .oidc import OIDCClient
from .github import GithubOAuthClient
CLIENT_TYPES = {
"oauth2": OAuthClient,
"oidc": OIDCClient,
"github": GithubOAuthClient
}
def get_auth_client(config)->OAuthClient:
channel_type = str(config.get("type", "")).lower()
if channel_type == "":
if config.get("issuer"):
channel_type = "oidc"
else:
channel_type = "oauth2"
client_class = CLIENT_TYPES.get(channel_type)
if not client_class:
raise ValueError(f"Unsupported type: {channel_type}")
return client_class(config)

63
api/apps/auth/github.py Normal file
View File

@ -0,0 +1,63 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import requests
from .oauth import OAuthClient, UserInfo
class GithubOAuthClient(OAuthClient):
def __init__(self, config):
"""
Initialize the GithubOAuthClient with the provider's configuration.
"""
config.update({
"authorization_url": "https://github.com/login/oauth/authorize",
"token_url": "https://github.com/login/oauth/access_token",
"userinfo_url": "https://api.github.com/user",
"scope": "user:email"
})
super().__init__(config)
def fetch_user_info(self, access_token, **kwargs):
"""
Fetch github user info.
"""
user_info = {}
try:
headers = {"Authorization": f"Bearer {access_token}"}
# user info
response = requests.get(self.userinfo_url, headers=headers, timeout=self.http_request_timeout)
response.raise_for_status()
user_info.update(response.json())
# email info
response = requests.get(self.userinfo_url+"/emails", headers=headers, timeout=self.http_request_timeout)
response.raise_for_status()
email_info = response.json()
user_info["email"] = next(
(email for email in email_info if email["primary"]), None
)["email"]
return self.normalize_user_info(user_info)
except requests.exceptions.RequestException as e:
raise ValueError(f"Failed to fetch github user info: {e}")
def normalize_user_info(self, user_info):
email = user_info.get("email")
username = user_info.get("login", str(email).split("@")[0])
nickname = user_info.get("name", username)
avatar_url = user_info.get("avatar_url", "")
return UserInfo(email=email, username=username, nickname=nickname, avatar_url=avatar_url)

110
api/apps/auth/oauth.py Normal file
View File

@ -0,0 +1,110 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import requests
import urllib.parse
class UserInfo:
def __init__(self, email, username, nickname, avatar_url):
self.email = email
self.username = username
self.nickname = nickname
self.avatar_url = avatar_url
def to_dict(self):
return {key: value for key, value in self.__dict__.items()}
class OAuthClient:
def __init__(self, config):
"""
Initialize the OAuthClient with the provider's configuration.
"""
self.client_id = config["client_id"]
self.client_secret = config["client_secret"]
self.authorization_url = config["authorization_url"]
self.token_url = config["token_url"]
self.userinfo_url = config["userinfo_url"]
self.redirect_uri = config["redirect_uri"]
self.scope = config.get("scope", None)
self.http_request_timeout = 7
def get_authorization_url(self, state=None):
"""
Generate the authorization URL for user login.
"""
params = {
"client_id": self.client_id,
"redirect_uri": self.redirect_uri,
"response_type": "code",
}
if self.scope:
params["scope"] = self.scope
if state:
params["state"] = state
authorization_url = f"{self.authorization_url}?{urllib.parse.urlencode(params)}"
return authorization_url
def exchange_code_for_token(self, code):
"""
Exchange authorization code for access token.
"""
try:
payload = {
"client_id": self.client_id,
"client_secret": self.client_secret,
"code": code,
"redirect_uri": self.redirect_uri,
"grant_type": "authorization_code"
}
response = requests.post(
self.token_url,
data=payload,
headers={"Accept": "application/json"},
timeout=self.http_request_timeout
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise ValueError(f"Failed to exchange authorization code for token: {e}")
def fetch_user_info(self, access_token, **kwargs):
"""
Fetch user information using access token.
"""
try:
headers = {"Authorization": f"Bearer {access_token}"}
response = requests.get(self.userinfo_url, headers=headers, timeout=self.http_request_timeout)
response.raise_for_status()
user_info = response.json()
return self.normalize_user_info(user_info)
except requests.exceptions.RequestException as e:
raise ValueError(f"Failed to fetch user info: {e}")
def normalize_user_info(self, user_info):
email = user_info.get("email")
username = user_info.get("username", str(email).split("@")[0])
nickname = user_info.get("nickname", username)
avatar_url = user_info.get("avatar_url", None)
if avatar_url is None:
avatar_url = user_info.get("picture", "")
return UserInfo(email=email, username=username, nickname=nickname, avatar_url=avatar_url)

100
api/apps/auth/oidc.py Normal file
View File

@ -0,0 +1,100 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import jwt
import requests
from .oauth import OAuthClient
class OIDCClient(OAuthClient):
def __init__(self, config):
"""
Initialize the OIDCClient with the provider's configuration.
Use `issuer` as the single source of truth for configuration discovery.
"""
self.issuer = config.get("issuer")
if not self.issuer:
raise ValueError("Missing issuer in configuration.")
oidc_metadata = self._load_oidc_metadata(self.issuer)
config.update({
'issuer': oidc_metadata['issuer'],
'jwks_uri': oidc_metadata['jwks_uri'],
'authorization_url': oidc_metadata['authorization_endpoint'],
'token_url': oidc_metadata['token_endpoint'],
'userinfo_url': oidc_metadata['userinfo_endpoint']
})
super().__init__(config)
self.issuer = config['issuer']
self.jwks_uri = config['jwks_uri']
def _load_oidc_metadata(self, issuer):
"""
Load OIDC metadata from `/.well-known/openid-configuration`.
"""
try:
metadata_url = f"{issuer}/.well-known/openid-configuration"
response = requests.get(metadata_url, timeout=7)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise ValueError(f"Failed to fetch OIDC metadata: {e}")
def parse_id_token(self, id_token):
"""
Parse and validate OIDC ID Token (JWT format) with signature verification.
"""
try:
# Decode JWT header without verifying signature
headers = jwt.get_unverified_header(id_token)
# OIDC usually uses `RS256` for signing
alg = headers.get("alg", "RS256")
# Use PyJWT's PyJWKClient to fetch JWKS and find signing key
jwks_url = f"{self.issuer}/.well-known/jwks.json"
jwks_cli = jwt.PyJWKClient(jwks_url)
signing_key = jwks_cli.get_signing_key_from_jwt(id_token).key
# Decode and verify signature
decoded_token = jwt.decode(
id_token,
key=signing_key,
algorithms=[alg],
audience=str(self.client_id),
issuer=self.issuer,
)
return decoded_token
except Exception as e:
raise ValueError(f"Error parsing ID Token: {e}")
def fetch_user_info(self, access_token, id_token=None, **kwargs):
"""
Fetch user info.
"""
user_info = {}
if id_token:
user_info = self.parse_id_token(id_token)
user_info.update(super().fetch_user_info(access_token).to_dict())
return self.normalize_user_info(user_info)
def normalize_user_info(self, user_info):
return super().normalize_user_info(user_info)

View File

@ -18,13 +18,15 @@ import traceback
from flask import request, Response
from flask_login import login_required, current_user
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
from api.db.services.user_service import TenantService
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_json_result, server_error_response, validate_request, get_data_error_result
from agent.canvas import Canvas
from peewee import MySQLDatabase, PostgresqlDatabase
from api.db.db_models import APIToken
import time
@manager.route('/templates', methods=['GET']) # noqa: F821
@login_required
@ -61,11 +63,10 @@ def save():
req["user_id"] = current_user.id
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
if "id" not in req:
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip()):
return get_data_error_result(f"{req['title'].strip()} already exists.")
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
return get_data_error_result(message="Fail to save canvas.")
@ -75,16 +76,21 @@ def save():
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
# save version
UserCanvasVersionService.insert( user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.delete_all_versions(req["id"])
return get_json_result(data=req)
@manager.route('/get/<canvas_id>', methods=['GET']) # noqa: F821
@login_required
def get(canvas_id):
e, c = UserCanvasService.get_by_id(canvas_id)
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
return get_json_result(data=c.to_dict())
return get_json_result(data=c)
@manager.route('/getsse/<canvas_id>', methods=['GET']) # type: ignore # noqa: F821
def getsse(canvas_id):
@ -94,7 +100,7 @@ def getsse(canvas_id):
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_data_error_result(message='Token is not valid!"')
return get_data_error_result(message='Authentication error: API key is invalid!"')
e, c = UserCanvasService.get_by_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
@ -107,6 +113,7 @@ def getsse(canvas_id):
def run():
req = request.json
stream = req.get("stream", True)
running_hint_text = req.get("running_hint_text", "")
e, cvs = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
@ -132,7 +139,7 @@ def run():
def sse():
nonlocal answer, cvs
try:
for ans in canvas.run(stream=True):
for ans in canvas.run(running_hint_text = running_hint_text, stream=True):
if ans.get("running_status"):
yield "data:" + json.dumps({"code": 0, "message": "",
"data": {"answer": ans["content"],
@ -146,12 +153,16 @@ def run():
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if not canvas.path[-1]:
canvas.path.pop(-1)
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
except Exception as e:
cvs.dsl = json.loads(str(canvas))
if not canvas.path[-1]:
canvas.path.pop(-1)
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
traceback.print_exc()
yield "data:" + json.dumps({"code": 500, "message": str(e),
@ -166,7 +177,7 @@ def run():
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
for answer in canvas.run(stream=False):
for answer in canvas.run(running_hint_text = running_hint_text, stream=False):
if answer.get("running_status"):
continue
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
@ -279,4 +290,62 @@ def test_db_connect():
return get_json_result(data="Database Connection Successful!")
except Exception as e:
return server_error_response(e)
#api get list version dsl of canvas
@manager.route('/getlistversion/<canvas_id>', methods=['GET']) # noqa: F821
@login_required
def getlistversion(canvas_id):
try:
list =sorted([c.to_dict() for c in UserCanvasVersionService.list_by_canvas_id(canvas_id)], key=lambda x: x["update_time"]*-1)
return get_json_result(data=list)
except Exception as e:
return get_data_error_result(message=f"Error getting history files: {e}")
#api get version dsl of canvas
@manager.route('/getversion/<version_id>', methods=['GET']) # noqa: F821
@login_required
def getversion( version_id):
try:
e, version = UserCanvasVersionService.get_by_id(version_id)
if version:
return get_json_result(data=version.to_dict())
except Exception as e:
return get_json_result(data=f"Error getting history file: {e}")
@manager.route('/listteam', methods=['GET']) # noqa: F821
@login_required
def list_kbs():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
kbs, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords)
return get_json_result(data={"kbs": kbs, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route('/setting', methods=['POST']) # noqa: F821
@validate_request("id", "title", "permission")
@login_required
def setting():
req = request.json
req["user_id"] = current_user.id
e,flow = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
flow = flow.to_dict()
flow["title"] = req["title"]
if req["description"]:
flow["description"] = req["description"]
if req["permission"]:
flow["permission"] = req["permission"]
if req["avatar"]:
flow["avatar"] = req["avatar"]
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
return get_json_result(
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
num= UserCanvasService.update_by_id(req["id"], flow)
return get_json_result(data=num)

View File

@ -19,9 +19,11 @@ import json
from flask import request
from flask_login import login_required, current_user
from api.db.services.dialog_service import keyword_extraction
from rag.app.qa import rmPrefix, beAdoc
from rag.app.tag import label_question
from rag.nlp import search, rag_tokenizer
from rag.prompts import keyword_extraction, cross_languages
from rag.settings import PAGERANK_FLD
from rag.utils import rmSpace
from api.db import LLMType, ParserType
from api.db.services.knowledgebase_service import KnowledgebaseService
@ -35,6 +37,7 @@ import xxhash
import re
@manager.route('/list', methods=['POST']) # noqa: F821
@login_required
@validate_request("doc_id")
@ -92,12 +95,14 @@ def get():
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
for tenant in tenants:
kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
if chunk:
break
if chunk is None:
return server_error_response(Exception("Chunk not found"))
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
@ -115,8 +120,7 @@ def get():
@manager.route('/set', methods=['POST']) # noqa: F821
@login_required
@validate_request("doc_id", "chunk_id", "content_with_weight",
"important_kwd", "question_kwd")
@validate_request("doc_id", "chunk_id", "content_with_weight")
def set():
req = request.json
d = {
@ -124,10 +128,16 @@ def set():
"content_with_weight": req["content_with_weight"]}
d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
d["question_kwd"] = req["question_kwd"]
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
if "important_kwd" in req:
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
if "question_kwd" in req:
d["question_kwd"] = req["question_kwd"]
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
if "tag_kwd" in req:
d["tag_kwd"] = req["tag_kwd"]
if "tag_feas" in req:
d["tag_feas"] = req["tag_feas"]
if "available_int" in req:
d["available_int"] = req["available_int"]
@ -148,14 +158,11 @@ def set():
t for t in re.split(
r"[\n\t]",
req["content_with_weight"]) if len(t) > 1]
if len(arr) != 2:
return get_data_error_result(
message="Q&A must be separated by TAB/ENTER key.")
q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
d = beAdoc(d, arr[0], arr[1], not any(
q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
d = beAdoc(d, q, a, not any(
[rag_tokenizer.is_chinese(t) for t in q + a]))
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
@ -188,6 +195,7 @@ def switch():
@login_required
@validate_request("chunk_ids", "doc_id")
def rm():
from rag.utils.storage_factory import STORAGE_IMPL
req = request.json
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
@ -198,6 +206,9 @@ def rm():
deleted_chunk_ids = req["chunk_ids"]
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
for cid in deleted_chunk_ids:
if STORAGE_IMPL.obj_exist(doc.kb_id, cid):
STORAGE_IMPL.rm(doc.kb_id, cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -236,7 +247,7 @@ def create():
if not e:
return get_data_error_result(message="Knowledgebase not found!")
if kb.pagerank:
d["pagerank_fea"] = kb.pagerank
d[PAGERANK_FLD] = kb.pagerank
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
@ -267,7 +278,9 @@ def retrieval_test():
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
langs = req.get("cross_languages", [])
tenant_ids = []
try:
@ -287,6 +300,9 @@ def retrieval_test():
if not e:
return get_data_error_result(message="Knowledgebase not found!")
if langs:
question = cross_languages(kb.tenant_id, None, question, langs)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
rerank_mdl = None
@ -297,12 +313,24 @@ def retrieval_test():
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
labels = label_question(question, [kb])
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"))
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
rank_feature=labels
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
tenant_ids,
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
for c in ranks["chunks"]:
c.pop("vector", None)
ranks["labels"] = labels
return get_json_result(data=ranks)
except Exception as e:

View File

@ -17,28 +17,35 @@ import json
import re
import traceback
from copy import deepcopy
from api.db.db_models import APIToken
from api.db.services.conversation_service import ConversationService, structure_answer
from api.db.services.user_service import UserTenantService
from flask import request, Response
from flask_login import login_required, current_user
import trio
from flask import Response, request
from flask_login import current_user, login_required
from api.db import LLMType
from api.db.services.dialog_service import DialogService, chat, ask
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle, TenantService, TenantLLMService
from api import settings
from api.utils.api_utils import get_json_result
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from graphrag.mind_map_extractor import MindMapExtractor
from api.db import LLMType
from api.db.db_models import APIToken
from api.db.services.conversation_service import ConversationService, structure_answer
from api.db.services.dialog_service import DialogService, ask, chat
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle, TenantService
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.tag import label_question
@manager.route('/set', methods=['POST']) # noqa: F821
@manager.route("/set", methods=["POST"]) # noqa: F821
@login_required
def set_conversation():
req = request.json
conv_id = req.get("conversation_id")
is_new = req.get("is_new")
name = req.get("name", "New conversation")
if len(name) > 255:
name = name[0:255]
del req["is_new"]
if not is_new:
del req["conversation_id"]
@ -47,8 +54,7 @@ def set_conversation():
return get_data_error_result(message="Conversation not found!")
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(
message="Fail to update a conversation!")
return get_data_error_result(message="Fail to update a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
@ -58,42 +64,30 @@ def set_conversation():
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(message="Dialog not found")
conv = {
"id": conv_id,
"dialog_id": req["dialog_id"],
"name": req.get("name", "New conversation"),
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
}
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": name, "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]}
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
if not e:
return get_data_error_result(message="Fail to new a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/get', methods=['GET']) # noqa: F821
@manager.route("/get", methods=["GET"]) # noqa: F821
@login_required
def get():
conv_id = request.args["conversation_id"]
try:
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(message="Conversation not found!")
tenants = UserTenantService.query(user_id=current_user.id)
avatar =None
avatar = None
for tenant in tenants:
dialog = DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id)
if dialog and len(dialog)>0:
if dialog and len(dialog) > 0:
avatar = dialog[0].icon
break
else:
return get_json_result(
data=False, message='Only owner of conversation authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
def get_value(d, k1, k2):
return d.get(k1, d.get(k2))
@ -101,44 +95,49 @@ def get():
for ref in conv.reference:
if isinstance(ref, list):
continue
ref["chunks"] = [{
"id": get_value(ck, "chunk_id", "id"),
"content": get_value(ck, "content", "content_with_weight"),
"document_id": get_value(ck, "doc_id", "document_id"),
"document_name": get_value(ck, "docnm_kwd", "document_name"),
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
} for ck in ref.get("chunks", [])]
ref["chunks"] = [
{
"id": get_value(ck, "chunk_id", "id"),
"content": get_value(ck, "content", "content_with_weight"),
"document_id": get_value(ck, "doc_id", "document_id"),
"document_name": get_value(ck, "docnm_kwd", "document_name"),
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
"doc_type": get_value(ck, "doc_type", "doc_type_kwd"),
}
for ck in ref.get("chunks", [])
]
conv = conv.to_dict()
conv["avatar"]=avatar
conv["avatar"] = avatar
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/getsse/<dialog_id>', methods=['GET']) # type: ignore # noqa: F821
@manager.route("/getsse/<dialog_id>", methods=["GET"]) # type: ignore # noqa: F821
def getsse(dialog_id):
token = request.headers.get('Authorization').split()
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_data_error_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_data_error_result(message='Token is not valid!"')
return get_data_error_result(message='Authentication error: API key is invalid!"')
try:
e, conv = DialogService.get_by_id(dialog_id)
if not e:
return get_data_error_result(message="Dialog not found!")
conv = conv.to_dict()
conv["avatar"]= conv["icon"]
conv["avatar"] = conv["icon"]
del conv["icon"]
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST']) # noqa: F821
@manager.route("/rm", methods=["POST"]) # noqa: F821
@login_required
def rm():
conv_ids = request.json["conversation_ids"]
@ -152,28 +151,21 @@ def rm():
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
break
else:
return get_json_result(
data=False, message='Only owner of conversation authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
ConversationService.delete_by_id(cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET']) # noqa: F821
@manager.route("/list", methods=["GET"]) # noqa: F821
@login_required
def list_convsersation():
dialog_id = request.args["dialog_id"]
try:
if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
return get_json_result(
data=False, message='Only owner of dialog authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
convs = ConversationService.query(
dialog_id=dialog_id,
order_by=ConversationService.model.create_time,
reverse=True)
return get_json_result(data=False, message="Only owner of dialog authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
convs = [d.to_dict() for d in convs]
return get_json_result(data=convs)
@ -181,7 +173,7 @@ def list_convsersation():
return server_error_response(e)
@manager.route('/completion', methods=['POST']) # noqa: F821
@manager.route("/completion", methods=["POST"]) # noqa: F821
@login_required
@validate_request("conversation_id", "messages")
def completion():
@ -208,25 +200,31 @@ def completion():
if not conv.reference:
conv.reference = []
else:
def get_value(d, k1, k2):
return d.get(k1, d.get(k2))
for ref in conv.reference:
if isinstance(ref, list):
continue
ref["chunks"] = [{
"id": get_value(ck, "chunk_id", "id"),
"content": get_value(ck, "content", "content_with_weight"),
"document_id": get_value(ck, "doc_id", "document_id"),
"document_name": get_value(ck, "docnm_kwd", "document_name"),
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
} for ck in ref.get("chunks", [])]
ref["chunks"] = [
{
"id": get_value(ck, "chunk_id", "id"),
"content": get_value(ck, "content", "content_with_weight"),
"document_id": get_value(ck, "doc_id", "document_id"),
"document_name": get_value(ck, "docnm_kwd", "document_name"),
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
"doc_type": get_value(ck, "doc_type_kwd", "doc_type_kwd"),
}
for ck in ref.get("chunks", [])
]
if not conv.reference:
conv.reference = []
conv.reference.append({"chunks": [], "doc_aggs": []})
def stream():
nonlocal dia, msg, req, conv
try:
@ -236,9 +234,7 @@ def completion():
ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e:
traceback.print_exc()
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
if req.get("stream", True):
@ -260,7 +256,7 @@ def completion():
return server_error_response(e)
@manager.route('/tts', methods=['POST']) # noqa: F821
@manager.route("/tts", methods=["POST"]) # noqa: F821
@login_required
def tts():
req = request.json
@ -282,9 +278,7 @@ def tts():
for chunk in tts_mdl.tts(txt):
yield chunk
except Exception as e:
yield ("data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e)}},
ensure_ascii=False)).encode('utf-8')
yield ("data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e)}}, ensure_ascii=False)).encode("utf-8")
resp = Response(stream_audio(), mimetype="audio/mpeg")
resp.headers.add_header("Cache-Control", "no-cache")
@ -294,7 +288,7 @@ def tts():
return resp
@manager.route('/delete_msg', methods=['POST']) # noqa: F821
@manager.route("/delete_msg", methods=["POST"]) # noqa: F821
@login_required
@validate_request("conversation_id", "message_id")
def delete_msg():
@ -317,7 +311,7 @@ def delete_msg():
return get_json_result(data=conv)
@manager.route('/thumbup', methods=['POST']) # noqa: F821
@manager.route("/thumbup", methods=["POST"]) # noqa: F821
@login_required
@validate_request("conversation_id", "message_id")
def thumbup():
@ -325,7 +319,7 @@ def thumbup():
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(message="Conversation not found!")
up_down = req.get("set")
up_down = req.get("thumbup")
feedback = req.get("feedback", "")
conv = conv.to_dict()
for i, msg in enumerate(conv["message"]):
@ -344,7 +338,7 @@ def thumbup():
return get_json_result(data=conv)
@manager.route('/ask', methods=['POST']) # noqa: F821
@manager.route("/ask", methods=["POST"]) # noqa: F821
@login_required
@validate_request("question", "kb_ids")
def ask_about():
@ -357,9 +351,7 @@ def ask_about():
for ans in ask(req["question"], req["kb_ids"], uid):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream")
@ -370,7 +362,7 @@ def ask_about():
return resp
@manager.route('/mindmap', methods=['POST']) # noqa: F821
@manager.route("/mindmap", methods=["POST"]) # noqa: F821
@login_required
@validate_request("question", "kb_ids")
def mindmap():
@ -380,19 +372,19 @@ def mindmap():
if not e:
return get_data_error_result(message="Knowledgebase not found!")
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
ranks = settings.retrievaler.retrieval(req["question"], embd_mdl, kb.tenant_id, kb_ids, 1, 12,
0.3, 0.3, aggs=False)
question = req["question"]
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12, 0.3, 0.3, aggs=False, rank_feature=label_question(question, [kb]))
mindmap = MindMapExtractor(chat_mdl)
mind_map = mindmap([c["content_with_weight"] for c in ranks["chunks"]]).output
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
mind_map = mind_map.output
if "error" in mind_map:
return server_error_response(Exception(mind_map["error"]))
return get_json_result(data=mind_map)
@manager.route('/related_questions', methods=['POST']) # noqa: F821
@manager.route("/related_questions", methods=["POST"]) # noqa: F821
@login_required
@validate_request("question")
def related_questions():
@ -400,31 +392,49 @@ def related_questions():
question = req["question"]
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
prompt = """
Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
Instructions:
- Based on the keywords provided by the user, generate 5-10 related search terms.
- Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
- Use common, general terms as much as possible, avoiding obscure words or technical jargon.
- Keep the term length between 2-4 words, concise and clear.
- DO NOT translate, use the language of the original keywords.
Role: You are an AI language model assistant tasked with generating 5-10 related questions based on a users original query. These questions should help expand the search query scope and improve search relevance.
### Example:
Keywords: Chinese football
Related search terms:
1. Current status of Chinese football
2. Reform of Chinese football
3. Youth training of Chinese football
4. Chinese football in the Asian Cup
5. Chinese football in the World Cup
Instructions:
Input: You are provided with a users question.
Output: Generate 5-10 alternative questions that are related to the original user question. These alternatives should help retrieve a broader range of relevant documents from a vector database.
Context: Focus on rephrasing the original question in different ways, making sure the alternative questions are diverse but still connected to the topic of the original query. Do not create overly obscure, irrelevant, or unrelated questions.
Fallback: If you cannot generate any relevant alternatives, do not return any questions.
Guidance:
1. Each alternative should be unique but still relevant to the original query.
2. Keep the phrasing clear, concise, and easy to understand.
3. Avoid overly technical jargon or specialized terms unless directly relevant.
4. Ensure that each question contributes towards improving search results by broadening the search angle, not narrowing it.
Example:
Original Question: What are the benefits of electric vehicles?
Alternative Questions:
1. How do electric vehicles impact the environment?
2. What are the advantages of owning an electric car?
3. What is the cost-effectiveness of electric vehicles?
4. How do electric vehicles compare to traditional cars in terms of fuel efficiency?
5. What are the environmental benefits of switching to electric cars?
6. How do electric vehicles help reduce carbon emissions?
7. Why are electric vehicles becoming more popular?
8. What are the long-term savings of using electric vehicles?
9. How do electric vehicles contribute to sustainability?
10. What are the key benefits of electric vehicles for consumers?
Reason:
- When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
- Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
Rephrasing the original query into multiple alternative questions helps the user explore different aspects of their search topic, improving the quality of search results.
These questions guide the search engine to provide a more comprehensive set of relevant documents.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
ans = chat_mdl.chat(
prompt,
[
{
"role": "user",
"content": f"""
Keywords: {question}
Related search terms:
"""}], {"temperature": 0.9})
""",
}
],
{"temperature": 0.9},
)
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])

View File

@ -18,6 +18,7 @@ from flask import request
from flask_login import login_required, current_user
from api.db.services.dialog_service import DialogService
from api.db import StatusEnum
from api.db.services.llm_service import TenantLLMService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService, UserTenantService
from api import settings
@ -42,7 +43,7 @@ def set_dialog():
similarity_threshold = req.get("similarity_threshold", 0.1)
vector_similarity_weight = req.get("vector_similarity_weight", 0.3)
llm_setting = req.get("llm_setting", {})
default_prompt = {
default_prompt_with_dataset = {
"system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
以下是知识库:
{knowledge}
@ -53,15 +54,22 @@ def set_dialog():
],
"empty_response": "Sorry! 知识库中未找到相关内容!"
}
prompt_config = req.get("prompt_config", default_prompt)
default_prompt_no_dataset = {
"system": """You are a helpful assistant.""",
"prologue": "您好我是您的助手小樱长得可爱又善良can I help you?",
"parameters": [
],
"empty_response": ""
}
prompt_config = req.get("prompt_config", default_prompt_with_dataset)
if not prompt_config["system"]:
prompt_config["system"] = default_prompt["system"]
# if len(prompt_config["parameters"]) < 1:
# prompt_config["parameters"] = default_prompt["parameters"]
# for p in prompt_config["parameters"]:
# if p["key"] == "knowledge":break
# else: prompt_config["parameters"].append(default_prompt["parameters"][0])
prompt_config["system"] = default_prompt_with_dataset["system"]
if not req.get("kb_ids", []):
if prompt_config['system'] == default_prompt_with_dataset['system'] or "{knowledge}" in prompt_config['system']:
prompt_config = default_prompt_no_dataset
for p in prompt_config["parameters"]:
if p["optional"]:
@ -74,22 +82,19 @@ def set_dialog():
e, tenant = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Tenant not found!")
kbs = KnowledgebaseService.get_by_ids(req.get("kb_ids"))
embd_count = len(set([kb.embd_id for kb in kbs]))
if embd_count != 1:
kbs = KnowledgebaseService.get_by_ids(req.get("kb_ids", []))
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = len(set(embd_ids))
if embd_count > 1:
return get_data_error_result(message=f'Datasets use different embedding models: {[kb.embd_id for kb in kbs]}"')
llm_id = req.get("llm_id", tenant.llm_id)
if not dialog_id:
if not req.get("kb_ids"):
return get_data_error_result(
message="Fail! Please select knowledgebase!")
dia = {
"id": get_uuid(),
"tenant_id": current_user.id,
"name": name,
"kb_ids": req["kb_ids"],
"kb_ids": req.get("kb_ids", []),
"description": description,
"llm_id": llm_id,
"llm_setting": llm_setting,
@ -103,10 +108,7 @@ def set_dialog():
}
if not DialogService.save(**dia):
return get_data_error_result(message="Fail to new a dialog!")
e, dia = DialogService.get_by_id(dia["id"])
if not e:
return get_data_error_result(message="Fail to new a dialog!")
return get_json_result(data=dia.to_json())
return get_json_result(data=dia)
else:
del req["dialog_id"]
if "kb_names" in req:
@ -117,6 +119,7 @@ def set_dialog():
if not e:
return get_data_error_result(message="Fail to update a dialog!")
dia = dia.to_dict()
dia.update(req)
dia["kb_ids"], dia["kb_names"] = get_kb_names(dia["kb_ids"])
return get_json_result(data=dia)
except Exception as e:

View File

@ -13,83 +13,80 @@
# See the License for the specific language governing permissions and
# limitations under the License
#
import json
import os.path
import pathlib
import re
import flask
from flask import request
from flask_login import login_required, current_user
from flask_login import current_user, login_required
from deepdoc.parser.html_parser import RAGFlowHtmlParser
from rag.nlp import search
from api.db import FileType, TaskStatus, ParserType, FileSource
from api import settings
from api.constants import IMG_BASE64_PREFIX
from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileSource, FileType, ParserType, TaskStatus
from api.db.db_models import File, Task
from api.db.services import duplicate_name
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.task_service import queue_tasks
from api.db.services.user_service import UserTenantService
from api.db.services import duplicate_name
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import TaskService
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.db.services.task_service import TaskService, queue_tasks
from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from api.utils.api_utils import (
server_error_response,
get_data_error_result,
get_json_result,
server_error_response,
validate_request,
)
from api.utils import get_uuid
from api import settings
from api.utils.api_utils import get_json_result
from rag.utils.storage_factory import STORAGE_IMPL
from api.utils.file_utils import filename_type, thumbnail, get_project_base_directory
from api.utils.file_utils import filename_type, get_project_base_directory, thumbnail
from api.utils.web_utils import html2pdf, is_valid_url
from api.constants import IMG_BASE64_PREFIX
from deepdoc.parser.html_parser import RAGFlowHtmlParser
from rag.nlp import search
from rag.utils.storage_factory import STORAGE_IMPL
@manager.route('/upload', methods=['POST']) # noqa: F821
@manager.route("/upload", methods=["POST"]) # noqa: F821
@login_required
@validate_request("kb_id")
def upload():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
if file_obj.filename == "":
return get_json_result(data=False, message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
err, files = FileService.upload_document(kb, file_objs, current_user.id)
if not files:
return get_json_result(data=files, message="There seems to be an issue with your file format. Please verify it is correct and not corrupted.", code=settings.RetCode.DATA_ERROR)
files = [f[0] for f in files] # remove the blob
err, _ = FileService.upload_document(kb, file_objs, current_user.id)
if err:
return get_json_result(
data=False, message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=True)
return get_json_result(data=files, message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=files)
@manager.route('/web_crawl', methods=['POST']) # noqa: F821
@manager.route("/web_crawl", methods=["POST"]) # noqa: F821
@login_required
@validate_request("kb_id", "name", "url")
def web_crawl():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
name = request.form.get("name")
url = request.form.get("url")
if not is_valid_url(url):
return get_json_result(
data=False, message='The URL format is invalid', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="The URL format is invalid", code=settings.RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
@ -105,10 +102,7 @@ def web_crawl():
kb_folder = FileService.new_a_file_from_kb(kb.tenant_id, kb.name, kb_root_folder["id"])
try:
filename = duplicate_name(
DocumentService.query,
name=name + ".pdf",
kb_id=kb.id)
filename = duplicate_name(DocumentService.query, name=name + ".pdf", kb_id=kb.id)
filetype = filename_type(filename)
if filetype == FileType.OTHER.value:
raise RuntimeError("This type of file has not been supported yet!")
@ -127,7 +121,7 @@ def web_crawl():
"name": filename,
"location": location,
"size": len(blob),
"thumbnail": thumbnail(filename, blob)
"thumbnail": thumbnail(filename, blob),
}
if doc["type"] == FileType.VISUAL:
doc["parser_id"] = ParserType.PICTURE.value
@ -144,129 +138,127 @@ def web_crawl():
return get_json_result(data=True)
@manager.route('/create', methods=['POST']) # noqa: F821
@manager.route("/create", methods=["POST"]) # noqa: F821
@login_required
@validate_request("name", "kb_id")
def create():
req = request.json
kb_id = req["kb_id"]
if not kb_id:
return get_json_result(
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
try:
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return get_data_error_result(
message="Can't find this knowledgebase!")
return get_data_error_result(message="Can't find this knowledgebase!")
if DocumentService.query(name=req["name"], kb_id=kb_id):
return get_data_error_result(
message="Duplicated document name in the same knowledgebase.")
return get_data_error_result(message="Duplicated document name in the same knowledgebase.")
doc = DocumentService.insert({
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": kb.parser_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"type": FileType.VIRTUAL,
"name": req["name"],
"location": "",
"size": 0
})
doc = DocumentService.insert(
{
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": kb.parser_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"type": FileType.VIRTUAL,
"name": req["name"],
"location": "",
"size": 0,
}
)
return get_json_result(data=doc.to_json())
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET']) # noqa: F821
@manager.route("/list", methods=["POST"]) # noqa: F821
@login_required
def list_docs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
tenants = UserTenantService.query(user_id=current_user.id)
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kb_id):
if KnowledgebaseService.query(tenant_id=tenant.tenant_id, id=kb_id):
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 15))
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
req = request.get_json()
run_status = req.get("run_status", [])
if run_status:
invalid_status = {s for s in run_status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(message=f"Invalid filter run status conditions: {', '.join(invalid_status)}")
types = req.get("types", [])
if types:
invalid_types = {t for t in types if t not in VALID_FILE_TYPES}
if invalid_types:
return get_data_error_result(message=f"Invalid filter conditions: {', '.join(invalid_types)} type{'s' if len(invalid_types) > 1 else ''}")
try:
docs, tol = DocumentService.get_by_kb_id(
kb_id, page_number, items_per_page, orderby, desc, keywords)
docs, tol = DocumentService.get_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, keywords, run_status, types)
for doc_item in docs:
if doc_item['thumbnail'] and not doc_item['thumbnail'].startswith(IMG_BASE64_PREFIX):
doc_item['thumbnail'] = f"/v1/document/image/{kb_id}-{doc_item['thumbnail']}"
if doc_item["thumbnail"] and not doc_item["thumbnail"].startswith(IMG_BASE64_PREFIX):
doc_item["thumbnail"] = f"/v1/document/image/{kb_id}-{doc_item['thumbnail']}"
return get_json_result(data={"total": tol, "docs": docs})
except Exception as e:
return server_error_response(e)
@manager.route('/infos', methods=['POST']) # noqa: F821
@manager.route("/infos", methods=["POST"]) # noqa: F821
@login_required
def docinfos():
req = request.json
doc_ids = req["doc_ids"]
for doc_id in doc_ids:
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
docs = DocumentService.get_by_ids(doc_ids)
return get_json_result(data=list(docs.dicts()))
@manager.route('/thumbnails', methods=['GET']) # noqa: F821
@manager.route("/thumbnails", methods=["GET"]) # noqa: F821
# @login_required
def thumbnails():
doc_ids = request.args.get("doc_ids").split(",")
if not doc_ids:
return get_json_result(
data=False, message='Lack of "Document ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "Document ID"', code=settings.RetCode.ARGUMENT_ERROR)
try:
docs = DocumentService.get_thumbnails(doc_ids)
for doc_item in docs:
if doc_item['thumbnail'] and not doc_item['thumbnail'].startswith(IMG_BASE64_PREFIX):
doc_item['thumbnail'] = f"/v1/document/image/{doc_item['kb_id']}-{doc_item['thumbnail']}"
if doc_item["thumbnail"] and not doc_item["thumbnail"].startswith(IMG_BASE64_PREFIX):
doc_item["thumbnail"] = f"/v1/document/image/{doc_item['kb_id']}-{doc_item['thumbnail']}"
return get_json_result(data={d["id"]: d["thumbnail"] for d in docs})
except Exception as e:
return server_error_response(e)
@manager.route('/change_status', methods=['POST']) # noqa: F821
@manager.route("/change_status", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "status")
def change_status():
req = request.json
if str(req["status"]) not in ["0", "1"]:
return get_json_result(
data=False,
message='"Status" must be either 0 or 1!',
code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='"Status" must be either 0 or 1!', code=settings.RetCode.ARGUMENT_ERROR)
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
@ -274,23 +266,19 @@ def change_status():
return get_data_error_result(message="Document not found!")
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
if not e:
return get_data_error_result(
message="Can't find this knowledgebase!")
return get_data_error_result(message="Can't find this knowledgebase!")
if not DocumentService.update_by_id(
req["doc_id"], {"status": str(req["status"])}):
return get_data_error_result(
message="Database error (Document update)!")
if not DocumentService.update_by_id(req["doc_id"], {"status": str(req["status"])}):
return get_data_error_result(message="Database error (Document update)!")
status = int(req["status"])
settings.docStoreConn.update({"doc_id": req["doc_id"]}, {"available_int": status},
search.index_name(kb.tenant_id), doc.kb_id)
settings.docStoreConn.update({"doc_id": req["doc_id"]}, {"available_int": status}, search.index_name(kb.tenant_id), doc.kb_id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST']) # noqa: F821
@manager.route("/rm", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id")
def rm():
@ -301,16 +289,13 @@ def rm():
for doc_id in doc_ids:
if not DocumentService.accessible4deletion(doc_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, current_user.id)
errors = ""
kb_table_num_map = {}
for doc_id in doc_ids:
try:
e, doc = DocumentService.get_by_id(doc_id)
@ -324,14 +309,25 @@ def rm():
TaskService.filter_delete([Task.doc_id == doc_id])
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
message="Database error (Document removal)!")
return get_data_error_result(message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
deleted_file_count = 0
if f2d:
deleted_file_count = FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc_id)
if deleted_file_count > 0:
STORAGE_IMPL.rm(b, n)
STORAGE_IMPL.rm(b, n)
doc_parser = doc.parser_id
if doc_parser == ParserType.TABLE:
kb_id = doc.kb_id
if kb_id not in kb_table_num_map:
counts = DocumentService.count_by_kb_id(kb_id=kb_id, keywords="", run_status=[TaskStatus.DONE], types=[])
kb_table_num_map[kb_id] = counts
kb_table_num_map[kb_id] -= 1
if kb_table_num_map[kb_id] <= 0:
KnowledgebaseService.delete_field_map(kb_id)
except Exception as e:
errors += str(e)
@ -341,19 +337,16 @@ def rm():
return get_json_result(data=True)
@manager.route('/run', methods=['POST']) # noqa: F821
@manager.route("/run", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_ids", "run")
def run():
req = request.json
for doc_id in req["doc_ids"]:
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
kb_table_num_map = {}
for id in req["doc_ids"]:
info = {"run": str(req["run"]), "progress": 0}
if str(req["run"]) == TaskStatus.RUNNING.value and req.get("delete", False):
@ -376,44 +369,44 @@ def run():
e, doc = DocumentService.get_by_id(id)
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
doc_parser = doc.get("parser_id", ParserType.NAIVE)
if doc_parser == ParserType.TABLE:
kb_id = doc.get("kb_id")
if not kb_id:
continue
if kb_id not in kb_table_num_map:
count = DocumentService.count_by_kb_id(kb_id=kb_id, keywords="", run_status=[TaskStatus.DONE], types=[])
kb_table_num_map[kb_id] = count
if kb_table_num_map[kb_id] <= 0:
KnowledgebaseService.delete_field_map(kb_id)
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
queue_tasks(doc, bucket, name, 0)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/rename', methods=['POST']) # noqa: F821
@manager.route("/rename", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "name")
def rename():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
doc.name.lower()).suffix:
return get_json_result(
data=False,
message="The extension of file can't be changed",
code=settings.RetCode.ARGUMENT_ERROR)
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
return get_json_result(data=False, message="The extension of file can't be changed", code=settings.RetCode.ARGUMENT_ERROR)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_data_error_result(
message="Duplicated document name in the same knowledgebase.")
return get_data_error_result(message="Duplicated document name in the same knowledgebase.")
if not DocumentService.update_by_id(
req["doc_id"], {"name": req["name"]}):
return get_data_error_result(
message="Database error (Document rename)!")
if not DocumentService.update_by_id(req["doc_id"], {"name": req["name"]}):
return get_data_error_result(message="Database error (Document rename)!")
informs = File2DocumentService.get_by_document_id(req["doc_id"])
if informs:
@ -425,7 +418,7 @@ def rename():
return server_error_response(e)
@manager.route('/get/<doc_id>', methods=['GET']) # noqa: F821
@manager.route("/get/<doc_id>", methods=["GET"]) # noqa: F821
# @login_required
def get(doc_id):
try:
@ -439,29 +432,22 @@ def get(doc_id):
ext = re.search(r"\.([^.]+)$", doc.name)
if ext:
if doc.type == FileType.VISUAL.value:
response.headers.set('Content-Type', 'image/%s' % ext.group(1))
response.headers.set("Content-Type", "image/%s" % ext.group(1))
else:
response.headers.set(
'Content-Type',
'application/%s' %
ext.group(1))
response.headers.set("Content-Type", "application/%s" % ext.group(1))
return response
except Exception as e:
return server_error_response(e)
@manager.route('/change_parser', methods=['POST']) # noqa: F821
@manager.route("/change_parser", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "parser_id")
def change_parser():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
@ -473,21 +459,16 @@ def change_parser():
else:
return get_json_result(data=True)
if ((doc.type == FileType.VISUAL and req["parser_id"] != "picture")
or (re.search(
r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation")):
if (doc.type == FileType.VISUAL and req["parser_id"] != "picture") or (re.search(r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation"):
return get_data_error_result(message="Not supported yet!")
e = DocumentService.update_by_id(doc.id,
{"parser_id": req["parser_id"], "progress": 0, "progress_msg": "",
"run": TaskStatus.UNSTART.value})
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": TaskStatus.UNSTART.value})
if not e:
return get_data_error_result(message="Document not found!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1,
doc.process_duation * -1)
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, doc.process_duation * -1)
if not e:
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
@ -501,7 +482,7 @@ def change_parser():
return server_error_response(e)
@manager.route('/image/<image_id>', methods=['GET']) # noqa: F821
@manager.route("/image/<image_id>", methods=["GET"]) # noqa: F821
# @login_required
def get_image(image_id):
try:
@ -510,53 +491,46 @@ def get_image(image_id):
return get_data_error_result(message="Image not found.")
bkt, nm = image_id.split("-")
response = flask.make_response(STORAGE_IMPL.get(bkt, nm))
response.headers.set('Content-Type', 'image/JPEG')
response.headers.set("Content-Type", "image/JPEG")
return response
except Exception as e:
return server_error_response(e)
@manager.route('/upload_and_parse', methods=['POST']) # noqa: F821
@manager.route("/upload_and_parse", methods=["POST"]) # noqa: F821
@login_required
@validate_request("conversation_id")
def upload_and_parse():
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
if file_obj.filename == "":
return get_json_result(data=False, message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR)
doc_ids = doc_upload_and_parse(request.form.get("conversation_id"), file_objs, current_user.id)
return get_json_result(data=doc_ids)
@manager.route('/parse', methods=['POST']) # noqa: F821
@manager.route("/parse", methods=["POST"]) # noqa: F821
@login_required
def parse():
url = request.json.get("url") if request.json else ""
if url:
if not is_valid_url(url):
return get_json_result(
data=False, message='The URL format is invalid', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="The URL format is invalid", code=settings.RetCode.ARGUMENT_ERROR)
download_path = os.path.join(get_project_base_directory(), "logs/downloads")
os.makedirs(download_path, exist_ok=True)
from seleniumwire.webdriver import Chrome, ChromeOptions
options = ChromeOptions()
options.add_argument('--headless')
options.add_argument('--disable-gpu')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
options.add_experimental_option('prefs', {
'download.default_directory': download_path,
'download.prompt_for_download': False,
'download.directory_upgrade': True,
'safebrowsing.enabled': True
})
options.add_argument("--headless")
options.add_argument("--disable-gpu")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
options.add_experimental_option("prefs", {"download.default_directory": download_path, "download.prompt_for_download": False, "download.directory_upgrade": True, "safebrowsing.enabled": True})
driver = Chrome(options=options)
driver.get(url)
res_headers = [r.response.headers for r in driver.requests if r and r.response]
@ -579,17 +553,42 @@ def parse():
r = re.search(r"filename=\"([^\"]+)\"", str(res_headers))
if not r or not r.group(1):
return get_json_result(
data=False, message="Can't not identify downloaded file", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="Can't not identify downloaded file", code=settings.RetCode.ARGUMENT_ERROR)
f = File(r.group(1), os.path.join(download_path, r.group(1)))
txt = FileService.parse_docs([f], current_user.id)
return get_json_result(data=txt)
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
file_objs = request.files.getlist("file")
txt = FileService.parse_docs(file_objs, current_user.id)
return get_json_result(data=txt)
@manager.route("/set_meta", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "meta")
def set_meta():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
meta = json.loads(req["meta"])
except Exception as e:
return get_json_result(data=False, message=f"Json syntax error: {e}", code=settings.RetCode.ARGUMENT_ERROR)
if not isinstance(meta, dict):
return get_json_result(data=False, message='Meta data should be in Json map format, like {"key": "value"}', code=settings.RetCode.ARGUMENT_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if not DocumentService.update_by_id(req["doc_id"], {"meta_fields": meta}):
return get_data_error_result(message="Database error (meta updates)!")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -38,8 +38,12 @@ def convert():
file2documents = []
try:
files = FileService.get_by_ids(file_ids)
files_set = dict({file.id: file for file in files})
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
file = files_set[file_id]
if not file:
return get_data_error_result(message="File not found!")
file_ids_list = [file_id]
if file.type == FileType.FOLDER.value:
file_ids_list = FileService.get_all_innermost_file_ids(file_id, [])
@ -86,6 +90,7 @@ def convert():
"file_id": id,
"document_id": doc.id,
})
file2documents.append(file2document.to_json())
return get_json_result(data=file2documents)
except Exception as e:

View File

@ -55,20 +55,17 @@ def upload():
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
file_res = []
try:
e, pf_folder = FileService.get_by_id(pf_id)
if not e:
return get_data_error_result( message="Can't find this folder!")
for file_obj in file_objs:
e, file = FileService.get_by_id(pf_id)
if not e:
return get_data_error_result(
message="Can't find this folder!")
MAX_FILE_NUM_PER_USER = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(current_user.id) >= MAX_FILE_NUM_PER_USER:
return get_data_error_result(
message="Exceed the maximum file number of a free user!")
return get_data_error_result( message="Exceed the maximum file number of a free user!")
# split file name path
if not file_obj.filename:
e, file = FileService.get_by_id(pf_id)
file_obj_names = [file.name, file_obj.filename]
file_obj_names = [pf_folder.name, file_obj.filename]
else:
full_path = '/' + file_obj.filename
file_obj_names = full_path.split('/')
@ -184,7 +181,7 @@ def list_files():
current_user.id, pf_id, page_number, items_per_page, orderby, desc, keywords)
parent_folder = FileService.get_parent_folder(pf_id)
if not FileService.get_parent_folder(pf_id):
if not parent_folder:
return get_json_result(message="File not found!")
return get_json_result(data={"total": total, "files": files, "parent_folder": parent_folder.to_json()})
@ -260,6 +257,7 @@ def rm():
STORAGE_IMPL.rm(file.parent_id, file.location)
FileService.delete_folder_by_pf_id(current_user.id, file_id)
else:
STORAGE_IMPL.rm(file.parent_id, file.location)
if not FileService.delete(file):
return get_data_error_result(
message="Database error (File removal)!")
@ -358,9 +356,14 @@ def move():
try:
file_ids = req["src_file_ids"]
parent_id = req["dest_file_id"]
files = FileService.get_by_ids(file_ids)
files_dict = {}
for file in files:
files_dict[file.id] = file
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
if not e:
file = files_dict[file_id]
if not file:
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")

View File

@ -13,6 +13,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
from flask import request
from flask_login import login_required, current_user
@ -30,6 +33,7 @@ from api.utils.api_utils import get_json_result
from api import settings
from rag.nlp import search
from api.constants import DATASET_NAME_LIMIT
from rag.settings import PAGERANK_FLD
@manager.route('/create', methods=['post']) # noqa: F821
@ -54,6 +58,7 @@ def create():
status=StatusEnum.VALID.value)
try:
req["id"] = get_uuid()
req["name"] = dataset_name
req["tenant_id"] = current_user.id
req["created_by"] = current_user.id
e, t = TenantService.get_by_id(current_user.id)
@ -69,7 +74,7 @@ def create():
@manager.route('/update', methods=['post']) # noqa: F821
@login_required
@validate_request("kb_id", "name", "description", "permission", "parser_id")
@validate_request("kb_id", "name", "description", "parser_id")
@not_allowed_parameters("id", "tenant_id", "created_by", "create_time", "update_time", "create_date", "update_date", "created_by")
def update():
req = request.json
@ -92,6 +97,13 @@ def update():
return get_data_error_result(
message="Can't find this knowledgebase!")
if req.get("parser_id", "") == "tag" and os.environ.get('DOC_ENGINE', "elasticsearch") == "infinity":
return get_json_result(
data=False,
message='The chunking method Tag has not been supported by Infinity yet.',
code=settings.RetCode.OPERATING_ERROR
)
if req["name"].lower() != kb.name.lower() \
and len(
KnowledgebaseService.query(name=req["name"], tenant_id=current_user.id, status=StatusEnum.VALID.value)) > 1:
@ -104,19 +116,21 @@ def update():
if kb.pagerank != req.get("pagerank", 0):
if req.get("pagerank", 0) > 0:
settings.docStoreConn.update({"kb_id": kb.id}, {"pagerank_fea": req["pagerank"]},
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
search.index_name(kb.tenant_id), kb.id)
else:
# Elasticsearch requires pagerank_fea be non-zero!
settings.docStoreConn.update({"exist": "pagerank_fea"}, {"remove": "pagerank_fea"},
# Elasticsearch requires PAGERANK_FLD be non-zero!
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
search.index_name(kb.tenant_id), kb.id)
e, kb = KnowledgebaseService.get_by_id(kb.id)
if not e:
return get_data_error_result(
message="Database error (Knowledgebase rename)!")
kb = kb.to_dict()
kb.update(req)
return get_json_result(data=kb.to_json())
return get_json_result(data=kb)
except Exception as e:
return server_error_response(e)
@ -139,28 +153,44 @@ def detail():
if not kb:
return get_data_error_result(
message="Can't find this knowledgebase!")
kb["size"] = DocumentService.get_total_size_by_kb_id(kb_id=kb["id"],keywords="", run_status=[], types=[])
return get_json_result(data=kb)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET']) # noqa: F821
@manager.route('/list', methods=['POST']) # noqa: F821
@login_required
def list_kbs():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
parser_id = request.args.get("parser_id")
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
req = request.get_json()
owner_ids = req.get("owner_ids", [])
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
kbs, total = KnowledgebaseService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number, items_per_page, orderby, desc, keywords)
if not owner_ids:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
tenants = [m["tenant_id"] for m in tenants]
kbs, total = KnowledgebaseService.get_by_tenant_ids(
tenants, current_user.id, page_number,
items_per_page, orderby, desc, keywords, parser_id)
else:
tenants = owner_ids
kbs, total = KnowledgebaseService.get_by_tenant_ids(
tenants, current_user.id, 0,
0, orderby, desc, keywords, parser_id)
kbs = [kb for kb in kbs if kb["tenant_id"] in tenants]
if page_number and items_per_page:
kbs = kbs[(page_number-1)*items_per_page:page_number*items_per_page]
total = len(kbs)
return get_json_result(data={"kbs": kbs, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['post']) # noqa: F821
@login_required
@validate_request("kb_id")
@ -185,7 +215,8 @@ def rm():
return get_data_error_result(
message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
if f2d:
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete(
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
@ -198,3 +229,126 @@ def rm():
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/<kb_id>/tags', methods=['GET']) # noqa: F821
@login_required
def list_tags(kb_id):
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
tags = settings.retrievaler.all_tags(current_user.id, [kb_id])
return get_json_result(data=tags)
@manager.route('/tags', methods=['GET']) # noqa: F821
@login_required
def list_tags_from_kbs():
kb_ids = request.args.get("kb_ids", "").split(",")
for kb_id in kb_ids:
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
tags = settings.retrievaler.all_tags(current_user.id, kb_ids)
return get_json_result(data=tags)
@manager.route('/<kb_id>/rm_tags', methods=['POST']) # noqa: F821
@login_required
def rm_tags(kb_id):
req = request.json
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
e, kb = KnowledgebaseService.get_by_id(kb_id)
for t in req["tags"]:
settings.docStoreConn.update({"tag_kwd": t, "kb_id": [kb_id]},
{"remove": {"tag_kwd": t}},
search.index_name(kb.tenant_id),
kb_id)
return get_json_result(data=True)
@manager.route('/<kb_id>/rename_tag', methods=['POST']) # noqa: F821
@login_required
def rename_tags(kb_id):
req = request.json
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
e, kb = KnowledgebaseService.get_by_id(kb_id)
settings.docStoreConn.update({"tag_kwd": req["from_tag"], "kb_id": [kb_id]},
{"remove": {"tag_kwd": req["from_tag"].strip()}, "add": {"tag_kwd": req["to_tag"]}},
search.index_name(kb.tenant_id),
kb_id)
return get_json_result(data=True)
@manager.route('/<kb_id>/knowledge_graph', methods=['GET']) # noqa: F821
@login_required
def knowledge_graph(kb_id):
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(kb_id)
req = {
"kb_id": [kb_id],
"knowledge_graph_kwd": ["graph"]
}
obj = {"graph": {}, "mind_map": {}}
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
return get_json_result(data=obj)
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [kb_id])
if not len(sres.ids):
return get_json_result(data=obj)
for id in sres.ids[:1]:
ty = sres.field[id]["knowledge_graph_kwd"]
try:
content_json = json.loads(sres.field[id]["content_with_weight"])
except Exception:
continue
obj[ty] = content_json
if "nodes" in obj["graph"]:
obj["graph"]["nodes"] = sorted(obj["graph"]["nodes"], key=lambda x: x.get("pagerank", 0), reverse=True)[:256]
if "edges" in obj["graph"]:
node_id_set = { o["id"] for o in obj["graph"]["nodes"] }
filtered_edges = [o for o in obj["graph"]["edges"] if o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
return get_json_result(data=obj)
@manager.route('/<kb_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
@login_required
def delete_knowledge_graph(kb_id):
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(kb_id)
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
return get_json_result(data=True)

97
api/apps/langfuse_app.py Normal file
View File

@ -0,0 +1,97 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request
from flask_login import current_user, login_required
from langfuse import Langfuse
from api.db.db_models import DB
from api.db.services.langfuse_service import TenantLangfuseService
from api.utils.api_utils import get_error_data_result, get_json_result, server_error_response, validate_request
@manager.route("/api_key", methods=["POST", "PUT"]) # noqa: F821
@login_required
@validate_request("secret_key", "public_key", "host")
def set_api_key():
req = request.get_json()
secret_key = req.get("secret_key", "")
public_key = req.get("public_key", "")
host = req.get("host", "")
if not all([secret_key, public_key, host]):
return get_error_data_result(message="Missing required fields")
langfuse_keys = dict(
tenant_id=current_user.id,
secret_key=secret_key,
public_key=public_key,
host=host,
)
langfuse = Langfuse(public_key=langfuse_keys["public_key"], secret_key=langfuse_keys["secret_key"], host=langfuse_keys["host"])
if not langfuse.auth_check():
return get_error_data_result(message="Invalid Langfuse keys")
langfuse_entry = TenantLangfuseService.filter_by_tenant(tenant_id=current_user.id)
with DB.atomic():
try:
if not langfuse_entry:
TenantLangfuseService.save(**langfuse_keys)
else:
TenantLangfuseService.update_by_tenant(tenant_id=current_user.id, langfuse_keys=langfuse_keys)
return get_json_result(data=langfuse_keys)
except Exception as e:
server_error_response(e)
@manager.route("/api_key", methods=["GET"]) # noqa: F821
@login_required
@validate_request()
def get_api_key():
langfuse_entry = TenantLangfuseService.filter_by_tenant_with_info(tenant_id=current_user.id)
if not langfuse_entry:
return get_json_result(message="Have not record any Langfuse keys.")
langfuse = Langfuse(public_key=langfuse_entry["public_key"], secret_key=langfuse_entry["secret_key"], host=langfuse_entry["host"])
try:
if not langfuse.auth_check():
return get_error_data_result(message="Invalid Langfuse keys loaded")
except langfuse.api.core.api_error.ApiError as api_err:
return get_json_result(message=f"Error from Langfuse: {api_err}")
except Exception as e:
server_error_response(e)
langfuse_entry["project_id"] = langfuse.api.projects.get().dict()["data"][0]["id"]
langfuse_entry["project_name"] = langfuse.api.projects.get().dict()["data"][0]["name"]
return get_json_result(data=langfuse_entry)
@manager.route("/api_key", methods=["DELETE"]) # noqa: F821
@login_required
@validate_request()
def delete_api_key():
langfuse_entry = TenantLangfuseService.filter_by_tenant(tenant_id=current_user.id)
if not langfuse_entry:
return get_json_result(message="Have not record any Langfuse keys.")
with DB.atomic():
try:
TenantLangfuseService.delete_model(langfuse_entry)
return get_json_result(data=True)
except Exception as e:
server_error_response(e)

View File

@ -15,7 +15,7 @@
#
import logging
import json
import os
from flask import request
from flask_login import login_required, current_user
from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
@ -24,8 +24,8 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
from api.db import StatusEnum, LLMType
from api.db.db_models import TenantLLM
from api.utils.api_utils import get_json_result
from api.utils.file_utils import get_project_base_directory
from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
import requests
@manager.route('/factories', methods=['GET']) # noqa: F821
@ -61,6 +61,7 @@ def set_api_key():
msg = ""
for llm in LLMService.query(fid=factory):
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
@ -71,6 +72,7 @@ def set_api_key():
except Exception as e:
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
@ -83,6 +85,7 @@ def set_api_key():
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
e)
elif not rerank_passed and llm.model_type == LLMType.RERANK:
assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
mdl = RerankModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
@ -135,6 +138,8 @@ def set_api_key():
def add_llm():
req = request.json
factory = req["llm_factory"]
api_key = req.get("api_key", "x")
llm_name = req.get("llm_name")
def apikey_json(keys):
nonlocal req
@ -143,7 +148,6 @@ def add_llm():
if factory == "VolcEngine":
# For VolcEngine, due to its special authentication method
# Assemble ark_api_key endpoint_id into api_key
llm_name = req["llm_name"]
api_key = apikey_json(["ark_api_key", "endpoint_id"])
elif factory == "Tencent Hunyuan":
@ -152,52 +156,43 @@ def add_llm():
elif factory == "Tencent Cloud":
req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
return set_api_key()
elif factory == "Bedrock":
# For Bedrock, due to its special authentication method
# Assemble bedrock_ak, bedrock_sk, bedrock_region
llm_name = req["llm_name"]
api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
elif factory == "LocalAI":
llm_name = req["llm_name"] + "___LocalAI"
api_key = "xxxxxxxxxxxxxxx"
llm_name += "___LocalAI"
elif factory == "HuggingFace":
llm_name = req["llm_name"] + "___HuggingFace"
api_key = "xxxxxxxxxxxxxxx"
llm_name += "___HuggingFace"
elif factory == "OpenAI-API-Compatible":
llm_name = req["llm_name"] + "___OpenAI-API"
api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
llm_name += "___OpenAI-API"
elif factory == "VLLM":
llm_name += "___VLLM"
elif factory == "XunFei Spark":
llm_name = req["llm_name"]
if req["model_type"] == "chat":
api_key = req.get("spark_api_password", "xxxxxxxxxxxxxxx")
api_key = req.get("spark_api_password", "")
elif req["model_type"] == "tts":
api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
elif factory == "BaiduYiyan":
llm_name = req["llm_name"]
api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
elif factory == "Fish Audio":
llm_name = req["llm_name"]
api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
elif factory == "Google Cloud":
llm_name = req["llm_name"]
api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
elif factory == "Azure-OpenAI":
llm_name = req["llm_name"]
api_key = apikey_json(["api_key", "api_version"])
else:
llm_name = req["llm_name"]
api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
llm = {
"tenant_id": current_user.id,
"llm_factory": factory,
@ -209,72 +204,74 @@ def add_llm():
}
msg = ""
mdl_nm = llm["llm_name"].split("___")[0]
if llm["model_type"] == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
key=llm['api_key'],
model_name=llm["llm_name"],
model_name=mdl_nm,
base_url=llm["api_base"])
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0:
raise Exception("Fail")
except Exception as e:
msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
key=llm['api_key'],
model_name=llm["llm_name"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
"temperature": 0.9})
if not tc:
if not tc and m.find("**ERROR**:") >= 0:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(
msg += f"\nFail to access model({mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.RERANK:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=llm["llm_name"],
base_url=llm["api_base"]
)
assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
try:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0:
raise Exception("Not known.")
except KeyError:
msg += f"{factory} dose not support this model({mdl_nm})"
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(
msg += f"\nFail to access model({mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
mdl = CvModel[factory](
key=llm["api_key"],
model_name=llm["llm_name"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
try:
img_url = (
"https://www.8848seo.cn/zb_users/upload/2022/07/20220705101240_99378.jpg"
)
res = requests.get(img_url)
if res.status_code == 200:
m, tc = mdl.describe(res.content)
if not tc:
with open(os.path.join(get_project_base_directory(), "web/src/assets/yay.jpg"), "rb") as f:
m, tc = mdl.describe(f.read())
if not m and not tc:
raise Exception(m)
else:
pass
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(e)
msg += f"\nFail to access model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.TTS:
assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
mdl = TTSModel[factory](
key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)
try:
for resp in mdl.tts("Hello~ Ragflower!"):
pass
except RuntimeError as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(e)
msg += f"\nFail to access model({mdl_nm})." + str(e)
else:
# TODO: check other type of models
pass
@ -335,7 +332,7 @@ def my_llms():
@manager.route('/list', methods=['GET']) # noqa: F821
@login_required
def list_app():
self_deploied = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
model_type = request.args.get("model_type")
try:
@ -345,12 +342,10 @@ def list_app():
llms = [m.to_dict()
for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
for m in llms:
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deploied
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
for o in objs:
if not o.api_key:
continue
if o.llm_name + "@" + o.llm_factory in llm_set:
continue
llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
@ -365,4 +360,4 @@ def list_app():
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)
return server_error_response(e)

12
api/apps/plugin_app.py Normal file
View File

@ -0,0 +1,12 @@
from flask import Response
from flask_login import login_required
from api.utils.api_utils import get_json_result
from plugin import GlobalPluginManager
@manager.route('/llm_tools', methods=['GET']) # noqa: F821
@login_required
def llm_tools() -> Response:
tools = GlobalPluginManager.get_llm_tools()
tools_metadata = [t.get_metadata() for t in tools]
return get_json_result(data=tools_metadata)

View File

@ -14,8 +14,14 @@
# limitations under the License.
#
import json
import time
from typing import Any, cast
from api.db.services.canvas_service import UserCanvasService
from api.utils.api_utils import get_error_data_result, token_required
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_data_error_result, get_error_data_result, get_json_result, token_required
from api.utils.api_utils import get_result
from flask import request
@ -37,3 +43,86 @@ def list_agents(tenant_id):
desc = True
canvas = UserCanvasService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,title)
return get_result(data=canvas)
@manager.route("/agents", methods=["POST"]) # noqa: F821
@token_required
def create_agent(tenant_id: str):
req: dict[str, Any] = cast(dict[str, Any], request.json)
req["user_id"] = tenant_id
if req.get("dsl") is not None:
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
else:
return get_json_result(data=False, message="No DSL data in request.", code=RetCode.ARGUMENT_ERROR)
if req.get("title") is not None:
req["title"] = req["title"].strip()
else:
return get_json_result(data=False, message="No title in request.", code=RetCode.ARGUMENT_ERROR)
if UserCanvasService.query(user_id=tenant_id, title=req["title"]):
return get_data_error_result(message=f"Agent with title {req['title']} already exists.")
agent_id = get_uuid()
req["id"] = agent_id
if not UserCanvasService.save(**req):
return get_data_error_result(message="Fail to create agent.")
UserCanvasVersionService.insert(
user_canvas_id=agent_id,
title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")),
dsl=req["dsl"]
)
return get_json_result(data=True)
@manager.route("/agents/<agent_id>", methods=["PUT"]) # noqa: F821
@token_required
def update_agent(tenant_id: str, agent_id: str):
req: dict[str, Any] = {k: v for k, v in cast(dict[str, Any], request.json).items() if v is not None}
req["user_id"] = tenant_id
if req.get("dsl") is not None:
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
if req.get("title") is not None:
req["title"] = req["title"].strip()
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_json_result(
data=False, message="Only owner of canvas authorized for this operation.",
code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(agent_id, req)
if req.get("dsl") is not None:
UserCanvasVersionService.insert(
user_canvas_id=agent_id,
title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")),
dsl=req["dsl"]
)
UserCanvasVersionService.delete_all_versions(agent_id)
return get_json_result(data=True)
@manager.route("/agents/<agent_id>", methods=["DELETE"]) # noqa: F821
@token_required
def delete_agent(tenant_id: str, agent_id: str):
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_json_result(
data=False, message="Only owner of canvas authorized for this operation.",
code=RetCode.OPERATING_ERROR)
UserCanvasService.delete_by_id(agent_id)
return get_json_result(data=True)

View File

@ -13,59 +13,57 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from flask import request
from api import settings
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import TenantService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result, token_required
from api.utils.api_utils import get_result
from api.utils.api_utils import check_duplicate_ids, get_error_data_result, get_result, token_required
@manager.route('/chats', methods=['POST']) # noqa: F821
@manager.route("/chats", methods=["POST"]) # noqa: F821
@token_required
def create(tenant_id):
req=request.json
ids= req.get("dataset_ids")
if not ids:
return get_error_data_result(message="`dataset_ids` is required")
req = request.json
ids = [i for i in req.get("dataset_ids", []) if i]
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id,user_id=tenant_id)
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_count = list(set([kb.embd_id for kb in kbs]))
if len(embd_count) != 1:
return get_result(message='Datasets use different embedding models."',code=settings.RetCode.AUTHENTICATION_ERROR)
kbs = KnowledgebaseService.get_by_ids(ids) if ids else []
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) > 1:
return get_result(message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
# llm
llm = req.get("llm")
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
if not TenantLLMService.query(tenant_id=tenant_id,llm_name=req["llm_id"],model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
if req.get("llm_id") is not None:
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(req["llm_id"])
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory, model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
return get_error_data_result(message="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id", "top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
@ -82,8 +80,8 @@ def create(tenant_id):
req["top_k"] = req.get("top_k", 1024)
req["rerank_id"] = req.get("rerank_id", "")
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3","maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,llm_name=req.get("rerank_id"),model_type="rerank"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id, llm_name=req.get("rerank_id"), model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if not req.get("llm_id"):
req["llm_id"] = tenant.llm_id
@ -102,27 +100,24 @@ def create(tenant_id):
{knowledge}
The above is the knowledge base.""",
"prologue": "Hi! I'm your assistant, what can I do for you?",
"parameters": [
{"key": "knowledge", "optional": False}
],
"parameters": [{"key": "knowledge", "optional": False}],
"empty_response": "Sorry! No relevant content was found in the knowledge base!",
"quote":True,
"tts":False,
"refine_multiturn":True
"quote": True,
"tts": False,
"refine_multiturn": True,
}
key_list_2 = ["system", "prologue", "parameters", "empty_response","quote","tts","refine_multiturn"]
key_list_2 = ["system", "prologue", "parameters", "empty_response", "quote", "tts", "refine_multiturn"]
if "prompt_config" not in req:
req['prompt_config'] = {}
req["prompt_config"] = {}
for key in key_list_2:
temp = req['prompt_config'].get(key)
if (not temp and key == 'system') or (key not in req["prompt_config"]):
req['prompt_config'][key] = default_prompt[key]
for p in req['prompt_config']["parameters"]:
temp = req["prompt_config"].get(key)
if (not temp and key == "system") or (key not in req["prompt_config"]):
req["prompt_config"][key] = default_prompt[key]
for p in req["prompt_config"]["parameters"]:
if p["optional"]:
continue
if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(
message="Parameter '{}' is not used".format(p["key"]))
if req["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(message="Parameter '{}' is not used".format(p["key"]))
# save
if not DialogService.save(**req):
return get_error_data_result(message="Fail to new a chat!")
@ -137,10 +132,7 @@ def create(tenant_id):
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": 1 - res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res["rerank_id"]}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
@ -151,39 +143,37 @@ def create(tenant_id):
res["avatar"] = res.pop("icon")
return get_result(data=res)
@manager.route('/chats/<chat_id>', methods=['PUT']) # noqa: F821
@manager.route("/chats/<chat_id>", methods=["PUT"]) # noqa: F821
@token_required
def update(tenant_id,chat_id):
def update(tenant_id, chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(message='You do not own the chat')
req =request.json
return get_error_data_result(message="You do not own the chat")
req = request.json
ids = req.get("dataset_ids")
if "show_quotation" in req:
req["do_refer"]=req.pop("show_quotation")
if "dataset_ids" in req:
if not ids:
return get_error_data_result("`dataset_ids` can't be empty")
if ids:
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_count=list(set([kb.embd_id for kb in kbs]))
if len(embd_count) != 1 :
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
req["do_refer"] = req.pop("show_quotation")
if ids is not None:
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) != 1:
return get_result(message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
llm = req.get("llm")
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
if not TenantLLMService.query(tenant_id=tenant_id,llm_name=req["llm_id"],model_type="chat"):
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
@ -191,13 +181,8 @@ def update(tenant_id,chat_id):
return get_error_data_result(message="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id", "top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
@ -209,16 +194,14 @@ def update(tenant_id,chat_id):
e, res = DialogService.get_by_id(chat_id)
res = res.to_json()
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3","maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,llm_name=req.get("rerank_id"),model_type="rerank"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id, llm_name=req.get("rerank_id"), model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if "name" in req:
if not req.get("name"):
return get_error_data_result(message="`name` is not empty.")
if req["name"].lower() != res["name"].lower() \
and len(
DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
return get_error_data_result(message="Duplicated chat name in updating dataset.")
return get_error_data_result(message="`name` cannot be empty.")
if req["name"].lower() != res["name"].lower() and len(DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
return get_error_data_result(message="Duplicated chat name in updating chat.")
if "prompt_config" in req:
res["prompt_config"].update(req["prompt_config"])
for p in res["prompt_config"]["parameters"]:
@ -240,29 +223,50 @@ def update(tenant_id,chat_id):
return get_result()
@manager.route('/chats', methods=['DELETE']) # noqa: F821
@manager.route("/chats", methods=["DELETE"]) # noqa: F821
@token_required
def delete(tenant_id):
errors = []
success_count = 0
req = request.json
if not req:
ids=None
ids = None
else:
ids=req.get("ids")
ids = req.get("ids")
if not ids:
id_list = []
dias=DialogService.query(tenant_id=tenant_id,status=StatusEnum.VALID.value)
dias = DialogService.query(tenant_id=tenant_id, status=StatusEnum.VALID.value)
for dia in dias:
id_list.append(dia.id)
else:
id_list=ids
for id in id_list:
id_list = ids
unique_id_list, duplicate_messages = check_duplicate_ids(id_list, "assistant")
for id in unique_id_list:
if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
return get_error_data_result(message=f"You don't own the chat {id}")
errors.append(f"Assistant({id}) not found.")
continue
temp_dict = {"status": StatusEnum.INVALID.value}
DialogService.update_by_id(id, temp_dict)
success_count += 1
if errors:
if success_count > 0:
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} chats with {len(errors)} errors")
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(message=f"Partially deleted {success_count} chats with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@manager.route('/chats', methods=['GET']) # noqa: F821
@manager.route("/chats", methods=["GET"]) # noqa: F821
@token_required
def list_chat(tenant_id):
id = request.args.get("id")
@ -278,29 +282,28 @@ def list_chat(tenant_id):
desc = False
else:
desc = True
chats = DialogService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,name)
chats = DialogService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, name)
if not chats:
return get_result(data=[])
list_assts = []
renamed_dict = {}
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight",
"do_refer":"show_quotation"}
key_mapping = {
"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight",
"do_refer": "show_quotation",
}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
for res in chats:
renamed_dict = {}
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": 1 - res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res["rerank_id"]}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
@ -309,11 +312,12 @@ def list_chat(tenant_id):
kb_list = []
for kb_id in res["kb_ids"]:
kb = KnowledgebaseService.query(id=kb_id)
if not kb :
return get_error_data_result(message=f"Don't exist the kb {kb_id}")
if not kb:
logging.warning(f"The kb {kb_id} does not exist.")
continue
kb_list.append(kb[0].to_json())
del res["kb_ids"]
res["datasets"] = kb_list
res["avatar"] = res.pop("icon")
list_assts.append(res)
return get_result(data=list_assts)
return get_result(data=list_assts)

View File

@ -14,23 +14,39 @@
# limitations under the License.
#
import logging
from flask import request
from api.db import StatusEnum, FileSource
from peewee import OperationalError
from api.db import FileSource, StatusEnum
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService, LLMService
from api.db.services.user_service import TenantService
from api import settings
from api.utils import get_uuid
from api.utils.api_utils import (
get_result,
token_required,
deep_merge,
get_error_argument_result,
get_error_data_result,
valid,
get_error_operating_result,
get_error_permission_result,
get_parser_config,
get_result,
remap_dictionary_keys,
token_required,
verify_embedding_availability,
)
from api.utils.validation_utils import (
CreateDatasetReq,
DeleteDatasetReq,
ListDatasetReq,
UpdateDatasetReq,
validate_and_parse_json_request,
validate_and_parse_request_args,
)
@ -62,19 +78,28 @@ def create(tenant_id):
name:
type: string
description: Name of the dataset.
avatar:
type: string
description: Base64 encoding of the avatar.
description:
type: string
description: Description of the dataset.
embedding_model:
type: string
description: Embedding model Name.
permission:
type: string
enum: ['me', 'team']
description: Dataset permission.
language:
type: string
enum: ['Chinese', 'English']
description: Language of the dataset.
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email"]
enum: ["naive", "book", "email", "laws", "manual", "one", "paper",
"picture", "presentation", "qa", "table", "tag"
]
description: Chunking method.
pagerank:
type: integer
description: Set page rank.
parser_config:
type: object
description: Parser configuration.
@ -87,107 +112,59 @@ def create(tenant_id):
data:
type: object
"""
req = request.json
e, t = TenantService.get_by_id(tenant_id)
permission = req.get("permission")
language = req.get("language")
chunk_method = req.get("chunk_method")
parser_config = req.get("parser_config")
valid_permission = ["me", "team"]
valid_language = ["Chinese", "English"]
valid_chunk_method = [
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
]
check_validation = valid(
permission,
valid_permission,
language,
valid_language,
chunk_method,
valid_chunk_method,
)
if check_validation:
return check_validation
req["parser_config"] = get_parser_config(chunk_method, parser_config)
if "tenant_id" in req:
return get_error_data_result(message="`tenant_id` must not be provided")
if "chunk_count" in req or "document_count" in req:
return get_error_data_result(
message="`chunk_count` or `document_count` must not be provided"
)
if "name" not in req:
return get_error_data_result(message="`name` is not empty!")
# Field name transformations during model dump:
# | Original | Dump Output |
# |----------------|-------------|
# | embedding_model| embd_id |
# | chunk_method | parser_id |
req, err = validate_and_parse_json_request(request, CreateDatasetReq)
if err is not None:
return get_error_argument_result(err)
try:
if KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_operating_result(message=f"Dataset name '{req['name']}' already exists")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
req["parser_config"] = get_parser_config(req["parser_id"], req["parser_config"])
req["id"] = get_uuid()
req["name"] = req["name"].strip()
if req["name"] == "":
return get_error_data_result(message="`name` is not empty string!")
if KnowledgebaseService.query(
name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value
):
return get_error_data_result(
message="Duplicated dataset name in creating dataset."
)
req["tenant_id"] = req["created_by"] = tenant_id
if not req.get("embedding_model"):
req["embedding_model"] = t.embd_id
req["tenant_id"] = tenant_id
req["created_by"] = tenant_id
try:
ok, t = TenantService.get_by_id(tenant_id)
if not ok:
return get_error_permission_result(message="Tenant not found")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if not req.get("embd_id"):
req["embd_id"] = t.embd_id
else:
valid_embedding_models = [
"BAAI/bge-large-zh-v1.5",
"BAAI/bge-base-en-v1.5",
"BAAI/bge-large-en-v1.5",
"BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5",
"jinaai/jina-embeddings-v2-base-en",
"jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5",
"sentence-transformers/all-MiniLM-L6-v2",
"text-embedding-v2",
"text-embedding-v3",
"maidalun1020/bce-embedding-base_v1",
]
embd_model = LLMService.query(
llm_name=req["embedding_model"], model_type="embedding"
)
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding",llm_name=req.get("embedding_model"),):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
if not embd_model:
embd_model=TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model"))
if not embd_model:
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model",
}
mapped_keys = {
new_key: req[old_key]
for new_key, old_key in key_mapping.items()
if old_key in req
}
req.update(mapped_keys)
if not KnowledgebaseService.save(**req):
return get_error_data_result(message="Create dataset error.(Database error)")
renamed_data = {}
e, k = KnowledgebaseService.get_by_id(req["id"])
for key, value in k.to_dict().items():
new_key = key_mapping.get(key, key)
renamed_data[new_key] = value
return get_result(data=renamed_data)
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
if not ok:
return err
try:
if not KnowledgebaseService.save(**req):
return get_error_data_result(message="Create dataset error.(Database error)")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
try:
ok, k = KnowledgebaseService.get_by_id(req["id"])
if not ok:
return get_error_data_result(message="Dataset created failed")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
response_data = remap_dictionary_keys(k.to_dict())
return get_result(data=response_data)
@manager.route("/datasets", methods=["DELETE"]) # noqa: F821
@ -212,52 +189,85 @@ def delete(tenant_id):
required: true
schema:
type: object
required:
- ids
properties:
ids:
type: array
type: array or null
items:
type: string
description: List of dataset IDs to delete.
description: |
Specifies the datasets to delete:
- If `null`, all datasets will be deleted.
- If an array of IDs, only the specified datasets will be deleted.
- If an empty array, no datasets will be deleted.
responses:
200:
description: Successful operation.
schema:
type: object
"""
req = request.json
if not req:
ids = None
req, err = validate_and_parse_json_request(request, DeleteDatasetReq)
if err is not None:
return get_error_argument_result(err)
kb_id_instance_pairs = []
if req["ids"] is None:
try:
kbs = KnowledgebaseService.query(tenant_id=tenant_id)
for kb in kbs:
kb_id_instance_pairs.append((kb.id, kb))
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
else:
ids = req.get("ids")
if not ids:
id_list = []
kbs = KnowledgebaseService.query(tenant_id=tenant_id)
for kb in kbs:
id_list.append(kb.id)
else:
id_list = ids
for id in id_list:
kbs = KnowledgebaseService.query(id=id, tenant_id=tenant_id)
if not kbs:
return get_error_data_result(message=f"You don't own the dataset {id}")
for doc in DocumentService.query(kb_id=id):
if not DocumentService.remove_document(doc, tenant_id):
return get_error_data_result(
message="Remove document error.(Database error)"
error_kb_ids = []
for kb_id in req["ids"]:
try:
kb = KnowledgebaseService.get_or_none(id=kb_id, tenant_id=tenant_id)
if kb is None:
error_kb_ids.append(kb_id)
continue
kb_id_instance_pairs.append((kb_id, kb))
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if len(error_kb_ids) > 0:
return get_error_permission_result(message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
errors = []
success_count = 0
for kb_id, kb in kb_id_instance_pairs:
try:
for doc in DocumentService.query(kb_id=kb_id):
if not DocumentService.remove_document(doc, tenant_id):
errors.append(f"Remove document '{doc.id}' error for dataset '{kb_id}'")
continue
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete(
[
File.source_type == FileSource.KNOWLEDGEBASE,
File.id == f2d[0].file_id,
]
)
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete(
[
File.source_type == FileSource.KNOWLEDGEBASE,
File.id == f2d[0].file_id,
]
)
File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete(
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
if not KnowledgebaseService.delete_by_id(id):
return get_error_data_result(message="Delete dataset error.(Database error)")
return get_result(code=settings.RetCode.SUCCESS)
File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
if not KnowledgebaseService.delete_by_id(kb_id):
errors.append(f"Delete dataset error for {kb_id}")
continue
success_count += 1
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if not errors:
return get_result()
error_message = f"Successfully deleted {success_count} datasets, {len(errors)} failed. Details: {'; '.join(errors)[:128]}..."
if success_count == 0:
return get_error_data_result(message=error_message)
return get_result(data={"success_count": success_count, "errors": errors[:5]}, message=error_message)
@manager.route("/datasets/<dataset_id>", methods=["PUT"]) # noqa: F821
@ -291,19 +301,28 @@ def update(tenant_id, dataset_id):
name:
type: string
description: New name of the dataset.
avatar:
type: string
description: Updated base64 encoding of the avatar.
description:
type: string
description: Updated description of the dataset.
embedding_model:
type: string
description: Updated embedding model Name.
permission:
type: string
enum: ['me', 'team']
description: Updated permission.
language:
type: string
enum: ['Chinese', 'English']
description: Updated language.
description: Updated dataset permission.
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email"]
enum: ["naive", "book", "email", "laws", "manual", "one", "paper",
"picture", "presentation", "qa", "table", "tag"
]
description: Updated chunking method.
pagerank:
type: integer
description: Updated page rank.
parser_config:
type: object
description: Updated parser configuration.
@ -313,125 +332,65 @@ def update(tenant_id, dataset_id):
schema:
type: object
"""
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message="You don't own the dataset")
req = request.json
e, t = TenantService.get_by_id(tenant_id)
invalid_keys = {"id", "embd_id", "chunk_num", "doc_num", "parser_id"}
if any(key in req for key in invalid_keys):
return get_error_data_result(message="The input parameters are invalid.")
permission = req.get("permission")
language = req.get("language")
chunk_method = req.get("chunk_method")
parser_config = req.get("parser_config")
valid_permission = ["me", "team"]
valid_language = ["Chinese", "English"]
valid_chunk_method = [
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
]
check_validation = valid(
permission,
valid_permission,
language,
valid_language,
chunk_method,
valid_chunk_method,
)
if check_validation:
return check_validation
if "tenant_id" in req:
if req["tenant_id"] != tenant_id:
return get_error_data_result(message="Can't change `tenant_id`.")
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if "parser_config" in req:
temp_dict = kb.parser_config
temp_dict.update(req["parser_config"])
req["parser_config"] = temp_dict
if "chunk_count" in req:
if req["chunk_count"] != kb.chunk_num:
return get_error_data_result(message="Can't change `chunk_count`.")
req.pop("chunk_count")
if "document_count" in req:
if req["document_count"] != kb.doc_num:
return get_error_data_result(message="Can't change `document_count`.")
req.pop("document_count")
if "chunk_method" in req:
if kb.chunk_num != 0 and req["chunk_method"] != kb.parser_id:
return get_error_data_result(
message="If `chunk_count` is not 0, `chunk_method` is not changeable."
)
req["parser_id"] = req.pop("chunk_method")
if req["parser_id"] != kb.parser_id:
if not req.get("parser_config"):
req["parser_config"] = get_parser_config(chunk_method, parser_config)
if "embedding_model" in req:
if kb.chunk_num != 0 and req["embedding_model"] != kb.embd_id:
return get_error_data_result(
message="If `chunk_count` is not 0, `embedding_model` is not changeable."
)
if not req.get("embedding_model"):
return get_error_data_result("`embedding_model` can't be empty")
valid_embedding_models = [
"BAAI/bge-large-zh-v1.5",
"BAAI/bge-base-en-v1.5",
"BAAI/bge-large-en-v1.5",
"BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5",
"jinaai/jina-embeddings-v2-base-en",
"jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5",
"sentence-transformers/all-MiniLM-L6-v2",
"text-embedding-v2",
"text-embedding-v3",
"maidalun1020/bce-embedding-base_v1",
]
embd_model = LLMService.query(
llm_name=req["embedding_model"], model_type="embedding"
)
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding",llm_name=req.get("embedding_model"),):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
if not embd_model:
embd_model=TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model"))
# Field name transformations during model dump:
# | Original | Dump Output |
# |----------------|-------------|
# | embedding_model| embd_id |
# | chunk_method | parser_id |
extras = {"dataset_id": dataset_id}
req, err = validate_and_parse_json_request(request, UpdateDatasetReq, extras=extras, exclude_unset=True)
if err is not None:
return get_error_argument_result(err)
if not embd_model:
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
req["embd_id"] = req.pop("embedding_model")
if "name" in req:
req["name"] = req["name"].strip()
if (
req["name"].lower() != kb.name.lower()
and len(
KnowledgebaseService.query(
name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value
)
)
> 0
):
return get_error_data_result(
message="Duplicated dataset name in updating dataset."
)
if not KnowledgebaseService.update_by_id(kb.id, req):
return get_error_data_result(message="Update dataset error.(Database error)")
return get_result(code=settings.RetCode.SUCCESS)
if not req:
return get_error_argument_result(message="No properties were modified")
try:
kb = KnowledgebaseService.get_or_none(id=dataset_id, tenant_id=tenant_id)
if kb is None:
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if req.get("parser_config"):
req["parser_config"] = deep_merge(kb.parser_config, req["parser_config"])
if (chunk_method := req.get("parser_id")) and chunk_method != kb.parser_id:
if not req.get("parser_config"):
req["parser_config"] = get_parser_config(chunk_method, None)
elif "parser_config" in req and not req["parser_config"]:
del req["parser_config"]
if "name" in req and req["name"].lower() != kb.name.lower():
try:
exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)
if exists:
return get_error_data_result(message=f"Dataset name '{req['name']}' already exists")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if "embd_id" in req:
if kb.chunk_num != 0 and req["embd_id"] != kb.embd_id:
return get_error_data_result(message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
if not ok:
return err
try:
if not KnowledgebaseService.update_by_id(kb.id, req):
return get_error_data_result(message="Update dataset error.(Database error)")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
return get_result()
@manager.route("/datasets", methods=["GET"]) # noqa: F821
@token_required
def list(tenant_id):
def list_datasets(tenant_id):
"""
List datasets.
---
@ -460,7 +419,7 @@ def list(tenant_id):
name: page_size
type: integer
required: false
default: 1024
default: 30
description: Number of items per page.
- in: query
name: orderby
@ -487,45 +446,46 @@ def list(tenant_id):
items:
type: object
"""
id = request.args.get("id")
name = request.args.get("name")
if id:
kbs = KnowledgebaseService.get_kb_by_id(id,tenant_id)
args, err = validate_and_parse_request_args(request, ListDatasetReq)
if err is not None:
return get_error_argument_result(err)
kb_id = request.args.get("id")
name = args.get("name")
if kb_id:
try:
kbs = KnowledgebaseService.get_kb_by_id(kb_id, tenant_id)
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if not kbs:
return get_error_data_result(f"You don't own the dataset {id}")
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{kb_id}'")
if name:
kbs = KnowledgebaseService.get_kb_by_name(name,tenant_id)
try:
kbs = KnowledgebaseService.get_kb_by_name(name, tenant_id)
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if not kbs:
return get_error_data_result(f"You don't own the dataset {name}")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
desc = False
else:
desc = True
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
kbs = KnowledgebaseService.get_list(
[m["tenant_id"] for m in tenants],
tenant_id,
page_number,
items_per_page,
orderby,
desc,
id,
name,
)
renamed_list = []
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{name}'")
try:
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
kbs = KnowledgebaseService.get_list(
[m["tenant_id"] for m in tenants],
tenant_id,
args["page"],
args["page_size"],
args["orderby"],
args["desc"],
kb_id,
name,
)
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
response_data_list = []
for kb in kbs:
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model",
}
renamed_data = {}
for key, value in kb.items():
new_key = key_mapping.get(key, key)
renamed_data[new_key] = value
renamed_list.append(renamed_data)
return get_result(data=renamed_list)
response_data_list.append(remap_dictionary_keys(kb))
return get_result(data=response_data_list)

View File

@ -15,11 +15,12 @@
#
from flask import request, jsonify
from api.db import LLMType, ParserType
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import validate_request, build_error_result, apikey_required
from rag.app.tag import label_question
@manager.route('/dify/retrieval', methods=['POST']) # noqa: F821
@ -29,6 +30,7 @@ def retrieval(tenant_id):
req = request.json
question = req["query"]
kb_id = req["knowledge_id"]
use_kg = req.get("use_kg", False)
retrieval_setting = req.get("retrieval_setting", {})
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
top = int(retrieval_setting.get("top_k", 1024))
@ -44,8 +46,7 @@ def retrieval(tenant_id):
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(
ranks = settings.retrievaler.retrieval(
question,
embd_mdl,
kb.tenant_id,
@ -54,13 +55,24 @@ def retrieval(tenant_id):
page_size=top,
similarity_threshold=similarity_threshold,
vector_similarity_weight=0.3,
top=top
top=top,
rank_feature=label_question(question, [kb])
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
[tenant_id],
[kb_id],
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
records = []
for c in ranks["chunks"]:
c.pop("vector", None)
records.append({
"content": c["content_ltks"],
"content": c["content_with_weight"],
"score": c["similarity"],
"title": c["docnm_kwd"],
"metadata": {}

View File

@ -16,11 +16,10 @@
import pathlib
import datetime
from api.db.services.dialog_service import keyword_extraction
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import rag_tokenizer
from api.db import LLMType, ParserType
from api.db.services.llm_service import TenantLLMService
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api import settings
import xxhash
import re
@ -37,8 +36,10 @@ from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import construct_json_result, get_parser_config
from api.utils.api_utils import construct_json_result, get_parser_config, check_duplicate_ids
from rag.nlp import search
from rag.prompts import keyword_extraction
from rag.app.tag import label_question
from rag.utils import rmSpace
from rag.utils.storage_factory import STORAGE_IMPL
@ -66,6 +67,7 @@ class Chunk(BaseModel):
raise ValueError("Each sublist in positions must have a length of 5")
return value
@manager.route("/datasets/<dataset_id>/documents", methods=["POST"]) # noqa: F821
@token_required
def upload(dataset_id, tenant_id):
@ -135,6 +137,10 @@ def upload(dataset_id, tenant_id):
return get_result(
message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR
)
if len(file_obj.filename.encode("utf-8")) >= 128:
return get_result(
message="File name should be less than 128 bytes.", code=settings.RetCode.ARGUMENT_ERROR
)
'''
# total size
total_size = 0
@ -216,6 +222,9 @@ def update_doc(tenant_id, dataset_id, document_id):
chunk_method:
type: string
description: Chunking method.
enabled:
type: boolean
description: Document status.
responses:
200:
description: Document updated successfully.
@ -225,6 +234,10 @@ def update_doc(tenant_id, dataset_id, document_id):
req = request.json
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message="You don't own the dataset.")
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if not e:
return get_error_data_result(
message="Can't find this knowledgebase!")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(message="The dataset doesn't own the document.")
@ -239,7 +252,17 @@ def update_doc(tenant_id, dataset_id, document_id):
if req["progress"] != doc.progress:
return get_error_data_result(message="Can't change `progress`.")
if "meta_fields" in req:
if not isinstance(req["meta_fields"], dict):
return get_error_data_result(message="meta_fields must be a dictionary")
DocumentService.update_meta_fields(document_id, req["meta_fields"])
if "name" in req and req["name"] != doc.name:
if len(req["name"].encode("utf-8")) >= 128:
return get_result(
message="The name should be less than 128 bytes.",
code=settings.RetCode.ARGUMENT_ERROR,
)
if (
pathlib.Path(req["name"].lower()).suffix
!= pathlib.Path(doc.name.lower()).suffix
@ -260,6 +283,7 @@ def update_doc(tenant_id, dataset_id, document_id):
if informs:
e, file = FileService.get_by_id(informs[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]})
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if "chunk_method" in req:
@ -276,6 +300,7 @@ def update_doc(tenant_id, dataset_id, document_id):
"one",
"knowledge_graph",
"email",
"tag"
}
if req.get("chunk_method") not in valid_chunk_method:
return get_error_data_result(
@ -314,9 +339,25 @@ def update_doc(tenant_id, dataset_id, document_id):
return get_error_data_result(message="Document not found!")
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
if "enabled" in req:
status = int(req["enabled"])
if doc.status != req["enabled"]:
try:
if not DocumentService.update_by_id(
doc.id, {"status": str(status)}):
return get_error_data_result(
message="Database error (Document update)!")
settings.docStoreConn.update({"doc_id": doc.id}, {"available_int": status},
search.index_name(kb.tenant_id), doc.kb_id)
return get_result(data=True)
except Exception as e:
return server_error_response(e)
return get_result()
@manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["GET"]) # noqa: F821
@token_required
def download(tenant_id, dataset_id, document_id):
@ -355,6 +396,10 @@ def download(tenant_id, dataset_id, document_id):
schema:
type: object
"""
if not document_id:
return get_error_data_result(
message="Specify document_id please."
)
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message=f"You do not own the dataset {dataset_id}.")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
@ -471,10 +516,12 @@ def list_docs(dataset_id, tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
id = request.args.get("id")
name = request.args.get("name")
if not DocumentService.query(id=id, kb_id=dataset_id):
if id and not DocumentService.query(id=id, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {id}.")
if not DocumentService.query(name=name, kb_id=dataset_id):
if name and not DocumentService.query(name=name, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {name}.")
page = int(request.args.get("page", 1))
keywords = request.args.get("keywords", "")
page_size = int(request.args.get("page_size", 30))
@ -568,15 +615,22 @@ def delete(tenant_id, dataset_id):
doc_list.append(doc.id)
else:
doc_list = doc_ids
unique_doc_ids, duplicate_messages = check_duplicate_ids(doc_list, "document")
doc_list = unique_doc_ids
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, tenant_id)
errors = ""
not_found = []
success_count = 0
for doc_id in doc_list:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_error_data_result(message="Document not found!")
not_found.append(doc_id)
continue
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_error_data_result(message="Tenant not found!")
@ -598,12 +652,22 @@ def delete(tenant_id, dataset_id):
File2DocumentService.delete_by_document_id(doc_id)
STORAGE_IMPL.rm(b, n)
success_count += 1
except Exception as e:
errors += str(e)
if not_found:
return get_result(message=f"Documents not found: {not_found}", code=settings.RetCode.DATA_ERROR)
if errors:
return get_result(message=errors, code=settings.RetCode.SERVER_ERROR)
if duplicate_messages:
if success_count > 0:
return get_result(message=f"Partially deleted {success_count} datasets with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages},)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@ -651,18 +715,24 @@ def parse(tenant_id, dataset_id):
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc_list = req.get("document_ids")
unique_doc_ids, duplicate_messages = check_duplicate_ids(doc_list, "document")
doc_list = unique_doc_ids
not_found = []
success_count = 0
for id in doc_list:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
not_found.append(id)
continue
if not doc:
return get_error_data_result(message=f"You don't own the document {id}.")
if doc[0].progress != 0.0:
if 0.0 < doc[0].progress < 1.0:
return get_error_data_result(
"Can't stop parsing document with progress at 0 or 100"
"Can't parse document that is currently being processed"
)
info = {"run": "1", "progress": 0}
info["progress_msg"] = ""
info["chunk_num"] = 0
info["token_num"] = 0
info = {"run": "1", "progress": 0, "progress_msg": "", "chunk_num": 0, "token_num": 0}
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), dataset_id)
TaskService.filter_delete([Task.doc_id == id])
@ -670,7 +740,16 @@ def parse(tenant_id, dataset_id):
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
queue_tasks(doc, bucket, name, 0)
success_count += 1
if not_found:
return get_result(message=f"Documents not found: {not_found}", code=settings.RetCode.DATA_ERROR)
if duplicate_messages:
if success_count > 0:
return get_result(message=f"Partially parsed {success_count} documents with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages},)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@ -716,19 +795,31 @@ def stop_parsing(tenant_id, dataset_id):
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc_list = req.get("document_ids")
unique_doc_ids, duplicate_messages = check_duplicate_ids(doc_list, "document")
doc_list = unique_doc_ids
success_count = 0
for id in doc_list:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(message=f"You don't own the document {id}.")
if int(doc[0].progress) == 1 or int(doc[0].progress) == 0:
if int(doc[0].progress) == 1 or doc[0].progress == 0:
return get_error_data_result(
"Can't stop parsing document with progress at 0 or 1"
)
info = {"run": "2", "progress": 0, "chunk_num": 0}
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
settings.docStoreConn.delete({"doc_id": doc[0].id}, search.index_name(tenant_id), dataset_id)
success_count += 1
if duplicate_messages:
if success_count > 0:
return get_result(message=f"Partially stopped {success_count} documents with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages},)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@ -765,6 +856,12 @@ def list_chunks(tenant_id, dataset_id, document_id):
required: false
default: 30
description: Number of items per page.
- in: query
name: id
type: string
required: false
default: ""
description: Chunk Id.
- in: header
name: Authorization
type: string
@ -847,59 +944,57 @@ def list_chunks(tenant_id, dataset_id, document_id):
renamed_doc["run"] = run_mapping.get(str(value))
res = {"total": 0, "chunks": [], "doc": renamed_doc}
origin_chunks = []
if settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
if req.get("id"):
chunk = settings.docStoreConn.get(req.get("id"), search.index_name(tenant_id), [dataset_id])
if not chunk:
return get_result(message=f"Chunk not found: {dataset_id}/{req.get('id')}", code=settings.RetCode.NOT_FOUND)
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
k.append(n)
for n in k:
del chunk[n]
if not chunk:
return get_error_data_result(f"Chunk `{req.get('id')}` not found.")
res['total'] = 1
final_chunk = {
"id":chunk.get("id",chunk.get("chunk_id")),
"content":chunk["content_with_weight"],
"document_id":chunk.get("doc_id",chunk.get("document_id")),
"docnm_kwd":chunk["docnm_kwd"],
"important_keywords":chunk.get("important_kwd",[]),
"questions":chunk.get("question_kwd",[]),
"dataset_id":chunk.get("kb_id",chunk.get("dataset_id")),
"image_id":chunk.get("img_id", ""),
"available":bool(chunk.get("available_int",1)),
"positions":chunk.get("position_int",[]),
}
res["chunks"].append(final_chunk)
_ = Chunk(**final_chunk)
elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None,
highlight=True)
res["total"] = sres.total
sign = 0
for id in sres.ids:
d = {
"id": id,
"content_with_weight": (
"content": (
rmSpace(sres.highlight[id])
if question and id in sres.highlight
else sres.field[id].get("content_with_weight", "")
),
"doc_id": sres.field[id]["doc_id"],
"document_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"question_kwd": sres.field[id].get("question_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"available_int": sres.field[id].get("available_int", 1),
"positions": sres.field[id].get("position_int", []),
"important_keywords": sres.field[id].get("important_kwd", []),
"questions": sres.field[id].get("question_kwd", []),
"dataset_id": sres.field[id].get("kb_id", sres.field[id].get("dataset_id")),
"image_id": sres.field[id].get("img_id", ""),
"available": bool(int(sres.field[id].get("available_int", "1"))),
"positions": sres.field[id].get("position_int",[]),
}
origin_chunks.append(d)
if req.get("id"):
if req.get("id") == id:
origin_chunks.clear()
origin_chunks.append(d)
sign = 1
break
if req.get("id"):
if sign == 0:
return get_error_data_result(f"Can't find this chunk {req.get('id')}")
for chunk in origin_chunks:
key_mapping = {
"id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"question_kwd": "questions",
"img_id": "image_id",
"available_int": "available",
}
renamed_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
if renamed_chunk["available"] == 0:
renamed_chunk["available"] = False
if renamed_chunk["available"] == 1:
renamed_chunk["available"] = True
res["chunks"].append(renamed_chunk)
_ = Chunk(**renamed_chunk) # validate the chunk
res["chunks"].append(d)
_ = Chunk(**d) # validate the chunk
return get_result(data=res)
@ -980,7 +1075,7 @@ def add_chunk(tenant_id, dataset_id, document_id):
)
doc = doc[0]
req = request.json
if not req.get("content"):
if not str(req.get("content", "")).strip():
return get_error_data_result(message="`content` is required")
if "important_keywords" in req:
if not isinstance(req["important_keywords"], list):
@ -1003,7 +1098,7 @@ def add_chunk(tenant_id, dataset_id, document_id):
d["important_tks"] = rag_tokenizer.tokenize(
" ".join(req.get("important_keywords", []))
)
d["question_kwd"] = req.get("questions", [])
d["question_kwd"] = [str(q).strip() for q in req.get("questions", []) if str(q).strip()]
d["question_tks"] = rag_tokenizer.tokenize(
"\n".join(req.get("questions", []))
)
@ -1092,15 +1187,23 @@ def rm_chunk(tenant_id, dataset_id, document_id):
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
docs = DocumentService.get_by_ids([document_id])
if not docs:
raise LookupError(f"Can't find the document with ID {document_id}!")
req = request.json
condition = {"doc_id": document_id}
if "chunk_ids" in req:
condition["id"] = req["chunk_ids"]
unique_chunk_ids, duplicate_messages = check_duplicate_ids(req["chunk_ids"], "chunk")
condition["id"] = unique_chunk_ids
chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
if chunk_number != 0:
DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)
if "chunk_ids" in req and chunk_number != len(req["chunk_ids"]):
return get_error_data_result(message=f"rm_chunk deleted chunks {chunk_number}, expect {len(req['chunk_ids'])}")
if "chunk_ids" in req and chunk_number != len(unique_chunk_ids):
if len(unique_chunk_ids) == 0:
return get_result(message=f"deleted {chunk_number} chunks")
return get_error_data_result(message=f"rm_chunk deleted chunks {chunk_number}, expect {len(unique_chunk_ids)}")
if duplicate_messages:
return get_result(message=f"Partially deleted {chunk_number} chunks with {len(duplicate_messages)} errors", data={"success_count": chunk_number, "errors": duplicate_messages},)
return get_result(message=f"deleted {chunk_number} chunks")
@ -1188,7 +1291,7 @@ def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
if "questions" in req:
if not isinstance(req["questions"], list):
return get_error_data_result("`questions` should be a list")
d["question_kwd"] = req.get("questions")
d["question_kwd"] = [str(q).strip() for q in req.get("questions", []) if str(q).strip()]
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["questions"]))
if "available" in req:
d["available_int"] = int(req["available"])
@ -1300,15 +1403,15 @@ def retrieval_test(tenant_id):
kb_ids = req["dataset_ids"]
if not isinstance(kb_ids, list):
return get_error_data_result("`dataset_ids` should be a list")
kbs = KnowledgebaseService.get_by_ids(kb_ids)
for id in kb_ids:
if not KnowledgebaseService.accessible(kb_id=id, user_id=tenant_id):
return get_error_data_result(f"You don't own the dataset {id}.")
embd_nms = list(set([kb.embd_id for kb in kbs]))
kbs = KnowledgebaseService.get_by_ids(kb_ids)
embd_nms = list(set([TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs])) # remove vendor suffix for comparison
if len(embd_nms) != 1:
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR,
code=settings.RetCode.DATA_ERROR,
)
if "question" not in req:
return get_error_data_result("`question` is required.")
@ -1316,6 +1419,7 @@ def retrieval_test(tenant_id):
size = int(req.get("page_size", 30))
question = req["question"]
doc_ids = req.get("document_ids", [])
use_kg = req.get("use_kg", False)
if not isinstance(doc_ids, list):
return get_error_data_result("`documents` should be a list")
doc_ids_list = KnowledgebaseService.list_documents_by_ids(kb_ids)
@ -1332,28 +1436,24 @@ def retrieval_test(tenant_id):
else:
highlight = True
try:
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Dataset not found!")
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id
)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"]
)
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(
ranks = settings.retrievaler.retrieval(
question,
embd_mdl,
kb.tenant_id,
tenant_ids,
kb_ids,
page,
size,
@ -1363,7 +1463,17 @@ def retrieval_test(tenant_id):
doc_ids,
rerank_mdl=rerank_mdl,
highlight=highlight,
rank_feature=label_question(question, kbs)
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
[k.tenant_id for k in kbs],
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
for c in ranks["chunks"]:
c.pop("vector", None)
@ -1377,6 +1487,7 @@ def retrieval_test(tenant_id):
"important_kwd": "important_keywords",
"question_kwd": "questions",
"docnm_kwd": "document_keyword",
"kb_id":"dataset_id"
}
rename_chunk = {}
for key, value in chunk.items():

View File

@ -13,29 +13,30 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import json
from api.db import LLMType
from flask import request, Response
import re
import time
import tiktoken
from flask import Response, jsonify, request
from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion
from api.db.services.canvas_service import completion as agent_completion
from api.db.services.dialog_service import ask
from api.db.services.canvas_service import completion as agent_completion, completionOpenAI
from agent.canvas import Canvas
from api.db import StatusEnum
from api.db import LLMType, StatusEnum
from api.db.db_models import APIToken
from api.db.services.api_service import API4ConversationService
from api.db.services.canvas_service import UserCanvasService
from api.db.services.dialog_service import DialogService
from api.db.services.dialog_service import DialogService, ask, chat
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result
from api.utils.api_utils import get_result, token_required
from api.utils.api_utils import get_result, token_required, get_data_openai, get_error_data_result, validate_request, check_duplicate_ids
from api.db.services.llm_service import LLMBundle
@manager.route('/chats/<chat_id>/sessions', methods=['POST']) # noqa: F821
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
@token_required
def create(tenant_id, chat_id):
req = request.json
@ -48,7 +49,7 @@ def create(tenant_id, chat_id):
"dialog_id": req["dialog_id"],
"name": req.get("name", "New session"),
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
"user_id": req.get("user_id", "")
"user_id": req.get("user_id", ""),
}
if not conv.get("name"):
return get_error_data_result(message="`name` can not be empty.")
@ -57,23 +58,25 @@ def create(tenant_id, chat_id):
if not e:
return get_error_data_result(message="Fail to create a session!")
conv = conv.to_dict()
conv['messages'] = conv.pop("message")
conv["messages"] = conv.pop("message")
conv["chat_id"] = conv.pop("dialog_id")
del conv["reference"]
return get_result(data=conv)
@manager.route('/agents/<agent_id>/sessions', methods=['POST']) # noqa: F821
@manager.route("/agents/<agent_id>/sessions", methods=["POST"]) # noqa: F821
@token_required
def create_agent_session(tenant_id, agent_id):
req = request.json
if not request.is_json:
req = request.form
files = request.files
user_id = request.args.get("user_id", "")
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
return get_error_data_result("Agent not found.")
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_error_data_result("You cannot access the agent.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
@ -83,30 +86,45 @@ def create_agent_session(tenant_id, agent_id):
if query:
for ele in query:
if not ele["optional"]:
if not req.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` is required")
ele["value"] = req[ele["key"]]
if ele["optional"]:
if req.get(ele["key"]):
ele["value"] = req[ele['key']]
if ele["type"] == "file":
if files is None or not files.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if "value" in ele:
ele.pop("value")
if req is None or not req.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
ele["value"] = req[ele["key"]]
else:
if ele["type"] == "file":
if files is not None and files.get(ele["key"]):
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if "value" in ele:
ele.pop("value")
else:
if req is not None and req.get(ele["key"]):
ele["value"] = req[ele["key"]]
else:
if "value" in ele:
ele.pop("value")
for ans in canvas.run(stream=False):
pass
cvs.dsl = json.loads(str(canvas))
conv = {
"id": get_uuid(),
"dialog_id": cvs.id,
"user_id": req.get("user_id", "") if isinstance(req, dict) else "",
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
"source": "agent",
"dsl": cvs.dsl
}
conv = {"id": get_uuid(), "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
API4ConversationService.save(**conv)
conv["agent_id"] = conv.pop("dialog_id")
return get_result(data=conv)
@manager.route('/chats/<chat_id>/sessions/<session_id>', methods=['PUT']) # noqa: F821
@manager.route("/chats/<chat_id>/sessions/<session_id>", methods=["PUT"]) # noqa: F821
@token_required
def update(tenant_id, chat_id, session_id):
req = request.json
@ -128,12 +146,14 @@ def update(tenant_id, chat_id, session_id):
return get_result()
@manager.route('/chats/<chat_id>/completions', methods=['POST']) # noqa: F821
@manager.route("/chats/<chat_id>/completions", methods=["POST"]) # noqa: F821
@token_required
def chat_completion(tenant_id, chat_id):
req = request.json
if not req or not req.get("session_id"):
if not req:
req = {"question": ""}
if not req.get("session_id"):
req["question"] = ""
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(f"You don't own the chat {chat_id}")
if req.get("session_id"):
@ -155,7 +175,227 @@ def chat_completion(tenant_id, chat_id):
return get_result(data=answer)
@manager.route('/agents/<agent_id>/completions', methods=['POST']) # noqa: F821
@manager.route("/chats_openai/<chat_id>/chat/completions", methods=["POST"]) # noqa: F821
@validate_request("model", "messages") # noqa: F821
@token_required
def chat_completion_openai_like(tenant_id, chat_id):
"""
OpenAI-like chat completion API that simulates the behavior of OpenAI's completions endpoint.
This function allows users to interact with a model and receive responses based on a series of historical messages.
If `stream` is set to True (by default), the response will be streamed in chunks, mimicking the OpenAI-style API.
Set `stream` to False explicitly, the response will be returned in a single complete answer.
Example usage:
curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $RAGFLOW_API_KEY" \
-d '{
"model": "model",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"stream": true
}'
Alternatively, you can use Python's `OpenAI` client:
from openai import OpenAI
model = "model"
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
completion = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
{"role": "assistant", "content": "I am an AI assistant named..."},
{"role": "user", "content": "Can you tell me how to install neovim"},
],
stream=True
)
stream = True
if stream:
for chunk in completion:
print(chunk)
else:
print(completion.choices[0].message.content)
"""
req = request.json
messages = req.get("messages", [])
# To prevent empty [] input
if len(messages) < 1:
return get_error_data_result("You have to provide messages.")
if messages[-1]["role"] != "user":
return get_error_data_result("The last content of this conversation is not from user.")
prompt = messages[-1]["content"]
# Treat context tokens as reasoning tokens
context_token_used = sum(len(message["content"]) for message in messages)
dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
if not dia:
return get_error_data_result(f"You don't own the chat {chat_id}")
dia = dia[0]
# Filter system and non-sense assistant messages
msg = []
for m in messages:
if m["role"] == "system":
continue
if m["role"] == "assistant" and not msg:
continue
msg.append(m)
# tools = get_tools()
# toolcall_session = SimpleFunctionCallServer()
tools = None
toolcall_session = None
if req.get("stream", True):
# The value for the usage field on all chunks except for the last one will be null.
# The usage field on the last chunk contains token usage statistics for the entire request.
# The choices field on the last chunk will always be an empty array [].
def streamed_response_generator(chat_id, dia, msg):
token_used = 0
answer_cache = ""
reasoning_cache = ""
response = {
"id": f"chatcmpl-{chat_id}",
"choices": [{"delta": {"content": "", "role": "assistant", "function_call": None, "tool_calls": None, "reasoning_content": ""}, "finish_reason": None, "index": 0, "logprobs": None}],
"created": int(time.time()),
"model": "model",
"object": "chat.completion.chunk",
"system_fingerprint": "",
"usage": None,
}
try:
for ans in chat(dia, msg, True, toolcall_session=toolcall_session, tools=tools):
answer = ans["answer"]
reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
if reasoning_match:
reasoning_part = reasoning_match.group(1)
content_part = answer[reasoning_match.end() :]
else:
reasoning_part = ""
content_part = answer
reasoning_incremental = ""
if reasoning_part:
if reasoning_part.startswith(reasoning_cache):
reasoning_incremental = reasoning_part.replace(reasoning_cache, "", 1)
else:
reasoning_incremental = reasoning_part
reasoning_cache = reasoning_part
content_incremental = ""
if content_part:
if content_part.startswith(answer_cache):
content_incremental = content_part.replace(answer_cache, "", 1)
else:
content_incremental = content_part
answer_cache = content_part
token_used += len(reasoning_incremental) + len(content_incremental)
if not any([reasoning_incremental, content_incremental]):
continue
if reasoning_incremental:
response["choices"][0]["delta"]["reasoning_content"] = reasoning_incremental
else:
response["choices"][0]["delta"]["reasoning_content"] = None
if content_incremental:
response["choices"][0]["delta"]["content"] = content_incremental
else:
response["choices"][0]["delta"]["content"] = None
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
except Exception as e:
response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
# The last chunk
response["choices"][0]["delta"]["content"] = None
response["choices"][0]["delta"]["reasoning_content"] = None
response["choices"][0]["finish_reason"] = "stop"
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
yield "data:[DONE]\n\n"
resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
else:
answer = None
for ans in chat(dia, msg, False, toolcall_session=toolcall_session, tools=tools):
# focus answer content only
answer = ans
break
content = answer["answer"]
response = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion",
"created": int(time.time()),
"model": req.get("model", ""),
"usage": {
"prompt_tokens": len(prompt),
"completion_tokens": len(content),
"total_tokens": len(prompt) + len(content),
"completion_tokens_details": {
"reasoning_tokens": context_token_used,
"accepted_prediction_tokens": len(content),
"rejected_prediction_tokens": 0, # 0 for simplicity
},
},
"choices": [{"message": {"role": "assistant", "content": content}, "logprobs": None, "finish_reason": "stop", "index": 0}],
}
return jsonify(response)
@manager.route('/agents_openai/<agent_id>/chat/completions', methods=['POST']) # noqa: F821
@validate_request("model", "messages") # noqa: F821
@token_required
def agents_completion_openai_compatibility (tenant_id, agent_id):
req = request.json
tiktokenenc = tiktoken.get_encoding("cl100k_base")
messages = req.get("messages", [])
if not messages:
return get_error_data_result("You must provide at least one message.")
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_error_data_result(f"You don't own the agent {agent_id}")
filtered_messages = [m for m in messages if m["role"] in ["user", "assistant"]]
prompt_tokens = sum(len(tiktokenenc.encode(m["content"])) for m in filtered_messages)
if not filtered_messages:
return jsonify(get_data_openai(
id=agent_id,
content="No valid messages found (user or assistant).",
finish_reason="stop",
model=req.get("model", ""),
completion_tokens=len(tiktokenenc.encode("No valid messages found (user or assistant).")),
prompt_tokens=prompt_tokens,
))
# Get the last user message as the question
question = next((m["content"] for m in reversed(messages) if m["role"] == "user"), "")
if req.get("stream", True):
return Response(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", ""), stream=True), mimetype="text/event-stream")
else:
# For non-streaming, just return the response directly
response = next(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", ""), stream=False))
return jsonify(response)
@manager.route("/agents/<agent_id>/completions", methods=["POST"]) # noqa: F821
@token_required
def agent_completions(tenant_id, agent_id):
req = request.json
@ -166,12 +406,20 @@ def agent_completions(tenant_id, agent_id):
dsl = cvs[0].dsl
if not isinstance(dsl, str):
dsl = json.dumps(dsl)
canvas = Canvas(dsl, tenant_id)
if canvas.get_preset_param():
req["question"] = ""
conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
if not conv:
return get_error_data_result(f"You don't own the session {req['session_id']}")
# If an update to UserCanvas is detected, update the API4Conversation.dsl
sync_dsl = req.get("sync_dsl", False)
if sync_dsl is True and cvs[0].update_time > conv[0].update_time:
current_dsl = conv[0].dsl
new_dsl = json.loads(dsl)
state_fields = ["history", "messages", "path", "reference"]
states = {field: current_dsl.get(field, []) for field in state_fields}
current_dsl.update(new_dsl)
current_dsl.update(states)
API4ConversationService.update_by_id(req["session_id"], {"dsl": current_dsl})
else:
req["question"] = ""
if req.get("stream", True):
@ -188,7 +436,7 @@ def agent_completions(tenant_id, agent_id):
return get_error_data_result(str(e))
@manager.route('/chats/<chat_id>/sessions', methods=['GET']) # noqa: F821
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
@token_required
def list_session(tenant_id, chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
@ -207,7 +455,7 @@ def list_session(tenant_id, chat_id):
if not convs:
return get_result(data=[])
for conv in convs:
conv['messages'] = conv.pop("message")
conv["messages"] = conv.pop("message")
infos = conv["messages"]
for info in infos:
if "prompt" in info:
@ -216,12 +464,11 @@ def list_session(tenant_id, chat_id):
if conv["reference"]:
messages = conv["messages"]
message_num = 0
chunk_num = 0
while message_num < len(messages):
if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = []
if "chunks" in conv["reference"][chunk_num]:
chunks = conv["reference"][chunk_num]["chunks"]
if "chunks" in conv["reference"][message_num]:
chunks = conv["reference"][message_num]["chunks"]
for chunk in chunks:
new_chunk = {
"id": chunk.get("chunk_id", chunk.get("id")),
@ -234,19 +481,19 @@ def list_session(tenant_id, chat_id):
}
chunk_list.append(new_chunk)
chunk_num += 1
messages[message_num]["reference"] = chunk_list
message_num += 1
del conv["reference"]
return get_result(data=convs)
@manager.route('/agents/<agent_id>/sessions', methods=['GET']) # noqa: F821
@manager.route("/agents/<agent_id>/sessions", methods=["GET"]) # noqa: F821
@token_required
def list_agent_session(tenant_id, agent_id):
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_error_data_result(message=f"You don't own the agent {agent_id}.")
id = request.args.get("id")
user_id = request.args.get("user_id")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "update_time")
@ -254,11 +501,13 @@ def list_agent_session(tenant_id, agent_id):
desc = False
else:
desc = True
convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id)
# dsl defaults to True in all cases except for False and false
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
if not convs:
return get_result(data=[])
for conv in convs:
conv['messages'] = conv.pop("message")
conv["messages"] = conv.pop("message")
infos = conv["messages"]
for info in infos:
if "prompt" in info:
@ -291,11 +540,14 @@ def list_agent_session(tenant_id, agent_id):
return get_result(data=convs)
@manager.route('/chats/<chat_id>/sessions', methods=["DELETE"]) # noqa: F821
@manager.route("/chats/<chat_id>/sessions", methods=["DELETE"]) # noqa: F821
@token_required
def delete(tenant_id, chat_id):
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(message="You don't own the chat")
errors = []
success_count = 0
req = request.json
convs = ConversationService.query(dialog_id=chat_id)
if not req:
@ -309,15 +561,98 @@ def delete(tenant_id, chat_id):
conv_list.append(conv.id)
else:
conv_list = ids
unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
conv_list = unique_conv_ids
for id in conv_list:
conv = ConversationService.query(id=id, dialog_id=chat_id)
if not conv:
return get_error_data_result(message="The chat doesn't own the session")
errors.append(f"The chat doesn't own the session {id}")
continue
ConversationService.delete_by_id(id)
success_count += 1
if errors:
if success_count > 0:
return get_result(
data={"success_count": success_count, "errors": errors},
message=f"Partially deleted {success_count} sessions with {len(errors)} errors"
)
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
data={"success_count": success_count, "errors": duplicate_messages}
)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@manager.route('/sessions/ask', methods=['POST']) # noqa: F821
@manager.route("/agents/<agent_id>/sessions", methods=["DELETE"]) # noqa: F821
@token_required
def delete_agent_session(tenant_id, agent_id):
errors = []
success_count = 0
req = request.json
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
if not cvs:
return get_error_data_result(f"You don't own the agent {agent_id}")
convs = API4ConversationService.query(dialog_id=agent_id)
if not convs:
return get_error_data_result(f"Agent {agent_id} has no sessions")
if not req:
ids = None
else:
ids = req.get("ids")
if not ids:
conv_list = []
for conv in convs:
conv_list.append(conv.id)
else:
conv_list = ids
unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
conv_list = unique_conv_ids
for session_id in conv_list:
conv = API4ConversationService.query(id=session_id, dialog_id=agent_id)
if not conv:
errors.append(f"The agent doesn't own the session {session_id}")
continue
API4ConversationService.delete_by_id(session_id)
success_count += 1
if errors:
if success_count > 0:
return get_result(
data={"success_count": success_count, "errors": errors},
message=f"Partially deleted {success_count} sessions with {len(errors)} errors"
)
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
data={"success_count": success_count, "errors": duplicate_messages}
)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@manager.route("/sessions/ask", methods=["POST"]) # noqa: F821
@token_required
def ask_about(tenant_id):
req = request.json
@ -343,9 +678,7 @@ def ask_about(tenant_id):
for ans in ask(req["question"], req["kb_ids"], uid):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream")
@ -356,7 +689,7 @@ def ask_about(tenant_id):
return resp
@manager.route('/sessions/related_questions', methods=['POST']) # noqa: F821
@manager.route("/sessions/related_questions", methods=["POST"]) # noqa: F821
@token_required
def related_questions(tenant_id):
req = request.json
@ -388,24 +721,33 @@ Reason:
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
ans = chat_mdl.chat(
prompt,
[
{
"role": "user",
"content": f"""
Keywords: {question}
Related search terms:
"""}], {"temperature": 0.9})
""",
}
],
{"temperature": 0.9},
)
return get_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
@manager.route('/chatbots/<dialog_id>/completions', methods=['POST']) # noqa: F821
@manager.route("/chatbots/<dialog_id>/completions", methods=["POST"]) # noqa: F821
def chatbot_completions(dialog_id):
req = request.json
token = request.headers.get('Authorization').split()
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Token is not valid!"')
return get_error_data_result(message='Authentication error: API key is invalid!"')
if "quote" not in req:
req["quote"] = False
@ -422,17 +764,17 @@ def chatbot_completions(dialog_id):
return get_result(data=answer)
@manager.route('/agentbots/<agent_id>/completions', methods=['POST']) # noqa: F821
@manager.route("/agentbots/<agent_id>/completions", methods=["POST"]) # noqa: F821
def agent_bot_completions(agent_id):
req = request.json
token = request.headers.get('Authorization').split()
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Token is not valid!"')
return get_error_data_result(message='Authentication error: API key is invalid!"')
if "quote" not in req:
req["quote"] = False

View File

@ -37,7 +37,6 @@ from timeit import default_timer as timer
from rag.utils.redis_conn import REDIS_CONN
@manager.route("/version", methods=["GET"]) # noqa: F821
@login_required
def version():
@ -201,7 +200,7 @@ def new_token():
if not tenants:
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
tenant_id = [tenant for tenant in tenants if tenant.role == 'owner'][0].tenant_id
obj = {
"tenant_id": tenant_id,
"token": generate_confirmation_token(tenant_id),
@ -256,7 +255,7 @@ def token_list():
if not tenants:
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
tenant_id = [tenant for tenant in tenants if tenant.role == 'owner'][0].tenant_id
objs = APITokenService.query(tenant_id=tenant_id)
objs = [o.to_dict() for o in objs]
for o in objs:
@ -298,3 +297,25 @@ def rm(token):
[APIToken.tenant_id == current_user.id, APIToken.token == token]
)
return get_json_result(data=True)
@manager.route('/config', methods=['GET']) # noqa: F821
def get_config():
"""
Get system configuration.
---
tags:
- System
responses:
200:
description: Return system configuration
schema:
type: object
properties:
registerEnable:
type: integer 0 means disabled, 1 means enabled
description: Whether user registration is enabled
"""
return get_json_result(data={
"registerEnabled": settings.REGISTER_ENABLED
})

View File

@ -13,35 +13,37 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import json
import logging
import re
from datetime import datetime
from flask import request, session, redirect
from werkzeug.security import generate_password_hash, check_password_hash
from flask_login import login_required, current_user, login_user, logout_user
from flask import redirect, request, session
from flask_login import current_user, login_required, login_user, logout_user
from werkzeug.security import check_password_hash, generate_password_hash
from api import settings
from api.apps.auth import get_auth_client
from api.db import FileType, UserTenantRole
from api.db.db_models import TenantLLM
from api.db.services.llm_service import TenantLLMService, LLMService
from api.utils.api_utils import (
server_error_response,
validate_request,
get_data_error_result,
)
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMService, TenantLLMService
from api.db.services.user_service import TenantService, UserService, UserTenantService
from api.utils import (
get_uuid,
get_format_time,
decrypt,
download_img,
current_timestamp,
datetime_format,
decrypt,
download_img,
get_format_time,
get_uuid,
)
from api.utils.api_utils import (
construct_response,
get_data_error_result,
get_json_result,
server_error_response,
validate_request,
)
from api.db import UserTenantRole, FileType
from api import settings
from api.db.services.user_service import UserService, TenantService, UserTenantService
from api.db.services.file_service import FileService
from api.utils.api_utils import get_json_result, construct_response
@manager.route("/login", methods=["POST", "GET"]) # noqa: F821
@ -76,9 +78,7 @@ def login():
type: object
"""
if not request.json:
return get_json_result(
data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="Unauthorized!"
)
return get_json_result(data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="Unauthorized!")
email = request.json.get("email", "")
users = UserService.query(email=email)
@ -93,9 +93,7 @@ def login():
try:
password = decrypt(password)
except BaseException:
return get_json_result(
data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password"
)
return get_json_result(data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password")
user = UserService.query_user(email, password)
if user:
@ -115,9 +113,131 @@ def login():
)
@manager.route("/login/channels", methods=["GET"]) # noqa: F821
def get_login_channels():
"""
Get all supported authentication channels.
"""
try:
channels = []
for channel, config in settings.OAUTH_CONFIG.items():
channels.append(
{
"channel": channel,
"display_name": config.get("display_name", channel.title()),
"icon": config.get("icon", "sso"),
}
)
return get_json_result(data=channels)
except Exception as e:
logging.exception(e)
return get_json_result(data=[], message=f"Load channels failure, error: {str(e)}", code=settings.RetCode.EXCEPTION_ERROR)
@manager.route("/login/<channel>", methods=["GET"]) # noqa: F821
def oauth_login(channel):
channel_config = settings.OAUTH_CONFIG.get(channel)
if not channel_config:
raise ValueError(f"Invalid channel name: {channel}")
auth_cli = get_auth_client(channel_config)
state = get_uuid()
session["oauth_state"] = state
auth_url = auth_cli.get_authorization_url(state)
return redirect(auth_url)
@manager.route("/oauth/callback/<channel>", methods=["GET"]) # noqa: F821
def oauth_callback(channel):
"""
Handle the OAuth/OIDC callback for various channels dynamically.
"""
try:
channel_config = settings.OAUTH_CONFIG.get(channel)
if not channel_config:
raise ValueError(f"Invalid channel name: {channel}")
auth_cli = get_auth_client(channel_config)
# Check the state
state = request.args.get("state")
if not state or state != session.get("oauth_state"):
return redirect("/?error=invalid_state")
session.pop("oauth_state", None)
# Obtain the authorization code
code = request.args.get("code")
if not code:
return redirect("/?error=missing_code")
# Exchange authorization code for access token
token_info = auth_cli.exchange_code_for_token(code)
access_token = token_info.get("access_token")
if not access_token:
return redirect("/?error=token_failed")
id_token = token_info.get("id_token")
# Fetch user info
user_info = auth_cli.fetch_user_info(access_token, id_token=id_token)
if not user_info.email:
return redirect("/?error=email_missing")
# Login or register
users = UserService.query(email=user_info.email)
user_id = get_uuid()
if not users:
try:
try:
avatar = download_img(user_info.avatar_url)
except Exception as e:
logging.exception(e)
avatar = ""
users = user_register(
user_id,
{
"access_token": get_uuid(),
"email": user_info.email,
"avatar": avatar,
"nickname": user_info.nickname,
"login_channel": channel,
"last_login_time": get_format_time(),
"is_superuser": False,
},
)
if not users:
raise Exception(f"Failed to register {user_info.email}")
if len(users) > 1:
raise Exception(f"Same email: {user_info.email} exists!")
# Try to log in
user = users[0]
login_user(user)
return redirect(f"/?auth={user.get_id()}")
except Exception as e:
rollback_user_registration(user_id)
logging.exception(e)
return redirect(f"/?error={str(e)}")
# User exists, try to log in
user = users[0]
user.access_token = get_uuid()
login_user(user)
user.save()
return redirect(f"/?auth={user.get_id()}")
except Exception as e:
logging.exception(e)
return redirect(f"/?error={str(e)}")
@manager.route("/github_callback", methods=["GET"]) # noqa: F821
def github_callback():
"""
**Deprecated**, Use `/oauth/callback/<channel>` instead.
GitHub OAuth callback endpoint.
---
tags:
@ -309,9 +429,7 @@ def user_info_from_feishu(access_token):
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {access_token}",
}
res = requests.get(
"https://open.feishu.cn/open-apis/authen/v1/user_info", headers=headers
)
res = requests.get("https://open.feishu.cn/open-apis/authen/v1/user_info", headers=headers)
user_info = res.json()["data"]
user_info["email"] = None if user_info.get("email") == "" else user_info["email"]
return user_info
@ -321,17 +439,13 @@ def user_info_from_github(access_token):
import requests
headers = {"Accept": "application/json", "Authorization": f"token {access_token}"}
res = requests.get(
f"https://api.github.com/user?access_token={access_token}", headers=headers
)
res = requests.get(f"https://api.github.com/user?access_token={access_token}", headers=headers)
user_info = res.json()
email_info = requests.get(
f"https://api.github.com/user/emails?access_token={access_token}",
headers=headers,
).json()
user_info["email"] = next(
(email for email in email_info if email["primary"]), None
)["email"]
user_info["email"] = next((email for email in email_info if email["primary"]), None)["email"]
return user_info
@ -391,9 +505,7 @@ def setting_user():
request_data = request.json
if request_data.get("password"):
new_password = request_data.get("new_password")
if not check_password_hash(
current_user.password, decrypt(request_data["password"])
):
if not check_password_hash(current_user.password, decrypt(request_data["password"])):
return get_json_result(
data=False,
code=settings.RetCode.AUTHENTICATION_ERROR,
@ -424,9 +536,7 @@ def setting_user():
return get_json_result(data=True)
except Exception as e:
logging.exception(e)
return get_json_result(
data=False, message="Update failure!", code=settings.RetCode.EXCEPTION_ERROR
)
return get_json_result(data=False, message="Update failure!", code=settings.RetCode.EXCEPTION_ERROR)
@manager.route("/info", methods=["GET"]) # noqa: F821
@ -518,9 +628,23 @@ def user_register(user_id, user):
"model_type": llm.model_type,
"api_key": settings.API_KEY,
"api_base": settings.LLM_BASE_URL,
"max_tokens": llm.max_tokens if llm.max_tokens else 8192
"max_tokens": llm.max_tokens if llm.max_tokens else 8192,
}
)
if settings.LIGHTEN != 1:
for buildin_embedding_model in settings.BUILTIN_EMBEDDING_MODELS:
mdlnm, fid = TenantLLMService.split_model_name_and_factory(buildin_embedding_model)
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": fid,
"llm_name": mdlnm,
"model_type": "embedding",
"api_key": "",
"api_base": "",
"max_tokens": 1024 if buildin_embedding_model == "BAAI/bge-large-zh-v1.5@BAAI" else 512,
}
)
if not UserService.save(**user):
return
@ -562,11 +686,19 @@ def user_add():
schema:
type: object
"""
if not settings.REGISTER_ENABLED:
return get_json_result(
data=False,
message="User registration is disabled!",
code=settings.RetCode.OPERATING_ERROR,
)
req = request.json
email_address = req["email"]
# Validate the email address
if not re.match(r"^[\w\._-]+@([\w_-]+\.)+[\w-]{2,5}$", email_address):
if not re.match(r"^[\w\._-]+@([\w_-]+\.)+[\w-]{2,}$", email_address):
return get_json_result(
data=False,
message=f"Invalid email address: {email_address}!",

View File

@ -49,6 +49,7 @@ class FileType(StrEnum):
FOLDER = 'folder'
OTHER = "other"
VALID_FILE_TYPES = {FileType.PDF, FileType.DOC, FileType.VISUAL, FileType.AURAL, FileType.VIRTUAL, FileType.FOLDER, FileType.OTHER}
class LLMType(StrEnum):
CHAT = 'chat'
@ -73,6 +74,7 @@ class TaskStatus(StrEnum):
DONE = "3"
FAIL = "4"
VALID_TASK_STATUS = {TaskStatus.UNSTART, TaskStatus.RUNNING, TaskStatus.CANCEL, TaskStatus.DONE, TaskStatus.FAIL}
class ParserType(StrEnum):
PRESENTATION = "presentation"
@ -89,6 +91,7 @@ class ParserType(StrEnum):
AUDIO = "audio"
EMAIL = "email"
KG = "knowledge_graph"
TAG = "tag"
class FileSource(StrEnum):

File diff suppressed because it is too large Load Diff

View File

@ -103,16 +103,12 @@ def init_llm_factory():
except Exception:
pass
factory_llm_infos = json.load(
open(
os.path.join(get_project_base_directory(), "conf", "llm_factories.json"),
"r",
)
)
for factory_llm_info in factory_llm_infos["factory_llm_infos"]:
llm_infos = factory_llm_info.pop("llm")
factory_llm_infos = settings.FACTORY_LLM_INFOS
for factory_llm_info in factory_llm_infos:
info = deepcopy(factory_llm_info)
llm_infos = info.pop("llm")
try:
LLMFactoriesService.save(**factory_llm_info)
LLMFactoriesService.save(**info)
except Exception:
pass
LLMService.filter_delete([LLM.fid == factory_llm_info["name"]])
@ -123,7 +119,7 @@ def init_llm_factory():
except Exception:
pass
LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
LLMFactoriesService.filter_delete([(LLMFactories.name == "Local") | (LLMFactories.name == "novita.ai")])
LLMService.filter_delete([LLM.fid == "Local"])
LLMService.filter_delete([LLM.llm_name == "qwen-vl-max"])
LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])
@ -133,7 +129,7 @@ def init_llm_factory():
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "cohere"], {"llm_factory": "Cohere"})
TenantService.filter_update([1 == 1], {
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email"})
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"})
## insert openai two embedding models to the current openai user.
# print("Start to insert 2 OpenAI embedding models...")
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
@ -152,22 +148,15 @@ def init_llm_factory():
pass
break
for kb_id in KnowledgebaseService.get_all_ids():
KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
"""
drop table llm;
drop table llm_factories;
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph';
alter table knowledgebase modify avatar longtext;
alter table user modify avatar longtext;
alter table dialog modify icon longtext;
"""
KnowledgebaseService.update_document_number_in_init(kb_id=kb_id, doc_num=DocumentService.get_kb_doc_count(kb_id))
def add_graph_templates():
dir = os.path.join(get_project_base_directory(), "agent", "templates")
for fnm in os.listdir(dir):
try:
cnvs = json.load(open(os.path.join(dir, fnm), "r"))
cnvs = json.load(open(os.path.join(dir, fnm), "r",encoding="utf-8"))
try:
CanvasTemplateService.save(**cnvs)
except Exception:

View File

@ -43,8 +43,12 @@ class API4ConversationService(CommonService):
@DB.connection_context()
def get_list(cls, dialog_id, tenant_id,
page_number, items_per_page,
orderby, desc, id, user_id=None):
sessions = cls.model.select().where(cls.model.dialog_id == dialog_id)
orderby, desc, id, user_id=None, include_dsl=True):
if include_dsl:
sessions = cls.model.select().where(cls.model.dialog_id == dialog_id)
else:
fields = [field for field in cls.model._meta.fields.values() if field.name != 'dsl']
sessions = cls.model.select(*fields).where(cls.model.dialog_id == dialog_id)
if id:
sessions = sessions.where(cls.model.id == id)
if user_id:
@ -53,7 +57,6 @@ class API4ConversationService(CommonService):
sessions = sessions.order_by(cls.model.getter_by(orderby).desc())
else:
sessions = sessions.order_by(cls.model.getter_by(orderby).asc())
sessions = sessions.where(cls.model.user_id == tenant_id)
sessions = sessions.paginate(page_number, items_per_page)
return list(sessions.dicts())

View File

@ -14,16 +14,19 @@
# limitations under the License.
#
import json
import time
import traceback
from uuid import uuid4
from agent.canvas import Canvas
from api.db.db_models import DB, CanvasTemplate, UserCanvas, API4Conversation
from api.db import TenantPermission
from api.db.db_models import DB, CanvasTemplate, User, UserCanvas, API4Conversation
from api.db.services.api_service import API4ConversationService
from api.db.services.common_service import CommonService
from api.db.services.conversation_service import structure_answer
from api.utils import get_uuid
from api.utils.api_utils import get_data_openai
import tiktoken
from peewee import fn
class CanvasTemplateService(CommonService):
model = CanvasTemplate
@ -49,7 +52,74 @@ class UserCanvasService(CommonService):
agents = agents.paginate(page_number, items_per_page)
return list(agents.dicts())
@classmethod
@DB.connection_context()
def get_by_tenant_id(cls, pid):
try:
fields = [
cls.model.id,
cls.model.avatar,
cls.model.title,
cls.model.dsl,
cls.model.description,
cls.model.permission,
cls.model.update_time,
cls.model.user_id,
cls.model.create_time,
cls.model.create_date,
cls.model.update_date,
User.nickname,
User.avatar.alias('tenant_avatar'),
]
angents = cls.model.select(*fields) \
.join(User, on=(cls.model.user_id == User.id)) \
.where(cls.model.id == pid)
# obj = cls.model.query(id=pid)[0]
return True, angents.dicts()[0]
except Exception as e:
print(e)
return False, None
@classmethod
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
page_number, items_per_page,
orderby, desc, keywords,
):
fields = [
cls.model.id,
cls.model.avatar,
cls.model.title,
cls.model.dsl,
cls.model.description,
cls.model.permission,
User.nickname,
User.avatar.alias('tenant_avatar'),
cls.model.update_time
]
if keywords:
angents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id)),
(fn.LOWER(cls.model.title).contains(keywords.lower()))
)
else:
angents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id))
)
if desc:
angents = angents.order_by(cls.model.getter_by(orderby).desc())
else:
angents = angents.order_by(cls.model.getter_by(orderby).asc())
count = angents.count()
angents = angents.paginate(page_number, items_per_page)
return list(angents.dicts()), count
def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
e, cvs = UserCanvasService.get_by_id(agent_id)
@ -79,27 +149,13 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": kwargs.get("usr_id", "") if isinstance(kwargs, dict) else "",
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
"user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
"message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
"source": "agent",
"dsl": cvs.dsl
}
API4ConversationService.save(**conv)
if query:
yield "data:" + json.dumps({"code": 0,
"message": "",
"data": {
"session_id": session_id,
"answer": canvas.get_prologue(),
"reference": [],
"param": canvas.get_preset_param()
}
},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
return
else:
conv = API4Conversation(**conv)
conv = API4Conversation(**conv)
else:
e, conv = API4ConversationService.get_by_id(session_id)
assert e, "Session not found!"
@ -129,12 +185,12 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
continue
for k in ans.keys():
final_ans[k] = ans[k]
ans = {"answer": ans["content"], "reference": ans.get("reference", [])}
ans = {"answer": ans["content"], "reference": ans.get("reference", []), "param": canvas.get_preset_param()}
ans = structure_answer(conv, ans, message_id, session_id)
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans},
ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
@ -159,8 +215,211 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
canvas.reference.append(final_ans["reference"])
conv.dsl = json.loads(str(canvas))
result = {"answer": final_ans["content"], "reference": final_ans.get("reference", [])}
result = {"answer": final_ans["content"], "reference": final_ans.get("reference", []) , "param": canvas.get_preset_param()}
result = structure_answer(conv, result, message_id, session_id)
API4ConversationService.append_message(conv.id, conv.to_dict())
yield result
break
break
def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
"""Main function for OpenAI-compatible completions, structured similarly to the completion function."""
tiktokenenc = tiktoken.get_encoding("cl100k_base")
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
yield get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: Agent not found."
)
return
if cvs.user_id != tenant_id:
yield get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: You do not own the agent"
)
return
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
canvas = Canvas(cvs.dsl, tenant_id)
canvas.reset()
message_id = str(uuid4())
# Handle new session creation
if not session_id:
query = canvas.get_preset_param()
if query:
for ele in query:
if not ele["optional"]:
if not kwargs.get(ele["key"]):
yield get_data_openai(
id=None,
model=agent_id,
content=f"`{ele['key']}` is required",
completion_tokens=len(tiktokenenc.encode(f"`{ele['key']}` is required")),
prompt_tokens=len(tiktokenenc.encode(question if question else ""))
)
return
ele["value"] = kwargs[ele["key"]]
if ele["optional"]:
if kwargs.get(ele["key"]):
ele["value"] = kwargs[ele['key']]
else:
if "value" in ele:
ele.pop("value")
cvs.dsl = json.loads(str(canvas))
session_id = get_uuid()
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
"message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
"source": "agent",
"dsl": cvs.dsl
}
API4ConversationService.save(**conv)
conv = API4Conversation(**conv)
# Handle existing session
else:
e, conv = API4ConversationService.get_by_id(session_id)
if not e:
yield get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: Session not found!"
)
return
canvas = Canvas(json.dumps(conv.dsl), tenant_id)
canvas.messages.append({"role": "user", "content": question, "id": message_id})
canvas.add_user_input(question)
if not conv.message:
conv.message = []
conv.message.append({
"role": "user",
"content": question,
"id": message_id
})
if not conv.reference:
conv.reference = []
conv.reference.append({"chunks": [], "doc_aggs": []})
# Process request based on stream mode
final_ans = {"reference": [], "content": ""}
prompt_tokens = len(tiktokenenc.encode(str(question)))
if stream:
try:
completion_tokens = 0
for ans in canvas.run(stream=True):
if ans.get("running_status"):
completion_tokens += len(tiktokenenc.encode(ans.get("content", "")))
yield "data: " + json.dumps(
get_data_openai(
id=session_id,
model=agent_id,
content=ans["content"],
object="chat.completion.chunk",
completion_tokens=completion_tokens,
prompt_tokens=prompt_tokens
),
ensure_ascii=False
) + "\n\n"
continue
for k in ans.keys():
final_ans[k] = ans[k]
completion_tokens += len(tiktokenenc.encode(final_ans.get("content", "")))
yield "data: " + json.dumps(
get_data_openai(
id=session_id,
model=agent_id,
content=final_ans["content"],
object="chat.completion.chunk",
finish_reason="stop",
completion_tokens=completion_tokens,
prompt_tokens=prompt_tokens
),
ensure_ascii=False
) + "\n\n"
# Update conversation
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
yield "data: [DONE]\n\n"
except Exception as e:
traceback.print_exc()
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
yield "data: " + json.dumps(
get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: " + str(e),
finish_reason="stop",
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
prompt_tokens=prompt_tokens
),
ensure_ascii=False
) + "\n\n"
yield "data: [DONE]\n\n"
else: # Non-streaming mode
try:
all_answer_content = ""
for answer in canvas.run(stream=False):
if answer.get("running_status"):
continue
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
final_ans["reference"] = answer.get("reference", [])
all_answer_content += final_ans["content"]
final_ans["content"] = all_answer_content
# Update conversation
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
# Return the response in OpenAI format
yield get_data_openai(
id=session_id,
model=agent_id,
content=final_ans["content"],
finish_reason="stop",
completion_tokens=len(tiktokenenc.encode(final_ans["content"])),
prompt_tokens=prompt_tokens,
param=canvas.get_preset_param() # Added param info like in completion
)
except Exception as e:
traceback.print_exc()
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
yield get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: " + str(e),
finish_reason="stop",
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
prompt_tokens=prompt_tokens
)

View File

@ -18,21 +18,60 @@ from datetime import datetime
import peewee
from api.db.db_models import DB
from api.utils import datetime_format, current_timestamp, get_uuid
from api.utils import current_timestamp, datetime_format, get_uuid
class CommonService:
"""Base service class that provides common database operations.
This class serves as a foundation for all service classes in the application,
implementing standard CRUD operations and common database query patterns.
It uses the Peewee ORM for database interactions and provides a consistent
interface for database operations across all derived service classes.
Attributes:
model: The Peewee model class that this service operates on. Must be set by subclasses.
"""
model = None
@classmethod
@DB.connection_context()
def query(cls, cols=None, reverse=None, order_by=None, **kwargs):
return cls.model.query(cols=cols, reverse=reverse,
order_by=order_by, **kwargs)
"""Execute a database query with optional column selection and ordering.
This method provides a flexible way to query the database with various filters
and sorting options. It supports column selection, sort order control, and
additional filter conditions.
Args:
cols (list, optional): List of column names to select. If None, selects all columns.
reverse (bool, optional): If True, sorts in descending order. If False, sorts in ascending order.
order_by (str, optional): Column name to sort results by.
**kwargs: Additional filter conditions passed as keyword arguments.
Returns:
peewee.ModelSelect: A query result containing matching records.
"""
return cls.model.query(cols=cols, reverse=reverse, order_by=order_by, **kwargs)
@classmethod
@DB.connection_context()
def get_all(cls, cols=None, reverse=None, order_by=None):
"""Retrieve all records from the database with optional column selection and ordering.
This method fetches all records from the model's table with support for
column selection and result ordering. If no order_by is specified and reverse
is True, it defaults to ordering by create_time.
Args:
cols (list, optional): List of column names to select. If None, selects all columns.
reverse (bool, optional): If True, sorts in descending order. If False, sorts in ascending order.
order_by (str, optional): Column name to sort results by. Defaults to 'create_time' if reverse is specified.
Returns:
peewee.ModelSelect: A query containing all matching records.
"""
if cols:
query_records = cls.model.select(*cols)
else:
@ -41,21 +80,44 @@ class CommonService:
if not order_by or not hasattr(cls, order_by):
order_by = "create_time"
if reverse is True:
query_records = query_records.order_by(
cls.model.getter_by(order_by).desc())
query_records = query_records.order_by(cls.model.getter_by(order_by).desc())
elif reverse is False:
query_records = query_records.order_by(
cls.model.getter_by(order_by).asc())
query_records = query_records.order_by(cls.model.getter_by(order_by).asc())
return query_records
@classmethod
@DB.connection_context()
def get(cls, **kwargs):
"""Get a single record matching the given criteria.
This method retrieves a single record from the database that matches
the specified filter conditions.
Args:
**kwargs: Filter conditions as keyword arguments.
Returns:
Model instance: Single matching record.
Raises:
peewee.DoesNotExist: If no matching record is found.
"""
return cls.model.get(**kwargs)
@classmethod
@DB.connection_context()
def get_or_none(cls, **kwargs):
"""Get a single record or None if not found.
This method attempts to retrieve a single record matching the given criteria,
returning None if no match is found instead of raising an exception.
Args:
**kwargs: Filter conditions as keyword arguments.
Returns:
Model instance or None: Matching record if found, None otherwise.
"""
try:
return cls.model.get(**kwargs)
except peewee.DoesNotExist:
@ -64,14 +126,34 @@ class CommonService:
@classmethod
@DB.connection_context()
def save(cls, **kwargs):
# if "id" not in kwargs:
# kwargs["id"] = get_uuid()
"""Save a new record to database.
This method creates a new record in the database with the provided field values,
forcing an insert operation rather than an update.
Args:
**kwargs: Record field values as keyword arguments.
Returns:
Model instance: The created record object.
"""
sample_obj = cls.model(**kwargs).save(force_insert=True)
return sample_obj
@classmethod
@DB.connection_context()
def insert(cls, **kwargs):
"""Insert a new record with automatic ID and timestamps.
This method creates a new record with automatically generated ID and timestamp fields.
It handles the creation of create_time, create_date, update_time, and update_date fields.
Args:
**kwargs: Record field values as keyword arguments.
Returns:
Model instance: The newly created record object.
"""
if "id" not in kwargs:
kwargs["id"] = get_uuid()
kwargs["create_time"] = current_timestamp()
@ -84,26 +166,49 @@ class CommonService:
@classmethod
@DB.connection_context()
def insert_many(cls, data_list, batch_size=100):
"""Insert multiple records in batches.
This method efficiently inserts multiple records into the database using batch processing.
It automatically sets creation timestamps for all records.
Args:
data_list (list): List of dictionaries containing record data to insert.
batch_size (int, optional): Number of records to insert in each batch. Defaults to 100.
"""
with DB.atomic():
for d in data_list:
d["create_time"] = current_timestamp()
d["create_date"] = datetime_format(datetime.now())
for i in range(0, len(data_list), batch_size):
cls.model.insert_many(data_list[i:i + batch_size]).execute()
cls.model.insert_many(data_list[i : i + batch_size]).execute()
@classmethod
@DB.connection_context()
def update_many_by_id(cls, data_list):
"""Update multiple records by their IDs.
This method updates multiple records in the database, identified by their IDs.
It automatically updates the update_time and update_date fields for each record.
Args:
data_list (list): List of dictionaries containing record data to update.
Each dictionary must include an 'id' field.
"""
with DB.atomic():
for data in data_list:
data["update_time"] = current_timestamp()
data["update_date"] = datetime_format(datetime.now())
cls.model.update(data).where(
cls.model.id == data["id"]).execute()
cls.model.update(data).where(cls.model.id == data["id"]).execute()
@classmethod
@DB.connection_context()
def update_by_id(cls, pid, data):
# Update a single record by ID
# Args:
# pid: Record ID
# data: Updated field values
# Returns:
# Number of records updated
data["update_time"] = current_timestamp()
data["update_date"] = datetime_format(datetime.now())
num = cls.model.update(data).where(cls.model.id == pid).execute()
@ -112,15 +217,28 @@ class CommonService:
@classmethod
@DB.connection_context()
def get_by_id(cls, pid):
# Get a record by ID
# Args:
# pid: Record ID
# Returns:
# Tuple of (success, record)
try:
obj = cls.model.query(id=pid)[0]
return True, obj
obj = cls.model.get_or_none(cls.model.id == pid)
if obj:
return True, obj
except Exception:
return False, None
pass
return False, None
@classmethod
@DB.connection_context()
def get_by_ids(cls, pids, cols=None):
# Get multiple records by their IDs
# Args:
# pids: List of record IDs
# cols: List of columns to select
# Returns:
# Query of matching records
if cols:
objs = cls.model.select(*cols)
else:
@ -130,11 +248,33 @@ class CommonService:
@classmethod
@DB.connection_context()
def delete_by_id(cls, pid):
# Delete a record by ID
# Args:
# pid: Record ID
# Returns:
# Number of records deleted
return cls.model.delete().where(cls.model.id == pid).execute()
@classmethod
@DB.connection_context()
def delete_by_ids(cls, pids):
# Delete multiple records by their IDs
# Args:
# pids: List of record IDs
# Returns:
# Number of records deleted
with DB.atomic():
res = cls.model.delete().where(cls.model.id.in_(pids)).execute()
return res
@classmethod
@DB.connection_context()
def filter_delete(cls, filters):
# Delete records matching given filters
# Args:
# filters: List of filter conditions
# Returns:
# Number of records deleted
with DB.atomic():
num = cls.model.delete().where(*filters).execute()
return num
@ -142,42 +282,51 @@ class CommonService:
@classmethod
@DB.connection_context()
def filter_update(cls, filters, update_data):
# Update records matching given filters
# Args:
# filters: List of filter conditions
# update_data: Updated field values
# Returns:
# Number of records updated
with DB.atomic():
return cls.model.update(update_data).where(*filters).execute()
@staticmethod
def cut_list(tar_list, n):
# Split a list into chunks of size n
# Args:
# tar_list: List to split
# n: Chunk size
# Returns:
# List of tuples containing chunks
length = len(tar_list)
arr = range(length)
result = [tuple(tar_list[x:(x + n)]) for x in arr[::n]]
result = [tuple(tar_list[x : (x + n)]) for x in arr[::n]]
return result
@classmethod
@DB.connection_context()
def filter_scope_list(cls, in_key, in_filters_list,
filters=None, cols=None):
def filter_scope_list(cls, in_key, in_filters_list, filters=None, cols=None):
# Get records matching IN clause filters with optional column selection
# Args:
# in_key: Field name for IN clause
# in_filters_list: List of values for IN clause
# filters: Additional filter conditions
# cols: List of columns to select
# Returns:
# List of matching records
in_filters_tuple_list = cls.cut_list(in_filters_list, 20)
if not filters:
filters = []
res_list = []
if cols:
for i in in_filters_tuple_list:
query_records = cls.model.select(
*
cols).where(
getattr(
cls.model,
in_key).in_(i),
*
filters)
query_records = cls.model.select(*cols).where(getattr(cls.model, in_key).in_(i), *filters)
if query_records:
res_list.extend(
[query_record for query_record in query_records])
res_list.extend([query_record for query_record in query_records])
else:
for i in in_filters_tuple_list:
query_records = cls.model.select().where(
getattr(cls.model, in_key).in_(i), *filters)
query_records = cls.model.select().where(getattr(cls.model, in_key).in_(i), *filters)
if query_records:
res_list.extend(
[query_record for query_record in query_records])
res_list.extend([query_record for query_record in query_records])
return res_list

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
from uuid import uuid4
from api.db import StatusEnum
from api.db.db_models import Conversation, DB
@ -22,6 +23,8 @@ from api.db.services.dialog_service import DialogService, chat
from api.utils import get_uuid
import json
from rag.prompts import chunks_format
class ConversationService(CommonService):
model = Conversation
@ -52,18 +55,7 @@ def structure_answer(conv, ans, message_id, session_id):
reference = {}
ans["reference"] = {}
def get_value(d, k1, k2):
return d.get(k1, d.get(k2))
chunk_list = [{
"id": get_value(chunk, "chunk_id", "id"),
"content": get_value(chunk, "content", "content_with_weight"),
"document_id": get_value(chunk, "doc_id", "document_id"),
"document_name": get_value(chunk, "docnm_kwd", "document_name"),
"dataset_id": get_value(chunk, "kb_id", "dataset_id"),
"image_id": get_value(chunk, "image_id", "img_id"),
"positions": get_value(chunk, "positions", "position_int"),
} for chunk in reference.get("chunks", [])]
chunk_list = chunks_format(reference)
reference["chunks"] = chunk_list
ans["id"] = message_id
@ -75,9 +67,9 @@ def structure_answer(conv, ans, message_id, session_id):
if not conv.message:
conv.message = []
if not conv.message or conv.message[-1].get("role", "") != "assistant":
conv.message.append({"role": "assistant", "content": ans["answer"], "id": message_id})
conv.message.append({"role": "assistant", "content": ans["answer"], "created_at": time.time(), "id": message_id})
else:
conv.message[-1] = {"role": "assistant", "content": ans["answer"], "id": message_id}
conv.message[-1] = {"role": "assistant", "content": ans["answer"], "created_at": time.time(), "id": message_id}
if conv.reference:
conv.reference[-1] = reference
return ans
@ -94,7 +86,7 @@ def completion(tenant_id, chat_id, question, name="New session", session_id=None
"id": session_id,
"dialog_id": chat_id,
"name": name,
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue"), "created_at": time.time()}],
"user_id": kwargs.get("user_id", "")
}
ConversationService.save(**conv)
@ -166,7 +158,7 @@ def iframe_completion(dialog_id, question, session_id=None, stream=True, **kwarg
"id": session_id,
"dialog_id": dialog_id,
"user_id": kwargs.get("user_id", ""),
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"], "created_at": time.time()}]
}
API4ConversationService.save(**conv)
yield "data:" + json.dumps({"code": 0, "message": "",

View File

@ -13,44 +13,79 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import binascii
import os
import json
import logging
import re
from collections import defaultdict
import time
from copy import deepcopy
from datetime import datetime
from functools import partial
from timeit import default_timer as timer
import datetime
from datetime import timedelta
from langfuse import Langfuse
from agentic_reasoning import DeepResearcher
from api import settings
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import Dialog, DB
from api.db.db_models import DB, Dialog
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api import settings
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.llm_service import LLMBundle, TenantLLMService
from api.utils import current_timestamp, datetime_format
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
from api.utils.file_utils import get_project_base_directory
from rag.prompts import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, llm_id2llm_type, message_fit_in
from rag.utils import num_tokens_from_string, rmSpace
from rag.utils.tavily_conn import Tavily
class DialogService(CommonService):
model = Dialog
@classmethod
def save(cls, **kwargs):
"""Save a new record to database.
This method creates a new record in the database with the provided field values,
forcing an insert operation rather than an update.
Args:
**kwargs: Record field values as keyword arguments.
Returns:
Model instance: The created record object.
"""
sample_obj = cls.model(**kwargs).save(force_insert=True)
return sample_obj
@classmethod
def update_many_by_id(cls, data_list):
"""Update multiple records by their IDs.
This method updates multiple records in the database, identified by their IDs.
It automatically updates the update_time and update_date fields for each record.
Args:
data_list (list): List of dictionaries containing record data to update.
Each dictionary must include an 'id' field.
"""
with DB.atomic():
for data in data_list:
data["update_time"] = current_timestamp()
data["update_date"] = datetime_format(datetime.now())
cls.model.update(data).where(cls.model.id == data["id"]).execute()
@classmethod
@DB.connection_context()
def get_list(cls, tenant_id,
page_number, items_per_page, orderby, desc, id, name):
def get_list(cls, tenant_id, page_number, items_per_page, orderby, desc, id, name):
chats = cls.model.select()
if id:
chats = chats.where(cls.model.id == id)
if name:
chats = chats.where(cls.model.name == name)
chats = chats.where(
(cls.model.tenant_id == tenant_id)
& (cls.model.status == StatusEnum.VALID.value)
)
chats = chats.where((cls.model.tenant_id == tenant_id) & (cls.model.status == StatusEnum.VALID.value))
if desc:
chats = chats.order_by(cls.model.getter_by(orderby).desc())
else:
@ -61,103 +96,65 @@ class DialogService(CommonService):
return list(chats.dicts())
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:
tks_cnts.append(
{"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts:
total += m["count"]
return total
def chat_solo(dialog, messages, stream=True):
if llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
c = count()
if c < max_length:
return c, msg
msg_ = [m for m in msg[:-1] if m["role"] == "system"]
if len(msg) > 1:
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:
return c, msg
ll = num_tokens_from_string(msg_[0]["content"])
ll2 = num_tokens_from_string(msg_[-1]["content"])
if ll / (ll + ll2) > 0.8:
m = msg_[0]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[0]["content"] = m
return max_length, msg
m = msg_[1]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[1]["content"] = m
return max_length, msg
def llm_id2llm_type(llm_id):
llm_id, _ = TenantLLMService.split_model_name_and_factory(llm_id)
fnm = os.path.join(get_project_base_directory(), "conf")
llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
for llm_factory in llm_factories["factory_llm_infos"]:
for llm in llm_factory["llm"]:
if llm_id == llm["llm_name"]:
return llm["model_type"].strip(",")[-1]
def kb_prompt(kbinfos, max_tokens):
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
used_token_count = 0
chunks_num = 0
for i, c in enumerate(knowledges):
used_token_count += num_tokens_from_string(c)
chunks_num += 1
if max_tokens * 0.97 < used_token_count:
knowledges = knowledges[:i]
break
doc2chunks = defaultdict(list)
for i, ck in enumerate(kbinfos["chunks"]):
if i >= chunks_num:
break
doc2chunks[ck["docnm_kwd"]].append(ck["content_with_weight"])
knowledges = []
for nm, chunks in doc2chunks.items():
txt = f"Document: {nm} \nContains the following relevant fragments:\n"
for i, chunk in enumerate(chunks, 1):
txt += f"{i}. {chunk}\n"
knowledges.append(txt)
return knowledges
prompt_config = dialog.prompt_config
tts_mdl = None
if prompt_config.get("tts"):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"]
if stream:
last_ans = ""
delta_ans = ""
for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
answer = ans
delta_ans = ans[len(last_ans) :]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
delta_ans = ""
if delta_ans:
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
else:
answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}
def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
if not dialog.kb_ids:
for ans in chat_solo(dialog, messages, stream):
yield ans
return
chat_start_ts = timer()
# Get llm model name and model provider name
llm_id, model_provider = TenantLLMService.split_model_name_and_factory(dialog.llm_id)
# Get llm model instance by model and provide name
llm = LLMService.query(llm_name=llm_id) if not model_provider else LLMService.query(llm_name=llm_id, fid=model_provider)
if not llm:
# Model name is provided by tenant, but not system built-in
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id) if not model_provider else \
TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id, llm_factory=model_provider)
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
max_tokens = 8192
if llm_id2llm_type(dialog.llm_id) == "image2text":
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
max_tokens = llm[0].max_tokens
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
max_tokens = llm_model_config.get("max_tokens", 8192)
check_llm_ts = timer()
langfuse_tracer = None
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=dialog.tenant_id)
if langfuse_keys:
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
if langfuse.auth_check():
langfuse_tracer = langfuse
langfuse.trace = langfuse_tracer.trace(name=f"{dialog.name}-{llm_model_config['llm_name']}")
check_langfuse_tracer_ts = timer()
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
embedding_list = list(set([kb.embd_id for kb in kbs]))
if len(embedding_list) != 1:
@ -166,16 +163,12 @@ def chat(dialog, messages, stream=True, **kwargs):
embedding_model_name = embedding_list[0]
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
retriever = settings.retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
if "doc_ids" in messages[-1]:
attachments = messages[-1]["doc_ids"]
for m in messages[:-1]:
if "doc_ids" in m:
attachments.extend(m["doc_ids"])
create_retriever_ts = timer()
@ -189,6 +182,9 @@ def chat(dialog, messages, stream=True, **kwargs):
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
toolcall_session, tools = kwargs.get("toolcall_session"), kwargs.get("tools")
if toolcall_session and tools:
chat_mdl.bind_tools(toolcall_session, tools)
bind_llm_ts = timer()
@ -211,14 +207,16 @@ def chat(dialog, messages, stream=True, **kwargs):
if p["key"] not in kwargs and not p["optional"]:
raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace(
"{%s}" % p["key"], " ")
prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
if len(questions) > 1 and prompt_config.get("refine_multiturn"):
questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
else:
questions = questions[-1:]
if prompt_config.get("cross_languages"):
questions = [cross_languages(dialog.tenant_id, dialog.llm_id, questions[0], prompt_config["cross_languages"])]
refine_question_ts = timer()
rerank_mdl = None
@ -227,66 +225,148 @@ def chat(dialog, messages, stream=True, **kwargs):
bind_reranker_ts = timer()
generate_keyword_ts = bind_reranker_ts
thought = ""
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
knowledges = []
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
generate_keyword_ts = timer()
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
knowledges = []
if prompt_config.get("reasoning", False):
reasoner = DeepResearcher(
chat_mdl,
prompt_config,
partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3),
)
for think in reasoner.thinking(kbinfos, " ".join(questions)):
if isinstance(think, str):
thought = think
knowledges = [t for t in think.split("\n") if t]
elif stream:
yield think
else:
kbinfos = retriever.retrieval(
" ".join(questions),
embd_mdl,
tenant_ids,
dialog.kb_ids,
1,
dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(" ".join(questions), kbs),
)
if prompt_config.get("tavily_api_key"):
tav = Tavily(prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(" ".join(questions))
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"):
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl, LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
knowledges = kb_prompt(kbinfos, max_tokens)
logging.debug("{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
retrieval_ts = timer()
knowledges = kb_prompt(kbinfos, max_tokens)
logging.debug(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
if not knowledges and prompt_config.get("empty_response"):
empty_res = prompt_config["empty_response"]
yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)}
yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions), "audio_binary": tts(tts_mdl, empty_res)}
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n\n------\n\n".join(knowledges)
kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
for m in messages if m["role"] != "system"])
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
prompt4citation = ""
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
prompt4citation = citation_prompt()
msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"])
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.95))
assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
prompt = msg[0]["content"]
prompt += "\n\n### Query:\n%s" % " ".join(questions)
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(
gen_conf["max_tokens"],
max_tokens - used_token_count)
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], max_tokens - used_token_count)
def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
max_index = len(kbinfos["chunks"])
def safe_add(i):
if 0 <= i < max_index:
idx.add(i)
return True
return False
def find_and_replace(pattern, group_index=1, repl=lambda i: f"##{i}$$", flags=0):
nonlocal answer
for match in re.finditer(pattern, answer, flags=flags):
try:
i = int(match.group(group_index))
if safe_add(i):
answer = answer.replace(match.group(0), repl(i))
except Exception:
continue
find_and_replace(r"\(\s*ID:\s*(\d+)\s*\)") # (ID: 12)
find_and_replace(r"ID[: ]+(\d+)") # ID: 12, ID 12
find_and_replace(r"\$\$(\d+)\$\$") # $$12$$
find_and_replace(r"\$\[(\d+)\]\$") # $[12]$
find_and_replace(r"\$\$(\d+)\${2,}") # $$12$$$$
find_and_replace(r"\$(\d+)\$") # $12$
find_and_replace(r"(#{2,})(\d+)(\${2,})", group_index=2) # 2+ # and 2+ $
find_and_replace(r"(#{2,})(\d+)(#{1,})", group_index=2) # 2+ # and 1+ #
find_and_replace(r"##(\d+)#{2,}") # ##12###
find_and_replace(r"【(\d+)】") # 【12】
find_and_replace(r"ref\s*(\d+)", flags=re.IGNORECASE) # ref12, ref 12, REF 12
return answer, idx
def decorate_answer(answer):
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts
finish_chat_ts = timer()
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions, langfuse_tracer
refs = []
ans = answer.split("</think>")
think = ""
if len(ans) == 2:
think = ans[0] + "</think>"
answer = ans[1]
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retriever.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
answer = re.sub(r"##[ij]\$\$", "", answer, flags=re.DOTALL)
idx = set([])
if not re.search(r"##[0-9]+\$\$", answer):
answer, idx = retriever.insert_citations(
answer,
[ck["content_ltks"] for ck in kbinfos["chunks"]],
[ck["vector"] for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight,
)
else:
for match in re.finditer(r"##([0-9]+)\$\$", answer):
i = int(match.group(1))
if i < len(kbinfos["chunks"]):
idx.add(i)
answer, idx = repair_bad_citation_formats(answer, kbinfos, idx)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
@ -302,7 +382,8 @@ def chat(dialog, messages, stream=True, **kwargs):
total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
create_retriever_time_cost = (create_retriever_ts - check_llm_ts) * 1000
check_langfuse_tracer_cost = (check_langfuse_tracer_ts - check_llm_ts) * 1000
create_retriever_time_cost = (create_retriever_ts - check_langfuse_tracer_ts) * 1000
bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000
bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000
refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000
@ -311,27 +392,59 @@ def chat(dialog, messages, stream=True, **kwargs):
retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000
generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms"
return {"answer": answer, "reference": refs, "prompt": prompt}
tk_num = num_tokens_from_string(think + answer)
prompt += "\n\n### Query:\n%s" % " ".join(questions)
prompt = (
f"{prompt}\n\n"
"## Time elapsed:\n"
f" - Total: {total_time_cost:.1f}ms\n"
f" - Check LLM: {check_llm_time_cost:.1f}ms\n"
f" - Check Langfuse tracer: {check_langfuse_tracer_cost:.1f}ms\n"
f" - Create retriever: {create_retriever_time_cost:.1f}ms\n"
f" - Bind embedding: {bind_embedding_time_cost:.1f}ms\n"
f" - Bind LLM: {bind_llm_time_cost:.1f}ms\n"
f" - Multi-turn optimization: {refine_question_time_cost:.1f}ms\n"
f" - Bind reranker: {bind_reranker_time_cost:.1f}ms\n"
f" - Generate keyword: {generate_keyword_time_cost:.1f}ms\n"
f" - Retrieval: {retrieval_time_cost:.1f}ms\n"
f" - Generate answer: {generate_result_time_cost:.1f}ms\n\n"
"## Token usage:\n"
f" - Generated tokens(approximately): {tk_num}\n"
f" - Token speed: {int(tk_num / (generate_result_time_cost / 1000.0))}/s"
)
langfuse_output = "\n" + re.sub(r"^.*?(### Query:.*)", r"\1", prompt, flags=re.DOTALL)
langfuse_output = {"time_elapsed:": re.sub(r"\n", " \n", langfuse_output), "created_at": time.time()}
# Add a condition check to call the end method only if langfuse_tracer exists
if langfuse_tracer and "langfuse_generation" in locals():
langfuse_generation.end(output=langfuse_output)
return {"answer": think + answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
if langfuse_tracer:
langfuse_generation = langfuse_tracer.trace.generation(name="chat", model=llm_model_config["llm_name"], input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg})
if stream:
last_ans = ""
answer = ""
for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf):
for ans in chat_mdl.chat_streamly(prompt + prompt4citation, msg[1:], gen_conf):
if thought:
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
answer = ans
delta_ans = ans[len(last_ans):]
delta_ans = ans[len(last_ans) :]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans):]
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans) :]
if delta_ans:
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(answer)
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(thought + answer)
else:
answer = chat_mdl.chat(prompt, msg[1:], gen_conf)
logging.debug("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
answer = chat_mdl.chat(prompt + prompt4citation, msg[1:], gen_conf)
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
res = decorate_answer(answer)
res["audio_binary"] = tts(tts_mdl, answer)
yield res
@ -347,26 +460,22 @@ Table of database fields are as follows:
Question are as follows:
{}
Please write the SQL, only SQL, without any other explanations or text.
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question
)
""".format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question)
tried_times = 0
def get_table():
nonlocal sys_prompt, user_prompt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {
"temperature": 0.06})
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {"temperature": 0.06})
sql = re.sub(r"^.*</think>", "", sql, flags=re.DOTALL)
logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
sql = re.sub(r"([;]|```).*", "", sql)
if sql[:len("select ")] != "select ":
if sql[: len("select ")] != "select ":
return None, None
if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
if sql[:len("select *")] != "select *":
if sql[: len("select *")] != "select *":
sql = "select doc_id,docnm_kwd," + sql[6:]
else:
flds = []
@ -390,11 +499,11 @@ Please write the SQL, only SQL, without any other explanations or text.
Table name: {};
Table of database fields are as follows:
{}
Question are as follows:
{}
Please write the SQL, only SQL, without any other explanations or text.
The SQL error you provided last time is as follows:
{}
@ -403,11 +512,7 @@ Please write the SQL, only SQL, without any other explanations or text.
{}
Please correct the error and write SQL again, only SQL, without any other explanations or text.
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question, sql, tbl["error"]
)
""".format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question, sql, tbl["error"])
tbl, sql = get_table()
logging.debug("TRY it again: {}".format(sql))
@ -415,24 +520,18 @@ Please write the SQL, only SQL, without any other explanations or text.
if tbl.get("error") or len(tbl["rows"]) == 0:
return None
docid_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "doc_id"])
doc_name_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "docnm_kwd"])
column_idx = [ii for ii in range(
len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
doc_name_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
column_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
# compose Markdown table
columns = "|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"],
tbl["columns"][i]["name"])) for i in
column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
columns = (
"|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
)
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + \
("|------|" if docid_idx and docid_idx else "")
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + ("|------|" if docid_idx and docid_idx else "")
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
rows = ["|" + "|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
@ -442,11 +541,7 @@ Please write the SQL, only SQL, without any other explanations or text.
if not docid_idx or not doc_name_idx:
logging.warning("SQL missing field: " + sql)
return {
"answer": "\n".join([columns, line, rows]),
"reference": {"chunks": [], "doc_aggs": []},
"prompt": sys_prompt
}
return {"answer": "\n".join([columns, line, rows]), "reference": {"chunks": [], "doc_aggs": []}, "prompt": sys_prompt}
docid_idx = list(docid_idx)[0]
doc_name_idx = list(doc_name_idx)[0]
@ -457,179 +552,14 @@ Please write the SQL, only SQL, without any other explanations or text.
doc_aggs[r[docid_idx]]["count"] += 1
return {
"answer": "\n".join([columns, line, rows]),
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
doc_aggs.items()]},
"prompt": sys_prompt
"reference": {
"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()],
},
"prompt": sys_prompt,
}
def relevant(tenant_id, llm_id, question, contents: list):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
No other words needed except 'yes' or 'no'.
"""
if not contents:
return False
contents = "Documents: \n" + " - ".join(contents)
contents = f"Question: {question}\n" + contents
if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
if ans.lower().find("yes") >= 0:
return True
return False
def rewrite(tenant_id, llm_id, question):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
return ans
def keyword_extraction(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: extract the most important keywords/phrases of a given piece of text content.
Requirements:
- Summarize the text content, and give top {topn} important keywords/phrases.
- The keywords MUST be in language of the given piece of text content.
- The keywords are delimited by ENGLISH COMMA.
- Keywords ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def question_proposal(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: propose {topn} questions about a given piece of text content.
Requirements:
- Understand and summarize the text content, and propose top {topn} important questions.
- The questions SHOULD NOT have overlapping meanings.
- The questions SHOULD cover the main content of the text as much as possible.
- The questions MUST be in language of the given piece of text content.
- One question per line.
- Question ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def full_question(tenant_id, llm_id, messages):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
conv = []
for m in messages:
if m["role"] not in ["user", "assistant"]:
continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conv = "\n".join(conv)
today = datetime.date.today().isoformat()
yesterday = (datetime.date.today() - timedelta(days=1)).isoformat()
tomorrow = (datetime.date.today() + timedelta(days=1)).isoformat()
prompt = f"""
Role: A helpful assistant
Task and steps:
1. Generate a full user question that would follow the conversation.
2. If the user's question involves relative date, you need to convert it into absolute date based on the current date, which is {today}. For example: 'yesterday' would be converted to {yesterday}.
Requirements & Restrictions:
- Text generated MUST be in the same language of the original user's question.
- If the user's latest question is completely, don't do anything, just return the original question.
- DON'T generate anything except a refined question.
######################
-Examples-
######################
# Example 1
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
###############
Output: What's the name of Donald Trump's mother?
------------
# Example 2
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
ASSISTANT: Mary Trump.
User: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
------------
# Example 3
## Conversation
USER: What's the weather today in London?
ASSISTANT: Cloudy.
USER: What's about tomorrow in Rochester?
###############
Output: What's the weather in Rochester on {tomorrow}?
######################
# Real Data
## Conversation
{conv}
###############
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2})
return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
def tts(tts_mdl, text):
if not tts_mdl or not text:
return
@ -650,7 +580,7 @@ def ask(question, kb_ids, tenant_id):
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
max_tokens = chat_mdl.max_length
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False)
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False, rank_feature=label_question(question, kbs))
knowledges = kb_prompt(kbinfos, max_tokens)
prompt = """
Role: You're a smart assistant. Your name is Miss R.
@ -672,17 +602,9 @@ def ask(question, kb_ids, tenant_id):
def decorate_answer(answer):
nonlocal knowledges, kbinfos, prompt
answer, idx = retriever.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=0.7,
vtweight=0.3)
answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
@ -693,6 +615,7 @@ def ask(question, kb_ids, tenant_id):
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
refs["chunks"] = chunks_format(refs)
return {"answer": answer, "reference": refs}
answer = ""

View File

@ -13,9 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import xxhash
import json
import logging
import random
import re
from concurrent.futures import ThreadPoolExecutor
@ -23,23 +22,22 @@ from copy import deepcopy
from datetime import datetime
from io import BytesIO
import trio
import xxhash
from peewee import fn
from api.db.db_utils import bulk_insert_into_db
from api import settings
from api.utils import current_timestamp, get_format_time, get_uuid
from graphrag.mind_map_extractor import MindMapExtractor
from rag.settings import SVR_QUEUE_NAME
from rag.utils.storage_factory import STORAGE_IMPL
from rag.nlp import search, rag_tokenizer
from api.db import FileType, TaskStatus, ParserType, LLMType
from api.db.db_models import DB, Knowledgebase, Tenant, Task, UserTenant
from api.db.db_models import Document
from api.db import FileType, LLMType, ParserType, StatusEnum, TaskStatus, UserTenantRole
from api.db.db_models import DB, Document, Knowledgebase, Task, Tenant, UserTenant
from api.db.db_utils import bulk_insert_into_db
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db import StatusEnum
from api.utils import current_timestamp, get_format_time, get_uuid
from rag.nlp import rag_tokenizer, search
from rag.settings import get_svr_queue_name
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL
from rag.utils.doc_store_conn import OrderByExpr
class DocumentService(CommonService):
@ -66,14 +64,14 @@ class DocumentService(CommonService):
else:
docs = docs.order_by(cls.model.getter_by(orderby).asc())
docs = docs.paginate(page_number, items_per_page)
count = docs.count()
docs = docs.paginate(page_number, items_per_page)
return list(docs.dicts()), count
@classmethod
@DB.connection_context()
def get_by_kb_id(cls, kb_id, page_number, items_per_page,
orderby, desc, keywords):
orderby, desc, keywords, run_status, types):
if keywords:
docs = cls.model.select().where(
(cls.model.kb_id == kb_id),
@ -81,35 +79,89 @@ class DocumentService(CommonService):
)
else:
docs = cls.model.select().where(cls.model.kb_id == kb_id)
if run_status:
docs = docs.where(cls.model.run.in_(run_status))
if types:
docs = docs.where(cls.model.type.in_(types))
count = docs.count()
if desc:
docs = docs.order_by(cls.model.getter_by(orderby).desc())
else:
docs = docs.order_by(cls.model.getter_by(orderby).asc())
docs = docs.paginate(page_number, items_per_page)
if page_number and items_per_page:
docs = docs.paginate(page_number, items_per_page)
return list(docs.dicts()), count
@classmethod
@DB.connection_context()
def count_by_kb_id(cls, kb_id, keywords, run_status, types):
if keywords:
docs = cls.model.select().where(
(cls.model.kb_id == kb_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
else:
docs = cls.model.select().where(cls.model.kb_id == kb_id)
if run_status:
docs = docs.where(cls.model.run.in_(run_status))
if types:
docs = docs.where(cls.model.type.in_(types))
count = docs.count()
return count
@classmethod
@DB.connection_context()
def get_total_size_by_kb_id(cls, kb_id, keywords="", run_status=[], types=[]):
query = cls.model.select(fn.COALESCE(fn.SUM(cls.model.size), 0)).where(
cls.model.kb_id == kb_id
)
if keywords:
query = query.where(fn.LOWER(cls.model.name).contains(keywords.lower()))
if run_status:
query = query.where(cls.model.run.in_(run_status))
if types:
query = query.where(cls.model.type.in_(types))
return int(query.scalar()) or 0
@classmethod
@DB.connection_context()
def insert(cls, doc):
if not cls.save(**doc):
raise RuntimeError("Database error (Document)!")
e, doc = cls.get_by_id(doc["id"])
if not e:
raise RuntimeError("Database error (Document retrieval)!")
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
if not KnowledgebaseService.update_by_id(
kb.id, {"doc_num": kb.doc_num + 1}):
if not KnowledgebaseService.atomic_increase_doc_num_by_id(doc["kb_id"]):
raise RuntimeError("Database error (Knowledgebase)!")
return doc
return Document(**doc)
@classmethod
@DB.connection_context()
def remove_document(cls, doc, tenant_id):
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
cls.clear_chunk_num(doc.id)
try:
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
graph_source = settings.docStoreConn.getFields(
settings.docStoreConn.search(["source_id"], [], {"kb_id": doc.kb_id, "knowledge_graph_kwd": ["graph"]}, [], OrderByExpr(), 0, 1, search.index_name(tenant_id), [doc.kb_id]), ["source_id"]
)
if len(graph_source) > 0 and doc.id in list(graph_source.values())[0]["source_id"]:
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "source_id": doc.id},
{"remove": {"source_id": doc.id}},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["graph"]},
{"removed_kwd": "Y"},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.delete({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "must_not": {"exists": "source_id"}},
search.index_name(tenant_id), doc.kb_id)
except Exception:
pass
return cls.delete_by_id(doc.id)
@classmethod
@ -145,7 +197,7 @@ class DocumentService(CommonService):
@DB.connection_context()
def get_unfinished_docs(cls):
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg,
cls.model.run]
cls.model.run, cls.model.parser_id]
docs = cls.model.select(*fields) \
.where(
cls.model.status == StatusEnum.VALID.value,
@ -166,9 +218,9 @@ class DocumentService(CommonService):
"Document not found which is supposed to be there")
num = Knowledgebase.update(
token_num=Knowledgebase.token_num +
token_num,
token_num,
chunk_num=Knowledgebase.chunk_num +
chunk_num).where(
chunk_num).where(
Knowledgebase.id == kb_id).execute()
return num
@ -184,9 +236,9 @@ class DocumentService(CommonService):
"Document not found which is supposed to be there")
num = Knowledgebase.update(
token_num=Knowledgebase.token_num -
token_num,
token_num,
chunk_num=Knowledgebase.chunk_num -
chunk_num
chunk_num
).where(
Knowledgebase.id == kb_id).execute()
return num
@ -199,9 +251,9 @@ class DocumentService(CommonService):
num = Knowledgebase.update(
token_num=Knowledgebase.token_num -
doc.token_num,
doc.token_num,
chunk_num=Knowledgebase.chunk_num -
doc.chunk_num,
doc.chunk_num,
doc_num=Knowledgebase.doc_num - 1
).where(
Knowledgebase.id == doc.kb_id).execute()
@ -213,7 +265,7 @@ class DocumentService(CommonService):
docs = cls.model.select(
Knowledgebase.tenant_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
@ -235,7 +287,7 @@ class DocumentService(CommonService):
docs = cls.model.select(
Knowledgebase.tenant_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.name == name, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
@ -248,7 +300,7 @@ class DocumentService(CommonService):
docs = cls.model.select(
cls.model.id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)
Knowledgebase.id == cls.model.kb_id)
).join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == doc_id, UserTenant.user_id == user_id).paginate(0, 1)
docs = docs.dicts()
@ -259,11 +311,18 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def accessible4deletion(cls, doc_id, user_id):
docs = cls.model.select(
cls.model.id).join(
docs = cls.model.select(cls.model.id
).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)
).where(cls.model.id == doc_id, Knowledgebase.created_by == user_id).paginate(0, 1)
Knowledgebase.id == cls.model.kb_id)
).join(
UserTenant, on=(
(UserTenant.tenant_id == Knowledgebase.created_by) & (UserTenant.user_id == user_id))
).where(
cls.model.id == doc_id,
UserTenant.status == StatusEnum.VALID.value,
((UserTenant.role == UserTenantRole.NORMAL) | (UserTenant.role == UserTenantRole.OWNER))
).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
@ -275,7 +334,7 @@ class DocumentService(CommonService):
docs = cls.model.select(
Knowledgebase.embd_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
@ -317,6 +376,15 @@ class DocumentService(CommonService):
if not doc_id:
return
return doc_id[0]["id"]
@classmethod
@DB.connection_context()
def get_doc_ids_by_doc_names(cls, doc_names):
if not doc_names:
return []
query = cls.model.select(cls.model.id).where(cls.model.name.in_(doc_names))
return list(query.scalars().iterator())
@classmethod
@DB.connection_context()
@ -328,6 +396,8 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def update_parser_config(cls, id, config):
if not config:
return
e, d = cls.get_by_id(id)
if not e:
raise LookupError(f"Document({id}) not found.")
@ -365,6 +435,11 @@ class DocumentService(CommonService):
"process_begin_at": get_format_time()
})
@classmethod
@DB.connection_context()
def update_meta_fields(cls, doc_id, meta_fields):
return cls.update_by_id(doc_id, {"meta_fields": meta_fields})
@classmethod
@DB.connection_context()
def update_progress(cls):
@ -378,34 +453,42 @@ class DocumentService(CommonService):
prg = 0
finished = True
bad = 0
has_raptor = False
has_graphrag = False
e, doc = DocumentService.get_by_id(d["id"])
status = doc.run # TaskStatus.RUNNING.value
priority = 0
for t in tsks:
if 0 <= t.progress < 1:
finished = False
prg += t.progress if t.progress >= 0 else 0
if t.progress_msg not in msg:
msg.append(t.progress_msg)
if t.progress == -1:
bad += 1
prg += t.progress if t.progress >= 0 else 0
msg.append(t.progress_msg)
if t.task_type == "raptor":
has_raptor = True
elif t.task_type == "graphrag":
has_graphrag = True
priority = max(priority, t.priority)
prg /= len(tsks)
if finished and bad:
prg = -1
status = TaskStatus.FAIL.value
elif finished:
if d["parser_config"].get("raptor", {}).get("use_raptor") and d["progress_msg"].lower().find(
" raptor") < 0:
queue_raptor_tasks(d)
if d["parser_config"].get("raptor", {}).get("use_raptor") and not has_raptor:
queue_raptor_o_graphrag_tasks(d, "raptor", priority)
prg = 0.98 * len(tsks) / (len(tsks) + 1)
elif d["parser_config"].get("graphrag", {}).get("use_graphrag") and not has_graphrag:
queue_raptor_o_graphrag_tasks(d, "graphrag", priority)
prg = 0.98 * len(tsks) / (len(tsks) + 1)
msg.append("------ RAPTOR -------")
else:
status = TaskStatus.DONE.value
msg = "\n".join(msg)
msg = "\n".join(sorted(msg))
info = {
"process_duation": datetime.timestamp(
datetime.now()) -
d["process_begin_at"].timestamp(),
d["process_begin_at"].timestamp(),
"run": status}
if prg != 0:
info["progress"] = prg
@ -433,7 +516,7 @@ class DocumentService(CommonService):
return False
def queue_raptor_tasks(doc):
def queue_raptor_o_graphrag_tasks(doc, ty, priority):
chunking_config = DocumentService.get_chunking_config(doc["id"])
hasher = xxhash.xxh64()
for field in sorted(chunking_config.keys()):
@ -446,26 +529,27 @@ def queue_raptor_tasks(doc):
"doc_id": doc["id"],
"from_page": 100000000,
"to_page": 100000000,
"progress_msg": "Start to do RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval)."
"task_type": ty,
"progress_msg": datetime.now().strftime("%H:%M:%S") + " created task " + ty
}
task = new_task()
for field in ["doc_id", "from_page", "to_page"]:
hasher.update(str(task.get(field, "")).encode("utf-8"))
hasher.update(ty.encode("utf-8"))
task["digest"] = hasher.hexdigest()
bulk_insert_into_db(Task, [task], True)
task["type"] = "raptor"
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=task), "Can't access Redis. Please check the Redis' status."
assert REDIS_CONN.queue_product(get_svr_queue_name(priority), message=task), "Can't access Redis. Please check the Redis' status."
def doc_upload_and_parse(conversation_id, file_objs, user_id):
from rag.app import presentation, picture, naive, audio, email
from api.db.services.api_service import API4ConversationService
from api.db.services.conversation_service import ConversationService
from api.db.services.dialog_service import DialogService
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from api.db.services.api_service import API4ConversationService
from api.db.services.conversation_service import ConversationService
from rag.app import audio, email, naive, picture, presentation
e, conv = ConversationService.get_by_id(conversation_id)
if not e:
@ -473,6 +557,9 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
assert e, "Conversation not found!"
e, dia = DialogService.get_by_id(conv.dialog_id)
if not dia.kb_ids:
raise LookupError("No knowledge base associated with this conversation. "
"Please add a knowledge base before uploading documents")
kb_id = dia.kb_ids[0]
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
@ -492,7 +579,7 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email
}
parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": "Plain Text"}
exe = ThreadPoolExecutor(max_workers=12)
threads = []
doc_nm = {}
@ -561,10 +648,11 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
cks = [c for c in docs if c["doc_id"] == doc_id]
if parser_ids[doc_id] != ParserType.PICTURE.value:
from graphrag.general.mind_map_extractor import MindMapExtractor
mindmap = MindMapExtractor(llm_bdl)
try:
mind_map = json.dumps(mindmap([c["content_with_weight"] for c in docs if c["doc_id"] == doc_id]).output,
ensure_ascii=False, indent=2)
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in docs if c["doc_id"] == doc_id])
mind_map = json.dumps(mind_map.output, ensure_ascii=False, indent=2)
if len(mind_map) < 32:
raise Exception("Few content: " + mind_map)
cks.append({
@ -573,7 +661,7 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
"kb_id": [kb.id],
"docnm_kwd": doc_nm[doc_id],
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc_nm[doc_id])),
"content_ltks": "",
"content_ltks": rag_tokenizer.tokenize("summary summarize 总结 概况 file 文件 概括"),
"content_with_weight": mind_map,
"knowledge_graph_kwd": "mind_map"
})
@ -595,4 +683,4 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
DocumentService.increment_chunk_num(
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
return [d["id"] for d, _ in files]
return [d["id"] for d, _ in files]

View File

@ -43,10 +43,7 @@ class File2DocumentService(CommonService):
def insert(cls, obj):
if not cls.save(**obj):
raise RuntimeError("Database error (File)!")
e, obj = cls.get_by_id(obj["id"])
if not e:
raise RuntimeError("Database error (File retrieval)!")
return obj
return File2Document(**obj)
@classmethod
@DB.connection_context()
@ -63,9 +60,8 @@ class File2DocumentService(CommonService):
def update_by_file_id(cls, file_id, obj):
obj["update_time"] = current_timestamp()
obj["update_date"] = datetime_format(datetime.now())
# num = cls.model.update(obj).where(cls.model.id == file_id).execute()
e, obj = cls.get_by_id(cls.model.id)
return obj
cls.model.update(obj).where(cls.model.id == file_id).execute()
return File2Document(**obj)
@classmethod
@DB.connection_context()

View File

@ -14,44 +14,46 @@
# limitations under the License.
#
import logging
import re
import os
import re
from concurrent.futures import ThreadPoolExecutor
from flask_login import current_user
from peewee import fn
from api.db import FileType, KNOWLEDGEBASE_FOLDER_NAME, FileSource, ParserType
from api.db.db_models import DB, File2Document, Knowledgebase
from api.db.db_models import File, Document
from api.db import KNOWLEDGEBASE_FOLDER_NAME, FileSource, FileType, ParserType
from api.db.db_models import DB, Document, File, File2Document, Knowledgebase
from api.db.services import duplicate_name
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.utils import get_uuid
from api.utils.file_utils import filename_type, thumbnail_img
from api.utils.file_utils import filename_type, read_potential_broken_pdf, thumbnail_img
from rag.utils.storage_factory import STORAGE_IMPL
class FileService(CommonService):
# Service class for managing file operations and storage
model = File
@classmethod
@DB.connection_context()
def get_by_pf_id(cls, tenant_id, pf_id, page_number, items_per_page,
orderby, desc, keywords):
def get_by_pf_id(cls, tenant_id, pf_id, page_number, items_per_page, orderby, desc, keywords):
# Get files by parent folder ID with pagination and filtering
# Args:
# tenant_id: ID of the tenant
# pf_id: Parent folder ID
# page_number: Page number for pagination
# items_per_page: Number of items per page
# orderby: Field to order by
# desc: Boolean indicating descending order
# keywords: Search keywords
# Returns:
# Tuple of (file_list, total_count)
if keywords:
files = cls.model.select().where(
(cls.model.tenant_id == tenant_id),
(cls.model.parent_id == pf_id),
(fn.LOWER(cls.model.name).contains(keywords.lower())),
~(cls.model.id == pf_id)
)
files = cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == pf_id), (fn.LOWER(cls.model.name).contains(keywords.lower())), ~(cls.model.id == pf_id))
else:
files = cls.model.select().where((cls.model.tenant_id == tenant_id),
(cls.model.parent_id == pf_id),
~(cls.model.id == pf_id)
)
files = cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == pf_id), ~(cls.model.id == pf_id))
count = files.count()
if desc:
files = files.order_by(cls.model.getter_by(orderby).desc())
@ -64,37 +66,54 @@ class FileService(CommonService):
for file in res_files:
if file["type"] == FileType.FOLDER.value:
file["size"] = cls.get_folder_size(file["id"])
file['kbs_info'] = []
children = list(cls.model.select().where(
(cls.model.tenant_id == tenant_id),
(cls.model.parent_id == file["id"]),
~(cls.model.id == file["id"]),
).dicts())
file["has_child_folder"] = any(value["type"] == FileType.FOLDER.value for value in children)
file["kbs_info"] = []
children = list(
cls.model.select()
.where(
(cls.model.tenant_id == tenant_id),
(cls.model.parent_id == file["id"]),
~(cls.model.id == file["id"]),
)
.dicts()
)
file["has_child_folder"] = any(value["type"] == FileType.FOLDER.value for value in children)
continue
kbs_info = cls.get_kb_id_by_file_id(file['id'])
file['kbs_info'] = kbs_info
kbs_info = cls.get_kb_id_by_file_id(file["id"])
file["kbs_info"] = kbs_info
return res_files, count
@classmethod
@DB.connection_context()
def get_kb_id_by_file_id(cls, file_id):
kbs = (cls.model.select(*[Knowledgebase.id, Knowledgebase.name])
.join(File2Document, on=(File2Document.file_id == file_id))
.join(Document, on=(File2Document.document_id == Document.id))
.join(Knowledgebase, on=(Knowledgebase.id == Document.kb_id))
.where(cls.model.id == file_id))
# Get knowledge base IDs associated with a file
# Args:
# file_id: File ID
# Returns:
# List of dictionaries containing knowledge base IDs and names
kbs = (
cls.model.select(*[Knowledgebase.id, Knowledgebase.name])
.join(File2Document, on=(File2Document.file_id == file_id))
.join(Document, on=(File2Document.document_id == Document.id))
.join(Knowledgebase, on=(Knowledgebase.id == Document.kb_id))
.where(cls.model.id == file_id)
)
if not kbs:
return []
kbs_info_list = []
for kb in list(kbs.dicts()):
kbs_info_list.append({"kb_id": kb['id'], "kb_name": kb['name']})
kbs_info_list.append({"kb_id": kb["id"], "kb_name": kb["name"]})
return kbs_info_list
@classmethod
@DB.connection_context()
def get_by_pf_id_name(cls, id, name):
# Get file by parent folder ID and name
# Args:
# id: Parent folder ID
# name: File name
# Returns:
# File object or None if not found
file = cls.model.select().where((cls.model.parent_id == id) & (cls.model.name == name))
if file.count():
e, file = cls.get_by_id(file[0].id)
@ -106,6 +125,14 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_id_list_by_id(cls, id, name, count, res):
# Recursively get list of file IDs by traversing folder structure
# Args:
# id: Starting folder ID
# name: List of folder names to traverse
# count: Current depth in traversal
# res: List to store results
# Returns:
# List of file IDs
if count < len(name):
file = cls.get_by_pf_id_name(id, name[count])
if file:
@ -119,6 +146,12 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_all_innermost_file_ids(cls, folder_id, result_ids):
# Get IDs of all files in the deepest level of folders
# Args:
# folder_id: Starting folder ID
# result_ids: List to store results
# Returns:
# List of file IDs
subfolders = cls.model.select().where(cls.model.parent_id == folder_id)
if subfolders.exists():
for subfolder in subfolders:
@ -130,24 +163,30 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def create_folder(cls, file, parent_id, name, count):
# Recursively create folder structure
# Args:
# file: Current file object
# parent_id: Parent folder ID
# name: List of folder names to create
# count: Current depth in creation
# Returns:
# Created file object
if count > len(name) - 2:
return file
else:
file = cls.insert({
"id": get_uuid(),
"parent_id": parent_id,
"tenant_id": current_user.id,
"created_by": current_user.id,
"name": name[count],
"location": "",
"size": 0,
"type": FileType.FOLDER.value
})
file = cls.insert(
{"id": get_uuid(), "parent_id": parent_id, "tenant_id": current_user.id, "created_by": current_user.id, "name": name[count], "location": "", "size": 0, "type": FileType.FOLDER.value}
)
return cls.create_folder(file, file.id, name, count + 1)
@classmethod
@DB.connection_context()
def is_parent_folder_exist(cls, parent_id):
# Check if parent folder exists
# Args:
# parent_id: Parent folder ID
# Returns:
# Boolean indicating if folder exists
parent_files = cls.model.select().where(cls.model.id == parent_id)
if parent_files.count():
return True
@ -157,9 +196,12 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_root_folder(cls, tenant_id):
for file in cls.model.select().where((cls.model.tenant_id == tenant_id),
(cls.model.parent_id == cls.model.id)
):
# Get or create root folder for tenant
# Args:
# tenant_id: Tenant ID
# Returns:
# Root folder dictionary
for file in cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
return file.to_dict()
file_id = get_uuid()
@ -179,17 +221,29 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_kb_folder(cls, tenant_id):
for root in cls.model.select().where(
(cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
for folder in cls.model.select().where(
(cls.model.tenant_id == tenant_id), (cls.model.parent_id == root.id),
(cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)):
# Get knowledge base folder for tenant
# Args:
# tenant_id: Tenant ID
# Returns:
# Knowledge base folder dictionary
for root in cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
for folder in cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == root.id), (cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)):
return folder.to_dict()
assert False, "Can't find the KB folder. Database init error."
@classmethod
@DB.connection_context()
def new_a_file_from_kb(cls, tenant_id, name, parent_id, ty=FileType.FOLDER.value, size=0, location=""):
# Create a new file from knowledge base
# Args:
# tenant_id: Tenant ID
# name: File name
# parent_id: Parent folder ID
# ty: File type
# size: File size
# location: File location
# Returns:
# Created file dictionary
for file in cls.query(tenant_id=tenant_id, parent_id=parent_id, name=name):
return file.to_dict()
file = {
@ -201,7 +255,7 @@ class FileService(CommonService):
"type": ty,
"size": size,
"location": location,
"source_type": FileSource.KNOWLEDGEBASE
"source_type": FileSource.KNOWLEDGEBASE,
}
cls.save(**file)
return file
@ -209,12 +263,15 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def init_knowledgebase_docs(cls, root_id, tenant_id):
for _ in cls.model.select().where((cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)\
& (cls.model.parent_id == root_id)):
# Initialize knowledge base documents
# Args:
# root_id: Root folder ID
# tenant_id: Tenant ID
for _ in cls.model.select().where((cls.model.name == KNOWLEDGEBASE_FOLDER_NAME) & (cls.model.parent_id == root_id)):
return
folder = cls.new_a_file_from_kb(tenant_id, KNOWLEDGEBASE_FOLDER_NAME, root_id)
for kb in Knowledgebase.select(*[Knowledgebase.id, Knowledgebase.name]).where(Knowledgebase.tenant_id==tenant_id):
for kb in Knowledgebase.select(*[Knowledgebase.id, Knowledgebase.name]).where(Knowledgebase.tenant_id == tenant_id):
kb_folder = cls.new_a_file_from_kb(tenant_id, kb.name, folder["id"])
for doc in DocumentService.query(kb_id=kb.id):
FileService.add_file_from_kb(doc.to_dict(), kb_folder["id"], tenant_id)
@ -222,6 +279,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_parent_folder(cls, file_id):
# Get parent folder of a file
# Args:
# file_id: File ID
# Returns:
# Parent folder object
file = cls.model.select().where(cls.model.id == file_id)
if file.count():
e, file = cls.get_by_id(file[0].parent_id)
@ -234,6 +296,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_all_parent_folders(cls, start_id):
# Get all parent folders in path
# Args:
# start_id: Starting file ID
# Returns:
# List of parent folder objects
parent_folders = []
current_id = start_id
while current_id:
@ -249,16 +316,19 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def insert(cls, file):
# Insert a new file record
# Args:
# file: File data dictionary
# Returns:
# Created file object
if not cls.save(**file):
raise RuntimeError("Database error (File)!")
e, file = cls.get_by_id(file["id"])
if not e:
raise RuntimeError("Database error (File retrieval)!")
return file
return File(**file)
@classmethod
@DB.connection_context()
def delete(cls, file):
#
return cls.delete_by_id(file.id)
@classmethod
@ -270,12 +340,10 @@ class FileService(CommonService):
@DB.connection_context()
def delete_folder_by_pf_id(cls, user_id, folder_id):
try:
files = cls.model.select().where((cls.model.tenant_id == user_id)
& (cls.model.parent_id == folder_id))
files = cls.model.select().where((cls.model.tenant_id == user_id) & (cls.model.parent_id == folder_id))
for file in files:
cls.delete_folder_by_pf_id(user_id, file.id)
return cls.model.delete().where((cls.model.tenant_id == user_id)
& (cls.model.id == folder_id)).execute(),
return (cls.model.delete().where((cls.model.tenant_id == user_id) & (cls.model.id == folder_id)).execute(),)
except Exception:
logging.exception("delete_folder_by_pf_id")
raise RuntimeError("Database error (File retrieval)!")
@ -293,8 +361,7 @@ class FileService(CommonService):
def dfs(parent_id):
nonlocal size
for f in cls.model.select(*[cls.model.id, cls.model.size, cls.model.type]).where(
cls.model.parent_id == parent_id, cls.model.id != parent_id):
for f in cls.model.select(*[cls.model.id, cls.model.size, cls.model.type]).where(cls.model.parent_id == parent_id, cls.model.id != parent_id):
size += f.size
if f.type == FileType.FOLDER.value:
dfs(f.id)
@ -316,16 +383,16 @@ class FileService(CommonService):
"type": doc["type"],
"size": doc["size"],
"location": doc["location"],
"source_type": FileSource.KNOWLEDGEBASE
"source_type": FileSource.KNOWLEDGEBASE,
}
cls.save(**file)
File2DocumentService.save(**{"id": get_uuid(), "file_id": file["id"], "document_id": doc["id"]})
@classmethod
@DB.connection_context()
def move_file(cls, file_ids, folder_id):
try:
cls.filter_update((cls.model.id << file_ids, ), { 'parent_id': folder_id })
cls.filter_update((cls.model.id << file_ids,), {"parent_id": folder_id})
except Exception:
logging.exception("move_file")
raise RuntimeError("Database error (File move)!")
@ -342,16 +409,13 @@ class FileService(CommonService):
err, files = [], []
for file in file_objs:
try:
MAX_FILE_NUM_PER_USER = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
MAX_FILE_NUM_PER_USER = int(os.environ.get("MAX_FILE_NUM_PER_USER", 0))
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(kb.tenant_id) >= MAX_FILE_NUM_PER_USER:
raise RuntimeError("Exceed the maximum file number of a free user!")
if len(file.filename) >= 128:
if len(file.filename.encode("utf-8")) >= 128:
raise RuntimeError("Exceed the maximum length of file name!")
filename = duplicate_name(
DocumentService.query,
name=file.filename,
kb_id=kb.id)
filename = duplicate_name(DocumentService.query, name=file.filename, kb_id=kb.id)
filetype = filename_type(filename)
if filetype == FileType.OTHER.value:
raise RuntimeError("This type of file has not been supported yet!")
@ -359,15 +423,18 @@ class FileService(CommonService):
location = filename
while STORAGE_IMPL.obj_exist(kb.id, location):
location += "_"
blob = file.read()
if filetype == FileType.PDF.value:
blob = read_potential_broken_pdf(blob)
STORAGE_IMPL.put(kb.id, location, blob)
doc_id = get_uuid()
img = thumbnail_img(filename, blob)
thumbnail_location = ''
thumbnail_location = ""
if img is not None:
thumbnail_location = f'thumbnail_{doc_id}.png'
thumbnail_location = f"thumbnail_{doc_id}.png"
STORAGE_IMPL.put(kb.id, thumbnail_location, img)
doc = {
@ -380,7 +447,7 @@ class FileService(CommonService):
"name": filename,
"location": location,
"size": len(blob),
"thumbnail": thumbnail_location
"thumbnail": thumbnail_location,
}
DocumentService.insert(doc)
@ -393,29 +460,17 @@ class FileService(CommonService):
@staticmethod
def parse_docs(file_objs, user_id):
from rag.app import presentation, picture, naive, audio, email
from rag.app import audio, email, naive, picture, presentation
def dummy(prog=None, msg=""):
pass
FACTORY = {
ParserType.PRESENTATION.value: presentation,
ParserType.PICTURE.value: picture,
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email
}
parser_config = {"chunk_token_num": 16096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
FACTORY = {ParserType.PRESENTATION.value: presentation, ParserType.PICTURE.value: picture, ParserType.AUDIO.value: audio, ParserType.EMAIL.value: email}
parser_config = {"chunk_token_num": 16096, "delimiter": "\n!?;。;!?", "layout_recognize": "Plain Text"}
exe = ThreadPoolExecutor(max_workers=12)
threads = []
for file in file_objs:
kwargs = {
"lang": "English",
"callback": dummy,
"parser_config": parser_config,
"from_page": 0,
"to_page": 100000,
"tenant_id": user_id
}
kwargs = {"lang": "English", "callback": dummy, "parser_config": parser_config, "from_page": 0, "to_page": 100000, "tenant_id": user_id}
filetype = filename_type(file.filename)
blob = file.read()
threads.append(exe.submit(FACTORY.get(FileService.get_parser(filetype, file.filename, ""), naive).chunk, file.filename, blob, **kwargs))
@ -436,4 +491,5 @@ class FileService(CommonService):
return ParserType.PRESENTATION.value
if re.search(r"\.(eml)$", filename):
return ParserType.EMAIL.value
return default
return default

View File

@ -13,35 +13,144 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.db import StatusEnum, TenantPermission
from api.db.db_models import Knowledgebase, DB, Tenant, User, UserTenant,Document
from api.db.services.common_service import CommonService
from datetime import datetime
from peewee import fn
from api.db import StatusEnum, TenantPermission
from api.db.db_models import DB, Document, Knowledgebase, Tenant, User, UserTenant
from api.db.services.common_service import CommonService
from api.utils import current_timestamp, datetime_format
class KnowledgebaseService(CommonService):
"""Service class for managing knowledge base operations.
This class extends CommonService to provide specialized functionality for knowledge base
management, including document parsing status tracking, access control, and configuration
management. It handles operations such as listing, creating, updating, and deleting
knowledge bases, as well as managing their associated documents and permissions.
The class implements a comprehensive set of methods for:
- Document parsing status verification
- Knowledge base access control
- Parser configuration management
- Tenant-based knowledge base organization
Attributes:
model: The Knowledgebase model class for database operations.
"""
model = Knowledgebase
@classmethod
@DB.connection_context()
def list_documents_by_ids(cls,kb_ids):
doc_ids=cls.model.select(Document.id.alias("document_id")).join(Document,on=(cls.model.id == Document.kb_id)).where(
def accessible4deletion(cls, kb_id, user_id):
"""Check if a knowledge base can be deleted by a specific user.
This method verifies whether a user has permission to delete a knowledge base
by checking if they are the creator of that knowledge base.
Args:
kb_id (str): The unique identifier of the knowledge base to check.
user_id (str): The unique identifier of the user attempting the deletion.
Returns:
bool: True if the user has permission to delete the knowledge base,
False if the user doesn't have permission or the knowledge base doesn't exist.
Example:
>>> KnowledgebaseService.accessible4deletion("kb123", "user456")
True
Note:
- This method only checks creator permissions
- A return value of False can mean either:
1. The knowledge base doesn't exist
2. The user is not the creator of the knowledge base
"""
# Check if a knowledge base can be deleted by a user
docs = cls.model.select(
cls.model.id).where(cls.model.id == kb_id, cls.model.created_by == user_id).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
return True
@classmethod
@DB.connection_context()
def is_parsed_done(cls, kb_id):
# Check if all documents in the knowledge base have completed parsing
#
# Args:
# kb_id: Knowledge base ID
#
# Returns:
# If all documents are parsed successfully, returns (True, None)
# If any document is not fully parsed, returns (False, error_message)
from api.db import TaskStatus
from api.db.services.document_service import DocumentService
# Get knowledge base information
kbs = cls.query(id=kb_id)
if not kbs:
return False, "Knowledge base not found"
kb = kbs[0]
# Get all documents in the knowledge base
docs, _ = DocumentService.get_by_kb_id(kb_id, 1, 1000, "create_time", True, "", [], [])
# Check parsing status of each document
for doc in docs:
# If document is being parsed, don't allow chat creation
if doc['run'] == TaskStatus.RUNNING.value or doc['run'] == TaskStatus.CANCEL.value or doc['run'] == TaskStatus.FAIL.value:
return False, f"Document '{doc['name']}' in dataset '{kb.name}' is still being parsed. Please wait until all documents are parsed before starting a chat."
# If document is not yet parsed and has no chunks, don't allow chat creation
if doc['run'] == TaskStatus.UNSTART.value and doc['chunk_num'] == 0:
return False, f"Document '{doc['name']}' in dataset '{kb.name}' has not been parsed yet. Please parse all documents before starting a chat."
return True, None
@classmethod
@DB.connection_context()
def list_documents_by_ids(cls, kb_ids):
# Get document IDs associated with given knowledge base IDs
# Args:
# kb_ids: List of knowledge base IDs
# Returns:
# List of document IDs
doc_ids = cls.model.select(Document.id.alias("document_id")).join(Document, on=(cls.model.id == Document.kb_id)).where(
cls.model.id.in_(kb_ids)
)
doc_ids =list(doc_ids.dicts())
doc_ids = list(doc_ids.dicts())
doc_ids = [doc["document_id"] for doc in doc_ids]
return doc_ids
@classmethod
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
page_number, items_per_page, orderby, desc, keywords):
page_number, items_per_page,
orderby, desc, keywords,
parser_id=None
):
# Get knowledge bases by tenant IDs with pagination and filtering
# Args:
# joined_tenant_ids: List of tenant IDs
# user_id: Current user ID
# page_number: Page number for pagination
# items_per_page: Number of items per page
# orderby: Field to order by
# desc: Boolean indicating descending order
# keywords: Search keywords
# parser_id: Optional parser ID filter
# Returns:
# Tuple of (knowledge_base_list, total_count)
fields = [
cls.model.id,
cls.model.avatar,
cls.model.name,
cls.model.language,
cls.model.description,
cls.model.tenant_id,
cls.model.permission,
cls.model.doc_num,
cls.model.token_num,
@ -67,6 +176,8 @@ class KnowledgebaseService(CommonService):
cls.model.tenant_id == user_id))
& (cls.model.status == StatusEnum.VALID.value)
)
if parser_id:
kbs = kbs.where(cls.model.parser_id == parser_id)
if desc:
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
else:
@ -74,13 +185,19 @@ class KnowledgebaseService(CommonService):
count = kbs.count()
kbs = kbs.paginate(page_number, items_per_page)
if page_number and items_per_page:
kbs = kbs.paginate(page_number, items_per_page)
return list(kbs.dicts()), count
@classmethod
@DB.connection_context()
def get_kb_ids(cls, tenant_id):
# Get all knowledge base IDs for a tenant
# Args:
# tenant_id: Tenant ID
# Returns:
# List of knowledge base IDs
fields = [
cls.model.id,
]
@ -91,9 +208,13 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_detail(cls, kb_id):
# Get detailed information about a knowledge base
# Args:
# kb_id: Knowledge base ID
# Returns:
# Dictionary containing knowledge base details
fields = [
cls.model.id,
# Tenant.embd_id,
cls.model.embd_id,
cls.model.avatar,
cls.model.name,
@ -105,26 +226,33 @@ class KnowledgebaseService(CommonService):
cls.model.chunk_num,
cls.model.parser_id,
cls.model.parser_config,
cls.model.pagerank]
cls.model.pagerank,
cls.model.create_time,
cls.model.update_time
]
kbs = cls.model.select(*fields).join(Tenant, on=(
(Tenant.id == cls.model.tenant_id) & (Tenant.status == StatusEnum.VALID.value))).where(
(Tenant.id == cls.model.tenant_id) & (Tenant.status == StatusEnum.VALID.value))).where(
(cls.model.id == kb_id),
(cls.model.status == StatusEnum.VALID.value)
)
if not kbs:
return
d = kbs[0].to_dict()
# d["embd_id"] = kbs[0].tenant.embd_id
return d
@classmethod
@DB.connection_context()
def update_parser_config(cls, id, config):
# Update parser configuration for a knowledge base
# Args:
# id: Knowledge base ID
# config: New parser configuration
e, m = cls.get_by_id(id)
if not e:
raise LookupError(f"knowledgebase({id}) not found.")
def dfs_update(old, new):
# Deep update of nested configuration
for k, v in new.items():
if k not in old:
old[k] = v
@ -141,9 +269,24 @@ class KnowledgebaseService(CommonService):
dfs_update(m.parser_config, config)
cls.update_by_id(id, {"parser_config": m.parser_config})
@classmethod
@DB.connection_context()
def delete_field_map(cls, id):
e, m = cls.get_by_id(id)
if not e:
raise LookupError(f"knowledgebase({id}) not found.")
m.parser_config.pop("field_map", None)
cls.update_by_id(id, {"parser_config": m.parser_config})
@classmethod
@DB.connection_context()
def get_field_map(cls, ids):
# Get field mappings for knowledge bases
# Args:
# ids: List of knowledge base IDs
# Returns:
# Dictionary of field mappings
conf = {}
for k in cls.get_by_ids(ids):
if k.parser_config and "field_map" in k.parser_config:
@ -153,6 +296,12 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_by_name(cls, kb_name, tenant_id):
# Get knowledge base by name and tenant ID
# Args:
# kb_name: Knowledge base name
# tenant_id: Tenant ID
# Returns:
# Tuple of (exists, knowledge_base)
kb = cls.model.select().where(
(cls.model.name == kb_name)
& (cls.model.tenant_id == tenant_id)
@ -165,12 +314,27 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_all_ids(cls):
# Get all knowledge base IDs
# Returns:
# List of all knowledge base IDs
return [m["id"] for m in cls.model.select(cls.model.id).dicts()]
@classmethod
@DB.connection_context()
def get_list(cls, joined_tenant_ids, user_id,
page_number, items_per_page, orderby, desc, id, name):
# Get list of knowledge bases with filtering and pagination
# Args:
# joined_tenant_ids: List of tenant IDs
# user_id: Current user ID
# page_number: Page number for pagination
# items_per_page: Number of items per page
# orderby: Field to order by
# desc: Boolean indicating descending order
# id: Optional ID filter
# name: Optional name filter
# Returns:
# List of knowledge bases
kbs = cls.model.select()
if id:
kbs = kbs.where(cls.model.id == id)
@ -179,7 +343,7 @@ class KnowledgebaseService(CommonService):
kbs = kbs.where(
((cls.model.tenant_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.tenant_id == user_id))
cls.model.tenant_id == user_id))
& (cls.model.status == StatusEnum.VALID.value)
)
if desc:
@ -194,9 +358,15 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def accessible(cls, kb_id, user_id):
# Check if a knowledge base is accessible by a user
# Args:
# kb_id: Knowledge base ID
# user_id: User ID
# Returns:
# Boolean indicating accessibility
docs = cls.model.select(
cls.model.id).join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == kb_id, UserTenant.user_id == user_id).paginate(0, 1)
).where(cls.model.id == kb_id, UserTenant.user_id == user_id).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
@ -205,26 +375,64 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_kb_by_id(cls, kb_id, user_id):
# Get knowledge base by ID and user ID
# Args:
# kb_id: Knowledge base ID
# user_id: User ID
# Returns:
# List containing knowledge base information
kbs = cls.model.select().join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == kb_id, UserTenant.user_id == user_id).paginate(0, 1)
).where(cls.model.id == kb_id, UserTenant.user_id == user_id).paginate(0, 1)
kbs = kbs.dicts()
return list(kbs)
@classmethod
@DB.connection_context()
def get_kb_by_name(cls, kb_name, user_id):
# Get knowledge base by name and user ID
# Args:
# kb_name: Knowledge base name
# user_id: User ID
# Returns:
# List containing knowledge base information
kbs = cls.model.select().join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.name == kb_name, UserTenant.user_id == user_id).paginate(0, 1)
).where(cls.model.name == kb_name, UserTenant.user_id == user_id).paginate(0, 1)
kbs = kbs.dicts()
return list(kbs)
@classmethod
@DB.connection_context()
def accessible4deletion(cls, kb_id, user_id):
docs = cls.model.select(
cls.model.id).where(cls.model.id == kb_id, cls.model.created_by == user_id).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
return True
def atomic_increase_doc_num_by_id(cls, kb_id):
data = {}
data["update_time"] = current_timestamp()
data["update_date"] = datetime_format(datetime.now())
data["doc_num"] = cls.model.doc_num + 1
num = cls.model.update(data).where(cls.model.id == kb_id).execute()
return num
@classmethod
@DB.connection_context()
def update_document_number_in_init(cls, kb_id, doc_num):
"""
Only use this function when init system
"""
ok, kb = cls.get_by_id(kb_id)
if not ok:
return
kb.doc_num = doc_num
dirty_fields = kb.dirty_fields
if cls.model._meta.combined.get("update_time") in dirty_fields:
dirty_fields.remove(cls.model._meta.combined["update_time"])
if cls.model._meta.combined.get("update_date") in dirty_fields:
dirty_fields.remove(cls.model._meta.combined["update_date"])
try:
kb.save(only=dirty_fields)
except ValueError as e:
if str(e) == "no data to save!":
pass # that's OK
else:
raise e

Some files were not shown because too many files have changed in this diff Show More