Compare commits

...

396 Commits

Author SHA1 Message Date
d6836444c9 DOC: for release. (#5472)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update

---------

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
2025-03-02 18:47:06 +08:00
3b30799b7e minor (#5497)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-02-28 19:36:50 +08:00
e61da33672 Moved agent components into the agent folder (#5496)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-28 19:27:57 +08:00
6a71314d70 Feat: Add the Experimental text to the option of the large model of the Image2text type of LayoutRecognizeItem (#5495)
### What problem does this PR solve?
Feat: Add the Experimental text to the option of the large model of the
Image2text type of LayoutRecognizeItem

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 18:44:04 +08:00
06e0c7d1a9 Feat: multiline text input for chat (#5317)
### What problem does this PR solve?

Improves the chat interface by adding a multiline chat area that grows
when multiple lines exists.

Some images:

* Empty:
<img width="1334" alt="image"
src="https://github.com/user-attachments/assets/e8a68b46-def9-45af-b5b1-db0f0b67e6d8"
/>

* With multiple lines and documents:
<img width="1070" alt="image"
src="https://github.com/user-attachments/assets/ff976c5c-08fa-492f-9fc0-17512c95f9f2"
/>


### Type of change
- [X] New Feature (non-breaking change which adds functionality)
2025-02-28 18:05:50 +08:00
7600ebd263 Feat: Hide the suffix of the large model name. #5433 (#5494)
### What problem does this PR solve?

Feat: Hide the suffix of the large model name. #5433

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 18:02:33 +08:00
21943ce0e2 Refine error message while embedding model error, (#5490)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-28 17:52:38 +08:00
aa313e112a Feat: Wrap MaxTokenNumber with DatasetConfigurationContainer. #5467 (#5491)
### What problem does this PR solve?

Feat: Wrap MaxTokenNumber with DatasetConfigurationContainer. #5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 17:52:18 +08:00
2c7428e2ee Feat: Put the configuration of different parsing methods into separate components. #5467 (#5487)
### What problem does this PR solve?

Feat: Put the configuration of different parsing methods into separate
components. #5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 16:54:04 +08:00
014f2ef900 Fix typo and error (#5479)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-02-28 16:09:40 +08:00
b418ce5643 Fix table parser issue. (#5482)
### What problem does this PR solve?

#1475
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 16:09:12 +08:00
fe1c48178e Refa: better gitignore (#5473)
### What problem does this PR solve?

when develop ragflow local there would be a hash file generate that is
kind of not good for develop
this patch add a regex to `.gitignore` for better developing 

### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 15:07:39 +08:00
35f13e882e Fix typos (#5476)
### What problem does this PR solve?

Fix lots of typos.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-02-28 15:01:54 +08:00
85924e898e Fix: enhance aliyun oss access with adding prefix path (#5475)
### What problem does this PR solve?

Enhance aliyun oss access with adding prefix path.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 15:00:00 +08:00
622b72db4b Fix: add ctrl+c signal for better exit (#5469)
### What problem does this PR solve?

This patch add signal for ctrl + c that can exit the code friendly
cause code base use thread daemon can not exit friendly for being
started.

how to reproduce
1. docker-compose -f docker/docker-compose-base.yml up
2. other window `bash docker/launch_backend_service.sh`
3. stop 1 first
4. try to stop 2 then two thread can not exit which must use `kill pid`

This patch fix it 
and should fix most the related issues in the `issues`

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 14:52:40 +08:00
a0a7b46cff DOCS: amend docker image building page and more hints for mac users (#5461)
### What problem does this PR solve?

Amend docker image building page and more hints for mac users

### Type of change

- [x] Documentation Update
2025-02-28 14:46:22 +08:00
37aacb3960 Refa: drop useless fasttext (#5470)
### What problem does this PR solve?

This patch drop useless fastext which is seems useless in the code base 
and its very kind of hard install
should close #4498


### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 14:30:56 +08:00
79bc9d97c9 Refa: better service conf (#5471)
### What problem does this PR solve?

This patch fix most of the issues like #4853 #5038 and so on

the root reason is that we need to add the hostname to the `/etc/hosts`
which is not wrote in main README
and the code side read `conf/service_conf.yaml` as settings 
and its hard for developers to debug, this patch fix it, or maybe can
discuss better solution here
 
### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 14:28:00 +08:00
f150687dbc Fix: language selection display on the profile settings page (#5459)
### What problem does this PR solve?

Improve the language selection display on the profile settings page.

| before | after |
| --- | --- |
|![截屏2025-02-28 上午8 46
54](https://github.com/user-attachments/assets/0924275c-99d4-4ddd-8935-693286c0d07f)|![CleanShot
2025-02-28 at 09 58
21](https://github.com/user-attachments/assets/a96c9d73-8e16-40a8-aa80-d31fecc18edf)|

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 11:20:52 +08:00
b2a5482d2c Feat: Modify the parsing method string to an enumeration type. #5467 (#5468)
### What problem does this PR solve?

Feat: Modify the parsing method string to an enumeration type. #5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 11:13:56 +08:00
5fdfb8d465 Fix: rm think if stream is Flase. (#5458)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 10:05:18 +08:00
8b2c04abc4 Feat: If the user is not logged in, jump to the login page by refreshing. (#5451)
### What problem does this PR solve?

Feat: If the user is not logged in, jump to the login page by
refreshing.
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-27 18:48:53 +08:00
83d0949498 Fix: fix special delimiter parsing issue (#5448)
### What problem does this PR solve?

Fix special delimiter parsing issue #5382 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 18:33:55 +08:00
244cf49ba4 Feat: Use shadcn-ui to build GenerateForm. #3221 (#5449)
### What problem does this PR solve?

Feat: Use shadcn-ui to build GenerateForm. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-27 18:13:41 +08:00
651422127c Feat: Accessing Alibaba Cloud OSS with Amazon S3 SDK (#5438)
Accessing Alibaba Cloud OSS with Amazon S3 SDK
2025-02-27 17:02:42 +08:00
11de7599e5 Feat: add data type invoke (#5126)
### What problem does this PR solve?
```
Invoke agent
To be able to interact dynamically with the API, there is a customizable Data Type JSON or FormData, the default is JSON 
```

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-27 16:15:33 +08:00
7a6e70d6b3 Feat: Wrap DynamicVariableForm with Collapsible. #3221 (#5440)
### What problem does this PR solve?

Feat: Wrap DynamicVariableForm with Collapsible. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-27 16:09:12 +08:00
230865c4f7 Fix: stream post body (#5434)
### What problem does this PR solve?

Fix stream post body

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 16:08:54 +08:00
4c9a3e918f Fix: add image2text issue. (#5431)
### What problem does this PR solve?

#5356

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 14:06:49 +08:00
5beb022ee1 Fix: string format error. (#5422)
### What problem does this PR solve?

#5404

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 12:01:46 +08:00
170abf9b7f Fix: drop useless ABC method (#5408)
### What problem does this PR solve?

seems  no need use ABC here, there's no `abstractmethod` here

### Type of change

- [x] Performance Improvement

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-27 11:03:21 +08:00
afaa7144a5 Fix: issue of no id for /datasets/<dataset_id>/documents (#5420)
### What problem does this PR solve?

#5401

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 10:39:34 +08:00
eaa1adb3b2 ci: remove may expand into attacker-controllable code (#5407)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

This patch remove dangerous code that `may expand into
attacker-controllable code`

more:

```cli
error[template-injection]: code injection via template expansion
  --> /Users/hyi/prs/ragflow/.github/workflows/tests.yml:35:9
   |
35 |         - name: Show PR labels
   |           ^^^^^^^^^^^^^^^^^^^^ this step
36 |           run: |
   |  _________^
37 | |           echo "Workflow triggered by ${{ github.event_name }}"
38 | |           if [[ ${{ github.event_name }} == 'pull_request' ]]; then
39 | |             echo "PR labels: ${{ join(github.event.pull_request.labels.*.name, ', ') }}"
40 | |           fi
   | |____________^ github.event.pull_request.labels.*.name may expand into attacker-controllable code
   |
   = note: audit confidence → High

```

using zizmor to check 
https://woodruffw.github.io/zizmor/

but this patch do not fix them all, just remove high audit confidence →
High

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [x] Other (please describe):

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
2025-02-27 10:20:04 +08:00
fa76974e24 Fix issue of ask API. (#5400)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 19:45:22 +08:00
f372bd8809 Miscelleneous editorial updates (#5390)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-02-26 19:03:50 +08:00
0284248c93 Fix: correct wrong vLLM rerank model (#5399)
### What problem does this PR solve?

Correct wrong vLLM rerank model #4316 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 18:59:36 +08:00
d9dd1171a3 Feat: Support vLLM #4316 (#5395)
### What problem does this PR solve?
Feat: Support vLLM #4316

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 18:33:43 +08:00
fefea3a2a5 Fixed OpenAI compatibility stream [DONE] (#5389)
Fixed OpenAI compatibility stream [DONE]



- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-26 17:55:12 +08:00
0e920a91dd FIX: correct typo (#5387)
### What problem does this PR solve?

Correct typo in supported_models file

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 17:21:09 +08:00
63e3398f49 Feat: Add DualRangeSlider #3221 (#5386)
### What problem does this PR solve?

Feat: Add DualRangeSlider #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 17:02:42 +08:00
cdcaae17c6 Feat: add VLLM (#5380)
### What problem does this PR solve?

Read to add VLMM.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 16:04:53 +08:00
96e9d50060 Let parallism of RAPTOR controlable. (#5379)
### What problem does this PR solve?

#4874
### Type of change

- [x] Refactoring
2025-02-26 15:58:06 +08:00
k
5cab6c4ccb Fix:HTTP API -> Stop parsing documents(AttributeError: ‘list‘ object … (#5375)
…has no attribute ‘id‘)

### What problem does this PR solve?

No PR

![image](https://github.com/user-attachments/assets/988d31bc-6551-4bb8-846c-cbbc1883d804)


![image](https://github.com/user-attachments/assets/8b09681b-1239-4ed9-8bc3-11436c5e90bc)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-02-26 15:57:50 +08:00
b3b341173f DOCS: add OpenAI-compatible http and python api reference (#5374)
### What problem does this PR solve?

Add OpenAI-compatible http and python api reference

### Type of change

- [x] Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-02-26 15:52:26 +08:00
a9e4695b74 Fix:validate knowledge base association before document upload (#5373)
### What problem does this PR solve?

fix this bug: https://github.com/infiniflow/ragflow/issues/5368

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-26 15:47:34 +08:00
4f40f685d9 Code refactor (#5371)
### What problem does this PR solve?

#5173

### Type of change

- [x] Refactoring
2025-02-26 15:40:52 +08:00
ffb4cda475 Run keyword_extraction, question_proposal, content_tagging in thread pool (#5376)
### What problem does this PR solve?

Run keyword_extraction, question_proposal, content_tagging in threads

### Type of change

- [x] Performance Improvement
2025-02-26 15:21:14 +08:00
5859a3df72 Feat: Add FormSheet. #3221 (#5377)
### What problem does this PR solve?

Feat: Add FormSheet. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 15:03:09 +08:00
5c6a7cb4b8 Added OpenAI-like completion api (#5351)
### What problem does this PR solve?

Added OpenAI-like completion api, related to #4672, #4705 

This function allows users to interact with a model to get responses
based on a series of messages.
If `stream` is set to True, the response will be streamed in chunks,
mimicking the OpenAI-style API.

#### Example usage:

```bash
curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer $RAGFLOW_API_KEY" \
    -d '{
        "model": "model",
        "messages": [{"role": "user", "content": "Say this is a test!"}],
        "stream": true
    }'
```

Alternatively, you can use Python's `OpenAI` client:

```python
from openai import OpenAI

model = "model"
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")

completion = client.chat.completions.create(
    model=model,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who you are?"},
        {"role": "assistant", "content": "I am an AI assistant named..."},
        {"role": "user", "content": "Can you tell me how to install neovim"},
    ],
    stream=True
)

stream = True
if stream:
    for chunk in completion:
        print(chunk)
else:
    print(completion.choices[0].message.content)
```
### Type of change
- [x] New Feature (non-breaking change which adds functionality)

### Related Issues
Related to #4672, #4705
2025-02-26 11:37:29 +08:00
4e2afcd3b8 Fix FlagRerank max_length issue. (#5366)
### What problem does this PR solve?

#5352

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 11:01:13 +08:00
11e6d84d46 Fix: 'Chunk not found!' error in team-sharing knowledge base. (#5361)
### What problem does this PR solve?

As issue #3268 mentioned, "Chun not found!" exception will occur,
especially during the teamwork of knowledge bases.

### The reason of this bug

"tenants" are the people on current_user's team, including the team
owner itself. The old one only checks the first "tenant", tenants[0],
which will cause error when anyone editing the chunk that is not in
tenants[0]'s knowledge base.

My modification won't introduce new errors while iterate all the tenant
then retrieve knowledge bases of each.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 10:24:35 +08:00
53b9e7b52f Add tavily as web searh tool. (#5349)
### What problem does this PR solve?

#5198

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 10:21:04 +08:00
e5e9ca0015 Feat: Add Tavily Api Key to chat configuration modal. #5198 (#5347)
### What problem does this PR solve?

Feat: Add Tavily Api Key to chat configuration modal. #5198

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 10:20:40 +08:00
150ab9c6a4 Fix: Prevent message sending during IME composition and block new submissions while waiting for a response (#5331)
### What problem does this PR solve?

This pull request addresses an issue where the "Enter" key would send
the message prematurely while using Input Method Editor (IME) for text
composition. This problem occurs when users are typing with a non-Latin
input method, such as Chinese(Zhuyin), and press "Enter" to confirm
their selection, which unintentionally triggers message submission. Also
fixed the issue of blocking new submissions while waiting for a response

Before:


https://github.com/user-attachments/assets/233f3ac9-4b4b-4424-b4ab-ea2e31bb0663

After:


https://github.com/user-attachments/assets/f1c01af6-d1d7-4a79-9e81-5bdf3c0b3529

Block new submissions while waiting for a response:



https://github.com/user-attachments/assets/10a45b5f-44b9-4e36-9342-b1bbb4096312


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 18:49:08 +08:00
f789463982 Fix: Due to the reference to tailwindcss, the height attribute setting of the image is invalid, resulting in an uneven model list #5339 (#5340)
### What problem does this PR solve?

Fix: Due to the reference to tailwindcss, the height attribute setting
of the image is invalid, resulting in an uneven model list #5339

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 17:52:31 +08:00
955801db2e Resolve super class invokation error. (#5337)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 17:42:29 +08:00
93b2e80eb8 Feat: Add DynamicVariableForm with shadcn-ui. #3221 (#5336)
### What problem does this PR solve?

Feat: Add DynamicVariableForm with shadcn-ui. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-25 16:57:46 +08:00
1a41b92f77 More robust community report. (#5328)
### What problem does this PR solve?

#5289
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 12:58:10 +08:00
58a8f1f1b0 Fix release.yml (#5327)
### What problem does this PR solve?

Fix release.yml

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 12:41:34 +08:00
daddfc9e1b Remove dup gb2312, solve currupt error. (#5326)
### What problem does this PR solve?

#5252 
#5325

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 12:22:37 +08:00
ecf5f6976f Make node merging parallel. (#5324)
### What problem does this PR solve?

#5314

### Type of change

- [x] Performance Improvement
2025-02-25 12:02:44 +08:00
e2448fb6dd Fix: type-script new change (#5159)
### What problem does this PR solve?
```
fixed type-script on MessageInput change to TextArea
```
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 11:42:31 +08:00
9c9f2dbe3f Feat: Add FormDrawer to agent page. #3221 (#5323)
### What problem does this PR solve?

Feat: Add FormDrawer to agent page. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-25 11:32:01 +08:00
b3d579e2c1 Refine prompt of agentic search. (#5312)
### What problem does this PR solve?

#5173

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-25 09:21:52 +08:00
eb72d598b1 Replaced pypi.tuna.tsinghua.edu.cn with mirrors.aliyun.com/pypi (#5309)
### What problem does this PR solve?

Replaced pypi.tuna.tsinghua.edu.cn with mirrors.aliyun.com/pypi.
I notice aliyun.com sometimes is much faster than tsinghua.edu.

### Type of change

- [x] Refactoring
2025-02-24 20:15:40 +08:00
033a4cf21e Feat: Upload agent file #3221 (#5311)
### What problem does this PR solve?

Feat: Upload agent file #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 19:30:33 +08:00
fda9b58ab7 Feat: Render agent details #3221 (#5307)
### What problem does this PR solve?

Feat: Render agent details #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 17:19:06 +08:00
ca865df87f Feat: Render operator menu by category. #3221 (#5302)
### What problem does this PR solve?
Feat: Render operator menu by category. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 16:51:44 +08:00
f9f75aa119 Added a file size limit (#5301)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-24 16:38:11 +08:00
db42d0e0ae Optimize ocr (#5297)
### What problem does this PR solve?

Introduced OCR.recognize_batch

### Type of change

- [x] Performance Improvement
2025-02-24 16:21:55 +08:00
df3d0f61bd Fix base url missing for deepseek from Tongyi. (#5294)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-24 15:43:32 +08:00
c6bc69cbc5 Feat: Add AgentSidebar #3221 (#5296)
### What problem does this PR solve?

Feat: Add AgentSidebar #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 15:43:20 +08:00
8c9df482ab Added a prerequisite for ARM platforms (#5295)
### What problem does this PR solve?

#5114 

### Type of change


- [x] Documentation Update
2025-02-24 15:15:11 +08:00
1137b04154 Feat: Disable Max_token by default #5283 (#5290)
### What problem does this PR solve?

Feat: Disable Max_token by default #5283

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 14:22:15 +08:00
ec96426c00 Tongyi adapts deepseek. (#5285)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 14:04:25 +08:00
4d22daefa7 Feat: Add PageHeader to DatasetWrapper #3221 (#5284)
### What problem does this PR solve?

Feat: Add PageHeader to DatasetWrapper #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 13:50:21 +08:00
bcc92e04c9 Remove <think> content for Generate if it's not stream output. (#5281)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-24 13:44:11 +08:00
9aa222f738 Let list_chat go without kb checking. (#5280)
### What problem does this PR solve?

#5278 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-24 13:21:05 +08:00
605cfdb8dc Refine error message for re-rank model. (#5278)
### What problem does this PR solve?

#5261

### Type of change

- [x] Refactoring
2025-02-24 13:01:34 +08:00
041d72b755 Refine the error message. (#5275)
### What problem does this PR solve?

#5265

### Type of change

- [x] Refactoring
2025-02-24 12:42:52 +08:00
569e40544d Refactor rerank model with dynamic batch processing and memory manage… (#5273)
…ment

### What problem does this PR solve?
Issue:https://github.com/infiniflow/ragflow/issues/5262
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-24 11:32:08 +08:00
3d605a23fe Feat: add partition of file uploads (#5248)
### What problem does this PR solve?

Partitions the upload of documents in parts of 20 to avoid the size
limit error. Allows uploading 100s of documents on a single interaction.

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-02-24 11:12:12 +08:00
4f2816c01c Add support to boto3 default connection (#5246)
### What problem does this PR solve?
 
This pull request includes changes to the initialization logic of the
`ChatModel` and `EmbeddingModel` classes to enhance the handling of AWS
credentials.

Use cases:
- Use env variables for credentials instead of managing them on the DB 
- Easy connection when deploying on an AWS machine

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-02-24 11:01:14 +08:00
a0b461a18e Add configuration to choose default llm models (#5245)
### What problem does this PR solve?

This pull request includes changes to the `api/settings.py` and
`docker/service_conf.yaml.template` files to add support for default
models in the LLM configuration (specially for LIGHTEN builds). The most
important changes include adding default model configurations and
updating the initialization settings to use these defaults.

For example:
With this configuration Bedrock will be enable by default with claude
and titan embeddings.

```
user_default_llm:
  factory: 'Bedrock'
  api_key: '{}' 
  base_url: ''
  default_models:
    chat_model: 'anthropic.claude-3-5-sonnet-20240620-v1:0'
    embedding_model: 'amazon.titan-embed-text-v2:0'
    rerank_model: ''
    asr_model: ''
    image2text_model: ''
```


### Type of change

- [X] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-24 10:13:39 +08:00
7ce675030b Support downloading models from ModelScope Community. (#5073)
This PR supports downloading models from ModelScope. The main
modifications are as follows:
-New Feature (non-breaking change which adds functionality)
-Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-24 10:12:20 +08:00
217caecfda Added a guide on running a retrieval test, with and without knowledge graph (#5200)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-21 19:36:20 +08:00
ef8847eda7 Double check error of adding llm. (#5237)
### What problem does this PR solve?

#5227

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 19:09:49 +08:00
d78010c376 Fixed similarity on infinity (#5236)
### What problem does this PR solve?

Fixed similarity on infinity

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 18:50:54 +08:00
3444cb15e3 Refine search query. (#5235)
### What problem does this PR solve?

#5173
#5214

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 18:32:32 +08:00
0151d42156 Reuse loaded modules if possible (#5231)
### What problem does this PR solve?

Reuse loaded modules if possible

### Type of change

- [x] Refactoring
2025-02-21 17:21:01 +08:00
392f28882f Feat: Add RAGFlowSelect component #3221 (#5228)
### What problem does this PR solve?

Feat: Add RAGFlowSelect component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-21 16:37:50 +08:00
cdb3e6434a Fix empty question issue. (#5225)
### What problem does this PR solve?

#5241

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 15:47:39 +08:00
bf5f6ec262 Fix spelling errors (#5224)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 15:47:27 +08:00
1a755e75c5 Remove v1 (#5220)
### What problem does this PR solve?

#5201

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 15:15:38 +08:00
46ff897107 Feat: Chat without KB. #5216 (#5217)
### What problem does this PR solve?
Feat: Chat without KB. #5216

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-21 12:24:13 +08:00
f5d63bb7df Support chat solo. (#5218)
### What problem does this PR solve?

#5216

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-21 12:24:02 +08:00
c54ec09519 Fix session.ask return generator bug when stream=False on python sdk (#5209)
add non-stream mode support to session.ask function

### What problem does this PR solve?

same as title, I do not know why the stream=False is not work on the
server side also, when stream=False, the response in the
session._ask_chat is a fully connnected SSE string.

This is a quick fix on the sdk side to make the response format align
with API docs

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 11:50:08 +08:00
7b3d700d5f Apply agentic searching. (#5196)
### What problem does this PR solve?

#5173

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 17:41:01 +08:00
744ff55c62 Feat: Add AgentTemplates component. #3221 (#5194)
### What problem does this PR solve?

Feat: Add AgentTemplates component. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 17:02:42 +08:00
c326f14fed Optimized Recognizer.sort_X_firstly and Recognizer.sort_Y_firstly (#5182)
### What problem does this PR solve?

Optimized Recognizer.sort_X_firstly and Recognizer.sort_Y_firstly

### Type of change

- [x] Performance Improvement
2025-02-20 15:41:12 +08:00
07ddb8fcff Feat: Add SearchPage component. #3221 (#5184)
### What problem does this PR solve?

Feat: Add SearchPage component. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 15:37:53 +08:00
84bcd8b3bc Feat: Add agent page. #3221 (#5179)
### What problem does this PR solve?

Feat: Add agent page. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 15:02:53 +08:00
f52970b038 Feat: Add reasoning item to chat configuration modal #5173 (#5177)
### What problem does this PR solve?

Feat: Add reasoning item to chat configuration modal #5173

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 14:05:52 +08:00
39b96849a9 Fix window size issue of ES. (#5175)
### What problem does this PR solve?

#5152

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-20 12:54:29 +08:00
f298e55ded Fix: Normalize embedding model ID comparison across datasets (#5169)
Modify embedding model ID comparison to remove vendor suffixes, ensuring
consistent model identification when working with multiple knowledge
bases. This change affects dialog creation, chat operations, and
document retrieval test functions.

### What problem does this PR solve?

resolve this bug: https://github.com/infiniflow/ragflow/issues/5166

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-20 12:40:59 +08:00
ed943b1b5b Feat: Show formulas when answering, show reference labels in style, remove cursor flashing effect. #5173 (#5174)
### What problem does this PR solve?

Feat: Show formulas when answering, show reference labels in style,
remove cursor flashing effect. #5173

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 12:19:53 +08:00
0c6d787f92 Iframe should support input variables (#5156)
### What problem does this PR solve?

Right now we cannot embed a chat in website when it has variables in the
begin component.
This PR tries to read the variables values from the query string via a
data_ prefixed variable.

#5016 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: gstrat88 <gstrat@innews.gr>
2025-02-20 11:52:44 +08:00
a4f9aa2172 Fix: Improve message input handling with Shift+Enter support (#5129)
### What problem does this PR solve?

just resolve issue: [Improve message input handling with Shift+Enter
support](https://github.com/infiniflow/ragflow/issues/5116)
### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-19 19:32:35 +08:00
c432ce6be5 Feat: Add insert variable icon in the header of prompt editor. #4764 (#5142)
### What problem does this PR solve?

Feat: Add insert variable icon in the header of prompt editor. #4764

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-19 19:20:00 +08:00
c5b32b2211 Docs: Add note about docker volume deletion in README files,will be more novice-friendly (#5133)
### What problem does this PR solve?


Docs: Add note about docker volume deletion in README files
refer to this question:
https://github.com/infiniflow/ragflow/issues/5132
### Type of change

- [x] Documentation Update

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-02-19 16:51:33 +08:00
24efa86f26 Feat: Support preview of HTML files #5096 (#5134)
### What problem does this PR solve?

Feat: Support preview of HTML files #5096
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-19 16:28:48 +08:00
38e551cc3d Feat: Allow the Rewrite operator to connect to the Generate operator #1739 (#5128)
### What problem does this PR solve?

Feat: Allow the Rewrite operator to connect to the Generate operator
#1739

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-19 15:47:48 +08:00
ef95f08c48 Remove redandent code. (#5121)
### What problem does this PR solve?

#5107

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 15:46:52 +08:00
3ced290eb5 Feat: Add support for document meta fields update through api (#5120)
### What problem does this PR solve?

add support for update document meta data through  api
### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-19 13:39:31 +08:00
fab0f07379 fix: Ensure that the commands are executed in the correct directory s… (#5089)
…o that all services (including the es and infinity containers) can be
started correctly, and resolve the Failed to resolve 'es01' #4875

### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/4875

### Type of change

- [x] Documentation Update
2025-02-19 13:19:36 +08:00
8525f55ad0 Fix: Option ineffective in Chat API (#5118)
### What problem does this PR solve?

API options like `stream` was ignored when no session_id was provided.

This PR fixes the issue.

Test command and expected result:
```
curl  --request POST \
     --url http://:9222/api/v1/chats/2f2e1d30ee6111efafe211749b004925/completions \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer ragflow-xxx' \
     --data '{
   "question":"Who are you",
   "stream":false
}'
{"code":0,"data":"data:{\"code\": 0, \"message\": \"\", \"data\": {\"answer\": \"Hi! I'm your assistant, what can I do for you?\", \"reference\": {}, \"audio_binary\": null, \"id\": null, \"session_id\": \"82ceb0fcee7111efafe211749b004925\"}}\n\n"}

```



### Type of change

- [*] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 13:18:51 +08:00
e6c024f8bf Fix too many clause while searching. (#5119)
### What problem does this PR solve?

#5100

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 13:18:39 +08:00
c28bc41a96 Fix docx table issue. (#5117)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 12:40:06 +08:00
29a59ed7e2 Fix: Use self.dataStore.indexExist in all_tags method of Dealer (#5108)
### What problem does this PR solve?

This PR fixes an AttributeError in the all_tags method of the Dealer
class. Previously, the method incorrectly called
self.docStoreConn.indexExist instead of self.dataStore.indexExist. Since
self.docStoreConn was never set (and self.dataStore is already
initialized in init), this resulted in an error when attempting to check
if the index exists. This change ensures that the proper connector is
used for the index existence check, thereby resolving the issue._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 11:50:57 +08:00
f8b80f3f93 Feat: Write the thinking style in the MarkdownContent layer #4930 (#5091)
### What problem does this PR solve?

Feat: Write the thinking style in the MarkdownContent layer #4930

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 19:34:54 +08:00
189007e44d Fix: PUT method does not work as expected with Invoke component (#5081)
### What problem does this PR solve?
Invoke component can be used to call third party services.
Tried GET/POST/PUT from web UI, and found PUT request failed like this:
(test api: api/v1/chats/<assistant_id>)
 ```
{"code":100,"data":null,"message":"AttributeError("'NoneType' object has
no attribute 'get'")"}
```

Root cause: Invoke PUT with a 'data=args' parameter, which is a form-encoded data, however the default content type setting of request header is application/json. The test api could not deal with such case.

Fix: use the 'json' parameter of reqeusts.put(), same as Invoke POST. Do not use the 'data' parameter.
Another way is to use 'data=json.dumps(args)'.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-18 19:34:22 +08:00
3cffadc7a2 Added an FAQ (#5092)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-02-18 19:29:40 +08:00
18e43831bc Feat: Add ChunkedResultPanel #3221 (#5085)
### What problem does this PR solve?

Feat: Add ChunkedResultPanel #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 17:53:51 +08:00
3356de55ed Fix: Chunk problem tag content cannot be displayed completely. #5076 (#5077)
### What problem does this PR solve?

Fix: Chunk problem tag content cannot be displayed completely. #5076

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-18 15:26:24 +08:00
375e727f9a Feat: Extract the common parts of groupImage2TextOptions and groupOptionsByModelType #5063 (#5074)
### What problem does this PR solve?

Feat: Extract the common parts of groupImage2TextOptions and
groupOptionsByModelType #5063

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 15:13:55 +08:00
a2b8ba472f Feat: Add LanguageAbbreviation to simplify language resource files. #5065 (#5072)
### What problem does this PR solve?

Feat: Add LanguageAbbreviation to simplify language resource files.
#5065

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 15:06:53 +08:00
00c7ddbc9b Fix: The max tokens defined by the tenant are not used (#4297) (#2817) (#5066)
### What problem does this PR solve?

Fix: The max tokens defined by the tenant are not used (#4297) (#2817)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-18 13:42:22 +08:00
3e0bc9e36b Added a graphrag guide (#4978)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-18 13:42:06 +08:00
d6ba4bd255 add option Embed into webpage (#5065)
add option Embed into webpage

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-18 13:41:19 +08:00
84b4b38cbb Remove <think> for exeSql component. (#5069)
### What problem does this PR solve?

#5061
#5067

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-18 13:39:37 +08:00
4694604836 Specify img2text model by tag (#5063)
### What problem does this PR solve?

The current design is not well-suited for multimodal models, as each
model can only be configured for a single purpose—either chat or
Img2txt. To work around this limitation, we use model aliases such as
gpt-4o-mini and gpt-4o-mini-2024-07-18.

To fix this, this PR allows specifying the Img2txt model by tag instead
of model_type.

### Type of change
- [x] Refactoring
2025-02-18 11:14:48 +08:00
224c5472c8 update locale vi (#5035)
update locale vi
2025-02-18 10:16:03 +08:00
409310aae9 Update agent session API, to support uploading files while create a new session (#5039)
### What problem does this PR solve?
Update the agent session API "POST /api/v1/agents/{agent_id}/sessions",
to support uploading files while create a new session:
- currently, the API only supports requesting with a json body. If user
wants to upload a doc or image when create session, like what is already
supported on the web client, we need to update the API.
- if upload an image, ragflow will call image2text, and a user_id is
needed for the image2text model. So we need to send user_id in the API
request. As form-data is needed to upload files, not json body, seems we
need to put the user_id in the url as an optional parameter (currently
user_id is an optional in json body).


### Type of change

- [x] Documentation Update
- [x] Other (please describe):
2025-02-18 09:45:40 +08:00
9ff825f39d Ignore exceptions when no index ahead. (#5047)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-18 09:09:22 +08:00
7b5d831296 Fix: Starting the source code on Windows, the 'HTTP API' returns 404 (#5042)
Fix: When starting the backend service from source code on Windows, the
"HTTP API" no longer returns 404.
2025-02-17 19:33:49 +08:00
42ee209084 Feat: Replace next-login-bg.svg #3221 (#5046)
### What problem does this PR solve?

Feat: Replace next-login-bg.svg #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-17 19:33:34 +08:00
e4096fbc33 Add another decrypt function. (#5043)
### What problem does this PR solve?



### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-17 18:09:11 +08:00
3aa5c2a699 Ignore exception of empty index. (#5030)
### What problem does this PR solve?

### Type of change


- [x] Refactoring
2025-02-17 15:59:55 +08:00
2ddf278e2d Fix: Cannot distinguish between export and import icons #5025 (#5031)
### What problem does this PR solve?

Fix: Cannot distinguish between export and import icons #5025

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 15:25:34 +08:00
f46448d04c Remove <think> for KG extraction. (#5027)
### What problem does this PR solve?

#4946

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 14:06:06 +08:00
ab17606e79 Rewrite Support specified language or language according to initial question (#4990)
Support specified language or language according to initial question

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-17 13:33:43 +08:00
7c90b87715 Fix window size of ES issue. (#5026)
### What problem does this PR solve?

#5015

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 12:48:56 +08:00
d2929e432e Feat: add LLM provider PPIO (#5013)
### What problem does this PR solve?

Add a LLM provider: PPIO

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-02-17 12:03:26 +08:00
88daa349f9 Optimize conversation when uploading attachments (#4964)
### What problem does this PR solve?

#4929

### Type of change

- [x] Performance Improvement
2025-02-17 12:03:04 +08:00
f29da49893 Fix keyerror issue while rebuilding graph. (#5022)
### What problem does this PR solve?

#4995

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 12:02:44 +08:00
194e8ea696 Fix knowledge graph node not found (#4968) (#4970)
### What problem does this PR solve?

Fix knowledge graph node not found (#4968)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 11:49:27 +08:00
810f997276 Fix <think> in keywords or question auto-generations. (#5021)
### What problem does this PR solve?

**#4983**

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 11:20:57 +08:00
6daae7f226 Added PEP 723 metadata to download_deps.py (#4988)
### What problem does this PR solve?

Added PEP 723 metadata to download_deps.py

### Type of change

- [x] Refactoring
2025-02-15 14:54:21 +08:00
f9fe6ac642 Feat: Add background color to GraphRag configuration #4980 (#4981)
### What problem does this PR solve?

Feat: Add background color to GraphRag configuration #4980

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 18:57:09 +08:00
b4ad565df6 Feat: Add ParsedPageCard component #3221 (#4976)
### What problem does this PR solve?

Feat: Add ParsedPageCard component #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 18:12:39 +08:00
754d5ea364 add gemini-2.0-flash-thinking-exp-01-21 (#4957)
add gemini-2.0-flash-thinking-exp-01-21
2025-02-14 13:31:07 +08:00
26add87c3d Feat: Jump from the chunk page to the dataset page #3221 (#4961)
### What problem does this PR solve?
Feat: Jump from the chunk page to the dataset page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 13:30:55 +08:00
986062a604 format number float (#4954)
format number float
2025-02-14 12:00:34 +08:00
29ceeba95f Fix hit cache error while raptoring. (#4955)
### What problem does this PR solve?

#4126

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-14 12:00:19 +08:00
849d9eb463 Ignore tenant not found error while increasing token usage. (#4950)
### What problem does this PR solve?

#4940

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-14 11:10:49 +08:00
dce7053c24 Feat: Add an id to the dataset testing route #3221 (#4951)
### What problem does this PR solve?

Feat: Add an id to the dataset testing route #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 10:43:59 +08:00
042f4c90c6 Fixes KeyError: 'content' when using stream=False (#4944)
### 🛠 Fixes `KeyError: 'content'` when using `stream=False`

#### 🔍 Problem  
When calling the chat API with `stream=False`, the code attempts to
access `msg[-1]["content"]` without verifying if the key exists. This
causes a `KeyError` when the message structure does not contain
`"content"`.

This issue was discussed in
[#4885](https://github.com/infiniflow/ragflow/issues/4885), where we
analyzed the root cause. The error does not occur with `stream=True`, as
the response is processed differently.

####  Solution  
- **Logging Fix:**  
  - Before accessing `msg[-1]["content"]`, we check if the key exists.  
- If it does not exist, a default value (`"[content not available]"`) is
used to prevent errors.

- **Structural Fix in `msg` Construction:**  
- Ensured that every message in `msg` contains the `"content"` key, even
if empty.
- This fixes the issue at its root and ensures consistent behavior
between `stream=True` and `stream=False`.

#### 🔄 Impact  
- Prevents the `KeyError` without affecting normal application flow.  
- Ensures the integrity of the `msg` structure, avoiding future
failures.



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-14 10:27:01 +08:00
c1583a3e1d Feat: Bind data to datasets page #3221 (#4938)
### What problem does this PR solve?

Feat: Bind data to datasets page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 09:38:48 +08:00
17fa2e9e8e Added a guide on setting metadata (#4935)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-02-13 18:16:45 +08:00
ff237f2dbc Feat: Display Think for Deepseek R1 model #4903 (#4930)
### What problem does this PR solve?

Feat: Display Think for Deepseek R1 model #4903

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-13 15:59:42 +08:00
50c99599f2 Fix DB assistant template error. (#4925)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-13 11:33:25 +08:00
891ee85fa6 Feat: Add ChatInput component #3221 (#4915)
### What problem does this PR solve?

Feat: Add ChatInput component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 19:32:49 +08:00
a03f5dd9f6 Add a list of large language models of deepseek and image2text models… (#4914)
### What problem does this PR solve?

#4870 
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 17:52:29 +08:00
415c4b7ed5 Organized and add a list of large language models of Nvidia.v1.1 (#4910)
### What problem does this PR solve?

#4870

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 17:10:19 +08:00
d599707154 Fix: After deleting all conversation lists, the chat input box can still be used for input. #4907 (#4909)
### What problem does this PR solve?

Fix: After deleting all conversation lists, the chat input box can still
be used for input. #4907

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 16:54:14 +08:00
7f06712a30 Feat: Add LlmSettingFieldItems component #3221 (#4906)
### What problem does this PR solve?

Feat: Add LlmSettingFieldItems component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 15:43:31 +08:00
b08bb56f6c Display thinking for deepseek r1 (#4904)
### What problem does this PR solve?
#4903
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 15:43:13 +08:00
9bcccadebd Remove use of eval() from search.py (#4887)
Use `json.loads()` instead.

### What problem does this PR solve?

Using `eval()` can lead to code injections. I think this loads a JSON
field, right? If yes, why is this done via `eval()` and not
`json.loads()`?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 13:15:38 +08:00
1287558f24 Fix xinference chat role order issue. (#4898)
### What problem does this PR solve?

#4831

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 13:15:23 +08:00
6b389e01b5 Remove use of eval() from operators.py (#4888)
Use `np.float32()` instead.

### What problem does this PR solve?

Using `eval()` can lead to code injections.

I think `eval()` is only used to parse a floating point number here.
This change preserves the correct behavior if the string `"None"` is
supplied. But if that behavior isn't intended then this part could be
just deleted instead, since `np.float32()` is parsing strings anyway:

```Python
        if isinstance(scale, str):
            scale = eval(scale)
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 12:53:42 +08:00
8fcca1b958 fix: big xls file error (#4859)
### What problem does this PR solve?

if *.xls file is too large, .eg >50M, I get error.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 12:39:25 +08:00
a1cf792245 Changed elasticsearch image url (#4897)
### What problem does this PR solve?

Changed elasticsearch image url to speed up image downloading. 

### Type of change

- [x] Refactoring
2025-02-12 12:38:13 +08:00
978b580dcf Fix: Knowledge base page crashes when network connection is lost. #4894 (#4895)
### What problem does this PR solve?

Fix: Knowledge base page crashes when network connection is lost. #4894
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 11:26:26 +08:00
d197f33646 Feat: Add hatPromptEngine component #3221 (#4881)
### What problem does this PR solve?

Feat: Add hatPromptEngine component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-11 19:04:10 +08:00
521d25d4e6 Feat: Add ChatBasicSetting component #3221 (#4876)
### What problem does this PR solve?

Feat: Add ChatBasicSetting component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-11 15:45:24 +08:00
ca1648052a fix categorize agent input content not format error (#4842)
### What problem does this PR solve?

Fix categorize agent input content not format error

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wangrui <wangrui@haima.me>
2025-02-11 13:32:42 +08:00
f34b913bd8 Feat: Add Sessions component #3221 (#4865)
### What problem does this PR solve?

Feat: Add Sessions component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-11 13:11:15 +08:00
0d3ed37b48 Make the update script shorter. (#4854)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 18:18:49 +08:00
bc68f18c48 Feat: Add ChatCard #3221 (#4852)
### What problem does this PR solve?
Feat: Add  ChatCard #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-10 17:38:10 +08:00
6e42687e65 Added a release notes (#4848)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-10 17:05:24 +08:00
e4bd879686 Feat: Modify the Preset configurations item style to distinguish it from other fields #4844 (#4845)
### What problem does this PR solve?

Feat: Modify the Preset configurations item style to distinguish it from
other fields #4844

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-10 16:49:07 +08:00
78982d88e0 Reformat error message. (#4829)
### What problem does this PR solve?

#4828

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 16:47:53 +08:00
fa5c7edab4 Fix: Fail to open console with Firefox #4816 (#4838)
### What problem does this PR solve?

Fix: Fail to open console with Firefox #4816

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 14:33:10 +08:00
6fa34d5532 Fix KG circle. (#4823)
### What problem does this PR solve?

#4760

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 11:02:29 +08:00
9e5427dc6e Feat: Remove begin's width from agent templates #4764 (#4809)
### What problem does this PR solve?

Feat: Remove begin's width from agent templates #4764
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-10 09:59:59 +08:00
a357190eff Feat: Fixed the issue where the prompt always displayed the initial value when switching between different generate operators #4764 (#4808)
### What problem does this PR solve?

Feat: Fixed the issue where the prompt always displayed the initial
value when switching between different generate operators #4764

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 18:25:25 +08:00
bfcc2abe47 Feat: Add VariablePickerMenuPlugin to select variables in the prompt text box by menu #4764 (#4765)
### What problem does this PR solve?

Feat: Add VariablePickerMenuPlugin to select variables in the prompt
text box by menu #4764

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 18:09:13 +08:00
f64ae9dc33 Inner prompt parameter setting. (#4806)
### What problem does this PR solve?

#4764

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 18:09:02 +08:00
5a51bdd824 Fix: The requested interface timeout will cause the page to crash #4787 (#4788)
### What problem does this PR solve?

Fix: The requested interface timeout will cause the page to crash #4787

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-08 11:26:36 +08:00
b48c85dcf9 Increase ES update script length. (#4785)
### What problem does this PR solve?

#4749

### Type of change

- [x] Performance Improvement
2025-02-08 11:03:31 +08:00
f374dd38b6 Fix divided by zero issue. (#4784)
### What problem does this PR solve?

#4779

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-08 10:36:26 +08:00
ccb72e6787 Add a comment to valkey. (#4783)
### What problem does this PR solve?
#4775

### Type of change

- [x] Documentation Update
2025-02-08 10:31:50 +08:00
55823dbdf6 Refresh Gemini model list. (#4780)
### What problem does this PR solve?

#4761

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 10:19:51 +08:00
588207d7c1 optimize TenantLLMService.increase_usage for "can't update token usag… (#4755)
…e error " message

### What problem does this PR solve?

optimize TenantLLMService.increase_usage Performance

### Type of change

- [x] Performance Improvement

Co-authored-by: che_shuai <che_shuai@massclouds.com>
2025-02-07 12:16:17 +08:00
2aa0cdde8f Fix Gemini chat issue. (#4757)
### What problem does this PR solve?

#4753

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-07 12:00:19 +08:00
44d798d8f0 Config chat share (#4700)
Config chat share
2025-02-07 10:35:49 +08:00
4150805073 More models for siliconflow. (#4756)
### What problem does this PR solve?

#4751

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-07 10:32:52 +08:00
448fa1c4d4 Robust for abnormal response from LLMs. (#4747)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-06 17:34:53 +08:00
e786f596e2 Updated template description (#4744)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-06 17:14:13 +08:00
fe9e9a644f Preparation for release. (#4739)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-02-06 15:15:13 +08:00
d2961b2d25 Feat: Supports docx in the MANUAL chunk method and docx, markdown, and PDF in the Q&A chunk method #3957 (#4741)
### What problem does this PR solve?

Feat: Supports docx in the MANUAL chunk method and docx, markdown, and
PDF in the Q&A chunk method #3957
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-06 14:41:46 +08:00
a73e1750b6 Resume content flow ExecSQL (#4738)
resume content flow, instead of closed with errors.
2025-02-06 12:09:47 +08:00
c1d71e9a3f Fix: New user can't accept invite without configuring LLM API #4379 (#4736)
### What problem does this PR solve?

Fix: New user can't accept invite without configuring LLM API #4379

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-06 11:41:02 +08:00
2a07eb69a7 Fix too long context issue. (#4735)
### What problem does this PR solve?

#4728

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-06 11:37:23 +08:00
a3a70431f3 Avoid misunderstanding LLMs about the numbers value (#4724)
Avoid misunderstanding LLMs about the numbers value
2025-02-06 10:17:56 +08:00
6f2c3a3c3c Fix too long query exception. (#4729)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-06 10:11:52 +08:00
54803c4ef2 Fix: pt_br translation and adding pt to knoledg-add (#4674)
### What problem does this PR solve?

Fix Portuguese (Brazil) translation
Adding portuguese to Knowledge adding settings.

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
- [X] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-02-05 18:20:24 +08:00
efbaa484d7 Fix: Chat Assistant page goes blank #4566 (#4727)
### What problem does this PR solve?

Fix: Chat Assistant page goes blank #4566

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-05 18:19:38 +08:00
3411d0a2ce Added cuda_is_available (#4725)
### What problem does this PR solve?

Added cuda_is_available

### Type of change

- [x] Refactoring
2025-02-05 18:01:23 +08:00
283d036cba Fitin for infinity. (#4722)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-05 16:47:05 +08:00
307717b045 Fix exesql re-generate SQL issue. (#4717)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-05 16:23:48 +08:00
8e74bc8e42 Update readme. (#4715)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-02-05 14:24:30 +08:00
4b9c4c0705 Update deepseek model provider info. (#4714)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-02-05 13:43:40 +08:00
b2bb560007 Import akshare lazzily. (#4708)
### What problem does this PR solve?

#4696

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-05 12:04:11 +08:00
e1526846da Fixed GPU detection on CPU only environment (#4711)
### What problem does this PR solve?

Fixed GPU detection on CPU only environment. Close #4692

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-05 12:02:43 +08:00
7a7f98b1a9 Reverted build slim image documentation (#4687)
### Fixed documentation for building docker image

I'm assuming that this was a mistake (but I could be missing something)
[here](https://github.com/infiniflow/ragflow/pull/4658/files#:~:text=docker%20build%20%2D%2Dbuild%2Darg%20LIGHTEN%3D1%20%2Df%20Dockerfile%20%2Dt%20infiniflow/ragflow%3Anightly%2Dslim%20.)
when the docker building instructions for the slim image was just
changed away from an actual `docker build` command to the mac os `docker
compose up` command. This is just reverting the change.

### Type of change

- [X] Documentation Update
2025-02-05 10:35:08 +08:00
036f37a627 fix: err object has no attribute 'iter_lines' (#4686)
### What problem does this PR solve?

ERROR: 'Stream' object has no attribute 'iter_lines' with reference to
Claude/Anthropic chat streams

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kyle Olmstead <k.olmstead@offensive-security.com>
2025-02-01 22:39:30 +08:00
191587346c Fix macOS startup (#4658)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/4319

This pull request includes several changes to improve the Docker setup
and documentation for the project. The most important changes include
updating the Dockerfile to support modern versions of Rust, adding a new
Docker Compose configuration for macOS, and updating the build
instructions in the documentation.

Improvements to Docker setup:

*
[`Dockerfile`](diffhunk://#diff-dd2c0eb6ea5cfc6c4bd4eac30934e2d5746747af48fef6da689e85b752f39557L80-R107):
Added installation steps for a modern version of Rust and updated the
logic for installing the correct ODBC driver based on the architecture.
*
[`docker/docker-compose-macos.yml`](diffhunk://#diff-8e8587143bb2442c02f6dff4caa217ebbe3ba4ec8e7c23b2e568886a67b00eafR1-R56):
Added a new Docker Compose configuration file specifically for macOS,
including service dependencies, environment variables, and volume
mappings.

Updates to documentation:

*
[`docs/guides/develop/build_docker_image.mdx`](diffhunk://#diff-d6136bb897f7245aae33b0accbcf7c508ceaef005c545f9f09cad3cada840a19L44-R44):
Updated the build instructions to use the new Docker Compose
configuration for macOS instead of the previous Docker build command.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update

---------

Signed-off-by: Samuel Giffard <samuel.giffard@mytomorrows.com>
2025-01-28 16:51:16 +08:00
50055c47ec Infinity mapping refine. (#4665)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-01-27 18:53:49 +08:00
6f30397bb5 Infinity adapt to graphrag. (#4663)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-27 18:35:18 +08:00
d970d0ef39 Fix typos (#4662)
### What problem does this PR solve?

Fix typos in the documents

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-01-27 15:45:16 +08:00
ce8658aa84 Update FAQ (#4661)
### What problem does this PR solve?

Update FAQ

### Type of change

- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-01-27 12:56:48 +08:00
bc6a768b90 Refactor the delimiter name (#4659)
### What problem does this PR solve?

Rename from 'Diagonal' to 'Forward slash'
Rename from 'Minus' to 'Dash'

issue: #4655 

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-27 11:04:43 +08:00
656a2fab41 Refresh deepseek models. (#4660)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-27 11:01:39 +08:00
47b28a27a6 Added description of the Iteration component (#4656)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-27 10:12:23 +08:00
c354239b79 Make infinity adapt to condition exist. (#4657)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 18:45:36 +08:00
b4303f6010 Update README. (#4654)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-01-26 14:14:58 +08:00
4776fa5e4e Refactor for total_tokens. (#4652)
### What problem does this PR solve?

#4567
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 13:54:26 +08:00
c24137bd11 Fix too long integer for Table. (#4651)
### What problem does this PR solve?

#4594

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 12:54:58 +08:00
4011c8f68c Fix potential error. (#4650)
### What problem does this PR solve?
#4622

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 12:38:32 +08:00
2cb8edc42c Added GPUStack (#4649)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-26 12:25:02 +08:00
284b4d4430 Align table heading with 'System Model Settings' (#4646)
…the 'System Model Settings'

### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2025-01-26 11:12:38 +08:00
42f7261509 Fix param error. (#4645)
### What problem does this PR solve?

#4633

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 10:40:02 +08:00
f33415b751 refactor: better vertical alignment for icon and text in some setting buttons (#4615)
### What problem does this PR solve?

Fixed vertical alignment issues between icons and text in API-Key and
System Model Settings buttons. This improves visual consistency across
the settings interface.

### Type of change

- [x] Refactoring

Before: Icons and text were slightly misaligned vertically
<img width="635" alt="Screenshot 2025-01-23 at 20 22 46"
src="https://github.com/user-attachments/assets/28f15637-d3fd-45a2-aae8-ca72fb12a88e"
/>

After: Icons and text are now properly centered with consistent spacing
<img width="540" alt="Screenshot 2025-01-23 at 20 23 02"
src="https://github.com/user-attachments/assets/98bb0ca5-6995-42d8-bd23-8a8f44ec0209"
/>
2025-01-26 10:36:03 +08:00
530b0dab17 Make infinity able to cal embedding sim only. (#4644)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 10:29:52 +08:00
c4b1c4e6f4 Fix onnxruntime-gpu marks (#4643)
### What problem does this PR solve?

Fix onnxruntime-gpu marks

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-26 09:37:59 +08:00
3c2c8942d5 Removed onnxruntime (#4632)
### What problem does this PR solve?

Removed onnxruntime. It conflicts with the onnxruntime-gpu.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 23:41:52 +08:00
71c132f76d Make infinity adapt (#4635)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 17:45:04 +08:00
9d717f0b6e Fix csv reader exception. (#4628)
### What problem does this PR solve?

#4552
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 14:47:19 +08:00
8b49734241 Added onnxruntime-gpu (#4631)
### What problem does this PR solve?

Added onnxruntime-gpu

### Type of change

- [x] Refactoring
2025-01-24 14:33:21 +08:00
898ae7fa80 Fix missplace for vector sim weight and token sim weight. (#4627)
### What problem does this PR solve?

#4610

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 12:41:06 +08:00
fa4277225d Added document: Accelerate document indexing and retrieval (#4600)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-24 11:58:15 +08:00
1bff6b7333 Fix t_ocr.py for PNG image. (#4625)
### What problem does this PR solve?
#4586

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 11:47:27 +08:00
e9ccba0395 Add timestamp to messages (#4624)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-24 11:07:55 +08:00
f1d9f4290e Fix TogetherAIEmbed. (#4623)
### What problem does this PR solve?

#4567

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-24 10:29:30 +08:00
4230402fbb deepdoc use GPU if possible (#4618)
### What problem does this PR solve?

deepdoc use GPU if possible

### Type of change

- [x] Refactoring
2025-01-24 09:48:02 +08:00
e14d6ae441 Refactor. (#4612)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-01-23 18:56:02 +08:00
55f2b7c4d5 Code format. (#4611)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-01-23 18:43:32 +08:00
07b3e55903 Feat: Set the style of the header tag #3221 (#4608)
### What problem does this PR solve?

Feat: Set the style of the header tag #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-23 18:16:52 +08:00
86892959a0 Rebuild graph when it's out of time. (#4607)
### What problem does this PR solve?

#4543

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
2025-01-23 17:26:20 +08:00
bbc1d02c96 Template conversion adds Jinjia2 syntax support (#4545)
### What problem does this PR solve?

Template conversion adds Jinjia2 syntax support

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: wangrui <wangrui@haima.me>
Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-01-23 17:11:14 +08:00
b23a4a8fea Feat: Add keyword item to AssistantSetting #4543 (#4603)
### What problem does this PR solve?

Feat: Add keyword item to AssistantSetting #4543

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-23 15:58:22 +08:00
240e7d7c22 Unified user_service.py (#4606)
### What problem does this PR solve?

Unified user_service.py

### Type of change

- [x] Refactoring
2025-01-23 15:49:21 +08:00
52fa8bdcf3 fix bug KGSearch.search() got an unexpected keyword argument 'rank_feature' (#4601)
`graphrag/search.py`中`search`方法缺少参数`rank_feature`

Co-authored-by: xubh <xubh@wikiflyer.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-01-23 14:03:18 +08:00
13f04b7cca Fix pdf applying Q&A issue. (#4599)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-23 12:30:46 +08:00
c4b9e903c8 Fix index not found for new user. (#4597)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-23 11:45:22 +08:00
15f9406e7b Fix: Capture the problem that the knowledge graph interface returns null and causes page errors #4543 (#4598)
### What problem does this PR solve?

Fix: Capture the problem that the knowledge graph interface returns null
and causes page errors #4543

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-23 11:32:49 +08:00
c5c0dd2da0 Feat: Display the knowledge graph on the knowledge base page #4543 (#4587)
### What problem does this PR solve?

Feat: Display the knowledge graph on the knowledge base page #4543

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-22 19:43:27 +08:00
dd0ebbea35 Light GraphRAG (#4585)
### What problem does this PR solve?

#4543

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-22 19:43:14 +08:00
1a367664f1 Remove usage of eval() from postprocess.py (#4571)
Remove usage of `eval()` from postprocess.py

### What problem does this PR solve?

The use of `eval()` is a potential security risk. While the use of
`eval()` is guarded and thus not a security risk normally, `assert`s
aren't run if `-O` or `-OO` is passed to the interpreter, and as such
then the guard would not apply. In any case there is no reason to use
`eval()` here at all.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Other (please describe):

Potential security fix if somehow the passed `modul_name` could be user
controlled.
2025-01-22 19:37:24 +08:00
336e5fb37f Renamed entrypoint_task_executor.sh entrypoint-parser.sh (#4583)
### What problem does this PR solve?

Renamed entrypoint_task_executor.sh entrypoint-parser.sh

### Type of change

- [x] Refactoring
2025-01-22 18:21:51 +08:00
598e142c85 re-fix (#4584)
re-fix docs
2025-01-22 18:13:26 +08:00
cbc3c5297e Revert the chat history for rewrite. (#4579)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-22 16:55:11 +08:00
4b82275ae5 Fix Latest Release button on PT README (#4572)
### What problem does this PR solve?

Latest Release button on Portugese Read me is not looking like it shuld 

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
2025-01-22 11:46:55 +08:00
3894de895b Update comments (#4569)
### What problem does this PR solve?

Add license statement.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-21 20:52:28 +08:00
583050a876 minor (#4568)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-21 20:02:04 +08:00
a2946b0fb0 Added descriptions of the Note and Template components (#4560)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-21 19:51:30 +08:00
21052b2972 Feat: Support for Portuguese language #4557 (#4558)
### What problem does this PR solve?

Feat: Support for Portuguese language #4557

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-21 11:32:47 +08:00
5632613eb5 Add language portugese br (#4550)
### What problem does this PR solve?

Add language Portugese from Brazil

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-01-21 11:22:29 +08:00
fc35821f81 Feat: Make the scroll bar of the DatasetSettings page appear inside #3221 (#4548)
### What problem does this PR solve?

Feat: Make the scroll bar of the DatasetSettings page appear inside
#3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-21 10:19:38 +08:00
db80376427 Added entrypoint for task executor (#4551)
### What problem does this PR solve?

Added entrypoint for task executor

### Type of change

- [x] Refactoring
2025-01-20 22:49:46 +08:00
99430a7db7 Added description of the Concentrator component (#4549)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-01-20 19:54:02 +08:00
a3391c4d55 Feat: Rename document name #3221 (#4544)
### What problem does this PR solve?

Feat: Rename document name #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-20 16:49:45 +08:00
e0f52eebc6 Added descriptions of Rewrite and Switch components. To be continued (#4526)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-01-20 15:56:21 +08:00
367babda2f Make Categorize see more chat hisotry. (#4538)
### What problem does this PR solve?

#4521

### Type of change
- [x] Performance Improvement
2025-01-20 11:57:56 +08:00
2962284c79 Bump akshare (#4536)
### What problem does this PR solve?

Bump akshare. Close #4525 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-20 11:17:59 +08:00
75e1981e13 Remove use of eval() from recognizer.py (#4480)
`eval(op_type)` -> `getattr(operators, op_type)`

### What problem does this PR solve?

Using `eval()` can lead to code injections and is entirely unnecessary
here.

### Type of change

- [x] Other (please describe):

Best practice code improvement, preventing the possibility of code
injection.
2025-01-20 09:52:47 +08:00
4f9f9405b8 Remove use of eval() from ocr.py (#4481)
`eval(op_name)` -> `getattr(operators, op_name)`

### What problem does this PR solve?

Using `eval()` can lead to code injections and is entirely unnecessary
here.

### Type of change

- [x] Other (please describe):

Best practice code improvement, preventing the possibility of code
injection.
2025-01-20 09:52:30 +08:00
938492cbae Fix: Rename segmented.tsx #3221 (#4522)
### What problem does this PR solve?

Fix: Rename segmented.tsx #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-17 19:01:09 +08:00
f4d084bcf1 Fix doc progress issue. (#4520)
### What problem does this PR solve?

#4516
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-17 18:28:15 +08:00
69984554a5 Fix: Translate the operator options of the Switch operator #1739 (#4519)
### What problem does this PR solve?

Fix: Translate the operator options of the Switch operator #1739

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-17 18:23:08 +08:00
03d7a51d49 add file README_tzh.md (#4513)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Other (please describe):
2025-01-17 18:22:02 +08:00
0efe7a544b Change index url per NEED_MIRROR (#4515)
### What problem does this PR solve?

Change index url per NEED_MIRROR. Close #4507

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-17 12:01:04 +08:00
c0799c53b3 Added descriptions of Message and Keyword agent components (#4512)
### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2025-01-16 19:47:15 +08:00
4946e43941 Feat: Make the category operator form displayed in collapsed mode by default #4505 (#4510)
### What problem does this PR solve?

Feat: Make the category operator form displayed in collapsed mode by
default #4505

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-16 17:16:58 +08:00
37235315e1 Fix: Fixed an issue where math formulas could not be displayed correctly #4405 (#4506)
### What problem does this PR solve?

[remarkjs/react-markdown/issues/785](https://github.com/remarkjs/react-markdown/issues/785)
Fix: Fixed an issue where math formulas could not be displayed correctly
#4405

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-16 15:13:40 +08:00
39be08c83d Feat: Add the MessageHistoryWindowSizeItem to RewriteQuestionForm #1739 (#4502)
### What problem does this PR solve?

Feat: Add the MessageHistoryWindowSizeItem to RewriteQuestionForm #1739
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-16 15:01:15 +08:00
3805621564 Fix xinference rerank issue. (#4499)
### What problem does this PR solve?
#4495
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-16 11:35:51 +08:00
a75cda4957 Feat: Add LinkToDatasetDialog #3221 (#4500)
### What problem does this PR solve?

Feat: Add LinkToDatasetDialog #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-16 11:35:39 +08:00
961e8c4980 Fix: the Display when the knowledge base empty. (#4496)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-16 10:27:45 +08:00
57b4e0c464 Bump infinity to v0.6.0-dev2 (#4497)
### What problem does this PR solve?

Bump infinity to v0.6.0-dev2. Close #4477 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-16 10:07:17 +08:00
c852a6dfbf Accelerate titles' embeddings. (#4492)
### What problem does this PR solve?


### Type of change

- [x] Performance Improvement
2025-01-15 15:20:29 +08:00
b4614e9517 Feat: Add FilesTable #3221 (#4491)
### What problem does this PR solve?

Feat: Add FilesTable #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-15 14:39:33 +08:00
be5f830878 Truncate text for zhipu embedding. (#4490)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-15 14:36:27 +08:00
7944aacafa Feat: add gpustack model provider (#4469)
### What problem does this PR solve?

Add GPUStack as a new model provider.
[GPUStack](https://github.com/gpustack/gpustack) is an open-source GPU
cluster manager for running LLMs. Currently, locally deployed models in
GPUStack cannot integrate well with RAGFlow. GPUStack provides both
OpenAI compatible APIs (Models / Chat Completions / Embeddings /
Speech2Text / TTS) and other APIs like Rerank. We would like to use
GPUStack as a model provider in ragflow.

[GPUStack Docs](https://docs.gpustack.ai/latest/quickstart/)

Related issue: https://github.com/infiniflow/ragflow/issues/4064.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)



### Testing Instructions
1. Install GPUStack and deploy the `llama-3.2-1b-instruct` llm, `bge-m3`
text embedding model, `bge-reranker-v2-m3` rerank model,
`faster-whisper-medium` Speech-to-Text model, `cosyvoice-300m-sft` in
GPUStack.
2. Add provider in ragflow settings.
3. Testing in ragflow.
2025-01-15 14:15:58 +08:00
e478586a8e Refactor. (#4487)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-01-15 14:06:46 +08:00
713f38090b Sync prerequisites with Helm Charts (#4483)
### What problem does this PR solve?

Address #4391 

### Type of change

- [x] Other (please describe):
2025-01-15 11:57:47 +08:00
8f7ecde908 Update description (#4468)
### What problem does this PR solve?

Update description

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-14 18:35:06 +08:00
23ad459136 Feat: Add background to next login page #3221 (#4474)
### What problem does this PR solve?

Feat: Add background to next login page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-14 13:43:18 +08:00
f556f0239c Fix dify retrieval issue. (#4473)
### What problem does this PR solve?

#4464
#4469 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-14 13:16:05 +08:00
f318342c8e Recalling the file uploaded while chatting. (#4472)
### What problem does this PR solve?

#4445

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-14 12:05:20 +08:00
d3c07794b5 Replace poetry with uv (#4471)
### What problem does this PR solve?

Replace poetry with uv

### Type of change

- [x] Refactoring
2025-01-14 11:49:43 +08:00
fd0bf3adf0 Format: dos2unix (#4467)
### What problem does this PR solve?

Format the code

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-13 18:19:01 +08:00
c08382099a Check meta data format in json map (#4461)
### What problem does this PR solve?

#3690

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-13 17:34:50 +08:00
d8346cb7a6 Feat: Metadata in documents for improve the prompt #3690 (#4462)
### What problem does this PR solve?

Feat: Metadata in documents for improve the prompt #3690

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-13 17:13:37 +08:00
46c52d65b7 Add meta data while chatting. (#4455)
### What problem does this PR solve?

#3690

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-13 14:35:24 +08:00
e098fcf6ad Fix csv for TAG. (#4454)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-13 12:03:18 +08:00
ecdb2a88bd Fix: Can not select GPT-4o / 4o mini as Chat Model #4421 (#4453)
### What problem does this PR solve?

Fix: Can not select GPT-4o / 4o mini as Chat Model #4421

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-13 11:54:16 +08:00
2c7ba90cb4 Fix: In order to distinguish the keys of a pair of messages, add a prefix to the id when rendering the message. #4409 (#4451)
### What problem does this PR solve?

Fix: In order to distinguish the keys of a pair of messages, add a
prefix to the id when rendering the message. #4409

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-13 10:51:59 +08:00
95261f17f6 Bump infinity to v0.6.0-dev1 (#4448)
### What problem does this PR solve?

Bump infinity to v0.6.0-dev1 and poetry to 2.0.1

### Type of change

- [x] Refactoring
2025-01-12 19:54:33 +08:00
7d909d4d1b Add doc meta data. (#4442)
### What problem does this PR solve?

#3690

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-10 19:06:59 +08:00
4dde73f897 Error message: Infinity not support table parsing method (#4439)
### What problem does this PR solve?

Specific error message.

### Type of change

- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
2025-01-10 16:39:13 +08:00
93b30b2fb5 update res vi (#4437)
update typo vi
2025-01-10 11:35:58 +08:00
06c54367fa Feat: Display tag word cloud on recall test page #4368 (#4438)
### What problem does this PR solve?

Feat: Display tag word cloud on recall test page #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-10 11:35:07 +08:00
6acbd374d8 fix duckduckgo search subsection error (#4430)
### What problem does this PR solve?

duckduckgo search 6.3.0 still has error sometimes, need to update to
7.2.0, after updated, it works ok.
this PR is going to fix this issue
https://github.com/infiniflow/ragflow/issues/4396

### Type of change

 Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: xiaohzho <xiaohzho@cisco.com>
2025-01-10 09:34:20 +08:00
48bca0ca01 Fix: Modify the text of the category operator form #4412 (#4433)
### What problem does this PR solve?

Fix: Modify the text of the category operator form #4412

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-09 19:17:22 +08:00
300d8ecf51 Feat: Add TagFeatureItem #4368 (#4432)
### What problem does this PR solve?

Feat: Add TagFeatureItem #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-09 18:24:27 +08:00
dac54ded96 Added a description of the Categorize agent component (#4428)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-01-09 18:10:18 +08:00
c5da3cdd97 Tagging (#4426)
### What problem does this PR solve?

#4367

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-09 17:07:21 +08:00
f892d7d426 Let the agent talk while there's pre-set param. (#4423)
### What problem does this PR solve?

#4385

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-09 14:07:57 +08:00
f86d8906e7 Fixed code error when mssql returns multiple columns (#4420)
Fixed code error when mssql returns multiple columns
2025-01-09 11:55:18 +08:00
bc681e2ee9 Remove redundant param of rewrite component. (#4422)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-09 11:54:31 +08:00
b6c71c1e01 Fix typo in helm charts (#4419)
### What problem does this PR solve?

Fix typo in helm chart

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-09 10:20:27 +08:00
7bebf4b7bf Added descriptions of the retrieval agent component (#4416)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update

---------

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
2025-01-09 10:11:05 +08:00
d64df4de9c Update error message (#4417)
### What problem does this PR solve?

1. Update error message
2. Remove space characters

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-01-08 20:18:27 +08:00
af43cb04e8 Feat: Add tag_kwd parameter to chunk configuration modal #4368 (#4414)
### What problem does this PR solve?

Feat: Add tag_kwd parameter to chunk configuration modal  #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-08 19:45:34 +08:00
3d66d78304 Fix API retrieval error. (#4408)
### What problem does this PR solve?

#4403

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-08 11:27:46 +08:00
b7ce4e7e62 fix:t_recognizer TypeError: 'super' object is not callable (#4404)
### What problem does this PR solve?

[Bug]: layout recognizer failed for wrong boxes class type #4230
(https://github.com/infiniflow/ragflow/issues/4230)

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: youzhiqiang <zhiqiang.you@aminer.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-01-08 10:59:35 +08:00
5e64d79587 Added generate component description (#4399)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-01-07 19:56:11 +08:00
49cebd9fec Feat: Add description for tag parsing method #4368 (#4402)
### What problem does this PR solve?

Feat: Add description for tag parsing method #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-07 19:33:53 +08:00
d9a4e4cc3b Fix page size error. (#4401)
### What problem does this PR solve?

#4400

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-07 19:06:31 +08:00
ac89a2dda1 [Fix] fix duckduck go search 202 ratelimit failed (#4398)
this PR is going to fix issue
https://github.com/infiniflow/ragflow/issues/4396

### Type of change

 Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: xiaohzho <xiaohzho@cisco.com>
2025-01-07 18:40:46 +08:00
01a122dc9d fix bug, agent invoke can not get params from begin (#4390)
### What problem does this PR solve?

fix bug, agent invoke can not get params from begin

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wangrui <wangrui@haima.me>
2025-01-07 18:40:27 +08:00
8ec392adb0 Feat: Add TagWorkCloud #4368 (#4393)
### What problem does this PR solve?

Feat: Add TagWorkCloud #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-07 18:03:41 +08:00
de822a108f Refine variable display name. (#4397)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-01-07 18:02:33 +08:00
2e40c2a6f6 Fix t_recognizer issue. (#4387)
### What problem does this PR solve?

#4230

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-07 13:17:46 +08:00
d088a34fe2 Feat: Add LoadingButton #4368 (#4384)
### What problem does this PR solve?

Feat: Add LoadingButton #4368

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-07 12:53:06 +08:00
16e1681fa4 Refine DB assistant template. (#4383)
### What problem does this PR solve?

#4326

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-07 11:30:15 +08:00
bb24e5f739 Added instructions on embedding agent or assistant into a third-party webpage (#4369)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-01-06 20:25:47 +08:00
1d93eb81ae Feat: Add TagTable #4367 (#4368)
### What problem does this PR solve?

Feat: Add TagTable #4367

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-06 18:58:42 +08:00
439d20e41f Use LTS polars to resolve some machines don't support AVX CPU flag (#4364)
### What problem does this PR solve?

Some old types of machine or virtual machine doesn't support AVX CPU
flag. This PR is to use lts polars module to avoid this fault.

fix issue: #4349

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
2025-01-06 18:52:17 +08:00
45619702ff Updated outdated descriptions and added multi-turn optimization (#4362)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2025-01-06 16:54:22 +08:00
b93c136797 Fix gemini embedding error. (#4356)
### What problem does this PR solve?

#4314

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-06 14:41:29 +08:00
983ec0666c Fix param error. (#4355)
### What problem does this PR solve?

#4230

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-06 13:54:17 +08:00
a9ba051582 Adds a research report generator. (#4354)
### What problem does this PR solve?

#4242

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-06 13:28:54 +08:00
bad764bcda Improve storage engine (#4341)
### What problem does this PR solve?

- Bring `STORAGE_IMPL` back in `rag/svr/cache_file_svr.py`
- Simplify storage connection when working with AWS S3

### Type of change

- [x] Refactoring
2025-01-06 12:06:24 +08:00
9c6cf12137 Refactor model list. (#4346)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-01-03 19:55:42 +08:00
6288b6d02b chrome extensions (#4308)
Build chrome extensions that allow interaction with browser content
2025-01-03 10:15:36 +08:00
52c20033d7 Fix total number error. (#4339)
### What problem does this PR solve?

#4328

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-03 10:02:30 +08:00
5dad15600c Feat: Add FileUploadDialog #3221 (#4327) (#4335)
### What problem does this PR solve?

Feat: Add ConfirmDeleteDialog #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-03 09:47:05 +08:00
8674156d1c Fix potential SSRF attack vulnerability (#4334)
### What problem does this PR solve?

Fix potential SSRF attack vulnerability

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2025-01-02 18:45:45 +08:00
5083d92998 Feat: Add model id to ExeSql operator form. #1739 (#4333)
### What problem does this PR solve?

Feat: Add model id to ExeSql operator form. #1739

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-02 17:38:01 +08:00
59a78408be Fix t_recognizer.py after model updating. (#4330)
### What problem does this PR solve?

#4230

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-01-02 17:00:11 +08:00
df22ead841 Fix agent_completion bug (#4329)
### What problem does this PR solve?

Fix agent_completion bug  #4320

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-01-02 16:59:54 +08:00
5883493c7d Feat: Add FileUploadDialog #3221 (#4327)
### What problem does this PR solve?

Feat: Add FileUploadDialog #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-01-02 16:10:41 +08:00
50f209204e Synchronize with enterprise version (#4325)
### Type of change

- [x] Refactoring
2025-01-02 13:44:44 +08:00
564277736a Update exesql component for agent (#4307)
### What problem does this PR solve?

Update exesql component for agent

### Type of change

- [x] Refactoring

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-31 19:58:56 +08:00
061a22588a Feat: Add DatasetCreatingDialog #3221 (#4313)
### What problem does this PR solve?

Feat: Add DatasetCreatingDialog #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-31 19:17:09 +08:00
5071df9de1 Fix parameter name error. (#4312)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-31 17:38:01 +08:00
419b546f03 Update displayed_name to display_name (#4311)
### What problem does this PR solve?

Update displayed_name to display_name

### Type of change

- [x] Refactoring

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-31 17:25:24 +08:00
e5b1511c66 Fix: Fixed the issue that the graph could not display the grouping #4180 (#4306)
### What problem does this PR solve?

Fix: Fixed the issue that the graph could not display the grouping #4180

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-31 15:32:14 +08:00
0e5124ec99 Show the errors out. (#4305)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-12-31 15:32:02 +08:00
7c7b7d2689 Update error message for agent name conflict (#4299)
### What problem does this PR solve?

Update error message for agent name conflict

### Type of change

- [x] Refactoring

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-31 14:36:23 +08:00
accd3a6c7e Support OpenAI gpt-4o and gpt-4o-mini for img2text (#4300)
### What problem does this PR solve?

OpenAI has deprecated the gpt-4-vision-preview model. This PR adds
support for the newer gpt-4o and gpt-4o-mini models in the img2text
feature.


![image](https://github.com/user-attachments/assets/6dddf2dc-1b9e-4e94-bf07-6bf77d39122b)

This PR add addtional 4o/4o-mini entry for img2text besides original
ones. Utilized [alias](https://platform.openai.com/docs/models#gpt-4o)
model names (e.g., gpt-4o-2024-08-06) because the database schema uses
the model name as the primary key.



- [x] Other (please describe): model update
2024-12-31 14:36:06 +08:00
4ba4f622a5 Refactor (#4303)
### What problem does this PR solve?

### Type of change
- [x] Refactoring
2024-12-31 14:31:31 +08:00
b52b0f68fc Add top_k for create_chat and update_chat api (#4294)
### What problem does this PR solve?

Add top_k for create_chat and update_chat api #4157

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-30 19:22:57 +08:00
d42e78bce2 Fix bugs in chunk api (#4293)
### What problem does this PR solve?

Fix bugs in chunk api #4149

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-30 19:01:44 +08:00
8fb18f37f6 Code refactor. (#4291)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2024-12-30 18:38:51 +08:00
f619d5a9b6 Fix: After executing npm i --force locally, the login page cannot be opened #4290 (#4292)
### What problem does this PR solve?

Fix: After executing npm i --force locally, the login page cannot be
opened #4290

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-30 18:19:58 +08:00
d1971e988a Feat: The Begin and IterationStart operators cannot be deleted using shortcut keys #4287 (#4288)
### What problem does this PR solve?

Feat: The Begin and IterationStart operators cannot be deleted using
shortcut keys #4287

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-30 17:47:47 +08:00
54908ebd30 Fix the bug in create_dataset function (#4284)
### What problem does this PR solve?

Fix the bug in create_dataset function #4136

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-12-30 13:04:51 +08:00
3ba2b8d80f Fix agent session list by user_id. (#4285)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-30 12:18:16 +08:00
713b837276 Feat: Translate the system prompt of the generate operator #3993 (#4283)
### What problem does this PR solve?

 Feat: Translate the system prompt of the generate operator #3993

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-30 12:07:06 +08:00
8feb4c1a99 Fix BaiduFanyi TestRun parameter validation and debug method missing … (#4275)
### What problem does this PR solve?

Fix BaiduFanyi TestRun parameter validation and debug method missing
errors
![Uploading Snipaste_2024-12-27_19-56-31.png…]()


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wangrui <wangrui@haima.me>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-12-30 10:34:57 +08:00
dd13a5d05c Fix some bugs in text2sql.(#4279)(#4281) (#4280)
Fix some bugs in text2sql.(#4279)(#4281)

### What problem does this PR solve?
- The incorrect results in parsing CSV files of the QA knowledge base in
the text2sql scenario. Process CSV files using the csv library. Decouple
CSV parsing from TXT parsing
- Most llm return results in markdown format ```sql query ```, Fix
execution error caused by LLM output SQLmarkdown format.### Type of
change
- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-30 10:32:19 +08:00
8cdf10148d Initial draft of the begin component reference (#4272)
### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2024-12-27 17:07:31 +08:00
7773afa561 Update text2sql agent manual document (#4226) (#4271)
### What problem does this PR solve?
- Create a text2sql agent document: Receipe, procedure, debug (
including step run), run.

### Type of change
- [ ] Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-12-27 16:48:17 +08:00
798eb3647c Fix chat listing error. (#4270)
### What problem does this PR solve?

#4220
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-27 16:03:59 +08:00
2d17e5aa04 Feat: Delete useless code #4242 (#4267)
### What problem does this PR solve?

Feat: Delete useless code #4242

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-27 15:09:03 +08:00
c75aa11ae6 Fix: The edit box for the headers parameter of the invoke operator is always loading. #4265 (#4266)
### What problem does this PR solve?

Fix: The edit box for the headers parameter of the invoke operator is
always loading. #4265

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-27 15:03:42 +08:00
c7818770f4 Fix Python SDK example error. (#4263)
### What problem does this PR solve?

#4253
### Type of change

- [x] Documentation Update
2024-12-27 14:49:43 +08:00
6f6303d017 Fix Python SDK example error. (#4262)
### What problem does this PR solve?

#4252

### Type of change

- [x] Documentation Update
2024-12-27 14:40:00 +08:00
146e8bb793 Feat: Limit the iteration start node to only be the source node #4242 (#4260)
### What problem does this PR solve?

Feat: Limit the iteration start node to only be the source node #4242

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-27 14:25:15 +08:00
f948c0d9f1 Clean query. (#4259)
### What problem does this PR solve?

#4239

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-27 14:25:03 +08:00
c3e3f0fbb4 Add iteration for agent. (#4258)
### What problem does this PR solve?

#4242
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-12-27 11:38:33 +08:00
a1a825c830 Feat: Add the iteration Node #4242 (#4247)
### What problem does this PR solve?

Feat: Add the iteration Node #4242

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-12-27 11:24:17 +08:00
a6f4153775 Update UI text (#4248)
### What problem does this PR solve?

Update UI text

### Type of change

- [x] Refactoring

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-12-27 10:48:11 +08:00
097aab09a2 Replace image2text model check with internal image. (#4250)
### What problem does this PR solve?

#4243

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-26 19:46:42 +08:00
600f435d27 Fix text (#4244)
### What problem does this PR solve?

Fix frontend text

### Type of change

- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-12-26 17:03:48 +08:00
722545e5e0 Fix bugs (#4241)
### What problem does this PR solve?

1. Refactor error message
2. Fix knowledges are created on ES and can't be found in Infinity. The
document chunk fetch error.

### Type of change

- [x] Fix bug
- [x] Refactoring

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-12-26 16:08:17 +08:00
9fa73771ee Fixed invoke component parameters #4236 (#4237)
### What problem does this PR solve?

to fixed issue https://github.com/infiniflow/ragflow/issues/4236

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-26 16:06:19 +08:00
fe279754ac Update version info (#4232)
### What problem does this PR solve?

Update version info to 0.15.1

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-12-26 12:15:28 +08:00
7e063283ba Removing invisible chars before tokenization. (#4233)
### What problem does this PR solve?

#4223

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-26 11:48:16 +08:00
28eeb29b88 Fix component input error. (#4231)
### What problem does this PR solve?

#4108

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-26 10:13:47 +08:00
85511cb1fd Miscellaneous updates (#4228)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2024-12-25 20:21:38 +08:00
a3eeb5de32 Fix: Q&A chunk modification (#4227)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-12-25 19:11:16 +08:00
765 changed files with 58969 additions and 27482 deletions

View File

@ -75,12 +75,6 @@ jobs:
# The body field does not support environment variable substitution directly.
body_path: release_body.md
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
# https://github.com/marketplace/actions/docker-login
- name: Login to Docker Hub
uses: docker/login-action@v3
@ -113,7 +107,7 @@ jobs:
if: startsWith(github.ref, 'refs/tags/v')
run: |
cd sdk/python && \
poetry build
uv build
- name: Publish package distributions to PyPI
if: startsWith(github.ref, 'refs/tags/v')

View File

@ -32,12 +32,9 @@ jobs:
# https://github.com/hmarr/debug-action
#- uses: hmarr/debug-action@v2
- name: Show PR labels
- name: Show who triggered this workflow
run: |
echo "Workflow triggered by ${{ github.event_name }}"
if [[ ${{ github.event_name }} == 'pull_request' ]]; then
echo "PR labels: ${{ join(github.event.pull_request.labels.*.name, ', ') }}"
fi
- name: Ensure workspace ownership
run: echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
@ -68,7 +65,7 @@ jobs:
- name: Start ragflow:nightly-slim
run: |
echo "RAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Stop ragflow:nightly-slim
@ -78,7 +75,7 @@ jobs:
- name: Start ragflow:nightly
run: |
echo "RAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Run sdk tests against Elasticsearch
@ -89,7 +86,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
- name: Run frontend api tests against Elasticsearch
run: |
@ -99,7 +96,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
- name: Stop ragflow:nightly
@ -119,7 +116,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
- name: Run frontend api tests against Infinity
run: |
@ -129,7 +126,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed

3
.gitignore vendored
View File

@ -38,3 +38,6 @@ sdk/python/dist/
sdk/python/ragflow_sdk.egg-info/
huggingface.co/
nltk_data/
# Exclude hash-like temporary files like 9b5ad71b2ce5302211f9c61530b329a4922fc6a4
*[0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f]*

View File

@ -1,6 +1,6 @@
# Contribution guidelines
This document offers guidlines and major considerations for submitting your contributions to RAGFlow.
This document offers guidelines and major considerations for submitting your contributions to RAGFlow.
- To report a bug, file a [GitHub issue](https://github.com/infiniflow/ragflow/issues/new/choose) with us.
- For further questions, you can explore existing discussions or initiate a new one in [Discussions](https://github.com/orgs/infiniflow/discussions).

View File

@ -62,30 +62,41 @@ RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
apt install -y python3-pip pipx nginx unzip curl wget git vim less
RUN if [ "$NEED_MIRROR" == "1" ]; then \
pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && \
pip3 config set global.trusted-host pypi.tuna.tsinghua.edu.cn; \
pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple && \
pip3 config set global.trusted-host mirrors.aliyun.com; \
mkdir -p /etc/uv && \
echo "[[index]]" > /etc/uv/uv.toml && \
echo 'url = "https://mirrors.aliyun.com/pypi/simple"' >> /etc/uv/uv.toml && \
echo "default = true" >> /etc/uv/uv.toml; \
fi; \
pipx install poetry; \
if [ "$NEED_MIRROR" == "1" ]; then \
pipx inject poetry poetry-plugin-pypi-mirror; \
fi
pipx install uv
ENV PYTHONDONTWRITEBYTECODE=1 DOTNET_SYSTEM_GLOBALIZATION_INVARIANT=1
ENV PATH=/root/.local/bin:$PATH
# Configure Poetry
ENV POETRY_NO_INTERACTION=1
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
ENV POETRY_VIRTUALENVS_CREATE=true
ENV POETRY_REQUESTS_TIMEOUT=15
# nodejs 12.22 on Ubuntu 22.04 is too old
RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
curl -fsSL https://deb.nodesource.com/setup_20.x | bash - && \
apt purge -y nodejs npm && \
apt autoremove && \
apt purge -y nodejs npm cargo && \
apt autoremove -y && \
apt update && \
apt install -y nodejs cargo
apt install -y nodejs
# A modern version of cargo is needed for the latest version of the Rust compiler.
RUN apt update && apt install -y curl build-essential \
&& if [ "$NEED_MIRROR" == "1" ]; then \
# Use TUNA mirrors for rustup/rust dist files
export RUSTUP_DIST_SERVER="https://mirrors.tuna.tsinghua.edu.cn/rustup"; \
export RUSTUP_UPDATE_ROOT="https://mirrors.tuna.tsinghua.edu.cn/rustup/rustup"; \
echo "Using TUNA mirrors for Rustup."; \
fi; \
# Force curl to use HTTP/1.1
curl --proto '=https' --tlsv1.2 --http1.1 -sSf https://sh.rustup.rs | bash -s -- -y --profile minimal \
&& echo 'export PATH="/root/.cargo/bin:${PATH}"' >> /root/.bashrc
ENV PATH="/root/.cargo/bin:${PATH}"
RUN cargo --version && rustc --version
# Add msssql ODBC driver
# macOS ARM64 environment, install msodbcsql18.
@ -94,11 +105,12 @@ RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
curl https://packages.microsoft.com/keys/microsoft.asc | apt-key add - && \
curl https://packages.microsoft.com/config/ubuntu/22.04/prod.list > /etc/apt/sources.list.d/mssql-release.list && \
apt update && \
if [ -n "$ARCH" ] && [ "$ARCH" = "arm64" ]; then \
# MacOS ARM64
arch="$(uname -m)"; \
if [ "$arch" = "arm64" ] || [ "$arch" = "aarch64" ]; then \
# ARM64 (macOS/Apple Silicon or Linux aarch64)
ACCEPT_EULA=Y apt install -y unixodbc-dev msodbcsql18; \
else \
# (x86_64)
# x86_64 or others
ACCEPT_EULA=Y apt install -y unixodbc-dev msodbcsql17; \
fi || \
{ echo "Failed to install ODBC driver"; exit 1; }
@ -131,23 +143,27 @@ USER root
WORKDIR /ragflow
# install dependencies from poetry.lock file
COPY pyproject.toml poetry.toml poetry.lock ./
# install dependencies from uv.lock file
COPY pyproject.toml uv.lock ./
RUN --mount=type=cache,id=ragflow_poetry,target=/root/.cache/pypoetry,sharing=locked \
# https://github.com/astral-sh/uv/issues/10462
# uv records index url into uv.lock but doesn't failover among multiple indexes
RUN --mount=type=cache,id=ragflow_uv,target=/root/.cache/uv,sharing=locked \
if [ "$NEED_MIRROR" == "1" ]; then \
export POETRY_PYPI_MIRROR_URL=https://pypi.tuna.tsinghua.edu.cn/simple/; \
sed -i 's|pypi.org|mirrors.aliyun.com/pypi|g' uv.lock; \
else \
sed -i 's|mirrors.aliyun.com/pypi|pypi.org|g' uv.lock; \
fi; \
if [ "$LIGHTEN" == "1" ]; then \
poetry install --no-root; \
uv sync --python 3.10 --frozen; \
else \
poetry install --no-root --with=full; \
uv sync --python 3.10 --frozen --all-extras; \
fi
COPY web web
COPY docs docs
RUN --mount=type=cache,id=ragflow_npm,target=/root/.npm,sharing=locked \
cd web && npm install --force && npm run build
cd web && npm install && npm run build
COPY .git /ragflow/.git
@ -180,11 +196,12 @@ COPY deepdoc deepdoc
COPY rag rag
COPY agent agent
COPY graphrag graphrag
COPY pyproject.toml poetry.toml poetry.lock ./
COPY agentic_reasoning agentic_reasoning
COPY pyproject.toml uv.lock ./
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template
COPY docker/entrypoint.sh ./entrypoint.sh
RUN chmod +x ./entrypoint.sh
COPY docker/entrypoint.sh docker/entrypoint-parser.sh ./
RUN chmod +x ./entrypoint*.sh
# Copy compiled web pages
COPY --from=builder /ragflow/web/dist /ragflow/web/dist

View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -32,14 +34,14 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary></b>📕 Table of Contents</b></summary>
<summary><b>📕 Table of Contents</b></summary>
- 💡 [What is RAGFlow?](#-what-is-ragflow)
- 🎮 [Demo](#-demo)
@ -68,6 +70,7 @@ data.
## 🎮 Demo
Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
@ -75,17 +78,19 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Latest Updates
- 2024-12-18 Upgrades Document Layout Analysis model in Deepdoc.
- 2025-02-05 Updates the model list of 'SILICONFLOW' and adds support for Deepseek-R1/DeepSeek-V3.
- 2025-01-26 Optimizes knowledge graph extraction and application, offering various configuration options.
- 2024-12-18 Upgrades Document Layout Analysis model in DeepDoc.
- 2024-12-04 Adds support for pagerank score in knowledge base.
- 2024-11-22 Adds more variables to Agent.
- 2024-11-01 Adds keyword extraction and related question generation to the parsed chunks to improve the accuracy of retrieval.
- 2024-08-22 Support text to SQL statements through RAG.
- 2024-08-02 Supports GraphRAG inspired by [graphrag](https://github.com/microsoft/graphrag) and mind map.
## 🎉 Stay Tuned
⭐️ Star our repository to stay up-to-date with exciting new features and improvements! Get instant notifications for new
releases! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
@ -134,7 +139,7 @@ releases! 🌟
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> If you have not installed Docker on your local machine (Windows, Mac, or Linux),
see [Install Docker Engine](https://docs.docker.com/engine/install/).
> see [Install Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Start up the server
@ -154,7 +159,7 @@ releases! 🌟
> ```
>
> This change will be reset after a system reboot. To ensure your change remains permanent, add or update the
`vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
> `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
>
> ```bash
> vm.max_map_count=262144
@ -168,19 +173,19 @@ releases! 🌟
3. Start up the server using the pre-built Docker images:
> The command below downloads the `v0.15.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download an RAGFlow edition different from `v0.15.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0` for the full edition `v0.15.0`.
> The command below downloads the `v0.17.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.17.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` for the full edition `v0.17.0`.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. Check the server status after having the server up and running:
@ -192,23 +197,21 @@ releases! 🌟
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anormal`
error because, at that moment, your RAGFlow may not be fully initialized.
> error because, at that moment, your RAGFlow may not be fully initialized.
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default
HTTP serving port `80` can be omitted when using the default configurations.
> HTTP serving port `80` can be omitted when using the default configurations.
6. In [service_conf.yaml.template](./docker/service_conf.yaml.template), select the desired LLM factory in `user_default_llm` and update
the `API_KEY` field with the corresponding API key.
@ -234,7 +237,7 @@ to `<YOUR_SERVING_PORT>:80`.
Updates to the above configurations require a reboot of all containers to take effect:
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Switch doc engine from Elasticsearch to Infinity
@ -247,15 +250,18 @@ RAGFlow uses Elasticsearch by default for storing full text and vectors. To swit
$ docker compose -f docker/docker-compose.yml down -v
```
> [!WARNING]
> `-v` will delete the docker container volumes, and the existing data will be cleared.
2. Set `DOC_ENGINE` in **docker/.env** to `infinity`.
3. Start the containers:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> [!WARNING]
> Switching to Infinity on a Linux/arm64 machine is not yet officially supported.
## 🔧 Build a Docker image without embedding models
@ -280,28 +286,31 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🔨 Launch service from source for development
1. Install Poetry, or skip this step if it is already installed:
1. Install uv, or skip this step if it is already installed:
```bash
pipx install poetry
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
pipx install uv
```
2. Clone the source code and install Python dependencies:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root --with=full # install RAGFlow dependent python modules
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
```
3. Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Add the following line to `/etc/hosts` to resolve all hosts specified in **docker/.env** to `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
```
```
4. If you cannot access HuggingFace, set the `HF_ENDPOINT` environment variable to use a mirror site:
@ -310,6 +319,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
5. Launch backend service:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
@ -319,12 +329,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
6. Install frontend dependencies:
```bash
cd web
npm install --force
```
npm install
```
7. Launch frontend service:
```bash
npm run dev
```
npm run dev
```
_The following output confirms a successful launch of the system:_
@ -339,7 +350,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 📜 Roadmap
See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)
See the [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🏄 Community

View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -32,14 +34,14 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Dokumentasi</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Peta Jalan</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Peta Jalan</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary></b>📕 Daftar Isi</b></summary>
<summary><b>📕 Daftar Isi </b> </summary>
- 💡 [Apa Itu RAGFlow?](#-apa-itu-ragflow)
- 🎮 [Demo](#-demo)
@ -65,6 +67,7 @@
## 🎮 Demo
Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
@ -72,16 +75,18 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Pembaruan Terbaru
- 2024-12-18 Meningkatkan model Analisis Tata Letak Dokumen di Deepdoc.
- 2025-02-05 Memperbarui daftar model 'SILICONFLOW' dan menambahkan dukungan untuk Deepseek-R1/DeepSeek-V3.
- 2025-01-26 Optimalkan ekstraksi dan penerapan grafik pengetahuan dan sediakan berbagai opsi konfigurasi.
- 2024-12-18 Meningkatkan model Analisis Tata Letak Dokumen di DeepDoc.
- 2024-12-04 Mendukung skor pagerank ke basis pengetahuan.
- 2024-11-22 Peningkatan definisi dan penggunaan variabel di Agen.
- 2024-11-01 Penambahan ekstraksi kata kunci dan pembuatan pertanyaan terkait untuk meningkatkan akurasi pengambilan.
- 2024-08-22 Dukungan untuk teks ke pernyataan SQL melalui RAG.
- 2024-08-02 Dukungan GraphRAG yang terinspirasi oleh [graphrag](https://github.com/microsoft/graphrag) dan mind map.
## 🎉 Tetap Terkini
⭐️ Star repositori kami untuk tetap mendapat informasi tentang fitur baru dan peningkatan menarik! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
@ -147,7 +152,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> ```
>
> Perubahan ini akan hilang setelah sistem direboot. Untuk membuat perubahan ini permanen, tambahkan atau perbarui nilai
`vm.max_map_count` di **/etc/sysctl.conf**:
> `vm.max_map_count` di **/etc/sysctl.conf**:
>
> ```bash
> vm.max_map_count=262144
@ -161,19 +166,19 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
3. Bangun image Docker pre-built dan jalankan server:
> Perintah di bawah ini mengunduh edisi v0.15.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.15.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0 untuk edisi lengkap v0.15.0.
> Perintah di bawah ini mengunduh edisi v0.17.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.17.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0 untuk edisi lengkap v0.17.0.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. Periksa status server setelah server aktif dan berjalan:
@ -185,23 +190,21 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network anormal`
karena RAGFlow mungkin belum sepenuhnya siap.
> karena RAGFlow mungkin belum sepenuhnya siap.
5. Buka browser web Anda, masukkan alamat IP server Anda, dan login ke RAGFlow.
> Dengan pengaturan default, Anda hanya perlu memasukkan `http://IP_DEVICE_ANDA` (**tanpa** nomor port) karena
port HTTP default `80` bisa dihilangkan saat menggunakan konfigurasi default.
> Dengan pengaturan default, Anda hanya perlu memasukkan `http://IP_DEVICE_ANDA` (**tanpa** nomor port) karena
> port HTTP default `80` bisa dihilangkan saat menggunakan konfigurasi default.
6. Dalam [service_conf.yaml.template](./docker/service_conf.yaml.template), pilih LLM factory yang diinginkan di `user_default_llm` dan perbarui
bidang `API_KEY` dengan kunci API yang sesuai.
@ -224,7 +227,7 @@ menjadi `<YOUR_SERVING_PORT>:80`.
Pembaruan konfigurasi ini memerlukan reboot semua kontainer agar efektif:
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
## 🔧 Membangun Docker Image tanpa Model Embedding
@ -249,28 +252,31 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal Poetry, atau lewati langkah ini jika sudah terinstal:
1. Instal uv, atau lewati langkah ini jika sudah terinstal:
```bash
pipx install poetry
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
pipx install uv
```
2. Clone kode sumber dan instal dependensi Python:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root # install modul python RAGFlow
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
```
3. Jalankan aplikasi yang diperlukan (MinIO, Elasticsearch, Redis, dan MySQL) menggunakan Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Tambahkan baris berikut ke `/etc/hosts` untuk memetakan semua host yang ditentukan di **conf/service_conf.yaml** ke `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
```
```
4. Jika Anda tidak dapat mengakses HuggingFace, atur variabel lingkungan `HF_ENDPOINT` untuk menggunakan situs mirror:
@ -279,6 +285,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
5. Jalankan aplikasi backend:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
@ -288,12 +295,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
6. Instal dependensi frontend:
```bash
cd web
npm install --force
npm install
```
7. Jalankan aplikasi frontend:
```bash
npm run dev
```
npm run dev
```
_Output berikut menandakan bahwa sistem berhasil diluncurkan:_
@ -308,7 +316,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 📜 Roadmap
Lihat [Roadmap RAGFlow 2024](https://github.com/infiniflow/ragflow/issues/162)
Lihat [Roadmap RAGFlow 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🏄 Komunitas
@ -319,4 +327,4 @@ Lihat [Roadmap RAGFlow 2024](https://github.com/infiniflow/ragflow/issues/162)
## 🙌 Kontribusi
RAGFlow berkembang melalui kolaborasi open-source. Dalam semangat ini, kami menerima kontribusi dari komunitas.
Jika Anda ingin berpartisipasi, tinjau terlebih dahulu [Panduan Kontribusi](./CONTRIBUTING.md).
Jika Anda ingin berpartisipasi, tinjau terlebih dahulu [Panduan Kontribusi](./CONTRIBUTING.md).

View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -30,10 +32,9 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
@ -46,23 +47,26 @@
## 🎮 Demo
デモをお試しください:[https://demo.ragflow.io](https://demo.ragflow.io)。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 最新情報
- 2024-12-18 Deepdoc のドキュメント レイアウト分析モデルをアップグレードします
- 2025-02-05 シリコン フローの St およびモデル リストを更新し、Deep Seek-R1/Deep Seek-V3 のサポートを追加しました
- 2025-01-26 ナレッジ グラフの抽出と適用を最適化し、さまざまな構成オプションを提供します。
- 2024-12-18 DeepDoc のドキュメント レイアウト分析モデルをアップグレードします。
- 2024-12-04 ナレッジ ベースへのページランク スコアをサポートしました。
- 2024-11-22 エージェントでの変数の定義と使用法を改善しました。
- 2024-11-01 再現の精度を向上させるために、解析されたチャンクにキーワード抽出と関連質問の生成を追加しました。
- 2024-08-22 RAG を介して SQL ステートメントへのテキストをサポートします。
- 2024-08-02 [graphrag](https://github.com/microsoft/graphrag) からインスピレーションを得た GraphRAG とマインド マップをサポートします。
## 🎉 続きを楽しみに
⭐️ リポジトリをスター登録して、エキサイティングな新機能やアップデートを最新の状態に保ちましょう!すべての新しいリリースに関する即時通知を受け取れます! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
@ -142,19 +146,19 @@
3. ビルド済みの Docker イメージをビルドし、サーバーを起動する:
> 以下のコマンドは、RAGFlow Dockerイメージの v0.15.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.15.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.15.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.17.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.17.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.17.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0 と設定します。
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. サーバーを立ち上げた後、サーバーの状態を確認する:
@ -165,17 +169,15 @@
_以下の出力は、システムが正常に起動したことを確認するものです:_
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> もし確認ステップをスキップして直接 RAGFlow にログインした場合、その時点で RAGFlow が完全に初期化されていない可能性があるため、ブラウザーがネットワーク異常エラーを表示するかもしれません。
5. ウェブブラウザで、プロンプトに従ってサーバーの IP アドレスを入力し、RAGFlow にログインします。
@ -203,7 +205,7 @@
> すべてのシステム設定のアップデートを有効にするには、システムの再起動が必要です:
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Elasticsearch から Infinity にドキュメントエンジンを切り替えます
@ -214,16 +216,17 @@ RAGFlow はデフォルトで Elasticsearch を使用して全文とベクトル
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
2. **docker/.env** の「DOC _ ENGINE」を「infinity」に設定します。
Note: `-v` は docker コンテナのボリュームを削除し、既存のデータをクリアします。
2. **docker/.env** の「DOC \_ ENGINE」を「infinity」に設定します。
3. 起動コンテナ:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。
## 🔧 ソースコードでDockerイメージを作成埋め込みモデルなし
## 🔧 ソースコードで Docker イメージを作成(埋め込みモデルなし)
この Docker イメージのサイズは約 1GB で、外部の大モデルと埋め込みサービスに依存しています。
@ -233,7 +236,7 @@ cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 ソースコードをコンパイルしたDockerイメージ埋め込みモデルを含む
## 🔧 ソースコードをコンパイルした Docker イメージ(埋め込みモデルを含む)
この Docker のサイズは約 9GB で、埋め込みモデルを含むため、外部の大モデルサービスのみが必要です。
@ -245,53 +248,58 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🔨 ソースコードからサービスを起動する方法
1. Poetry をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
1. uv をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
```bash
pipx install poetry
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
pipx install uv
```
2. ソースコードをクローンし、Python の依存関係をインストールする:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
```
3. Docker Compose を使用して依存サービスMinIO、Elasticsearch、Redis、MySQLを起動する:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
`/etc/hosts` に以下の行を追加して、**conf/service_conf.yaml** に指定されたすべてのホストを `127.0.0.1` に解決します:
`/etc/hosts` に以下の行を追加して、**conf/service_conf.yaml** に指定されたすべてのホストを `127.0.0.1` に解決します:
```
127.0.0.1 es01 infinity mysql minio redis
```
```
4. HuggingFace にアクセスできない場合は、`HF_ENDPOINT` 環境変数を設定してミラーサイトを使用してください:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. バックエンドサービスを起動する:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. フロントエンドの依存関係をインストールする:
6. フロントエンドの依存関係をインストールする:
```bash
cd web
npm install --force
```
7. フロントエンドサービスを起動する:
npm install
```
7. フロントエンドサービスを起動する:
```bash
npm run dev
npm run dev
```
_以下の画面で、システムが正常に起動したことを示します:_
_以下の画面で、システムが正常に起動したことを示します:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
@ -304,7 +312,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 📜 ロードマップ
[RAGFlow ロードマップ 2024](https://github.com/infiniflow/ragflow/issues/162) を参照
[RAGFlow ロードマップ 2025](https://github.com/infiniflow/ragflow/issues/4214) を参照
## 🏄 コミュニティ

View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -30,78 +32,74 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
## 💡 RAGFlow란?
[RAGFlow](https://ragflow.io/)는 심층 문서 이해에 기반한 오픈소스 RAG (Retrieval-Augmented Generation) 엔진입니다. 이 엔진은 대규모 언어 모델(LLM)과 결합하여 정확한 질문 응답 기능을 제공하며, 다양한 복잡한 형식의 데이터에서 신뢰할 수 있는 출처를 바탕으로 한 인용을 통해 이를 뒷받침합니다. RAGFlow는 규모에 상관없이 모든 기업에 최적화된 RAG 워크플로우를 제공합니다.
## 🎮 데모
데모를 [https://demo.ragflow.io](https://demo.ragflow.io)에서 실행해 보세요.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 업데이트
- 2024-12-18 Deepdoc의 문서 레이아웃 분석 모델 업그레이드.
- 2025-02-05 'SILICONFLOW' 모델 목록을 업데이트하고 Deepseek-R1/DeepSeek-V3에 대한 지원을 추가합니다.
- 2025-01-26 지식 그래프 추출 및 적용을 최적화하고 다양한 구성 옵션을 제공합니다.
- 2024-12-18 DeepDoc의 문서 레이아웃 분석 모델 업그레이드.
- 2024-12-04 지식베이스에 대한 페이지랭크 점수를 지원합니다.
- 2024-11-22 에이전트의 변수 정의 및 사용을 개선했습니다.
- 2024-11-01 파싱된 청크에 키워드 추출 및 관련 질문 생성을 추가하여 재현율을 향상시킵니다.
- 2024-08-22 RAG를 통해 SQL 문에 텍스트를 지원합니다.
- 2024-08-02: [graphrag](https://github.com/microsoft/graphrag)와 마인드맵에서 영감을 받은 GraphRAG를 지원합니다.
## 🎉 계속 지켜봐 주세요
⭐️우리의 저장소를 즐겨찾기에 등록하여 흥미로운 새로운 기능과 업데이트를 최신 상태로 유지하세요! 모든 새로운 릴리스에 대한 즉시 알림을 받으세요! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 주요 기능
### 🍭 **"Quality in, quality out"**
- [심층 문서 이해](./deepdoc/README.md)를 기반으로 복잡한 형식의 비정형 데이터에서 지식을 추출합니다.
- 문자 그대로 무한한 토큰에서 "데이터 속의 바늘"을 찾아냅니다.
### 🍱 **템플릿 기반의 chunking**
- 똑똑하고 설명 가능한 방식.
- 다양한 템플릿 옵션을 제공합니다.
### 🌱 **할루시네이션을 줄인 신뢰할 수 있는 인용**
- 텍스트 청킹을 시각화하여 사용자가 개입할 수 있도록 합니다.
- 중요한 참고 자료와 추적 가능한 인용을 빠르게 확인하여 신뢰할 수 있는 답변을 지원합니다.
### 🍔 **다른 종류의 데이터 소스와의 호환성**
- 워드, 슬라이드, 엑셀, 텍스트 파일, 이미지, 스캔본, 구조화된 데이터, 웹 페이지 등을 지원합니다.
### 🛀 **자동화되고 손쉬운 RAG 워크플로우**
- 개인 및 대규모 비즈니스에 맞춘 효율적인 RAG 오케스트레이션.
- 구성 가능한 LLM 및 임베딩 모델.
- 다중 검색과 결합된 re-ranking.
- 비즈니스와 원활하게 통합할 수 있는 직관적인 API.
## 🔎 시스템 아키텍처
<div align="center" style="margin-top:20px;margin-bottom:20px;">
@ -109,17 +107,19 @@
</div>
## 🎬 시작하기
### 📝 사전 준비 사항
- CPU >= 4 cores
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> 로컬 머신(Windows, Mac, Linux)에 Docker가 설치되지 않은 경우, [Docker 엔진 설치]((https://docs.docker.com/engine/install/))를 참조하세요.
> 로컬 머신(Windows, Mac, Linux)에 Docker가 설치되지 않은 경우, [Docker 엔진 설치](<(https://docs.docker.com/engine/install/)>)를 참조하세요.
### 🚀 서버 시작하기
1. `vm.max_map_count`가 262144 이상인지 확인하세요:
> `vm.max_map_count`의 값을 아래 명령어를 통해 확인하세요:
>
> ```bash
@ -147,19 +147,19 @@
3. 미리 빌드된 Docker 이미지를 생성하고 서버를 시작하세요:
> 아래 명령어는 RAGFlow Docker 이미지의 v0.15.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.15.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.15.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.17.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.17.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.17.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0로 설정합니다.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. 서버가 시작된 후 서버 상태를 확인하세요:
@ -170,22 +170,21 @@
_다음 출력 결과로 시스템이 성공적으로 시작되었음을 확인합니다:_
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 만약 확인 단계를 건너뛰고 바로 RAGFlow에 로그인하면, RAGFlow가 완전히 초기화되지 않았기 때문에 브라우저에서 `network anormal` 오류가 발생할 수 있습니다.
5. 웹 브라우저에 서버의 IP 주소를 입력하고 RAGFlow에 로그인하세요.
> 기본 설정을 사용할 경우, `http://IP_OF_YOUR_MACHINE`만 입력하면 됩니다 (포트 번호는 제외). 기본 HTTP 서비스 포트 `80`은 기본 구성으로 사용할 때 생략할 수 있습니다.
6. [service_conf.yaml.template](./docker/service_conf.yaml.template) 파일에서 원하는 LLM 팩토리를 `user_default_llm`에 선택하고, `API_KEY` 필드를 해당 API 키로 업데이트하세요.
> 자세한 내용은 [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup)를 참조하세요.
_이제 쇼가 시작됩니다!_
@ -207,24 +206,26 @@
> 모든 시스템 구성 업데이트는 적용되기 위해 시스템 재부팅이 필요합니다.
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Elasticsearch 에서 Infinity 로 문서 엔진 전환
RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및 벡터를 저장합니다. [Infinity]로 전환(https://github.com/infiniflow/infinity/), 다음 절차를 따르십시오.
1. 실행 중인 모든 컨테이너를 중지합니다.
```bash
$docker compose-f docker/docker-compose.yml down -v
```
Note: `-v` 는 docker 컨테이너의 볼륨을 삭제하고 기존 데이터를 지우며, 이 작업은 컨테이너를 중지하는 것과 동일합니다.
2. **docker/.env**의 "DOC_ENGINE" 을 "infinity" 로 설정합니다.
3. 컨테이너 부팅:
```bash
$docker compose-f docker/docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 시스템에서 Infinity로 전환하는 것은 공식적으로 지원되지 않습니다.
```
> [!WARNING]
> Linux/arm64 시스템에서 Infinity로 전환하는 것은 공식적으로 지원되지 않습니다.
## 🔧 소스 코드로 Docker 이미지를 컴파일합니다(임베딩 모델 포함하지 않음)
이 Docker 이미지의 크기는 약 1GB이며, 외부 대형 모델과 임베딩 서비스에 의존합니다.
@ -247,53 +248,58 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🔨 소스 코드로 서비스를 시작합니다.
1. Poetry를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다:
1. uv를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다:
```bash
pipx install poetry
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
pipx install uv
```
2. 소스 코드를 클론하고 Python 의존성을 설치합니다:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
```
3. Docker Compose를 사용하여 의존 서비스(MinIO, Elasticsearch, Redis 및 MySQL)를 시작합니다:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
`/etc/hosts` 에 다음 줄을 추가하여 **conf/service_conf.yaml** 에 지정된 모든 호스트를 `127.0.0.1` 로 해결합니다:
`/etc/hosts` 에 다음 줄을 추가하여 **conf/service_conf.yaml** 에 지정된 모든 호스트를 `127.0.0.1` 로 해결합니다:
```
127.0.0.1 es01 infinity mysql minio redis
```
```
4. HuggingFace에 접근할 수 없는 경우, `HF_ENDPOINT` 환경 변수를 설정하여 미러 사이트를 사용하세요:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. 백엔드 서비스를 시작합니다:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. 프론트엔드 의존성을 설치합니다:
6. 프론트엔드 의존성을 설치합니다:
```bash
cd web
npm install --force
```
7. 프론트엔드 서비스를 시작합니다:
npm install
```
7. 프론트엔드 서비스를 시작합니다:
```bash
npm run dev
npm run dev
```
_다음 인터페이스는 시스템이 성공적으로 시작되었음을 나타냅니다:_
_다음 인터페이스는 시스템이 성공적으로 시작되었음을 나타냅니다:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
@ -306,7 +312,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 📜 로드맵
[RAGFlow 로드맵 2024](https://github.com/infiniflow/ragflow/issues/162)을 확인하세요.
[RAGFlow 로드맵 2025](https://github.com/infiniflow/ragflow/issues/4214)을 확인하세요.
## 🏄 커뮤니티

351
README_pt_br.md Normal file
View File

@ -0,0 +1,351 @@
<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
</a>
</div>
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
<a href="https://x.com/intent/follow?screen_name=infiniflowai" target="_blank">
<img src="https://img.shields.io/twitter/follow/infiniflow?logo=X&color=%20%23f5f5f5" alt="seguir no X(Twitter)">
</a>
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
</a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="licença">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Documentação</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary><b>📕 Índice</b></summary>
- 💡 [O que é o RAGFlow?](#-o-que-é-o-ragflow)
- 🎮 [Demo](#-demo)
- 📌 [Últimas Atualizações](#-últimas-atualizações)
- 🌟 [Principais Funcionalidades](#-principais-funcionalidades)
- 🔎 [Arquitetura do Sistema](#-arquitetura-do-sistema)
- 🎬 [Primeiros Passos](#-primeiros-passos)
- 🔧 [Configurações](#-configurações)
- 🔧 [Construir uma imagem docker sem incorporar modelos](#-construir-uma-imagem-docker-sem-incorporar-modelos)
- 🔧 [Construir uma imagem docker incluindo modelos](#-construir-uma-imagem-docker-incluindo-modelos)
- 🔨 [Lançar serviço a partir do código-fonte para desenvolvimento](#-lançar-serviço-a-partir-do-código-fonte-para-desenvolvimento)
- 📚 [Documentação](#-documentação)
- 📜 [Roadmap](#-roadmap)
- 🏄 [Comunidade](#-comunidade)
- 🙌 [Contribuindo](#-contribuindo)
</details>
## 💡 O que é o RAGFlow?
[RAGFlow](https://ragflow.io/) é um mecanismo RAG (Geração Aumentada por Recuperação) de código aberto baseado em entendimento profundo de documentos. Ele oferece um fluxo de trabalho RAG simplificado para empresas de qualquer porte, combinando LLMs (Modelos de Linguagem de Grande Escala) para fornecer capacidades de perguntas e respostas verídicas, respaldadas por citações bem fundamentadas de diversos dados complexos formatados.
## 🎮 Demo
Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 Últimas Atualizações
- 05-02-2025 Atualiza a lista de modelos de 'SILICONFLOW' e adiciona suporte para Deepseek-R1/DeepSeek-V3.
- 26-01-2025 Otimize a extração e aplicação de gráficos de conhecimento e forneça uma variedade de opções de configuração.
- 18-12-2024 Atualiza o modelo de Análise de Layout de Documentos no DeepDoc.
- 04-12-2024 Adiciona suporte para pontuação de pagerank na base de conhecimento.
- 22-11-2024 Adiciona mais variáveis para o Agente.
- 01-11-2024 Adiciona extração de palavras-chave e geração de perguntas relacionadas aos blocos analisados para melhorar a precisão da recuperação.
- 22-08-2024 Suporta conversão de texto para comandos SQL via RAG.
## 🎉 Fique Ligado
⭐️ Dê uma estrela no nosso repositório para se manter atualizado com novas funcionalidades e melhorias empolgantes! Receba notificações instantâneas sobre novos lançamentos! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 Principais Funcionalidades
### 🍭 **"Qualidade entra, qualidade sai"**
- Extração de conhecimento baseada em [entendimento profundo de documentos](./deepdoc/README.md) a partir de dados não estruturados com formatos complicados.
- Encontra a "agulha no palheiro de dados" de literalmente tokens ilimitados.
### 🍱 **Fragmentação baseada em templates**
- Inteligente e explicável.
- Muitas opções de templates para escolher.
### 🌱 **Citações fundamentadas com menos alucinações**
- Visualização da fragmentação de texto para permitir intervenção humana.
- Visualização rápida das referências chave e citações rastreáveis para apoiar respostas fundamentadas.
### 🍔 **Compatibilidade com fontes de dados heterogêneas**
- Suporta Word, apresentações, excel, txt, imagens, cópias digitalizadas, dados estruturados, páginas da web e mais.
### 🛀 **Fluxo de trabalho RAG automatizado e sem esforço**
- Orquestração RAG simplificada voltada tanto para negócios pessoais quanto grandes empresas.
- Modelos LLM e de incorporação configuráveis.
- Múltiplas recuperações emparelhadas com reclassificação fundida.
- APIs intuitivas para integração sem problemas com os negócios.
## 🔎 Arquitetura do Sistema
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>
## 🎬 Primeiros Passos
### 📝 Pré-requisitos
- CPU >= 4 núcleos
- RAM >= 16 GB
- Disco >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> Se você não instalou o Docker na sua máquina local (Windows, Mac ou Linux), veja [Instalar Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Iniciar o servidor
1. Certifique-se de que `vm.max_map_count` >= 262144:
> Para verificar o valor de `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Se necessário, redefina `vm.max_map_count` para um valor de pelo menos 262144:
>
> ```bash
> # Neste caso, defina para 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> Essa mudança será resetada após a reinicialização do sistema. Para garantir que a alteração permaneça permanente, adicione ou atualize o valor de `vm.max_map_count` em **/etc/sysctl.conf**:
>
> ```bash
> vm.max_map_count=262144
> ```
2. Clone o repositório:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Inicie o servidor usando as imagens Docker pré-compiladas:
> O comando abaixo baixa a edição `v0.17.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.17.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` para a edição completa `v0.17.0`.
```bash
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.17.0 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.17.0-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
4. Verifique o status do servidor após tê-lo iniciado:
```bash
$ docker logs -f ragflow-server
```
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
```bash
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Rodando em todos os endereços (0.0.0.0)
```
> Se você pular essa etapa de confirmação e acessar diretamente o RAGFlow, seu navegador pode exibir um erro `network anormal`, pois, nesse momento, seu RAGFlow pode não estar totalmente inicializado.
5. No seu navegador, insira o endereço IP do seu servidor e faça login no RAGFlow.
> Com as configurações padrão, você só precisa digitar `http://IP_DO_SEU_MÁQUINA` (**sem** o número da porta), pois a porta HTTP padrão `80` pode ser omitida ao usar as configurações padrão.
6. Em [service_conf.yaml.template](./docker/service_conf.yaml.template), selecione a fábrica LLM desejada em `user_default_llm` e atualize o campo `API_KEY` com a chave de API correspondente.
> Consulte [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) para mais informações.
_O show está no ar!_
## 🔧 Configurações
Quando se trata de configurações do sistema, você precisará gerenciar os seguintes arquivos:
- [.env](./docker/.env): Contém as configurações fundamentais para o sistema, como `SVR_HTTP_PORT`, `MYSQL_PASSWORD` e `MINIO_PASSWORD`.
- [service_conf.yaml.template](./docker/service_conf.yaml.template): Configura os serviços de back-end. As variáveis de ambiente neste arquivo serão automaticamente preenchidas quando o contêiner Docker for iniciado. Quaisquer variáveis de ambiente definidas dentro do contêiner Docker estarão disponíveis para uso, permitindo personalizar o comportamento do serviço com base no ambiente de implantação.
- [docker-compose.yml](./docker/docker-compose.yml): O sistema depende do [docker-compose.yml](./docker/docker-compose.yml) para iniciar.
> O arquivo [./docker/README](./docker/README.md) fornece uma descrição detalhada das configurações do ambiente e dos serviços, que podem ser usadas como `${ENV_VARS}` no arquivo [service_conf.yaml.template](./docker/service_conf.yaml.template).
Para atualizar a porta HTTP de serviço padrão (80), vá até [docker-compose.yml](./docker/docker-compose.yml) e altere `80:80` para `<SUA_PORTA_DE_SERVIÇO>:80`.
Atualizações nas configurações acima exigem um reinício de todos os contêineres para que tenham efeito:
> ```bash
> $ docker compose -f docker-compose.yml up -d
> ```
### Mudar o mecanismo de documentos de Elasticsearch para Infinity
O RAGFlow usa o Elasticsearch por padrão para armazenar texto completo e vetores. Para mudar para o [Infinity](https://github.com/infiniflow/infinity/), siga estas etapas:
1. Pare todos os contêineres em execução:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` irá deletar os volumes do contêiner, e os dados existentes serão apagados.
2. Defina `DOC_ENGINE` no **docker/.env** para `infinity`.
3. Inicie os contêineres:
```bash
$ docker compose -f docker-compose.yml up -d
```
> [!ATENÇÃO]
> A mudança para o Infinity em uma máquina Linux/arm64 ainda não é oficialmente suportada.
## 🔧 Criar uma imagem Docker sem modelos de incorporação
Esta imagem tem cerca de 2 GB de tamanho e depende de serviços externos de LLM e incorporação.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Criar uma imagem Docker incluindo modelos de incorporação
Esta imagem tem cerca de 9 GB de tamanho. Como inclui modelos de incorporação, depende apenas de serviços externos de LLM.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
1. Instale o `uv`, ou pule esta etapa se ele já estiver instalado:
```bash
pipx install uv
```
2. Clone o código-fonte e instale as dependências Python:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # instala os módulos Python dependentes do RAGFlow
```
3. Inicie os serviços dependentes (MinIO, Elasticsearch, Redis e MySQL) usando Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Adicione a seguinte linha ao arquivo `/etc/hosts` para resolver todos os hosts especificados em **docker/.env** para `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
```
4. Se não conseguir acessar o HuggingFace, defina a variável de ambiente `HF_ENDPOINT` para usar um site espelho:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. Lance o serviço de back-end:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. Instale as dependências do front-end:
```bash
cd web
npm install
```
7. Lance o serviço de front-end:
```bash
npm run dev
```
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
## 📚 Documentação
- [Início rápido](https://ragflow.io/docs/dev/)
- [Guia do usuário](https://ragflow.io/docs/dev/category/guides)
- [Referências](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
Veja o [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🏄 Comunidade
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 Contribuindo
O RAGFlow prospera por meio da colaboração de código aberto. Com esse espírito, abraçamos contribuições diversas da comunidade.
Se você deseja fazer parte, primeiro revise nossas [Diretrizes de Contribuição](./CONTRIBUTING.md).

351
README_tzh.md Normal file
View File

@ -0,0 +1,351 @@
<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo">
</a>
</div>
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
<a href="https://x.com/intent/follow?screen_name=infiniflowai" target="_blank">
<img src="https://img.shields.io/twitter/follow/infiniflow?logo=X&color=%20%23f5f5f5" alt="follow on X(Twitter)">
</a>
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
</a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="license">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
## 💡 RAGFlow 是什麼?
[RAGFlow](https://ragflow.io/) 是一款基於深度文件理解所建構的開源 RAGRetrieval-Augmented Generation引擎。 RAGFlow 可以為各種規模的企業及個人提供一套精簡的 RAG 工作流程結合大語言模型LLM針對用戶各類不同的複雜格式數據提供可靠的問答以及有理有據的引用。
## 🎮 Demo 試用
請登入網址 [https://demo.ragflow.io](https://demo.ragflow.io) 試用 demo。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 近期更新
- 2025-02-05 更新「SILICONFLOW」的型號清單並新增 Deepseek-R1/DeepSeek-V3 的支援。
- 2025-01-26 最佳化知識圖譜的擷取與應用,提供了多種配置選擇。
- 2024-12-18 升級了 DeepDoc 的文檔佈局分析模型。
- 2024-12-04 支援知識庫的 Pagerank 分數。
- 2024-11-22 完善了 Agent 中的變數定義和使用。
- 2024-11-01 對解析後的 chunk 加入關鍵字抽取和相關問題產生以提高回想的準確度。
- 2024-08-22 支援用 RAG 技術實現從自然語言到 SQL 語句的轉換。
## 🎉 關注項目
⭐️ 點擊右上角的 Star 追蹤 RAGFlow可以取得最新發布的即時通知 !🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 主要功能
### 🍭 **"Quality in, quality out"**
- 基於[深度文件理解](./deepdoc/README.md),能夠從各類複雜格式的非結構化資料中提取真知灼見。
- 真正在無限上下文token的場景下快速完成大海撈針測試。
### 🍱 **基於模板的文字切片**
- 不只是智能,更重要的是可控可解釋。
- 多種文字範本可供選擇
### 🌱 **有理有據、最大程度降低幻覺hallucination**
- 文字切片過程視覺化,支援手動調整。
- 有理有據:答案提供關鍵引用的快照並支持追根溯源。
### 🍔 **相容各類異質資料來源**
- 支援豐富的文件類型,包括 Word 文件、PPT、excel 表格、txt 檔案、圖片、PDF、影印件、影印件、結構化資料、網頁等。
### 🛀 **全程無憂、自動化的 RAG 工作流程**
- 全面優化的 RAG 工作流程可以支援從個人應用乃至超大型企業的各類生態系統。
- 大語言模型 LLM 以及向量模型皆支援配置。
- 基於多路召回、融合重排序。
- 提供易用的 API可輕鬆整合到各類企業系統。
## 🔎 系統架構
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>
## 🎬 快速開始
### 📝 前提條件
- CPU >= 4 核
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> 如果你並沒有在本機安裝 DockerWindows、Mac或 Linux, 可以參考文件 [Install Docker Engine](https://docs.docker.com/engine/install/) 自行安裝。
### 🚀 啟動伺服器
1. 確保 `vm.max_map_count` 不小於 262144
> 如需確認 `vm.max_map_count` 的大小:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> 如果 `vm.max_map_count` 的值小於 262144可以進行重設
>
> ```bash
> # 這裡我們設為 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> 你的改動會在下次系統重新啟動時被重置。如果希望做永久改動,還需要在 **/etc/sysctl.conf** 檔案裡把 `vm.max_map_count` 的值再相應更新一遍:
>
> ```bash
> vm.max_map_count=262144
> ```
2. 克隆倉庫:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. 進入 **docker** 資料夾,利用事先編譯好的 Docker 映像啟動伺服器:
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.17.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.17.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` 來下載 RAGFlow 鏡像的 `v0.17.0` 完整發行版。
```bash
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
> [!TIP]
> 如果你遇到 Docker 映像檔拉不下來的問題,可以在 **docker/.env** 檔案內根據變數 `RAGFLOW_IMAGE` 的註解提示選擇華為雲或阿里雲的對應映像。
>
> - 華為雲鏡像名:`swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow`
> - 阿里雲鏡像名:`registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow`
4. 伺服器啟動成功後再次確認伺服器狀態:
```bash
$ docker logs -f ragflow-server
```
_出現以下介面提示說明伺服器啟動成功_
```bash
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
```
> 如果您跳過這一步驟系統確認步驟就登入 RAGFlow你的瀏覽器有可能會提示 `network anormal` 或 `網路異常`,因為 RAGFlow 可能並未完全啟動成功。
5. 在你的瀏覽器中輸入你的伺服器對應的 IP 位址並登入 RAGFlow。
> 上面這個範例中,您只需輸入 http://IP_OF_YOUR_MACHINE 即可:未改動過設定則無需輸入連接埠(預設的 HTTP 服務連接埠 80
6. 在 [service_conf.yaml.template](./docker/service_conf.yaml.template) 檔案的 `user_default_llm` 欄位設定 LLM factory並在 `API_KEY` 欄填入和你選擇的大模型相對應的 API key。
> 詳見 [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup)。
_好戲開始接著奏樂接著舞 _
## 🔧 系統配置
系統配置涉及以下三份文件:
- [.env](./docker/.env):存放一些系統環境變量,例如 `SVR_HTTP_PORT`、`MYSQL_PASSWORD`、`MINIO_PASSWORD` 等。
- [service_conf.yaml.template](./docker/service_conf.yaml.template):設定各類別後台服務。
- [docker-compose.yml](./docker/docker-compose.yml): 系統依賴該檔案完成啟動。
請務必確保 [.env](./docker/.env) 檔案中的變數設定與 [service_conf.yaml.template](./docker/service_conf.yaml.template) 檔案中的設定保持一致!
如果無法存取映像網站 hub.docker.com 或模型網站 huggingface.co請依照 [.env](./docker/.env) 註解修改 `RAGFLOW_IMAGE` 和 `HF_ENDPOINT`。
> [./docker/README](./docker/README.md) 解釋了 [service_conf.yaml.template](./docker/service_conf.yaml.template) 用到的環境變數設定和服務配置。
如需更新預設的 HTTP 服務連接埠(80), 可以在[docker-compose.yml](./docker/docker-compose.yml) 檔案中將配置`80:80` 改為`<YOUR_SERVING_PORT>:80` 。
> 所有系統配置都需要透過系統重新啟動生效:
>
> ```bash
> $ docker compose -f docker-compose.yml up -d
> ```
###把文檔引擎從 Elasticsearch 切換成為 Infinity
RAGFlow 預設使用 Elasticsearch 儲存文字和向量資料. 如果要切換為 [Infinity](https://github.com/infiniflow/infinity/), 可以按照下面步驟進行:
1. 停止所有容器運作:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` 將會刪除 docker 容器的 volumes已有的資料會被清空。
2. 設定 **docker/.env** 目錄中的 `DOC_ENGINE` 為 `infinity`.
3. 啟動容器:
```bash
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> Infinity 目前官方並未正式支援在 Linux/arm64 架構下的機器上運行.
## 🔧 原始碼編譯 Docker 映像(不含 embedding 模型)
本 Docker 映像大小約 2 GB 左右並且依賴外部的大模型和 embedding 服務。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 原始碼編譯 Docker 映像(包含 embedding 模型)
本 Docker 大小約 9 GB 左右。由於已包含 embedding 模型,所以只需依賴外部的大模型服務即可。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以原始碼啟動服務
1. 安裝 uv。如已安裝可跳過此步驟
```bash
pipx install uv
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
2. 下載原始碼並安裝 Python 依賴:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
```
3. 透過 Docker Compose 啟動依賴的服務MinIO, Elasticsearch, Redis, and MySQL
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
在 `/etc/hosts` 中加入以下程式碼,將 **conf/service_conf.yaml** 檔案中的所有 host 位址都解析為 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis
```
4. 如果無法存取 HuggingFace可以把環境變數 `HF_ENDPOINT` 設為對應的鏡像網站:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5.啟動後端服務:
『`bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. 安裝前端依賴:
『`bash
cd web
npm install
```
7. 啟動前端服務:
`bash
npm run dev
```
以下界面說明系統已成功啟動_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
```
## 📚 技術文檔
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 路線圖
詳見 [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214) 。
## 🏄 開源社群
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 貢獻指南
RAGFlow 只有透過開源協作才能蓬勃發展。秉持這項精神,我們歡迎來自社區的各種貢獻。如果您有意參與其中,請查閱我們的 [貢獻者指南](./CONTRIBUTING.md) 。
## 🤝 商務合作
- [預約諮詢](https://aao615odquw.feishu.cn/share/base/form/shrcnjw7QleretCLqh1nuPo1xxh)
## 👥 加入社區
掃二維碼加入 RAGFlow 小助手,進 RAGFlow 交流群。
<p align="center">
<img src="https://github.com/infiniflow/ragflow/assets/7248/bccf284f-46f2-4445-9809-8f1030fb7585" width=50% height=50%>
</p>

View File

@ -7,9 +7,11 @@
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_tzh.md">繁体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -20,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -30,10 +32,9 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
@ -46,28 +47,30 @@
## 🎮 Demo 试用
请登录网址 [https://demo.ragflow.io](https://demo.ragflow.io) 试用 demo。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 近期更新
- 2024-12-18 升级了 Deepdoc 的文档布局分析模型
- 2025-02-05 更新硅基流动的模型列表,增加了对 Deepseek-R1/DeepSeek-V3 的支持
- 2025-01-26 优化知识图谱的提取和应用,提供了多种配置选择。
- 2024-12-18 升级了 DeepDoc 的文档布局分析模型。
- 2024-12-04 支持知识库的 Pagerank 分数。
- 2024-11-22 完善了 Agent 中的变量定义和使用。
- 2024-11-01 对解析后的 chunk 加入关键词抽取和相关问题生成以提高召回的准确度。
- 2024-08-22 支持用 RAG 技术实现从自然语言到 SQL 语句的转换。
- 2024-08-02 支持 GraphRAG 启发于 [graphrag](https://github.com/microsoft/graphrag) 和思维导图。
## 🎉 关注项目
⭐️点击右上角的 Star 关注RAGFlow可以获取最新发布的实时通知 !🌟
⭐️ 点击右上角的 Star 关注 RAGFlow可以获取最新发布的实时通知 !🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 主要功能
### 🍭 **"Quality in, quality out"**
@ -143,22 +146,23 @@
3. 进入 **docker** 文件夹,利用提前编译好的 Docker 镜像启动服务器:
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.15.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.15.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0` 来下载 RAGFlow 镜像的 `v0.15.0` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.17.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.17.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` 来下载 RAGFlow 镜像的 `v0.17.0` 完整发行版。
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
> [!TIP]
> [!TIP]
> 如果你遇到 Docker 镜像拉不下来的问题,可以在 **docker/.env** 文件内根据变量 `RAGFLOW_IMAGE` 的注释提示选择华为云或者阿里云的相应镜像。
>
> - 华为云镜像名:`swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow`
> - 阿里云镜像名:`registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow`
@ -171,18 +175,16 @@
_出现以下界面提示说明服务器启动成功_
```bash
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 如果您跳过这一步系统确认步骤就登录 RAGFlow你的浏览器有可能会提示 `network anormal` 或 `网络异常`,因为 RAGFlow 可能并未完全启动成功。
> 如果您在没有看到上面的提示信息出来之前,就尝试登录 RAGFlow你的浏览器有可能会提示 `network anormal` 或 `网络异常`。
5. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。
> 上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80
@ -211,7 +213,7 @@
> 所有系统配置都需要通过系统重启生效:
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### 把文档引擎从 Elasticsearch 切换成为 Infinity
@ -223,19 +225,19 @@ RAGFlow 默认使用 Elasticsearch 存储文本和向量数据. 如果要切换
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` 将会删除 docker 容器的 volumes已有的数据会被清空。
2. 设置 **docker/.env** 目录中的 `DOC_ENGINE` 为 `infinity`.
3. 启动容器:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> [!WARNING]
> Infinity 目前官方并未正式支持在 Linux/arm64 架构下的机器上运行.
## 🔧 源码编译 Docker 镜像(不含 embedding 模型)
本 Docker 镜像大小约 2 GB 左右并且依赖外部的大模型和 embedding 服务。
@ -258,55 +260,59 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
## 🔨 以源代码启动服务
1. 安装 Poetry。如已经安装,可跳过本步骤:
1. 安装 uv。如已经安装,可跳过本步骤:
```bash
pipx install poetry
pipx inject poetry poetry-plugin-pypi-mirror
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
export POETRY_PYPI_MIRROR_URL=https://pypi.tuna.tsinghua.edu.cn/simple/
pipx install uv
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
2. 下载源代码并安装 Python 依赖:
2. 下载源代码并安装 Python 依赖:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
```
3. 通过 Docker Compose 启动依赖的服务MinIO, Elasticsearch, Redis, and MySQL
3. 通过 Docker Compose 启动依赖的服务MinIO, Elasticsearch, Redis, and MySQL
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
在 `/etc/hosts` 中添加以下代码,将 **conf/service_conf.yaml** 文件中的所有 host 地址都解析为 `127.0.0.1`
在 `/etc/hosts` 中添加以下代码,将 **conf/service_conf.yaml** 文件中的所有 host 地址都解析为 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis
```
```
4. 如果无法访问 HuggingFace可以把环境变量 `HF_ENDPOINT` 设成相应的镜像站点:
4. 如果无法访问 HuggingFace可以把环境变量 `HF_ENDPOINT` 设成相应的镜像站点:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. 启动后端服务:
5. 启动后端服务:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. 安装前端依赖:
6. 安装前端依赖:
```bash
cd web
npm install --force
```
7. 启动前端服务:
```bash
npm run dev
```
npm install
```
7. 启动前端服务:
_以下界面说明系统已经成功启动_
```bash
npm run dev
```
_以下界面说明系统已经成功启动_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
@ -319,7 +325,7 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
## 📜 路线图
详见 [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162) 。
详见 [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214) 。
## 🏄 开源社区
@ -342,4 +348,3 @@ RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们
<p align="center">
<img src="https://github.com/infiniflow/ragflow/assets/7248/bccf284f-46f2-4445-9809-8f1030fb7585" width=50% height=50%>
</p>

View File

@ -1,2 +1,18 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from beartype.claw import beartype_this_package
beartype_this_package()

View File

@ -15,14 +15,16 @@
#
import logging
import json
from abc import ABC
from copy import deepcopy
from functools import partial
import pandas as pd
from agent.component import component_class
from agent.component.base import ComponentBase
class Canvas(ABC):
class Canvas:
"""
dsl = {
"components": {
@ -83,7 +85,8 @@ class Canvas(ABC):
}
},
"downstream": [],
"upstream": []
"upstream": [],
"parent_id": ""
}
},
"history": [],
@ -158,7 +161,7 @@ class Canvas(ABC):
self.components[k]["obj"].reset()
self._embed_id = ""
def get_compnent_name(self, cid):
def get_component_name(self, cid):
for n in self.dsl["graph"]["nodes"]:
if cid == n["id"]:
return n["data"]["name"]
@ -206,7 +209,15 @@ class Canvas(ABC):
if c not in waiting:
waiting.append(c)
continue
yield "*'{}'* is running...🕞".format(self.get_compnent_name(c))
yield "*'{}'* is running...🕞".format(self.get_component_name(c))
if cpn.component_name.lower() == "iteration":
st_cpn = cpn.get_start()
assert st_cpn, "Start component not found for Iteration."
if not st_cpn["obj"].end():
cpn = st_cpn["obj"]
c = cpn._id
try:
ans = cpn.run(self.history, **kwargs)
except Exception as e:
@ -215,16 +226,26 @@ class Canvas(ABC):
ran += 1
raise e
self.path[-1].append(c)
ran += 1
for m in prepare2run(self.components[self.path[-2][-1]]["downstream"]):
downstream = self.components[self.path[-2][-1]]["downstream"]
if not downstream and self.components[self.path[-2][-1]].get("parent_id"):
cid = self.path[-2][-1]
pid = self.components[cid]["parent_id"]
o, _ = self.components[cid]["obj"].output(allow_partial=False)
oo, _ = self.components[pid]["obj"].output(allow_partial=False)
self.components[pid]["obj"].set(pd.concat([oo, o], ignore_index=True))
downstream = [pid]
for m in prepare2run(downstream):
yield {"content": m, "running_status": True}
while 0 <= ran < len(self.path[-1]):
logging.debug(f"Canvas.run: {ran} {self.path}")
cpn_id = self.path[-1][ran]
cpn = self.get_component(cpn_id)
if not cpn["downstream"]:
if not any([cpn["downstream"], cpn.get("parent_id"), waiting]):
break
loop = self._find_loop()
@ -239,7 +260,15 @@ class Canvas(ABC):
yield {"content": m, "running_status": True}
continue
for m in prepare2run(cpn["downstream"]):
downstream = cpn["downstream"]
if not downstream and cpn.get("parent_id"):
pid = cpn["parent_id"]
_, o = cpn["obj"].output(allow_partial=False)
_, oo = self.components[pid]["obj"].output(allow_partial=False)
self.components[pid]["obj"].set_output(pd.concat([oo.dropna(axis=1), o.dropna(axis=1)], ignore_index=True))
downstream = [pid]
for m in prepare2run(downstream):
yield {"content": m, "running_status": True}
if ran >= len(self.path[-1]) and waiting:
@ -247,6 +276,7 @@ class Canvas(ABC):
waiting = []
for m in prepare2run(without_dependent_checking):
yield {"content": m, "running_status": True}
without_dependent_checking = []
ran -= 1
if self.answer:
@ -294,7 +324,7 @@ class Canvas(ABC):
return False
for i in range(len(path)):
if path[i].lower().find("answer") >= 0:
if path[i].lower().find("answer") == 0 or path[i].lower().find("iterationitem") == 0:
path = path[:i]
break

View File

@ -1,3 +1,19 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import importlib
from .begin import Begin, BeginParam
from .generate import Generate, GenerateParam
@ -32,7 +48,8 @@ from .crawler import Crawler, CrawlerParam
from .invoke import Invoke, InvokeParam
from .template import Template, TemplateParam
from .email import Email, EmailParam
from .iteration import Iteration, IterationParam
from .iterationitem import IterationItem, IterationItemParam
def component_class(class_name):
@ -40,6 +57,7 @@ def component_class(class_name):
c = getattr(m, class_name)
return c
__all__ = [
"Begin",
"BeginParam",
@ -103,6 +121,10 @@ __all__ = [
"CrawlerParam",
"Invoke",
"InvokeParam",
"Iteration",
"IterationParam",
"IterationItem",
"IterationItemParam",
"Template",
"TemplateParam",
"Email",

View File

@ -1,56 +1,56 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
import akshare as ak
from agent.component.base import ComponentBase, ComponentParamBase
class AkShareParam(ComponentParamBase):
"""
Define the AkShare component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class AkShare(ComponentBase, ABC):
component_name = "AkShare"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return AkShare.be_output("")
try:
ak_res = []
stock_news_em_df = ak.stock_news_em(symbol=ans)
stock_news_em_df = stock_news_em_df.head(self._param.top_n)
ak_res = [{"content": '<a href="' + i["新闻链接"] + '">' + i["新闻标题"] + '</a>\n 新闻内容: ' + i[
"新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
except Exception as e:
return AkShare.be_output("**ERROR**: " + str(e))
if not ak_res:
return AkShare.be_output("")
return pd.DataFrame(ak_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class AkShareParam(ComponentParamBase):
"""
Define the AkShare component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class AkShare(ComponentBase, ABC):
component_name = "AkShare"
def _run(self, history, **kwargs):
import akshare as ak
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return AkShare.be_output("")
try:
ak_res = []
stock_news_em_df = ak.stock_news_em(symbol=ans)
stock_news_em_df = stock_news_em_df.head(self._param.top_n)
ak_res = [{"content": '<a href="' + i["新闻链接"] + '">' + i["新闻标题"] + '</a>\n 新闻内容: ' + i[
"新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
except Exception as e:
return AkShare.be_output("**ERROR**: " + str(e))
if not ak_res:
return AkShare.be_output("")
return pd.DataFrame(ak_res)

View File

@ -16,6 +16,7 @@
import random
from abc import ABC
from functools import partial
from typing import Tuple, Union
import pandas as pd
@ -76,4 +77,13 @@ class Answer(ComponentBase, ABC):
def set_exception(self, e):
self.exception = e
def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
if allow_partial:
return super.output()
for r, c in self._canvas.history[::-1]:
if r == "user":
return self._param.output_var_name, pd.DataFrame([{"content": c}])
self._param.output_var_name, pd.DataFrame([])

View File

@ -44,7 +44,7 @@ class Baidu(ComponentBase, ABC):
return Baidu.be_output("")
try:
url = 'https://www.baidu.com/s?wd=' + ans + '&rn=' + str(self._param.top_n)
url = 'http://www.baidu.com/s?wd=' + ans + '&rn=' + str(self._param.top_n)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36'}
response = requests.get(url=url, headers=headers)

View File

@ -39,9 +39,6 @@ class BaiduFanyiParam(ComponentParamBase):
self.check_empty(self.appid, "BaiduFanyi APPID")
self.check_empty(self.secret_key, "BaiduFanyi Secret Key")
self.check_valid_value(self.trans_type, "Translate type", ['translate', 'fieldtranslate'])
self.check_valid_value(self.trans_type, "Translate domain",
['it', 'finance', 'machinery', 'senimed', 'novel', 'academic', 'aerospace', 'wiki',
'news', 'law', 'contract'])
self.check_valid_value(self.source_lang, "Source language",
['auto', 'zh', 'en', 'yue', 'wyw', 'jp', 'kor', 'fra', 'spa', 'th', 'ara', 'ru', 'pt',
'de', 'it', 'el', 'nl', 'pl', 'bul', 'est', 'dan', 'fin', 'cs', 'rom', 'slo', 'swe',
@ -96,3 +93,4 @@ class BaiduFanyi(ComponentBase, ABC):
except Exception as e:
BaiduFanyi.be_output("**Error**:" + str(e))

View File

@ -426,10 +426,14 @@ class ComponentBase(ABC):
def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
o = getattr(self._param, self._param.output_var_name)
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
if not isinstance(o, list):
o = [o]
o = pd.DataFrame(o)
if not isinstance(o, partial):
if not isinstance(o, pd.DataFrame):
if isinstance(o, list):
return self._param.output_var_name, pd.DataFrame(o)
if o is None:
return self._param.output_var_name, pd.DataFrame()
return self._param.output_var_name, pd.DataFrame([{"content": str(o)}])
return self._param.output_var_name, o
if allow_partial or not isinstance(o, partial):
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
@ -453,7 +457,7 @@ class ComponentBase(ABC):
def get_input(self):
if self._param.debug_inputs:
return pd.DataFrame([{"content": v["value"]} for v in self._param.debug_inputs])
return pd.DataFrame([{"content": v["value"]} for v in self._param.debug_inputs if v.get("value")])
reversed_cpnts = []
if len(self._canvas.path) > 1:
@ -478,10 +482,12 @@ class ComponentBase(ABC):
continue
if q["component_id"].lower().find("answer") == 0:
for r, c in self._canvas.history[::-1]:
if r == "user":
self._param.inputs.append(pd.DataFrame([{"content": c, "component_id": q["component_id"]}]))
break
txt = []
for r, c in self._canvas.history[::-1][:self._param.message_history_window_size][::-1]:
txt.append(f"{r.upper()}: {c}")
txt = "\n".join(txt)
self._param.inputs.append({"content": txt, "component_id": q["component_id"]})
outs.append(pd.DataFrame([{"content": txt}]))
continue
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
@ -549,7 +555,7 @@ class ComponentBase(ABC):
eles.extend(self._canvas.get_component(cpn_id)["obj"]._param.query)
continue
eles.append({"name": self._canvas.get_compnent_name(cpn_id), "key": cpn_id})
eles.append({"name": self._canvas.get_component_name(cpn_id), "key": cpn_id})
else:
eles.append({"key": q["value"], "name": q["value"], "value": q["value"]})
return eles
@ -573,4 +579,8 @@ class ComponentBase(ABC):
return self._canvas.get_component(cpn_id)["obj"].component_name.lower()
def debug(self, **kwargs):
return self._run([], **kwargs)
return self._run([], **kwargs)
def get_parent(self):
pid = self._canvas.get_component(self._id)["parent_id"]
return self._canvas.get_component(pid)["obj"]

View File

@ -39,13 +39,13 @@ class CategorizeParam(GenerateParam):
if not v.get("to"):
raise ValueError(f"[Categorize] 'To' of category {k} can not be empty!")
def get_prompt(self):
def get_prompt(self, chat_hist):
cate_lines = []
for c, desc in self.category_description.items():
for line in desc.get("examples", "").split("\n"):
if not line:
continue
cate_lines.append("Question: {}\tCategory: {}".format(line, c))
cate_lines.append("USER: {}\nCategory: {}".format(line, c))
descriptions = []
for c, desc in self.category_description.items():
if desc.get("description"):
@ -62,11 +62,15 @@ class CategorizeParam(GenerateParam):
{}
You could learn from the above examples.
Just mention the category names, no need for any additional words.
---- Real Data ----
{}
""".format(
len(self.category_description.keys()),
"/".join(list(self.category_description.keys())),
"\n".join(descriptions),
"- ".join(cate_lines)
"- ".join(cate_lines),
chat_hist
)
return self.prompt
@ -76,9 +80,9 @@ class Categorize(Generate, ABC):
def _run(self, history, **kwargs):
input = self.get_input()
input = "Question: " + (list(input["content"])[-1] if "content" in input else "") + "\tCategory: "
input = " - ".join(input["content"]) if "content" in input else ""
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": input}],
ans = chat_mdl.chat(self._param.get_prompt(input), [{"role": "user", "content": "\nCategory: "}],
self._param.gen_conf())
logging.debug(f"input: {input}, answer: {str(ans)}")
for c in self._param.category_description.keys():
@ -90,5 +94,5 @@ class Categorize(Generate, ABC):
def debug(self, **kwargs):
df = self._run([], **kwargs)
cpn_id = df.iloc[0, 0]
return Categorize.be_output(self._canvas.get_compnent_name(cpn_id))
return Categorize.be_output(self._canvas.get_component_name(cpn_id))

View File

@ -1,36 +1,36 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class ConcentratorParam(ComponentParamBase):
"""
Define the Concentrator component parameters.
"""
def __init__(self):
super().__init__()
def check(self):
return True
class Concentrator(ComponentBase, ABC):
component_name = "Concentrator"
def _run(self, history, **kwargs):
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class ConcentratorParam(ComponentParamBase):
"""
Define the Concentrator component parameters.
"""
def __init__(self):
super().__init__()
def check(self):
return True
class Concentrator(ComponentBase, ABC):
component_name = "Concentrator"
def _run(self, history, **kwargs):
return Concentrator.be_output("")

View File

@ -41,7 +41,7 @@ class Crawler(ComponentBase, ABC):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not is_valid_url(ans):
return Crawler.be_output("")
return Crawler.be_output("URL not valid")
try:
result = asyncio.run(self.get_web(ans))

View File

@ -15,14 +15,17 @@
#
from abc import ABC
import re
from copy import deepcopy
import pandas as pd
import pymysql
import psycopg2
from agent.component.base import ComponentBase, ComponentParamBase
from agent.component import GenerateParam, Generate
import pyodbc
import logging
class ExeSQLParam(ComponentParamBase):
class ExeSQLParam(GenerateParam):
"""
Define the ExeSQL component parameters.
"""
@ -39,6 +42,7 @@ class ExeSQLParam(ComponentParamBase):
self.top_n = 30
def check(self):
super().check()
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgresql', 'mariadb', 'mssql'])
self.check_empty(self.database, "Database name")
self.check_empty(self.username, "database username")
@ -48,43 +52,33 @@ class ExeSQLParam(ComponentParamBase):
self.check_positive_integer(self.top_n, "Number of records")
if self.database == "rag_flow":
if self.host == "ragflow-mysql":
raise ValueError("The host is not accessible.")
raise ValueError("For the security reason, it dose not support database named rag_flow.")
if self.password == "infini_rag_flow":
raise ValueError("The host is not accessible.")
raise ValueError("For the security reason, it dose not support database named rag_flow.")
class ExeSQL(ComponentBase, ABC):
class ExeSQL(Generate, ABC):
component_name = "ExeSQL"
def _run(self, history, **kwargs):
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
if self._loop >= self._param.loop:
self._loop = 0
raise Exception("Maximum loop time exceeds. Can't query the correct data via SQL statement.")
self._loop += 1
ans = self.get_input()
ans = "".join([str(a) for a in ans["content"]]) if "content" in ans else ""
if self._param.db_type == 'mssql':
# improve the information extraction, most llm return results in markdown format ```sql query ```
match = re.search(r"```sql\s*(.*?)\s*```", ans, re.DOTALL)
if match:
ans = match.group(1) # Query content
print(ans)
else:
print("no markdown")
ans = re.sub(r'^.*?SELECT ', 'SELECT ', (ans), flags=re.IGNORECASE)
def _refactor(self, ans):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
match = re.search(r"```sql\s*(.*?)\s*```", ans, re.DOTALL)
if match:
ans = match.group(1) # Query content
return ans
else:
ans = re.sub(r'^.*?SELECT ', 'SELECT ', repr(ans), flags=re.IGNORECASE)
print("no markdown")
ans = re.sub(r'^.*?SELECT ', 'SELECT ', (ans), flags=re.IGNORECASE)
ans = re.sub(r';.*?SELECT ', '; SELECT ', ans, flags=re.IGNORECASE)
ans = re.sub(r';[^;]*$', r';', ans)
if not ans:
raise Exception("SQL statement not found!")
return ans
logging.info("db_type: ",self._param.db_type)
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join([str(a) for a in ans["content"]]) if "content" in ans else ""
ans = self._refactor(ans)
if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
@ -93,36 +87,68 @@ class ExeSQL(ComponentBase, ABC):
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'mssql':
conn_str = (
r'DRIVER={ODBC Driver 17 for SQL Server};'
r'SERVER=' + self._param.host + ',' + str(self._param.port) + ';'
r'DATABASE=' + self._param.database + ';'
r'UID=' + self._param.username + ';'
r'PWD=' + self._param.password
r'DRIVER={ODBC Driver 17 for SQL Server};'
r'SERVER=' + self._param.host + ',' + str(self._param.port) + ';'
r'DATABASE=' + self._param.database + ';'
r'UID=' + self._param.username + ';'
r'PWD=' + self._param.password
)
db = pyodbc.connect(conn_str)
try:
cursor = db.cursor()
except Exception as e:
raise Exception("Database Connection Failed! \n" + str(e))
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
self._loop += 1
input_list = re.split(r';', ans.replace(r"\n", " "))
sql_res = []
for single_sql in re.split(r';', ans.replace(r"\n", " ")):
if not single_sql:
continue
try:
logging.info("single_sql: ",single_sql)
cursor.execute(single_sql)
if cursor.rowcount == 0:
sql_res.append({"content": "\nTotal: 0\n No record in the database!"})
continue
single_res = pd.DataFrame([i for i in cursor.fetchmany(self._param.top_n)])
single_res.columns = [i[0] for i in cursor.description]
sql_res.append({"content": "\nTotal: " + str(cursor.rowcount) + "\n" + single_res.to_markdown()})
except Exception as e:
sql_res.append({"content": "**Error**:" + str(e) + "\nError SQL Statement:" + single_sql})
pass
for i in range(len(input_list)):
single_sql = input_list[i]
while self._loop <= self._param.loop:
self._loop += 1
if not single_sql:
break
try:
cursor.execute(single_sql)
if cursor.rowcount == 0:
sql_res.append({"content": "No record in the database!"})
break
if self._param.db_type == 'mssql':
single_res = pd.DataFrame.from_records(cursor.fetchmany(self._param.top_n),
columns=[desc[0] for desc in cursor.description])
else:
single_res = pd.DataFrame([i for i in cursor.fetchmany(self._param.top_n)])
single_res.columns = [i[0] for i in cursor.description]
sql_res.append({"content": single_res.to_markdown(index=False, floatfmt=".6f")})
break
except Exception as e:
single_sql = self._regenerate_sql(single_sql, str(e), **kwargs)
single_sql = self._refactor(single_sql)
if self._loop > self._param.loop:
sql_res.append({"content": "Can't query the correct data via SQL statement."})
db.close()
if not sql_res:
return ExeSQL.be_output("")
return pd.DataFrame(sql_res)
def _regenerate_sql(self, failed_sql, error_message, **kwargs):
prompt = f'''
## You are the Repair SQL Statement Helper, please modify the original SQL statement based on the SQL query error report.
## The original SQL statement is as follows:{failed_sql}.
## The contents of the SQL query error report is as follows:{error_message}.
## Answer only the modified SQL statement. Please do not give any explanation, just answer the code.
'''
self._param.prompt = prompt
kwargs_ = deepcopy(kwargs)
kwargs_["stream"] = False
response = Generate._run(self, [], **kwargs_)
try:
regenerated_sql = response.loc[0, "content"]
return regenerated_sql
except Exception as e:
logging.error(f"Failed to regenerate SQL: {e}")
return None
def debug(self, **kwargs):
return self._run([], **kwargs)

View File

@ -18,10 +18,10 @@ from functools import partial
import pandas as pd
from api.db import LLMType
from api.db.services.conversation_service import structure_answer
from api.db.services.dialog_service import message_fit_in
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.prompts import message_fit_in
class GenerateParam(ComponentParamBase):
@ -69,10 +69,8 @@ class Generate(ComponentBase):
component_name = "Generate"
def get_dependent_components(self):
cpnts = set([para["component_id"].split("@")[0] for para in self._param.parameters \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
inputs = self.get_input_elements()
cpnts = set([i["key"] for i in inputs[1:] if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
return list(cpnts)
def set_cite(self, retrieval_res, answer):
@ -110,10 +108,26 @@ class Generate(ComponentBase):
return res
def get_input_elements(self):
if self._param.parameters:
return [{"key": "user", "name": "User"}, *self._param.parameters]
return [{"key": "user", "name": "User"}]
key_set = set([])
res = [{"key": "user", "name": "Input your question here:"}]
for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.prompt, flags=re.IGNORECASE):
cpn_id = r.group(1)
if cpn_id in key_set:
continue
if cpn_id.lower().find("begin@") == 0:
cpn_id, key = cpn_id.split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] != key:
continue
res.append({"key": r.group(1), "name": p["name"]})
key_set.add(r.group(1))
continue
cpn_nm = self._canvas.get_component_name(cpn_id)
if not cpn_nm:
continue
res.append({"key": cpn_id, "name": cpn_nm})
key_set.add(cpn_id)
return res
def _run(self, history, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
@ -121,22 +135,20 @@ class Generate(ComponentBase):
retrieval_res = []
self._param.inputs = []
for para in self._param.parameters:
if not para.get("component_id"):
continue
component_id = para["component_id"].split("@")[0]
if para["component_id"].lower().find("@") >= 0:
cpn_id, key = para["component_id"].split("@")
for para in self.get_input_elements()[1:]:
if para["key"].lower().find("begin@") == 0:
cpn_id, key = para["key"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
kwargs[para["key"]] = p.get("value", "")
self._param.inputs.append(
{"component_id": para["component_id"], "content": kwargs[para["key"]]})
{"component_id": para["key"], "content": kwargs[para["key"]]})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
component_id = para["key"]
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
@ -152,8 +164,8 @@ class Generate(ComponentBase):
else:
if cpn.component_name.lower() == "retrieval":
retrieval_res.append(out)
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
kwargs[para["key"]] = " - " + "\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["key"], "content": kwargs[para["key"]]})
if retrieval_res:
retrieval_res = pd.concat(retrieval_res, ignore_index=True)
@ -175,17 +187,18 @@ class Generate(ComponentBase):
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
return pd.DataFrame([res])
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
res = self.set_cite(retrieval_res, ans)
@ -196,18 +209,18 @@ class Generate(ComponentBase):
def stream_output(self, chat_mdl, prompt, retrieval_res):
res = None
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
yield res
self.set_output(res)
return
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
answer = ""
for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
res = {"content": ans, "reference": []}
@ -230,5 +243,6 @@ class Generate(ComponentBase):
for n, v in kwargs.items():
prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)
ans = chat_mdl.chat(prompt, [{"role": "user", "content": kwargs.get("user", "")}], self._param.gen_conf())
u = kwargs.get("user")
ans = chat_mdl.chat(prompt, [{"role": "user", "content": u if u else "Output: "}], self._param.gen_conf())
return pd.DataFrame([ans])

View File

@ -35,12 +35,14 @@ class InvokeParam(ComponentParamBase):
self.url = ""
self.timeout = 60
self.clean_html = False
self.datatype = "json" # New parameter to determine data posting type
def check(self):
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ['get', 'post', 'put'])
self.check_empty(self.url, "End point URL")
self.check_positive_integer(self.timeout, "Timeout time in second")
self.check_boolean(self.clean_html, "Clean HTML")
self.check_valid_value(self.datatype.lower(), "Data post type", ['json', 'formdata']) # Check for valid datapost value
class Invoke(ComponentBase, ABC):
@ -50,14 +52,24 @@ class Invoke(ComponentBase, ABC):
args = {}
for para in self._param.variables:
if para.get("component_id"):
cpn = self._canvas.get_component(para["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
args[para["key"]] = self._canvas.get_history(1)[0]["content"]
continue
_, out = cpn.output(allow_partial=False)
args[para["key"]] = "\n".join(out["content"])
if '@' in para["component_id"]:
component = para["component_id"].split('@')[0]
field = para["component_id"].split('@')[1]
cpn = self._canvas.get_component(component)["obj"]
for param in cpn._param.query:
if param["key"] == field:
if "value" in param:
args[para["key"]] = param["value"]
else:
cpn = self._canvas.get_component(para["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
args[para["key"]] = self._canvas.get_history(1)[0]["content"]
continue
_, out = cpn.output(allow_partial=False)
if not out.empty:
args[para["key"]] = "\n".join(out["content"])
else:
args[para["key"]] = "\n".join(para["value"])
args[para["key"]] = para["value"]
url = self._param.url.strip()
if url.find("http") != 0:
@ -84,22 +96,36 @@ class Invoke(ComponentBase, ABC):
return Invoke.be_output(response.text)
if method == 'put':
response = requests.put(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.datatype.lower() == 'json':
response = requests.put(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
else:
response = requests.put(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.clean_html:
sections = HtmlParser()(None, response.content)
return Invoke.be_output("\n".join(sections))
return Invoke.be_output(response.text)
if method == 'post':
response = requests.post(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.datatype.lower() == 'json':
response = requests.post(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
else:
response = requests.post(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.clean_html:
sections = HtmlParser()(None, response.content)
return Invoke.be_output("\n".join(sections))

View File

@ -0,0 +1,45 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class IterationParam(ComponentParamBase):
"""
Define the Iteration component parameters.
"""
def __init__(self):
super().__init__()
self.delimiter = ","
def check(self):
self.check_empty(self.delimiter, "Delimiter")
class Iteration(ComponentBase, ABC):
component_name = "Iteration"
def get_start(self):
for cid in self._canvas.components.keys():
if self._canvas.get_component(cid)["obj"].component_name.lower() != "iterationitem":
continue
if self._canvas.get_component(cid)["parent_id"] == self._id:
return self._canvas.get_component(cid)
def _run(self, history, **kwargs):
return self.output(allow_partial=False)[1]

View File

@ -0,0 +1,49 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class IterationItemParam(ComponentParamBase):
"""
Define the IterationItem component parameters.
"""
def check(self):
return True
class IterationItem(ComponentBase, ABC):
component_name = "IterationItem"
def __init__(self, canvas, id, param: ComponentParamBase):
super().__init__(canvas, id, param)
self._idx = 0
def _run(self, history, **kwargs):
parent = self.get_parent()
ans = parent.get_input()
ans = parent._param.delimiter.join(ans["content"]) if "content" in ans else ""
ans = [a.strip() for a in ans.split(parent._param.delimiter)]
df = pd.DataFrame([{"content": ans[self._idx]}])
self._idx += 1
if self._idx >= len(ans):
self._idx = -1
return df
def end(self):
return self._idx == -1

View File

@ -1,130 +1,130 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class Jin10Param(ComponentParamBase):
"""
Define the Jin10 component parameters.
"""
def __init__(self):
super().__init__()
self.type = "flash"
self.secret_key = "xxx"
self.flash_type = '1'
self.calendar_type = 'cj'
self.calendar_datatype = 'data'
self.symbols_type = 'GOODS'
self.symbols_datatype = 'symbols'
self.contain = ""
self.filter = ""
def check(self):
self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
class Jin10(ComponentBase, ABC):
component_name = "Jin10"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Jin10.be_output("")
jin10_res = []
headers = {'secret-key': self._param.secret_key}
try:
if self._param.type == "flash":
params = {
'category': self._param.flash_type,
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
headers=headers, data=json.dumps(params))
response = response.json()
for i in response['data']:
jin10_res.append({"content": i['data']['content']})
if self._param.type == "calendar":
params = {
'category': self._param.calendar_type
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "symbols":
params = {
'type': self._param.symbols_type
}
if self._param.symbols_datatype == "quotes":
params['codes'] = 'BTCUSD'
response = requests.get(
url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
headers=headers, data=json.dumps(params))
response = response.json()
if self._param.symbols_datatype == "symbols":
for i in response['data']:
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Commodity Name'] = i['n']
i['Commodity Type'] = i['t']
del i['c'], i['e'], i['n'], i['t']
if self._param.symbols_datatype == "quotes":
for i in response['data']:
i['Selling Price'] = i['a']
i['Buying Price'] = i['b']
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Highest Price'] = i['h']
i['Yesterdays Closing Price'] = i['hc']
i['Lowest Price'] = i['l']
i['Opening Price'] = i['o']
i['Latest Price'] = i['p']
i['Market Quote Time'] = i['t']
del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "news":
params = {
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/news',
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
except Exception as e:
return Jin10.be_output("**ERROR**: " + str(e))
if not jin10_res:
return Jin10.be_output("")
return pd.DataFrame(jin10_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class Jin10Param(ComponentParamBase):
"""
Define the Jin10 component parameters.
"""
def __init__(self):
super().__init__()
self.type = "flash"
self.secret_key = "xxx"
self.flash_type = '1'
self.calendar_type = 'cj'
self.calendar_datatype = 'data'
self.symbols_type = 'GOODS'
self.symbols_datatype = 'symbols'
self.contain = ""
self.filter = ""
def check(self):
self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
class Jin10(ComponentBase, ABC):
component_name = "Jin10"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Jin10.be_output("")
jin10_res = []
headers = {'secret-key': self._param.secret_key}
try:
if self._param.type == "flash":
params = {
'category': self._param.flash_type,
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
headers=headers, data=json.dumps(params))
response = response.json()
for i in response['data']:
jin10_res.append({"content": i['data']['content']})
if self._param.type == "calendar":
params = {
'category': self._param.calendar_type
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "symbols":
params = {
'type': self._param.symbols_type
}
if self._param.symbols_datatype == "quotes":
params['codes'] = 'BTCUSD'
response = requests.get(
url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
headers=headers, data=json.dumps(params))
response = response.json()
if self._param.symbols_datatype == "symbols":
for i in response['data']:
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Commodity Name'] = i['n']
i['Commodity Type'] = i['t']
del i['c'], i['e'], i['n'], i['t']
if self._param.symbols_datatype == "quotes":
for i in response['data']:
i['Selling Price'] = i['a']
i['Buying Price'] = i['b']
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Highest Price'] = i['h']
i['Yesterdays Closing Price'] = i['hc']
i['Lowest Price'] = i['l']
i['Opening Price'] = i['o']
i['Latest Price'] = i['p']
i['Market Quote Time'] = i['t']
del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "news":
params = {
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/news',
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
except Exception as e:
return Jin10.be_output("**ERROR**: " + str(e))
if not jin10_res:
return Jin10.be_output("")
return pd.DataFrame(jin10_res)

View File

@ -23,6 +23,7 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.app.tag import label_question
class RetrievalParam(ComponentParamBase):
@ -42,7 +43,7 @@ class RetrievalParam(ComponentParamBase):
def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
self.check_positive_number(self.top_n, "[Retrieval] Top N")
@ -70,7 +71,8 @@ class Retrieval(ComponentBase, ABC):
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl)
aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs))
if not kbinfos["chunks"]:
df = Retrieval.be_output("")

View File

@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
@ -21,37 +20,33 @@ from agent.component import GenerateParam, Generate
class RewriteQuestionParam(GenerateParam):
"""
Define the QuestionRewrite component parameters.
"""
def __init__(self):
super().__init__()
self.temperature = 0.9
self.prompt = ""
self.loop = 1
self.language = ""
def check(self):
super().check()
def get_prompt(self, conv):
self.prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
return f"""
def get_prompt(self, conv, language, query):
prompt = """
Role: A helpful assistant
Task: Generate a full user question that would follow the conversation.
Requirements & Restrictions:
- Text generated MUST be in the same language of the original user's question.
- If the user's latest question is completely, don't do anything, just return the original question.
- DON'T generate anything except a refined question.
- DON'T generate anything except a refined question."""
if language:
prompt += f"""
- Text generated MUST be in {language}"""
prompt += f"""
######################
-Examples-
######################
@ -69,7 +64,7 @@ USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
ASSISTANT: Mary Trump.
User: What's her full name?
USER: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
######################
@ -77,37 +72,71 @@ Output: What's the full name of Donald Trump's mother Mary Trump?
## Conversation
{conv}
###############
"""
return self.prompt
"""
return prompt
class RewriteQuestion(Generate, ABC):
component_name = "RewriteQuestion"
def _run(self, history, **kwargs):
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
if self._loop >= self._param.loop:
self._loop = 0
raise Exception("Sorry! Nothing relevant found.")
self._loop += 1
hist = self._canvas.get_history(4)
hist = self._canvas.get_history(self._param.message_history_window_size)
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
conv = []
for m in hist:
if m["role"] not in ["user", "assistant"]:
continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conv = "\n".join(conv)
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(conv), [{"role": "user", "content": "Output: "}],
self._param.gen_conf())
ans = chat_mdl.chat(self._param.get_prompt(conv, self.gen_lang(self._param.language), query),
[{"role": "user", "content": "Output: "}], self._param.gen_conf())
self._canvas.history.pop()
self._canvas.history.append(("user", ans))
logging.debug(ans)
return RewriteQuestion.be_output(ans)
@staticmethod
def gen_lang(language):
# convert code lang to language word for the prompt
language_dict = {'af': 'Afrikaans', 'ak': 'Akan', 'sq': 'Albanian', 'ws': 'Samoan', 'am': 'Amharic',
'ar': 'Arabic', 'hy': 'Armenian', 'az': 'Azerbaijani', 'eu': 'Basque', 'be': 'Belarusian',
'bem': 'Bemba', 'bn': 'Bengali', 'bh': 'Bihari',
'xx-bork': 'Bork', 'bs': 'Bosnian', 'br': 'Breton', 'bg': 'Bulgarian', 'bt': 'Bhutani',
'km': 'Cambodian', 'ca': 'Catalan', 'chr': 'Cherokee', 'ny': 'Chichewa', 'zh-cn': 'Chinese',
'zh-tw': 'Chinese', 'co': 'Corsican',
'hr': 'Croatian', 'cs': 'Czech', 'da': 'Danish', 'nl': 'Dutch', 'xx-elmer': 'Elmer',
'en': 'English', 'eo': 'Esperanto', 'et': 'Estonian', 'ee': 'Ewe', 'fo': 'Faroese',
'tl': 'Filipino', 'fi': 'Finnish', 'fr': 'French',
'fy': 'Frisian', 'gaa': 'Ga', 'gl': 'Galician', 'ka': 'Georgian', 'de': 'German',
'el': 'Greek', 'kl': 'Greenlandic', 'gn': 'Guarani', 'gu': 'Gujarati', 'xx-hacker': 'Hacker',
'ht': 'Haitian Creole', 'ha': 'Hausa', 'haw': 'Hawaiian',
'iw': 'Hebrew', 'hi': 'Hindi', 'hu': 'Hungarian', 'is': 'Icelandic', 'ig': 'Igbo',
'id': 'Indonesian', 'ia': 'Interlingua', 'ga': 'Irish', 'it': 'Italian', 'ja': 'Japanese',
'jw': 'Javanese', 'kn': 'Kannada', 'kk': 'Kazakh', 'rw': 'Kinyarwanda',
'rn': 'Kirundi', 'xx-klingon': 'Klingon', 'kg': 'Kongo', 'ko': 'Korean', 'kri': 'Krio',
'ku': 'Kurdish', 'ckb': 'Kurdish (Sorani)', 'ky': 'Kyrgyz', 'lo': 'Laothian', 'la': 'Latin',
'lv': 'Latvian', 'ln': 'Lingala', 'lt': 'Lithuanian',
'loz': 'Lozi', 'lg': 'Luganda', 'ach': 'Luo', 'mk': 'Macedonian', 'mg': 'Malagasy',
'ms': 'Malay', 'ml': 'Malayalam', 'mt': 'Maltese', 'mv': 'Maldivian', 'mi': 'Maori',
'mr': 'Marathi', 'mfe': 'Mauritian Creole', 'mo': 'Moldavian', 'mn': 'Mongolian',
'sr-me': 'Montenegrin', 'my': 'Burmese', 'ne': 'Nepali', 'pcm': 'Nigerian Pidgin',
'nso': 'Northern Sotho', 'no': 'Norwegian', 'nn': 'Norwegian Nynorsk', 'oc': 'Occitan',
'or': 'Oriya', 'om': 'Oromo', 'ps': 'Pashto', 'fa': 'Persian',
'xx-pirate': 'Pirate', 'pl': 'Polish', 'pt': 'Portuguese', 'pt-br': 'Portuguese (Brazilian)',
'pt-pt': 'Portuguese (Portugal)', 'pa': 'Punjabi', 'qu': 'Quechua', 'ro': 'Romanian',
'rm': 'Romansh', 'nyn': 'Runyankole', 'ru': 'Russian', 'gd': 'Scots Gaelic',
'sr': 'Serbian', 'sh': 'Serbo-Croatian', 'st': 'Sesotho', 'tn': 'Setswana',
'crs': 'Seychellois Creole', 'sn': 'Shona', 'sd': 'Sindhi', 'si': 'Sinhalese', 'sk': 'Slovak',
'sl': 'Slovenian', 'so': 'Somali', 'es': 'Spanish', 'es-419': 'Spanish (Latin America)',
'su': 'Sundanese',
'sw': 'Swahili', 'sv': 'Swedish', 'tg': 'Tajik', 'ta': 'Tamil', 'tt': 'Tatar', 'te': 'Telugu',
'th': 'Thai', 'ti': 'Tigrinya', 'to': 'Tongan', 'lua': 'Tshiluba', 'tum': 'Tumbuka',
'tr': 'Turkish', 'tk': 'Turkmen', 'tw': 'Twi',
'ug': 'Uyghur', 'uk': 'Ukrainian', 'ur': 'Urdu', 'uz': 'Uzbek', 'vu': 'Vanuatu',
'vi': 'Vietnamese', 'cy': 'Welsh', 'wo': 'Wolof', 'xh': 'Xhosa', 'yi': 'Yiddish',
'yo': 'Yoruba', 'zu': 'Zulu'}
if language in language_dict:
return language_dict[language]
else:
return ""

View File

@ -13,8 +13,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
from agent.component.base import ComponentBase, ComponentParamBase
from jinja2 import Template as Jinja2Template
class TemplateParam(ComponentParamBase):
@ -36,32 +38,49 @@ class Template(ComponentBase):
component_name = "Template"
def get_dependent_components(self):
cpnts = set([para["component_id"].split("@")[0] for para in self._param.parameters \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
inputs = self.get_input_elements()
cpnts = set([i["key"] for i in inputs if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
return list(cpnts)
def get_input_elements(self):
key_set = set([])
res = []
for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.content, flags=re.IGNORECASE):
cpn_id = r.group(1)
if cpn_id in key_set:
continue
if cpn_id.lower().find("begin@") == 0:
cpn_id, key = cpn_id.split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] != key:
continue
res.append({"key": r.group(1), "name": p["name"]})
key_set.add(r.group(1))
continue
cpn_nm = self._canvas.get_component_name(cpn_id)
if not cpn_nm:
continue
res.append({"key": cpn_id, "name": cpn_nm})
key_set.add(cpn_id)
return res
def _run(self, history, **kwargs):
content = self._param.content
self._param.inputs = []
for para in self._param.parameters:
if not para.get("component_id"):
continue
component_id = para["component_id"].split("@")[0]
if para["component_id"].lower().find("@") >= 0:
cpn_id, key = para["component_id"].split("@")
for para in self.get_input_elements():
if para["key"].lower().find("begin@") == 0:
cpn_id, key = para["key"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
kwargs[para["key"]] = p.get("value", "")
self._param.inputs.append(
{"component_id": para["component_id"], "content": kwargs[para["key"]]})
value = p.get("value", "")
self.make_kwargs(para, kwargs, value)
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
component_id = para["key"]
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
@ -69,18 +88,49 @@ class Template(ComponentBase):
hist = hist[0]["content"]
else:
hist = ""
kwargs[para["key"]] = hist
self.make_kwargs(para, kwargs, hist)
continue
_, out = cpn.output(allow_partial=False)
if "content" not in out.columns:
kwargs[para["key"]] = ""
else:
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
result = ""
if "content" in out.columns:
result = "\n".join(
[o if isinstance(o, str) else str(o) for o in out["content"]]
)
self.make_kwargs(para, kwargs, result)
template = Jinja2Template(content)
try:
content = template.render(kwargs)
except Exception:
pass
for n, v in kwargs.items():
content = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), content)
try:
v = json.dumps(v, ensure_ascii=False)
except Exception:
pass
content = re.sub(
r"\{%s\}" % re.escape(n), v, content
)
content = re.sub(
r"(\\\"|\")", "", content
)
content = re.sub(
r"(#+)", r" \1 ", content
)
return Template.be_output(content)
def make_kwargs(self, para, kwargs, value):
self._param.inputs.append(
{"component_id": para["key"], "content": value}
)
try:
value = json.loads(value)
except Exception:
pass
kwargs[para["key"]] = value

View File

@ -1,72 +1,72 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import time
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class TuShareParam(ComponentParamBase):
"""
Define the TuShare component parameters.
"""
def __init__(self):
super().__init__()
self.token = "xxx"
self.src = "eastmoney"
self.start_date = "2024-01-01 09:00:00"
self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
self.keyword = ""
def check(self):
self.check_valid_value(self.src, "Quick News Source",
["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
class TuShare(ComponentBase, ABC):
component_name = "TuShare"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return TuShare.be_output("")
try:
tus_res = []
params = {
"api_name": "news",
"token": self._param.token,
"params": {"src": self._param.src, "start_date": self._param.start_date,
"end_date": self._param.end_date}
}
response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
response = response.json()
if response['code'] != 0:
return TuShare.be_output(response['msg'])
df = pd.DataFrame(response['data']['items'])
df.columns = response['data']['fields']
tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
except Exception as e:
return TuShare.be_output("**ERROR**: " + str(e))
if not tus_res:
return TuShare.be_output("")
return pd.DataFrame(tus_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import time
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class TuShareParam(ComponentParamBase):
"""
Define the TuShare component parameters.
"""
def __init__(self):
super().__init__()
self.token = "xxx"
self.src = "eastmoney"
self.start_date = "2024-01-01 09:00:00"
self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
self.keyword = ""
def check(self):
self.check_valid_value(self.src, "Quick News Source",
["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
class TuShare(ComponentBase, ABC):
component_name = "TuShare"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return TuShare.be_output("")
try:
tus_res = []
params = {
"api_name": "news",
"token": self._param.token,
"params": {"src": self._param.src, "start_date": self._param.start_date,
"end_date": self._param.end_date}
}
response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
response = response.json()
if response['code'] != 0:
return TuShare.be_output(response['msg'])
df = pd.DataFrame(response['data']['items'])
df.columns = response['data']['fields']
tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
except Exception as e:
return TuShare.be_output("**ERROR**: " + str(e))
if not tus_res:
return TuShare.be_output("")
return pd.DataFrame(tus_res)

View File

@ -1,80 +1,80 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
import pywencai
from agent.component.base import ComponentBase, ComponentParamBase
class WenCaiParam(ComponentParamBase):
"""
Define the WenCai component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.query_type = "stock"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.query_type, "Query type",
['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
'futures', 'lccp',
'foreign_exchange'])
class WenCai(ComponentBase, ABC):
component_name = "WenCai"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return WenCai.be_output("")
try:
wencai_res = []
res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
if isinstance(res, pd.DataFrame):
wencai_res.append({"content": res.to_markdown()})
if isinstance(res, dict):
for item in res.items():
if isinstance(item[1], list):
wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
continue
if isinstance(item[1], str):
wencai_res.append({"content": item[0] + "\n" + item[1]})
continue
if isinstance(item[1], dict):
if "meta" in item[1].keys():
continue
wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
continue
if isinstance(item[1], pd.DataFrame):
if "image_url" in item[1].columns:
continue
wencai_res.append({"content": item[1].to_markdown()})
continue
wencai_res.append({"content": item[0] + "\n" + str(item[1])})
except Exception as e:
return WenCai.be_output("**ERROR**: " + str(e))
if not wencai_res:
return WenCai.be_output("")
return pd.DataFrame(wencai_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
import pywencai
from agent.component.base import ComponentBase, ComponentParamBase
class WenCaiParam(ComponentParamBase):
"""
Define the WenCai component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.query_type = "stock"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.query_type, "Query type",
['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
'futures', 'lccp',
'foreign_exchange'])
class WenCai(ComponentBase, ABC):
component_name = "WenCai"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return WenCai.be_output("")
try:
wencai_res = []
res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
if isinstance(res, pd.DataFrame):
wencai_res.append({"content": res.to_markdown()})
if isinstance(res, dict):
for item in res.items():
if isinstance(item[1], list):
wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
continue
if isinstance(item[1], str):
wencai_res.append({"content": item[0] + "\n" + item[1]})
continue
if isinstance(item[1], dict):
if "meta" in item[1].keys():
continue
wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
continue
if isinstance(item[1], pd.DataFrame):
if "image_url" in item[1].columns:
continue
wencai_res.append({"content": item[1].to_markdown()})
continue
wencai_res.append({"content": item[0] + "\n" + str(item[1])})
except Exception as e:
return WenCai.be_output("**ERROR**: " + str(e))
if not wencai_res:
return WenCai.be_output("")
return pd.DataFrame(wencai_res)

View File

@ -1,84 +1,84 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
import yfinance as yf
class YahooFinanceParam(ComponentParamBase):
"""
Define the YahooFinance component parameters.
"""
def __init__(self):
super().__init__()
self.info = True
self.history = False
self.count = False
self.financials = False
self.income_stmt = False
self.balance_sheet = False
self.cash_flow_statement = False
self.news = True
def check(self):
self.check_boolean(self.info, "get all stock info")
self.check_boolean(self.history, "get historical market data")
self.check_boolean(self.count, "show share count")
self.check_boolean(self.financials, "show financials")
self.check_boolean(self.income_stmt, "income statement")
self.check_boolean(self.balance_sheet, "balance sheet")
self.check_boolean(self.cash_flow_statement, "cash flow statement")
self.check_boolean(self.news, "show news")
class YahooFinance(ComponentBase, ABC):
component_name = "YahooFinance"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join(ans["content"]) if "content" in ans else ""
if not ans:
return YahooFinance.be_output("")
yohoo_res = []
try:
msft = yf.Ticker(ans)
if self._param.info:
yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"})
if self._param.history:
yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"})
if self._param.financials:
yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"})
if self._param.balance_sheet:
yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"})
if self._param.cash_flow_statement:
yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
if self._param.news:
yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
except Exception:
logging.exception("YahooFinance got exception")
if not yohoo_res:
return YahooFinance.be_output("")
return pd.DataFrame(yohoo_res)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
import yfinance as yf
class YahooFinanceParam(ComponentParamBase):
"""
Define the YahooFinance component parameters.
"""
def __init__(self):
super().__init__()
self.info = True
self.history = False
self.count = False
self.financials = False
self.income_stmt = False
self.balance_sheet = False
self.cash_flow_statement = False
self.news = True
def check(self):
self.check_boolean(self.info, "get all stock info")
self.check_boolean(self.history, "get historical market data")
self.check_boolean(self.count, "show share count")
self.check_boolean(self.financials, "show financials")
self.check_boolean(self.income_stmt, "income statement")
self.check_boolean(self.balance_sheet, "balance sheet")
self.check_boolean(self.cash_flow_statement, "cash flow statement")
self.check_boolean(self.news, "show news")
class YahooFinance(ComponentBase, ABC):
component_name = "YahooFinance"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join(ans["content"]) if "content" in ans else ""
if not ans:
return YahooFinance.be_output("")
yohoo_res = []
try:
msft = yf.Ticker(ans)
if self._param.info:
yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"})
if self._param.history:
yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"})
if self._param.financials:
yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"})
if self._param.balance_sheet:
yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"})
if self._param.cash_flow_statement:
yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
if self._param.news:
yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
except Exception:
logging.exception("YahooFinance got exception")
if not yohoo_res:
return YahooFinance.be_output("")
return pd.DataFrame(yohoo_res)

View File

@ -1,5 +1,5 @@
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,113 +1,113 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
"to": "concentrator:0"
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "concentrator:1"
}
}
}
},
"downstream": ["concentrator:0","concentrator:1"],
"upstream": ["answer:0"]
},
"concentrator:0": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:0"],
"upstream": ["categorize:0"]
},
"concentrator:1": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:1_0","message:1_1","message:1_2"],
"upstream": ["categorize:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 0_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:0"]
},
"message:1_0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_1": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_1!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_2": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_2!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
"to": "concentrator:0"
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "concentrator:1"
}
}
}
},
"downstream": ["concentrator:0","concentrator:1"],
"upstream": ["answer:0"]
},
"concentrator:0": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:0"],
"upstream": ["categorize:0"]
},
"concentrator:1": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:1_0","message:1_1","message:1_2"],
"upstream": ["categorize:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 0_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:0"]
},
"message:1_0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_1": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_1!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_2": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_2!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@ -0,0 +1 @@
from .deep_research import DeepResearcher as DeepResearcher

View File

@ -0,0 +1,167 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
from functools import partial
from agentic_reasoning.prompts import BEGIN_SEARCH_QUERY, BEGIN_SEARCH_RESULT, END_SEARCH_RESULT, MAX_SEARCH_LIMIT, \
END_SEARCH_QUERY, REASON_PROMPT, RELEVANT_EXTRACTION_PROMPT
from api.db.services.llm_service import LLMBundle
from rag.nlp import extract_between
from rag.prompts import kb_prompt
from rag.utils.tavily_conn import Tavily
class DeepResearcher:
def __init__(self,
chat_mdl: LLMBundle,
prompt_config: dict,
kb_retrieve: partial = None,
kg_retrieve: partial = None
):
self.chat_mdl = chat_mdl
self.prompt_config = prompt_config
self._kb_retrieve = kb_retrieve
self._kg_retrieve = kg_retrieve
def thinking(self, chunk_info: dict, question: str):
def rm_query_tags(line):
pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY)
return re.sub(pattern, "", line)
def rm_result_tags(line):
pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT)
return re.sub(pattern, "", line)
executed_search_queries = []
msg_hisotry = [{"role": "user", "content": f'Question:\"{question}\"\n'}]
all_reasoning_steps = []
think = "<think>"
for ii in range(MAX_SEARCH_LIMIT + 1):
if ii == MAX_SEARCH_LIMIT - 1:
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n"
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
all_reasoning_steps.append(summary_think)
msg_hisotry.append({"role": "assistant", "content": summary_think})
break
query_think = ""
if msg_hisotry[-1]["role"] != "user":
msg_hisotry.append({"role": "user", "content": "Continues reasoning with the new information.\n"})
else:
msg_hisotry[-1]["content"] += "\n\nContinues reasoning with the new information.\n"
for ans in self.chat_mdl.chat_streamly(REASON_PROMPT, msg_hisotry, {"temperature": 0.7}):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
if not ans:
continue
query_think = ans
yield {"answer": think + rm_query_tags(query_think) + "</think>", "reference": {}, "audio_binary": None}
think += rm_query_tags(query_think)
all_reasoning_steps.append(query_think)
queries = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)
if not queries:
if ii > 0:
break
queries = [question]
for search_query in queries:
logging.info(f"[THINK]Query: {ii}. {search_query}")
msg_hisotry.append({"role": "assistant", "content": search_query})
think += f"\n\n> {ii +1}. {search_query}\n\n"
yield {"answer": think + "</think>", "reference": {}, "audio_binary": None}
summary_think = ""
# The search query has been searched in previous steps.
if search_query in executed_search_queries:
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n"
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
all_reasoning_steps.append(summary_think)
msg_hisotry.append({"role": "user", "content": summary_think})
think += summary_think
continue
truncated_prev_reasoning = ""
for i, step in enumerate(all_reasoning_steps):
truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n"
prev_steps = truncated_prev_reasoning.split('\n\n')
if len(prev_steps) <= 5:
truncated_prev_reasoning = '\n\n'.join(prev_steps)
else:
truncated_prev_reasoning = ''
for i, step in enumerate(prev_steps):
if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step:
truncated_prev_reasoning += step + '\n\n'
else:
if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n':
truncated_prev_reasoning += '...\n\n'
truncated_prev_reasoning = truncated_prev_reasoning.strip('\n')
# Retrieval procedure:
# 1. KB search
# 2. Web search (optional)
# 3. KG search (optional)
kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []}
if self.prompt_config.get("tavily_api_key"):
tav = Tavily(self.prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(" ".join(search_query))
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if self.prompt_config.get("use_kg") and self._kg_retrieve:
ck = self._kg_retrieve(question=search_query)
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
# Merge chunk info for citations
if not chunk_info["chunks"]:
for k in chunk_info.keys():
chunk_info[k] = kbinfos[k]
else:
cids = [c["chunk_id"] for c in chunk_info["chunks"]]
for c in kbinfos["chunks"]:
if c["chunk_id"] in cids:
continue
chunk_info["chunks"].append(c)
dids = [d["doc_id"] for d in chunk_info["doc_aggs"]]
for d in kbinfos["doc_aggs"]:
if d["doc_id"] in dids:
continue
chunk_info["doc_aggs"].append(d)
think += "\n\n"
for ans in self.chat_mdl.chat_streamly(
RELEVANT_EXTRACTION_PROMPT.format(
prev_reasoning=truncated_prev_reasoning,
search_query=search_query,
document="\n".join(kb_prompt(kbinfos, 4096))
),
[{"role": "user",
"content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}],
{"temperature": 0.7}):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
if not ans:
continue
summary_think = ans
yield {"answer": think + rm_result_tags(summary_think) + "</think>", "reference": {}, "audio_binary": None}
all_reasoning_steps.append(summary_think)
msg_hisotry.append(
{"role": "user", "content": f"\n\n{BEGIN_SEARCH_RESULT}{summary_think}{END_SEARCH_RESULT}\n\n"})
think += rm_result_tags(summary_think)
logging.info(f"[THINK]Summary: {ii}. {summary_think}")
yield think + "</think>"

View File

@ -0,0 +1,112 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
BEGIN_SEARCH_QUERY = "<|begin_search_query|>"
END_SEARCH_QUERY = "<|end_search_query|>"
BEGIN_SEARCH_RESULT = "<|begin_search_result|>"
END_SEARCH_RESULT = "<|end_search_result|>"
MAX_SEARCH_LIMIT = 6
REASON_PROMPT = (
"You are a reasoning assistant with the ability to perform dataset searches to help "
"you answer the user's question accurately. You have special tools:\n\n"
f"- To perform a search: write {BEGIN_SEARCH_QUERY} your query here {END_SEARCH_QUERY}.\n"
f"Then, the system will search and analyze relevant content, then provide you with helpful information in the format {BEGIN_SEARCH_RESULT} ...search results... {END_SEARCH_RESULT}.\n\n"
f"You can repeat the search process multiple times if necessary. The maximum number of search attempts is limited to {MAX_SEARCH_LIMIT}.\n\n"
"Once you have all the information you need, continue your reasoning.\n\n"
"-- Example 1 --\n" ########################################
"Question: \"Are both the directors of Jaws and Casino Royale from the same country?\"\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Who is the director of Jaws?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nThe director of Jaws is Steven Spielberg...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information.\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Where is Steven Spielberg from?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nSteven Allan Spielberg is an American filmmaker...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Who is the director of Casino Royale?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nCasino Royale is a 2006 spy film directed by Martin Campbell...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Where is Martin Campbell from?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nMartin Campbell (born 24 October 1943) is a New Zealand film and television director...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\nIt's enough to answer the question\n"
"-- Example 2 --\n" #########################################
"Question: \"When was the founder of craigslist born?\"\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Who was the founder of craigslist?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nCraigslist was founded by Craig Newmark...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information.\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY} When was Craig Newmark born?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nCraig Newmark was born on December 6, 1952...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\nIt's enough to answer the question\n"
"**Remember**:\n"
f"- You have a dataset to search, so you just provide a proper search query.\n"
f"- Use {BEGIN_SEARCH_QUERY} to request a dataset search and end with {END_SEARCH_QUERY}.\n"
"- The language of query MUST be as the same as 'Question' or 'search result'.\n"
"- When done searching, continue your reasoning.\n\n"
'Please answer the following question. You should think step by step to solve it.\n\n'
)
RELEVANT_EXTRACTION_PROMPT = """**Task Instruction:**
You are tasked with reading and analyzing web pages based on the following inputs: **Previous Reasoning Steps**, **Current Search Query**, and **Searched Web Pages**. Your objective is to extract relevant and helpful information for **Current Search Query** from the **Searched Web Pages** and seamlessly integrate this information into the **Previous Reasoning Steps** to continue reasoning for the original question.
**Guidelines:**
1. **Analyze the Searched Web Pages:**
- Carefully review the content of each searched web page.
- Identify factual information that is relevant to the **Current Search Query** and can aid in the reasoning process for the original question.
2. **Extract Relevant Information:**
- Select the information from the Searched Web Pages that directly contributes to advancing the **Previous Reasoning Steps**.
- Ensure that the extracted information is accurate and relevant.
3. **Output Format:**
- **If the web pages provide helpful information for current search query:** Present the information beginning with `**Final Information**` as shown below.
- The language of query **MUST BE** as the same as 'Search Query' or 'Web Pages'.\n"
**Final Information**
[Helpful information]
- **If the web pages do not provide any helpful information for current search query:** Output the following text.
**Final Information**
No helpful information found.
**Inputs:**
- **Previous Reasoning Steps:**
{prev_reasoning}
- **Current Search Query:**
{search_query}
- **Searched Web Pages:**
{document}
"""

View File

@ -1,2 +1,18 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from beartype.claw import beartype_this_package
beartype_this_package()

View File

@ -119,8 +119,9 @@ def register_page(page_path):
sys.modules[module_name] = page
spec.loader.exec_module(page)
page_name = getattr(page, "page_name", page_name)
sdk_path = "\\sdk\\" if sys.platform.startswith("win") else "/sdk/"
url_prefix = (
f"/api/{API_VERSION}" if "/sdk/" in path else f"/{API_VERSION}/{page_name}"
f"/api/{API_VERSION}" if sdk_path in path else f"/{API_VERSION}/{page_name}"
)
app.register_blueprint(page.manager, url_prefix=url_prefix)
@ -152,8 +153,8 @@ def load_user(web_request):
return user[0]
else:
return None
except Exception:
logging.exception("load_user got exception")
except Exception as e:
logging.warning(f"load_user got exception {e}")
return None
else:
return None

View File

@ -25,7 +25,7 @@ from api.db import FileType, LLMType, ParserType, FileSource
from api.db.db_models import APIToken, Task, File
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
from api.db.services.dialog_service import DialogService, chat, keyword_extraction
from api.db.services.dialog_service import DialogService, chat
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
@ -38,6 +38,8 @@ from api.utils.api_utils import server_error_response, get_data_error_result, ge
generate_confirmation_token
from api.utils.file_utils import filename_type, thumbnail
from rag.app.tag import label_question
from rag.prompts import keyword_extraction
from rag.utils.storage_factory import STORAGE_IMPL
from api.db.services.canvas_service import UserCanvasService
@ -141,7 +143,7 @@ def set_conversation():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
try:
if objs[0].source == "agent":
e, cvs = UserCanvasService.get_by_id(objs[0].dialog_id)
@ -182,7 +184,7 @@ def completion():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
@ -348,7 +350,7 @@ def get(conversation_id):
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, conv = API4ConversationService.get_by_id(conversation_id)
@ -357,7 +359,7 @@ def get(conversation_id):
conv = conv.to_dict()
if token != APIToken.query(dialog_id=conv['dialog_id'])[0].token:
return get_json_result(data=False, message='Token is not valid for this conversation_id!"',
return get_json_result(data=False, message='Authentication error: API key is invalid for this conversation_id!"',
code=settings.RetCode.AUTHENTICATION_ERROR)
for referenct_i in conv['reference']:
@ -379,7 +381,7 @@ def upload():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
kb_name = request.form.get("kb_name").strip()
tenant_id = objs[0].tenant_id
@ -491,7 +493,7 @@ def upload_parse():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
if 'file' not in request.files:
return get_json_result(
@ -514,7 +516,7 @@ def list_chunks():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
@ -554,7 +556,7 @@ def list_kb_docs():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
tenant_id = objs[0].tenant_id
@ -594,7 +596,7 @@ def docinfos():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
doc_ids = req["doc_ids"]
docs = DocumentService.get_by_ids(doc_ids)
@ -608,7 +610,7 @@ def document_rm():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
tenant_id = objs[0].tenant_id
req = request.json
@ -670,7 +672,7 @@ def completion_faq():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
@ -809,7 +811,7 @@ def retrieval():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
kb_ids = req.get("kb_id", [])
@ -840,7 +842,8 @@ def retrieval():
question += keyword_extraction(chat_mdl, question)
ranks = settings.retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)
doc_ids, rerank_mdl=rerank_mdl,
rank_feature=label_question(question, kbs))
for c in ranks["chunks"]:
c.pop("vector", None)
return get_json_result(data=ranks)

View File

@ -65,7 +65,7 @@ def save():
req["dsl"] = json.loads(req["dsl"])
if "id" not in req:
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip()):
return get_data_error_result(f"{req['title'].strip()} already exists.")
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
return get_data_error_result(message="Fail to save canvas.")
@ -94,7 +94,7 @@ def getsse(canvas_id):
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_data_error_result(message='Token is not valid!"')
return get_data_error_result(message='Authentication error: API key is invalid!"')
e, c = UserCanvasService.get_by_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
@ -146,12 +146,16 @@ def run():
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if not canvas.path[-1]:
canvas.path.pop(-1)
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
except Exception as e:
cvs.dsl = json.loads(str(canvas))
if not canvas.path[-1]:
canvas.path.pop(-1)
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
traceback.print_exc()
yield "data:" + json.dumps({"code": 500, "message": str(e),

View File

@ -19,9 +19,11 @@ import json
from flask import request
from flask_login import login_required, current_user
from api.db.services.dialog_service import keyword_extraction
from rag.app.qa import rmPrefix, beAdoc
from rag.app.tag import label_question
from rag.nlp import search, rag_tokenizer
from rag.prompts import keyword_extraction
from rag.settings import PAGERANK_FLD
from rag.utils import rmSpace
from api.db import LLMType, ParserType
from api.db.services.knowledgebase_service import KnowledgebaseService
@ -92,12 +94,14 @@ def get():
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
for tenant in tenants:
kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
if chunk:
break
if chunk is None:
return server_error_response(Exception("Chunk not found"))
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
@ -115,8 +119,7 @@ def get():
@manager.route('/set', methods=['POST']) # noqa: F821
@login_required
@validate_request("doc_id", "chunk_id", "content_with_weight",
"important_kwd", "question_kwd")
@validate_request("doc_id", "chunk_id", "content_with_weight")
def set():
req = request.json
d = {
@ -124,10 +127,16 @@ def set():
"content_with_weight": req["content_with_weight"]}
d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
d["question_kwd"] = req["question_kwd"]
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
if "important_kwd" in req:
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
if "question_kwd" in req:
d["question_kwd"] = req["question_kwd"]
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
if "tag_kwd" in req:
d["tag_kwd"] = req["tag_kwd"]
if "tag_feas" in req:
d["tag_feas"] = req["tag_feas"]
if "available_int" in req:
d["available_int"] = req["available_int"]
@ -148,14 +157,11 @@ def set():
t for t in re.split(
r"[\n\t]",
req["content_with_weight"]) if len(t) > 1]
if len(arr) != 2:
return get_data_error_result(
message="Q&A must be separated by TAB/ENTER key.")
q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
d = beAdoc(d, arr[0], arr[1], not any(
q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
d = beAdoc(d, q, a, not any(
[rag_tokenizer.is_chinese(t) for t in q + a]))
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
@ -236,7 +242,7 @@ def create():
if not e:
return get_data_error_result(message="Knowledgebase not found!")
if kb.pagerank:
d["pagerank_fea"] = kb.pagerank
d[PAGERANK_FLD] = kb.pagerank
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
@ -267,6 +273,7 @@ def retrieval_test():
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
tenant_ids = []
@ -297,12 +304,24 @@ def retrieval_test():
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
labels = label_question(question, [kb])
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"))
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
rank_feature=labels
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
tenant_ids,
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
for c in ranks["chunks"]:
c.pop("vector", None)
ranks["labels"] = labels
return get_json_result(data=ranks)
except Exception as e:

View File

@ -27,11 +27,13 @@ from flask_login import login_required, current_user
from api.db import LLMType
from api.db.services.dialog_service import DialogService, chat, ask
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle, TenantService, TenantLLMService
from api.db.services.llm_service import LLMBundle, TenantService
from api import settings
from api.utils.api_utils import get_json_result
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from graphrag.mind_map_extractor import MindMapExtractor
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.tag import label_question
@manager.route('/set', methods=['POST']) # noqa: F821
@login_required
@ -65,10 +67,6 @@ def set_conversation():
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
}
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
if not e:
return get_data_error_result(message="Fail to new a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@ -126,7 +124,7 @@ def getsse(dialog_id):
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_data_error_result(message='Token is not valid!"')
return get_data_error_result(message='Authentication error: API key is invalid!"')
try:
e, conv = DialogService.get_by_id(dialog_id)
if not e:
@ -380,11 +378,13 @@ def mindmap():
if not e:
return get_data_error_result(message="Knowledgebase not found!")
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
ranks = settings.retrievaler.retrieval(req["question"], embd_mdl, kb.tenant_id, kb_ids, 1, 12,
0.3, 0.3, aggs=False)
question = req["question"]
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12,
0.3, 0.3, aggs=False,
rank_feature=label_question(question, [kb])
)
mindmap = MindMapExtractor(chat_mdl)
mind_map = mindmap([c["content_with_weight"] for c in ranks["chunks"]]).output
if "error" in mind_map:

View File

@ -18,6 +18,7 @@ from flask import request
from flask_login import login_required, current_user
from api.db.services.dialog_service import DialogService
from api.db import StatusEnum
from api.db.services.llm_service import TenantLLMService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService, UserTenantService
from api import settings
@ -57,11 +58,6 @@ def set_dialog():
if not prompt_config["system"]:
prompt_config["system"] = default_prompt["system"]
# if len(prompt_config["parameters"]) < 1:
# prompt_config["parameters"] = default_prompt["parameters"]
# for p in prompt_config["parameters"]:
# if p["key"] == "knowledge":break
# else: prompt_config["parameters"].append(default_prompt["parameters"][0])
for p in prompt_config["parameters"]:
if p["optional"]:
@ -74,22 +70,19 @@ def set_dialog():
e, tenant = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Tenant not found!")
kbs = KnowledgebaseService.get_by_ids(req.get("kb_ids"))
embd_count = len(set([kb.embd_id for kb in kbs]))
if embd_count != 1:
kbs = KnowledgebaseService.get_by_ids(req.get("kb_ids", []))
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = len(set(embd_ids))
if embd_count > 1:
return get_data_error_result(message=f'Datasets use different embedding models: {[kb.embd_id for kb in kbs]}"')
llm_id = req.get("llm_id", tenant.llm_id)
if not dialog_id:
if not req.get("kb_ids"):
return get_data_error_result(
message="Fail! Please select knowledgebase!")
dia = {
"id": get_uuid(),
"tenant_id": current_user.id,
"name": name,
"kb_ids": req["kb_ids"],
"kb_ids": req.get("kb_ids", []),
"description": description,
"llm_id": llm_id,
"llm_setting": llm_setting,
@ -103,10 +96,7 @@ def set_dialog():
}
if not DialogService.save(**dia):
return get_data_error_result(message="Fail to new a dialog!")
e, dia = DialogService.get_by_id(dia["id"])
if not e:
return get_data_error_result(message="Fail to new a dialog!")
return get_json_result(data=dia.to_json())
return get_json_result(data=dia)
else:
del req["dialog_id"]
if "kb_names" in req:
@ -117,6 +107,7 @@ def set_dialog():
if not e:
return get_data_error_result(message="Fail to update a dialog!")
dia = dia.to_dict()
dia.update(req)
dia["kb_ids"], dia["kb_names"] = get_kb_names(dia["kb_ids"])
return get_json_result(data=dia)
except Exception as e:

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License
#
import json
import os.path
import pathlib
import re
@ -593,3 +594,38 @@ def parse():
txt = FileService.parse_docs(file_objs, current_user.id)
return get_json_result(data=txt)
@manager.route('/set_meta', methods=['POST']) # noqa: F821
@login_required
@validate_request("doc_id", "meta")
def set_meta():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
try:
meta = json.loads(req["meta"])
except Exception as e:
return get_json_result(
data=False, message=f'Json syntax error: {e}', code=settings.RetCode.ARGUMENT_ERROR)
if not isinstance(meta, dict):
return get_json_result(
data=False, message='Meta data should be in Json map format, like {"key": "value"}', code=settings.RetCode.ARGUMENT_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if not DocumentService.update_by_id(
req["doc_id"], {"meta_fields": meta}):
return get_data_error_result(
message="Database error (meta updates)!")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -13,6 +13,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
from flask import request
from flask_login import login_required, current_user
@ -30,6 +33,7 @@ from api.utils.api_utils import get_json_result
from api import settings
from rag.nlp import search
from api.constants import DATASET_NAME_LIMIT
from rag.settings import PAGERANK_FLD
@manager.route('/create', methods=['post']) # noqa: F821
@ -92,6 +96,13 @@ def update():
return get_data_error_result(
message="Can't find this knowledgebase!")
if req.get("parser_id", "") == "tag" and os.environ.get('DOC_ENGINE', "elasticsearch") == "infinity":
return get_json_result(
data=False,
message='The chunk method Tag has not been supported by Infinity yet.',
code=settings.RetCode.OPERATING_ERROR
)
if req["name"].lower() != kb.name.lower() \
and len(
KnowledgebaseService.query(name=req["name"], tenant_id=current_user.id, status=StatusEnum.VALID.value)) > 1:
@ -104,19 +115,21 @@ def update():
if kb.pagerank != req.get("pagerank", 0):
if req.get("pagerank", 0) > 0:
settings.docStoreConn.update({"kb_id": kb.id}, {"pagerank_fea": req["pagerank"]},
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
search.index_name(kb.tenant_id), kb.id)
else:
# Elasticsearch requires pagerank_fea be non-zero!
settings.docStoreConn.update({"exist": "pagerank_fea"}, {"remove": "pagerank_fea"},
# Elasticsearch requires PAGERANK_FLD be non-zero!
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
search.index_name(kb.tenant_id), kb.id)
e, kb = KnowledgebaseService.get_by_id(kb.id)
if not e:
return get_data_error_result(
message="Database error (Knowledgebase rename)!")
kb = kb.to_dict()
kb.update(req)
return get_json_result(data=kb.to_json())
return get_json_result(data=kb)
except Exception as e:
return server_error_response(e)
@ -150,12 +163,14 @@ def list_kbs():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
parser_id = request.args.get("parser_id")
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
kbs, total = KnowledgebaseService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number, items_per_page, orderby, desc, keywords)
[m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords, parser_id)
return get_json_result(data={"kbs": kbs, "total": total})
except Exception as e:
return server_error_response(e)
@ -185,7 +200,8 @@ def rm():
return get_data_error_result(
message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
if f2d:
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete(
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
@ -198,3 +214,112 @@ def rm():
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/<kb_id>/tags', methods=['GET']) # noqa: F821
@login_required
def list_tags(kb_id):
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
tags = settings.retrievaler.all_tags(current_user.id, [kb_id])
return get_json_result(data=tags)
@manager.route('/tags', methods=['GET']) # noqa: F821
@login_required
def list_tags_from_kbs():
kb_ids = request.args.get("kb_ids", "").split(",")
for kb_id in kb_ids:
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
tags = settings.retrievaler.all_tags(current_user.id, kb_ids)
return get_json_result(data=tags)
@manager.route('/<kb_id>/rm_tags', methods=['POST']) # noqa: F821
@login_required
def rm_tags(kb_id):
req = request.json
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
e, kb = KnowledgebaseService.get_by_id(kb_id)
for t in req["tags"]:
settings.docStoreConn.update({"tag_kwd": t, "kb_id": [kb_id]},
{"remove": {"tag_kwd": t}},
search.index_name(kb.tenant_id),
kb_id)
return get_json_result(data=True)
@manager.route('/<kb_id>/rename_tag', methods=['POST']) # noqa: F821
@login_required
def rename_tags(kb_id):
req = request.json
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
e, kb = KnowledgebaseService.get_by_id(kb_id)
settings.docStoreConn.update({"tag_kwd": req["from_tag"], "kb_id": [kb_id]},
{"remove": {"tag_kwd": req["from_tag"].strip()}, "add": {"tag_kwd": req["to_tag"]}},
search.index_name(kb.tenant_id),
kb_id)
return get_json_result(data=True)
@manager.route('/<kb_id>/knowledge_graph', methods=['GET']) # noqa: F821
@login_required
def knowledge_graph(kb_id):
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(kb_id)
req = {
"kb_id": [kb_id],
"knowledge_graph_kwd": ["graph"]
}
obj = {"graph": {}, "mind_map": {}}
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
return get_json_result(data=obj)
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [kb_id])
if not len(sres.ids):
return get_json_result(data=obj)
for id in sres.ids[:1]:
ty = sres.field[id]["knowledge_graph_kwd"]
try:
content_json = json.loads(sres.field[id]["content_with_weight"])
except Exception:
continue
obj[ty] = content_json
if "nodes" in obj["graph"]:
obj["graph"]["nodes"] = sorted(obj["graph"]["nodes"], key=lambda x: x.get("pagerank", 0), reverse=True)[:256]
if "edges" in obj["graph"]:
node_id_set = { o["id"] for o in obj["graph"]["nodes"] }
filtered_edges = [o for o in obj["graph"]["edges"] if o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
return get_json_result(data=obj)

View File

@ -15,7 +15,7 @@
#
import logging
import json
import os
from flask import request
from flask_login import login_required, current_user
from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
@ -24,8 +24,8 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
from api.db import StatusEnum, LLMType
from api.db.db_models import TenantLLM
from api.utils.api_utils import get_json_result
from api.utils.file_utils import get_project_base_directory
from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
import requests
@manager.route('/factories', methods=['GET']) # noqa: F821
@ -152,6 +152,7 @@ def add_llm():
elif factory == "Tencent Cloud":
req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
return set_api_key()
elif factory == "Bedrock":
# For Bedrock, due to its special authentication method
@ -171,6 +172,10 @@ def add_llm():
llm_name = req["llm_name"] + "___OpenAI-API"
api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
elif factory == "VLLM":
llm_name = req["llm_name"] + "___VLLM"
api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
elif factory == "XunFei Spark":
llm_name = req["llm_name"]
if req["model_type"] == "chat":
@ -209,72 +214,69 @@ def add_llm():
}
msg = ""
mdl_nm = llm["llm_name"].split("___")[0]
if llm["model_type"] == LLMType.EMBEDDING.value:
mdl = EmbeddingModel[factory](
key=llm['api_key'],
model_name=llm["llm_name"],
model_name=mdl_nm,
base_url=llm["api_base"])
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0:
raise Exception("Fail")
except Exception as e:
msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.CHAT.value:
mdl = ChatModel[factory](
key=llm['api_key'],
model_name=llm["llm_name"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
"temperature": 0.9})
if not tc:
if not tc and m.find("**ERROR**:") >= 0:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(
msg += f"\nFail to access model({mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.RERANK:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=llm["llm_name"],
base_url=llm["api_base"]
)
try:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0:
raise Exception("Not known.")
except KeyError:
msg += f"{factory} dose not support this model({mdl_nm})"
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(
msg += f"\nFail to access model({mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
mdl = CvModel[factory](
key=llm["api_key"],
model_name=llm["llm_name"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
try:
img_url = (
"https://www.8848seo.cn/zb_users/upload/2022/07/20220705101240_99378.jpg"
)
res = requests.get(img_url)
if res.status_code == 200:
m, tc = mdl.describe(res.content)
if not tc:
with open(os.path.join(get_project_base_directory(), "web/src/assets/yay.jpg"), "rb") as f:
m, tc = mdl.describe(f.read())
if not m and not tc:
raise Exception(m)
else:
pass
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(e)
msg += f"\nFail to access model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.TTS:
mdl = TTSModel[factory](
key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)
try:
for resp in mdl.tts("Hello~ Ragflower!"):
pass
except RuntimeError as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(e)
msg += f"\nFail to access model({mdl_nm})." + str(e)
else:
# TODO: check other type of models
pass
@ -335,7 +337,7 @@ def my_llms():
@manager.route('/list', methods=['GET']) # noqa: F821
@login_required
def list_app():
self_deploied = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
model_type = request.args.get("model_type")
try:
@ -345,7 +347,7 @@ def list_app():
llms = [m.to_dict()
for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
for m in llms:
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deploied
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
for o in objs:
@ -365,4 +367,4 @@ def list_app():
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)
return server_error_response(e)

View File

@ -13,28 +13,29 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from flask import request
from api import settings
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import TenantService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result, token_required
from api.utils.api_utils import get_result
@manager.route('/chats', methods=['POST']) # noqa: F821
@token_required
def create(tenant_id):
req=request.json
ids= req.get("dataset_ids")
req = request.json
ids = req.get("dataset_ids")
if not ids:
return get_error_data_result(message="`dataset_ids` is required")
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id,user_id=tenant_id)
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kbs = KnowledgebaseService.query(id=kb_id)
@ -42,16 +43,18 @@ def create(tenant_id):
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_count = list(set([kb.embd_id for kb in kbs]))
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) != 1:
return get_result(message='Datasets use different embedding models."',code=settings.RetCode.AUTHENTICATION_ERROR)
return get_result(message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
# llm
llm = req.get("llm")
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
if not TenantLLMService.query(tenant_id=tenant_id,llm_name=req["llm_id"],model_type="chat"):
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
@ -65,7 +68,7 @@ def create(tenant_id):
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
@ -82,8 +85,10 @@ def create(tenant_id):
req["top_k"] = req.get("top_k", 1024)
req["rerank_id"] = req.get("rerank_id", "")
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3","maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,llm_name=req.get("rerank_id"),model_type="rerank"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
llm_name=req.get("rerank_id"),
model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if not req.get("llm_id"):
req["llm_id"] = tenant.llm_id
@ -106,11 +111,11 @@ def create(tenant_id):
{"key": "knowledge", "optional": False}
],
"empty_response": "Sorry! No relevant content was found in the knowledge base!",
"quote":True,
"tts":False,
"refine_multiturn":True
"quote": True,
"tts": False,
"refine_multiturn": True
}
key_list_2 = ["system", "prologue", "parameters", "empty_response","quote","tts","refine_multiturn"]
key_list_2 = ["system", "prologue", "parameters", "empty_response", "quote", "tts", "refine_multiturn"]
if "prompt_config" not in req:
req['prompt_config'] = {}
for key in key_list_2:
@ -138,7 +143,7 @@ def create(tenant_id):
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"keywords_similarity_weight": 1-res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
@ -151,15 +156,16 @@ def create(tenant_id):
res["avatar"] = res.pop("icon")
return get_result(data=res)
@manager.route('/chats/<chat_id>', methods=['PUT']) # noqa: F821
@token_required
def update(tenant_id,chat_id):
def update(tenant_id, chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(message='You do not own the chat')
req =request.json
req = request.json
ids = req.get("dataset_ids")
if "show_quotation" in req:
req["do_refer"]=req.pop("show_quotation")
req["do_refer"] = req.pop("show_quotation")
if "dataset_ids" in req:
if not ids:
return get_error_data_result("`dataset_ids` can't be empty")
@ -173,8 +179,9 @@ def update(tenant_id,chat_id):
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_count=list(set([kb.embd_id for kb in kbs]))
if len(embd_count) != 1 :
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) != 1:
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
@ -183,7 +190,7 @@ def update(tenant_id,chat_id):
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
if not TenantLLMService.query(tenant_id=tenant_id,llm_name=req["llm_id"],model_type="chat"):
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
@ -197,7 +204,7 @@ def update(tenant_id,chat_id):
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
@ -209,8 +216,10 @@ def update(tenant_id,chat_id):
e, res = DialogService.get_by_id(chat_id)
res = res.to_json()
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3","maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,llm_name=req.get("rerank_id"),model_type="rerank"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
llm_name=req.get("rerank_id"),
model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if "name" in req:
if not req.get("name"):
@ -245,16 +254,16 @@ def update(tenant_id,chat_id):
def delete(tenant_id):
req = request.json
if not req:
ids=None
ids = None
else:
ids=req.get("ids")
ids = req.get("ids")
if not ids:
id_list = []
dias=DialogService.query(tenant_id=tenant_id,status=StatusEnum.VALID.value)
dias = DialogService.query(tenant_id=tenant_id, status=StatusEnum.VALID.value)
for dia in dias:
id_list.append(dia.id)
else:
id_list=ids
id_list = ids
for id in id_list:
if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
return get_error_data_result(message=f"You don't own the chat {id}")
@ -262,6 +271,7 @@ def delete(tenant_id):
DialogService.update_by_id(id, temp_dict)
return get_result()
@manager.route('/chats', methods=['GET']) # noqa: F821
@token_required
def list_chat(tenant_id):
@ -278,27 +288,27 @@ def list_chat(tenant_id):
desc = False
else:
desc = True
chats = DialogService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,name)
chats = DialogService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, name)
if not chats:
return get_result(data=[])
list_assts = []
renamed_dict = {}
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight",
"do_refer":"show_quotation"}
"do_refer": "show_quotation"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
for res in chats:
renamed_dict = {}
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"keywords_similarity_weight": 1-res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
@ -309,11 +319,12 @@ def list_chat(tenant_id):
kb_list = []
for kb_id in res["kb_ids"]:
kb = KnowledgebaseService.query(id=kb_id)
if not kb :
return get_error_data_result(message=f"Don't exist the kb {kb_id}")
if not kb:
logging.WARN(f"Don't exist the kb {kb_id}")
continue
kb_list.append(kb[0].to_json())
del res["kb_ids"]
res["datasets"] = kb_list
res["avatar"] = res.pop("icon")
list_assts.append(res)
return get_result(data=list_assts)
return get_result(data=list_assts)

View File

@ -73,7 +73,8 @@ def create(tenant_id):
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email"]
"presentation", "picture", "one", "knowledge_graph", "email", "tag"
]
description: Chunking method.
parser_config:
type: object
@ -108,6 +109,7 @@ def create(tenant_id):
"one",
"knowledge_graph",
"email",
"tag"
]
check_validation = valid(
permission,
@ -302,7 +304,8 @@ def update(tenant_id, dataset_id):
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email"]
"presentation", "picture", "one", "knowledge_graph", "email", "tag"
]
description: Updated chunking method.
parser_config:
type: object
@ -339,6 +342,7 @@ def update(tenant_id, dataset_id):
"one",
"knowledge_graph",
"email",
"tag"
]
check_validation = valid(
permission,

View File

@ -15,11 +15,12 @@
#
from flask import request, jsonify
from api.db import LLMType, ParserType
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import validate_request, build_error_result, apikey_required
from rag.app.tag import label_question
@manager.route('/dify/retrieval', methods=['POST']) # noqa: F821
@ -29,6 +30,7 @@ def retrieval(tenant_id):
req = request.json
question = req["query"]
kb_id = req["knowledge_id"]
use_kg = req.get("use_kg", False)
retrieval_setting = req.get("retrieval_setting", {})
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
top = int(retrieval_setting.get("top_k", 1024))
@ -44,8 +46,7 @@ def retrieval(tenant_id):
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(
ranks = settings.retrievaler.retrieval(
question,
embd_mdl,
kb.tenant_id,
@ -54,13 +55,24 @@ def retrieval(tenant_id):
page_size=top,
similarity_threshold=similarity_threshold,
vector_similarity_weight=0.3,
top=top
top=top,
rank_feature=label_question(question, [kb])
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
[tenant_id],
[kb_id],
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
records = []
for c in ranks["chunks"]:
c.pop("vector", None)
records.append({
"content": c["content_ltks"],
"content": c["content_with_weight"],
"score": c["similarity"],
"title": c["docnm_kwd"],
"metadata": {}

View File

@ -16,11 +16,10 @@
import pathlib
import datetime
from api.db.services.dialog_service import keyword_extraction
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import rag_tokenizer
from api.db import LLMType, ParserType
from api.db.services.llm_service import TenantLLMService
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api import settings
import xxhash
import re
@ -39,6 +38,8 @@ from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import construct_json_result, get_parser_config
from rag.nlp import search
from rag.prompts import keyword_extraction
from rag.app.tag import label_question
from rag.utils import rmSpace
from rag.utils.storage_factory import STORAGE_IMPL
@ -255,6 +256,10 @@ def update_doc(tenant_id, dataset_id, document_id):
)
if not DocumentService.update_by_id(document_id, {"name": req["name"]}):
return get_error_data_result(message="Database error (Document rename)!")
if "meta_fields" in req:
if not isinstance(req["meta_fields"], dict):
return get_error_data_result(message="meta_fields must be a dictionary")
DocumentService.update_meta_fields(document_id, req["meta_fields"])
informs = File2DocumentService.get_by_document_id(document_id)
if informs:
@ -276,6 +281,7 @@ def update_doc(tenant_id, dataset_id, document_id):
"one",
"knowledge_graph",
"email",
"tag"
}
if req.get("chunk_method") not in valid_chunk_method:
return get_error_data_result(
@ -471,10 +477,12 @@ def list_docs(dataset_id, tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
id = request.args.get("id")
name = request.args.get("name")
if not DocumentService.query(id=id, kb_id=dataset_id):
if id and not DocumentService.query(id=id, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {id}.")
if not DocumentService.query(name=name, kb_id=dataset_id):
if name and not DocumentService.query(name=name, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {name}.")
page = int(request.args.get("page", 1))
keywords = request.args.get("keywords", "")
page_size = int(request.args.get("page_size", 30))
@ -722,13 +730,13 @@ def stop_parsing(tenant_id, dataset_id):
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(message=f"You don't own the document {id}.")
if int(doc[0].progress) == 1 or int(doc[0].progress) == 0:
if int(doc[0].progress) == 1 or doc[0].progress == 0:
return get_error_data_result(
"Can't stop parsing document with progress at 0 or 1"
)
info = {"run": "2", "progress": 0, "chunk_num": 0}
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
settings.docStoreConn.delete({"doc_id": doc[0].id}, search.index_name(tenant_id), dataset_id)
return get_result()
@ -847,59 +855,55 @@ def list_chunks(tenant_id, dataset_id, document_id):
renamed_doc["run"] = run_mapping.get(str(value))
res = {"total": 0, "chunks": [], "doc": renamed_doc}
origin_chunks = []
if settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
if req.get("id"):
chunk = settings.docStoreConn.get(req.get("id"), search.index_name(tenant_id), [dataset_id])
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
k.append(n)
for n in k:
del chunk[n]
if not chunk:
return get_error_data_result(f"Chunk `{req.get('id')}` not found.")
res['total'] = 1
final_chunk = {
"id":chunk.get("id",chunk.get("chunk_id")),
"content":chunk["content_with_weight"],
"document_id":chunk.get("doc_id",chunk.get("document_id")),
"docnm_kwd":chunk["docnm_kwd"],
"important_keywords":chunk.get("important_kwd",[]),
"questions":chunk.get("question_kwd",[]),
"dataset_id":chunk.get("kb_id",chunk.get("dataset_id")),
"image_id":chunk["img_id"],
"available":bool(chunk.get("available_int",1)),
"positions":chunk.get("position_int",[]),
}
res["chunks"].append(final_chunk)
_ = Chunk(**final_chunk)
elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None,
highlight=True)
res["total"] = sres.total
sign = 0
for id in sres.ids:
d = {
"id": id,
"content_with_weight": (
"content": (
rmSpace(sres.highlight[id])
if question and id in sres.highlight
else sres.field[id].get("content_with_weight", "")
),
"doc_id": sres.field[id]["doc_id"],
"document_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"question_kwd": sres.field[id].get("question_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"available_int": sres.field[id].get("available_int", 1),
"positions": sres.field[id].get("position_int", []),
"important_keywords": sres.field[id].get("important_kwd", []),
"questions": sres.field[id].get("question_kwd", []),
"dataset_id": sres.field[id].get("kb_id", sres.field[id].get("dataset_id")),
"image_id": sres.field[id].get("img_id", ""),
"available": bool(sres.field[id].get("available_int", 1)),
"positions": sres.field[id].get("position_int",[]),
}
origin_chunks.append(d)
if req.get("id"):
if req.get("id") == id:
origin_chunks.clear()
origin_chunks.append(d)
sign = 1
break
if req.get("id"):
if sign == 0:
return get_error_data_result(f"Can't find this chunk {req.get('id')}")
for chunk in origin_chunks:
key_mapping = {
"id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"question_kwd": "questions",
"img_id": "image_id",
"available_int": "available",
}
renamed_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
if renamed_chunk["available"] == 0:
renamed_chunk["available"] = False
if renamed_chunk["available"] == 1:
renamed_chunk["available"] = True
res["chunks"].append(renamed_chunk)
_ = Chunk(**renamed_chunk) # validate the chunk
res["chunks"].append(d)
_ = Chunk(**d) # validate the chunk
return get_result(data=res)
@ -1300,15 +1304,15 @@ def retrieval_test(tenant_id):
kb_ids = req["dataset_ids"]
if not isinstance(kb_ids, list):
return get_error_data_result("`dataset_ids` should be a list")
kbs = KnowledgebaseService.get_by_ids(kb_ids)
for id in kb_ids:
if not KnowledgebaseService.accessible(kb_id=id, user_id=tenant_id):
return get_error_data_result(f"You don't own the dataset {id}.")
embd_nms = list(set([kb.embd_id for kb in kbs]))
kbs = KnowledgebaseService.get_by_ids(kb_ids)
embd_nms = list(set([TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs])) # remove vendor suffix for comparison
if len(embd_nms) != 1:
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR,
code=settings.RetCode.DATA_ERROR,
)
if "question" not in req:
return get_error_data_result("`question` is required.")
@ -1316,6 +1320,7 @@ def retrieval_test(tenant_id):
size = int(req.get("page_size", 30))
question = req["question"]
doc_ids = req.get("document_ids", [])
use_kg = req.get("use_kg", False)
if not isinstance(doc_ids, list):
return get_error_data_result("`documents` should be a list")
doc_ids_list = KnowledgebaseService.list_documents_by_ids(kb_ids)
@ -1335,22 +1340,17 @@ def retrieval_test(tenant_id):
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Dataset not found!")
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id
)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"]
)
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(
ranks = settings.retrievaler.retrieval(
question,
embd_mdl,
kb.tenant_id,
@ -1363,7 +1363,17 @@ def retrieval_test(tenant_id):
doc_ids,
rerank_mdl=rerank_mdl,
highlight=highlight,
rank_feature=label_question(question, kbs)
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
[k.tenant_id for k in kbs],
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
for c in ranks["chunks"]:
c.pop("vector", None)
@ -1377,6 +1387,7 @@ def retrieval_test(tenant_id):
"important_kwd": "important_keywords",
"question_kwd": "questions",
"docnm_kwd": "document_keyword",
"kb_id":"dataset_id"
}
rename_chunk = {}
for key, value in chunk.items():

View File

@ -15,13 +15,13 @@
#
import re
import json
from api.db import LLMType
from flask import request, Response
import time
from api.db import LLMType
from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion
from api.db.services.canvas_service import completion as agent_completion
from api.db.services.dialog_service import ask
from api.db.services.dialog_service import ask, chat
from agent.canvas import Canvas
from api.db import StatusEnum
from api.db.db_models import APIToken
@ -30,10 +30,12 @@ from api.db.services.canvas_service import UserCanvasService
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result
from api.utils.api_utils import get_error_data_result, validate_request
from api.utils.api_utils import get_result, token_required
from api.db.services.llm_service import LLMBundle
from api.db.services.file_service import FileService
from flask import jsonify, request, Response
@manager.route('/chats/<chat_id>/sessions', methods=['POST']) # noqa: F821
@token_required
@ -67,6 +69,11 @@ def create(tenant_id, chat_id):
@token_required
def create_agent_session(tenant_id, agent_id):
req = request.json
if not request.is_json:
req = request.form
files = request.files
user_id = request.args.get('user_id', '')
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
return get_error_data_result("Agent not found.")
@ -83,20 +90,41 @@ def create_agent_session(tenant_id, agent_id):
if query:
for ele in query:
if not ele["optional"]:
if not req.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` is required")
ele["value"] = req[ele["key"]]
if ele["optional"]:
if req.get(ele["key"]):
ele["value"] = req[ele['key']]
if ele["type"] == "file":
if files is None or not files.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if "value" in ele:
ele.pop("value")
if req is None or not req.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
ele["value"] = req[ele["key"]]
else:
if ele["type"] == "file":
if files is not None and files.get(ele["key"]):
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if "value" in ele:
ele.pop("value")
else:
if req is not None and req.get(ele["key"]):
ele["value"] = req[ele['key']]
else:
if "value" in ele:
ele.pop("value")
else:
for ans in canvas.run(stream=False):
pass
cvs.dsl = json.loads(str(canvas))
conv = {
"id": get_uuid(),
"dialog_id": cvs.id,
"user_id": req.get("user_id", "") if isinstance(req, dict) else "",
"user_id": user_id,
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
"source": "agent",
"dsl": cvs.dsl
@ -132,8 +160,10 @@ def update(tenant_id, chat_id, session_id):
@token_required
def chat_completion(tenant_id, chat_id):
req = request.json
if not req or not req.get("session_id"):
if not req:
req = {"question": ""}
if not req.get("session_id"):
req["question"]=""
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(f"You don't own the chat {chat_id}")
if req.get("session_id"):
@ -155,6 +185,169 @@ def chat_completion(tenant_id, chat_id):
return get_result(data=answer)
@manager.route('chats_openai/<chat_id>/chat/completions', methods=['POST']) # noqa: F821
@validate_request("model", "messages") # noqa: F821
@token_required
def chat_completion_openai_like(tenant_id, chat_id):
"""
OpenAI-like chat completion API that simulates the behavior of OpenAI's completions endpoint.
This function allows users to interact with a model and receive responses based on a series of historical messages.
If `stream` is set to True (by default), the response will be streamed in chunks, mimicking the OpenAI-style API.
Set `stream` to False explicitly, the response will be returned in a single complete answer.
Example usage:
curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $RAGFLOW_API_KEY" \
-d '{
"model": "model",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"stream": true
}'
Alternatively, you can use Python's `OpenAI` client:
from openai import OpenAI
model = "model"
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
completion = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
{"role": "assistant", "content": "I am an AI assistant named..."},
{"role": "user", "content": "Can you tell me how to install neovim"},
],
stream=True
)
stream = True
if stream:
for chunk in completion:
print(chunk)
else:
print(completion.choices[0].message.content)
"""
req = request.json
messages = req.get("messages", [])
# To prevent empty [] input
if len(messages) < 1:
return get_error_data_result("You have to provide messages.")
if messages[-1]["role"] != "user":
return get_error_data_result("The last content of this conversation is not from user.")
prompt = messages[-1]["content"]
# Treat context tokens as reasoning tokens
context_token_used = sum(len(message["content"]) for message in messages)
dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
if not dia:
return get_error_data_result(f"You don't own the chat {chat_id}")
dia = dia[0]
# Filter system and non-sense assistant messages
msg = None
msg = [m for m in messages if m["role"] != "system" and (m["role"] != "assistant" or msg)]
if req.get("stream", True):
# The value for the usage field on all chunks except for the last one will be null.
# The usage field on the last chunk contains token usage statistics for the entire request.
# The choices field on the last chunk will always be an empty array [].
def streamed_response_generator(chat_id, dia, msg):
token_used = 0
response = {
"id": f"chatcmpl-{chat_id}",
"choices": [
{
"delta": {
"content": "",
"role": "assistant",
"function_call": None,
"tool_calls": None
},
"finish_reason": None,
"index": 0,
"logprobs": None
}
],
"created": int(time.time()),
"model": "model",
"object": "chat.completion.chunk",
"system_fingerprint": "",
"usage": None
}
try:
for ans in chat(dia, msg, True):
answer = ans["answer"]
incremental = answer[token_used:]
token_used += len(incremental)
response["choices"][0]["delta"]["content"] = incremental
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
except Exception as e:
response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
# The last chunk
response["choices"][0]["delta"]["content"] = None
response["choices"][0]["finish_reason"] = "stop"
response["usage"] = {
"prompt_tokens": len(prompt),
"completion_tokens": token_used,
"total_tokens": len(prompt) + token_used
}
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
yield "data:[DONE]\n\n"
resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
else:
answer = None
for ans in chat(dia, msg, False):
# focus answer content only
answer = ans
break
content = answer["answer"]
response = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion",
"created": int(time.time()),
"model": req.get("model", ""),
"usage": {
"prompt_tokens": len(prompt),
"completion_tokens": len(content),
"total_tokens": len(prompt) + len(content),
"completion_tokens_details": {
"reasoning_tokens": context_token_used,
"accepted_prediction_tokens": len(content),
"rejected_prediction_tokens": 0 # 0 for simplicity
}
},
"choices": [
{
"message": {
"role": "assistant",
"content": content
},
"logprobs": None,
"finish_reason": "stop",
"index": 0
}
]
}
return jsonify(response)
@manager.route('/agents/<agent_id>/completions', methods=['POST']) # noqa: F821
@token_required
def agent_completions(tenant_id, agent_id):
@ -166,9 +359,9 @@ def agent_completions(tenant_id, agent_id):
dsl = cvs[0].dsl
if not isinstance(dsl, str):
dsl = json.dumps(dsl)
canvas = Canvas(dsl, tenant_id)
if canvas.get_preset_param():
req["question"] = ""
#canvas = Canvas(dsl, tenant_id)
#if canvas.get_preset_param():
# req["question"] = ""
conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
if not conv:
return get_error_data_result(f"You don't own the session {req['session_id']}")
@ -247,6 +440,7 @@ def list_agent_session(tenant_id, agent_id):
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_error_data_result(message=f"You don't own the agent {agent_id}.")
id = request.args.get("id")
user_id = request.args.get("user_id")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "update_time")
@ -254,7 +448,7 @@ def list_agent_session(tenant_id, agent_id):
desc = False
else:
desc = True
convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id)
convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id)
if not convs:
return get_result(data=[])
for conv in convs:
@ -405,7 +599,7 @@ def chatbot_completions(dialog_id):
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Token is not valid!"')
return get_error_data_result(message='Authentication error: API key is invalid!"')
if "quote" not in req:
req["quote"] = False
@ -432,7 +626,7 @@ def agent_bot_completions(agent_id):
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Token is not valid!"')
return get_error_data_result(message='Authentication error: API key is invalid!"')
if "quote" not in req:
req["quote"] = False

View File

@ -89,6 +89,7 @@ class ParserType(StrEnum):
AUDIO = "audio"
EMAIL = "email"
KG = "knowledge_graph"
TAG = "tag"
class FileSource(StrEnum):

View File

@ -760,6 +760,7 @@ class Document(DataBaseModel):
default="")
process_begin_at = DateTimeField(null=True, index=True)
process_duation = FloatField(default=0)
meta_fields = JSONField(null=True, default={})
run = CharField(
max_length=1,
@ -1050,11 +1051,6 @@ def migrate_db():
)
except Exception:
pass
try:
DB.execute_sql('ALTER TABLE llm DROP PRIMARY KEY;')
DB.execute_sql('ALTER TABLE llm ADD PRIMARY KEY (llm_name,fid);')
except Exception:
pass
try:
migrate(
migrator.add_column('task', 'retry_count', IntegerField(default=0))
@ -1112,3 +1108,10 @@ def migrate_db():
)
except Exception:
pass
try:
migrate(
migrator.add_column("document", "meta_fields",
JSONField(null=True, default={}))
)
except Exception:
pass

View File

@ -133,7 +133,7 @@ def init_llm_factory():
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "cohere"], {"llm_factory": "Cohere"})
TenantService.filter_update([1 == 1], {
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email"})
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"})
## insert openai two embedding models to the current openai user.
# print("Start to insert 2 OpenAI embedding models...")
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
@ -153,14 +153,7 @@ def init_llm_factory():
break
for kb_id in KnowledgebaseService.get_all_ids():
KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
"""
drop table llm;
drop table llm_factories;
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph';
alter table knowledgebase modify avatar longtext;
alter table user modify avatar longtext;
alter table dialog modify icon longtext;
"""
def add_graph_templates():

View File

@ -53,7 +53,6 @@ class API4ConversationService(CommonService):
sessions = sessions.order_by(cls.model.getter_by(orderby).desc())
else:
sessions = sessions.order_by(cls.model.getter_by(orderby).asc())
sessions = sessions.where(cls.model.user_id == tenant_id)
sessions = sessions.paginate(page_number, items_per_page)
return list(sessions.dicts())

View File

@ -14,6 +14,7 @@
# limitations under the License.
#
import json
import time
import traceback
from uuid import uuid4
from agent.canvas import Canvas
@ -79,8 +80,8 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": kwargs.get("usr_id", "") if isinstance(kwargs, dict) else "",
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
"user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
"message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
"source": "agent",
"dsl": cvs.dsl
}
@ -134,7 +135,7 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans},
ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
from uuid import uuid4
from api.db import StatusEnum
from api.db.db_models import Conversation, DB
@ -22,6 +23,8 @@ from api.db.services.dialog_service import DialogService, chat
from api.utils import get_uuid
import json
from rag.prompts import chunks_format
class ConversationService(CommonService):
model = Conversation
@ -52,18 +55,7 @@ def structure_answer(conv, ans, message_id, session_id):
reference = {}
ans["reference"] = {}
def get_value(d, k1, k2):
return d.get(k1, d.get(k2))
chunk_list = [{
"id": get_value(chunk, "chunk_id", "id"),
"content": get_value(chunk, "content", "content_with_weight"),
"document_id": get_value(chunk, "doc_id", "document_id"),
"document_name": get_value(chunk, "docnm_kwd", "document_name"),
"dataset_id": get_value(chunk, "kb_id", "dataset_id"),
"image_id": get_value(chunk, "image_id", "img_id"),
"positions": get_value(chunk, "positions", "position_int"),
} for chunk in reference.get("chunks", [])]
chunk_list = chunks_format(reference)
reference["chunks"] = chunk_list
ans["id"] = message_id
@ -75,9 +67,9 @@ def structure_answer(conv, ans, message_id, session_id):
if not conv.message:
conv.message = []
if not conv.message or conv.message[-1].get("role", "") != "assistant":
conv.message.append({"role": "assistant", "content": ans["answer"], "id": message_id})
conv.message.append({"role": "assistant", "content": ans["answer"], "created_at": time.time(), "id": message_id})
else:
conv.message[-1] = {"role": "assistant", "content": ans["answer"], "id": message_id}
conv.message[-1] = {"role": "assistant", "content": ans["answer"], "created_at": time.time(), "id": message_id}
if conv.reference:
conv.reference[-1] = reference
return ans
@ -94,7 +86,7 @@ def completion(tenant_id, chat_id, question, name="New session", session_id=None
"id": session_id,
"dialog_id": chat_id,
"name": name,
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue"), "created_at": time.time()}],
"user_id": kwargs.get("user_id", "")
}
ConversationService.save(**conv)
@ -166,7 +158,7 @@ def iframe_completion(dialog_id, question, session_id=None, stream=True, **kwarg
"id": session_id,
"dialog_id": dialog_id,
"user_id": kwargs.get("user_id", ""),
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"], "created_at": time.time()}]
}
API4ConversationService.save(**conv)
yield "data:" + json.dumps({"code": 0, "message": "",

View File

@ -15,24 +15,24 @@
#
import logging
import binascii
import os
import json
import time
from functools import partial
import re
from collections import defaultdict
from copy import deepcopy
from timeit import default_timer as timer
import datetime
from datetime import timedelta
from agentic_reasoning import DeepResearcher
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import Dialog, DB
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api import settings
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
from api.utils.file_utils import get_project_base_directory
from rag.prompts import kb_prompt, message_fit_in, llm_id2llm_type, keyword_extraction, full_question, chunks_format
from rag.utils import rmSpace, num_tokens_from_string
from rag.utils.tavily_conn import Tavily
class DialogService(CommonService):
@ -61,100 +61,49 @@ class DialogService(CommonService):
return list(chats.dicts())
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:
tks_cnts.append(
{"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts:
total += m["count"]
return total
def chat_solo(dialog, messages, stream=True):
if llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
c = count()
if c < max_length:
return c, msg
msg_ = [m for m in msg[:-1] if m["role"] == "system"]
if len(msg) > 1:
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:
return c, msg
ll = num_tokens_from_string(msg_[0]["content"])
ll2 = num_tokens_from_string(msg_[-1]["content"])
if ll / (ll + ll2) > 0.8:
m = msg_[0]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[0]["content"] = m
return max_length, msg
m = msg_[1]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[1]["content"] = m
return max_length, msg
def llm_id2llm_type(llm_id):
llm_id, _ = TenantLLMService.split_model_name_and_factory(llm_id)
fnm = os.path.join(get_project_base_directory(), "conf")
llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
for llm_factory in llm_factories["factory_llm_infos"]:
for llm in llm_factory["llm"]:
if llm_id == llm["llm_name"]:
return llm["model_type"].strip(",")[-1]
def kb_prompt(kbinfos, max_tokens):
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
used_token_count = 0
chunks_num = 0
for i, c in enumerate(knowledges):
used_token_count += num_tokens_from_string(c)
chunks_num += 1
if max_tokens * 0.97 < used_token_count:
knowledges = knowledges[:i]
break
doc2chunks = defaultdict(list)
for i, ck in enumerate(kbinfos["chunks"]):
if i >= chunks_num:
break
doc2chunks[ck["docnm_kwd"]].append(ck["content_with_weight"])
knowledges = []
for nm, chunks in doc2chunks.items():
txt = f"Document: {nm} \nContains the following relevant fragments:\n"
for i, chunk in enumerate(chunks, 1):
txt += f"{i}. {chunk}\n"
knowledges.append(txt)
return knowledges
prompt_config = dialog.prompt_config
tts_mdl = None
if prompt_config.get("tts"):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
for m in messages if m["role"] != "system"]
if stream:
last_ans = ""
for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
answer = ans
delta_ans = ans[len(last_ans):]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt":"", "created_at": time.time()}
else:
answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}
def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
if not dialog.kb_ids:
for ans in chat_solo(dialog, messages, stream):
yield ans
return
chat_start_ts = timer()
# Get llm model name and model provider name
llm_id, model_provider = TenantLLMService.split_model_name_and_factory(dialog.llm_id)
# Get llm model instance by model and provide name
llm = LLMService.query(llm_name=llm_id) if not model_provider else LLMService.query(llm_name=llm_id, fid=model_provider)
if not llm:
# Model name is provided by tenant, but not system built-in
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id) if not model_provider else \
TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id, llm_factory=model_provider)
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
max_tokens = 8192
if llm_id2llm_type(dialog.llm_id) == "image2text":
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
max_tokens = llm[0].max_tokens
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
max_tokens = llm_model_config.get("max_tokens", 8192)
check_llm_ts = timer()
@ -166,16 +115,12 @@ def chat(dialog, messages, stream=True, **kwargs):
embedding_model_name = embedding_list[0]
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
retriever = settings.retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
if "doc_ids" in messages[-1]:
attachments = messages[-1]["doc_ids"]
for m in messages[:-1]:
if "doc_ids" in m:
attachments.extend(m["doc_ids"])
create_retriever_ts = timer()
@ -227,33 +172,64 @@ def chat(dialog, messages, stream=True, **kwargs):
bind_reranker_ts = timer()
generate_keyword_ts = bind_reranker_ts
thought = ""
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
knowledges = []
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
generate_keyword_ts = timer()
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
retrieval_ts = timer()
knowledges = []
if prompt_config.get("reasoning", False):
reasoner = DeepResearcher(chat_mdl,
prompt_config,
partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3))
for think in reasoner.thinking(kbinfos, " ".join(questions)):
if isinstance(think, str):
thought = think
knowledges = [t for t in think.split("\n") if t]
elif stream:
yield think
else:
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(" ".join(questions), kbs)
)
if prompt_config.get("tavily_api_key"):
tav = Tavily(prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(" ".join(questions))
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"):
ck = settings.kg_retrievaler.retrieval(" ".join(questions),
tenant_ids,
dialog.kb_ids,
embd_mdl,
LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
knowledges = kb_prompt(kbinfos, max_tokens)
knowledges = kb_prompt(kbinfos, max_tokens)
logging.debug(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
retrieval_ts = timer()
if not knowledges and prompt_config.get("empty_response"):
empty_res = prompt_config["empty_response"]
yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)}
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n\n------\n\n".join(knowledges)
kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
@ -272,9 +248,12 @@ def chat(dialog, messages, stream=True, **kwargs):
def decorate_answer(answer):
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts
finish_chat_ts = timer()
refs = []
ans = answer.split("</think>")
think = ""
if len(ans) == 2:
think = ans[0] + "</think>"
answer = ans[1]
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retriever.insert_citations(answer,
[ck["content_ltks"]
@ -312,26 +291,28 @@ def chat(dialog, messages, stream=True, **kwargs):
generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms"
return {"answer": answer, "reference": refs, "prompt": prompt}
return {"answer": think+answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
if stream:
last_ans = ""
answer = ""
for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf):
if thought:
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
answer = ans
delta_ans = ans[len(last_ans):]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans):]
if delta_ans:
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(answer)
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(thought+answer)
else:
answer = chat_mdl.chat(prompt, msg[1:], gen_conf)
logging.debug("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
res = decorate_answer(answer)
res["audio_binary"] = tts(tts_mdl, answer)
yield res
@ -464,172 +445,6 @@ Please write the SQL, only SQL, without any other explanations or text.
}
def relevant(tenant_id, llm_id, question, contents: list):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
No other words needed except 'yes' or 'no'.
"""
if not contents:
return False
contents = "Documents: \n" + " - ".join(contents)
contents = f"Question: {question}\n" + contents
if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
if ans.lower().find("yes") >= 0:
return True
return False
def rewrite(tenant_id, llm_id, question):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
return ans
def keyword_extraction(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: extract the most important keywords/phrases of a given piece of text content.
Requirements:
- Summarize the text content, and give top {topn} important keywords/phrases.
- The keywords MUST be in language of the given piece of text content.
- The keywords are delimited by ENGLISH COMMA.
- Keywords ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def question_proposal(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: propose {topn} questions about a given piece of text content.
Requirements:
- Understand and summarize the text content, and propose top {topn} important questions.
- The questions SHOULD NOT have overlapping meanings.
- The questions SHOULD cover the main content of the text as much as possible.
- The questions MUST be in language of the given piece of text content.
- One question per line.
- Question ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def full_question(tenant_id, llm_id, messages):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
conv = []
for m in messages:
if m["role"] not in ["user", "assistant"]:
continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conv = "\n".join(conv)
today = datetime.date.today().isoformat()
yesterday = (datetime.date.today() - timedelta(days=1)).isoformat()
tomorrow = (datetime.date.today() + timedelta(days=1)).isoformat()
prompt = f"""
Role: A helpful assistant
Task and steps:
1. Generate a full user question that would follow the conversation.
2. If the user's question involves relative date, you need to convert it into absolute date based on the current date, which is {today}. For example: 'yesterday' would be converted to {yesterday}.
Requirements & Restrictions:
- Text generated MUST be in the same language of the original user's question.
- If the user's latest question is completely, don't do anything, just return the original question.
- DON'T generate anything except a refined question.
######################
-Examples-
######################
# Example 1
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
###############
Output: What's the name of Donald Trump's mother?
------------
# Example 2
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
ASSISTANT: Mary Trump.
User: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
------------
# Example 3
## Conversation
USER: What's the weather today in London?
ASSISTANT: Cloudy.
USER: What's about tomorrow in Rochester?
###############
Output: What's the weather in Rochester on {tomorrow}?
######################
# Real Data
## Conversation
{conv}
###############
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2})
return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
def tts(tts_mdl, text):
if not tts_mdl or not text:
return
@ -650,7 +465,10 @@ def ask(question, kb_ids, tenant_id):
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
max_tokens = chat_mdl.max_length
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False)
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids,
1, 12, 0.1, 0.3, aggs=False,
rank_feature=label_question(question, kbs)
)
knowledges = kb_prompt(kbinfos, max_tokens)
prompt = """
Role: You're a smart assistant. Your name is Miss R.
@ -693,10 +511,12 @@ def ask(question, kb_ids, tenant_id):
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
return {"answer": answer, "reference": refs}
return {"answer": answer, "reference": chunks_format(refs)}
answer = ""
for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
answer = ans
yield {"answer": answer, "reference": {}}
yield decorate_answer(answer)

View File

@ -28,7 +28,7 @@ from peewee import fn
from api.db.db_utils import bulk_insert_into_db
from api import settings
from api.utils import current_timestamp, get_format_time, get_uuid
from graphrag.mind_map_extractor import MindMapExtractor
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.settings import SVR_QUEUE_NAME
from rag.utils.storage_factory import STORAGE_IMPL
from rag.nlp import search, rag_tokenizer
@ -66,8 +66,8 @@ class DocumentService(CommonService):
else:
docs = docs.order_by(cls.model.getter_by(orderby).asc())
docs = docs.paginate(page_number, items_per_page)
count = docs.count()
docs = docs.paginate(page_number, items_per_page)
return list(docs.dicts()), count
@classmethod
@ -96,20 +96,28 @@ class DocumentService(CommonService):
def insert(cls, doc):
if not cls.save(**doc):
raise RuntimeError("Database error (Document)!")
e, doc = cls.get_by_id(doc["id"])
if not e:
raise RuntimeError("Database error (Document retrieval)!")
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
e, kb = KnowledgebaseService.get_by_id(doc["kb_id"])
if not KnowledgebaseService.update_by_id(
kb.id, {"doc_num": kb.doc_num + 1}):
raise RuntimeError("Database error (Knowledgebase)!")
return doc
return Document(**doc)
@classmethod
@DB.connection_context()
def remove_document(cls, doc, tenant_id):
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
cls.clear_chunk_num(doc.id)
try:
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "community_report"], "source_id": doc.id},
{"remove": {"source_id": doc.id}},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["graph"]},
{"removed_kwd": "Y"},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.delete({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "community_report"], "must_not": {"exists": "source_id"}},
search.index_name(tenant_id), doc.kb_id)
except Exception:
pass
return cls.delete_by_id(doc.id)
@classmethod
@ -145,7 +153,7 @@ class DocumentService(CommonService):
@DB.connection_context()
def get_unfinished_docs(cls):
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg,
cls.model.run]
cls.model.run, cls.model.parser_id]
docs = cls.model.select(*fields) \
.where(
cls.model.status == StatusEnum.VALID.value,
@ -298,9 +306,9 @@ class DocumentService(CommonService):
Tenant.asr_id,
Tenant.llm_id,
)
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id))
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
.where(cls.model.id == doc_id)
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id))
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
.where(cls.model.id == doc_id)
)
configs = configs.dicts()
if not configs:
@ -364,10 +372,20 @@ class DocumentService(CommonService):
"progress_msg": "Task is queued...",
"process_begin_at": get_format_time()
})
@classmethod
@DB.connection_context()
def update_meta_fields(cls, doc_id, meta_fields):
return cls.update_by_id(doc_id, {"meta_fields": meta_fields})
@classmethod
@DB.connection_context()
def update_progress(cls):
MSG = {
"raptor": "Start RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval).",
"graphrag": "Entities extraction progress",
"graph_resolution": "Start Graph Resolution",
"graph_community": "Start Graph Community Reports Generation"
}
docs = cls.get_unfinished_docs()
for d in docs:
try:
@ -393,15 +411,27 @@ class DocumentService(CommonService):
prg = -1
status = TaskStatus.FAIL.value
elif finished:
if d["parser_config"].get("raptor", {}).get("use_raptor") and d["progress_msg"].lower().find(
" raptor") < 0:
queue_raptor_tasks(d)
m = "\n".join(sorted(msg))
if d["parser_config"].get("raptor", {}).get("use_raptor") and m.find(MSG["raptor"]) < 0:
queue_raptor_o_graphrag_tasks(d, "raptor", MSG["raptor"])
prg = 0.98 * len(tsks) / (len(tsks) + 1)
elif d["parser_config"].get("graphrag", {}).get("use_graphrag") and m.find(MSG["graphrag"]) < 0:
queue_raptor_o_graphrag_tasks(d, "graphrag", MSG["graphrag"])
prg = 0.98 * len(tsks) / (len(tsks) + 1)
elif d["parser_config"].get("graphrag", {}).get("use_graphrag") \
and d["parser_config"].get("graphrag", {}).get("resolution") \
and m.find(MSG["graph_resolution"]) < 0:
queue_raptor_o_graphrag_tasks(d, "graph_resolution", MSG["graph_resolution"])
prg = 0.98 * len(tsks) / (len(tsks) + 1)
elif d["parser_config"].get("graphrag", {}).get("use_graphrag") \
and d["parser_config"].get("graphrag", {}).get("community") \
and m.find(MSG["graph_community"]) < 0:
queue_raptor_o_graphrag_tasks(d, "graph_community", MSG["graph_community"])
prg = 0.98 * len(tsks) / (len(tsks) + 1)
msg.append("------ RAPTOR -------")
else:
status = TaskStatus.DONE.value
msg = "\n".join(msg)
msg = "\n".join(sorted(msg))
info = {
"process_duation": datetime.timestamp(
datetime.now()) -
@ -433,7 +463,7 @@ class DocumentService(CommonService):
return False
def queue_raptor_tasks(doc):
def queue_raptor_o_graphrag_tasks(doc, ty, msg):
chunking_config = DocumentService.get_chunking_config(doc["id"])
hasher = xxhash.xxh64()
for field in sorted(chunking_config.keys()):
@ -446,15 +476,16 @@ def queue_raptor_tasks(doc):
"doc_id": doc["id"],
"from_page": 100000000,
"to_page": 100000000,
"progress_msg": "Start to do RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval)."
"progress_msg": datetime.now().strftime("%H:%M:%S") + " " + msg
}
task = new_task()
for field in ["doc_id", "from_page", "to_page"]:
hasher.update(str(task.get(field, "")).encode("utf-8"))
hasher.update(ty.encode("utf-8"))
task["digest"] = hasher.hexdigest()
bulk_insert_into_db(Task, [task], True)
task["type"] = "raptor"
task["task_type"] = ty
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=task), "Can't access Redis. Please check the Redis' status."
@ -473,6 +504,9 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
assert e, "Conversation not found!"
e, dia = DialogService.get_by_id(conv.dialog_id)
if not dia.kb_ids:
raise LookupError("No knowledge base associated with this conversation. "
"Please add a knowledge base before uploading documents")
kb_id = dia.kb_ids[0]
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
@ -492,7 +526,7 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email
}
parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": "Plain Text"}
exe = ThreadPoolExecutor(max_workers=12)
threads = []
doc_nm = {}
@ -573,7 +607,7 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
"kb_id": [kb.id],
"docnm_kwd": doc_nm[doc_id],
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc_nm[doc_id])),
"content_ltks": "",
"content_ltks": rag_tokenizer.tokenize("summary summarize 总结 概况 file 文件 概括"),
"content_with_weight": mind_map,
"knowledge_graph_kwd": "mind_map"
})
@ -595,4 +629,4 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
DocumentService.increment_chunk_num(
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
return [d["id"] for d, _ in files]
return [d["id"] for d, _ in files]

View File

@ -43,10 +43,7 @@ class File2DocumentService(CommonService):
def insert(cls, obj):
if not cls.save(**obj):
raise RuntimeError("Database error (File)!")
e, obj = cls.get_by_id(obj["id"])
if not e:
raise RuntimeError("Database error (File retrieval)!")
return obj
return File2Document(**obj)
@classmethod
@DB.connection_context()
@ -63,9 +60,8 @@ class File2DocumentService(CommonService):
def update_by_file_id(cls, file_id, obj):
obj["update_time"] = current_timestamp()
obj["update_date"] = datetime_format(datetime.now())
# num = cls.model.update(obj).where(cls.model.id == file_id).execute()
e, obj = cls.get_by_id(cls.model.id)
return obj
cls.model.update(obj).where(cls.model.id == file_id).execute()
return File2Document(**obj)
@classmethod
@DB.connection_context()

View File

@ -251,10 +251,7 @@ class FileService(CommonService):
def insert(cls, file):
if not cls.save(**file):
raise RuntimeError("Database error (File)!")
e, file = cls.get_by_id(file["id"])
if not e:
raise RuntimeError("Database error (File retrieval)!")
return file
return File(**file)
@classmethod
@DB.connection_context()
@ -404,7 +401,7 @@ class FileService(CommonService):
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email
}
parser_config = {"chunk_token_num": 16096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
parser_config = {"chunk_token_num": 16096, "delimiter": "\n!?;。;!?", "layout_recognize": "Plain Text"}
exe = ThreadPoolExecutor(max_workers=12)
threads = []
for file in file_objs:

View File

@ -35,7 +35,10 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
page_number, items_per_page, orderby, desc, keywords):
page_number, items_per_page,
orderby, desc, keywords,
parser_id=None
):
fields = [
cls.model.id,
cls.model.avatar,
@ -67,6 +70,8 @@ class KnowledgebaseService(CommonService):
cls.model.tenant_id == user_id))
& (cls.model.status == StatusEnum.VALID.value)
)
if parser_id:
kbs = kbs.where(cls.model.parser_id == parser_id)
if desc:
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
else:

View File

@ -86,8 +86,7 @@ class TenantLLMService(CommonService):
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type,
llm_name=None, lang="Chinese"):
def get_model_config(cls, tenant_id, llm_type, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
@ -124,7 +123,13 @@ class TenantLLMService(CommonService):
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
raise LookupError("Model({}) not authorized".format(mdlnm))
return model_config
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type,
llm_name=None, lang="Chinese"):
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel:
return
@ -173,40 +178,39 @@ class TenantLLMService(CommonService):
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
logging.error(f"Tenant not found: {tenant_id}")
return 0
if llm_type == LLMType.EMBEDDING.value:
mdlnm = tenant.embd_id
elif llm_type == LLMType.SPEECH2TEXT.value:
mdlnm = tenant.asr_id
elif llm_type == LLMType.IMAGE2TEXT.value:
mdlnm = tenant.img2txt_id
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.rerank_id if not llm_name else llm_name
elif llm_type == LLMType.TTS:
mdlnm = tenant.tts_id if not llm_name else llm_name
else:
assert False, "LLM type error"
llm_map = {
LLMType.EMBEDDING.value: tenant.embd_id,
LLMType.SPEECH2TEXT.value: tenant.asr_id,
LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name
}
mdlnm = llm_map.get(llm_type)
if mdlnm is None:
logging.error(f"LLM type error: {llm_type}")
return 0
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
num = 0
try:
if llm_factory:
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory)
else:
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name)
if not tenant_llms:
return num
else:
tenant_llm = tenant_llms[0]
num = cls.model.update(used_tokens=tenant_llm.used_tokens + used_tokens) \
.where(cls.model.tenant_id == tenant_id, cls.model.llm_factory == tenant_llm.llm_factory, cls.model.llm_name == llm_name) \
.execute()
num = cls.model.update(
used_tokens=cls.model.used_tokens + used_tokens
).where(
cls.model.tenant_id == tenant_id,
cls.model.llm_name == llm_name,
cls.model.llm_factory == llm_factory if llm_factory else True
).execute()
except Exception:
logging.exception("TenantLLMService.increase_usage got exception")
logging.exception(
"TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s",
tenant_id, llm_name)
return 0
return num
@classmethod
@ -229,10 +233,8 @@ class LLMBundle(object):
tenant_id, llm_type, llm_name, lang=lang)
assert self.mdl, "Can't find model for {}/{}/{}".format(
tenant_id, llm_type, llm_name)
self.max_length = 8192
for lm in LLMService.query(llm_name=llm_name):
self.max_length = lm.max_tokens
break
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
self.max_length = model_config.get("max_tokens", 8192)
def encode(self, texts: list):
embeddings, used_tokens = self.mdl.encode(texts)

View File

@ -16,7 +16,6 @@
import os
import random
import xxhash
import bisect
from datetime import datetime
from api.db.db_utils import bulk_insert_into_db
@ -69,6 +68,7 @@ class TaskService(CommonService):
Knowledgebase.language,
Knowledgebase.embd_id,
Knowledgebase.pagerank,
Knowledgebase.parser_config.alias("kb_parser_config"),
Tenant.img2txt_id,
Tenant.asr_id,
Tenant.llm_id,
@ -182,7 +182,7 @@ class TaskService(CommonService):
if os.environ.get("MACOS"):
if info["progress_msg"]:
task = cls.model.get_by_id(id)
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 1000)
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
if "progress" in info:
cls.model.update(progress=info["progress"]).where(
@ -193,7 +193,7 @@ class TaskService(CommonService):
with DB.lock("update_progress", -1):
if info["progress_msg"]:
task = cls.model.get_by_id(id)
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 1000)
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
if "progress" in info:
cls.model.update(progress=info["progress"]).where(
@ -209,12 +209,12 @@ def queue_tasks(doc: dict, bucket: str, name: str):
if doc["type"] == FileType.PDF.value:
file_bin = STORAGE_IMPL.get(bucket, name)
do_layout = doc["parser_config"].get("layout_recognize", True)
do_layout = doc["parser_config"].get("layout_recognize", "DeepDOC")
pages = PdfParser.total_page_number(doc["name"], file_bin)
page_size = doc["parser_config"].get("task_page_size", 12)
if doc["parser_id"] == "paper":
page_size = doc["parser_config"].get("task_page_size", 22)
if doc["parser_id"] in ["one", "knowledge_graph"] or not do_layout:
if doc["parser_id"] in ["one", "knowledge_graph"] or do_layout != "DeepDOC":
page_size = 10 ** 9
page_ranges = doc["parser_config"].get("pages") or [(1, 10 ** 5)]
for s, e in page_ranges:
@ -242,6 +242,10 @@ def queue_tasks(doc: dict, bucket: str, name: str):
for task in parse_task_array:
hasher = xxhash.xxh64()
for field in sorted(chunking_config.keys()):
if field == "parser_config":
for k in ["raptor", "graphrag"]:
if k in chunking_config[field]:
del chunking_config[field][k]
hasher.update(str(chunking_config[field]).encode("utf-8"))
for field in ["doc_id", "from_page", "to_page"]:
hasher.update(str(task.get(field, "")).encode("utf-8"))
@ -275,20 +279,27 @@ def queue_tasks(doc: dict, bucket: str, name: str):
def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
idx = bisect.bisect_left(prev_tasks, (task.get("from_page", 0), task.get("digest", "")),
key=lambda x: (x.get("from_page", 0), x.get("digest", "")))
idx = 0
while idx < len(prev_tasks):
prev_task = prev_tasks[idx]
if prev_task.get("from_page", 0) == task.get("from_page", 0) \
and prev_task.get("digest", 0) == task.get("digest", ""):
break
idx += 1
if idx >= len(prev_tasks):
return 0
prev_task = prev_tasks[idx]
if prev_task["progress"] < 1.0 or prev_task["digest"] != task["digest"] or not prev_task["chunk_ids"]:
if prev_task["progress"] < 1.0 or not prev_task["chunk_ids"]:
return 0
task["chunk_ids"] = prev_task["chunk_ids"]
task["progress"] = 1.0
if "from_page" in task and "to_page" in task:
if "from_page" in task and "to_page" in task and int(task['to_page']) - int(task['from_page']) >= 10 ** 6:
task["progress_msg"] = f"Page({task['from_page']}~{task['to_page']}): "
else:
task["progress_msg"] = ""
task["progress_msg"] += "reused previous task's chunks."
task["progress_msg"] = " ".join(
[datetime.now().strftime("%H:%M:%S"), task["progress_msg"], "Reused previous task's chunks."])
prev_task["chunk_ids"] = ""
return len(task["chunk_ids"].split())

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import hashlib
from datetime import datetime
import peewee
@ -24,6 +25,7 @@ from api.db.db_models import User, Tenant
from api.db.services.common_service import CommonService
from api.utils import get_uuid, current_timestamp, datetime_format
from api.db import StatusEnum
from rag.settings import MINIO
class UserService(CommonService):
@ -126,6 +128,12 @@ class TenantService(CommonService):
if num == 0:
raise LookupError("Tenant not found which is supposed to be there")
@classmethod
@DB.connection_context()
def user_gateway(cls, tenant_id):
hashobj = hashlib.sha256(tenant_id.encode("utf-8"))
return int(hashobj.hexdigest(), 16)%len(MINIO)
class UserTenantService(CommonService):
model = UserTenant

View File

@ -28,6 +28,7 @@ import sys
import time
import traceback
from concurrent.futures import ThreadPoolExecutor
import threading
from werkzeug.serving import run_simple
from api import settings
@ -42,15 +43,21 @@ from api.versions import get_ragflow_version
from api.utils import show_configs
from rag.settings import print_rag_settings
stop_event = threading.Event()
def update_progress():
while True:
time.sleep(3)
while not stop_event.is_set():
try:
DocumentService.update_progress()
stop_event.wait(6)
except Exception:
logging.exception("update_progress exception")
def signal_handler(sig, frame):
logging.info("Received interrupt signal, shutting down...")
stop_event.set()
time.sleep(1)
sys.exit(0)
if __name__ == '__main__':
logging.info(r"""
@ -96,6 +103,9 @@ if __name__ == '__main__':
RuntimeConfig.init_env()
RuntimeConfig.init_config(JOB_SERVER_HOST=settings.HOST_IP, HTTP_PORT=settings.HOST_PORT)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
thread = ThreadPoolExecutor(max_workers=1)
thread.submit(update_progress)
@ -112,4 +122,6 @@ if __name__ == '__main__':
)
except Exception:
traceback.print_exc()
stop_event.set()
time.sleep(1)
os.kill(os.getpid(), signal.SIGKILL)

View File

@ -66,81 +66,34 @@ def init_settings():
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
LLM = get_base_config("user_default_llm", {})
LLM_DEFAULT_MODELS = LLM.get("default_models", {})
LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
LLM_BASE_URL = LLM.get("base_url")
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
if not LIGHTEN:
default_llm = {
"Tongyi-Qianwen": {
"chat_model": "qwen-plus",
"embedding_model": "text-embedding-v2",
"image2text_model": "qwen-vl-max",
"asr_model": "paraformer-realtime-8k-v1",
},
"OpenAI": {
"chat_model": "gpt-3.5-turbo",
"embedding_model": "text-embedding-ada-002",
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"Azure-OpenAI": {
"chat_model": "gpt-35-turbo",
"embedding_model": "text-embedding-ada-002",
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"ZHIPU-AI": {
"chat_model": "glm-3-turbo",
"embedding_model": "embedding-2",
"image2text_model": "glm-4v",
"asr_model": "",
},
"Ollama": {
"chat_model": "qwen-14B-chat",
"embedding_model": "flag-embedding",
"image2text_model": "",
"asr_model": "",
},
"Moonshot": {
"chat_model": "moonshot-v1-8k",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"DeepSeek": {
"chat_model": "deepseek-chat",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"VolcEngine": {
"chat_model": "",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"BAAI": {
"chat_model": "",
"embedding_model": "BAAI/bge-large-zh-v1.5",
"image2text_model": "",
"asr_model": "",
"rerank_model": "BAAI/bge-reranker-v2-m3",
}
}
EMBEDDING_MDL = "BAAI/bge-large-zh-v1.5@BAAI"
if LLM_FACTORY:
CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"] + f"@{LLM_FACTORY}"
ASR_MDL = default_llm[LLM_FACTORY]["asr_model"] + f"@{LLM_FACTORY}"
IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"] + f"@{LLM_FACTORY}"
EMBEDDING_MDL = default_llm["BAAI"]["embedding_model"] + "@BAAI"
RERANK_MDL = default_llm["BAAI"]["rerank_model"] + "@BAAI"
if LLM_DEFAULT_MODELS:
CHAT_MDL = LLM_DEFAULT_MODELS.get("chat_model", CHAT_MDL)
EMBEDDING_MDL = LLM_DEFAULT_MODELS.get("embedding_model", EMBEDDING_MDL)
RERANK_MDL = LLM_DEFAULT_MODELS.get("rerank_model", RERANK_MDL)
ASR_MDL = LLM_DEFAULT_MODELS.get("asr_model", ASR_MDL)
IMAGE2TEXT_MDL = LLM_DEFAULT_MODELS.get("image2text_model", IMAGE2TEXT_MDL)
# factory can be specified in the config name with "@". LLM_FACTORY will be used if not specified
CHAT_MDL = CHAT_MDL + (f"@{LLM_FACTORY}" if "@" not in CHAT_MDL and CHAT_MDL != "" else "")
EMBEDDING_MDL = EMBEDDING_MDL + (f"@{LLM_FACTORY}" if "@" not in EMBEDDING_MDL and EMBEDDING_MDL != "" else "")
RERANK_MDL = RERANK_MDL + (f"@{LLM_FACTORY}" if "@" not in RERANK_MDL and RERANK_MDL != "" else "")
ASR_MDL = ASR_MDL + (f"@{LLM_FACTORY}" if "@" not in ASR_MDL and ASR_MDL != "" else "")
IMAGE2TEXT_MDL = IMAGE2TEXT_MDL + (
f"@{LLM_FACTORY}" if "@" not in IMAGE2TEXT_MDL and IMAGE2TEXT_MDL != "" else "")
global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
API_KEY = LLM.get("api_key", "")
PARSERS = LLM.get(
"parsers",
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email")
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email,tag:Tag")
HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")

View File

@ -70,6 +70,12 @@ def show_configs():
if "password" in v:
v = copy.deepcopy(v)
v["password"] = "*" * 8
if "access_key" in v:
v = copy.deepcopy(v)
v["access_key"] = "*" * 8
if "secret_key" in v:
v = copy.deepcopy(v)
v["secret_key"] = "*" * 8
msg += f"\n\t{k}: {v}"
logging.info(msg)
@ -351,6 +357,26 @@ def decrypt(line):
line), "Fail to decrypt password!").decode('utf-8')
def decrypt2(crypt_text):
from base64 import b64decode, b16decode
from Crypto.Cipher import PKCS1_v1_5 as Cipher_PKCS1_v1_5
from Crypto.PublicKey import RSA
decode_data = b64decode(crypt_text)
if len(decode_data) == 127:
hex_fixed = '00' + decode_data.hex()
decode_data = b16decode(hex_fixed.upper())
file_path = os.path.join(
file_utils.get_project_base_directory(),
"conf",
"private.pem")
pem = open(file_path).read()
rsa_key = RSA.importKey(pem, "Welcome")
cipher = Cipher_PKCS1_v1_5.new(rsa_key)
decrypt_text = cipher.decrypt(decode_data, None)
return (b64decode(decrypt_text)).decode()
def download_img(url):
if not url:
return ""

View File

@ -98,14 +98,10 @@ def get_exponential_backoff_interval(retries, full_jitter=False):
def get_data_error_result(code=settings.RetCode.DATA_ERROR,
message='Sorry! Data missing!'):
import re
logging.exception(Exception(message))
result_dict = {
"code": code,
"message": re.sub(
r"rag",
"seceum",
message,
flags=re.IGNORECASE)}
"message": message}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
@ -125,6 +121,10 @@ def server_error_response(e):
if len(e.args) > 1:
return get_json_result(
code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
if repr(e).find("index_not_found_exception") >= 0:
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR,
message="No chunk found, please upload file and parse it.")
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
@ -173,6 +173,7 @@ def validate_request(*args, **kwargs):
return wrapper
def not_allowed_parameters(*params):
def decorator(f):
def wrapper(*args, **kwargs):
@ -182,7 +183,9 @@ def not_allowed_parameters(*params):
return get_json_result(
code=settings.RetCode.ARGUMENT_ERROR, message=f"Parameter {param} isn't allowed")
return f(*args, **kwargs)
return wrapper
return decorator
@ -207,6 +210,7 @@ def get_json_result(code=settings.RetCode.SUCCESS, message='success', data=None)
response = {"code": code, "message": message, "data": data}
return jsonify(response)
def apikey_required(func):
@wraps(func)
def decorated_function(*args, **kwargs):
@ -250,8 +254,7 @@ def construct_response(code=settings.RetCode.SUCCESS,
def construct_result(code=settings.RetCode.DATA_ERROR, message='data is missing'):
import re
result_dict = {"code": code, "message": re.sub(r"rag", "seceum", message, flags=re.IGNORECASE)}
result_dict = {"code": code, "message": message}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
@ -283,17 +286,18 @@ def construct_error_response(e):
def token_required(func):
@wraps(func)
def decorated_function(*args, **kwargs):
authorization_str=flask_request.headers.get('Authorization')
authorization_str = flask_request.headers.get('Authorization')
if not authorization_str:
return get_json_result(data=False,message="`Authorization` can't be empty")
authorization_list=authorization_str.split()
return get_json_result(data=False, message="`Authorization` can't be empty")
authorization_list = authorization_str.split()
if len(authorization_list) < 2:
return get_json_result(data=False,message="Please check your authorization format.")
return get_json_result(data=False, message="Please check your authorization format.")
token = authorization_list[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Token is not valid!', code=settings.RetCode.AUTHENTICATION_ERROR
data=False, message='Authentication error: API key is invalid!',
code=settings.RetCode.AUTHENTICATION_ERROR
)
kwargs['tenant_id'] = objs[0].tenant_id
return func(*args, **kwargs)
@ -314,14 +318,9 @@ def get_result(code=settings.RetCode.SUCCESS, message="", data=None):
def get_error_data_result(message='Sorry! Data missing!', code=settings.RetCode.DATA_ERROR,
):
import re
result_dict = {
"code": code,
"message": re.sub(
r"rag",
"seceum",
message,
flags=re.IGNORECASE)}
"message": message}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
@ -336,35 +335,41 @@ def generate_confirmation_token(tenent_id):
return "ragflow-" + serializer.dumps(get_uuid(), salt=tenent_id)[2:34]
def valid(permission,valid_permission,language,valid_language,chunk_method,valid_chunk_method):
if valid_parameter(permission,valid_permission):
return valid_parameter(permission,valid_permission)
if valid_parameter(language,valid_language):
return valid_parameter(language,valid_language)
if valid_parameter(chunk_method,valid_chunk_method):
return valid_parameter(chunk_method,valid_chunk_method)
def valid(permission, valid_permission, language, valid_language, chunk_method, valid_chunk_method):
if valid_parameter(permission, valid_permission):
return valid_parameter(permission, valid_permission)
if valid_parameter(language, valid_language):
return valid_parameter(language, valid_language)
if valid_parameter(chunk_method, valid_chunk_method):
return valid_parameter(chunk_method, valid_chunk_method)
def valid_parameter(parameter,valid_values):
def valid_parameter(parameter, valid_values):
if parameter and parameter not in valid_values:
return get_error_data_result(f"'{parameter}' is not in {valid_values}")
return get_error_data_result(f"'{parameter}' is not in {valid_values}")
def get_parser_config(chunk_method,parser_config):
def get_parser_config(chunk_method, parser_config):
if parser_config:
return parser_config
if not chunk_method:
chunk_method = "naive"
key_mapping={"naive":{"chunk_token_num": 128, "delimiter": "\\n!?;。;!?", "html4excel": False,"layout_recognize": True, "raptor": {"use_raptor": False}},
"qa":{"raptor":{"use_raptor":False}},
"resume":None,
"manual":{"raptor":{"use_raptor":False}},
"table":None,
"paper":{"raptor":{"use_raptor":False}},
"book":{"raptor":{"use_raptor":False}},
"laws":{"raptor":{"use_raptor":False}},
"presentation":{"raptor":{"use_raptor":False}},
"one":None,
"knowledge_graph":{"chunk_token_num":8192,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]},
"email":None,
"picture":None}
parser_config=key_mapping[chunk_method]
return parser_config
key_mapping = {
"naive": {"chunk_token_num": 128, "delimiter": "\\n!?;。;!?", "html4excel": False, "layout_recognize": "DeepDOC",
"raptor": {"use_raptor": False}},
"qa": {"raptor": {"use_raptor": False}},
"tag": None,
"resume": None,
"manual": {"raptor": {"use_raptor": False}},
"table": None,
"paper": {"raptor": {"use_raptor": False}},
"book": {"raptor": {"use_raptor": False}},
"laws": {"raptor": {"use_raptor": False}},
"presentation": {"raptor": {"use_raptor": False}},
"one": None,
"knowledge_graph": {"chunk_token_num": 8192, "delimiter": "\\n!?;。;!?",
"entity_types": ["organization", "person", "location", "event", "time"]},
"email": None,
"picture": None}
parser_config = key_mapping[chunk_method]
return parser_config

View File

@ -1,3 +1,19 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
import os
import sys

View File

@ -1,4 +1,23 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import socket
from urllib.parse import urlparse
import ipaddress
import json
import base64
@ -76,5 +95,25 @@ def __get_pdf_from_html(
return base64.b64decode(result["data"])
def is_private_ip(ip: str) -> bool:
try:
ip_obj = ipaddress.ip_address(ip)
return ip_obj.is_private
except ValueError:
return False
def is_valid_url(url: str) -> bool:
return bool(re.match(r"(https?)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]", url))
if not re.match(r"(https?)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]", url):
return False
parsed_url = urlparse(url)
hostname = parsed_url.hostname
if not hostname:
return False
try:
ip = socket.gethostbyname(hostname)
if is_private_ip(ip):
return False
except socket.gaierror:
return False
return True

View File

@ -10,6 +10,7 @@
"title_sm_tks": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"name_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"important_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"tag_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"important_tks": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"question_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"question_tks": {"type": "varchar", "default": "", "analyzer": "whitespace"},
@ -24,8 +25,18 @@
"weight_int": {"type": "integer", "default": 0},
"weight_flt": {"type": "float", "default": 0.0},
"rank_int": {"type": "integer", "default": 0},
"rank_flt": {"type": "float", "default": 0},
"available_int": {"type": "integer", "default": 1},
"knowledge_graph_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"entities_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"pagerank_fea": {"type": "integer", "default": 0}
"pagerank_fea": {"type": "integer", "default": 0},
"tag_feas": {"type": "varchar", "default": ""},
"from_entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"to_entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"entity_type_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"source_id": {"type": "varchar", "default": ""},
"n_hop_with_weight": {"type": "varchar", "default": ""},
"removed_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"}
}

File diff suppressed because it is too large Load Diff

View File

@ -5,25 +5,25 @@ mysql:
name: 'rag_flow'
user: 'root'
password: 'infini_rag_flow'
host: 'mysql'
host: 'localhost'
port: 5455
max_connections: 100
stale_timeout: 30
minio:
user: 'rag_flow'
password: 'infini_rag_flow'
host: 'minio:9000'
host: 'localhost:9000'
es:
hosts: 'http://es01:1200'
hosts: 'http://localhost:1200'
username: 'elastic'
password: 'infini_rag_flow'
infinity:
uri: 'infinity:23817'
uri: 'localhost:23817'
db_name: 'default_db'
redis:
db: 1
password: 'infini_rag_flow'
host: 'redis:6379'
password: 'infini_rag_flow'
host: 'localhost:6379'
# postgres:
# name: 'rag_flow'
@ -34,10 +34,15 @@ redis:
# max_connections: 100
# stale_timeout: 30
# s3:
# endpoint: 'endpoint'
# access_key: 'access_key'
# secret_key: 'secret_key'
# region: 'region'
# oss:
# access_key: 'access_key'
# secret_key: 'secret_key'
# endpoint_url: 'http://oss-cn-hangzhou.aliyuncs.com'
# region: 'cn-hangzhou'
# bucket: 'bucket_name'
# azure:
# auth_type: 'sas'
# container_url: 'container_url'

View File

@ -1,2 +1,18 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from beartype.claw import beartype_this_package
beartype_this_package()

View File

@ -1,3 +1,6 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

View File

@ -1,3 +1,6 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

View File

@ -11,19 +11,51 @@
# limitations under the License.
#
from openpyxl import load_workbook
from openpyxl import load_workbook, Workbook
import sys
from io import BytesIO
from rag.nlp import find_codec
import pandas as pd
class RAGFlowExcelParser:
def html(self, fnm, chunk_rows=256):
if isinstance(fnm, str):
wb = load_workbook(fnm)
# if isinstance(fnm, str):
# wb = load_workbook(fnm)
# else:
# wb = load_workbook(BytesIO(fnm))++
s_fnm = fnm
if not isinstance(fnm, str):
s_fnm = BytesIO(fnm)
else:
wb = load_workbook(BytesIO(fnm))
pass
try:
wb = load_workbook(s_fnm)
except Exception as e:
print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
df = pd.read_excel(s_fnm)
wb = Workbook()
# if len(wb.worksheets) > 0:
# del wb.worksheets[0]
# else: pass
ws = wb.active
ws.title = "Data"
for col_num, column_name in enumerate(df.columns, 1):
ws.cell(row=1, column=col_num, value=column_name)
else:
pass
for row_num, row in enumerate(df.values, 2):
for col_num, value in enumerate(row, 1):
ws.cell(row=row_num, column=col_num, value=value)
else:
pass
else:
pass
tb_chunks = []
for sheetname in wb.sheetnames:
@ -42,7 +74,7 @@ class RAGFlowExcelParser:
tb += f"<table><caption>{sheetname}</caption>"
tb += tb_rows_0
for r in list(
rows[1 + chunk_i * chunk_rows : 1 + (chunk_i + 1) * chunk_rows]
rows[1 + chunk_i * chunk_rows: 1 + (chunk_i + 1) * chunk_rows]
):
tb += "<tr>"
for i, c in enumerate(r):
@ -57,10 +89,41 @@ class RAGFlowExcelParser:
return tb_chunks
def __call__(self, fnm):
if isinstance(fnm, str):
wb = load_workbook(fnm)
# if isinstance(fnm, str):
# wb = load_workbook(fnm)
# else:
# wb = load_workbook(BytesIO(fnm))
s_fnm = fnm
if not isinstance(fnm, str):
s_fnm = BytesIO(fnm)
else:
wb = load_workbook(BytesIO(fnm))
pass
try:
wb = load_workbook(s_fnm)
except Exception as e:
print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
df = pd.read_excel(s_fnm)
wb = Workbook()
if len(wb.worksheets) > 0:
del wb.worksheets[0]
else:
pass
ws = wb.active
ws.title = "Data"
for col_num, column_name in enumerate(df.columns, 1):
ws.cell(row=1, column=col_num, value=column_name)
else:
pass
for row_num, row in enumerate(df.values, 2):
for col_num, value in enumerate(row, 1):
ws.cell(row=row_num, column=col_num, value=value)
else:
pass
else:
pass
res = []
for sheetname in wb.sheetnames:
ws = wb[sheetname]
@ -101,3 +164,4 @@ class RAGFlowExcelParser:
if __name__ == "__main__":
psr = RAGFlowExcelParser()
psr(sys.argv[1])

View File

@ -1,4 +1,7 @@
# -*- coding: utf-8 -*-
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
@ -11,6 +14,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from rag.nlp import find_codec
import readability
import html_text

View File

@ -1,4 +1,20 @@
# -*- coding: utf-8 -*-
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# The following documents are mainly referenced, and only adaptation modifications have been made
# from https://github.com/langchain-ai/langchain/blob/master/libs/text-splitters/langchain_text_splitters/json.py

View File

@ -1,4 +1,7 @@
# -*- coding: utf-8 -*-
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
@ -11,6 +14,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
class RAGFlowMarkdownParser:

View File

@ -1,3 +1,6 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
@ -14,6 +17,7 @@
import logging
import os
import random
from timeit import default_timer as timer
import xgboost as xgb
from io import BytesIO
@ -274,7 +278,11 @@ class RAGFlowPdfParser:
b["SP"] = ii
def __ocr(self, pagenum, img, chars, ZM=3):
start = timer()
bxs = self.ocr.detect(np.array(img))
logging.info(f"__ocr detecting boxes of a image cost ({timer() - start}s)")
start = timer()
if not bxs:
self.boxes.append([])
return
@ -305,14 +313,22 @@ class RAGFlowPdfParser:
else:
bxs[ii]["text"] += c["text"]
logging.info(f"__ocr sorting {len(chars)} chars cost {timer() - start}s")
start = timer()
boxes_to_reg = []
img_np = np.array(img)
for b in bxs:
if not b["text"]:
left, right, top, bott = b["x0"] * ZM, b["x1"] * \
ZM, b["top"] * ZM, b["bottom"] * ZM
b["text"] = self.ocr.recognize(np.array(img),
np.array([[left, top], [right, top], [right, bott], [left, bott]],
dtype=np.float32))
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
boxes_to_reg.append(b)
del b["txt"]
texts = self.ocr.recognize_batch([b["box_image"] for b in boxes_to_reg])
for i in range(len(boxes_to_reg)):
boxes_to_reg[i]["text"] = texts[i]
del boxes_to_reg[i]["box_image"]
logging.info(f"__ocr recognize {len(bxs)} boxes cost {timer() - start}s")
bxs = [b for b in bxs if b["text"]]
if self.mean_height[-1] == 0:
self.mean_height[-1] = np.median([b["bottom"] - b["top"]
@ -948,15 +964,14 @@ class RAGFlowPdfParser:
self.page_cum_height = [0]
self.page_layout = []
self.page_from = page_from
start = timer()
try:
self.pdf = pdfplumber.open(fnm) if isinstance(
fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.page_images_x2 = [p.to_image(resolution=72 * zoomin * 2).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
try:
self.page_chars = [[{**c, 'top': c['top'], 'bottom': c['bottom']} for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
except Exception as e:
logging.warning(f"Failed to extract characters for pages {page_from}-{page_to}: {str(e)}")
self.page_chars = [[] for _ in range(page_to - page_from)] # If failed to extract, using empty list instead.
@ -964,6 +979,7 @@ class RAGFlowPdfParser:
self.total_page = len(self.pdf.pages)
except Exception:
logging.exception("RAGFlowPdfParser __images__")
logging.info(f"__images__ dedupe_chars cost {timer() - start}s")
self.outlines = []
try:
@ -993,8 +1009,8 @@ class RAGFlowPdfParser:
else:
self.is_english = False
# st = timer()
for i, img in enumerate(self.page_images_x2):
start = timer()
for i, img in enumerate(self.page_images):
chars = self.page_chars[i] if not self.is_english else []
self.mean_height.append(
np.median(sorted([c["height"] for c in chars])) if chars else 0
@ -1002,7 +1018,7 @@ class RAGFlowPdfParser:
self.mean_width.append(
np.median(sorted([c["width"] for c in chars])) if chars else 8
)
self.page_cum_height.append(img.size[1] / zoomin/2)
self.page_cum_height.append(img.size[1] / zoomin)
j = 0
while j + 1 < len(chars):
if chars[j]["text"] and chars[j + 1]["text"] \
@ -1012,10 +1028,10 @@ class RAGFlowPdfParser:
chars[j]["text"] += " "
j += 1
self.__ocr(i + 1, img, chars, zoomin*2)
self.__ocr(i + 1, img, chars, zoomin)
if callback and i % 6 == 5:
callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
# print("OCR:", timer()-st)
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
if not self.is_english and not any(
[c for c in self.page_chars]) and self.boxes:

View File

@ -1,3 +1,6 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
@ -10,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from io import BytesIO
from pptx import Presentation

View File

@ -1,3 +1,6 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

View File

@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

Some files were not shown because too many files have changed in this diff Show More