Compare commits

..

49 Commits

Author SHA1 Message Date
c8b79dfed4 The retrieval component needs to support returning JSON data(#10170) (#10171)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 17:28:29 +08:00
da80fa40bc fix python_api example (#10196)
### What problem does this PR solve?

Fix coding example in example

### Type of change

- [x] Documentation Update
2025-09-22 17:27:25 +08:00
94dbd4aac9 Refactor: use the same implement for total token count from res (#10197)
### What problem does this PR solve?
use the same implement for total token count from res

### Type of change

- [x] Refactoring
2025-09-22 17:17:06 +08:00
ca9f30e1a1 Add tree_merge for law parsers, significantly outperforming hierarchical_merge (#10202)
### What problem does this PR solve?
Add tree_merge for law parsers, significantly outperforming
hierarchical_merge, solved: #8637
1. Add tree_merge for law parsers, include build_tree and get_tree by
dfs.
2. add Copyright statement for helath_utils
### Type of change

- [x] Documentation Update
- [x] Performance Improvement
2025-09-22 16:33:21 +08:00
2e4295d5ca Chat Widget (#10187)
### What problem does this PR solve?

Add a chat widget. I'll probably need some assistance to get this ready
for merge!

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Mohamed Mathari <nocodeventure@Mac-mini-van-Mohamed.fritz.box>
2025-09-22 11:03:33 +08:00
d11b1628a1 Feat: add admin CLI and admin service (#10186)
### What problem does this PR solve?

Introduce new feature: RAGFlow system admin service and CLI

### Introduction

Admin Service is a dedicated management component designed to monitor,
maintain, and administrate the RAGFlow system. It provides comprehensive
tools for ensuring system stability, performing operational tasks, and
managing users and permissions efficiently.

The service offers monitoring of critical components, including the
RAGFlow server, Task Executor processes, and dependent services such as
MySQL, Infinity / Elasticsearch, Redis, and MinIO. It automatically
checks their health status, resource usage, and uptime, and performs
restarts in case of failures to minimize downtime.

For user and system management, it supports listing, creating,
modifying, and deleting users and their associated resources like
knowledge bases and Agents.

Built with scalability and reliability in mind, the Admin Service
ensures smooth system operation and simplifies maintenance workflows.

It consists of a server-side Service and a command-line client (CLI),
both implemented in Python. User commands are parsed using the Lark
parsing toolkit.

- **Admin Service**: A backend service that interfaces with the RAGFlow
system to execute administrative operations and monitor its status.
- **Admin CLI**: A command-line interface that allows users to connect
to the Admin Service and issue commands for system management.

### Starting the Admin Service

1. Before start Admin Service, please make sure RAGFlow system is
already started.

2.  Run the service script:
    ```bash
    python admin/admin_server.py
    ```
The service will start and listen for incoming connections from the CLI
on the configured port.

### Using the Admin CLI

1.  Ensure the Admin Service is running.
2.  Launch the CLI client:
    ```bash
    python admin/admin_client.py -h 0.0.0.0 -p 9381
## Supported Commands
Commands are case-insensitive and must be terminated with a semicolon
(`;`).
### Service Management Commands
-  [x] `LIST SERVICES;`
    -   Lists all available services within the RAGFlow system.
-  [ ] `SHOW SERVICE <id>;`
- Shows detailed status information for the service identified by
`<id>`.
-  [ ] `STARTUP SERVICE <id>;`
    -   Attempts to start the service identified by `<id>`.
-  [ ] `SHUTDOWN SERVICE <id>;`
- Attempts to gracefully shut down the service identified by `<id>`.
-  [ ] `RESTART SERVICE <id>;`
    -   Attempts to restart the service identified by `<id>`.
### User Management Commands
-  [x] `LIST USERS;`
    -   Lists all users known to the system.
-  [ ] `SHOW USER '<username>';`
- Shows details and permissions for the specified user. The username
must be enclosed in single or double quotes.
-  [ ] `DROP USER '<username>';`
    -   Removes the specified user from the system. Use with caution.
-  [ ] `ALTER USER PASSWORD '<username>' '<new_password>';`
    -   Changes the password for the specified user.
### Data and Agent Commands
-  [ ] `LIST DATASETS OF '<username>';`
    -   Lists the datasets associated with the specified user.
-  [ ] `LIST AGENTS OF '<username>';`
    -   Lists the agents associated with the specified user.
### Meta-Commands
Meta-commands are prefixed with a backslash (`\`).
-   `\?` or `\help`
    -   Shows help information for the available commands.
-   `\q` or `\quit`
    -   Exits the CLI application.
## Examples
```commandline
admin> list users;
+-------------------------------+------------------------+-----------+-------------+
| create_date                   | email                  | is_active | nickname    |
+-------------------------------+------------------------+-----------+-------------+
| Fri, 22 Nov 2024 16:03:41 GMT | jeffery@infiniflow.org | 1         | Jeffery     |
| Fri, 22 Nov 2024 16:10:55 GMT | aya@infiniflow.org     | 1         | Waterdancer |
+-------------------------------+------------------------+-----------+-------------+
admin> list services;
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| extra                                                                                     | host      | id | name          | port  | service_type   |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| {}                                                                                        | 0.0.0.0   | 0  | ragflow_0     | 9380  | ragflow_server |
| {'meta_type': 'mysql', 'password': 'infini_rag_flow', 'username': 'root'}                 | localhost | 1  | mysql         | 5455  | meta_data      |
| {'password': 'infini_rag_flow', 'store_type': 'minio', 'user': 'rag_flow'}                | localhost | 2  | minio         | 9000  | file_store     |
| {'password': 'infini_rag_flow', 'retrieval_type': 'elasticsearch', 'username': 'elastic'} | localhost | 3  | elasticsearch | 1200  | retrieval      |
| {'db_name': 'default_db', 'retrieval_type': 'infinity'}                                   | localhost | 4  | infinity      | 23817 | retrieval      |
| {'database': 1, 'mq_type': 'redis', 'password': 'infini_rag_flow'}                        | localhost | 5  | redis         | 6379  | message_queue  |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
```

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Signed-off-by: jinhai <haijin.chn@gmail.com>
2025-09-22 10:37:49 +08:00
45f9f428db Fix: enable scrolling at chat setting (#10184)
### What problem does this PR solve?

This PR is related to
[#9961](https://github.com/infiniflow/ragflow/issues/9961).
In the Chat Settings screen, the textarea did not support scrolling when
the content grew longer than its visible area, which made it less
convenient to use.
Also, there was no Japanese placeholder text to guide users on what to
enter in the field.

This PR improves the user experience by:
- Adding `overflow-y-auto` to the textarea so that long content can be
scrolled smoothly.
- Introducing a placeholder (`メッセージを入力してください...`) to provide clearer
guidance for users.


https://github.com/user-attachments/assets/95553331-087b-42c5-a41d-5dfe08047bae

### What has been considered

As an alternative solution, I explored replacing the textarea with the
existing `PromptEditor` component.
However, this approach triggered a `canvas not found.` alert.  
The current implementation of `PromptEditor` internally attempts to
fetch **agent (canvas) information**, but in the Chat Settings screen no
such ID exists. As a result, the API call fails and the backend returns
`canvas not found.`.

One possible workaround would be to extend `PromptEditor` with a
**“disable variable picker” flag**, ensuring that plugins are not loaded
in contexts like Chat Settings. While feasible, this would have a
broader impact across the codebase.

Given these considerations, I decided to address the issue in a simpler
way by applying a Tailwind utility (`overflow-y-auto`). Since the UI
design is expected to change in the future, this solution is considered
sufficient for now.
<img width="1501" height="794" alt="Screenshot 2025-09-20 at 15 00 12"
src="https://github.com/user-attachments/assets/85578ee8-489f-4ede-b3af-bafd7afe95bd"
/>


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)  
- [ ] New Feature (non-breaking change which adds functionality)  
- [ ] Documentation Update  
- [ ] Refactoring  
- [ ] Performance Improvement  
- [ ] Other (please describe):
2025-09-22 10:37:34 +08:00
902703d145 Fix: skip tag query if tag kbs are invalid (#10168)
### What problem does this PR solve?

Skip `tag_query` step if `tag_kbs` are empty. 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-19 19:12:18 +08:00
7ccca2143c perf: add get_all_kb_doc_count func to simplify kb.doc_num updating (#10169)
### What problem does this PR solve?

Add get_all_kb_doc_count func to simplify kb.doc_num updating.

### Type of change

- [x] Performance Improvement
2025-09-19 19:11:50 +08:00
70ce02faf4 Feat: add support for Anthropic third-party API (#10173)
### What problem does this PR solve?
issue:
[Bug]: anthropic model have not baseurl selecting,need add #8546
change:
This PR adds support for using Anthropic models through a third-party
API by allowing a custom base_url.
It ensures compatibility with both the official Anthropic endpoint and
external providers.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 19:06:14 +08:00
3f1741c8c6 Docs: How to accelerate question answering (#10179)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-09-19 18:18:46 +08:00
6c24ad7966 fix: correct rerank_model condition logic (#10174)
### What problem does this PR solve?

fix the rerank_model condition logic by correcting the np.isclose check.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-19 16:02:10 +08:00
4846589599 Docs: Input and output variables defined in the Input and Output sections must also be implemented in your code. (#10162)
### What problem does this PR solve?
 
#10089 

### Type of change

- [x] Documentation Update
2025-09-19 11:35:58 +08:00
a24547aa66 Support server health check by http://localhost:<port>/v1/system/healthz (#10150)
### What problem does this PR solve?

Support server health check. Solved issue: #10106

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 11:11:07 +08:00
a04c5247ab Feat: Add file convert to document API just like file2document_app.py (#10158)
### What problem does this PR solve?

Add file convert to document API just like file2document_app.py

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 09:59:54 +08:00
ed6a76dcc0 Add Firecrawl integration for RAGFlow (#10152)
## 🚀 Firecrawl Integration for RAGFlow

This PR implements the Firecrawl integration for RAGFlow as requested in
issue https://github.com/firecrawl/firecrawl/issues/2167

###  Features Implemented

- **Data Source Integration**: Firecrawl appears as a selectable data
source in RAGFlow
- **Configuration Management**: Users can input Firecrawl API keys
through RAGFlow's interface
- **Web Scraping**: Supports single URL scraping, website crawling, and
batch processing
- **Content Processing**: Converts scraped content to RAGFlow's document
format with chunking
- **Error Handling**: Comprehensive error handling for rate limits,
failed requests, and malformed content
- **UI Components**: Complete UI schema and workflow components for
RAGFlow integration

### 📁 Files Added

- `intergrations/firecrawl/` - Complete integration package
- `intergrations/firecrawl/integration.py` - RAGFlow integration entry
point
- `intergrations/firecrawl/firecrawl_connector.py` - API communication
- `intergrations/firecrawl/firecrawl_config.py` - Configuration
management
- `intergrations/firecrawl/firecrawl_processor.py` - Content processing
- `intergrations/firecrawl/firecrawl_ui.py` - UI components
- `intergrations/firecrawl/ragflow_integration.py` - Main integration
class
- `intergrations/firecrawl/README.md` - Complete documentation
- `intergrations/firecrawl/example_usage.py` - Usage examples

### 🧪 Testing

The integration has been thoroughly tested with:
- Configuration validation
- Connection testing
- Content processing and chunking
- UI component rendering
- Error handling scenarios

### 📋 Acceptance Criteria Met

-  Integration appears as selectable data source in RAGFlow's data
source options
-  Users can input Firecrawl API keys through RAGFlow's configuration
interface
-  Successfully scrapes content from provided URLs and imports into
RAGFlow's document store
-  Handles common edge cases (rate limits, failed requests, malformed
content)
-  Includes basic documentation and README updates
-  Code follows RAGFlow's existing patterns and coding standards

### �� Related Issue

https://github.com/firecrawl/firecrawl/issues/2167

---------

Co-authored-by: AB <aj@Ajays-MacBook-Air.local>
2025-09-19 09:58:17 +08:00
a0ccbec8bd Fix: knowledge base's embedded model form layout and dependency imports in the main branch. #9869 (#10160)
### What problem does this PR solve?

Fix: Fixed the knowledge base's embedded model form layout and
dependency imports in the main branch.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-19 09:57:21 +08:00
4693c5382a Feat: migrate OpenAI-compatible chats to LiteLLM (#10148)
### What problem does this PR solve?

Migrate OpenAI-compatible chats to LiteLLM.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 17:16:59 +08:00
ff3b4d0dcd Fix: Merge different types of models from the same manufacturer #10146 (#10157)
### What problem does this PR solve?

Fix: Merge different types of models from the same manufacturer #10146

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 17:15:54 +08:00
62d35b1b73 Fix: handle zero (#10149)
### What problem does this PR solve?

Handle zero and nan in calculate.
#10125

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 16:28:03 +08:00
91b609447d Fix: embedding model failure in CometAPI (#10137)
### What problem does this PR solve?

Related PR:
Feat: add CometAPI to LLMFactory and update related mappings #10119 

Change:
Fixes the issue where the embedding model in CometAPI was not being
called correctly

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: TensorNull <tensor.null@gmail.com>
2025-09-18 14:49:47 +08:00
c353840244 Feat: add support for KB document basic info (#10134)
### What problem does this PR solve?

Add support for KB document basic info

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 09:52:33 +08:00
f12b9fdcd4 Feat: add CometAPI to LLMFactory and update related mappings (#10119)
### Related issues
#10078

### What problem does this PR solve?
Integrate CometAPI provider.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-09-18 09:51:29 +08:00
80ede65bbe Docs: Updated database types supported by the Execute SQL tool (#10113)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-09-18 09:47:35 +08:00
52cf186028 Correct the text of vectorSimilarityWeight in zh.ts (#10128)
### What problem does this PR solve?

The original text for vectorSimilarityWeight in Chinese version was
"相似度相似度权重," which is obviously a malformed phrase. It has now been
changed to "向量相似度权重". Also, align it with the English version 'Vector
similarity weight'.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 09:46:54 +08:00
ea0f1d47a5 Support image recognition for url links in Markdown file, fix log error in code_exec (#10139)
### What problem does this PR solve?

Support image recognition with image links in markdown files, solved
issue: #8755
Fixed log info error in code_exec, solved issue: #10064

### Type of change (8755)

- [x] New Feature (non-breaking change which adds functionality)

### Type of change (10064)

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 09:44:17 +08:00
9fe7c92217 Build(deps): Bump axios from 1.9.0 to 1.12.0 in /sandbox/sandbox_base_image/nodejs (#10091)
Bumps [axios](https://github.com/axios/axios) from 1.9.0 to 1.12.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/axios/axios/releases">axios's
releases</a>.</em></p>
<blockquote>
<h2>Release v1.12.0</h2>
<h2>Release notes:</h2>
<h3>Bug Fixes</h3>
<ul>
<li>adding build artifacts (<a
href="9ec86de257">9ec86de</a>)</li>
<li>dont add dist on release (<a
href="a2edc3606a">a2edc36</a>)</li>
<li><strong>fetch-adapter:</strong> set correct Content-Type for Node
FormData (<a
href="https://redirect.github.com/axios/axios/issues/6998">#6998</a>)
(<a
href="a9f47afbf3">a9f47af</a>)</li>
<li><strong>node:</strong> enforce maxContentLength for data: URLs (<a
href="https://redirect.github.com/axios/axios/issues/7011">#7011</a>)
(<a
href="945435fc51">945435f</a>)</li>
<li>package exports (<a
href="https://redirect.github.com/axios/axios/issues/5627">#5627</a>)
(<a
href="aa78ac23fc">aa78ac2</a>)</li>
<li><strong>params:</strong> removing '[' and ']' from URL encode
exclude characters (<a
href="https://redirect.github.com/axios/axios/issues/3316">#3316</a>)
(<a
href="https://redirect.github.com/axios/axios/issues/5715">#5715</a>)
(<a
href="6d84189349">6d84189</a>)</li>
<li>release pr run (<a
href="fd7f404488">fd7f404</a>)</li>
<li><strong>types:</strong> change the type guard on isCancel (<a
href="https://redirect.github.com/axios/axios/issues/5595">#5595</a>)
(<a
href="0dbb7fd4f6">0dbb7fd</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li><strong>adapter:</strong> surface low‑level network error details;
attach original error via cause (<a
href="https://redirect.github.com/axios/axios/issues/6982">#6982</a>)
(<a
href="78b290c57c">78b290c</a>)</li>
<li><strong>fetch:</strong> add fetch, Request, Response env config
variables for the adapter; (<a
href="https://redirect.github.com/axios/axios/issues/7003">#7003</a>)
(<a
href="c959ff2901">c959ff2</a>)</li>
<li>support reviver on JSON.parse (<a
href="https://redirect.github.com/axios/axios/issues/5926">#5926</a>)
(<a
href="2a9763426e">2a97634</a>),
closes <a
href="https://redirect.github.com/axios/axios/issues/5924">#5924</a></li>
<li><strong>types:</strong> extend AxiosResponse interface to include
custom headers type (<a
href="https://redirect.github.com/axios/axios/issues/6782">#6782</a>)
(<a
href="7960d34ede">7960d34</a>)</li>
</ul>
<h3>Contributors to this release</h3>
<ul>
<li><!-- raw HTML omitted --> <a
href="https://github.com/WillianAgostini" title="+132/-16760
([#7002](https://github.com/axios/axios/issues/7002)
[#5926](https://github.com/axios/axios/issues/5926)
[#6782](https://github.com/axios/axios/issues/6782) )">Willian
Agostini</a></li>
<li><!-- raw HTML omitted --> <a
href="https://github.com/DigitalBrainJS" title="+4263/-293
([#7006](https://github.com/axios/axios/issues/7006)
[#7003](https://github.com/axios/axios/issues/7003) )">Dmitriy
Mozgovoy</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/mkhani01"
title="+111/-15 ([#6982](https://github.com/axios/axios/issues/6982)
)">khani</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/AmeerAssadi"
title="+123/-0 ([#7011](https://github.com/axios/axios/issues/7011)
)">Ameer Assadi</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/emiedonmokumo"
title="+55/-35 ([#6998](https://github.com/axios/axios/issues/6998)
)">Emiedonmokumo Dick-Boro</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/opsysdebug"
title="+8/-8 ([#6980](https://github.com/axios/axios/issues/6980)
)">Zeroday BYTE</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/jasonsaayman"
title="+7/-7 ([#6985](https://github.com/axios/axios/issues/6985)
[#6985](https://github.com/axios/axios/issues/6985) )">Jason
Saayman</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/HealGaren"
title="+5/-7 ([#5715](https://github.com/axios/axios/issues/5715)
)">최예찬</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/gligorkot"
title="+3/-1 ([#5627](https://github.com/axios/axios/issues/5627)
)">Gligor Kotushevski</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/adimit"
title="+2/-1 ([#5595](https://github.com/axios/axios/issues/5595)
)">Aleksandar Dimitrov</a></li>
</ul>
<h2>Release v1.11.0</h2>
<h2>Release notes:</h2>
<h3>Bug Fixes</h3>
<ul>
<li>form-data npm pakcage (<a
href="https://redirect.github.com/axios/axios/issues/6970">#6970</a>)
(<a
href="e72c193722">e72c193</a>)</li>
<li>prevent RangeError when using large Buffers (<a
href="https://redirect.github.com/axios/axios/issues/6961">#6961</a>)
(<a
href="a2214ca1bc">a2214ca</a>)</li>
<li><strong>types:</strong> resolve type discrepancies between ESM and
CJS TypeScript declaration files (<a
href="https://redirect.github.com/axios/axios/issues/6956">#6956</a>)
(<a
href="8517aa16f8">8517aa1</a>)</li>
</ul>
<h3>Contributors to this release</h3>
<ul>
<li><!-- raw HTML omitted --> <a href="https://github.com/izzygld"
title="+186/-93 ([#6970](https://github.com/axios/axios/issues/6970)
)">izzy goldman</a></li>
<li><!-- raw HTML omitted --> <a
href="https://github.com/manishsahanidev" title="+70/-0
([#6961](https://github.com/axios/axios/issues/6961) )">Manish
Sahani</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/noritaka1166"
title="+12/-10 ([#6938](https://github.com/axios/axios/issues/6938)
[#6939](https://github.com/axios/axios/issues/6939) )">Noritaka
Kobayashi</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/jrnail23"
title="+13/-2 ([#6956](https://github.com/axios/axios/issues/6956)
)">James Nail</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/Tejaswi1305"
title="+1/-1 ([#6894](https://github.com/axios/axios/issues/6894)
)">Tejaswi1305</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/axios/axios/blob/v1.x/CHANGELOG.md">axios's
changelog</a>.</em></p>
<blockquote>
<h1><a
href="https://github.com/axios/axios/compare/v1.11.0...v1.12.0">1.12.0</a>
(2025-09-11)</h1>
<h3>Bug Fixes</h3>
<ul>
<li>adding build artifacts (<a
href="9ec86de257">9ec86de</a>)</li>
<li>dont add dist on release (<a
href="a2edc3606a">a2edc36</a>)</li>
<li><strong>fetch-adapter:</strong> set correct Content-Type for Node
FormData (<a
href="https://redirect.github.com/axios/axios/issues/6998">#6998</a>)
(<a
href="a9f47afbf3">a9f47af</a>)</li>
<li><strong>node:</strong> enforce maxContentLength for data: URLs (<a
href="https://redirect.github.com/axios/axios/issues/7011">#7011</a>)
(<a
href="945435fc51">945435f</a>)</li>
<li>package exports (<a
href="https://redirect.github.com/axios/axios/issues/5627">#5627</a>)
(<a
href="aa78ac23fc">aa78ac2</a>)</li>
<li><strong>params:</strong> removing '[' and ']' from URL encode
exclude characters (<a
href="https://redirect.github.com/axios/axios/issues/3316">#3316</a>)
(<a
href="https://redirect.github.com/axios/axios/issues/5715">#5715</a>)
(<a
href="6d84189349">6d84189</a>)</li>
<li>release pr run (<a
href="fd7f404488">fd7f404</a>)</li>
<li><strong>types:</strong> change the type guard on isCancel (<a
href="https://redirect.github.com/axios/axios/issues/5595">#5595</a>)
(<a
href="0dbb7fd4f6">0dbb7fd</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li><strong>adapter:</strong> surface low‑level network error details;
attach original error via cause (<a
href="https://redirect.github.com/axios/axios/issues/6982">#6982</a>)
(<a
href="78b290c57c">78b290c</a>)</li>
<li><strong>fetch:</strong> add fetch, Request, Response env config
variables for the adapter; (<a
href="https://redirect.github.com/axios/axios/issues/7003">#7003</a>)
(<a
href="c959ff2901">c959ff2</a>)</li>
<li>support reviver on JSON.parse (<a
href="https://redirect.github.com/axios/axios/issues/5926">#5926</a>)
(<a
href="2a9763426e">2a97634</a>),
closes <a
href="https://redirect.github.com/axios/axios/issues/5924">#5924</a></li>
<li><strong>types:</strong> extend AxiosResponse interface to include
custom headers type (<a
href="https://redirect.github.com/axios/axios/issues/6782">#6782</a>)
(<a
href="7960d34ede">7960d34</a>)</li>
</ul>
<h3>Contributors to this release</h3>
<ul>
<li><!-- raw HTML omitted --> <a
href="https://github.com/WillianAgostini" title="+132/-16760
([#7002](https://github.com/axios/axios/issues/7002)
[#5926](https://github.com/axios/axios/issues/5926)
[#6782](https://github.com/axios/axios/issues/6782) )">Willian
Agostini</a></li>
<li><!-- raw HTML omitted --> <a
href="https://github.com/DigitalBrainJS" title="+4263/-293
([#7006](https://github.com/axios/axios/issues/7006)
[#7003](https://github.com/axios/axios/issues/7003) )">Dmitriy
Mozgovoy</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/mkhani01"
title="+111/-15 ([#6982](https://github.com/axios/axios/issues/6982)
)">khani</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/AmeerAssadi"
title="+123/-0 ([#7011](https://github.com/axios/axios/issues/7011)
)">Ameer Assadi</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/emiedonmokumo"
title="+55/-35 ([#6998](https://github.com/axios/axios/issues/6998)
)">Emiedonmokumo Dick-Boro</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/opsysdebug"
title="+8/-8 ([#6980](https://github.com/axios/axios/issues/6980)
)">Zeroday BYTE</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/jasonsaayman"
title="+7/-7 ([#6985](https://github.com/axios/axios/issues/6985)
[#6985](https://github.com/axios/axios/issues/6985) )">Jason
Saayman</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/HealGaren"
title="+5/-7 ([#5715](https://github.com/axios/axios/issues/5715)
)">최예찬</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/gligorkot"
title="+3/-1 ([#5627](https://github.com/axios/axios/issues/5627)
)">Gligor Kotushevski</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/adimit"
title="+2/-1 ([#5595](https://github.com/axios/axios/issues/5595)
)">Aleksandar Dimitrov</a></li>
</ul>
<h1><a
href="https://github.com/axios/axios/compare/v1.10.0...v1.11.0">1.11.0</a>
(2025-07-22)</h1>
<h3>Bug Fixes</h3>
<ul>
<li>form-data npm pakcage (<a
href="https://redirect.github.com/axios/axios/issues/6970">#6970</a>)
(<a
href="e72c193722">e72c193</a>)</li>
<li>prevent RangeError when using large Buffers (<a
href="https://redirect.github.com/axios/axios/issues/6961">#6961</a>)
(<a
href="a2214ca1bc">a2214ca</a>)</li>
<li><strong>types:</strong> resolve type discrepancies between ESM and
CJS TypeScript declaration files (<a
href="https://redirect.github.com/axios/axios/issues/6956">#6956</a>)
(<a
href="8517aa16f8">8517aa1</a>)</li>
</ul>
<h3>Contributors to this release</h3>
<ul>
<li><!-- raw HTML omitted --> <a href="https://github.com/izzygld"
title="+186/-93 ([#6970](https://github.com/axios/axios/issues/6970)
)">izzy goldman</a></li>
<li><!-- raw HTML omitted --> <a
href="https://github.com/manishsahanidev" title="+70/-0
([#6961](https://github.com/axios/axios/issues/6961) )">Manish
Sahani</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/noritaka1166"
title="+12/-10 ([#6938](https://github.com/axios/axios/issues/6938)
[#6939](https://github.com/axios/axios/issues/6939) )">Noritaka
Kobayashi</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/jrnail23"
title="+13/-2 ([#6956](https://github.com/axios/axios/issues/6956)
)">James Nail</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="0d8ad6e1de"><code>0d8ad6e</code></a>
chore(release): v1.12.0 (<a
href="https://redirect.github.com/axios/axios/issues/7013">#7013</a>)</li>
<li><a
href="fd7f404488"><code>fd7f404</code></a>
fix: release pr run</li>
<li><a
href="a2edc3606a"><code>a2edc36</code></a>
fix: dont add dist on release</li>
<li><a
href="9ec86de257"><code>9ec86de</code></a>
fix: adding build artifacts</li>
<li><a
href="945435fc51"><code>945435f</code></a>
fix(node): enforce maxContentLength for data: URLs (<a
href="https://redirect.github.com/axios/axios/issues/7011">#7011</a>)</li>
<li><a
href="28e5e3016d"><code>28e5e30</code></a>
chore(sponsor): update sponsor block (<a
href="https://redirect.github.com/axios/axios/issues/7005">#7005</a>)</li>
<li><a
href="d03f245a40"><code>d03f245</code></a>
chore(CI): fixed release info script to use npm registry instead of git
as fi...</li>
<li><a
href="a0bc911379"><code>a0bc911</code></a>
chore: removing dist files from src (<a
href="https://redirect.github.com/axios/axios/issues/7002">#7002</a>)</li>
<li><a
href="c959ff2901"><code>c959ff2</code></a>
feat(fetch): add fetch, Request, Response env config variables for the
adapte...</li>
<li><a
href="a9f47afbf3"><code>a9f47af</code></a>
fix(fetch-adapter): set correct Content-Type for Node FormData (<a
href="https://redirect.github.com/axios/axios/issues/6998">#6998</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/axios/axios/compare/v1.9.0...v1.12.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=axios&package-manager=npm_and_yarn&previous-version=1.9.0&new-version=1.12.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the
[Security Alerts
page](https://github.com/infiniflow/ragflow/network/alerts).

</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-18 09:41:24 +08:00
d353f7f7f8 Feat/parse audio (#10133)
### What problem does this PR solve?

Dataflow support audio.  And fix giteeAI's sequence2text model. 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 09:31:32 +08:00
f3738b06f1 Fixes session_id passing in agent_openai completion. (#10124)
### What problem does this PR solve?

An exception happens if you give session_id to agent_open_ai completion.
Because session_id is being given as well as **req so it tries to send
session_id twice. But also the logic seemed odd on picking one of
session_id, id, metadata.id. So cleaned it up a little.

See #10111 

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
2025-09-17 17:54:06 +08:00
5a8bc88147 Docs: Removed /v1 from Ollama base URLs (#10067)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-09-17 13:48:29 +08:00
04ef5b2783 Fix: usage of postgresql -> postgres for db_type (#10120)
### What problem does this PR solve?

This PR fixes incorrect naming for PostgreSQL usage by replacing all
instances of `postgresql` with the correct `postgres` in the `db_type`
field. This resolves potential configuration errors and ensures
consistency when specifying the database type.

Also fixed handling of None for `get_queue_length`

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: cucusenok <BP-116: updated readme.md>
2025-09-17 10:30:45 +08:00
c9ea22ef69 Fix: set default chunk_token_num in html_parser (#10118)
### What problem does this PR solve?

issue:
[Bug]: Agent component (HTTP Request) "'>' not supported between
instances of 'int' and 'NoneType'"
[#10096](https://github.com/infiniflow/ragflow/issues/10096)

Change:
When the Invoke class instantiates HtmlParser without providing the
chunk_token_num parameter, the value defaults to None, leading to a
comparison error with block_token_count.

This change sets the default chunk_token_num to 512 to prevent such
errors.
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: BadwomanCraZY <511528396@qq.com>
2025-09-17 09:36:31 +08:00
152111fd9d Feat/parse img (#10112)
### What problem does this PR solve?

support parse image by OCR or VLM.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-16 17:53:37 +08:00
86f6da2f74 Feat: add support for the Ascend table structure recognizer (#10110)
### What problem does this PR solve?

Add support for the Ascend table structure recognizer.

Use the environment variable `TABLE_STRUCTURE_RECOGNIZER_TYPE=ascend` to
enable the Ascend table structure recognizer.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-16 13:57:06 +08:00
8c00cbc87a Fix(agent template): wrap template variables in curly braces (#10109)
### What problem does this PR solve?

Updated SQL assistant template to wrap variables like 'sys.query' and
'Agent:WickedGoatsDivide@content' in curly braces for better template
variable syntax consistency.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-16 13:56:56 +08:00
41e808f4e6 Docs: Added an Execute SQL tool reference (#10108)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-09-16 11:39:56 +08:00
bc0281040b Feat: add support for the Ascend layout recognizer (#10105)
### What problem does this PR solve?

Supports Ascend layout recognizer.

Use the environment variable `LAYOUT_RECOGNIZER_TYPE=ascend` to enable
the Ascend layout recognizer, and `ASCEND_LAYOUT_RECOGNIZER_DEVICE_ID=n`
(for example, n=0) to specify the Ascend device ID.

Ensure that you have installed the [ais
tools](https://gitee.com/ascend/tools/tree/master/ais-bench_workload/tool/ais_bench)
properly.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-16 09:51:15 +08:00
341a7b1473 Fix: judge not empty before delete (#10099)
### What problem does this PR solve?

judge not empty before delete session.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-15 17:49:52 +08:00
c29c395390 Fix: The same model appears twice in the drop-down box. #10102 (#10103)
### What problem does this PR solve?

Fix: The same model appears twice in the drop-down box. #10102

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-15 16:38:08 +08:00
a23a0f230c feat: add multiple docker tags (latest, latest_full, latest_slim) to … (#10040)
…release workflow (#10039)  
This change updates the GitHub Actions workflow to push additional
stable tags alongside version tags, enabling automated update tools like
Watchtower to detect and pull the latest images correctly.
Refs:
[https://github.com/infiniflow/ragflow/issues/10039](https://github.com/infiniflow/ragflow/issues/10039)

### What problem does this PR solve?  
Automated container update tools such as Watchtower rely on stable tags
like `latest` to identify the newest images. Previously, only
version-specific tags were pushed, which prevented these tools from
detecting new releases automatically. This PR adds multiple stable tags
(`latest-full`, `latest-slim`) alongside version tags to the Docker
image publishing workflow, ensuring smooth and reliable automated
updates without manual tag management.

### Type of change  
- [ ] Bug Fix (non-breaking change which fixes an issue)  
- [x] New Feature (non-breaking change which adds functionality)  
- [ ] Documentation Update  
- [ ] Refactoring  
- [ ] Performance Improvement  
- [ ] Other (please describe):

---------

Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-09-13 21:44:53 +08:00
2a88ce6be1 Fix: terminate onnx inference session manually (#10076)
### What problem does this PR solve?

terminate onnx inference session and release memory manually.

Issue #5050 
Issue #9992 
Issue #8805

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-12 17:18:26 +08:00
664b781d62 Feat: Translate the fields of the embedded dialog box on the agent page #3221 (#10072)
### What problem does this PR solve?

Feat: Translate the fields of the embedded dialog box on the agent page
#3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-12 16:01:12 +08:00
65571e5254 Feat: dataflow supports text (#10058)
### What problem does this PR solve?

dataflow supports text.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-11 19:03:51 +08:00
aa30f20730 Feat: Agent component support inserting variables(#10048) (#10055)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-11 19:03:19 +08:00
b9b278d441 Docs: How to connect to an MCP server as a client (#10043)
### What problem does this PR solve?

#9769 

### Type of change


- [x] Documentation Update
2025-09-11 19:02:50 +08:00
e1d86cfee3 Feat: add TokenPony model provider (#9932)
### What problem does this PR solve?

Add TokenPony as a LLM provider

Co-authored-by: huangzl <huangzl@shinemo.com>
2025-09-11 17:25:31 +08:00
8ebd07337f The chat dialog box cannot be fully displayed on a small screen #10034 (#10049)
### What problem does this PR solve?

The chat dialog box cannot be fully displayed on a small screen #10034

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-11 13:32:23 +08:00
dd584d57b0 Fix: Hide dataflow related functions #9869 (#10045)
### What problem does this PR solve?

Fix: Hide dataflow related functions #9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-11 12:02:26 +08:00
3d39b96c6f Fix: token num exceed (#10046)
### What problem does this PR solve?

fix text input exceed token num limit when using siliconflow's embedding
model BAAI/bge-large-zh-v1.5 and BAAI/bge-large-en-v1.5, truncate before
input.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-11 12:02:12 +08:00
621 changed files with 31438 additions and 14034 deletions

View File

@ -1,13 +1,9 @@
import argparse
import base64
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from typing import Dict, List, Any
from lark import Lark, Transformer, Tree
import requests
from requests.auth import HTTPBasicAuth
from api.common.base64 import encode_to_base64
GRAMMAR = r"""
start: command
@ -23,8 +19,6 @@ sql_command: list_services
| show_user
| drop_user
| alter_user
| create_user
| activate_user
| list_datasets
| list_agents
@ -41,7 +35,6 @@ meta_arg: /[^\\s"']+/ | quoted_string
LIST: "LIST"i
SERVICES: "SERVICES"i
SHOW: "SHOW"i
CREATE: "CREATE"i
SERVICE: "SERVICE"i
SHUTDOWN: "SHUTDOWN"i
STARTUP: "STARTUP"i
@ -50,7 +43,6 @@ USERS: "USERS"i
DROP: "DROP"i
USER: "USER"i
ALTER: "ALTER"i
ACTIVE: "ACTIVE"i
PASSWORD: "PASSWORD"i
DATASETS: "DATASETS"i
OF: "OF"i
@ -66,15 +58,12 @@ list_users: LIST USERS ";"
drop_user: DROP USER quoted_string ";"
alter_user: ALTER USER PASSWORD quoted_string quoted_string ";"
show_user: SHOW USER quoted_string ";"
create_user: CREATE USER quoted_string quoted_string ";"
activate_user: ALTER USER ACTIVE quoted_string status ";"
list_datasets: LIST DATASETS OF quoted_string ";"
list_agents: LIST AGENTS OF quoted_string ";"
identifier: WORD
quoted_string: QUOTED_STRING
status: WORD
QUOTED_STRING: /'[^']+'/ | /"[^"]+"/
WORD: /[a-zA-Z0-9_\-\.]+/
@ -129,16 +118,6 @@ class AdminTransformer(Transformer):
new_password = items[4]
return {"type": "alter_user", "username": user_name, "password": new_password}
def create_user(self, items):
user_name = items[2]
password = items[3]
return {"type": "create_user", "username": user_name, "password": password, "role": "user"}
def activate_user(self, items):
user_name = items[3]
activate_status = items[4]
return {"type": "activate_user", "activate_status": activate_status, "username": user_name}
def list_datasets(self, items):
user_name = items[3]
return {"type": "list_datasets", "username": user_name}
@ -168,12 +147,9 @@ class AdminTransformer(Transformer):
return items
def encrypt(input_string):
pub = '-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEArq9XTUSeYr2+N1h3Afl/z8Dse/2yD0ZGrKwx+EEEcdsBLca9Ynmx3nIB5obmLlSfmskLpBo0UACBmB5rEjBp2Q2f3AG3Hjd4B+gNCG6BDaawuDlgANIhGnaTLrIqWrrcm4EMzJOnAOI1fgzJRsOOUEfaS318Eq9OVO3apEyCCt0lOQK6PuksduOjVxtltDav+guVAA068NrPYmRNabVKRNLJpL8w4D44sfth5RvZ3q9t+6RTArpEtc5sh5ChzvqPOzKGMXW83C95TxmXqpbK6olN4RevSfVjEAgCydH6HN6OhtOQEcnrU97r9H0iZOWwbw3pVrZiUkuRD1R56Wzs2wIDAQAB\n-----END PUBLIC KEY-----'
pub_key = RSA.importKey(pub)
cipher = Cipher_pkcs1_v1_5.new(pub_key)
cipher_text = cipher.encrypt(base64.b64encode(input_string.encode('utf-8')))
return base64.b64encode(cipher_text).decode("utf-8")
def encode_to_base64(input_string):
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
return base64_encoded.decode('utf-8')
class AdminCommandParser:
@ -244,9 +220,6 @@ class AdminCLI:
if not data:
print("No data to print")
return
if isinstance(data, dict):
# handle single row data
data = [data]
columns = list(data[0].keys())
col_widths = {}
@ -362,10 +335,6 @@ class AdminCLI:
self._handle_drop_user(command_dict)
case 'alter_user':
self._handle_alter_user(command_dict)
case 'create_user':
self._handle_create_user(command_dict)
case 'activate_user':
self._handle_activate_user(command_dict)
case 'list_datasets':
self._handle_list_datasets(command_dict)
case 'list_agents':
@ -380,8 +349,9 @@ class AdminCLI:
url = f'http://{self.host}:{self.port}/api/v1/admin/services'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
res_json = dict
if response.status_code == 200:
res_json = response.json()
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all users, code: {res_json['code']}, message: {res_json['message']}")
@ -407,8 +377,9 @@ class AdminCLI:
url = f'http://{self.host}:{self.port}/api/v1/admin/users'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
res_json = dict
if response.status_code == 200:
res_json = response.json()
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all users, code: {res_json['code']}, message: {res_json['message']}")
@ -417,25 +388,11 @@ class AdminCLI:
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Showing user: {username}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get user {username}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_drop_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Drop user: {username}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}'
response = requests.delete(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
else:
print(f"Fail to drop user, code: {res_json['code']}, message: {res_json['message']}")
def _handle_alter_user(self, command):
username_tree: Tree = command['username']
@ -443,75 +400,16 @@ class AdminCLI:
password_tree: Tree = command['password']
password: str = password_tree.children[0].strip("'\"")
print(f"Alter user: {username}, password: {password}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}/password'
response = requests.put(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password),
json={'new_password': encrypt(password)})
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
else:
print(f"Fail to alter password, code: {res_json['code']}, message: {res_json['message']}")
def _handle_create_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
password_tree: Tree = command['password']
password: str = password_tree.children[0].strip("'\"")
role: str = command['role']
print(f"Create user: {username}, password: {password}, role: {role}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users'
response = requests.post(
url,
auth=HTTPBasicAuth(self.admin_account, self.admin_password),
json={'username': username, 'password': encrypt(password), 'role': role}
)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to create user {username}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_activate_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
activate_tree: Tree = command['activate_status']
activate_status: str = activate_tree.children[0].strip("'\"")
if activate_status.lower() in ['on', 'off']:
print(f"Alter user {username} activate status, turn {activate_status.lower()}.")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}/activate'
response = requests.put(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password),
json={'activate_status': activate_status})
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
else:
print(f"Fail to alter activate status, code: {res_json['code']}, message: {res_json['message']}")
else:
print(f"Unknown activate status: {activate_status}.")
def _handle_list_datasets(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Listing all datasets of user: {username}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}/datasets'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all datasets of {username}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_list_agents(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Listing all agents of user: {username}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}/agents'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all agents of {username}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_meta_command(self, command):
meta_command = command['command']
@ -538,7 +436,6 @@ Commands:
DROP USER <user>
CREATE USER <user> <password>
ALTER USER PASSWORD <user> <new_password>
ALTER USER ACTIVE <user> <on/off>
LIST DATASETS OF <user>
LIST AGENTS OF <user>

View File

@ -10,7 +10,6 @@ from flask import Flask
from routes import admin_bp
from api.utils.log_utils import init_root_logger
from api.constants import SERVICE_CONF
from api import settings
from config import load_configurations, SERVICE_CONFIGS
stop_event = threading.Event()
@ -27,7 +26,7 @@ if __name__ == '__main__':
app = Flask(__name__)
app.register_blueprint(admin_bp)
settings.init_settings()
SERVICE_CONFIGS.configs = load_configurations(SERVICE_CONF)
try:

View File

@ -4,7 +4,7 @@ from enum import Enum
from pydantic import BaseModel
from typing import Any
from api.utils.configs import read_config
from api.utils import read_config
from urllib.parse import urlparse

View File

@ -1,8 +1,7 @@
from flask import Blueprint, request
from auth import login_verify
from responses import success_response, error_response
from services import UserMgr, ServiceMgr, UserServiceMgr
from services import UserMgr, ServiceMgr
from exceptions import AdminException
admin_bp = Blueprint('admin', __name__, url_prefix='/api/v1/admin')
@ -39,29 +38,21 @@ def create_user():
password = data['password']
role = data.get('role', 'user')
res = UserMgr.create_user(username, password, role)
if res["success"]:
user_info = res["user_info"]
user_info.pop("password") # do not return password
return success_response(user_info, "User created successfully")
else:
return error_response("create user failed")
user = UserMgr.create_user(username, password, role)
return success_response(user, "User created successfully", 201)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e))
return error_response(str(e), 500)
@admin_bp.route('/users/<username>', methods=['DELETE'])
@login_verify
def delete_user(username):
try:
res = UserMgr.delete_user(username)
if res["success"]:
return success_response(None, res["message"])
else:
return error_response(res["message"])
UserMgr.delete_user(username)
return success_response(None, "User and all data deleted successfully")
except AdminException as e:
return error_response(e.message, e.code)
@ -78,8 +69,8 @@ def change_password(username):
return error_response("New password is required", 400)
new_password = data['new_password']
msg = UserMgr.update_user_password(username, new_password)
return success_response(None, msg)
UserMgr.update_user_password(username, new_password)
return success_response(None, "Password updated successfully")
except AdminException as e:
return error_response(e.message, e.code)
@ -87,21 +78,6 @@ def change_password(username):
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/activate', methods=['PUT'])
@login_verify
def alter_user_activate_status(username):
try:
data = request.get_json()
if not data or 'activate_status' not in data:
return error_response("Activation status is required", 400)
activate_status = data['activate_status']
msg = UserMgr.update_user_activate_status(username, activate_status)
return success_response(None, msg)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>', methods=['GET'])
@login_verify
def get_user_details(username):
@ -114,31 +90,6 @@ def get_user_details(username):
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/datasets', methods=['GET'])
@login_verify
def get_user_datasets(username):
try:
datasets_list = UserServiceMgr.get_user_datasets(username)
return success_response(datasets_list)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/agents', methods=['GET'])
@login_verify
def get_user_agents(username):
try:
agents_list = UserServiceMgr.get_user_agents(username)
return success_response(agents_list)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/services', methods=['GET'])
@login_verify

View File

@ -1,13 +1,5 @@
import re
from werkzeug.security import check_password_hash
from api.db import ActiveEnum
from api.db.services import UserService
from api.db.joint_services.user_account_service import create_new_user, delete_user_data
from api.db.services.canvas_service import UserCanvasService
from api.db.services.user_service import TenantService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.crypt import decrypt
from exceptions import AdminException, UserAlreadyExistsError, UserNotFoundError
from exceptions import AdminException
from config import SERVICE_CONFIGS
class UserMgr:
@ -21,132 +13,19 @@ class UserMgr:
@staticmethod
def get_user_details(username):
# use email to query
users = UserService.query_user_by_email(username)
result = []
for user in users:
result.append({
'email': user.email,
'language': user.language,
'last_login_time': user.last_login_time,
'is_authenticated': user.is_authenticated,
'is_active': user.is_active,
'is_anonymous': user.is_anonymous,
'login_channel': user.login_channel,
'status': user.status,
'is_superuser': user.is_superuser,
'create_date': user.create_date,
'update_date': user.update_date
})
return result
raise AdminException("get_user_details: not implemented")
@staticmethod
def create_user(username, password, role="user") -> dict:
# Validate the email address
if not re.match(r"^[\w\._-]+@([\w_-]+\.)+[\w-]{2,}$", username):
raise AdminException(f"Invalid email address: {username}!")
# Check if the email address is already used
if UserService.query(email=username):
raise UserAlreadyExistsError(username)
# Construct user info data
user_info_dict = {
"email": username,
"nickname": "", # ask user to edit it manually in settings.
"password": decrypt(password),
"login_channel": "password",
"is_superuser": role == "admin",
}
return create_new_user(user_info_dict)
def create_user(username, password, role="user"):
raise AdminException("create_user: not implemented")
@staticmethod
def delete_user(username):
# use email to delete
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
if len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
usr = user_list[0]
return delete_user_data(usr.id)
raise AdminException("delete_user: not implemented")
@staticmethod
def update_user_password(username, new_password) -> str:
# use email to find user. check exist and unique.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# check new_password different from old.
usr = user_list[0]
psw = decrypt(new_password)
if check_password_hash(usr.password, psw):
return "Same password, no need to update!"
# update password
UserService.update_user_password(usr.id, psw)
return "Password updated successfully!"
@staticmethod
def update_user_activate_status(username, activate_status: str):
# use email to find user. check exist and unique.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# check activate status different from new
usr = user_list[0]
# format activate_status before handle
_activate_status = activate_status.lower()
target_status = {
'on': ActiveEnum.ACTIVE.value,
'off': ActiveEnum.INACTIVE.value,
}.get(_activate_status)
if not target_status:
raise AdminException(f"Invalid activate_status: {activate_status}")
if target_status == usr.is_active:
return f"User activate status is already {_activate_status}!"
# update is_active
UserService.update_user(usr.id, {"is_active": target_status})
return f"Turn {_activate_status} user activate status successfully!"
class UserServiceMgr:
@staticmethod
def get_user_datasets(username):
# use email to find user.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# find tenants
usr = user_list[0]
tenants = TenantService.get_joined_tenants_by_user_id(usr.id)
tenant_ids = [m["tenant_id"] for m in tenants]
# filter permitted kb and owned kb
return KnowledgebaseService.get_all_kb_by_tenant_ids(tenant_ids, usr.id)
@staticmethod
def get_user_agents(username):
# use email to find user.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# find tenants
usr = user_list[0]
tenants = TenantService.get_joined_tenants_by_user_id(usr.id)
tenant_ids = [m["tenant_id"] for m in tenants]
# filter permitted agents and owned agents
res = UserCanvasService.get_all_agents_by_tenant_ids(tenant_ids, usr.id)
return [{
'title': r['title'],
'permission': r['permission'],
'canvas_type': r['canvas_type'],
'canvas_category': r['canvas_category']
} for r in res]
def update_user_password(username, new_password):
raise AdminException("update_user_password: not implemented")
class ServiceMgr:

View File

@ -27,7 +27,7 @@ from agent.component import component_class
from agent.component.base import ComponentBase
from api.db.services.file_service import FileService
from api.utils import get_uuid, hash_str2int
from rag.prompts.generator import chunks_format
from rag.prompts.prompts import chunks_format
from rag.utils.redis_conn import REDIS_CONN
class Graph:
@ -153,16 +153,6 @@ class Graph:
def get_tenant_id(self):
return self._tenant_id
def get_variable_value(self, exp: str) -> Any:
exp = exp.strip("{").strip("}").strip(" ").strip("{").strip("}")
if exp.find("@") < 0:
return self.globals[exp]
cpn_id, var_nm = exp.split("@")
cpn = self.get_component(cpn_id)
if not cpn:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
class Canvas(Graph):
@ -416,6 +406,16 @@ class Canvas(Graph):
return False
return True
def get_variable_value(self, exp: str) -> Any:
exp = exp.strip("{").strip("}").strip(" ").strip("{").strip("}")
if exp.find("@") < 0:
return self.globals[exp]
cpn_id, var_nm = exp.split("@")
cpn = self.get_component(cpn_id)
if not cpn:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
def get_history(self, window_size):
convs = []
if window_size <= 0:
@ -490,8 +490,7 @@ class Canvas(Graph):
r = self.retrieval[-1]
for ck in chunks_format({"chunks": chunks}):
cid = hash_str2int(ck["id"], 500)
# cid = uuid.uuid5(uuid.NAMESPACE_DNS, ck["id"])
cid = hash_str2int(ck["id"], 100)
if cid not in r:
r["chunks"][cid] = ck

View File

@ -28,8 +28,9 @@ from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.mcp_server_service import MCPServerService
from api.utils.api_utils import timeout
from rag.prompts.generator import next_step, COMPLETE_TASK, analyze_task, \
citation_prompt, reflect, rank_memories, kb_prompt, citation_plus, full_question, message_fit_in
from rag.prompts import message_fit_in
from rag.prompts.prompts import next_step, COMPLETE_TASK, analyze_task, \
citation_prompt, reflect, rank_memories, kb_prompt, citation_plus, full_question
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, mcp_tool_metadata_to_openai_tool
from agent.component.llm import LLMParam, LLM
@ -137,7 +138,7 @@ class Agent(LLM, ToolBase):
res.update(cpn.get_input_form())
return res
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 20*60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 20*60))
def _invoke(self, **kwargs):
if kwargs.get("user_prompt"):
usr_pmt = ""

View File

@ -244,7 +244,7 @@ class ComponentParamBase(ABC):
if not value_legal:
raise ValueError(
"Please check runtime conf, {} = {} does not match user-parameter restriction".format(
"Plase check runtime conf, {} = {} does not match user-parameter restriction".format(
variable, value
)
)
@ -431,7 +431,7 @@ class ComponentBase(ABC):
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
def _invoke(self, **kwargs):
raise NotImplementedError()

View File

@ -28,7 +28,7 @@ from rag.llm.chat_model import ERROR_PREFIX
class CategorizeParam(LLMParam):
"""
Define the categorize component parameters.
Define the Categorize component parameters.
"""
def __init__(self):
super().__init__()
@ -80,7 +80,7 @@ Here's description of each category:
- Prioritize the most specific applicable category
- Return only the category name without explanations
- Use "Other" only when no other category fits
""".format(
"\n - ".join(list(self.category_description.keys())),
"\n".join(descriptions)
@ -96,7 +96,7 @@ Here's description of each category:
class Categorize(LLM, ABC):
component_name = "Categorize"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
def _invoke(self, **kwargs):
msg = self._canvas.get_history(self._param.message_history_window_size)
if not msg:
@ -112,7 +112,7 @@ class Categorize(LLM, ABC):
user_prompt = """
---- Real Data ----
{}
{}
""".format(" | ".join(["{}: \"{}\"".format(c["role"].upper(), re.sub(r"\n", "", c["content"], flags=re.DOTALL)) for c in msg]))
ans = chat_mdl.chat(self._param.sys_prompt, [{"role": "user", "content": user_prompt}], self._param.gen_conf())
logging.info(f"input: {user_prompt}, answer: {str(ans)}")
@ -134,4 +134,4 @@ class Categorize(LLM, ABC):
self.set_output("_next", cpn_ids)
def thoughts(self) -> str:
return "Which should it falls into {}? ...".format(",".join([f"`{c}`" for c, _ in self._param.category_description.items()]))
return "Which should it falls into {}? ...".format(",".join([f"`{c}`" for c, _ in self._param.category_description.items()]))

View File

@ -53,7 +53,7 @@ class InvokeParam(ComponentParamBase):
class Invoke(ComponentBase, ABC):
component_name = "Invoke"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3))
def _invoke(self, **kwargs):
args = {}
for para in self._param.variables:

View File

@ -26,7 +26,8 @@ from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
from rag.prompts.generator import tool_call_summary, message_fit_in, citation_prompt
from rag.prompts import message_fit_in, citation_prompt
from rag.prompts.prompts import tool_call_summary
class LLMParam(ComponentParamBase):
@ -81,9 +82,9 @@ class LLMParam(ComponentParamBase):
class LLM(ComponentBase):
component_name = "LLM"
def __init__(self, canvas, component_id, param: ComponentParamBase):
super().__init__(canvas, component_id, param)
def __init__(self, canvas, id, param: ComponentParamBase):
super().__init__(canvas, id, param)
self.chat_mdl = LLMBundle(self._canvas.get_tenant_id(), TenantLLMService.llm_id2llm_type(self._param.llm_id),
self._param.llm_id, max_retries=self._param.max_retries,
retry_interval=self._param.delay_after_error
@ -101,8 +102,6 @@ class LLM(ComponentBase):
def get_input_elements(self) -> dict[str, Any]:
res = self.get_input_elements_from_text(self._param.sys_prompt)
if isinstance(self._param.prompts, str):
self._param.prompts = [{"role": "user", "content": self._param.prompts}]
for prompt in self._param.prompts:
d = self.get_input_elements_from_text(prompt["content"])
res.update(d)
@ -114,17 +113,6 @@ class LLM(ComponentBase):
def add2system_prompt(self, txt):
self._param.sys_prompt += txt
def _sys_prompt_and_msg(self, msg, args):
if isinstance(self._param.prompts, str):
self._param.prompts = [{"role": "user", "content": self._param.prompts}]
for p in self._param.prompts:
if msg and msg[-1]["role"] == p["role"]:
continue
p = deepcopy(p)
p["content"] = self.string_format(p["content"], args)
msg.append(p)
return msg, self.string_format(self._param.sys_prompt, args)
def _prepare_prompt_variables(self):
if self._param.visual_files_var:
self.imgs = self._canvas.get_variable_value(self._param.visual_files_var)
@ -140,6 +128,7 @@ class LLM(ComponentBase):
args = {}
vars = self.get_input_elements() if not self._param.debug_inputs else self._param.debug_inputs
sys_prompt = self._param.sys_prompt
for k, o in vars.items():
args[k] = o["value"]
if not isinstance(args[k], str):
@ -149,8 +138,16 @@ class LLM(ComponentBase):
args[k] = str(args[k])
self.set_input_value(k, args[k])
msg, sys_prompt = self._sys_prompt_and_msg(self._canvas.get_history(self._param.message_history_window_size)[:-1], args)
msg = self._canvas.get_history(self._param.message_history_window_size)[:-1]
for p in self._param.prompts:
if msg and msg[-1]["role"] == p["role"]:
continue
msg.append(deepcopy(p))
sys_prompt = self.string_format(sys_prompt, args)
user_defined_prompt, sys_prompt = self._extract_prompts(sys_prompt)
for m in msg:
m["content"] = self.string_format(m["content"], args)
if self._param.cite and self._canvas.get_reference()["chunks"]:
sys_prompt += citation_prompt(user_defined_prompt)
@ -205,7 +202,7 @@ class LLM(ComponentBase):
for txt in self.chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs):
yield delta(txt)
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
def _invoke(self, **kwargs):
def clean_formated_answer(ans: str) -> str:
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
@ -213,7 +210,7 @@ class LLM(ComponentBase):
return re.sub(r"```\n*$", "", ans, flags=re.DOTALL)
prompt, msg, _ = self._prepare_prompt_variables()
error: str = ""
error = ""
if self._param.output_structure:
prompt += "\nThe output MUST follow this JSON format:\n"+json.dumps(self._param.output_structure, ensure_ascii=False, indent=2)

View File

@ -49,7 +49,7 @@ class MessageParam(ComponentParamBase):
class Message(ComponentBase):
component_name = "Message"
def get_kwargs(self, script:str, kwargs:dict = {}, delimiter:str=None) -> tuple[str, dict[str, str | list | Any]]:
def get_kwargs(self, script:str, kwargs:dict = {}, delimeter:str=None) -> tuple[str, dict[str, str | list | Any]]:
for k,v in self.get_input_elements_from_text(script).items():
if k in kwargs:
continue
@ -60,8 +60,8 @@ class Message(ComponentBase):
if isinstance(v, partial):
for t in v():
ans += t
elif isinstance(v, list) and delimiter:
ans = delimiter.join([str(vv) for vv in v])
elif isinstance(v, list) and delimeter:
ans = delimeter.join([str(vv) for vv in v])
elif not isinstance(v, str):
try:
ans = json.dumps(v, ensure_ascii=False)
@ -127,7 +127,7 @@ class Message(ComponentBase):
]
return any([re.search(p, content) for p in patt])
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
def _invoke(self, **kwargs):
rand_cnt = random.choice(self._param.content)
if self._param.stream and not self._is_jinjia2(rand_cnt):

View File

@ -56,7 +56,7 @@ class StringTransform(Message, ABC):
"type": "line"
} for k, o in self.get_input_elements_from_text(self._param.script).items()}
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
def _invoke(self, **kwargs):
if self._param.method == "split":
self._split(kwargs.get("line"))
@ -90,7 +90,7 @@ class StringTransform(Message, ABC):
for k,v in kwargs.items():
if not v:
v = ""
script = re.sub(k, lambda match: v, script)
script = re.sub(k, v, script)
self.set_output("result", script)

View File

@ -61,7 +61,7 @@ class SwitchParam(ComponentParamBase):
class Switch(ComponentBase, ABC):
component_name = "Switch"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3))
def _invoke(self, **kwargs):
for cond in self._param.conditions:
res = []

View File

@ -61,7 +61,7 @@ class ArXivParam(ToolParamBase):
class ArXiv(ToolBase, ABC):
component_name = "ArXiv"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
@ -97,6 +97,6 @@ class ArXiv(ToolBase, ABC):
def thoughts(self) -> str:
return """
Keywords: {}
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))
""".format(self.get_input().get("query", "-_-!"))

View File

@ -22,7 +22,7 @@ from typing import TypedDict, List, Any
from agent.component.base import ComponentParamBase, ComponentBase
from api.utils import hash_str2int
from rag.llm.chat_model import ToolCallSession
from rag.prompts.generator import kb_prompt
from rag.prompts.prompts import kb_prompt
from rag.utils.mcp_tool_call_conn import MCPToolCallSession
from timeit import default_timer as timer

View File

@ -129,7 +129,7 @@ module.exports = { main };
class CodeExec(ToolBase, ABC):
component_name = "CodeExec"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
def _invoke(self, **kwargs):
lang = kwargs.get("lang", self._param.lang)
script = kwargs.get("script", self._param.script)
@ -157,7 +157,7 @@ class CodeExec(ToolBase, ABC):
try:
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code)
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run, code_req: {code_req}, resp.status_code {resp.status_code}:")
if resp.status_code != 200:
resp.raise_for_status()
body = resp.json()

View File

@ -73,7 +73,7 @@ class DuckDuckGoParam(ToolParamBase):
class DuckDuckGo(ToolBase, ABC):
component_name = "DuckDuckGo"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
@ -115,6 +115,6 @@ class DuckDuckGo(ToolBase, ABC):
def thoughts(self) -> str:
return """
Keywords: {}
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))
""".format(self.get_input().get("query", "-_-!"))

View File

@ -98,8 +98,8 @@ class EmailParam(ToolParamBase):
class Email(ToolBase, ABC):
component_name = "Email"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
def _invoke(self, **kwargs):
if not kwargs.get("to_email"):
self.set_output("success", False)
@ -212,4 +212,4 @@ class Email(ToolBase, ABC):
To: {}
Subject: {}
Your email is on its way—sit tight!
""".format(inputs.get("to_email", "-_-!"), inputs.get("subject", "-_-!"))
""".format(inputs.get("to_email", "-_-!"), inputs.get("subject", "-_-!"))

View File

@ -53,7 +53,7 @@ class ExeSQLParam(ToolParamBase):
self.max_records = 1024
def check(self):
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql', 'IBM DB2'])
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql'])
self.check_empty(self.database, "Database name")
self.check_empty(self.username, "database username")
self.check_empty(self.host, "IP Address")
@ -78,7 +78,7 @@ class ExeSQLParam(ToolParamBase):
class ExeSQL(ToolBase, ABC):
component_name = "ExeSQL"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
def _invoke(self, **kwargs):
def convert_decimals(obj):
@ -123,55 +123,6 @@ class ExeSQL(ToolBase, ABC):
r'PWD=' + self._param.password
)
db = pyodbc.connect(conn_str)
elif self._param.db_type == 'IBM DB2':
import ibm_db
conn_str = (
f"DATABASE={self._param.database};"
f"HOSTNAME={self._param.host};"
f"PORT={self._param.port};"
f"PROTOCOL=TCPIP;"
f"UID={self._param.username};"
f"PWD={self._param.password};"
)
try:
conn = ibm_db.connect(conn_str, "", "")
except Exception as e:
raise Exception("Database Connection Failed! \n" + str(e))
sql_res = []
formalized_content = []
for single_sql in sqls:
single_sql = single_sql.replace("```", "").strip()
if not single_sql:
continue
single_sql = re.sub(r"\[ID:[0-9]+\]", "", single_sql)
stmt = ibm_db.exec_immediate(conn, single_sql)
rows = []
row = ibm_db.fetch_assoc(stmt)
while row and len(rows) < self._param.max_records:
rows.append(row)
row = ibm_db.fetch_assoc(stmt)
if not rows:
sql_res.append({"content": "No record in the database!"})
continue
df = pd.DataFrame(rows)
for col in df.columns:
if pd.api.types.is_datetime64_any_dtype(df[col]):
df[col] = df[col].dt.strftime("%Y-%m-%d")
df = df.where(pd.notnull(df), None)
sql_res.append(convert_decimals(df.to_dict(orient="records")))
formalized_content.append(df.to_markdown(index=False, floatfmt=".6f"))
ibm_db.close(conn)
self.set_output("json", sql_res)
self.set_output("formalized_content", "\n\n".join(formalized_content))
return self.output("formalized_content")
try:
cursor = db.cursor()
except Exception as e:
@ -199,8 +150,6 @@ class ExeSQL(ToolBase, ABC):
if pd.api.types.is_datetime64_any_dtype(single_res[col]):
single_res[col] = single_res[col].dt.strftime('%Y-%m-%d')
single_res = single_res.where(pd.notnull(single_res), None)
sql_res.append(convert_decimals(single_res.to_dict(orient='records')))
formalized_content.append(single_res.to_markdown(index=False, floatfmt=".6f"))

View File

@ -57,7 +57,7 @@ class GitHubParam(ToolParamBase):
class GitHub(ToolBase, ABC):
component_name = "GitHub"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
@ -88,4 +88,4 @@ class GitHub(ToolBase, ABC):
assert False, self.output()
def thoughts(self) -> str:
return "Scanning GitHub repos related to `{}`.".format(self.get_input().get("query", "-_-!"))
return "Scanning GitHub repos related to `{}`.".format(self.get_input().get("query", "-_-!"))

View File

@ -116,7 +116,7 @@ class GoogleParam(ToolParamBase):
class Google(ToolBase, ABC):
component_name = "Google"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
if not kwargs.get("q"):
self.set_output("formalized_content", "")
@ -154,6 +154,6 @@ class Google(ToolBase, ABC):
def thoughts(self) -> str:
return """
Keywords: {}
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))
""".format(self.get_input().get("query", "-_-!"))

View File

@ -63,7 +63,7 @@ class GoogleScholarParam(ToolParamBase):
class GoogleScholar(ToolBase, ABC):
component_name = "GoogleScholar"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
@ -93,4 +93,4 @@ class GoogleScholar(ToolBase, ABC):
assert False, self.output()
def thoughts(self) -> str:
return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!"))
return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!"))

View File

@ -33,7 +33,7 @@ class PubMedParam(ToolParamBase):
self.meta:ToolMeta = {
"name": "pubmed_search",
"description": """
PubMed is an openly accessible, free database which includes primarily the MEDLINE database of references and abstracts on life sciences and biomedical topics.
PubMed is an openly accessible, free database which includes primarily the MEDLINE database of references and abstracts on life sciences and biomedical topics.
In addition to MEDLINE, PubMed provides access to:
- older references from the print version of Index Medicus, back to 1951 and earlier
- references to some journals before they were indexed in Index Medicus and MEDLINE, for instance Science, BMJ, and Annals of Surgery
@ -69,7 +69,7 @@ In addition to MEDLINE, PubMed provides access to:
class PubMed(ToolBase, ABC):
component_name = "PubMed"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
@ -105,4 +105,4 @@ class PubMed(ToolBase, ABC):
assert False, self.output()
def thoughts(self) -> str:
return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!"))
return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!"))

View File

@ -23,7 +23,8 @@ from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import timeout
from rag.app.tag import label_question
from rag.prompts.generator import cross_languages, kb_prompt
from rag.prompts import kb_prompt
from rag.prompts.prompts import cross_languages
class RetrievalParam(ToolParamBase):
@ -74,7 +75,7 @@ class RetrievalParam(ToolParamBase):
class Retrieval(ToolBase, ABC):
component_name = "Retrieval"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", self._param.empty_response)
@ -164,18 +165,18 @@ class Retrieval(ToolBase, ABC):
# Format the chunks for JSON output (similar to how other tools do it)
json_output = kbinfos["chunks"].copy()
self._canvas.add_reference(kbinfos["chunks"], kbinfos["doc_aggs"])
form_cnt = "\n".join(kb_prompt(kbinfos, 200000, True))
# Set both formalized content and JSON output
self.set_output("formalized_content", form_cnt)
self.set_output("json", json_output)
return form_cnt
def thoughts(self) -> str:
return """
Keywords: {}
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))
""".format(self.get_input().get("query", "-_-!"))

View File

@ -77,7 +77,7 @@ class SearXNGParam(ToolParamBase):
class SearXNG(ToolBase, ABC):
component_name = "SearXNG"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
# Gracefully handle try-run without inputs
query = kwargs.get("query")
@ -94,6 +94,7 @@ class SearXNG(ToolBase, ABC):
last_e = ""
for _ in range(self._param.max_retries+1):
try:
# 构建搜索参数
search_params = {
'q': query,
'format': 'json',
@ -103,29 +104,33 @@ class SearXNG(ToolBase, ABC):
'pageno': 1
}
# 发送搜索请求
response = requests.get(
f"{searxng_url}/search",
params=search_params,
timeout=10
)
response.raise_for_status()
data = response.json()
# 验证响应数据
if not data or not isinstance(data, dict):
raise ValueError("Invalid response from SearXNG")
results = data.get("results", [])
if not isinstance(results, list):
raise ValueError("Invalid results format from SearXNG")
# 限制结果数量
results = results[:self._param.top_n]
# 处理搜索结果
self._retrieve_chunks(results,
get_title=lambda r: r.get("title", ""),
get_url=lambda r: r.get("url", ""),
get_content=lambda r: r.get("content", ""))
self.set_output("json", results)
return self.output("formalized_content")
@ -146,6 +151,6 @@ class SearXNG(ToolBase, ABC):
def thoughts(self) -> str:
return """
Keywords: {}
Keywords: {}
Searching with SearXNG for relevant results...
""".format(self.get_input().get("query", "-_-!"))

View File

@ -31,7 +31,7 @@ class TavilySearchParam(ToolParamBase):
self.meta:ToolMeta = {
"name": "tavily_search",
"description": """
Tavily is a search engine optimized for LLMs, aimed at efficient, quick and persistent search results.
Tavily is a search engine optimized for LLMs, aimed at efficient, quick and persistent search results.
When searching:
- Start with specific query which should focus on just a single aspect.
- Number of keywords in query should be less than 5.
@ -101,7 +101,7 @@ When searching:
class TavilySearch(ToolBase, ABC):
component_name = "TavilySearch"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
@ -136,7 +136,7 @@ class TavilySearch(ToolBase, ABC):
def thoughts(self) -> str:
return """
Keywords: {}
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))
@ -199,7 +199,7 @@ class TavilyExtractParam(ToolParamBase):
class TavilyExtract(ToolBase, ABC):
component_name = "TavilyExtract"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
def _invoke(self, **kwargs):
self.tavily_client = TavilyClient(api_key=self._param.api_key)
last_e = None
@ -224,4 +224,4 @@ class TavilyExtract(ToolBase, ABC):
assert False, self.output()
def thoughts(self) -> str:
return "Opened {}—pulling out the main text…".format(self.get_input().get("urls", "-_-!"))
return "Opened {}—pulling out the main text…".format(self.get_input().get("urls", "-_-!"))

View File

@ -68,7 +68,7 @@ fund selection platform: through AI technology, is committed to providing excell
class WenCai(ToolBase, ABC):
component_name = "WenCai"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("report", "")
@ -111,4 +111,4 @@ class WenCai(ToolBase, ABC):
assert False, self.output()
def thoughts(self) -> str:
return "Pulling live financial data for `{}`.".format(self.get_input().get("query", "-_-!"))
return "Pulling live financial data for `{}`.".format(self.get_input().get("query", "-_-!"))

View File

@ -64,7 +64,7 @@ class WikipediaParam(ToolParamBase):
class Wikipedia(ToolBase, ABC):
component_name = "Wikipedia"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
@ -99,6 +99,6 @@ class Wikipedia(ToolBase, ABC):
def thoughts(self) -> str:
return """
Keywords: {}
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))
""".format(self.get_input().get("query", "-_-!"))

View File

@ -72,7 +72,7 @@ class YahooFinanceParam(ToolParamBase):
class YahooFinance(ToolBase, ABC):
component_name = "YahooFinance"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
def _invoke(self, **kwargs):
if not kwargs.get("stock_code"):
self.set_output("report", "")
@ -111,4 +111,4 @@ class YahooFinance(ToolBase, ABC):
assert False, self.output()
def thoughts(self) -> str:
return "Pulling live financial data for `{}`.".format(self.get_input().get("stock_code", "-_-!"))
return "Pulling live financial data for `{}`.".format(self.get_input().get("stock_code", "-_-!"))

View File

@ -27,8 +27,7 @@ from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
from api.db import StatusEnum
from api.db.db_models import close_connection
from api.db.services import UserService
from api.utils.json import CustomJSONEncoder
from api.utils import commands
from api.utils import CustomJSONEncoder, commands
from flask_mail import Mail
from flask_session import Session

View File

@ -39,7 +39,7 @@ from api.utils.api_utils import server_error_response, get_data_error_result, ge
from api.utils.file_utils import filename_type, thumbnail
from rag.app.tag import label_question
from rag.prompts.generator import keyword_extraction
from rag.prompts import keyword_extraction
from rag.utils.storage_factory import STORAGE_IMPL
from api.db.services.canvas_service import UserCanvasService

View File

@ -19,19 +19,15 @@ import re
import sys
from functools import partial
import flask
import trio
from flask import request, Response
from flask_login import login_required, current_user
from agent.component import LLM
from api import settings
from api.db import CanvasCategory, FileType
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService, API4ConversationService
from api.db.services.document_service import DocumentService
from api.db.services.file_service import FileService
from api.db.services.pipeline_operation_log_service import PipelineOperationLogService
from api.db.services.task_service import queue_dataflow, CANVAS_DEBUG_DOC_ID, TaskService
from api.db.services.user_service import TenantService
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.settings import RetCode
@ -39,12 +35,10 @@ from api.utils import get_uuid
from api.utils.api_utils import get_json_result, server_error_response, validate_request, get_data_error_result
from agent.canvas import Canvas
from peewee import MySQLDatabase, PostgresqlDatabase
from api.db.db_models import APIToken, Task
from api.db.db_models import APIToken
import time
from api.utils.file_utils import filename_type, read_potential_broken_pdf
from rag.flow.pipeline import Pipeline
from rag.nlp import search
from rag.utils.redis_conn import REDIS_CONN
@ -54,6 +48,14 @@ def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.query(canvas_category=CanvasCategory.Agent)])
@manager.route('/list', methods=['GET']) # noqa: F821
@login_required
def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in \
UserCanvasService.query(user_id=current_user.id, canvas_category=CanvasCategory.Agent)], key=lambda x: x["update_time"]*-1)
)
@manager.route('/rm', methods=['POST']) # noqa: F821
@validate_request("canvas_ids")
@login_required
@ -75,10 +77,9 @@ def save():
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
cate = req.get("canvas_category", CanvasCategory.Agent)
if "id" not in req:
req["user_id"] = current_user.id
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip(), canvas_category=cate):
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip(), canvas_category=CanvasCategory.Agent):
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
@ -100,7 +101,7 @@ def save():
def get(canvas_id):
if not UserCanvasService.accessible(canvas_id, current_user.id):
return get_data_error_result(message="canvas not found.")
e, c = UserCanvasService.get_by_canvas_id(canvas_id)
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
return get_json_result(data=c)
@ -147,14 +148,6 @@ def run():
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
if cvs.canvas_category == CanvasCategory.DataFlow:
task_id = get_uuid()
Pipeline(cvs.dsl, tenant_id=current_user.id, doc_id=CANVAS_DEBUG_DOC_ID, task_id=task_id, flow_id=req["id"])
ok, error_message = queue_dataflow(tenant_id=user_id, flow_id=req["id"], task_id=task_id, file=files[0], priority=0)
if not ok:
return get_data_error_result(message=error_message)
return get_json_result(data={"message_id": task_id})
try:
canvas = Canvas(cvs.dsl, current_user.id, req["id"])
except Exception as e:
@ -180,44 +173,6 @@ def run():
return resp
@manager.route('/rerun', methods=['POST']) # noqa: F821
@validate_request("id", "dsl", "component_id")
@login_required
def rerun():
req = request.json
doc = PipelineOperationLogService.get_documents_info(req["id"])
if not doc:
return get_data_error_result(message="Document not found.")
doc = doc[0]
if 0 < doc["progress"] < 1:
return get_data_error_result(message=f"`{doc['name']}` is processing...")
if settings.docStoreConn.indexExist(search.index_name(current_user.id), doc["kb_id"]):
settings.docStoreConn.delete({"doc_id": doc["id"]}, search.index_name(current_user.id), doc["kb_id"])
doc["progress_msg"] = ""
doc["chunk_num"] = 0
doc["token_num"] = 0
DocumentService.clear_chunk_num_when_rerun(doc["id"])
DocumentService.update_by_id(id, doc)
TaskService.filter_delete([Task.doc_id == id])
dsl = req["dsl"]
dsl["path"] = [req["component_id"]]
PipelineOperationLogService.update_by_id(req["id"], {"dsl": dsl})
queue_dataflow(tenant_id=current_user.id, flow_id=req["id"], task_id=get_uuid(), doc_id=doc["id"], priority=0, rerun=True)
return get_json_result(data=True)
@manager.route('/cancel/<task_id>', methods=['PUT']) # noqa: F821
@login_required
def cancel(task_id):
try:
REDIS_CONN.set(f"{task_id}-cancel", "x")
except Exception as e:
logging.exception(e)
return get_json_result(data=True)
@manager.route('/reset', methods=['POST']) # noqa: F821
@validate_request("id")
@login_required
@ -243,7 +198,7 @@ def reset():
@manager.route("/upload/<canvas_id>", methods=["POST"]) # noqa: F821
def upload(canvas_id):
e, cvs = UserCanvasService.get_by_canvas_id(canvas_id)
e, cvs = UserCanvasService.get_by_tenant_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
@ -393,22 +348,6 @@ def test_db_connect():
cursor = db.cursor()
cursor.execute("SELECT 1")
cursor.close()
elif req["db_type"] == 'IBM DB2':
import ibm_db
conn_str = (
f"DATABASE={req['database']};"
f"HOSTNAME={req['host']};"
f"PORT={req['port']};"
f"PROTOCOL=TCPIP;"
f"UID={req['username']};"
f"PWD={req['password']};"
)
logging.info(conn_str)
conn = ibm_db.connect(conn_str, "", "")
stmt = ibm_db.exec_immediate(conn, "SELECT 1 FROM sysibm.sysdummy1")
ibm_db.fetch_assoc(stmt)
ibm_db.close(conn)
return get_json_result(data="Database Connection Successful!")
else:
return server_error_response("Unsupported database type.")
if req["db_type"] != 'mssql':
@ -444,32 +383,22 @@ def getversion( version_id):
return get_json_result(data=f"Error getting history file: {e}")
@manager.route('/list', methods=['GET']) # noqa: F821
@manager.route('/listteam', methods=['GET']) # noqa: F821
@login_required
def list_canvas():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
orderby = request.args.get("orderby", "create_time")
canvas_category = request.args.get("canvas_category")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
owner_ids = [id for id in request.args.get("owner_ids", "").strip().split(",") if id]
if not owner_ids:
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
tenants = [m["tenant_id"] for m in tenants]
tenants.append(current_user.id)
canvas, total = UserCanvasService.get_by_tenant_ids(
tenants, current_user.id, page_number,
items_per_page, orderby, desc, keywords, canvas_category)
else:
tenants = owner_ids
canvas, total = UserCanvasService.get_by_tenant_ids(
tenants, current_user.id, 0,
0, orderby, desc, keywords, canvas_category)
return get_json_result(data={"canvas": canvas, "total": total})
[m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords, canvas_category=CanvasCategory.Agent)
return get_json_result(data={"canvas": canvas, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route('/setting', methods=['POST']) # noqa: F821
@ -545,7 +474,7 @@ def sessions(canvas_id):
@manager.route('/prompts', methods=['GET']) # noqa: F821
@login_required
def prompts():
from rag.prompts.generator import ANALYZE_TASK_SYSTEM, ANALYZE_TASK_USER, NEXT_STEP, REFLECT, CITATION_PROMPT_TEMPLATE
from rag.prompts.prompts import ANALYZE_TASK_SYSTEM, ANALYZE_TASK_USER, NEXT_STEP, REFLECT, CITATION_PROMPT_TEMPLATE
return get_json_result(data={
"task_analysis": ANALYZE_TASK_SYSTEM +"\n\n"+ ANALYZE_TASK_USER,
"plan_generation": NEXT_STEP,
@ -554,11 +483,3 @@ def prompts():
#"context_ranking": RANK_MEMORY,
"citation_guidelines": CITATION_PROMPT_TEMPLATE
})
@manager.route('/download', methods=['GET']) # noqa: F821
def download():
id = request.args.get("id")
created_by = request.args.get("created_by")
blob = FileService.get_blob(created_by, id)
return flask.make_response(blob)

View File

@ -33,7 +33,8 @@ from api.utils.api_utils import get_data_error_result, get_json_result, server_e
from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question
from rag.nlp import rag_tokenizer, search
from rag.prompts.generator import gen_meta_filter, cross_languages, keyword_extraction
from rag.prompts import cross_languages, keyword_extraction
from rag.prompts.prompts import gen_meta_filter
from rag.settings import PAGERANK_FLD
from rag.utils import rmSpace

View File

@ -15,7 +15,7 @@
#
import json
import re
import logging
import traceback
from copy import deepcopy
from flask import Response, request
from flask_login import current_user, login_required
@ -29,8 +29,8 @@ from api.db.services.search_service import SearchService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from rag.prompts.template import load_prompt
from rag.prompts.generator import chunks_format
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import chunks_format
@manager.route("/set", methods=["POST"]) # noqa: F821
@ -226,7 +226,7 @@ def completion():
if not is_embedded:
ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e:
logging.exception(e)
traceback.print_exc()
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"

353
api/apps/dataflow_app.py Normal file
View File

@ -0,0 +1,353 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
import sys
import time
from functools import partial
import trio
from flask import request
from flask_login import current_user, login_required
from agent.canvas import Canvas
from agent.component import LLM
from api.db import CanvasCategory, FileType
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
from api.db.services.document_service import DocumentService
from api.db.services.file_service import FileService
from api.db.services.task_service import queue_dataflow
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from api.utils.file_utils import filename_type, read_potential_broken_pdf
from rag.flow.pipeline import Pipeline
@manager.route("/templates", methods=["GET"]) # noqa: F821
@login_required
def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.query(canvas_category=CanvasCategory.DataFlow)])
@manager.route("/list", methods=["GET"]) # noqa: F821
@login_required
def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in UserCanvasService.query(user_id=current_user.id, canvas_category=CanvasCategory.DataFlow)], key=lambda x: x["update_time"] * -1))
@manager.route("/rm", methods=["POST"]) # noqa: F821
@validate_request("canvas_ids")
@login_required
def rm():
for i in request.json["canvas_ids"]:
if not UserCanvasService.accessible(i, current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
UserCanvasService.delete_by_id(i)
return get_json_result(data=True)
@manager.route("/set", methods=["POST"]) # noqa: F821
@validate_request("dsl", "title")
@login_required
def save():
req = request.json
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
req["canvas_category"] = CanvasCategory.DataFlow
if "id" not in req:
req["user_id"] = current_user.id
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip(), canvas_category=CanvasCategory.DataFlow):
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
return get_data_error_result(message="Fail to save canvas.")
else:
if not UserCanvasService.accessible(req["id"], current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
# save version
UserCanvasVersionService.insert(user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.delete_all_versions(req["id"])
return get_json_result(data=req)
@manager.route("/get/<canvas_id>", methods=["GET"]) # noqa: F821
@login_required
def get(canvas_id):
if not UserCanvasService.accessible(canvas_id, current_user.id):
return get_data_error_result(message="canvas not found.")
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
return get_json_result(data=c)
@manager.route("/run", methods=["POST"]) # noqa: F821
@validate_request("id")
@login_required
def run():
req = request.json
flow_id = req.get("id", "")
doc_id = req.get("doc_id", "")
if not all([flow_id, doc_id]):
return get_data_error_result(message="id and doc_id are required.")
if not DocumentService.get_by_id(doc_id):
return get_data_error_result(message=f"Document for {doc_id} not found.")
user_id = req.get("user_id", current_user.id)
if not UserCanvasService.accessible(flow_id, current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
e, cvs = UserCanvasService.get_by_id(flow_id)
if not e:
return get_data_error_result(message="canvas not found.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
task_id = get_uuid()
ok, error_message = queue_dataflow(dsl=cvs.dsl, tenant_id=user_id, doc_id=doc_id, task_id=task_id, flow_id=flow_id, priority=0)
if not ok:
return server_error_response(error_message)
return get_json_result(data={"task_id": task_id, "flow_id": flow_id})
@manager.route("/reset", methods=["POST"]) # noqa: F821
@validate_request("id")
@login_required
def reset():
req = request.json
flow_id = req.get("id", "")
if not flow_id:
return get_data_error_result(message="id is required.")
if not UserCanvasService.accessible(flow_id, current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
task_id = req.get("task_id", "")
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
dataflow = Pipeline(dsl=json.dumps(user_canvas.dsl), tenant_id=current_user.id, flow_id=flow_id, task_id=task_id)
dataflow.reset()
req["dsl"] = json.loads(str(dataflow))
UserCanvasService.update_by_id(req["id"], {"dsl": req["dsl"]})
return get_json_result(data=req["dsl"])
except Exception as e:
return server_error_response(e)
@manager.route("/upload/<canvas_id>", methods=["POST"]) # noqa: F821
def upload(canvas_id):
e, cvs = UserCanvasService.get_by_tenant_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
user_id = cvs["user_id"]
def structured(filename, filetype, blob, content_type):
nonlocal user_id
if filetype == FileType.PDF.value:
blob = read_potential_broken_pdf(blob)
location = get_uuid()
FileService.put_blob(user_id, location, blob)
return {
"id": location,
"name": filename,
"size": sys.getsizeof(blob),
"extension": filename.split(".")[-1].lower(),
"mime_type": content_type,
"created_by": user_id,
"created_at": time.time(),
"preview_url": None,
}
if request.args.get("url"):
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CrawlResult, DefaultMarkdownGenerator, PruningContentFilter
try:
url = request.args.get("url")
filename = re.sub(r"\?.*", "", url.split("/")[-1])
async def adownload():
browser_config = BrowserConfig(
headless=True,
verbose=False,
)
async with AsyncWebCrawler(config=browser_config) as crawler:
crawler_config = CrawlerRunConfig(markdown_generator=DefaultMarkdownGenerator(content_filter=PruningContentFilter()), pdf=True, screenshot=False)
result: CrawlResult = await crawler.arun(url=url, config=crawler_config)
return result
page = trio.run(adownload())
if page.pdf:
if filename.split(".")[-1].lower() != "pdf":
filename += ".pdf"
return get_json_result(data=structured(filename, "pdf", page.pdf, page.response_headers["content-type"]))
return get_json_result(data=structured(filename, "html", str(page.markdown).encode("utf-8"), page.response_headers["content-type"], user_id))
except Exception as e:
return server_error_response(e)
file = request.files["file"]
try:
DocumentService.check_doc_health(user_id, file.filename)
return get_json_result(data=structured(file.filename, filename_type(file.filename), file.read(), file.content_type))
except Exception as e:
return server_error_response(e)
@manager.route("/input_form", methods=["GET"]) # noqa: F821
@login_required
def input_form():
flow_id = request.args.get("id")
cpn_id = request.args.get("component_id")
try:
e, user_canvas = UserCanvasService.get_by_id(flow_id)
if not e:
return get_data_error_result(message="canvas not found.")
if not UserCanvasService.query(user_id=current_user.id, id=flow_id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
dataflow = Pipeline(dsl=json.dumps(user_canvas.dsl), tenant_id=current_user.id, flow_id=flow_id, task_id="")
return get_json_result(data=dataflow.get_component_input_form(cpn_id))
except Exception as e:
return server_error_response(e)
@manager.route("/debug", methods=["POST"]) # noqa: F821
@validate_request("id", "component_id", "params")
@login_required
def debug():
req = request.json
if not UserCanvasService.accessible(req["id"], current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas.reset()
canvas.message_id = get_uuid()
component = canvas.get_component(req["component_id"])["obj"]
component.reset()
if isinstance(component, LLM):
component.set_debug_inputs(req["params"])
component.invoke(**{k: o["value"] for k, o in req["params"].items()})
outputs = component.output()
for k in outputs.keys():
if isinstance(outputs[k], partial):
txt = ""
for c in outputs[k]():
txt += c
outputs[k] = txt
return get_json_result(data=outputs)
except Exception as e:
return server_error_response(e)
# api get list version dsl of canvas
@manager.route("/getlistversion/<canvas_id>", methods=["GET"]) # noqa: F821
@login_required
def getlistversion(canvas_id):
try:
list = sorted([c.to_dict() for c in UserCanvasVersionService.list_by_canvas_id(canvas_id)], key=lambda x: x["update_time"] * -1)
return get_json_result(data=list)
except Exception as e:
return get_data_error_result(message=f"Error getting history files: {e}")
# api get version dsl of canvas
@manager.route("/getversion/<version_id>", methods=["GET"]) # noqa: F821
@login_required
def getversion(version_id):
try:
e, version = UserCanvasVersionService.get_by_id(version_id)
if version:
return get_json_result(data=version.to_dict())
except Exception as e:
return get_json_result(data=f"Error getting history file: {e}")
@manager.route("/listteam", methods=["GET"]) # noqa: F821
@login_required
def list_canvas():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
canvas, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number, items_per_page, orderby, desc, keywords, canvas_category=CanvasCategory.DataFlow
)
return get_json_result(data={"canvas": canvas, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route("/setting", methods=["POST"]) # noqa: F821
@validate_request("id", "title", "permission")
@login_required
def setting():
req = request.json
req["user_id"] = current_user.id
if not UserCanvasService.accessible(req["id"], current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
e, flow = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
flow = flow.to_dict()
flow["title"] = req["title"]
for key in ("description", "permission", "avatar"):
if value := req.get(key):
flow[key] = value
num = UserCanvasService.update_by_id(req["id"], flow)
return get_json_result(data=num)
@manager.route("/trace", methods=["GET"]) # noqa: F821
def trace():
dataflow_id = request.args.get("dataflow_id")
task_id = request.args.get("task_id")
if not all([dataflow_id, task_id]):
return get_data_error_result(message="dataflow_id and task_id are required.")
e, dataflow_canvas = UserCanvasService.get_by_id(dataflow_id)
if not e:
return get_data_error_result(message="dataflow not found.")
dsl_str = json.dumps(dataflow_canvas.dsl, ensure_ascii=False)
dataflow = Pipeline(dsl=dsl_str, tenant_id=dataflow_canvas.user_id, flow_id=dataflow_id, task_id=task_id)
log = dataflow.fetch_logs()
return get_json_result(data=log)

View File

@ -32,7 +32,7 @@ from api.db.services.document_service import DocumentService, doc_upload_and_par
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import TaskService, cancel_all_task_of, queue_tasks, queue_dataflow
from api.db.services.task_service import TaskService, cancel_all_task_of, queue_tasks
from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from api.utils.api_utils import (
@ -182,7 +182,6 @@ def create():
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": kb.parser_id,
"pipeline_id": kb.pipeline_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"type": FileType.VIRTUAL,
@ -480,11 +479,8 @@ def run():
kb_table_num_map[kb_id] = count
if kb_table_num_map[kb_id] <= 0:
KnowledgebaseService.delete_field_map(kb_id)
if doc.get("pipeline_id", ""):
queue_dataflow(tenant_id, flow_id=doc["pipeline_id"], task_id=get_uuid(), doc_id=id)
else:
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name, 0)
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name, 0)
return get_json_result(data=True)
except Exception as e:
@ -550,22 +546,31 @@ def get(doc_id):
@manager.route("/change_parser", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id")
@validate_request("doc_id", "parser_id")
def change_parser():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if doc.parser_id.lower() == req["parser_id"].lower():
if "parser_config" in req:
if req["parser_config"] == doc.parser_config:
return get_json_result(data=True)
else:
return get_json_result(data=True)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if (doc.type == FileType.VISUAL and req["parser_id"] != "picture") or (re.search(r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation"):
return get_data_error_result(message="Not supported yet!")
def reset_doc():
nonlocal doc
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": TaskStatus.UNSTART.value})
if not e:
return get_data_error_result(message="Document not found!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, doc.process_duration * -1)
if not e:
@ -576,26 +581,6 @@ def change_parser():
if settings.docStoreConn.indexExist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
try:
if "pipeline_id" in req:
if doc.pipeline_id == req["pipeline_id"]:
return get_json_result(data=True)
DocumentService.update_by_id(doc.id, {"pipeline_id": req["pipeline_id"]})
reset_doc()
return get_json_result(data=True)
if doc.parser_id.lower() == req["parser_id"].lower():
if "parser_config" in req:
if req["parser_config"] == doc.parser_config:
return get_json_result(data=True)
else:
return get_json_result(data=True)
if (doc.type == FileType.VISUAL and req["parser_id"] != "picture") or (re.search(r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation"):
return get_data_error_result(message="Not supported yet!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
reset_doc()
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -246,8 +246,6 @@ def rm():
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")
if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
if file.source_type == FileSource.KNOWLEDGEBASE:
continue
@ -294,8 +292,6 @@ def rename():
e, file = FileService.get_by_id(req["file_id"])
if not e:
return get_data_error_result(message="File not found!")
if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
if file.type != FileType.FOLDER.value \
and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
file.name.lower()).suffix:
@ -332,8 +328,6 @@ def get(file_id):
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(message="Document not found!")
if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
blob = STORAGE_IMPL.get(file.parent_id, file.location)
if not blob:
@ -373,8 +367,6 @@ def move():
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")
if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
fe, _ = FileService.get_by_id(parent_id)
if not fe:
return get_data_error_result(message="Parent Folder not found!")

View File

@ -14,21 +14,18 @@
# limitations under the License.
#
import json
import logging
from flask import request
from flask_login import login_required, current_user
from api.db.services import duplicate_name
from api.db.services.document_service import DocumentService, queue_raptor_o_graphrag_tasks
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.pipeline_operation_log_service import PipelineOperationLogService
from api.db.services.task_service import TaskService, GRAPH_RAPTOR_FAKE_DOC_ID
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import get_error_data_result, server_error_response, get_data_error_result, validate_request, not_allowed_parameters
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request, not_allowed_parameters
from api.utils import get_uuid
from api.db import PipelineTaskType, StatusEnum, FileSource, VALID_FILE_TYPES, VALID_TASK_STATUS
from api.db import StatusEnum, FileSource
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.db_models import File
from api.utils.api_utils import get_json_result
@ -38,6 +35,7 @@ from api.constants import DATASET_NAME_LIMIT
from rag.settings import PAGERANK_FLD
from rag.utils.storage_factory import STORAGE_IMPL
@manager.route('/create', methods=['post']) # noqa: F821
@login_required
@validate_request("name")
@ -63,39 +61,10 @@ def create():
req["name"] = dataset_name
req["tenant_id"] = current_user.id
req["created_by"] = current_user.id
if not req.get("parser_id"):
req["parser_id"] = "naive"
e, t = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Tenant not found.")
req["parser_config"] = {
"layout_recognize": "DeepDOC",
"chunk_token_num": 512,
"delimiter": "\n",
"auto_keywords": 0,
"auto_questions": 0,
"html4excel": False,
"topn_tags": 3,
"raptor": {
"use_raptor": True,
"prompt": "Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize.",
"max_token": 256,
"threshold": 0.1,
"max_cluster": 64,
"random_seed": 0
},
"graphrag": {
"use_graphrag": True,
"entity_types": [
"organization",
"person",
"geo",
"event",
"category"
],
"method": "light"
}
}
req["embd_id"] = t.embd_id
if not KnowledgebaseService.save(**req):
return get_data_error_result()
return get_json_result(data={"kb_id": req["id"]})
@ -426,352 +395,3 @@ def get_basic_info():
basic_info = DocumentService.knowledgebase_basic_info(kb_id)
return get_json_result(data=basic_info)
@manager.route("/list_pipeline_logs", methods=["POST"]) # noqa: F821
@login_required
def list_pipeline_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
create_date_from = request.args.get("create_date_from", "")
create_date_to = request.args.get("create_date_to", "")
if create_date_to > create_date_from:
return get_data_error_result(message="Create data filter is abnormal.")
req = request.get_json()
operation_status = req.get("operation_status", [])
if operation_status:
invalid_status = {s for s in operation_status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(message=f"Invalid filter operation_status status conditions: {', '.join(invalid_status)}")
types = req.get("types", [])
if types:
invalid_types = {t for t in types if t not in VALID_FILE_TYPES}
if invalid_types:
return get_data_error_result(message=f"Invalid filter conditions: {', '.join(invalid_types)} type{'s' if len(invalid_types) > 1 else ''}")
suffix = req.get("suffix", [])
try:
logs, tol = PipelineOperationLogService.get_file_logs_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, keywords, operation_status, types, suffix, create_date_from, create_date_to)
return get_json_result(data={"total": tol, "logs": logs})
except Exception as e:
return server_error_response(e)
@manager.route("/list_pipeline_dataset_logs", methods=["POST"]) # noqa: F821
@login_required
def list_pipeline_dataset_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
create_date_from = request.args.get("create_date_from", "")
create_date_to = request.args.get("create_date_to", "")
if create_date_to > create_date_from:
return get_data_error_result(message="Create data filter is abnormal.")
req = request.get_json()
operation_status = req.get("operation_status", [])
if operation_status:
invalid_status = {s for s in operation_status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(message=f"Invalid filter operation_status status conditions: {', '.join(invalid_status)}")
try:
logs, tol = PipelineOperationLogService.get_dataset_logs_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, operation_status, create_date_from, create_date_to)
return get_json_result(data={"total": tol, "logs": logs})
except Exception as e:
return server_error_response(e)
@manager.route("/delete_pipeline_logs", methods=["POST"]) # noqa: F821
@login_required
def delete_pipeline_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
req = request.get_json()
log_ids = req.get("log_ids", [])
PipelineOperationLogService.delete_by_ids(log_ids)
return get_json_result(data=True)
@manager.route("/pipeline_log_detail", methods=["GET"]) # noqa: F821
@login_required
def pipeline_log_detail():
log_id = request.args.get("log_id")
if not log_id:
return get_json_result(data=False, message='Lack of "Pipeline log ID"', code=settings.RetCode.ARGUMENT_ERROR)
ok, log = PipelineOperationLogService.get_by_id(log_id)
if not ok:
return get_data_error_result(message="Invalid pipeline log ID")
return get_json_result(data=log.to_dict())
@manager.route("/run_graphrag", methods=["POST"]) # noqa: F821
@login_required
def run_graphrag():
req = request.json
kb_id = req.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.graphrag_task_id
if task_id:
ok, task = TaskService.get_by_id(task_id)
if not ok:
logging.warning(f"A valid GraphRAG task id is expected for kb {kb_id}")
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A Graph Task is already running.")
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
items_per_page=0,
orderby="create_time",
desc=False,
keywords="",
run_status=[],
types=[],
suffix=[],
)
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(doc=sample_document, ty="graphrag", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
if not KnowledgebaseService.update_by_id(kb.id, {"graphrag_task_id": task_id}):
logging.warning(f"Cannot save graphrag_task_id for kb {kb_id}")
return get_json_result(data={"graphrag_task_id": task_id})
@manager.route("/trace_graphrag", methods=["GET"]) # noqa: F821
@login_required
def trace_graphrag():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.graphrag_task_id
if not task_id:
return get_json_result(data={})
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_error_data_result(message="GraphRAG Task Not Found or Error Occurred")
return get_json_result(data=task.to_dict())
@manager.route("/run_raptor", methods=["POST"]) # noqa: F821
@login_required
def run_raptor():
req = request.json
kb_id = req.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.raptor_task_id
if task_id:
ok, task = TaskService.get_by_id(task_id)
if not ok:
logging.warning(f"A valid RAPTOR task id is expected for kb {kb_id}")
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A RAPTOR Task is already running.")
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
items_per_page=0,
orderby="create_time",
desc=False,
keywords="",
run_status=[],
types=[],
suffix=[],
)
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(doc=sample_document, ty="raptor", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
if not KnowledgebaseService.update_by_id(kb.id, {"raptor_task_id": task_id}):
logging.warning(f"Cannot save raptor_task_id for kb {kb_id}")
return get_json_result(data={"raptor_task_id": task_id})
@manager.route("/trace_raptor", methods=["GET"]) # noqa: F821
@login_required
def trace_raptor():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.raptor_task_id
if not task_id:
return get_json_result(data={})
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_error_data_result(message="RAPTOR Task Not Found or Error Occurred")
return get_json_result(data=task.to_dict())
@manager.route("/run_mindmap", methods=["POST"]) # noqa: F821
@login_required
def run_mindmap():
req = request.json
kb_id = req.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.mindmap_task_id
if task_id:
ok, task = TaskService.get_by_id(task_id)
if not ok:
logging.warning(f"A valid Mindmap task id is expected for kb {kb_id}")
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A Mindmap Task is already running.")
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
items_per_page=0,
orderby="create_time",
desc=False,
keywords="",
run_status=[],
types=[],
suffix=[],
)
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(doc=sample_document, ty="mindmap", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
if not KnowledgebaseService.update_by_id(kb.id, {"mindmap_task_id": task_id}):
logging.warning(f"Cannot save mindmap_task_id for kb {kb_id}")
return get_json_result(data={"mindmap_task_id": task_id})
@manager.route("/trace_mindmap", methods=["GET"]) # noqa: F821
@login_required
def trace_mindmap():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.mindmap_task_id
if not task_id:
return get_json_result(data={})
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_error_data_result(message="Mindmap Task Not Found or Error Occurred")
return get_json_result(data=task.to_dict())
@manager.route("/unbind_task", methods=["DELETE"]) # noqa: F821
@login_required
def delete_kb_task():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_json_result(data=True)
pipeline_task_type = request.args.get("pipeline_task_type", "")
if not pipeline_task_type or pipeline_task_type not in [PipelineTaskType.GRAPH_RAG, PipelineTaskType.RAPTOR, PipelineTaskType.MINDMAP]:
return get_error_data_result(message="Invalid task type")
match pipeline_task_type:
case PipelineTaskType.GRAPH_RAG:
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
kb_task_id = "graphrag_task_id"
kb_task_finish_at = "graphrag_task_finish_at"
case PipelineTaskType.RAPTOR:
kb_task_id = "raptor_task_id"
kb_task_finish_at = "raptor_task_finish_at"
case PipelineTaskType.MINDMAP:
kb_task_id = "mindmap_task_id"
kb_task_finish_at = "mindmap_task_finish_at"
case _:
return get_error_data_result(message="Internal Error: Invalid task type")
ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id: "", kb_task_finish_at: None})
if not ok:
return server_error_response(f"Internal error: cannot delete task {pipeline_task_type}")
return get_json_result(data=True)

View File

@ -40,7 +40,7 @@ from api.utils.api_utils import check_duplicate_ids, construct_json_result, get_
from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question
from rag.nlp import rag_tokenizer, search
from rag.prompts.generator import cross_languages, keyword_extraction
from rag.prompts import cross_languages, keyword_extraction
from rag.utils import rmSpace
from rag.utils.storage_factory import STORAGE_IMPL

View File

@ -83,16 +83,16 @@ def upload(tenant_id):
return get_json_result(data=False, message="Can't find this folder!", code=404)
for file_obj in file_objs:
# Handle file path
# 文件路径处理
full_path = '/' + file_obj.filename
file_obj_names = full_path.split('/')
file_len = len(file_obj_names)
# Get folder path ID
# 获取文件夹路径ID
file_id_list = FileService.get_id_list_by_id(pf_id, file_obj_names, 1, [pf_id])
len_id_list = len(file_id_list)
# Crete file folder
# 创建文件夹结构
if file_len != len_id_list:
e, file = FileService.get_by_id(file_id_list[len_id_list - 1])
if not e:

View File

@ -38,8 +38,9 @@ from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
from rag.app.tag import label_question
from rag.prompts.template import load_prompt
from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format
from rag.prompts import chunks_format
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import cross_languages, gen_meta_filter, keyword_extraction
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821

View File

@ -39,7 +39,6 @@ from rag.utils.redis_conn import REDIS_CONN
from flask import jsonify
from api.utils.health_utils import run_health_checks
@manager.route("/version", methods=["GET"]) # noqa: F821
@login_required
def version():

View File

@ -34,6 +34,7 @@ from api.db.services.user_service import TenantService, UserService, UserTenantS
from api.utils import (
current_timestamp,
datetime_format,
decrypt,
download_img,
get_format_time,
get_uuid,
@ -45,7 +46,6 @@ from api.utils.api_utils import (
server_error_response,
validate_request,
)
from api.utils.crypt import decrypt
@manager.route("/login", methods=["POST", "GET"]) # noqa: F821
@ -98,14 +98,7 @@ def login():
return get_json_result(data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password")
user = UserService.query_user(email, password)
if user and hasattr(user, 'is_active') and user.is_active == "0":
return get_json_result(
data=False,
code=settings.RetCode.FORBIDDEN,
message="This account has been disabled, please contact the administrator!",
)
elif user:
if user:
response_data = user.to_json()
user.access_token = get_uuid()
login_user(user)
@ -234,9 +227,6 @@ def oauth_callback(channel):
# User exists, try to log in
user = users[0]
user.access_token = get_uuid()
if user and hasattr(user, 'is_active') and user.is_active == "0":
return redirect("/?error=user_inactive")
login_user(user)
user.save()
return redirect(f"/?auth={user.get_id()}")
@ -327,8 +317,6 @@ def github_callback():
# User has already registered, try to log in
user = users[0]
user.access_token = get_uuid()
if user and hasattr(user, 'is_active') and user.is_active == "0":
return redirect("/?error=user_inactive")
login_user(user)
user.save()
return redirect("/?auth=%s" % user.get_id())
@ -430,8 +418,6 @@ def feishu_callback():
# User has already registered, try to log in
user = users[0]
if user and hasattr(user, 'is_active') and user.is_active == "0":
return redirect("/?error=user_inactive")
user.access_token = get_uuid()
login_user(user)
user.save()

View File

@ -1,2 +0,0 @@
The python files in this directory are shared between service. They contain common utilities, models, and functions that can be used across various
services to ensure consistency and reduce code duplication.

View File

@ -1,21 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
def encode_to_base64(input_string):
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
return base64_encoded.decode('utf-8')

View File

@ -23,11 +23,6 @@ class StatusEnum(Enum):
INVALID = "0"
class ActiveEnum(Enum):
ACTIVE = "1"
INACTIVE = "0"
class UserTenantRole(StrEnum):
OWNER = 'owner'
ADMIN = 'admin'
@ -116,7 +111,7 @@ class CanvasCategory(StrEnum):
Agent = "agent_canvas"
DataFlow = "dataflow_canvas"
VALID_CANVAS_CATEGORIES = {CanvasCategory.Agent, CanvasCategory.DataFlow}
VALID_CAVAS_CATEGORIES = {CanvasCategory.Agent, CanvasCategory.DataFlow}
class MCPServerType(StrEnum):
@ -127,15 +122,4 @@ class MCPServerType(StrEnum):
VALID_MCP_SERVER_TYPES = {MCPServerType.SSE, MCPServerType.STREAMABLE_HTTP}
class PipelineTaskType(StrEnum):
PARSE = "Parse"
DOWNLOAD = "Download"
RAPTOR = "RAPTOR"
GRAPH_RAG = "GraphRAG"
MINDMAP = "Mindmap"
VALID_PIPELINE_TASK_TYPES = {PipelineTaskType.PARSE, PipelineTaskType.DOWNLOAD, PipelineTaskType.RAPTOR, PipelineTaskType.GRAPH_RAG, PipelineTaskType.MINDMAP}
KNOWLEDGEBASE_FOLDER_NAME=".knowledgebase"

View File

@ -26,14 +26,12 @@ from functools import wraps
from flask_login import UserMixin
from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
from peewee import InterfaceError, OperationalError, BigIntegerField, BooleanField, CharField, CompositeKey, DateTimeField, Field, FloatField, IntegerField, Metadata, Model, TextField
from peewee import BigIntegerField, BooleanField, CharField, CompositeKey, DateTimeField, Field, FloatField, IntegerField, Metadata, Model, TextField
from playhouse.migrate import MySQLMigrator, PostgresqlMigrator, migrate
from playhouse.pool import PooledMySQLDatabase, PooledPostgresqlDatabase
from api import settings, utils
from api.db import ParserType, SerializedType
from api.utils.json import json_dumps, json_loads
from api.utils.configs import deserialize_b64, serialize_b64
def singleton(cls, *args, **kw):
@ -72,12 +70,12 @@ class JSONField(LongTextField):
def db_value(self, value):
if value is None:
value = self.default_value
return json_dumps(value)
return utils.json_dumps(value)
def python_value(self, value):
if not value:
return self.default_value
return json_loads(value, object_hook=self._object_hook, object_pairs_hook=self._object_pairs_hook)
return utils.json_loads(value, object_hook=self._object_hook, object_pairs_hook=self._object_pairs_hook)
class ListField(JSONField):
@ -93,21 +91,21 @@ class SerializedField(LongTextField):
def db_value(self, value):
if self._serialized_type == SerializedType.PICKLE:
return serialize_b64(value, to_str=True)
return utils.serialize_b64(value, to_str=True)
elif self._serialized_type == SerializedType.JSON:
if value is None:
return None
return json_dumps(value, with_type=True)
return utils.json_dumps(value, with_type=True)
else:
raise ValueError(f"the serialized type {self._serialized_type} is not supported")
def python_value(self, value):
if self._serialized_type == SerializedType.PICKLE:
return deserialize_b64(value)
return utils.deserialize_b64(value)
elif self._serialized_type == SerializedType.JSON:
if value is None:
return {}
return json_loads(value, object_hook=self._object_hook, object_pairs_hook=self._object_pairs_hook)
return utils.json_loads(value, object_hook=self._object_hook, object_pairs_hook=self._object_pairs_hook)
else:
raise ValueError(f"the serialized type {self._serialized_type} is not supported")
@ -252,63 +250,36 @@ class RetryingPooledMySQLDatabase(PooledMySQLDatabase):
super().__init__(*args, **kwargs)
def execute_sql(self, sql, params=None, commit=True):
from peewee import OperationalError
for attempt in range(self.max_retries + 1):
try:
return super().execute_sql(sql, params, commit)
except (OperationalError, InterfaceError) as e:
error_codes = [2013, 2006]
error_messages = ['', 'Lost connection']
should_retry = (
(hasattr(e, 'args') and e.args and e.args[0] in error_codes) or
(str(e) in error_messages) or
(hasattr(e, '__class__') and e.__class__.__name__ == 'InterfaceError')
)
if should_retry and attempt < self.max_retries:
logging.warning(
f"Database connection issue (attempt {attempt+1}/{self.max_retries}): {e}"
)
except OperationalError as e:
if e.args[0] in (2013, 2006) and attempt < self.max_retries:
logging.warning(f"Lost connection (attempt {attempt + 1}/{self.max_retries}): {e}")
self._handle_connection_loss()
time.sleep(self.retry_delay * (2 ** attempt))
time.sleep(self.retry_delay * (2**attempt))
else:
logging.error(f"DB execution failure: {e}")
raise
return None
def _handle_connection_loss(self):
# self.close_all()
# self.connect()
try:
self.close()
except Exception:
pass
try:
self.connect()
except Exception as e:
logging.error(f"Failed to reconnect: {e}")
time.sleep(0.1)
self.connect()
self.close_all()
self.connect()
def begin(self):
from peewee import OperationalError
for attempt in range(self.max_retries + 1):
try:
return super().begin()
except (OperationalError, InterfaceError) as e:
error_codes = [2013, 2006]
error_messages = ['', 'Lost connection']
should_retry = (
(hasattr(e, 'args') and e.args and e.args[0] in error_codes) or
(str(e) in error_messages) or
(hasattr(e, '__class__') and e.__class__.__name__ == 'InterfaceError')
)
if should_retry and attempt < self.max_retries:
logging.warning(
f"Lost connection during transaction (attempt {attempt+1}/{self.max_retries})"
)
except OperationalError as e:
if e.args[0] in (2013, 2006) and attempt < self.max_retries:
logging.warning(f"Lost connection during transaction (attempt {attempt + 1}/{self.max_retries})")
self._handle_connection_loss()
time.sleep(self.retry_delay * (2 ** attempt))
time.sleep(self.retry_delay * (2**attempt))
else:
raise
@ -328,16 +299,7 @@ class BaseDataBase:
def __init__(self):
database_config = settings.DATABASE.copy()
db_name = database_config.pop("name")
pool_config = {
'max_retries': 5,
'retry_delay': 1,
}
database_config.update(pool_config)
self.database_connection = PooledDatabase[settings.DATABASE_TYPE.upper()].value(
db_name, **database_config
)
# self.database_connection = PooledDatabase[settings.DATABASE_TYPE.upper()].value(db_name, **database_config)
self.database_connection = PooledDatabase[settings.DATABASE_TYPE.upper()].value(db_name, **database_config)
logging.info("init database on cluster mode successfully")
@ -684,17 +646,8 @@ class Knowledgebase(DataBaseModel):
vector_similarity_weight = FloatField(default=0.3, index=True)
parser_id = CharField(max_length=32, null=False, help_text="default parser ID", default=ParserType.NAIVE.value, index=True)
pipeline_id = CharField(max_length=32, null=True, help_text="Pipeline ID", index=True)
parser_config = JSONField(null=False, default={"pages": [[1, 1000000]]})
pagerank = IntegerField(default=0, index=False)
graphrag_task_id = CharField(max_length=32, null=True, help_text="Graph RAG task ID", index=True)
graphrag_task_finish_at = DateTimeField(null=True)
raptor_task_id = CharField(max_length=32, null=True, help_text="RAPTOR task ID", index=True)
raptor_task_finish_at = DateTimeField(null=True)
mindmap_task_id = CharField(max_length=32, null=True, help_text="Mindmap task ID", index=True)
mindmap_task_finish_at = DateTimeField(null=True)
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted, 1: validate)", default="1", index=True)
def __str__(self):
@ -709,7 +662,6 @@ class Document(DataBaseModel):
thumbnail = TextField(null=True, help_text="thumbnail base64 string")
kb_id = CharField(max_length=256, null=False, index=True)
parser_id = CharField(max_length=32, null=False, help_text="default parser ID", index=True)
pipeline_id = CharField(max_length=32, null=True, help_text="pipleline ID", index=True)
parser_config = JSONField(null=False, default={"pages": [[1, 1000000]]})
source_type = CharField(max_length=128, null=False, default="local", help_text="where dose this document come from", index=True)
type = CharField(max_length=32, null=False, help_text="file extension", index=True)
@ -952,32 +904,6 @@ class Search(DataBaseModel):
db_table = "search"
class PipelineOperationLog(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
document_id = CharField(max_length=32, index=True)
tenant_id = CharField(max_length=32, null=False, index=True)
kb_id = CharField(max_length=32, null=False, index=True)
pipeline_id = CharField(max_length=32, null=True, help_text="Pipeline ID", index=True)
pipeline_title = CharField(max_length=32, null=True, help_text="Pipeline title", index=True)
parser_id = CharField(max_length=32, null=False, help_text="Parser ID", index=True)
document_name = CharField(max_length=255, null=False, help_text="File name")
document_suffix = CharField(max_length=255, null=False, help_text="File suffix")
document_type = CharField(max_length=255, null=False, help_text="Document type")
source_from = CharField(max_length=255, null=False, help_text="Source")
progress = FloatField(default=0, index=True)
progress_msg = TextField(null=True, help_text="process message", default="")
process_begin_at = DateTimeField(null=True, index=True)
process_duration = FloatField(default=0)
dsl = JSONField(null=True, default=dict)
task_type = CharField(max_length=32, null=False, default="")
operation_status = CharField(max_length=32, null=False, help_text="Operation status")
avatar = TextField(null=True, help_text="avatar base64 string")
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted, 1: validate)", default="1", index=True)
class Meta:
db_table = "pipeline_operation_log"
def migrate_db():
logging.disable(logging.ERROR)
migrator = DatabaseMigrator[settings.DATABASE_TYPE.upper()].value(DB)
@ -1094,6 +1020,7 @@ def migrate_db():
migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={})))
except Exception:
pass
try:
migrate(migrator.alter_column_type("canvas_template", "title", JSONField(null=True, default=dict, help_text="Canvas title")))
except Exception:
@ -1110,36 +1037,4 @@ def migrate_db():
migrate(migrator.add_column("canvas_template", "canvas_category", CharField(max_length=32, null=False, default="agent_canvas", help_text="agent_canvas|dataflow_canvas", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "pipeline_id", CharField(max_length=32, null=True, help_text="Pipeline ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("document", "pipeline_id", CharField(max_length=32, null=True, help_text="Pipeline ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "graphrag_task_id", CharField(max_length=32, null=True, help_text="Gragh RAG task ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "raptor_task_id", CharField(max_length=32, null=True, help_text="RAPTOR task ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "graphrag_task_finish_at", DateTimeField(null=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "raptor_task_finish_at", CharField(null=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "mindmap_task_id", CharField(max_length=32, null=True, help_text="Mindmap task ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "mindmap_task_finish_at", CharField(null=True)))
except Exception:
pass
logging.disable(logging.NOTSET)

View File

@ -14,6 +14,7 @@
# limitations under the License.
#
import logging
import base64
import json
import os
import time
@ -31,7 +32,11 @@ from api.db.services.llm_service import LLMService, LLMBundle, get_init_tenant_l
from api.db.services.user_service import TenantService, UserTenantService
from api import settings
from api.utils.file_utils import get_project_base_directory
from api.common.base64 import encode_to_base64
def encode_to_base64(input_string):
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
return base64_encoded.decode('utf-8')
def init_superuser():

View File

@ -1,327 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import uuid
from api import settings
from api.utils.api_utils import group_by
from api.db import FileType, UserTenantRole, ActiveEnum
from api.db.services.api_service import APITokenService, API4ConversationService
from api.db.services.canvas_service import UserCanvasService
from api.db.services.conversation_service import ConversationService
from api.db.services.dialog_service import DialogService
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.llm_service import get_init_tenant_llm
from api.db.services.file_service import FileService
from api.db.services.mcp_server_service import MCPServerService
from api.db.services.search_service import SearchService
from api.db.services.task_service import TaskService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.db.services.user_service import TenantService, UserService, UserTenantService
from rag.utils.storage_factory import STORAGE_IMPL
from rag.nlp import search
def create_new_user(user_info: dict) -> dict:
"""
Add a new user, and create tenant, tenant llm, file folder for new user.
:param user_info: {
"email": <example@example.com>,
"nickname": <str, "name">,
"password": <decrypted password>,
"login_channel": <enum, "password">,
"is_superuser": <bool, role == "admin">,
}
:return: {
"success": <bool>,
"user_info": <dict>, # if true, return user_info
}
"""
# generate user_id and access_token for user
user_id = uuid.uuid1().hex
user_info['id'] = user_id
user_info['access_token'] = uuid.uuid1().hex
# construct tenant info
tenant = {
"id": user_id,
"name": user_info["nickname"] + "s Kingdom",
"llm_id": settings.CHAT_MDL,
"embd_id": settings.EMBEDDING_MDL,
"asr_id": settings.ASR_MDL,
"parser_ids": settings.PARSERS,
"img2txt_id": settings.IMAGE2TEXT_MDL,
"rerank_id": settings.RERANK_MDL,
}
usr_tenant = {
"tenant_id": user_id,
"user_id": user_id,
"invited_by": user_id,
"role": UserTenantRole.OWNER,
}
# construct file folder info
file_id = uuid.uuid1().hex
file = {
"id": file_id,
"parent_id": file_id,
"tenant_id": user_id,
"created_by": user_id,
"name": "/",
"type": FileType.FOLDER.value,
"size": 0,
"location": "",
}
try:
tenant_llm = get_init_tenant_llm(user_id)
if not UserService.save(**user_info):
return {"success": False}
TenantService.insert(**tenant)
UserTenantService.insert(**usr_tenant)
TenantLLMService.insert_many(tenant_llm)
FileService.insert(file)
return {
"success": True,
"user_info": user_info,
}
except Exception as create_error:
logging.exception(create_error)
# rollback
try:
TenantService.delete_by_id(user_id)
except Exception as e:
logging.exception(e)
try:
u = UserTenantService.query(tenant_id=user_id)
if u:
UserTenantService.delete_by_id(u[0].id)
except Exception as e:
logging.exception(e)
try:
TenantLLMService.delete_by_tenant_id(user_id)
except Exception as e:
logging.exception(e)
try:
FileService.delete_by_id(file["id"])
except Exception as e:
logging.exception(e)
# delete user row finally
try:
UserService.delete_by_id(user_id)
except Exception as e:
logging.exception(e)
# reraise
raise create_error
def delete_user_data(user_id: str) -> dict:
# use user_id to delete
usr = UserService.filter_by_id(user_id)
if not usr:
return {"success": False, "message": f"{user_id} can't be found."}
# check is inactive and not admin
if usr.is_active == ActiveEnum.ACTIVE.value:
return {"success": False, "message": f"{user_id} is active and can't be deleted."}
if usr.is_superuser:
return {"success": False, "message": "Can't delete the super user."}
# tenant info
tenants = UserTenantService.get_user_tenant_relation_by_user_id(usr.id)
owned_tenant = [t for t in tenants if t["role"] == UserTenantRole.OWNER.value]
done_msg = ''
try:
# step1. delete owned tenant info
if owned_tenant:
done_msg += "Start to delete owned tenant.\n"
tenant_id = owned_tenant[0]["tenant_id"]
kb_ids = KnowledgebaseService.get_kb_ids(usr.id)
# step1.1 delete knowledgebase related file and info
if kb_ids:
# step1.1.1 delete files in storage, remove bucket
for kb_id in kb_ids:
if STORAGE_IMPL.bucket_exists(kb_id):
STORAGE_IMPL.remove_bucket(kb_id)
done_msg += f"- Removed {len(kb_ids)} dataset's buckets.\n"
# step1.1.2 delete file and document info in db
doc_ids = DocumentService.get_all_doc_ids_by_kb_ids(kb_ids)
if doc_ids:
doc_delete_res = DocumentService.delete_by_ids([i["id"] for i in doc_ids])
done_msg += f"- Deleted {doc_delete_res} document records.\n"
task_delete_res = TaskService.delete_by_doc_ids([i["id"] for i in doc_ids])
done_msg += f"- Deleted {task_delete_res} task records.\n"
file_ids = FileService.get_all_file_ids_by_tenant_id(usr.id)
if file_ids:
file_delete_res = FileService.delete_by_ids([f["id"] for f in file_ids])
done_msg += f"- Deleted {file_delete_res} file records.\n"
if doc_ids or file_ids:
file2doc_delete_res = File2DocumentService.delete_by_document_ids_or_file_ids(
[i["id"] for i in doc_ids],
[f["id"] for f in file_ids]
)
done_msg += f"- Deleted {file2doc_delete_res} document-file relation records.\n"
# step1.1.3 delete chunk in es
r = settings.docStoreConn.delete({"kb_id": kb_ids},
search.index_name(tenant_id), kb_ids)
done_msg += f"- Deleted {r} chunk records.\n"
kb_delete_res = KnowledgebaseService.delete_by_ids(kb_ids)
done_msg += f"- Deleted {kb_delete_res} knowledgebase records.\n"
# step1.1.4 delete agents
agent_delete_res = delete_user_agents(usr.id)
done_msg += f"- Deleted {agent_delete_res['agents_deleted_count']} agent, {agent_delete_res['version_deleted_count']} versions records.\n"
# step1.1.5 delete dialogs
dialog_delete_res = delete_user_dialogs(usr.id)
done_msg += f"- Deleted {dialog_delete_res['dialogs_deleted_count']} dialogs, {dialog_delete_res['conversations_deleted_count']} conversations, {dialog_delete_res['api_token_deleted_count']} api tokens, {dialog_delete_res['api4conversation_deleted_count']} api4conversations.\n"
# step1.1.6 delete mcp server
mcp_delete_res = MCPServerService.delete_by_tenant_id(usr.id)
done_msg += f"- Deleted {mcp_delete_res} MCP server.\n"
# step1.1.7 delete search
search_delete_res = SearchService.delete_by_tenant_id(usr.id)
done_msg += f"- Deleted {search_delete_res} search records.\n"
# step1.2 delete tenant_llm and tenant_langfuse
llm_delete_res = TenantLLMService.delete_by_tenant_id(tenant_id)
done_msg += f"- Deleted {llm_delete_res} tenant-LLM records.\n"
langfuse_delete_res = TenantLangfuseService.delete_ty_tenant_id(tenant_id)
done_msg += f"- Deleted {langfuse_delete_res} langfuse records.\n"
# step1.3 delete own tenant
tenant_delete_res = TenantService.delete_by_id(tenant_id)
done_msg += f"- Deleted {tenant_delete_res} tenant.\n"
# step2 delete user-tenant relation
if tenants:
# step2.1 delete docs and files in joined team
joined_tenants = [t for t in tenants if t["role"] == UserTenantRole.NORMAL.value]
if joined_tenants:
done_msg += "Start to delete data in joined tenants.\n"
created_documents = DocumentService.get_all_docs_by_creator_id(usr.id)
if created_documents:
# step2.1.1 delete files
doc_file_info = File2DocumentService.get_by_document_ids([d['id'] for d in created_documents])
created_files = FileService.get_by_ids([f['file_id'] for f in doc_file_info])
if created_files:
# step2.1.1.1 delete file in storage
for f in created_files:
STORAGE_IMPL.rm(f.parent_id, f.location)
done_msg += f"- Deleted {len(created_files)} uploaded file.\n"
# step2.1.1.2 delete file record
file_delete_res = FileService.delete_by_ids([f.id for f in created_files])
done_msg += f"- Deleted {file_delete_res} file records.\n"
# step2.1.2 delete document-file relation record
file2doc_delete_res = File2DocumentService.delete_by_document_ids_or_file_ids(
[d['id'] for d in created_documents],
[f.id for f in created_files]
)
done_msg += f"- Deleted {file2doc_delete_res} document-file relation records.\n"
# step2.1.3 delete chunks
doc_groups = group_by(created_documents, "tenant_id")
kb_grouped_doc = {k: group_by(v, "kb_id") for k, v in doc_groups.items()}
# chunks in {'tenant_id': {'kb_id': [{'id': doc_id}]}} structure
chunk_delete_res = 0
kb_doc_info = {}
for _tenant_id, kb_doc in kb_grouped_doc.items():
for _kb_id, docs in kb_doc.items():
chunk_delete_res += settings.docStoreConn.delete(
{"doc_id": [d["id"] for d in docs]},
search.index_name(_tenant_id), _kb_id
)
# record doc info
if _kb_id in kb_doc_info.keys():
kb_doc_info[_kb_id]['doc_num'] += 1
kb_doc_info[_kb_id]['token_num'] += sum([d["token_num"] for d in docs])
kb_doc_info[_kb_id]['chunk_num'] += sum([d["chunk_num"] for d in docs])
else:
kb_doc_info[_kb_id] = {
'doc_num': 1,
'token_num': sum([d["token_num"] for d in docs]),
'chunk_num': sum([d["chunk_num"] for d in docs])
}
done_msg += f"- Deleted {chunk_delete_res} chunks.\n"
# step2.1.4 delete tasks
task_delete_res = TaskService.delete_by_doc_ids([d['id'] for d in created_documents])
done_msg += f"- Deleted {task_delete_res} tasks.\n"
# step2.1.5 delete document record
doc_delete_res = DocumentService.delete_by_ids([d['id'] for d in created_documents])
done_msg += f"- Deleted {doc_delete_res} documents.\n"
# step2.1.6 update knowledge base doc&chunk&token cnt
for kb_id, doc_num in kb_doc_info.items():
KnowledgebaseService.decrease_document_num_in_delete(kb_id, doc_num)
# step2.2 delete relation
user_tenant_delete_res = UserTenantService.delete_by_ids([t["id"] for t in tenants])
done_msg += f"- Deleted {user_tenant_delete_res} user-tenant records.\n"
# step3 finally delete user
user_delete_res = UserService.delete_by_id(usr.id)
done_msg += f"- Deleted {user_delete_res} user.\nDelete done!"
return {"success": True, "message": f"Successfully deleted user. Details:\n{done_msg}"}
except Exception as e:
logging.exception(e)
return {"success": False, "message": f"Error: {str(e)}. Already done:\n{done_msg}"}
def delete_user_agents(user_id: str) -> dict:
"""
use user_id to delete
:return: {
"agents_deleted_count": 1,
"version_deleted_count": 2
}
"""
agents_deleted_count, agents_version_deleted_count = 0, 0
user_agents = UserCanvasService.get_all_agents_by_tenant_ids([user_id], user_id)
if user_agents:
agents_version = UserCanvasVersionService.get_all_canvas_version_by_canvas_ids([a['id'] for a in user_agents])
agents_version_deleted_count = UserCanvasVersionService.delete_by_ids([v['id'] for v in agents_version])
agents_deleted_count = UserCanvasService.delete_by_ids([a['id'] for a in user_agents])
return {
"agents_deleted_count": agents_deleted_count,
"version_deleted_count": agents_version_deleted_count
}
def delete_user_dialogs(user_id: str) -> dict:
"""
use user_id to delete
:return: {
"dialogs_deleted_count": 1,
"conversations_deleted_count": 1,
"api_token_deleted_count": 2,
"api4conversation_deleted_count": 2
}
"""
dialog_deleted_count, conversations_deleted_count, api_token_deleted_count, api4conversation_deleted_count = 0, 0, 0, 0
user_dialogs = DialogService.get_all_dialogs_by_tenant_id(user_id)
if user_dialogs:
# delete conversation
conversations = ConversationService.get_all_conversation_by_dialog_ids([ud['id'] for ud in user_dialogs])
conversations_deleted_count = ConversationService.delete_by_ids([c['id'] for c in conversations])
# delete api token
api_token_deleted_count = APITokenService.delete_by_tenant_id(user_id)
# delete api for conversation
api4conversation_deleted_count = API4ConversationService.delete_by_dialog_ids([ud['id'] for ud in user_dialogs])
# delete dialog at last
dialog_deleted_count = DialogService.delete_by_ids([ud['id'] for ud in user_dialogs])
return {
"dialogs_deleted_count": dialog_deleted_count,
"conversations_deleted_count": conversations_deleted_count,
"api_token_deleted_count": api_token_deleted_count,
"api4conversation_deleted_count": api4conversation_deleted_count
}

View File

@ -19,7 +19,7 @@ from pathlib import PurePath
from .user_service import UserService as UserService
def _split_name_counter(filename: str) -> tuple[str, int | None]:
def split_name_counter(filename: str) -> tuple[str, int | None]:
"""
Splits a filename into main part and counter (if present in parentheses).
@ -87,7 +87,7 @@ def duplicate_name(query_func, **kwargs) -> str:
stem = path.stem
suffix = path.suffix
main_part, counter = _split_name_counter(stem)
main_part, counter = split_name_counter(stem)
counter = counter + 1 if counter else 1
new_name = f"{main_part}({counter}){suffix}"

View File

@ -35,11 +35,6 @@ class APITokenService(CommonService):
cls.model.token == token
)
@classmethod
@DB.connection_context()
def delete_by_tenant_id(cls, tenant_id):
return cls.model.delete().where(cls.model.tenant_id == tenant_id).execute()
class API4ConversationService(CommonService):
model = API4Conversation
@ -105,8 +100,3 @@ class API4ConversationService(CommonService):
cls.model.create_date <= to_date,
cls.model.source == source
).group_by(cls.model.create_date.truncate("day")).dicts()
@classmethod
@DB.connection_context()
def delete_by_dialog_ids(cls, dialog_ids):
return cls.model.delete().where(cls.model.dialog_id.in_(dialog_ids)).execute()

View File

@ -63,38 +63,7 @@ class UserCanvasService(CommonService):
@classmethod
@DB.connection_context()
def get_all_agents_by_tenant_ids(cls, tenant_ids, user_id):
# will get all permitted agents, be cautious
fields = [
cls.model.id,
cls.model.title,
cls.model.permission,
cls.model.canvas_type,
cls.model.canvas_category
]
# find team agents and owned agents
agents = cls.model.select(*fields).where(
(cls.model.user_id.in_(tenant_ids) & (cls.model.permission == TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id
)
)
# sort by create_time, asc
agents.order_by(cls.model.create_time.asc())
# maybe cause slow query by deep paginate, optimize later
offset, limit = 0, 50
res = []
while True:
ag_batch = agents.offset(offset).limit(limit)
_temp = list(ag_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
@classmethod
@DB.connection_context()
def get_by_canvas_id(cls, pid):
def get_by_tenant_id(cls, pid):
try:
fields = [
@ -126,7 +95,7 @@ class UserCanvasService(CommonService):
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
page_number, items_per_page,
orderby, desc, keywords, canvas_category=None
orderby, desc, keywords, canvas_category=CanvasCategory.Agent,
):
fields = [
cls.model.id,
@ -135,7 +104,6 @@ class UserCanvasService(CommonService):
cls.model.dsl,
cls.model.description,
cls.model.permission,
cls.model.user_id.alias("tenant_id"),
User.nickname,
User.avatar.alias('tenant_avatar'),
cls.model.update_time,
@ -143,33 +111,31 @@ class UserCanvasService(CommonService):
]
if keywords:
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
cls.model.user_id.in_(joined_tenant_ids),
fn.LOWER(cls.model.title).contains(keywords.lower())
#(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id)),
#(fn.LOWER(cls.model.title).contains(keywords.lower()))
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id)),
(fn.LOWER(cls.model.title).contains(keywords.lower()))
)
else:
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
cls.model.user_id.in_(joined_tenant_ids)
#(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id))
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id))
)
if canvas_category:
agents = agents.where(cls.model.canvas_category == canvas_category)
agents = agents.where(cls.model.canvas_category == canvas_category)
if desc:
agents = agents.order_by(cls.model.getter_by(orderby).desc())
else:
agents = agents.order_by(cls.model.getter_by(orderby).asc())
count = agents.count()
if page_number and items_per_page:
agents = agents.paginate(page_number, items_per_page)
agents = agents.paginate(page_number, items_per_page)
return list(agents.dicts()), count
@classmethod
@DB.connection_context()
def accessible(cls, canvas_id, tenant_id):
from api.db.services.user_service import UserTenantService
e, c = UserCanvasService.get_by_canvas_id(canvas_id)
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
if not e:
return False

View File

@ -14,24 +14,12 @@
# limitations under the License.
#
from datetime import datetime
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
import peewee
from peewee import InterfaceError, OperationalError
from api.db.db_models import DB
from api.utils import current_timestamp, datetime_format, get_uuid
def retry_db_operation(func):
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=1, max=5),
retry=retry_if_exception_type((InterfaceError, OperationalError)),
before_sleep=lambda retry_state: print(f"RETRY {retry_state.attempt_number} TIMES"),
reraise=True,
)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
class CommonService:
"""Base service class that provides common database operations.
@ -214,7 +202,6 @@ class CommonService:
@classmethod
@DB.connection_context()
@retry_db_operation
def update_by_id(cls, pid, data):
# Update a single record by ID
# Args:

View File

@ -23,7 +23,7 @@ from api.db.services.dialog_service import DialogService, chat
from api.utils import get_uuid
import json
from rag.prompts.generator import chunks_format
from rag.prompts import chunks_format
class ConversationService(CommonService):
@ -48,21 +48,6 @@ class ConversationService(CommonService):
return list(sessions.dicts())
@classmethod
@DB.connection_context()
def get_all_conversation_by_dialog_ids(cls, dialog_ids):
sessions = cls.model.select().where(cls.model.dialog_id.in_(dialog_ids))
sessions.order_by(cls.model.create_time.asc())
offset, limit = 0, 100
res = []
while True:
s_batch = sessions.offset(offset).limit(limit)
_temp = list(s_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
def structure_answer(conv, ans, message_id, session_id):
reference = ans["reference"]

View File

@ -39,8 +39,8 @@ from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts.generator import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in, \
gen_meta_filter, PROMPT_JINJA_ENV, ASK_SUMMARY
from rag.prompts import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in
from rag.prompts.prompts import gen_meta_filter, PROMPT_JINJA_ENV, ASK_SUMMARY
from rag.utils import num_tokens_from_string, rmSpace
from rag.utils.tavily_conn import Tavily
@ -159,22 +159,6 @@ class DialogService(CommonService):
return list(dialogs.dicts()), count
@classmethod
@DB.connection_context()
def get_all_dialogs_by_tenant_id(cls, tenant_id):
fields = [cls.model.id]
dialogs = cls.model.select(*fields).where(cls.model.tenant_id == tenant_id)
dialogs.order_by(cls.model.create_time.asc())
offset, limit = 0, 100
res = []
while True:
d_batch = dialogs.offset(offset).limit(limit)
_temp = list(d_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
def chat_solo(dialog, messages, stream=True):
if TenantLLMService.llm_id2llm_type(dialog.llm_id) == "image2text":
@ -192,7 +176,7 @@ def chat_solo(dialog, messages, stream=True):
delta_ans = ""
for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
answer = ans
delta_ans = ans[len(last_ans):]
delta_ans = ans[len(last_ans) :]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
@ -277,13 +261,13 @@ def convert_conditions(metadata_condition):
"not is": ""
}
return [
{
"op": op_mapping.get(cond["comparison_operator"], cond["comparison_operator"]),
"key": cond["name"],
"value": cond["value"]
}
for cond in metadata_condition.get("conditions", [])
]
{
"op": op_mapping.get(cond["comparison_operator"], cond["comparison_operator"]),
"key": cond["name"],
"value": cond["value"]
}
for cond in metadata_condition.get("conditions", [])
]
def meta_filter(metas: dict, filters: list[dict]):
@ -300,19 +284,19 @@ def meta_filter(metas: dict, filters: list[dict]):
value = str(value)
for conds in [
(operator == "contains", str(value).lower() in str(input).lower()),
(operator == "not contains", str(value).lower() not in str(input).lower()),
(operator == "start with", str(input).lower().startswith(str(value).lower())),
(operator == "end with", str(input).lower().endswith(str(value).lower())),
(operator == "empty", not input),
(operator == "not empty", input),
(operator == "=", input == value),
(operator == "", input != value),
(operator == ">", input > value),
(operator == "<", input < value),
(operator == "", input >= value),
(operator == "", input <= value),
]:
(operator == "contains", str(value).lower() in str(input).lower()),
(operator == "not contains", str(value).lower() not in str(input).lower()),
(operator == "start with", str(input).lower().startswith(str(value).lower())),
(operator == "end with", str(input).lower().endswith(str(value).lower())),
(operator == "empty", not input),
(operator == "not empty", input),
(operator == "=", input == value),
(operator == "", input != value),
(operator == ">", input > value),
(operator == "<", input < value),
(operator == "", input >= value),
(operator == "", input <= value),
]:
try:
if all(conds):
ids.extend(docids)
@ -472,8 +456,7 @@ def chat(dialog, messages, stream=True, **kwargs):
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"):
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
LLMBundle(dialog.tenant_id, LLMType.CHAT))
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl, LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
@ -484,8 +467,7 @@ def chat(dialog, messages, stream=True, **kwargs):
retrieval_ts = timer()
if not knowledges and prompt_config.get("empty_response"):
empty_res = prompt_config["empty_response"]
yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions),
"audio_binary": tts(tts_mdl, empty_res)}
yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions), "audio_binary": tts(tts_mdl, empty_res)}
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
@ -583,8 +565,7 @@ def chat(dialog, messages, stream=True, **kwargs):
if langfuse_tracer:
langfuse_generation = langfuse_tracer.start_generation(
trace_context=trace_context, name="chat", model=llm_model_config["llm_name"],
input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg}
trace_context=trace_context, name="chat", model=llm_model_config["llm_name"], input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg}
)
if stream:
@ -594,12 +575,12 @@ def chat(dialog, messages, stream=True, **kwargs):
if thought:
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
answer = ans
delta_ans = ans[len(last_ans):]
delta_ans = ans[len(last_ans) :]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans):]
delta_ans = answer[len(last_ans) :]
if delta_ans:
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(thought + answer)
@ -695,9 +676,7 @@ Please write the SQL, only SQL, without any other explanations or text.
# compose Markdown table
columns = (
"|" + "|".join(
[re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + (
"|Source|" if docid_idx and docid_idx else "|")
"|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
)
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + ("|------|" if docid_idx and docid_idx else "")
@ -774,7 +753,7 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
doc_ids = None
kbinfos = retriever.retrieval(
question=question,
question = question,
embd_mdl=embd_mdl,
tenant_ids=tenant_ids,
kb_ids=kb_ids,
@ -796,8 +775,7 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
def decorate_answer(answer):
nonlocal knowledges, kbinfos, sys_prompt
answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]],
embd_mdl, tkweight=0.7, vtweight=0.3)
answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:

View File

@ -24,13 +24,12 @@ from io import BytesIO
import trio
import xxhash
from peewee import fn, Case, JOIN
from peewee import fn, Case
from api import settings
from api.constants import IMG_BASE64_PREFIX, FILE_NAME_LEN_LIMIT
from api.db import FileType, LLMType, ParserType, StatusEnum, TaskStatus, UserTenantRole, CanvasCategory
from api.db.db_models import DB, Document, Knowledgebase, Task, Tenant, UserTenant, File2Document, File, UserCanvas, \
User
from api.db import FileType, LLMType, ParserType, StatusEnum, TaskStatus, UserTenantRole
from api.db.db_models import DB, Document, Knowledgebase, Task, Tenant, UserTenant, File2Document, File
from api.db.db_utils import bulk_insert_into_db
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
@ -52,7 +51,6 @@ class DocumentService(CommonService):
cls.model.thumbnail,
cls.model.kb_id,
cls.model.parser_id,
cls.model.pipeline_id,
cls.model.parser_config,
cls.model.source_type,
cls.model.type,
@ -81,10 +79,7 @@ class DocumentService(CommonService):
def get_list(cls, kb_id, page_number, items_per_page,
orderby, desc, keywords, id, name):
fields = cls.get_cls_model_fields()
docs = cls.model.select(*[*fields, UserCanvas.title]).join(File2Document, on = (File2Document.document_id == cls.model.id))\
.join(File, on = (File.id == File2Document.file_id))\
.join(UserCanvas, on = ((cls.model.pipeline_id == UserCanvas.id) & (UserCanvas.canvas_category == CanvasCategory.DataFlow.value)), join_type=JOIN.LEFT_OUTER)\
.where(cls.model.kb_id == kb_id)
docs = cls.model.select(*fields).join(File2Document, on = (File2Document.document_id == cls.model.id)).join(File, on = (File.id == File2Document.file_id)).where(cls.model.kb_id == kb_id)
if id:
docs = docs.where(
cls.model.id == id)
@ -122,22 +117,12 @@ class DocumentService(CommonService):
orderby, desc, keywords, run_status, types, suffix):
fields = cls.get_cls_model_fields()
if keywords:
docs = cls.model.select(*[*fields, UserCanvas.title.alias("pipeline_name"), User.nickname])\
.join(File2Document, on=(File2Document.document_id == cls.model.id))\
.join(File, on=(File.id == File2Document.file_id))\
.join(UserCanvas, on=(cls.model.pipeline_id == UserCanvas.id), join_type=JOIN.LEFT_OUTER)\
.join(User, on=(cls.model.created_by == User.id), join_type=JOIN.LEFT_OUTER)\
.where(
(cls.model.kb_id == kb_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
docs = cls.model.select(*fields).join(File2Document, on=(File2Document.document_id == cls.model.id)).join(File, on=(File.id == File2Document.file_id)).where(
(cls.model.kb_id == kb_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
else:
docs = cls.model.select(*[*fields, UserCanvas.title.alias("pipeline_name"), User.nickname])\
.join(File2Document, on=(File2Document.document_id == cls.model.id))\
.join(UserCanvas, on=(cls.model.pipeline_id == UserCanvas.id), join_type=JOIN.LEFT_OUTER)\
.join(File, on=(File.id == File2Document.file_id))\
.join(User, on=(cls.model.created_by == User.id), join_type=JOIN.LEFT_OUTER)\
.where(cls.model.kb_id == kb_id)
docs = cls.model.select(*fields).join(File2Document, on=(File2Document.document_id == cls.model.id)).join(File, on=(File.id == File2Document.file_id)).where(cls.model.kb_id == kb_id)
if run_status:
docs = docs.where(cls.model.run.in_(run_status))
@ -243,46 +228,6 @@ class DocumentService(CommonService):
return int(query.scalar()) or 0
@classmethod
@DB.connection_context()
def get_all_doc_ids_by_kb_ids(cls, kb_ids):
fields = [cls.model.id]
docs = cls.model.select(*fields).where(cls.model.kb_id.in_(kb_ids))
docs.order_by(cls.model.create_time.asc())
# maybe cause slow query by deep paginate, optimize later
offset, limit = 0, 100
res = []
while True:
doc_batch = docs.offset(offset).limit(limit)
_temp = list(doc_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
@classmethod
@DB.connection_context()
def get_all_docs_by_creator_id(cls, creator_id):
fields = [
cls.model.id, cls.model.kb_id, cls.model.token_num, cls.model.chunk_num, Knowledgebase.tenant_id
]
docs = cls.model.select(*fields).join(Knowledgebase, on=(Knowledgebase.id == cls.model.kb_id)).where(
cls.model.created_by == creator_id
)
docs.order_by(cls.model.create_time.asc())
# maybe cause slow query by deep paginate, optimize later
offset, limit = 0, 100
res = []
while True:
doc_batch = docs.offset(offset).limit(limit)
_temp = list(doc_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
@classmethod
@DB.connection_context()
def insert(cls, doc):
@ -385,7 +330,8 @@ class DocumentService(CommonService):
process_duration=cls.model.process_duration + duration).where(
cls.model.id == doc_id).execute()
if num == 0:
logging.warning("Document not found which is supposed to be there")
raise LookupError(
"Document not found which is supposed to be there")
num = Knowledgebase.update(
token_num=Knowledgebase.token_num +
token_num,
@ -651,22 +597,6 @@ class DocumentService(CommonService):
@DB.connection_context()
def update_progress(cls):
docs = cls.get_unfinished_docs()
cls._sync_progress(docs)
@classmethod
@DB.connection_context()
def update_progress_immediately(cls, docs:list[dict]):
if not docs:
return
cls._sync_progress(docs)
@classmethod
@DB.connection_context()
def _sync_progress(cls, docs:list[dict]):
for d in docs:
try:
tsks = Task.query(doc_id=d["id"], order_by=Task.create_time)
@ -676,6 +606,8 @@ class DocumentService(CommonService):
prg = 0
finished = True
bad = 0
has_raptor = False
has_graphrag = False
e, doc = DocumentService.get_by_id(d["id"])
status = doc.run # TaskStatus.RUNNING.value
priority = 0
@ -687,14 +619,24 @@ class DocumentService(CommonService):
prg += t.progress if t.progress >= 0 else 0
if t.progress_msg.strip():
msg.append(t.progress_msg)
if t.task_type == "raptor":
has_raptor = True
elif t.task_type == "graphrag":
has_graphrag = True
priority = max(priority, t.priority)
prg /= len(tsks)
if finished and bad:
prg = -1
status = TaskStatus.FAIL.value
elif finished:
prg = 1
status = TaskStatus.DONE.value
if (d["parser_config"].get("raptor") or {}).get("use_raptor") and not has_raptor:
queue_raptor_o_graphrag_tasks(d, "raptor", priority)
prg = 0.98 * len(tsks) / (len(tsks) + 1)
elif (d["parser_config"].get("graphrag") or {}).get("use_graphrag") and not has_graphrag:
queue_raptor_o_graphrag_tasks(d, "graphrag", priority)
prg = 0.98 * len(tsks) / (len(tsks) + 1)
else:
status = TaskStatus.DONE.value
msg = "\n".join(sorted(msg))
info = {
@ -706,7 +648,7 @@ class DocumentService(CommonService):
info["progress"] = prg
if msg:
info["progress_msg"] = msg
if msg.endswith("created task graphrag") or msg.endswith("created task raptor") or msg.endswith("created task mindmap"):
if msg.endswith("created task graphrag") or msg.endswith("created task raptor"):
info["progress_msg"] += "\n%d tasks are ahead in the queue..."%get_queue_length(priority)
else:
info["progress_msg"] = "%d tasks are ahead in the queue..."%get_queue_length(priority)
@ -787,11 +729,7 @@ class DocumentService(CommonService):
"cancelled": int(cancelled),
}
def queue_raptor_o_graphrag_tasks(doc, ty, priority, fake_doc_id="", doc_ids=[]):
"""
You can provide a fake_doc_id to bypass the restriction of tasks at the knowledgebase level.
Optionally, specify a list of doc_ids to determine which documents participate in the task.
"""
def queue_raptor_o_graphrag_tasks(doc, ty, priority):
chunking_config = DocumentService.get_chunking_config(doc["id"])
hasher = xxhash.xxh64()
for field in sorted(chunking_config.keys()):
@ -801,12 +739,11 @@ def queue_raptor_o_graphrag_tasks(doc, ty, priority, fake_doc_id="", doc_ids=[])
nonlocal doc
return {
"id": get_uuid(),
"doc_id": fake_doc_id if fake_doc_id else doc["id"],
"doc_id": doc["id"],
"from_page": 100000000,
"to_page": 100000000,
"task_type": ty,
"progress_msg": datetime.now().strftime("%H:%M:%S") + " created task " + ty,
"begin_at": datetime.now(),
"progress_msg": datetime.now().strftime("%H:%M:%S") + " created task " + ty
}
task = new_task()
@ -815,12 +752,7 @@ def queue_raptor_o_graphrag_tasks(doc, ty, priority, fake_doc_id="", doc_ids=[])
hasher.update(ty.encode("utf-8"))
task["digest"] = hasher.hexdigest()
bulk_insert_into_db(Task, [task], True)
if ty in ["graphrag", "raptor", "mindmap"]:
task["doc_ids"] = doc_ids
DocumentService.begin2parse(doc["id"])
assert REDIS_CONN.queue_product(get_svr_queue_name(priority), message=task), "Can't access Redis. Please check the Redis' status."
return task["id"]
def get_queue_length(priority):

View File

@ -38,12 +38,6 @@ class File2DocumentService(CommonService):
objs = cls.model.select().where(cls.model.document_id == document_id)
return objs
@classmethod
@DB.connection_context()
def get_by_document_ids(cls, document_ids):
objs = cls.model.select().where(cls.model.document_id.in_(document_ids))
return list(objs.dicts())
@classmethod
@DB.connection_context()
def insert(cls, obj):
@ -56,15 +50,6 @@ class File2DocumentService(CommonService):
def delete_by_file_id(cls, file_id):
return cls.model.delete().where(cls.model.file_id == file_id).execute()
@classmethod
@DB.connection_context()
def delete_by_document_ids_or_file_ids(cls, document_ids, file_ids):
if not document_ids:
return cls.model.delete().where(cls.model.file_id.in_(file_ids)).execute()
elif not file_ids:
return cls.model.delete().where(cls.model.document_id.in_(document_ids)).execute()
return cls.model.delete().where(cls.model.document_id.in_(document_ids) | cls.model.file_id.in_(file_ids)).execute()
@classmethod
@DB.connection_context()
def delete_by_document_id(cls, doc_id):

View File

@ -161,23 +161,6 @@ class FileService(CommonService):
result_ids.append(folder_id)
return result_ids
@classmethod
@DB.connection_context()
def get_all_file_ids_by_tenant_id(cls, tenant_id):
fields = [cls.model.id]
files = cls.model.select(*fields).where(cls.model.tenant_id == tenant_id)
files.order_by(cls.model.create_time.asc())
offset, limit = 0, 100
res = []
while True:
file_batch = files.offset(offset).limit(limit)
_temp = list(file_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
@classmethod
@DB.connection_context()
def create_folder(cls, file, parent_id, name, count):
@ -457,7 +440,6 @@ class FileService(CommonService):
"id": doc_id,
"kb_id": kb.id,
"parser_id": self.get_parser(filetype, filename, kb.parser_id),
"pipeline_id": kb.pipeline_id,
"parser_config": kb.parser_config,
"created_by": user_id,
"type": filetype,
@ -513,7 +495,7 @@ class FileService(CommonService):
return ParserType.AUDIO.value
if re.search(r"\.(ppt|pptx|pages)$", filename):
return ParserType.PRESENTATION.value
if re.search(r"\.(msg|eml)$", filename):
if re.search(r"\.(eml)$", filename):
return ParserType.EMAIL.value
return default

View File

@ -15,10 +15,10 @@
#
from datetime import datetime
from peewee import fn, JOIN
from peewee import fn
from api.db import StatusEnum, TenantPermission
from api.db.db_models import DB, Document, Knowledgebase, User, UserTenant, UserCanvas
from api.db.db_models import DB, Document, Knowledgebase, Tenant, User, UserTenant
from api.db.services.common_service import CommonService
from api.utils import current_timestamp, datetime_format
@ -190,41 +190,6 @@ class KnowledgebaseService(CommonService):
return list(kbs.dicts()), count
@classmethod
@DB.connection_context()
def get_all_kb_by_tenant_ids(cls, tenant_ids, user_id):
# will get all permitted kb, be cautious.
fields = [
cls.model.name,
cls.model.language,
cls.model.permission,
cls.model.doc_num,
cls.model.token_num,
cls.model.chunk_num,
cls.model.status,
cls.model.create_date,
cls.model.update_date
]
# find team kb and owned kb
kbs = cls.model.select(*fields).where(
(cls.model.tenant_id.in_(tenant_ids) & (cls.model.permission ==TenantPermission.TEAM.value)) | (
cls.model.tenant_id == user_id
)
)
# sort by create_time asc
kbs.order_by(cls.model.create_time.asc())
# maybe cause slow query by deep paginate, optimize later.
offset, limit = 0, 50
res = []
while True:
kb_batch = kbs.offset(offset).limit(limit)
_temp = list(kb_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
@classmethod
@DB.connection_context()
def get_kb_ids(cls, tenant_id):
@ -260,29 +225,20 @@ class KnowledgebaseService(CommonService):
cls.model.token_num,
cls.model.chunk_num,
cls.model.parser_id,
cls.model.pipeline_id,
UserCanvas.title.alias("pipeline_name"),
UserCanvas.avatar.alias("pipeline_avatar"),
cls.model.parser_config,
cls.model.pagerank,
cls.model.graphrag_task_id,
cls.model.graphrag_task_finish_at,
cls.model.raptor_task_id,
cls.model.raptor_task_finish_at,
cls.model.mindmap_task_id,
cls.model.mindmap_task_finish_at,
cls.model.create_time,
cls.model.update_time
]
kbs = cls.model.select(*fields)\
.join(UserCanvas, on=(cls.model.pipeline_id == UserCanvas.id), join_type=JOIN.LEFT_OUTER)\
.where(
kbs = cls.model.select(*fields).join(Tenant, on=(
(Tenant.id == cls.model.tenant_id) & (Tenant.status == StatusEnum.VALID.value))).where(
(cls.model.id == kb_id),
(cls.model.status == StatusEnum.VALID.value)
).dicts()
)
if not kbs:
return
return kbs[0]
d = kbs[0].to_dict()
return d
@classmethod
@DB.connection_context()
@ -480,17 +436,3 @@ class KnowledgebaseService(CommonService):
else:
raise e
@classmethod
@DB.connection_context()
def decrease_document_num_in_delete(cls, kb_id, doc_num_info: dict):
kb_row = cls.model.get_by_id(kb_id)
if not kb_row:
raise RuntimeError(f"kb_id {kb_id} does not exist")
update_dict = {
'doc_num': kb_row.doc_num - doc_num_info['doc_num'],
'chunk_num': kb_row.chunk_num - doc_num_info['chunk_num'],
'token_num': kb_row.token_num - doc_num_info['token_num'],
'update_time': current_timestamp(),
'update_date': datetime_format(datetime.now())
}
return cls.model.update(update_dict).where(cls.model.id == kb_id).execute()

View File

@ -51,11 +51,6 @@ class TenantLangfuseService(CommonService):
except peewee.DoesNotExist:
return None
@classmethod
@DB.connection_context()
def delete_ty_tenant_id(cls, tenant_id):
return cls.model.delete().where(cls.model.tenant_id == tenant_id).execute()
@classmethod
def update_by_tenant(cls, tenant_id, langfuse_keys):
langfuse_keys["update_time"] = current_timestamp()

View File

@ -84,8 +84,3 @@ class MCPServerService(CommonService):
return bool(mcp_server), mcp_server
except Exception:
return False, None
@classmethod
@DB.connection_context()
def delete_by_tenant_id(cls, tenant_id: str):
return cls.model.delete().where(cls.model.tenant_id == tenant_id).execute()

View File

@ -1,263 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import os
from datetime import datetime, timedelta
from peewee import fn
from api.db import VALID_PIPELINE_TASK_TYPES, PipelineTaskType
from api.db.db_models import DB, Document, PipelineOperationLog
from api.db.services.canvas_service import UserCanvasService
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import GRAPH_RAPTOR_FAKE_DOC_ID
from api.utils import current_timestamp, datetime_format, get_uuid
class PipelineOperationLogService(CommonService):
model = PipelineOperationLog
@classmethod
def get_file_logs_fields(cls):
return [
cls.model.id,
cls.model.document_id,
cls.model.tenant_id,
cls.model.kb_id,
cls.model.pipeline_id,
cls.model.pipeline_title,
cls.model.parser_id,
cls.model.document_name,
cls.model.document_suffix,
cls.model.document_type,
cls.model.source_from,
cls.model.progress,
cls.model.progress_msg,
cls.model.process_begin_at,
cls.model.process_duration,
cls.model.dsl,
cls.model.task_type,
cls.model.operation_status,
cls.model.avatar,
cls.model.status,
cls.model.create_time,
cls.model.create_date,
cls.model.update_time,
cls.model.update_date,
]
@classmethod
def get_dataset_logs_fields(cls):
return [
cls.model.id,
cls.model.tenant_id,
cls.model.kb_id,
cls.model.progress,
cls.model.progress_msg,
cls.model.process_begin_at,
cls.model.process_duration,
cls.model.task_type,
cls.model.operation_status,
cls.model.avatar,
cls.model.status,
cls.model.create_time,
cls.model.create_date,
cls.model.update_time,
cls.model.update_date,
]
@classmethod
def save(cls, **kwargs):
"""
wrap this function in a transaction
"""
sample_obj = cls.model(**kwargs).save(force_insert=True)
return sample_obj
@classmethod
@DB.connection_context()
def create(cls, document_id, pipeline_id, task_type, fake_document_ids=[], dsl: str = "{}"):
referred_document_id = document_id
if referred_document_id == GRAPH_RAPTOR_FAKE_DOC_ID and fake_document_ids:
referred_document_id = fake_document_ids[0]
ok, document = DocumentService.get_by_id(referred_document_id)
if not ok:
logging.warning(f"Document for referred_document_id {referred_document_id} not found")
return
DocumentService.update_progress_immediately([document.to_dict()])
ok, document = DocumentService.get_by_id(referred_document_id)
if not ok:
logging.warning(f"Document for referred_document_id {referred_document_id} not found")
return
if document.progress not in [1, -1]:
return
operation_status = document.run
if pipeline_id:
ok, user_pipeline = UserCanvasService.get_by_id(pipeline_id)
if not ok:
raise RuntimeError(f"Pipeline {pipeline_id} not found")
tenant_id = user_pipeline.user_id
title = user_pipeline.title
avatar = user_pipeline.avatar
else:
ok, kb_info = KnowledgebaseService.get_by_id(document.kb_id)
if not ok:
raise RuntimeError(f"Cannot find knowledge base {document.kb_id} for referred_document {referred_document_id}")
tenant_id = kb_info.tenant_id
title = document.parser_id
avatar = document.thumbnail
if task_type not in VALID_PIPELINE_TASK_TYPES:
raise ValueError(f"Invalid task type: {task_type}")
if task_type in [PipelineTaskType.GRAPH_RAG, PipelineTaskType.RAPTOR, PipelineTaskType.MINDMAP]:
finish_at = document.process_begin_at + timedelta(seconds=document.process_duration)
if task_type == PipelineTaskType.GRAPH_RAG:
KnowledgebaseService.update_by_id(
document.kb_id,
{"graphrag_task_finish_at": finish_at},
)
elif task_type == PipelineTaskType.RAPTOR:
KnowledgebaseService.update_by_id(
document.kb_id,
{"raptor_task_finish_at": finish_at},
)
elif task_type == PipelineTaskType.MINDMAP:
KnowledgebaseService.update_by_id(
document.kb_id,
{"mindmap_task_finish_at": finish_at},
)
log = dict(
id=get_uuid(),
document_id=document_id, # GRAPH_RAPTOR_FAKE_DOC_ID or real document_id
tenant_id=tenant_id,
kb_id=document.kb_id,
pipeline_id=pipeline_id,
pipeline_title=title,
parser_id=document.parser_id,
document_name=document.name,
document_suffix=document.suffix,
document_type=document.type,
source_from="", # TODO: add in the future
progress=document.progress,
progress_msg=document.progress_msg,
process_begin_at=document.process_begin_at,
process_duration=document.process_duration,
dsl=json.loads(dsl),
task_type=task_type,
operation_status=operation_status,
avatar=avatar,
)
log["create_time"] = current_timestamp()
log["create_date"] = datetime_format(datetime.now())
log["update_time"] = current_timestamp()
log["update_date"] = datetime_format(datetime.now())
with DB.atomic():
obj = cls.save(**log)
limit = int(os.getenv("PIPELINE_OPERATION_LOG_LIMIT", 1000))
total = cls.model.select().where(cls.model.kb_id == document.kb_id).count()
if total > limit:
keep_ids = [m.id for m in cls.model.select(cls.model.id).where(cls.model.kb_id == document.kb_id).order_by(cls.model.create_time.desc()).limit(limit)]
deleted = cls.model.delete().where(cls.model.kb_id == document.kb_id, cls.model.id.not_in(keep_ids)).execute()
logging.info(f"[PipelineOperationLogService] Cleaned {deleted} old logs, kept latest {limit} for {document.kb_id}")
return obj
@classmethod
@DB.connection_context()
def record_pipeline_operation(cls, document_id, pipeline_id, task_type, fake_document_ids=[]):
return cls.create(document_id=document_id, pipeline_id=pipeline_id, task_type=task_type, fake_document_ids=fake_document_ids)
@classmethod
@DB.connection_context()
def get_file_logs_by_kb_id(cls, kb_id, page_number, items_per_page, orderby, desc, keywords, operation_status, types, suffix, create_date_from=None, create_date_to=None):
fields = cls.get_file_logs_fields()
if keywords:
logs = cls.model.select(*fields).where((cls.model.kb_id == kb_id), (fn.LOWER(cls.model.document_name).contains(keywords.lower())))
else:
logs = cls.model.select(*fields).where(cls.model.kb_id == kb_id)
logs = logs.where(cls.model.document_id != GRAPH_RAPTOR_FAKE_DOC_ID)
if operation_status:
logs = logs.where(cls.model.operation_status.in_(operation_status))
if types:
logs = logs.where(cls.model.document_type.in_(types))
if suffix:
logs = logs.where(cls.model.document_suffix.in_(suffix))
if create_date_from:
logs = logs.where(cls.model.create_date >= create_date_from)
if create_date_to:
logs = logs.where(cls.model.create_date <= create_date_to)
count = logs.count()
if desc:
logs = logs.order_by(cls.model.getter_by(orderby).desc())
else:
logs = logs.order_by(cls.model.getter_by(orderby).asc())
if page_number and items_per_page:
logs = logs.paginate(page_number, items_per_page)
return list(logs.dicts()), count
@classmethod
@DB.connection_context()
def get_documents_info(cls, id):
fields = [Document.id, Document.name, Document.progress, Document.kb_id]
return (
cls.model.select(*fields)
.join(Document, on=(cls.model.document_id == Document.id))
.where(
cls.model.id == id
)
.dicts()
)
@classmethod
@DB.connection_context()
def get_dataset_logs_by_kb_id(cls, kb_id, page_number, items_per_page, orderby, desc, operation_status, create_date_from=None, create_date_to=None):
fields = cls.get_dataset_logs_fields()
logs = cls.model.select(*fields).where((cls.model.kb_id == kb_id), (cls.model.document_id == GRAPH_RAPTOR_FAKE_DOC_ID))
if operation_status:
logs = logs.where(cls.model.operation_status.in_(operation_status))
if create_date_from:
logs = logs.where(cls.model.create_date >= create_date_from)
if create_date_to:
logs = logs.where(cls.model.create_date <= create_date_to)
count = logs.count()
if desc:
logs = logs.order_by(cls.model.getter_by(orderby).desc())
else:
logs = logs.order_by(cls.model.getter_by(orderby).asc())
if page_number and items_per_page:
logs = logs.paginate(page_number, items_per_page)
return list(logs.dicts()), count

View File

@ -110,8 +110,3 @@ class SearchService(CommonService):
query = query.paginate(page_number, items_per_page)
return list(query.dicts()), count
@classmethod
@DB.connection_context()
def delete_by_tenant_id(cls, tenant_id):
return cls.model.delete().where(cls.model.tenant_id == tenant_id).execute()

View File

@ -35,8 +35,6 @@ from rag.utils.redis_conn import REDIS_CONN
from api import settings
from rag.nlp import search
CANVAS_DEBUG_DOC_ID = "dataflow_x"
GRAPH_RAPTOR_FAKE_DOC_ID = "graph_raptor_x"
def trim_header_by_lines(text: str, max_length) -> str:
# Trim header text to maximum length while preserving line breaks
@ -72,7 +70,7 @@ class TaskService(CommonService):
@classmethod
@DB.connection_context()
def get_task(cls, task_id, doc_ids=[]):
def get_task(cls, task_id):
"""Retrieve detailed task information by task ID.
This method fetches comprehensive task details including associated document,
@ -86,10 +84,6 @@ class TaskService(CommonService):
dict: Task details dictionary containing all task information and related metadata.
Returns None if task is not found or has exceeded retry limit.
"""
doc_id = cls.model.doc_id
if doc_id == CANVAS_DEBUG_DOC_ID and doc_ids:
doc_id = doc_ids[0]
fields = [
cls.model.id,
cls.model.doc_id,
@ -115,7 +109,7 @@ class TaskService(CommonService):
]
docs = (
cls.model.select(*fields)
.join(Document, on=(doc_id == Document.id))
.join(Document, on=(cls.model.doc_id == Document.id))
.join(Knowledgebase, on=(Document.kb_id == Knowledgebase.id))
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
.where(cls.model.id == task_id)
@ -298,29 +292,21 @@ class TaskService(CommonService):
((prog == -1) | (prog > cls.model.progress))
)
).execute()
else:
with DB.lock("update_progress", -1):
if info["progress_msg"]:
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
if "progress" in info:
prog = info["progress"]
cls.model.update(progress=prog).where(
(cls.model.id == id) &
(
(cls.model.progress != -1) &
((prog == -1) | (prog > cls.model.progress))
)
).execute()
return
process_duration = (datetime.now() - task.begin_at).total_seconds()
cls.model.update(process_duration=process_duration).where(cls.model.id == id).execute()
@classmethod
@DB.connection_context()
def delete_by_doc_ids(cls, doc_ids):
"""Delete task associated with a document."""
return cls.model.delete().where(cls.model.doc_id.in_(doc_ids)).execute()
with DB.lock("update_progress", -1):
if info["progress_msg"]:
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
if "progress" in info:
prog = info["progress"]
cls.model.update(progress=prog).where(
(cls.model.id == id) &
(
(cls.model.progress != -1) &
((prog == -1) | (prog > cls.model.progress))
)
).execute()
def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
@ -344,14 +330,7 @@ def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
- Previous task chunks may be reused if available
"""
def new_task():
return {
"id": get_uuid(),
"doc_id": doc["id"],
"progress": 0.0,
"from_page": 0,
"to_page": 100000000,
"begin_at": datetime.now(),
}
return {"id": get_uuid(), "doc_id": doc["id"], "progress": 0.0, "from_page": 0, "to_page": 100000000}
parse_task_array = []
@ -364,7 +343,7 @@ def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
page_size = doc["parser_config"].get("task_page_size") or 12
if doc["parser_id"] == "paper":
page_size = doc["parser_config"].get("task_page_size") or 22
if doc["parser_id"] in ["one", "knowledge_graph"] or do_layout != "DeepDOC" or doc["parser_config"].get("toc", True):
if doc["parser_id"] in ["one", "knowledge_graph"] or do_layout != "DeepDOC":
page_size = 10 ** 9
page_ranges = doc["parser_config"].get("pages") or [(1, 10 ** 5)]
for s, e in page_ranges:
@ -493,26 +472,33 @@ def has_canceled(task_id):
return False
def queue_dataflow(tenant_id:str, flow_id:str, task_id:str, doc_id:str=CANVAS_DEBUG_DOC_ID, file:dict=None, priority: int=0, rerun:bool=False) -> tuple[bool, str]:
def queue_dataflow(dsl:str, tenant_id:str, doc_id:str, task_id:str, flow_id:str, priority: int, callback=None) -> tuple[bool, str]:
"""
Returns a tuple (success: bool, error_message: str).
"""
_ = callback
task = dict(
id=task_id,
doc_id=doc_id,
from_page=0,
to_page=100000000,
task_type="dataflow" if not rerun else "dataflow_rerun",
priority=priority,
begin_at=datetime.now(),
id=get_uuid() if not task_id else task_id,
doc_id=doc_id,
from_page=0,
to_page=100000000,
task_type="dataflow",
priority=priority,
)
if doc_id not in [CANVAS_DEBUG_DOC_ID, GRAPH_RAPTOR_FAKE_DOC_ID]:
TaskService.model.delete().where(TaskService.model.doc_id == doc_id).execute()
DocumentService.begin2parse(doc_id)
TaskService.model.delete().where(TaskService.model.id == task["id"]).execute()
bulk_insert_into_db(model=Task, data_source=[task], replace_on_conflict=True)
task["kb_id"] = DocumentService.get_knowledgebase_id(doc_id)
kb_id = DocumentService.get_knowledgebase_id(doc_id)
if not kb_id:
return False, f"Can't find KB of this document: {doc_id}"
task["kb_id"] = kb_id
task["tenant_id"] = tenant_id
task["dataflow_id"] = flow_id
task["file"] = file
task["task_type"] = "dataflow"
task["dsl"] = dsl
task["dataflow_id"] = get_uuid() if not flow_id else flow_id
if not REDIS_CONN.queue_product(
get_svr_queue_name(priority), message=task

View File

@ -209,11 +209,6 @@ class TenantLLMService(CommonService):
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
return list(objs)
@classmethod
@DB.connection_context()
def delete_by_tenant_id(cls, tenant_id):
return cls.model.delete().where(cls.model.tenant_id == tenant_id).execute()
@staticmethod
def llm_id2llm_type(llm_id: str) -> str | None:
from api.db.services.llm_service import LLMService

View File

@ -24,24 +24,7 @@ class UserCanvasVersionService(CommonService):
return None
except Exception:
return None
@classmethod
@DB.connection_context()
def get_all_canvas_version_by_canvas_ids(cls, canvas_ids):
fields = [cls.model.id]
versions = cls.model.select(*fields).where(cls.model.user_canvas_id.in_(canvas_ids))
versions.order_by(cls.model.create_time.asc())
offset, limit = 0, 100
res = []
while True:
version_batch = versions.offset(offset).limit(limit)
_temp = list(version_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
@classmethod
@DB.connection_context()
def delete_all_versions(cls, user_canvas_id):

View File

@ -100,12 +100,6 @@ class UserService(CommonService):
else:
return None
@classmethod
@DB.connection_context()
def query_user_by_email(cls, email):
users = cls.model.select().where((cls.model.email == email))
return list(users)
@classmethod
@DB.connection_context()
def save(cls, **kwargs):
@ -139,17 +133,6 @@ class UserService(CommonService):
cls.model.update(user_dict).where(
cls.model.id == user_id).execute()
@classmethod
@DB.connection_context()
def update_user_password(cls, user_id, new_password):
with DB.atomic():
update_dict = {
"password": generate_password_hash(str(new_password)),
"update_time": current_timestamp(),
"update_date": datetime_format(datetime.now())
}
cls.model.update(update_dict).where(cls.model.id == user_id).execute()
@classmethod
@DB.connection_context()
def is_admin(cls, user_id):
@ -288,17 +271,6 @@ class UserTenantService(CommonService):
.join(User, on=((cls.model.tenant_id == User.id) & (UserTenant.user_id == user_id) & (UserTenant.status == StatusEnum.VALID.value)))
.where(cls.model.status == StatusEnum.VALID.value).dicts())
@classmethod
@DB.connection_context()
def get_user_tenant_relation_by_user_id(cls, user_id):
fields = [
cls.model.id,
cls.model.user_id,
cls.model.tenant_id,
cls.model.role
]
return list(cls.model.select(*fields).where(cls.model.user_id == user_id).dicts().dicts())
@classmethod
@DB.connection_context()
def get_num_members(cls, user_id: str):

View File

@ -41,7 +41,7 @@ from api import utils
from api.db.db_models import init_database_tables as init_web_db
from api.db.init_data import init_web_data
from api.versions import get_ragflow_version
from api.utils.configs import show_configs
from api.utils import show_configs
from rag.settings import print_rag_settings
from rag.utils.mcp_tool_call_conn import shutdown_all_mcp_sessions
from rag.utils.redis_conn import RedisDistributedLock

View File

@ -24,7 +24,7 @@ import rag.utils.es_conn
import rag.utils.infinity_conn
import rag.utils.opensearch_conn
from api.constants import RAG_FLOW_SERVICE_NAME
from api.utils.configs import decrypt_database_config, get_base_config
from api.utils import decrypt_database_config, get_base_config
from api.utils.file_utils import get_project_base_directory
from rag.nlp import search

View File

@ -16,15 +16,184 @@
import base64
import datetime
import hashlib
import io
import json
import os
import pickle
import socket
import time
import uuid
import requests
import logging
import copy
from enum import Enum, IntEnum
import importlib
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from filelock import FileLock
from api.constants import SERVICE_CONF
from .common import string_to_bytes
from . import file_utils
def conf_realpath(conf_name):
conf_path = f"conf/{conf_name}"
return os.path.join(file_utils.get_project_base_directory(), conf_path)
def read_config(conf_name=SERVICE_CONF):
local_config = {}
local_path = conf_realpath(f'local.{conf_name}')
# load local config file
if os.path.exists(local_path):
local_config = file_utils.load_yaml_conf(local_path)
if not isinstance(local_config, dict):
raise ValueError(f'Invalid config file: "{local_path}".')
global_config_path = conf_realpath(conf_name)
global_config = file_utils.load_yaml_conf(global_config_path)
if not isinstance(global_config, dict):
raise ValueError(f'Invalid config file: "{global_config_path}".')
global_config.update(local_config)
return global_config
CONFIGS = read_config()
def show_configs():
msg = f"Current configs, from {conf_realpath(SERVICE_CONF)}:"
for k, v in CONFIGS.items():
if isinstance(v, dict):
if "password" in v:
v = copy.deepcopy(v)
v["password"] = "*" * 8
if "access_key" in v:
v = copy.deepcopy(v)
v["access_key"] = "*" * 8
if "secret_key" in v:
v = copy.deepcopy(v)
v["secret_key"] = "*" * 8
if "secret" in v:
v = copy.deepcopy(v)
v["secret"] = "*" * 8
if "sas_token" in v:
v = copy.deepcopy(v)
v["sas_token"] = "*" * 8
if "oauth" in k:
v = copy.deepcopy(v)
for key, val in v.items():
if "client_secret" in val:
val["client_secret"] = "*" * 8
if "authentication" in k:
v = copy.deepcopy(v)
for key, val in v.items():
if "http_secret_key" in val:
val["http_secret_key"] = "*" * 8
msg += f"\n\t{k}: {v}"
logging.info(msg)
def get_base_config(key, default=None):
if key is None:
return None
if default is None:
default = os.environ.get(key.upper())
return CONFIGS.get(key, default)
use_deserialize_safe_module = get_base_config(
'use_deserialize_safe_module', False)
class BaseType:
def to_dict(self):
return dict([(k.lstrip("_"), v) for k, v in self.__dict__.items()])
def to_dict_with_type(self):
def _dict(obj):
module = None
if issubclass(obj.__class__, BaseType):
data = {}
for attr, v in obj.__dict__.items():
k = attr.lstrip("_")
data[k] = _dict(v)
module = obj.__module__
elif isinstance(obj, (list, tuple)):
data = []
for i, vv in enumerate(obj):
data.append(_dict(vv))
elif isinstance(obj, dict):
data = {}
for _k, vv in obj.items():
data[_k] = _dict(vv)
else:
data = obj
return {"type": obj.__class__.__name__,
"data": data, "module": module}
return _dict(self)
class CustomJSONEncoder(json.JSONEncoder):
def __init__(self, **kwargs):
self._with_type = kwargs.pop("with_type", False)
super().__init__(**kwargs)
def default(self, obj):
if isinstance(obj, datetime.datetime):
return obj.strftime('%Y-%m-%d %H:%M:%S')
elif isinstance(obj, datetime.date):
return obj.strftime('%Y-%m-%d')
elif isinstance(obj, datetime.timedelta):
return str(obj)
elif issubclass(type(obj), Enum) or issubclass(type(obj), IntEnum):
return obj.value
elif isinstance(obj, set):
return list(obj)
elif issubclass(type(obj), BaseType):
if not self._with_type:
return obj.to_dict()
else:
return obj.to_dict_with_type()
elif isinstance(obj, type):
return obj.__name__
else:
return json.JSONEncoder.default(self, obj)
def rag_uuid():
return uuid.uuid1().hex
def string_to_bytes(string):
return string if isinstance(
string, bytes) else string.encode(encoding="utf-8")
def bytes_to_string(byte):
return byte.decode(encoding="utf-8")
def json_dumps(src, byte=False, indent=None, with_type=False):
dest = json.dumps(
src,
indent=indent,
cls=CustomJSONEncoder,
with_type=with_type)
if byte:
dest = string_to_bytes(dest)
return dest
def json_loads(src, object_hook=None, object_pairs_hook=None):
if isinstance(src, bytes):
src = bytes_to_string(src)
return json.loads(src, object_hook=object_hook,
object_pairs_hook=object_pairs_hook)
def current_timestamp():
@ -46,6 +215,45 @@ def date_string_to_timestamp(time_str, format_string="%Y-%m-%d %H:%M:%S"):
return time_stamp
def serialize_b64(src, to_str=False):
dest = base64.b64encode(pickle.dumps(src))
if not to_str:
return dest
else:
return bytes_to_string(dest)
def deserialize_b64(src):
src = base64.b64decode(
string_to_bytes(src) if isinstance(
src, str) else src)
if use_deserialize_safe_module:
return restricted_loads(src)
return pickle.loads(src)
safe_module = {
'numpy',
'rag_flow'
}
class RestrictedUnpickler(pickle.Unpickler):
def find_class(self, module, name):
import importlib
if module.split('.')[0] in safe_module:
_module = importlib.import_module(module)
return getattr(_module, name)
# Forbid everything else.
raise pickle.UnpicklingError("global '%s.%s' is forbidden" %
(module, name))
def restricted_loads(src):
"""Helper function analogous to pickle.loads()."""
return RestrictedUnpickler(io.BytesIO(src)).load()
def get_lan_ip():
if os.name != "nt":
import fcntl
@ -90,6 +298,47 @@ def from_dict_hook(in_dict: dict):
return in_dict
def decrypt_database_password(password):
encrypt_password = get_base_config("encrypt_password", False)
encrypt_module = get_base_config("encrypt_module", False)
private_key = get_base_config("private_key", None)
if not password or not encrypt_password:
return password
if not private_key:
raise ValueError("No private key")
module_fun = encrypt_module.split("#")
pwdecrypt_fun = getattr(
importlib.import_module(
module_fun[0]),
module_fun[1])
return pwdecrypt_fun(private_key, password)
def decrypt_database_config(
database=None, passwd_key="password", name="database"):
if not database:
database = get_base_config(name, {})
database[passwd_key] = decrypt_database_password(database[passwd_key])
return database
def update_config(key, value, conf_name=SERVICE_CONF):
conf_path = conf_realpath(conf_name=conf_name)
if not os.path.isabs(conf_path):
conf_path = os.path.join(
file_utils.get_project_base_directory(), conf_path)
with FileLock(os.path.join(os.path.dirname(conf_path), ".lock")):
config = file_utils.load_yaml_conf(conf_path=conf_path) or {}
config[key] = value
file_utils.rewrite_yaml_conf(conf_path=conf_path, config=config)
def get_uuid():
return uuid.uuid1().hex
@ -114,6 +363,37 @@ def elapsed2time(elapsed):
return '%02d:%02d:%02d' % (hour, minuter, second)
def decrypt(line):
file_path = os.path.join(
file_utils.get_project_base_directory(),
"conf",
"private.pem")
rsa_key = RSA.importKey(open(file_path).read(), "Welcome")
cipher = Cipher_pkcs1_v1_5.new(rsa_key)
return cipher.decrypt(base64.b64decode(
line), "Fail to decrypt password!").decode('utf-8')
def decrypt2(crypt_text):
from base64 import b64decode, b16decode
from Crypto.Cipher import PKCS1_v1_5 as Cipher_PKCS1_v1_5
from Crypto.PublicKey import RSA
decode_data = b64decode(crypt_text)
if len(decode_data) == 127:
hex_fixed = '00' + decode_data.hex()
decode_data = b16decode(hex_fixed.upper())
file_path = os.path.join(
file_utils.get_project_base_directory(),
"conf",
"private.pem")
pem = open(file_path).read()
rsa_key = RSA.importKey(pem, "Welcome")
cipher = Cipher_PKCS1_v1_5.new(rsa_key)
decrypt_text = cipher.decrypt(decode_data, None)
return (b64decode(decrypt_text)).decode()
def download_img(url):
if not url:
return ""
@ -128,5 +408,5 @@ def delta_seconds(date_string: str):
return (datetime.datetime.now() - dt).total_seconds()
def hash_str2int(line: str, mod: int = 10 ** 8) -> int:
return int(hashlib.sha1(line.encode("utf-8")).hexdigest(), 16) % mod
def hash_str2int(line:str, mod: int=10 ** 8) -> int:
return int(hashlib.sha1(line.encode("utf-8")).hexdigest(), 16) % mod

View File

@ -39,7 +39,6 @@ from flask import (
make_response,
send_file,
)
from flask_login import current_user
from flask import (
request as flask_request,
)
@ -49,13 +48,10 @@ from werkzeug.http import HTTP_STATUS_CODES
from api import settings
from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC
from api.db import ActiveEnum
from api.db.db_models import APIToken
from api.db.services import UserService
from api.db.services.llm_service import LLMService
from api.db.services.tenant_llm_service import TenantLLMService
from api.utils.json import CustomJSONEncoder, json_dumps
from api.utils import get_uuid
from api.utils import CustomJSONEncoder, get_uuid, json_dumps
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, close_multiple_mcp_toolcall_sessions
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
@ -230,18 +226,6 @@ def not_allowed_parameters(*params):
return decorator
def active_required(f):
@wraps(f)
def wrapper(*args, **kwargs):
user_id = current_user.id
usr = UserService.filter_by_id(user_id)
# check is_active
if not usr or not usr.is_active == ActiveEnum.ACTIVE.value:
return get_json_result(code=settings.RetCode.FORBIDDEN, message="User isn't active, please activate first.")
return f(*args, **kwargs)
return wrapper
def is_localhost(ip):
return ip in {"127.0.0.1", "::1", "[::1]", "localhost"}
@ -659,16 +643,6 @@ def remap_dictionary_keys(source_data: dict, key_aliases: dict = None) -> dict:
return transformed_data
def group_by(list_of_dict, key):
res = {}
for item in list_of_dict:
if item[key] in res.keys():
res[item[key]].append(item)
else:
res[item[key]] = [item]
return res
def get_mcp_tools(mcp_servers: list, timeout: float | int = 10) -> tuple[dict, str]:
results = {}
tool_call_sessions = []
@ -705,9 +679,7 @@ TimeoutException = Union[Type[BaseException], BaseException]
OnTimeoutCallback = Union[Callable[..., Any], Coroutine[Any, Any, Any]]
def timeout(seconds: float | int | str = None, attempts: int = 2, *, exception: Optional[TimeoutException] = None, on_timeout: Optional[OnTimeoutCallback] = None):
if isinstance(seconds, str):
seconds = float(seconds)
def timeout(seconds: float | int = None, attempts: int = 2, *, exception: Optional[TimeoutException] = None, on_timeout: Optional[OnTimeoutCallback] = None):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):

View File

@ -1,56 +1,3 @@
import base64
import logging
from functools import partial
from io import BytesIO
from PIL import Image
test_image_base64 = "iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAIAAAD/gAIDAAAA6ElEQVR4nO3QwQ3AIBDAsIP9d25XIC+EZE8QZc18w5l9O+AlZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBT+IYAHHLHkdEgAAAABJRU5ErkJggg=="
test_image = base64.b64decode(test_image_base64)
async def image2id(d: dict, storage_put_func: partial, objname:str, bucket:str="imagetemps"):
import logging
from io import BytesIO
import trio
from rag.svr.task_executor import minio_limiter
if not d.get("image"):
return
with BytesIO() as output_buffer:
if isinstance(d["image"], bytes):
output_buffer.write(d["image"])
output_buffer.seek(0)
else:
# If the image is in RGBA mode, convert it to RGB mode before saving it in JPEG format.
if d["image"].mode in ("RGBA", "P"):
converted_image = d["image"].convert("RGB")
d["image"] = converted_image
try:
d["image"].save(output_buffer, format='JPEG')
except OSError as e:
logging.warning(
"Saving image exception, ignore: {}".format(str(e)))
async with minio_limiter:
await trio.to_thread.run_sync(lambda: storage_put_func(bucket=bucket, fnm=objname, binary=output_buffer.getvalue()))
d["img_id"] = f"{bucket}-{objname}"
if not isinstance(d["image"], bytes):
d["image"].close()
del d["image"] # Remove image reference
def id2image(image_id:str|None, storage_get_func: partial):
if not image_id:
return
arr = image_id.split("-")
if len(arr) != 2:
return
bkt, nm = image_id.split("-")
try:
blob = storage_get_func(bucket=bkt, filename=nm)
if not blob:
return
return Image.open(BytesIO(blob))
except Exception as e:
logging.exception(e)
test_image = base64.b64decode(test_image_base64)

View File

@ -1,23 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
def string_to_bytes(string):
return string if isinstance(
string, bytes) else string.encode(encoding="utf-8")
def bytes_to_string(byte):
return byte.decode(encoding="utf-8")

View File

@ -1,179 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import io
import copy
import logging
import base64
import pickle
import importlib
from api.utils import file_utils
from filelock import FileLock
from api.utils.common import bytes_to_string, string_to_bytes
from api.constants import SERVICE_CONF
def conf_realpath(conf_name):
conf_path = f"conf/{conf_name}"
return os.path.join(file_utils.get_project_base_directory(), conf_path)
def read_config(conf_name=SERVICE_CONF):
local_config = {}
local_path = conf_realpath(f'local.{conf_name}')
# load local config file
if os.path.exists(local_path):
local_config = file_utils.load_yaml_conf(local_path)
if not isinstance(local_config, dict):
raise ValueError(f'Invalid config file: "{local_path}".')
global_config_path = conf_realpath(conf_name)
global_config = file_utils.load_yaml_conf(global_config_path)
if not isinstance(global_config, dict):
raise ValueError(f'Invalid config file: "{global_config_path}".')
global_config.update(local_config)
return global_config
CONFIGS = read_config()
def show_configs():
msg = f"Current configs, from {conf_realpath(SERVICE_CONF)}:"
for k, v in CONFIGS.items():
if isinstance(v, dict):
if "password" in v:
v = copy.deepcopy(v)
v["password"] = "*" * 8
if "access_key" in v:
v = copy.deepcopy(v)
v["access_key"] = "*" * 8
if "secret_key" in v:
v = copy.deepcopy(v)
v["secret_key"] = "*" * 8
if "secret" in v:
v = copy.deepcopy(v)
v["secret"] = "*" * 8
if "sas_token" in v:
v = copy.deepcopy(v)
v["sas_token"] = "*" * 8
if "oauth" in k:
v = copy.deepcopy(v)
for key, val in v.items():
if "client_secret" in val:
val["client_secret"] = "*" * 8
if "authentication" in k:
v = copy.deepcopy(v)
for key, val in v.items():
if "http_secret_key" in val:
val["http_secret_key"] = "*" * 8
msg += f"\n\t{k}: {v}"
logging.info(msg)
def get_base_config(key, default=None):
if key is None:
return None
if default is None:
default = os.environ.get(key.upper())
return CONFIGS.get(key, default)
def decrypt_database_password(password):
encrypt_password = get_base_config("encrypt_password", False)
encrypt_module = get_base_config("encrypt_module", False)
private_key = get_base_config("private_key", None)
if not password or not encrypt_password:
return password
if not private_key:
raise ValueError("No private key")
module_fun = encrypt_module.split("#")
pwdecrypt_fun = getattr(
importlib.import_module(
module_fun[0]),
module_fun[1])
return pwdecrypt_fun(private_key, password)
def decrypt_database_config(
database=None, passwd_key="password", name="database"):
if not database:
database = get_base_config(name, {})
database[passwd_key] = decrypt_database_password(database[passwd_key])
return database
def update_config(key, value, conf_name=SERVICE_CONF):
conf_path = conf_realpath(conf_name=conf_name)
if not os.path.isabs(conf_path):
conf_path = os.path.join(
file_utils.get_project_base_directory(), conf_path)
with FileLock(os.path.join(os.path.dirname(conf_path), ".lock")):
config = file_utils.load_yaml_conf(conf_path=conf_path) or {}
config[key] = value
file_utils.rewrite_yaml_conf(conf_path=conf_path, config=config)
safe_module = {
'numpy',
'rag_flow'
}
class RestrictedUnpickler(pickle.Unpickler):
def find_class(self, module, name):
import importlib
if module.split('.')[0] in safe_module:
_module = importlib.import_module(module)
return getattr(_module, name)
# Forbid everything else.
raise pickle.UnpicklingError("global '%s.%s' is forbidden" %
(module, name))
def restricted_loads(src):
"""Helper function analogous to pickle.loads()."""
return RestrictedUnpickler(io.BytesIO(src)).load()
def serialize_b64(src, to_str=False):
dest = base64.b64encode(pickle.dumps(src))
if not to_str:
return dest
else:
return bytes_to_string(dest)
def deserialize_b64(src):
src = base64.b64decode(
string_to_bytes(src) if isinstance(
src, str) else src)
use_deserialize_safe_module = get_base_config(
'use_deserialize_safe_module', False)
if use_deserialize_safe_module:
return restricted_loads(src)
return pickle.loads(src)

View File

@ -1,64 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
import os
import sys
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from api.utils import file_utils
def crypt(line):
"""
decrypt(crypt(input_string)) == base64(input_string), which frontend and admin_client use.
"""
file_path = os.path.join(file_utils.get_project_base_directory(), "conf", "public.pem")
rsa_key = RSA.importKey(open(file_path).read(), "Welcome")
cipher = Cipher_pkcs1_v1_5.new(rsa_key)
password_base64 = base64.b64encode(line.encode('utf-8')).decode("utf-8")
encrypted_password = cipher.encrypt(password_base64.encode())
return base64.b64encode(encrypted_password).decode('utf-8')
def decrypt(line):
file_path = os.path.join(file_utils.get_project_base_directory(), "conf", "private.pem")
rsa_key = RSA.importKey(open(file_path).read(), "Welcome")
cipher = Cipher_pkcs1_v1_5.new(rsa_key)
return cipher.decrypt(base64.b64decode(line), "Fail to decrypt password!").decode('utf-8')
def decrypt2(crypt_text):
from base64 import b64decode, b16decode
from Crypto.Cipher import PKCS1_v1_5 as Cipher_PKCS1_v1_5
from Crypto.PublicKey import RSA
decode_data = b64decode(crypt_text)
if len(decode_data) == 127:
hex_fixed = '00' + decode_data.hex()
decode_data = b16decode(hex_fixed.upper())
file_path = os.path.join(file_utils.get_project_base_directory(), "conf", "private.pem")
pem = open(file_path).read()
rsa_key = RSA.importKey(pem, "Welcome")
cipher = Cipher_PKCS1_v1_5.new(rsa_key)
decrypt_text = cipher.decrypt(decode_data, None)
return (b64decode(decrypt_text)).decode()
if __name__ == "__main__":
passwd = crypt(sys.argv[1])
print(passwd)
print(decrypt(passwd))

View File

@ -155,7 +155,7 @@ def filename_type(filename):
if re.match(r".*\.pdf$", filename):
return FileType.PDF.value
if re.match(r".*\.(msg|eml|doc|docx|ppt|pptx|yml|xml|htm|json|jsonl|ldjson|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|html|sql)$", filename):
if re.match(r".*\.(eml|doc|docx|ppt|pptx|yml|xml|htm|json|jsonl|ldjson|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|html|sql)$", filename):
return FileType.DOC.value
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus)$", filename):

View File

@ -1,104 +0,0 @@
from timeit import default_timer as timer
from api import settings
from api.db.db_models import DB
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL
def _ok_nok(ok: bool) -> str:
return "ok" if ok else "nok"
def check_db() -> tuple[bool, dict]:
st = timer()
try:
# lightweight probe; works for MySQL/Postgres
DB.execute_sql("SELECT 1")
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_redis() -> tuple[bool, dict]:
st = timer()
try:
ok = bool(REDIS_CONN.health())
return ok, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_doc_engine() -> tuple[bool, dict]:
st = timer()
try:
meta = settings.docStoreConn.health()
# treat any successful call as ok
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", **(meta or {})}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_storage() -> tuple[bool, dict]:
st = timer()
try:
STORAGE_IMPL.health()
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_chat() -> tuple[bool, dict]:
st = timer()
try:
cfg = getattr(settings, "CHAT_CFG", None)
ok = bool(cfg and cfg.get("factory"))
return ok, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def run_health_checks() -> tuple[dict, bool]:
result: dict[str, str | dict] = {}
db_ok, db_meta = check_db()
chat_ok, chat_meta = check_chat()
result["db"] = _ok_nok(db_ok)
if not db_ok:
result.setdefault("_meta", {})["db"] = db_meta
result["chat"] = _ok_nok(chat_ok)
if not chat_ok:
result.setdefault("_meta", {})["chat"] = chat_meta
# Optional probes (do not change minimal contract but exposed for observability)
try:
redis_ok, redis_meta = check_redis()
result["redis"] = _ok_nok(redis_ok)
if not redis_ok:
result.setdefault("_meta", {})["redis"] = redis_meta
except Exception:
result["redis"] = "nok"
try:
doc_ok, doc_meta = check_doc_engine()
result["doc_engine"] = _ok_nok(doc_ok)
if not doc_ok:
result.setdefault("_meta", {})["doc_engine"] = doc_meta
except Exception:
result["doc_engine"] = "nok"
try:
sto_ok, sto_meta = check_storage()
result["storage"] = _ok_nok(sto_ok)
if not sto_ok:
result.setdefault("_meta", {})["storage"] = sto_meta
except Exception:
result["storage"] = "nok"
all_ok = (result.get("db") == "ok") and (result.get("chat") == "ok")
result["status"] = "ok" if all_ok else "nok"
return result, all_ok

View File

@ -1,78 +0,0 @@
import datetime
import json
from enum import Enum, IntEnum
from api.utils.common import string_to_bytes, bytes_to_string
class BaseType:
def to_dict(self):
return dict([(k.lstrip("_"), v) for k, v in self.__dict__.items()])
def to_dict_with_type(self):
def _dict(obj):
module = None
if issubclass(obj.__class__, BaseType):
data = {}
for attr, v in obj.__dict__.items():
k = attr.lstrip("_")
data[k] = _dict(v)
module = obj.__module__
elif isinstance(obj, (list, tuple)):
data = []
for i, vv in enumerate(obj):
data.append(_dict(vv))
elif isinstance(obj, dict):
data = {}
for _k, vv in obj.items():
data[_k] = _dict(vv)
else:
data = obj
return {"type": obj.__class__.__name__,
"data": data, "module": module}
return _dict(self)
class CustomJSONEncoder(json.JSONEncoder):
def __init__(self, **kwargs):
self._with_type = kwargs.pop("with_type", False)
super().__init__(**kwargs)
def default(self, obj):
if isinstance(obj, datetime.datetime):
return obj.strftime('%Y-%m-%d %H:%M:%S')
elif isinstance(obj, datetime.date):
return obj.strftime('%Y-%m-%d')
elif isinstance(obj, datetime.timedelta):
return str(obj)
elif issubclass(type(obj), Enum) or issubclass(type(obj), IntEnum):
return obj.value
elif isinstance(obj, set):
return list(obj)
elif issubclass(type(obj), BaseType):
if not self._with_type:
return obj.to_dict()
else:
return obj.to_dict_with_type()
elif isinstance(obj, type):
return obj.__name__
else:
return json.JSONEncoder.default(self, obj)
def json_dumps(src, byte=False, indent=None, with_type=False):
dest = json.dumps(
src,
indent=indent,
cls=CustomJSONEncoder,
with_type=with_type)
if byte:
dest = string_to_bytes(dest)
return dest
def json_loads(src, object_hook=None, object_pairs_hook=None):
if isinstance(src, bytes):
src = bytes_to_string(src)
return json.loads(src, object_hook=object_hook,
object_pairs_hook=object_pairs_hook)

40
api/utils/t_crypt.py Normal file
View File

@ -0,0 +1,40 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
import os
import sys
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from api.utils import decrypt, file_utils
def crypt(line):
file_path = os.path.join(
file_utils.get_project_base_directory(),
"conf",
"public.pem")
rsa_key = RSA.importKey(open(file_path).read(),"Welcome")
cipher = Cipher_pkcs1_v1_5.new(rsa_key)
password_base64 = base64.b64encode(line.encode('utf-8')).decode("utf-8")
encrypted_password = cipher.encrypt(password_base64.encode())
return base64.b64encode(encrypted_password).decode('utf-8')
if __name__ == "__main__":
passwd = crypt(sys.argv[1])
print(passwd)
print(decrypt(passwd))

View File

@ -402,7 +402,7 @@
"is_tools": true
},
{
"llm_name": "qwen3-max",
"llm_name": "qwen3-max-preview",
"tags": "LLM,CHAT,256k",
"max_tokens": 256000,
"model_type": "chat",
@ -436,27 +436,6 @@
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-vl-plus",
"tags": "LLM,CHAT,IMAGE2TEXT,256k",
"max_tokens": 256000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "qwen3-vl-235b-a22b-instruct",
"tags": "LLM,CHAT,IMAGE2TEXT,128k",
"max_tokens": 128000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "qwen3-vl-235b-a22b-thinking",
"tags": "LLM,CHAT,IMAGE2TEXT,128k",
"max_tokens": 128000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "qwen3-235b-a22b-instruct-2507",
"tags": "LLM,CHAT,128k",
@ -478,20 +457,6 @@
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-next-80b-a3b-instruct",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-next-80b-a3b-thinking",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-0.6b",
"tags": "LLM,CHAT,32k",
@ -657,13 +622,6 @@
"tags": "SPEECH2TEXT,8k",
"max_tokens": 8000,
"model_type": "speech2text"
},
{
"llm_name": "qianwen-deepresearch-30b-a3b-131k",
"tags": "LLM,CHAT,1M,AGENT,DEEPRESEARCH",
"max_tokens": 1000000,
"model_type": "chat",
"is_tools": true
}
]
},

View File

@ -19,7 +19,7 @@ from PIL import Image
from api.utils.api_utils import timeout
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
from rag.prompts.generator import vision_llm_figure_describe_prompt
from rag.prompts import vision_llm_figure_describe_prompt
def vision_figure_parser_figure_data_wrapper(figures_data_without_positions):

View File

@ -37,7 +37,7 @@ from api.utils.file_utils import get_project_base_directory
from deepdoc.vision import OCR, AscendLayoutRecognizer, LayoutRecognizer, Recognizer, TableStructureRecognizer
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
from rag.nlp import rag_tokenizer
from rag.prompts.generator import vision_llm_describe_prompt
from rag.prompts import vision_llm_describe_prompt
from rag.settings import PARALLEL_DEVICES
LOCK_KEY_pdfplumber = "global_shared_lock_pdfplumber"
@ -1075,10 +1075,11 @@ class RAGFlowPdfParser:
def insert_table_figures(tbls_or_figs, layout_type):
def min_rectangle_distance(rect1, rect2):
import math
pn1, left1, right1, top1, bottom1 = rect1
pn2, left2, right2, top2, bottom2 = rect2
if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1:
return 0
return 0 + (pn1 - pn2) * 10000
if right1 < left2:
dx = left2 - right1
elif right2 < left1:
@ -1091,27 +1092,20 @@ class RAGFlowPdfParser:
dy = top1 - bottom2
else:
dy = 0
return math.sqrt(dx*dx + dy*dy)# + (pn2-pn1)*10000
return math.sqrt(dx * dx + dy * dy) + (pn1 - pn2) * 10000
for (img, txt), poss in tbls_or_figs:
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
dists = [(min_rectangle_distance((pn, left, right, top+self.page_cum_height[pn], bott+self.page_cum_height[pn]), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
dists = [(min_rectangle_distance((pn, left, right, top, bott), rect), i) for i, rect in bboxes for pn, left, right, top, bott in poss]
min_i = np.argmin(dists, axis=0)[0]
min_i, rect = bboxes[dists[min_i][-1]]
if isinstance(txt, list):
txt = "\n".join(txt)
pn, left, right, top, bott = poss[0]
if self.boxes[min_i]["bottom"] < top+self.page_cum_height[pn]:
min_i += 1
self.boxes.insert(min_i, {
"page_number": pn+1, "x0": left, "x1": right, "top": top+self.page_cum_height[pn], "bottom": bott+self.page_cum_height[pn], "layout_type": layout_type, "text": txt, "image": img,
"positions": [[pn+1, int(left), int(right), int(top), int(bott)]]
})
self.boxes.insert(min_i, {"page_number": rect[0], "x0": rect[1], "x1": rect[2], "top": rect[3], "bottom": rect[4], "layout_type": layout_type, "text": txt, "image": img})
for b in self.boxes:
b["position_tag"] = self._line_tag(b, zoomin)
b["image"] = self.crop(b["position_tag"], zoomin)
b["positions"] = [[pos[0][-1]+1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(b["position_tag"])]
insert_table_figures(tbls, "table")
insert_table_figures(figs, "figure")
@ -1129,7 +1123,7 @@ class RAGFlowPdfParser:
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t")
left, right, top, bottom = float(left), float(right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")], int(left), int(right), int(top), int(bottom)))
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
return poss
def crop(self, text, ZM=3, need_position=False):

View File

@ -350,7 +350,7 @@ class TextRecognizer:
def close(self):
# close session and release manually
logging.info('Close text recognizer.')
logging.info('Close TextRecognizer.')
if hasattr(self, "predictor"):
del self.predictor
gc.collect()
@ -490,7 +490,7 @@ class TextDetector:
return dt_boxes
def close(self):
logging.info("Close text detector.")
logging.info("Close TextDetector.")
if hasattr(self, "predictor"):
del self.predictor
gc.collect()

View File

@ -3,6 +3,6 @@
"position": 40,
"link": {
"type": "generated-index",
"description": "Guides and references on accessing RAGFlow's datasets via MCP."
"description": "Guides and references on accessing RAGFlow's knowledge bases via MCP."
}
}

View File

@ -14,9 +14,9 @@ A RAGFlow Model Context Protocol (MCP) server is designed as an independent comp
An MCP server can start up in either self-host mode (default) or host mode:
- **Self-host mode**:
When launching an MCP server in self-host mode, you must provide an API key to authenticate the MCP server with the RAGFlow server. In this mode, the MCP server can access *only* the datasets of a specified tenant on the RAGFlow server.
When launching an MCP server in self-host mode, you must provide an API key to authenticate the MCP server with the RAGFlow server. In this mode, the MCP server can access *only* the datasets (knowledge bases) of a specified tenant on the RAGFlow server.
- **Host mode**:
In host mode, each MCP client can access their own datasets on the RAGFlow server. However, each client request must include a valid API key to authenticate the client with the RAGFlow server.
In host mode, each MCP client can access their own knowledge bases on the RAGFlow server. However, each client request must include a valid API key to authenticate the client with the RAGFlow server.
Once a connection is established, an MCP server communicates with its client in MCP HTTP+SSE (Server-Sent Events) mode, unidirectionally pushing responses from the RAGFlow server to its client in real time.

View File

@ -498,7 +498,7 @@ To switch your document engine from Elasticsearch to [Infinity](https://github.c
### Where are my uploaded files stored in RAGFlow's image?
All uploaded files are stored in Minio, RAGFlow's object storage solution. For instance, if you upload your file directly to a dataset, it is located at `<knowledgebase_id>/filename`.
All uploaded files are stored in Minio, RAGFlow's object storage solution. For instance, if you upload your file directly to a knowledge base, it is located at `<knowledgebase_id>/filename`.
---

View File

@ -67,14 +67,14 @@ You can tune document parsing and embedding efficiency by setting the environmen
## Frequently asked questions
### Is the uploaded file in a dataset?
### Is the uploaded file in a knowledge base?
No. Files uploaded to an agent as input are not stored in a dataset and hence will not be processed using RAGFlow's built-in OCR, DLR or TSR models, or chunked using RAGFlow's built-in chunking methods.
No. Files uploaded to an agent as input are not stored in a knowledge base and hence will not be processed using RAGFlow's built-in OCR, DLR or TSR models, or chunked using RAGFlow's built-in chunking methods.
### File size limit for an uploaded file
There is no _specific_ file size limit for a file uploaded to an agent. However, note that model providers typically have a default or explicit maximum token setting, which can range from 8196 to 128k: The plain text part of the uploaded file will be passed in as the key value, but if the file's token count exceeds this limit, the string will be truncated and incomplete.
:::tip NOTE
The variables `MAX_CONTENT_LENGTH` in `/docker/.env` and `client_max_body_size` in `/docker/nginx/nginx.conf` set the file size limit for each upload to a dataset or **File Management**. These settings DO NOT apply in this scenario.
The variables `MAX_CONTENT_LENGTH` in `/docker/.env` and `client_max_body_size` in `/docker/nginx/nginx.conf` set the file size limit for each upload to a knowledge base or **File Management**. These settings DO NOT apply in this scenario.
:::

View File

@ -9,7 +9,7 @@ A component that retrieves information from specified datasets.
## Scenarios
A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated datasets before being sent to the LLM for content generation. A **Retrieval** component can operate either as a standalone workflow module or as a tool for an **Agent** component. In the latter role, the **Agent** component has autonomous control over when to invoke it for query and retrieval.
A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated knowledge bases before being sent to the LLM for content generation. A **Retrieval** component can operate either as a standalone workflow module or as a tool for an **Agent** component. In the latter role, the **Agent** component has autonomous control over when to invoke it for query and retrieval.
The following screenshot shows a reference design using the **Retrieval** component, where the component serves as a tool for an **Agent** component. You can find it from the **Report Agent Using Knowledge Base** Agent template.
@ -17,7 +17,7 @@ The following screenshot shows a reference design using the **Retrieval** compon
## Prerequisites
Ensure you [have properly configured your target dataset(s)](../../dataset/configure_knowledge_base.md).
Ensure you [have properly configured your target knowledge base(s)](../../dataset/configure_knowledge_base.md).
## Quickstart
@ -36,9 +36,9 @@ The **Retrieval** component depends on query variables to specify its queries.
By default, you can use `sys.query`, which is the user query and the default output of the **Begin** component. All global variables defined before the **Retrieval** component can also be used as query statements. Use the `(x)` button or type `/` to show all the available query variables.
### 3. Select dataset(s) to query
### 3. Select knowledge base(s) to query
You can specify one or multiple datasets to retrieve data from. If selecting mutiple, ensure they use the same embedding model.
You can specify one or multiple knowledge bases to retrieve data from. If selecting mutiple, ensure they use the same embedding model.
### 4. Expand **Advanced Settings** to configure the retrieval method
@ -52,7 +52,7 @@ Using a rerank model will *significantly* increase the system's response time. I
### 5. Enable cross-language search
If your user query is different from the languages of the datasets, you can select the target languages in the **Cross-language search** dropdown menu. The model will then translates queries to ensure accurate matching of semantic meaning across languages.
If your user query is different from the languages of the knowledge bases, you can select the target languages in the **Cross-language search** dropdown menu. The model will then translates queries to ensure accurate matching of semantic meaning across languages.
### 6. Test retrieval results
@ -76,10 +76,10 @@ The **Retrieval** component relies on query variables to specify its queries. Al
### Knowledge bases
Select the dataset(s) to retrieve data from.
Select the knowledge base(s) to retrieve data from.
- If no dataset is selected, meaning conversations with the agent will not be based on any dataset, ensure that the **Empty response** field is left blank to avoid an error.
- If you select multiple datasets, you must ensure that the datasets you select use the same embedding model; otherwise, an error message would occur.
- If no knowledge base is selected, meaning conversations with the agent will not be based on any knowledge base, ensure that the **Empty response** field is left blank to avoid an error.
- If you select multiple knowledge bases, you must ensure that the knowledge bases (datasets) you select use the same embedding model; otherwise, an error message would occur.
### Similarity threshold
@ -110,11 +110,11 @@ Using a rerank model will *significantly* increase the system's response time.
### Empty response
- Set this as a response if no results are retrieved from the dataset(s) for your query, or
- Set this as a response if no results are retrieved from the knowledge base(s) for your query, or
- Leave this field blank to allow the chat model to improvise when nothing is found.
:::caution WARNING
If you do not specify a dataset, you must leave this field blank; otherwise, an error would occur.
If you do not specify a knowledge base, you must leave this field blank; otherwise, an error would occur.
:::
### Cross-language search
@ -124,10 +124,10 @@ Select one or more languages for crosslanguage search. If no language is sele
### Use knowledge graph
:::caution IMPORTANT
Before enabling this feature, ensure you have properly [constructed a knowledge graph from each target dataset](../../dataset/construct_knowledge_graph.md).
Before enabling this feature, ensure you have properly [constructed a knowledge graph from each target knowledge base](../../dataset/construct_knowledge_graph.md).
:::
Whether to use knowledge graph(s) in the specified dataset(s) during retrieval for multi-hop question answering. When enabled, this would involve iterative searches across entity, relationship, and community report chunks, greatly increasing retrieval time.
Whether to use knowledge graph(s) in the specified knowledge base(s) during retrieval for multi-hop question answering. When enabled, this would involve iterative searches across entity, relationship, and community report chunks, greatly increasing retrieval time.
### Output

View File

@ -27,7 +27,7 @@ Agents and RAG are complementary techniques, each enhancing the others capabi
Before proceeding, ensure that:
1. You have properly set the LLM to use. See the guides on [Configure your API key](../models/llm_api_key_setup.md) or [Deploy a local LLM](../models/deploy_local_llm.mdx) for more information.
2. You have a dataset configured and the corresponding files properly parsed. See the guide on [Configure a dataset](../dataset/configure_knowledge_base.md) for more information.
2. You have a knowledge base configured and the corresponding files properly parsed. See the guide on [Configure a knowledge base](../dataset/configure_knowledge_base.md) for more information.
:::

View File

@ -22,7 +22,7 @@ When debugging your chat assistant, you can use AI search as a reference to veri
## Prerequisites
- Ensure that you have configured the system's default models on the **Model providers** page.
- Ensure that the intended datasets are properly configured and the intended documents have finished file parsing.
- Ensure that the intended knowledge bases are properly configured and the intended documents have finished file parsing.
## Frequently asked questions

View File

@ -25,13 +25,13 @@ In the **Variable** section, you add, remove, or update variables.
### `{knowledge}` - a reserved variable
`{knowledge}` is the system's reserved variable, representing the chunks retrieved from the dataset(s) specified by **Knowledge bases** under the **Assistant settings** tab. If your chat assistant is associated with certain datasets, you can keep it as is.
`{knowledge}` is the system's reserved variable, representing the chunks retrieved from the knowledge base(s) specified by **Knowledge bases** under the **Assistant settings** tab. If your chat assistant is associated with certain knowledge bases, you can keep it as is.
:::info NOTE
It currently makes no difference whether `{knowledge}` is set as optional or mandatory, but please note this design will be updated in due course.
:::
From v0.17.0 onward, you can start an AI chat without specifying datasets. In this case, we recommend removing the `{knowledge}` variable to prevent unnecessary reference and keeping the **Empty response** field empty to avoid errors.
From v0.17.0 onward, you can start an AI chat without specifying knowledge bases. In this case, we recommend removing the `{knowledge}` variable to prevent unnecessary reference and keeping the **Empty response** field empty to avoid errors.
### Custom variables
@ -45,15 +45,15 @@ Besides `{knowledge}`, you can also define your own variables to pair with the s
After you add or remove variables in the **Variable** section, ensure your changes are reflected in the system prompt to avoid inconsistencies or errors. Here's an example:
```
You are an intelligent assistant. Please answer the question by summarizing chunks from the specified dataset(s)...
You are an intelligent assistant. Please answer the question by summarizing chunks from the specified knowledge base(s)...
Your answers should follow a professional and {style} style.
...
Here is the dataset:
Here is the knowledge base:
{knowledge}
The above is the dataset.
The above is the knowledge base.
```
:::tip NOTE

View File

@ -9,7 +9,7 @@ Initiate an AI-powered chat with a configured chat assistant.
---
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. Chats in RAGFlow are based on a particular dataset or multiple datasets. Once you have created your dataset, finished file parsing, and [run a retrieval test](../dataset/run_retrieval_test.md), you can go ahead and start an AI conversation.
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. Chats in RAGFlow are based on a particular knowledge base or multiple knowledge bases. Once you have created your knowledge base, finished file parsing, and [run a retrieval test](../dataset/run_retrieval_test.md), you can go ahead and start an AI conversation.
## Start an AI chat
@ -21,12 +21,12 @@ You start an AI conversation by creating an assistant.
2. Update **Assistant settings**:
- **Assistant name** is the name of your chat assistant. Each assistant corresponds to a dialogue with a unique combination of datasets, prompts, hybrid search configurations, and large model settings.
- **Assistant name** is the name of your chat assistant. Each assistant corresponds to a dialogue with a unique combination of knowledge bases, prompts, hybrid search configurations, and large model settings.
- **Empty response**:
- If you wish to *confine* RAGFlow's answers to your datasets, leave a response here. Then, when it doesn't retrieve an answer, it *uniformly* responds with what you set here.
- If you wish RAGFlow to *improvise* when it doesn't retrieve an answer from your datasets, leave it blank, which may give rise to hallucinations.
- If you wish to *confine* RAGFlow's answers to your knowledge bases, leave a response here. Then, when it doesn't retrieve an answer, it *uniformly* responds with what you set here.
- If you wish RAGFlow to *improvise* when it doesn't retrieve an answer from your knowledge bases, leave it blank, which may give rise to hallucinations.
- **Show quote**: This is a key feature of RAGFlow and enabled by default. RAGFlow does not work like a black box. Instead, it clearly shows the sources of information that its responses are based on.
- Select the corresponding datasets. You can select one or multiple datasets, but ensure that they use the same embedding model, otherwise an error would occur.
- Select the corresponding knowledge bases. You can select one or multiple knowledge bases, but ensure that they use the same embedding model, otherwise an error would occur.
3. Update **Prompt engine**:
@ -37,14 +37,14 @@ You start an AI conversation by creating an assistant.
- If **Rerank model** is selected, the hybrid score system uses keyword similarity and reranker score, and the default weight assigned to the reranker score is 1-0.7=0.3.
- **Top N** determines the *maximum* number of chunks to feed to the LLM. In other words, even if more chunks are retrieved, only the top N chunks are provided as input.
- **Multi-turn optimization** enhances user queries using existing context in a multi-round conversation. It is enabled by default. When enabled, it will consume additional LLM tokens and significantly increase the time to generate answers.
- **Use knowledge graph** indicates whether to use knowledge graph(s) in the specified dataset(s) during retrieval for multi-hop question answering. When enabled, this would involve iterative searches across entity, relationship, and community report chunks, greatly increasing retrieval time.
- **Use knowledge graph** indicates whether to use knowledge graph(s) in the specified knowledge base(s) during retrieval for multi-hop question answering. When enabled, this would involve iterative searches across entity, relationship, and community report chunks, greatly increasing retrieval time.
- **Reasoning** indicates whether to generate answers through reasoning processes like Deepseek-R1/OpenAI o1. Once enabled, the chat model autonomously integrates Deep Research during question answering when encountering an unknown topic. This involves the chat model dynamically searching external knowledge and generating final answers through reasoning.
- **Rerank model** sets the reranker model to use. It is left empty by default.
- If **Rerank model** is left empty, the hybrid score system uses keyword similarity and vector similarity, and the default weight assigned to the vector similarity component is 1-0.7=0.3.
- If **Rerank model** is selected, the hybrid score system uses keyword similarity and reranker score, and the default weight assigned to the reranker score is 1-0.7=0.3.
- [Cross-language search](../../references/glossary.mdx#cross-language-search): Optional
Select one or more target languages from the dropdown menu. The systems default chat model will then translate your query into the selected target language(s). This translation ensures accurate semantic matching across languages, allowing you to retrieve relevant results regardless of language differences.
- When selecting target languages, please ensure that these languages are present in the dataset to guarantee an effective search.
- When selecting target languages, please ensure that these languages are present in the knowledge base to guarantee an effective search.
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
- If you are uncertain about the logic behind **Variable**, leave it *as-is*.

View File

@ -3,6 +3,6 @@
"position": 0,
"link": {
"type": "generated-index",
"description": "Guides on configuring a dataset."
"description": "Guides on configuring a knowledge base."
}
}

View File

@ -6,7 +6,7 @@ slug: /autokeyword_autoquestion
# Auto-keyword Auto-question
import APITable from '@site/src/components/APITable';
Use a chat model to generate keywords or questions from each chunk in the dataset.
Use a chat model to generate keywords or questions from each chunk in the knowledge base.
---
@ -18,7 +18,7 @@ Enabling this feature increases document indexing time and uses extra tokens, as
## What is Auto-keyword?
Auto-keyword refers to the auto-keyword generation feature of RAGFlow. It uses a chat model to generate a set of keywords or synonyms from each chunk to correct errors and enhance retrieval accuracy. This feature is implemented as a slider under **Page rank** on the **Configuration** page of your dataset.
Auto-keyword refers to the auto-keyword generation feature of RAGFlow. It uses a chat model to generate a set of keywords or synonyms from each chunk to correct errors and enhance retrieval accuracy. This feature is implemented as a slider under **Page rank** on the **Configuration** page of your knowledge base.
**Values**:
@ -33,7 +33,7 @@ Auto-keyword refers to the auto-keyword generation feature of RAGFlow. It uses a
## What is Auto-question?
Auto-question is a feature of RAGFlow that automatically generates questions from chunks of data using a chat model. These questions (e.g. who, what, and why) also help correct errors and improve the matching of user queries. The feature usually works with FAQ retrieval scenarios involving product manuals or policy documents. And you can find this feature as a slider under **Page rank** on the **Configuration** page of your dataset.
Auto-question is a feature of RAGFlow that automatically generates questions from chunks of data using a chat model. These questions (e.g. who, what, and why) also help correct errors and improve the matching of user queries. The feature usually works with FAQ retrieval scenarios involving product manuals or policy documents. And you can find this feature as a slider under **Page rank** on the **Configuration** page of your knowledge base.
**Values**:
@ -48,7 +48,7 @@ Auto-question is a feature of RAGFlow that automatically generates questions fro
## Tips from the community
The Auto-keyword or Auto-question values relate closely to the chunking size in your dataset. However, if you are new to this feature and unsure which value(s) to start with, the following are some value settings we gathered from our community. While they may not be accurate, they provide a starting point at the very least.
The Auto-keyword or Auto-question values relate closely to the chunking size in your knowledge base. However, if you are new to this feature and unsure which value(s) to start with, the following are some value settings we gathered from our community. While they may not be accurate, they provide a starting point at the very least.
```mdx-code-block
<APITable>

View File

@ -3,6 +3,6 @@
"position": 11,
"link": {
"type": "generated-index",
"description": "Best practices on configuring a dataset."
"description": "Best practices on configuring a knowledge base."
}
}

View File

@ -13,7 +13,7 @@ A checklist to speed up document parsing and indexing.
Please note that some of your settings may consume a significant amount of time. If you often find that document parsing is time-consuming, here is a checklist to consider:
- Use GPU to reduce embedding time.
- On the configuration page of your dataset, switch off **Use RAPTOR to enhance retrieval**.
- On the configuration page of your knowledge base, switch off **Use RAPTOR to enhance retrieval**.
- Extracting knowledge graph (GraphRAG) is time-consuming.
- Disable **Auto-keyword** and **Auto-question** on the configuration page of your dataset, as both depend on the LLM.
- **v0.17.0+:** If all PDFs in your dataset are plain text and do not require GPU-intensive processes like OCR (Optical Character Recognition), TSR (Table Structure Recognition), or DLA (Document Layout Analysis), you can choose **Naive** over **DeepDoc** or other time-consuming large model options in the **Document parser** dropdown. This will substantially reduce document parsing time.
- Disable **Auto-keyword** and **Auto-question** on the configuration page of your knowledge base, as both depend on the LLM.
- **v0.17.0+:** If all PDFs in your knowledge base are plain text and do not require GPU-intensive processes like OCR (Optical Character Recognition), TSR (Table Structure Recognition), or DLA (Document Layout Analysis), you can choose **Naive** over **DeepDoc** or other time-consuming large model options in the **Document parser** dropdown. This will substantially reduce document parsing time.

View File

@ -3,28 +3,28 @@ sidebar_position: -1
slug: /configure_knowledge_base
---
# Configure dataset
# Configure knowledge base
Most of RAGFlow's chat assistants and Agents are based on datasets. Each of RAGFlow's datasets serves as a knowledge source, *parsing* files uploaded from your local machine and file references generated in **File Management** into the real 'knowledge' for future AI chats. This guide demonstrates some basic usages of the dataset feature, covering the following topics:
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. RAGFlow's AI chats are based on knowledge bases. Each of RAGFlow's knowledge bases serves as a knowledge source, *parsing* files uploaded from your local machine and file references generated in **File Management** into the real 'knowledge' for future AI chats. This guide demonstrates some basic usages of the knowledge base feature, covering the following topics:
- Create a dataset
- Configure a dataset
- Search for a dataset
- Delete a dataset
- Create a knowledge base
- Configure a knowledge base
- Search for a knowledge base
- Delete a knowledge base
## Create dataset
## Create knowledge base
With multiple datasets, you can build more flexible, diversified question answering. To create your first dataset:
With multiple knowledge bases, you can build more flexible, diversified question answering. To create your first knowledge base:
![create dataset](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/create_knowledge_base.jpg)
![create knowledge base](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/create_knowledge_base.jpg)
_Each time a dataset is created, a folder with the same name is generated in the **root/.knowledgebase** directory._
_Each time a knowledge base is created, a folder with the same name is generated in the **root/.knowledgebase** directory._
## Configure dataset
## Configure knowledge base
The following screenshot shows the configuration page of a dataset. A proper configuration of your dataset is crucial for future AI chats. For example, choosing the wrong embedding model or chunking method would cause unexpected semantic loss or mismatched answers in chats.
The following screenshot shows the configuration page of a knowledge base. A proper configuration of your knowledge base is crucial for future AI chats. For example, choosing the wrong embedding model or chunking method would cause unexpected semantic loss or mismatched answers in chats.
![dataset configuration](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/configure_knowledge_base.jpg)
![knowledge base configuration](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/configure_knowledge_base.jpg)
This section covers the following topics:
@ -52,7 +52,7 @@ RAGFlow offers multiple chunking template to facilitate chunking files of differ
| Presentation | | PDF, PPTX |
| Picture | | JPEG, JPG, PNG, TIF, GIF |
| One | Each document is chunked in its entirety (as one). | DOCX, XLSX, XLS (Excel 97-2003), PDF, TXT |
| Tag | The dataset functions as a tag set for the others. | XLSX, CSV/TXT |
| Tag | The knowledge base functions as a tag set for the others. | XLSX, CSV/TXT |
You can also change a file's chunking method on the **Datasets** page.
@ -60,7 +60,7 @@ You can also change a file's chunking method on the **Datasets** page.
### Select embedding model
An embedding model converts chunks into embeddings. It cannot be changed once the dataset has chunks. To switch to a different embedding model, you must delete all existing chunks in the dataset. The obvious reason is that we *must* ensure that files in a specific dataset are converted to embeddings using the *same* embedding model (ensure that they are compared in the same embedding space).
An embedding model converts chunks into embeddings. It cannot be changed once the knowledge base has chunks. To switch to a different embedding model, you must delete all existing chunks in the knowledge base. The obvious reason is that we *must* ensure that files in a specific knowledge base are converted to embeddings using the *same* embedding model (ensure that they are compared in the same embedding space).
The following embedding models can be deployed locally:
@ -73,19 +73,19 @@ These two embedding models are optimized specifically for English and Chinese, s
### Upload file
- RAGFlow's **File Management** allows you to link a file to multiple datasets, in which case each target dataset holds a reference to the file.
- In **Knowledge Base**, you are also given the option of uploading a single file or a folder of files (bulk upload) from your local machine to a dataset, in which case the dataset holds file copies.
- RAGFlow's **File Management** allows you to link a file to multiple knowledge bases, in which case each target knowledge base holds a reference to the file.
- In **Knowledge Base**, you are also given the option of uploading a single file or a folder of files (bulk upload) from your local machine to a knowledge base, in which case the knowledge base holds file copies.
While uploading files directly to a dataset seems more convenient, we *highly* recommend uploading files to **File Management** and then linking them to the target datasets. This way, you can avoid permanently deleting files uploaded to the dataset.
While uploading files directly to a knowledge base seems more convenient, we *highly* recommend uploading files to **File Management** and then linking them to the target knowledge bases. This way, you can avoid permanently deleting files uploaded to the knowledge base.
### Parse file
File parsing is a crucial topic in dataset configuration. The meaning of file parsing in RAGFlow is twofold: chunking files based on file layout and building embedding and full-text (keyword) indexes on these chunks. After having selected the chunking method and embedding model, you can start parsing a file:
File parsing is a crucial topic in knowledge base configuration. The meaning of file parsing in RAGFlow is twofold: chunking files based on file layout and building embedding and full-text (keyword) indexes on these chunks. After having selected the chunking method and embedding model, you can start parsing a file:
![parse file](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/parse_file.jpg)
- As shown above, RAGFlow allows you to use a different chunking method for a particular file, offering flexibility beyond the default method.
- As shown above, RAGFlow allows you to enable or disable individual files, offering finer control over dataset-based AI chats.
- As shown above, RAGFlow allows you to enable or disable individual files, offering finer control over knowledge base-based AI chats.
### Intervene with file parsing results
@ -122,17 +122,17 @@ RAGFlow uses multiple recall of both full-text search and vector search in its c
See [Run retrieval test](./run_retrieval_test.md) for details.
## Search for dataset
## Search for knowledge base
As of RAGFlow v0.20.5, the search feature is still in a rudimentary form, supporting only dataset search by name.
As of RAGFlow v0.20.5, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search dataset](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/search_datasets.jpg)
![search knowledge base](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/search_datasets.jpg)
## Delete dataset
## Delete knowledge base
You are allowed to delete a dataset. Hover your mouse over the three dot of the intended dataset card and the **Delete** option appears. Once you delete a dataset, the associated folder under **root/.knowledge** directory is AUTOMATICALLY REMOVED. The consequence is:
You are allowed to delete a knowledge base. Hover your mouse over the three dot of the intended knowledge base card and the **Delete** option appears. Once you delete a knowledge base, the associated folder under **root/.knowledge** directory is AUTOMATICALLY REMOVED. The consequence is:
- The files uploaded directly to the dataset are gone;
- The files uploaded directly to the knowledge base are gone;
- The file references, which you created from within **File Management**, are gone, but the associated files still exist in **File Management**.
![delete dataset](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/delete_datasets.jpg)
![delete knowledge base](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/delete_datasets.jpg)

View File

@ -5,7 +5,7 @@ slug: /construct_knowledge_graph
# Construct knowledge graph
Generate a knowledge graph for your dataset.
Generate a knowledge graph for your knowledge base.
---
@ -13,7 +13,7 @@ To enhance multi-hop question-answering, RAGFlow adds a knowledge graph construc
![Image](https://github.com/user-attachments/assets/1ec21d8e-f255-4d65-9918-69b72dfa142b)
From v0.16.0 onward, RAGFlow supports constructing a knowledge graph on a dataset, allowing you to construct a *unified* graph across multiple files within your dataset. When a newly uploaded file starts parsing, the generated graph will automatically update.
From v0.16.0 onward, RAGFlow supports constructing a knowledge graph on a knowledge base, allowing you to construct a *unified* graph across multiple files within your knowledge base. When a newly uploaded file starts parsing, the generated graph will automatically update.
:::danger WARNING
Constructing a knowledge graph requires significant memory, computational resources, and tokens.
@ -37,7 +37,7 @@ The system's default chat model is used to generate knowledge graph. Before proc
### Entity types (*Required*)
The types of the entities to extract from your dataset. The default types are: **organization**, **person**, **event**, and **category**. Add or remove types to suit your specific dataset.
The types of the entities to extract from your knowledge base. The default types are: **organization**, **person**, **event**, and **category**. Add or remove types to suit your specific knowledge base.
### Method
@ -62,12 +62,12 @@ In a knowledge graph, a community is a cluster of entities linked by relationshi
## Procedure
1. On the **Configuration** page of your dataset, switch on **Extract knowledge graph** or adjust its settings as needed, and click **Save** to confirm your changes.
1. On the **Configuration** page of your knowledge base, switch on **Extract knowledge graph** or adjust its settings as needed, and click **Save** to confirm your changes.
- *The default knowledge graph configurations for your dataset are now set and files uploaded from this point onward will automatically use these settings during parsing.*
- *The default knowledge graph configurations for your knowledge base are now set and files uploaded from this point onward will automatically use these settings during parsing.*
- *Files parsed before this update will retain their original knowledge graph settings.*
2. The knowledge graph of your dataset does *not* automatically update *until* a newly uploaded file is parsed.
2. The knowledge graph of your knowledge base does *not* automatically update *until* a newly uploaded file is parsed.
_A **Knowledge graph** entry appears under **Configuration** once a knowledge graph is created._
@ -75,13 +75,13 @@ In a knowledge graph, a community is a cluster of entities linked by relationshi
4. To use the created knowledge graph, do either of the following:
- In the **Chat setting** panel of your chat app, switch on the **Use knowledge graph** toggle.
- If you are using an agent, click the **Retrieval** agent component to specify the dataset(s) and switch on the **Use knowledge graph** toggle.
- If you are using an agent, click the **Retrieval** agent component to specify the knowledge base(s) and switch on the **Use knowledge graph** toggle.
## Frequently asked questions
### Can I have different knowledge graph settings for different files in my dataset?
### Can I have different knowledge graph settings for different files in my knowledge base?
Yes, you can. Just one graph is generated per dataset. The smaller graphs of your files will be *combined* into one big, unified graph at the end of the graph extraction process.
Yes, you can. Just one graph is generated per knowledge base. The smaller graphs of your files will be *combined* into one big, unified graph at the end of the graph extraction process.
### Does the knowledge graph automatically update when I remove a related file?
@ -89,7 +89,7 @@ Nope. The knowledge graph does *not* automatically update *until* a newly upload
### How to remove a generated knowledge graph?
To remove the generated knowledge graph, delete all related files in your dataset. Although the **Knowledge graph** entry will still be visible, the graph has actually been deleted.
To remove the generated knowledge graph, delete all related files in your knowledge base. Although the **Knowledge graph** entry will still be visible, the graph has actually been deleted.
### Where is the created knowledge graph stored?

View File

@ -12,7 +12,7 @@ Convert complex Excel spreadsheets into HTML tables.
When using the **General** chunking method, you can enable the **Excel to HTML** toggle to convert spreadsheet files into HTML tables. If it is disabled, spreadsheet tables will be represented as key-value pairs. For complex tables that cannot be simply represented this way, you must enable this feature.
:::caution WARNING
The feature is disabled by default. If your dataset contains spreadsheets with complex tables and you do not enable this feature, RAGFlow will not throw an error but your tables are likely to be garbled.
The feature is disabled by default. If your knowledge base contains spreadsheets with complex tables and you do not enable this feature, RAGFlow will not throw an error but your tables are likely to be garbled.
:::
## Scenarios
@ -27,12 +27,12 @@ Works with complex tables that cannot be represented as key-value pairs. Example
## Procedure
1. On your dataset's **Configuration** page, select **General** as the chunking method.
1. On your knowledge base's **Configuration** page, select **General** as the chunking method.
_The **Excel to HTML** toggle appears._
2. Enable **Excel to HTML** if your dataset contains complex spreadsheet tables that cannot be represented as key-value pairs.
3. Leave **Excel to HTML** disabled if your dataset has no spreadsheet tables or if its spreadsheet tables can be represented as key-value pairs.
2. Enable **Excel to HTML** if your knowledge base contains complex spreadsheet tables that cannot be represented as key-value pairs.
3. Leave **Excel to HTML** disabled if your knowledge base has no spreadsheet tables or if its spreadsheet tables can be represented as key-value pairs.
4. If question-answering regarding complex tables is unsatisfactory, check if **Excel to HTML** is enabled.
## Frequently asked questions

Some files were not shown because too many files have changed in this diff Show More