mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 12:32:30 +08:00
add ocr and recognizer demo, update README (#74)
This commit is contained in:
@ -58,7 +58,7 @@ def set_conversation():
|
||||
conv = {
|
||||
"id": get_uuid(),
|
||||
"dialog_id": req["dialog_id"],
|
||||
"name": "New conversation",
|
||||
"name": req.get("name", "New conversation"),
|
||||
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
|
||||
}
|
||||
ConversationService.save(**conv)
|
||||
@ -102,7 +102,7 @@ def rm():
|
||||
def list_convsersation():
|
||||
dialog_id = request.args["dialog_id"]
|
||||
try:
|
||||
convs = ConversationService.query(dialog_id=dialog_id)
|
||||
convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
|
||||
convs = [d.to_dict() for d in convs]
|
||||
return get_json_result(data=convs)
|
||||
except Exception as e:
|
||||
|
||||
@ -185,5 +185,11 @@ def thumbnail(filename, blob):
|
||||
pass
|
||||
|
||||
|
||||
def traversal_files(base):
|
||||
for root, ds, fs in os.walk(base):
|
||||
for f in fs:
|
||||
fullname = os.path.join(root, f)
|
||||
yield fullname
|
||||
|
||||
|
||||
|
||||
|
||||
@ -11,7 +11,36 @@ English | [简体中文](./README_zh.md)
|
||||
|
||||
With a bunch of documents from various domains with various formats and along with diverse retrieval requirements,
|
||||
an accurate analysis becomes a very challenge task. *Deep*Doc is born for that purpose.
|
||||
There 2 parts in *Deep*Doc so far: vision and parser.
|
||||
There are 2 parts in *Deep*Doc so far: vision and parser.
|
||||
You can run the flowing test programs if you're interested in our results of OCR, layout recognition and TSR.
|
||||
```bash
|
||||
python deepdoc/vision/t_ocr.py -h
|
||||
usage: t_ocr.py [-h] --inputs INPUTS [--output_dir OUTPUT_DIR]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
--inputs INPUTS Directory where to store images or PDFs, or a file path to a single image or PDF
|
||||
--output_dir OUTPUT_DIR
|
||||
Directory where to store the output images. Default: './ocr_outputs'
|
||||
```
|
||||
```bash
|
||||
python deepdoc/vision/t_recognizer.py -h
|
||||
usage: t_recognizer.py [-h] --inputs INPUTS [--output_dir OUTPUT_DIR] [--threshold THRESHOLD] [--mode {layout,tsr}]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
--inputs INPUTS Directory where to store images or PDFs, or a file path to a single image or PDF
|
||||
--output_dir OUTPUT_DIR
|
||||
Directory where to store the output images. Default: './layouts_outputs'
|
||||
--threshold THRESHOLD
|
||||
A threshold to filter out detections. Default: 0.5
|
||||
--mode {layout,tsr} Task mode: layout recognition or table structure recognition
|
||||
```
|
||||
|
||||
Our models are served on HuggingFace. If you have trouble downloading HuggingFace models, this might help!!
|
||||
```bash
|
||||
export HF_ENDPOINT=https://hf-mirror.com
|
||||
```
|
||||
|
||||
<a name="2"></a>
|
||||
## 2. Vision
|
||||
@ -19,9 +48,14 @@ There 2 parts in *Deep*Doc so far: vision and parser.
|
||||
We use vision information to resolve problems as human being.
|
||||
- OCR. Since a lot of documents presented as images or at least be able to transform to image,
|
||||
OCR is a very essential and fundamental or even universal solution for text extraction.
|
||||
|
||||
```bash
|
||||
python deepdoc/vision/t_ocr.py --inputs=path_to_images_or_pdfs --output_dir=path_to_store_result
|
||||
```
|
||||
The inputs could be directory to images or PDF, or a image or PDF.
|
||||
You can look into the folder 'path_to_store_result' where has images which demonstrate the positions of results,
|
||||
txt files which contain the OCR text.
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://lh6.googleusercontent.com/2xdiSjaGWkZ71YdORc71Ujf7jCHmO6G-6ONklzGiUYEh3QZpjPo6MQ9eqEFX20am_cdW4Ck0YRraXEetXWnM08kJd99yhik13Cy0_YKUAq2zVGR15LzkovRAmK9iT4o3hcJ8dTpspaJKUwt6R4gN7So" width="300"/>
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/f25bee3d-aaf7-4102-baf5-d5208361d110" width="900"/>
|
||||
</div>
|
||||
|
||||
- Layout recognition. Documents from different domain may have various layouts,
|
||||
@ -39,11 +73,18 @@ We use vision information to resolve problems as human being.
|
||||
- Footer
|
||||
- Reference
|
||||
- Equation
|
||||
|
||||
Have a try on the following command to see the layout detection results.
|
||||
```bash
|
||||
python deepdoc/vision/t_recognizer.py --inputs=path_to_images_or_pdfs --threshold=0.2 --mode=layout --output_dir=path_to_store_result
|
||||
```
|
||||
The inputs could be directory to images or PDF, or a image or PDF.
|
||||
You can look into the folder 'path_to_store_result' where has images which demonstrate the detection results as following:
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/ppstructure/docs/layout/layout.png?raw=true" width="900"/>
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/07e0f625-9b28-43d0-9fbb-5bf586cd286f" width="1000"/>
|
||||
</div>
|
||||
|
||||
- Table Structure Recognition(TSR). Data table is a frequently used structure present data including numbers or text.
|
||||
- Table Structure Recognition(TSR). Data table is a frequently used structure to present data including numbers or text.
|
||||
And the structure of a table might be very complex, like hierarchy headers, spanning cells and projected row headers.
|
||||
Along with TSR, we also reassemble the content into sentences which could be well comprehended by LLM.
|
||||
We have five labels for TSR task:
|
||||
@ -52,8 +93,15 @@ We use vision information to resolve problems as human being.
|
||||
- Column header
|
||||
- Projected row header
|
||||
- Spanning cell
|
||||
|
||||
Have a try on the following command to see the layout detection results.
|
||||
```bash
|
||||
python deepdoc/vision/t_recognizer.py --inputs=path_to_images_or_pdfs --threshold=0.2 --mode=tsr --output_dir=path_to_store_result
|
||||
```
|
||||
The inputs could be directory to images or PDF, or a image or PDF.
|
||||
You can look into the folder 'path_to_store_result' where has both images and html pages which demonstrate the detection results as following:
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://user-images.githubusercontent.com/10793386/139559159-cd23c972-8731-48ed-91df-f3f27e9f4d79.jpg" width="900"/>
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/cb24e81b-f2ba-49f3-ac09-883d75606f4c" width="1000"/>
|
||||
</div>
|
||||
|
||||
<a name="3"></a>
|
||||
@ -71,4 +119,4 @@ The résumé is a very complicated kind of document. A résumé which is compose
|
||||
with various layouts could be resolved into structured data composed of nearly a hundred of fields.
|
||||
We haven't opened the parser yet, as we open the processing method after parsing procedure.
|
||||
|
||||
|
||||
|
||||
@ -1,4 +1,49 @@
|
||||
|
||||
from .ocr import OCR
|
||||
from .recognizer import Recognizer
|
||||
from .layout_recognizer import LayoutRecognizer
|
||||
from .table_structure_recognizer import TableStructureRecognizer
|
||||
|
||||
def init_in_out(args):
|
||||
from PIL import Image
|
||||
import fitz
|
||||
import os
|
||||
import traceback
|
||||
from api.utils.file_utils import traversal_files
|
||||
images = []
|
||||
outputs = []
|
||||
|
||||
if not os.path.exists(args.output_dir):
|
||||
os.mkdir(args.output_dir)
|
||||
|
||||
def pdf_pages(fnm, zoomin=3):
|
||||
nonlocal outputs, images
|
||||
pdf = fitz.open(fnm)
|
||||
mat = fitz.Matrix(zoomin, zoomin)
|
||||
for i, page in enumerate(pdf):
|
||||
pix = page.get_pixmap(matrix=mat)
|
||||
img = Image.frombytes("RGB", [pix.width, pix.height],
|
||||
pix.samples)
|
||||
images.append(img)
|
||||
outputs.append(os.path.split(fnm)[-1] + f"_{i}.jpg")
|
||||
|
||||
def images_and_outputs(fnm):
|
||||
nonlocal outputs, images
|
||||
if fnm.split(".")[-1].lower() == "pdf":
|
||||
pdf_pages(fnm)
|
||||
return
|
||||
try:
|
||||
images.append(Image.open(fnm))
|
||||
outputs.append(os.path.split(fnm)[-1])
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
|
||||
if os.path.isdir(args.inputs):
|
||||
for fnm in traversal_files(args.inputs):
|
||||
images_and_outputs(fnm)
|
||||
else:
|
||||
images_and_outputs(args.inputs)
|
||||
|
||||
for i in range(len(outputs)): outputs[i] = os.path.join(args.output_dir, outputs[i])
|
||||
|
||||
return images, outputs
|
||||
@ -1,17 +1,26 @@
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import os
|
||||
import re
|
||||
from collections import Counter
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from .recognizer import Recognizer
|
||||
from deepdoc.vision import Recognizer
|
||||
|
||||
|
||||
class LayoutRecognizer(Recognizer):
|
||||
def __init__(self, domain):
|
||||
self.layout_labels = [
|
||||
labels = [
|
||||
"_background_",
|
||||
"Text",
|
||||
"Title",
|
||||
@ -24,7 +33,8 @@ class LayoutRecognizer(Recognizer):
|
||||
"Reference",
|
||||
"Equation",
|
||||
]
|
||||
super().__init__(self.layout_labels, domain,
|
||||
def __init__(self, domain):
|
||||
super().__init__(self.labels, domain,
|
||||
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
||||
|
||||
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.7, batch_size=16):
|
||||
@ -37,7 +47,7 @@ class LayoutRecognizer(Recognizer):
|
||||
return any([re.search(p, b["text"]) for p in patt])
|
||||
|
||||
layouts = super().__call__(image_list, thr, batch_size)
|
||||
# save_results(image_list, layouts, self.layout_labels, output_dir='output/', threshold=0.7)
|
||||
# save_results(image_list, layouts, self.labels, output_dir='output/', threshold=0.7)
|
||||
assert len(image_list) == len(ocr_res)
|
||||
# Tag layout type
|
||||
boxes = []
|
||||
@ -117,3 +127,5 @@ class LayoutRecognizer(Recognizer):
|
||||
ocr_res = [b for b in ocr_res if b["text"].strip() not in garbag_set]
|
||||
return ocr_res, page_layout
|
||||
|
||||
|
||||
|
||||
|
||||
@ -17,7 +17,6 @@ from copy import deepcopy
|
||||
import onnxruntime as ort
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from . import seeit
|
||||
from .operators import *
|
||||
from rag.settings import cron_logger
|
||||
|
||||
@ -36,7 +35,7 @@ class Recognizer(object):
|
||||
|
||||
"""
|
||||
if not model_dir:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/ocr")
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
|
||||
model_file_path = os.path.join(model_dir, task_name + ".onnx")
|
||||
if not os.path.exists(model_file_path):
|
||||
@ -46,6 +45,9 @@ class Recognizer(object):
|
||||
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CUDAExecutionProvider'])
|
||||
else:
|
||||
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
|
||||
self.input_names = [node.name for node in self.ort_sess.get_inputs()]
|
||||
self.output_names = [node.name for node in self.ort_sess.get_outputs()]
|
||||
self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
|
||||
self.label_list = label_list
|
||||
|
||||
@staticmethod
|
||||
@ -275,23 +277,131 @@ class Recognizer(object):
|
||||
return max_overlaped_i
|
||||
|
||||
def preprocess(self, image_list):
|
||||
preprocess_ops = []
|
||||
for op_info in [
|
||||
{'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
|
||||
{'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
|
||||
{'type': 'Permute'},
|
||||
{'stride': 32, 'type': 'PadStride'}
|
||||
]:
|
||||
new_op_info = op_info.copy()
|
||||
op_type = new_op_info.pop('type')
|
||||
preprocess_ops.append(eval(op_type)(**new_op_info))
|
||||
|
||||
inputs = []
|
||||
for im_path in image_list:
|
||||
im, im_info = preprocess(im_path, preprocess_ops)
|
||||
inputs.append({"image": np.array((im,)).astype('float32'), "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
|
||||
if "scale_factor" in self.input_names:
|
||||
preprocess_ops = []
|
||||
for op_info in [
|
||||
{'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
|
||||
{'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
|
||||
{'type': 'Permute'},
|
||||
{'stride': 32, 'type': 'PadStride'}
|
||||
]:
|
||||
new_op_info = op_info.copy()
|
||||
op_type = new_op_info.pop('type')
|
||||
preprocess_ops.append(eval(op_type)(**new_op_info))
|
||||
|
||||
for im_path in image_list:
|
||||
im, im_info = preprocess(im_path, preprocess_ops)
|
||||
inputs.append({"image": np.array((im,)).astype('float32'),
|
||||
"scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
|
||||
else:
|
||||
hh, ww = self.input_shape
|
||||
for img in image_list:
|
||||
h, w = img.shape[:2]
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
|
||||
# Scale input pixel values to 0 to 1
|
||||
img /= 255.0
|
||||
img = img.transpose(2, 0, 1)
|
||||
img = img[np.newaxis, :, :, :].astype(np.float32)
|
||||
inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
|
||||
return inputs
|
||||
|
||||
def postprocess(self, boxes, inputs, thr):
|
||||
if "scale_factor" in self.input_names:
|
||||
bb = []
|
||||
for b in boxes:
|
||||
clsid, bbox, score = int(b[0]), b[2:], b[1]
|
||||
if score < thr:
|
||||
continue
|
||||
if clsid >= len(self.label_list):
|
||||
cron_logger.warning(f"bad category id")
|
||||
continue
|
||||
bb.append({
|
||||
"type": self.label_list[clsid].lower(),
|
||||
"bbox": [float(t) for t in bbox.tolist()],
|
||||
"score": float(score)
|
||||
})
|
||||
return bb
|
||||
|
||||
def xywh2xyxy(x):
|
||||
# [x, y, w, h] to [x1, y1, x2, y2]
|
||||
y = np.copy(x)
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2
|
||||
return y
|
||||
|
||||
def compute_iou(box, boxes):
|
||||
# Compute xmin, ymin, xmax, ymax for both boxes
|
||||
xmin = np.maximum(box[0], boxes[:, 0])
|
||||
ymin = np.maximum(box[1], boxes[:, 1])
|
||||
xmax = np.minimum(box[2], boxes[:, 2])
|
||||
ymax = np.minimum(box[3], boxes[:, 3])
|
||||
|
||||
# Compute intersection area
|
||||
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
|
||||
|
||||
# Compute union area
|
||||
box_area = (box[2] - box[0]) * (box[3] - box[1])
|
||||
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
||||
union_area = box_area + boxes_area - intersection_area
|
||||
|
||||
# Compute IoU
|
||||
iou = intersection_area / union_area
|
||||
|
||||
return iou
|
||||
|
||||
def iou_filter(boxes, scores, iou_threshold):
|
||||
sorted_indices = np.argsort(scores)[::-1]
|
||||
|
||||
keep_boxes = []
|
||||
while sorted_indices.size > 0:
|
||||
# Pick the last box
|
||||
box_id = sorted_indices[0]
|
||||
keep_boxes.append(box_id)
|
||||
|
||||
# Compute IoU of the picked box with the rest
|
||||
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
|
||||
|
||||
# Remove boxes with IoU over the threshold
|
||||
keep_indices = np.where(ious < iou_threshold)[0]
|
||||
|
||||
# print(keep_indices.shape, sorted_indices.shape)
|
||||
sorted_indices = sorted_indices[keep_indices + 1]
|
||||
|
||||
return keep_boxes
|
||||
|
||||
boxes = np.squeeze(boxes).T
|
||||
# Filter out object confidence scores below threshold
|
||||
scores = np.max(boxes[:, 4:], axis=1)
|
||||
boxes = boxes[scores > thr, :]
|
||||
scores = scores[scores > thr]
|
||||
if len(boxes) == 0: return []
|
||||
|
||||
# Get the class with the highest confidence
|
||||
class_ids = np.argmax(boxes[:, 4:], axis=1)
|
||||
boxes = boxes[:, :4]
|
||||
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
|
||||
boxes = np.multiply(boxes, input_shape, dtype=np.float32)
|
||||
boxes = xywh2xyxy(boxes)
|
||||
|
||||
unique_class_ids = np.unique(class_ids)
|
||||
indices = []
|
||||
for class_id in unique_class_ids:
|
||||
class_indices = np.where(class_ids == class_id)[0]
|
||||
class_boxes = boxes[class_indices, :]
|
||||
class_scores = scores[class_indices]
|
||||
class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
|
||||
indices.extend(class_indices[class_keep_boxes])
|
||||
|
||||
return [{
|
||||
"type": self.label_list[class_ids[i]].lower(),
|
||||
"bbox": [float(t) for t in boxes[i].tolist()],
|
||||
"score": float(scores[i])
|
||||
} for i in indices]
|
||||
|
||||
def __call__(self, image_list, thr=0.7, batch_size=16):
|
||||
res = []
|
||||
imgs = []
|
||||
@ -306,22 +416,14 @@ class Recognizer(object):
|
||||
end_index = min((i + 1) * batch_size, len(imgs))
|
||||
batch_image_list = imgs[start_index:end_index]
|
||||
inputs = self.preprocess(batch_image_list)
|
||||
print("preprocess")
|
||||
for ins in inputs:
|
||||
bb = []
|
||||
for b in self.ort_sess.run(None, ins)[0]:
|
||||
clsid, bbox, score = int(b[0]), b[2:], b[1]
|
||||
if score < thr:
|
||||
continue
|
||||
if clsid >= len(self.label_list):
|
||||
cron_logger.warning(f"bad category id")
|
||||
continue
|
||||
bb.append({
|
||||
"type": self.label_list[clsid].lower(),
|
||||
"bbox": [float(t) for t in bbox.tolist()],
|
||||
"score": float(score)
|
||||
})
|
||||
bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr)
|
||||
res.append(bb)
|
||||
|
||||
#seeit.save_results(image_list, res, self.label_list, threshold=thr)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
|
||||
|
||||
47
deepdoc/vision/t_ocr.py
Normal file
47
deepdoc/vision/t_ocr.py
Normal file
@ -0,0 +1,47 @@
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os, sys
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../')))
|
||||
import numpy as np
|
||||
import argparse
|
||||
from deepdoc.vision import OCR, init_in_out
|
||||
from deepdoc.vision.seeit import draw_box
|
||||
|
||||
def main(args):
|
||||
ocr = OCR()
|
||||
images, outputs = init_in_out(args)
|
||||
|
||||
for i, img in enumerate(images):
|
||||
bxs = ocr(np.array(img))
|
||||
bxs = [(line[0], line[1][0]) for line in bxs]
|
||||
bxs = [{
|
||||
"text": t,
|
||||
"bbox": [b[0][0], b[0][1], b[1][0], b[-1][1]],
|
||||
"type": "ocr",
|
||||
"score": 1} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]]
|
||||
img = draw_box(images[i], bxs, ["ocr"], 1.)
|
||||
img.save(outputs[i], quality=95)
|
||||
with open(outputs[i] + ".txt", "w+") as f: f.write("\n".join([o["text"] for o in bxs]))
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--inputs',
|
||||
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
|
||||
required=True)
|
||||
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './ocr_outputs'",
|
||||
default="./ocr_outputs")
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
173
deepdoc/vision/t_recognizer.py
Normal file
173
deepdoc/vision/t_recognizer.py
Normal file
@ -0,0 +1,173 @@
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os, sys
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../')))
|
||||
|
||||
import argparse
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from deepdoc.vision import Recognizer, LayoutRecognizer, TableStructureRecognizer, OCR, init_in_out
|
||||
from deepdoc.vision.seeit import draw_box
|
||||
|
||||
|
||||
def main(args):
|
||||
images, outputs = init_in_out(args)
|
||||
if args.mode.lower() == "layout":
|
||||
labels = LayoutRecognizer.labels
|
||||
detr = Recognizer(labels, "layout.paper", os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
||||
if args.mode.lower() == "tsr":
|
||||
labels = TableStructureRecognizer.labels
|
||||
detr = TableStructureRecognizer()
|
||||
ocr = OCR()
|
||||
|
||||
layouts = detr(images, float(args.threshold))
|
||||
for i, lyt in enumerate(layouts):
|
||||
if args.mode.lower() == "tsr":
|
||||
#lyt = [t for t in lyt if t["type"] == "table column"]
|
||||
html = get_table_html(images[i], lyt, ocr)
|
||||
with open(outputs[i]+".html", "w+") as f: f.write(html)
|
||||
lyt = [{
|
||||
"type": t["label"],
|
||||
"bbox": [t["x0"], t["top"], t["x1"], t["bottom"]],
|
||||
"score": t["score"]
|
||||
} for t in lyt]
|
||||
img = draw_box(images[i], lyt, labels, float(args.threshold))
|
||||
img.save(outputs[i], quality=95)
|
||||
print("save result to: " + outputs[i])
|
||||
|
||||
|
||||
def get_table_html(img, tb_cpns, ocr):
|
||||
boxes = ocr(np.array(img))
|
||||
boxes = Recognizer.sort_Y_firstly(
|
||||
[{"x0": b[0][0], "x1": b[1][0],
|
||||
"top": b[0][1], "text": t[0],
|
||||
"bottom": b[-1][1],
|
||||
"layout_type": "table",
|
||||
"page_number": 0} for b, t in boxes if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
|
||||
np.mean([b[-1][1]-b[0][1] for b,_ in boxes]) / 3
|
||||
)
|
||||
|
||||
def gather(kwd, fzy=10, ption=0.6):
|
||||
nonlocal boxes
|
||||
eles = Recognizer.sort_Y_firstly(
|
||||
[r for r in tb_cpns if re.match(kwd, r["label"])], fzy)
|
||||
eles = Recognizer.layouts_cleanup(boxes, eles, 5, ption)
|
||||
return Recognizer.sort_Y_firstly(eles, 0)
|
||||
|
||||
headers = gather(r".*header$")
|
||||
rows = gather(r".* (row|header)")
|
||||
spans = gather(r".*spanning")
|
||||
clmns = sorted([r for r in tb_cpns if re.match(
|
||||
r"table column$", r["label"])], key=lambda x: x["x0"])
|
||||
clmns = Recognizer.layouts_cleanup(boxes, clmns, 5, 0.5)
|
||||
for b in boxes:
|
||||
ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
|
||||
if ii is not None:
|
||||
b["R"] = ii
|
||||
b["R_top"] = rows[ii]["top"]
|
||||
b["R_bott"] = rows[ii]["bottom"]
|
||||
|
||||
ii = Recognizer.find_overlapped_with_threashold(b, headers, thr=0.3)
|
||||
if ii is not None:
|
||||
b["H_top"] = headers[ii]["top"]
|
||||
b["H_bott"] = headers[ii]["bottom"]
|
||||
b["H_left"] = headers[ii]["x0"]
|
||||
b["H_right"] = headers[ii]["x1"]
|
||||
b["H"] = ii
|
||||
|
||||
ii = Recognizer.find_overlapped_with_threashold(b, clmns, thr=0.3)
|
||||
if ii is not None:
|
||||
b["C"] = ii
|
||||
b["C_left"] = clmns[ii]["x0"]
|
||||
b["C_right"] = clmns[ii]["x1"]
|
||||
|
||||
ii = Recognizer.find_overlapped_with_threashold(b, spans, thr=0.3)
|
||||
if ii is not None:
|
||||
b["H_top"] = spans[ii]["top"]
|
||||
b["H_bott"] = spans[ii]["bottom"]
|
||||
b["H_left"] = spans[ii]["x0"]
|
||||
b["H_right"] = spans[ii]["x1"]
|
||||
b["SP"] = ii
|
||||
html = """
|
||||
<html>
|
||||
<head>
|
||||
<style>
|
||||
._table_1nkzy_11 {
|
||||
margin: auto;
|
||||
width: 70%%;
|
||||
padding: 10px;
|
||||
}
|
||||
._table_1nkzy_11 p {
|
||||
margin-bottom: 50px;
|
||||
border: 1px solid #e1e1e1;
|
||||
}
|
||||
|
||||
caption {
|
||||
color: #6ac1ca;
|
||||
font-size: 20px;
|
||||
height: 50px;
|
||||
line-height: 50px;
|
||||
font-weight: 600;
|
||||
margin-bottom: 10px;
|
||||
}
|
||||
|
||||
._table_1nkzy_11 table {
|
||||
width: 100%%;
|
||||
border-collapse: collapse;
|
||||
}
|
||||
|
||||
th {
|
||||
color: #fff;
|
||||
background-color: #6ac1ca;
|
||||
}
|
||||
|
||||
td:hover {
|
||||
background: #c1e8e8;
|
||||
}
|
||||
|
||||
tr:nth-child(even) {
|
||||
background-color: #f2f2f2;
|
||||
}
|
||||
|
||||
._table_1nkzy_11 th,
|
||||
._table_1nkzy_11 td {
|
||||
text-align: center;
|
||||
border: 1px solid #ddd;
|
||||
padding: 8px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
%s
|
||||
</body>
|
||||
</html>
|
||||
"""% TableStructureRecognizer.construct_table(boxes, html=True)
|
||||
return html
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--inputs',
|
||||
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
|
||||
required=True)
|
||||
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './layouts_outputs'",
|
||||
default="./layouts_outputs")
|
||||
parser.add_argument('--threshold', help="A threshold to filter out detections. Default: 0.5", default=0.5)
|
||||
parser.add_argument('--mode', help="Task mode: layout recognition or table structure recognition", choices=["layout", "tsr"],
|
||||
default="layout")
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
@ -1,3 +1,15 @@
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
@ -12,15 +24,16 @@ from .recognizer import Recognizer
|
||||
|
||||
|
||||
class TableStructureRecognizer(Recognizer):
|
||||
labels = [
|
||||
"table",
|
||||
"table column",
|
||||
"table row",
|
||||
"table column header",
|
||||
"table projected row header",
|
||||
"table spanning cell",
|
||||
]
|
||||
|
||||
def __init__(self):
|
||||
self.labels = [
|
||||
"table",
|
||||
"table column",
|
||||
"table row",
|
||||
"table column header",
|
||||
"table projected row header",
|
||||
"table spanning cell",
|
||||
]
|
||||
super().__init__(self.labels, "tsr",
|
||||
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
||||
|
||||
@ -79,7 +92,8 @@ class TableStructureRecognizer(Recognizer):
|
||||
return True
|
||||
return False
|
||||
|
||||
def __blockType(self, b):
|
||||
@staticmethod
|
||||
def blockType(b):
|
||||
patt = [
|
||||
("^(20|19)[0-9]{2}[年/-][0-9]{1,2}[月/-][0-9]{1,2}日*$", "Dt"),
|
||||
(r"^(20|19)[0-9]{2}年$", "Dt"),
|
||||
@ -109,11 +123,12 @@ class TableStructureRecognizer(Recognizer):
|
||||
|
||||
return "Ot"
|
||||
|
||||
def construct_table(self, boxes, is_english=False, html=False):
|
||||
@staticmethod
|
||||
def construct_table(boxes, is_english=False, html=False):
|
||||
cap = ""
|
||||
i = 0
|
||||
while i < len(boxes):
|
||||
if self.is_caption(boxes[i]):
|
||||
if TableStructureRecognizer.is_caption(boxes[i]):
|
||||
cap += boxes[i]["text"]
|
||||
boxes.pop(i)
|
||||
i -= 1
|
||||
@ -122,14 +137,15 @@ class TableStructureRecognizer(Recognizer):
|
||||
if not boxes:
|
||||
return []
|
||||
for b in boxes:
|
||||
b["btype"] = self.__blockType(b)
|
||||
b["btype"] = TableStructureRecognizer.blockType(b)
|
||||
max_type = Counter([b["btype"] for b in boxes]).items()
|
||||
max_type = max(max_type, key=lambda x: x[1])[0] if max_type else ""
|
||||
logging.debug("MAXTYPE: " + max_type)
|
||||
|
||||
rowh = [b["R_bott"] - b["R_top"] for b in boxes if "R" in b]
|
||||
rowh = np.min(rowh) if rowh else 0
|
||||
boxes = self.sort_R_firstly(boxes, rowh / 2)
|
||||
boxes = Recognizer.sort_R_firstly(boxes, rowh / 2)
|
||||
#for b in boxes:print(b)
|
||||
boxes[0]["rn"] = 0
|
||||
rows = [[boxes[0]]]
|
||||
btm = boxes[0]["bottom"]
|
||||
@ -150,9 +166,9 @@ class TableStructureRecognizer(Recognizer):
|
||||
colwm = np.min(colwm) if colwm else 0
|
||||
crosspage = len(set([b["page_number"] for b in boxes])) > 1
|
||||
if crosspage:
|
||||
boxes = self.sort_X_firstly(boxes, colwm / 2, False)
|
||||
boxes = Recognizer.sort_X_firstly(boxes, colwm / 2, False)
|
||||
else:
|
||||
boxes = self.sort_C_firstly(boxes, colwm / 2)
|
||||
boxes = Recognizer.sort_C_firstly(boxes, colwm / 2)
|
||||
boxes[0]["cn"] = 0
|
||||
cols = [[boxes[0]]]
|
||||
right = boxes[0]["x1"]
|
||||
@ -313,16 +329,18 @@ class TableStructureRecognizer(Recognizer):
|
||||
hdset.add(i)
|
||||
|
||||
if html:
|
||||
return [self.__html_table(cap, hdset,
|
||||
self.__cal_spans(boxes, rows,
|
||||
cols, tbl, True)
|
||||
)]
|
||||
return TableStructureRecognizer.__html_table(cap, hdset,
|
||||
TableStructureRecognizer.__cal_spans(boxes, rows,
|
||||
cols, tbl, True)
|
||||
)
|
||||
|
||||
return self.__desc_table(cap, hdset,
|
||||
self.__cal_spans(boxes, rows, cols, tbl, False),
|
||||
is_english)
|
||||
return TableStructureRecognizer.__desc_table(cap, hdset,
|
||||
TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl,
|
||||
False),
|
||||
is_english)
|
||||
|
||||
def __html_table(self, cap, hdset, tbl):
|
||||
@staticmethod
|
||||
def __html_table(cap, hdset, tbl):
|
||||
# constrcut HTML
|
||||
html = "<table>"
|
||||
if cap:
|
||||
@ -339,8 +357,8 @@ class TableStructureRecognizer(Recognizer):
|
||||
txt = ""
|
||||
if arr:
|
||||
h = min(np.min([c["bottom"] - c["top"] for c in arr]) / 2, 10)
|
||||
txt = "".join([c["text"]
|
||||
for c in self.sort_Y_firstly(arr, h)])
|
||||
txt = " ".join([c["text"]
|
||||
for c in Recognizer.sort_Y_firstly(arr, h)])
|
||||
txts.append(txt)
|
||||
sp = ""
|
||||
if arr[0].get("colspan"):
|
||||
@ -366,7 +384,8 @@ class TableStructureRecognizer(Recognizer):
|
||||
html += "\n</table>"
|
||||
return html
|
||||
|
||||
def __desc_table(self, cap, hdr_rowno, tbl, is_english):
|
||||
@staticmethod
|
||||
def __desc_table(cap, hdr_rowno, tbl, is_english):
|
||||
# get text of every colomn in header row to become header text
|
||||
clmno = len(tbl[0])
|
||||
rowno = len(tbl)
|
||||
@ -469,7 +488,8 @@ class TableStructureRecognizer(Recognizer):
|
||||
row_txt = [t + f"\t——{from_}“{cap}”" for t in row_txt]
|
||||
return row_txt
|
||||
|
||||
def __cal_spans(self, boxes, rows, cols, tbl, html=True):
|
||||
@staticmethod
|
||||
def __cal_spans(boxes, rows, cols, tbl, html=True):
|
||||
# caculate span
|
||||
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln])
|
||||
for cln in cols]
|
||||
@ -553,4 +573,3 @@ class TableStructureRecognizer(Recognizer):
|
||||
tbl[rowspan[0]][colspan[0]] = arr
|
||||
|
||||
return tbl
|
||||
|
||||
|
||||
Reference in New Issue
Block a user