mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-24 15:36:50 +08:00
### What problem does this PR solve? Message CRUD. Issue #4213 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
185 lines
7.0 KiB
Python
185 lines
7.0 KiB
Python
#
|
||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
import re
|
||
import logging
|
||
import json
|
||
import numpy as np
|
||
from common.query_base import QueryBase
|
||
from common.doc_store.doc_store_base import MatchDenseExpr, MatchTextExpr
|
||
from common.float_utils import get_float
|
||
from rag.nlp import rag_tokenizer, term_weight, synonym
|
||
|
||
|
||
def get_vector(txt, emb_mdl, topk=10, similarity=0.1):
|
||
if isinstance(similarity, str) and len(similarity) > 0:
|
||
try:
|
||
similarity = float(similarity)
|
||
except Exception as e:
|
||
logging.warning(f"Convert similarity '{similarity}' to float failed: {e}. Using default 0.1")
|
||
similarity = 0.1
|
||
qv, _ = emb_mdl.encode_queries(txt)
|
||
shape = np.array(qv).shape
|
||
if len(shape) > 1:
|
||
raise Exception(
|
||
f"Dealer.get_vector returned array's shape {shape} doesn't match expectation(exact one dimension).")
|
||
embedding_data = [get_float(v) for v in qv]
|
||
vector_column_name = f"q_{len(embedding_data)}_vec"
|
||
return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity})
|
||
|
||
|
||
class MsgTextQuery(QueryBase):
|
||
|
||
def __init__(self):
|
||
self.tw = term_weight.Dealer()
|
||
self.syn = synonym.Dealer()
|
||
self.query_fields = [
|
||
"content"
|
||
]
|
||
|
||
def question(self, txt, tbl="messages", min_match: float=0.6):
|
||
original_query = txt
|
||
txt = MsgTextQuery.add_space_between_eng_zh(txt)
|
||
txt = re.sub(
|
||
r"[ :|\r\n\t,,。??/`!!&^%%()\[\]{}<>]+",
|
||
" ",
|
||
rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(txt.lower())),
|
||
).strip()
|
||
otxt = txt
|
||
txt = MsgTextQuery.rmWWW(txt)
|
||
|
||
if not self.is_chinese(txt):
|
||
txt = self.rmWWW(txt)
|
||
tks = rag_tokenizer.tokenize(txt).split()
|
||
keywords = [t for t in tks if t]
|
||
tks_w = self.tw.weights(tks, preprocess=False)
|
||
tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w]
|
||
tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk]
|
||
tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk]
|
||
tks_w = [(tk.strip(), w) for tk, w in tks_w if tk.strip()]
|
||
syns = []
|
||
for tk, w in tks_w[:256]:
|
||
syn = self.syn.lookup(tk)
|
||
syn = rag_tokenizer.tokenize(" ".join(syn)).split()
|
||
keywords.extend(syn)
|
||
syn = ["\"{}\"^{:.4f}".format(s, w / 4.) for s in syn if s.strip()]
|
||
syns.append(" ".join(syn))
|
||
|
||
q = ["({}^{:.4f}".format(tk, w) + " {})".format(syn) for (tk, w), syn in zip(tks_w, syns) if
|
||
tk and not re.match(r"[.^+\(\)-]", tk)]
|
||
for i in range(1, len(tks_w)):
|
||
left, right = tks_w[i - 1][0].strip(), tks_w[i][0].strip()
|
||
if not left or not right:
|
||
continue
|
||
q.append(
|
||
'"%s %s"^%.4f'
|
||
% (
|
||
tks_w[i - 1][0],
|
||
tks_w[i][0],
|
||
max(tks_w[i - 1][1], tks_w[i][1]) * 2,
|
||
)
|
||
)
|
||
if not q:
|
||
q.append(txt)
|
||
query = " ".join(q)
|
||
return MatchTextExpr(
|
||
self.query_fields, query, 100, {"original_query": original_query}
|
||
), keywords
|
||
|
||
def need_fine_grained_tokenize(tk):
|
||
if len(tk) < 3:
|
||
return False
|
||
if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
|
||
return False
|
||
return True
|
||
|
||
txt = self.rmWWW(txt)
|
||
qs, keywords = [], []
|
||
for tt in self.tw.split(txt)[:256]: # .split():
|
||
if not tt:
|
||
continue
|
||
keywords.append(tt)
|
||
twts = self.tw.weights([tt])
|
||
syns = self.syn.lookup(tt)
|
||
if syns and len(keywords) < 32:
|
||
keywords.extend(syns)
|
||
logging.debug(json.dumps(twts, ensure_ascii=False))
|
||
tms = []
|
||
for tk, w in sorted(twts, key=lambda x: x[1] * -1):
|
||
sm = (
|
||
rag_tokenizer.fine_grained_tokenize(tk).split()
|
||
if need_fine_grained_tokenize(tk)
|
||
else []
|
||
)
|
||
sm = [
|
||
re.sub(
|
||
r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
|
||
"",
|
||
m,
|
||
)
|
||
for m in sm
|
||
]
|
||
sm = [self.sub_special_char(m) for m in sm if len(m) > 1]
|
||
sm = [m for m in sm if len(m) > 1]
|
||
|
||
if len(keywords) < 32:
|
||
keywords.append(re.sub(r"[ \\\"']+", "", tk))
|
||
keywords.extend(sm)
|
||
|
||
tk_syns = self.syn.lookup(tk)
|
||
tk_syns = [self.sub_special_char(s) for s in tk_syns]
|
||
if len(keywords) < 32:
|
||
keywords.extend([s for s in tk_syns if s])
|
||
tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s]
|
||
tk_syns = [f"\"{s}\"" if s.find(" ") > 0 else s for s in tk_syns]
|
||
|
||
if len(keywords) >= 32:
|
||
break
|
||
|
||
tk = self.sub_special_char(tk)
|
||
if tk.find(" ") > 0:
|
||
tk = '"%s"' % tk
|
||
if tk_syns:
|
||
tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns)
|
||
if sm:
|
||
tk = f'{tk} OR "%s" OR ("%s"~2)^0.5' % (" ".join(sm), " ".join(sm))
|
||
if tk.strip():
|
||
tms.append((tk, w))
|
||
|
||
tms = " ".join([f"({t})^{w}" for t, w in tms])
|
||
|
||
if len(twts) > 1:
|
||
tms += ' ("%s"~2)^1.5' % rag_tokenizer.tokenize(tt)
|
||
|
||
syns = " OR ".join(
|
||
[
|
||
'"%s"'
|
||
% rag_tokenizer.tokenize(self.sub_special_char(s))
|
||
for s in syns
|
||
]
|
||
)
|
||
if syns and tms:
|
||
tms = f"({tms})^5 OR ({syns})^0.7"
|
||
|
||
qs.append(tms)
|
||
|
||
if qs:
|
||
query = " OR ".join([f"({t})" for t in qs if t])
|
||
if not query:
|
||
query = otxt
|
||
return MatchTextExpr(
|
||
self.query_fields, query, 100, {"minimum_should_match": min_match, "original_query": original_query}
|
||
), keywords
|
||
return None, keywords |