# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import logging import json import numpy as np from common.query_base import QueryBase from common.doc_store.doc_store_base import MatchDenseExpr, MatchTextExpr from common.float_utils import get_float from rag.nlp import rag_tokenizer, term_weight, synonym def get_vector(txt, emb_mdl, topk=10, similarity=0.1): if isinstance(similarity, str) and len(similarity) > 0: try: similarity = float(similarity) except Exception as e: logging.warning(f"Convert similarity '{similarity}' to float failed: {e}. Using default 0.1") similarity = 0.1 qv, _ = emb_mdl.encode_queries(txt) shape = np.array(qv).shape if len(shape) > 1: raise Exception( f"Dealer.get_vector returned array's shape {shape} doesn't match expectation(exact one dimension).") embedding_data = [get_float(v) for v in qv] vector_column_name = f"q_{len(embedding_data)}_vec" return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity}) class MsgTextQuery(QueryBase): def __init__(self): self.tw = term_weight.Dealer() self.syn = synonym.Dealer() self.query_fields = [ "content" ] def question(self, txt, tbl="messages", min_match: float=0.6): original_query = txt txt = MsgTextQuery.add_space_between_eng_zh(txt) txt = re.sub( r"[ :|\r\n\t,,。??/`!!&^%%()\[\]{}<>]+", " ", rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(txt.lower())), ).strip() otxt = txt txt = MsgTextQuery.rmWWW(txt) if not self.is_chinese(txt): txt = self.rmWWW(txt) tks = rag_tokenizer.tokenize(txt).split() keywords = [t for t in tks if t] tks_w = self.tw.weights(tks, preprocess=False) tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w] tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk] tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk] tks_w = [(tk.strip(), w) for tk, w in tks_w if tk.strip()] syns = [] for tk, w in tks_w[:256]: syn = self.syn.lookup(tk) syn = rag_tokenizer.tokenize(" ".join(syn)).split() keywords.extend(syn) syn = ["\"{}\"^{:.4f}".format(s, w / 4.) for s in syn if s.strip()] syns.append(" ".join(syn)) q = ["({}^{:.4f}".format(tk, w) + " {})".format(syn) for (tk, w), syn in zip(tks_w, syns) if tk and not re.match(r"[.^+\(\)-]", tk)] for i in range(1, len(tks_w)): left, right = tks_w[i - 1][0].strip(), tks_w[i][0].strip() if not left or not right: continue q.append( '"%s %s"^%.4f' % ( tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1]) * 2, ) ) if not q: q.append(txt) query = " ".join(q) return MatchTextExpr( self.query_fields, query, 100, {"original_query": original_query} ), keywords def need_fine_grained_tokenize(tk): if len(tk) < 3: return False if re.match(r"[0-9a-z\.\+#_\*-]+$", tk): return False return True txt = self.rmWWW(txt) qs, keywords = [], [] for tt in self.tw.split(txt)[:256]: # .split(): if not tt: continue keywords.append(tt) twts = self.tw.weights([tt]) syns = self.syn.lookup(tt) if syns and len(keywords) < 32: keywords.extend(syns) logging.debug(json.dumps(twts, ensure_ascii=False)) tms = [] for tk, w in sorted(twts, key=lambda x: x[1] * -1): sm = ( rag_tokenizer.fine_grained_tokenize(tk).split() if need_fine_grained_tokenize(tk) else [] ) sm = [ re.sub( r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+", "", m, ) for m in sm ] sm = [self.sub_special_char(m) for m in sm if len(m) > 1] sm = [m for m in sm if len(m) > 1] if len(keywords) < 32: keywords.append(re.sub(r"[ \\\"']+", "", tk)) keywords.extend(sm) tk_syns = self.syn.lookup(tk) tk_syns = [self.sub_special_char(s) for s in tk_syns] if len(keywords) < 32: keywords.extend([s for s in tk_syns if s]) tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s] tk_syns = [f"\"{s}\"" if s.find(" ") > 0 else s for s in tk_syns] if len(keywords) >= 32: break tk = self.sub_special_char(tk) if tk.find(" ") > 0: tk = '"%s"' % tk if tk_syns: tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns) if sm: tk = f'{tk} OR "%s" OR ("%s"~2)^0.5' % (" ".join(sm), " ".join(sm)) if tk.strip(): tms.append((tk, w)) tms = " ".join([f"({t})^{w}" for t, w in tms]) if len(twts) > 1: tms += ' ("%s"~2)^1.5' % rag_tokenizer.tokenize(tt) syns = " OR ".join( [ '"%s"' % rag_tokenizer.tokenize(self.sub_special_char(s)) for s in syns ] ) if syns and tms: tms = f"({tms})^5 OR ({syns})^0.7" qs.append(tms) if qs: query = " OR ".join([f"({t})" for t in qs if t]) if not query: query = otxt return MatchTextExpr( self.query_fields, query, 100, {"minimum_should_match": min_match, "original_query": original_query} ), keywords return None, keywords