Compare commits

..

68 Commits

Author SHA1 Message Date
6c32f80bc9 Update before release (#854)
### What problem does this PR solve?

Update version information before release 0.6.0.

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-21 11:14:02 +08:00
7e74546b73 Set the language default value of the language based on the LANG envi… (#853)
…ronment variable at the initial creation.

1. Set the User's default language based on LANG;
2. Set the Knowledgebase's default language based on LANG; 
3. Set the default language of the Dialog based on LANG;

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2024-05-21 11:05:41 +08:00
25781113f9 Updated how to handle stalled file parsing (#851)
### What problem does this PR solve?

Refresh file parsing if it is stalled.

### Type of change

- [x] Documentation Update
2024-05-21 09:03:30 +08:00
16fa7db737 Create start_chat.md (#836)
### What problem does this PR solve?

Added instructions on how to set up an AI chat in RAGFlow.

### Type of change

- [x] Documentation Update
2024-05-20 20:06:17 +08:00
a12fcf9156 fix minio helth bug (#850)
### What problem does this PR solve?

#643 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-20 19:35:30 +08:00
GYH
c27c02ea67 Split Excel file into different chunks (#847)
### What problem does this PR solve?


Split Excel into different chunk
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-20 18:35:15 +08:00
71068895ae Set the number of task_executor processes through the environment variable WS. (#846)
### What problem does this PR solve?


### Type of change

- [x] Other (please describe): Use environment variable to control the
task executor processor number.
2024-05-20 18:32:24 +08:00
93b35f4e58 feat: display the version and backend service status on the page (#848)
### What problem does this PR solve?

#643 feat: display the version and backend service status on the page

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-05-20 18:28:36 +08:00
9a01d1b876 The default max tokens of 215 is too small, answers are often cut off.I will modify it to 512 to address this issue. (#845)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2024-05-20 17:25:19 +08:00
a7bd427116 add locally deployed llm (#841)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-20 12:40:59 +08:00
2b36283712 fix english query bug (#840)
### What problem does this PR solve?

#834 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-20 12:23:51 +08:00
6683179d6a fix bug about removing KB. (#839)
### What problem does this PR solve?

#838 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-20 09:23:57 +08:00
673a28e492 fix bug of chat without stream (#830)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-17 20:03:00 +08:00
2bfacd0469 refine doc about API: completion (#829)
### What problem does this PR solve?
#808 

### Type of change

- [x] Documentation Update
2024-05-17 18:06:20 +08:00
b3c923da6b add doc ids in API: completion (#827)
### What problem does this PR solve?
#808 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-17 17:51:54 +08:00
a1586e0af9 correct mismatched kb doc number (#826)
### What problem does this PR solve?

#620

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-17 17:27:39 +08:00
f6a599461f fix zhipuAI stream issue (#825)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-17 17:07:33 +08:00
GYH
081f922ee6 0517 list chunks (#821)
### What problem does this PR solve?

#717 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-17 15:58:05 +08:00
9f0f5b45cc Default language will be given according to the browse setting and also can be configured #801 (#823)
### What problem does this PR solve?

Default language will be given according to the browse setting and also
can be configured #801
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-05-17 15:38:28 +08:00
a2a6a35e94 fix doc number miss-match issue (#822)
### What problem does this PR solve?

#620 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-17 15:35:09 +08:00
9e5d501e83 fix data init error (#820)
### What problem does this PR solve?

#810 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-17 14:33:19 +08:00
4ca176bd41 fix: thumbnails are too large in the chat box #818 (#819)
### What problem does this PR solve?

fix: thumbnails are too large in the chat box #818

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-17 14:16:55 +08:00
c3bc72dfd9 fix too large thumbnail issue (#817)
### What problem does this PR solve?

#709

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-17 14:04:21 +08:00
2dd705fe68 feat: add feishu oauth (#815)
### What problem does this PR solve?

The back-end code adds Feishu oauth

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: yonghui li <yonghui.li@bondex.com.cn>
2024-05-17 13:47:05 +08:00
d1614107e2 fix stream chat for ollama (#816)
### What problem does this PR solve?

#709

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-17 12:07:00 +08:00
05fa3aeb08 use smaller docker images (#813)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-17 09:00:24 +08:00
e73ce39b66 Add 2 embeding models from OpenAI (#812)
### What problem does this PR solve?

#810 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-17 08:51:29 +08:00
d54d1375a5 Initial draft of configure knowledge base (#794)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-16 21:27:09 +08:00
c6c9dbde64 feat: Support for conversational streaming (#809)
### What problem does this PR solve?

feat: Support for conversational streaming
#709

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-05-16 20:15:02 +08:00
95f809187e add stream chat (#811)
### What problem does this PR solve?

#709 
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-16 20:14:53 +08:00
d6772f5dd7 add version (#807)
### What problem does this PR solve?
#709 
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-16 16:17:48 +08:00
63ca15c595 Fix a bug in 'assistant-setting.tsx' that causes the upload button to… (#796)
… incorrectly appear on the model settings page.

### What problem does this PR solve?

This is an issue with the Upload component on the assistant-setting
page. I use the show variable to explicitly control the button component
within it.

see:

![20240516000417](https://github.com/infiniflow/ragflow/assets/37476944/de88f911-6dbd-412d-a981-86cf60aa2257)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Other (please describe): Add the local models that DeepDoc depends
on to the gitignore file in dev mode.

Signed-off-by: liuchao <lcjia_you@126.com>
2024-05-16 10:49:41 +08:00
7b144cc086 fix: can't capitalize file or folder name (#798)
### What problem does this PR solve?


#792 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-16 09:10:29 +08:00
1c4e92ed35 Knowledge base search is case sensitive (#797)
### What problem does this PR solve?
#793 
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-16 09:00:12 +08:00
10e83f26dc Added file management guide (#788)
### What problem does this PR solve?

Added guide with instructions on managing files in RAGFlow. 

### Type of change

- [x] Documentation Update
2024-05-15 20:02:41 +08:00
6ff63ee2ba Support for code files parse (#789)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-15 16:34:28 +08:00
GYH
12b4c5668c Updated conversation_api.md document/upload (#787)
### What problem does this PR solve?

Updated conversation_api.md document/upload parameter description

### Type of change

- [x] Documentation Update
2024-05-15 16:33:28 +08:00
baad35df30 fix: .knowledgebase folder can be deleted bug and change "Add file to knowledge base" to "Link file to knowledge base" bug (#786)
### What problem does this PR solve?
fix: .knowledgebase folder can be deleted bug 
fix: change "Add file to knowledge base" to "Link file to knowledge
base" bug
#783 #784

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-15 14:53:36 +08:00
5effbfac80 fix: remove Top K in retrieval testing #770 and if the document parsing fails, the error message returned by the backend is displayed (#782)
### What problem does this PR solve?

fix: remove Top K in retrieval testing  #770
fix: if the document parsing fails, the error message returned by the
backend is displayed.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-15 13:58:30 +08:00
4d47b2b459 fix a string format error (#781)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-15 13:02:31 +08:00
d8c080ee52 fix bugs in searching file using keywords (#780)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-15 12:51:57 +08:00
GYH
626ace8639 Updated document upload method (#777)
### What problem does this PR solve?

api_app.py
/document/upload 
add two non mandatory parameters
parser_id:
[naive,qaresume,manual,table,paper,book,laws,presentation,picture,one]
run: 1

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2024-05-15 12:22:11 +08:00
1e923f1c90 Update README (#779)
### What problem does this PR solve?

#771 

### Type of change

- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-15 12:08:32 +08:00
234afb25d8 feat: support GPT-4o #771 and hide the add button when the folder is a knowledge base (#775)
### What problem does this PR solve?

feat: support GPT-4o  #771 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-15 11:34:57 +08:00
aa1c915d6e support gpt-4o (#773)
### What problem does this PR solve?
#771 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-15 11:16:08 +08:00
77b1520b66 Refactor message output format (#772)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-15 10:48:42 +08:00
6b06ccead4 Miscellaneous updates (#769)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-14 18:46:39 +08:00
282f0857a3 fix: hide the add button when the folder is a knowledge base (#765)
### What problem does this PR solve?

#764 fix: hide the add button when the folder is a knowledge base

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-14 16:53:32 +08:00
d7744f5870 Refactor method name (#760)
### What problem does this PR solve?

#757

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-14 14:48:15 +08:00
9b21b66f23 Create quickstart.md (#743)
### What problem does this PR solve?

Draft quickstart. 

### Type of change

- [x] Documentation Update
2024-05-14 12:22:33 +08:00
aa03dfa453 fix bug of get file (#746)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-13 14:02:38 +08:00
69b7c61498 fix: typo in user_app.py (#740)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change 
- [x] Other (please describe): Fix typo
2024-05-13 09:25:45 +08:00
8769619bb1 Update readme (#741)
### What problem does this PR solve?

Update readme.

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-05-12 13:40:47 +08:00
ffe5737f7d let index be batchly. (#733)
### What problem does this PR solve?

let index be batchly.

### Type of change


- [x] Refactoring
2024-05-11 19:47:53 +08:00
04a9e95161 let file in knowledgebases visible in file manager (#714)
### What problem does this PR solve?

Let file in knowledgebases visible in file manager.
#162 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-11 16:04:28 +08:00
91b4a18c47 Make the app name configurable even after the project is built (#731)
### What problem does this PR solve?

Make the app name configurable even after the project is built #730 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-11 16:03:07 +08:00
33eaf6fa2e docs: update README_ja.md (#707)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2024-05-10 11:22:40 +08:00
d65ba3e4d7 feat: delete the added model #503 and display an error message when the requested file fails to parse #684 (#708)
### What problem does this PR solve?

feat: delete the added model #503
feat: display an error message when the requested file fails to parse
#684

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-05-10 10:38:39 +08:00
bef1bbdf3e Update README with Detailed WebUI Service Launch Instructions (#694)
### What problem does this PR solve?

Improve README by detailing Launch Service from Source section

This commit enhances the README document by adding comprehensive steps
for running the WebUI service in the 'Launch Service from Source'
section. It aims to provide clearer guidance for users attempting to
start the service from the source code, making the setup process more
accessible and understandable.

Key changes include:
- Detailed instructions for setting up and running the WebUI service.
- Necessary prerequisites for launching the service from source.

This update ensures that users have all the information they need to
successfully launch the service, improving the overall usability of our
project.

### Type of change

- [x] Documentation Update
2024-05-10 09:48:50 +08:00
6b36f31f92 Minor editorial updates (#700)
### What problem does this PR solve?

Editorial updates only. 

### Type of change

- [x] Documentation Update
2024-05-10 09:48:24 +08:00
648a2baaa9 fix disabled doc is still retreivalable (#695)
### What problem does this PR solve?

Fix that disabled doc is still retreivalable

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-09 15:32:24 +08:00
9392b8bc8f 0509 faq (#693)
### What problem does this PR solve?

Editorial updates only. 

### Type of change

- [x] Documentation Update
2024-05-09 12:37:45 +08:00
4153a36683 truncate text to fitin embedding model (#692)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-05-09 11:35:08 +08:00
GYH
bca63ad571 Update faq.md (#685)
### What problem does this PR solve?

Updated FAQ: How to upgrade RAGFlow

### Type of change

- [x] Documentation Update
2024-05-09 11:32:36 +08:00
793e29f23a fix: fix uploaded file time error #680 (#690)
### What problem does this PR solve?

fix: fix uploaded file time error #680
feat: support preview of word and excel #684 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-09 11:30:15 +08:00
99be226c7c fix coordinate error (#686)
### What problem does this PR solve?

#683 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-05-08 20:00:14 +08:00
7ddb2f19be make sure to raise exception if redis is not there (#674)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2024-05-08 15:20:45 +08:00
c28f7b5d38 make sure the error will be recorded. (#672)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-05-08 13:58:41 +08:00
145 changed files with 6233 additions and 3374 deletions

1
.gitignore vendored
View File

@ -29,3 +29,4 @@ Cargo.lock
docker/ragflow-logs/
/flask_session
/logs
rag/res/deepdoc

View File

@ -1,4 +1,4 @@
FROM swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow-base:v1.0
FROM infiniflow/ragflow-base:v2.0
USER root
WORKDIR /ragflow
@ -15,6 +15,7 @@ ENV PYTHONPATH=/ragflow/
ENV HF_ENDPOINT=https://hf-mirror.com
ADD docker/entrypoint.sh ./entrypoint.sh
ADD docker/.env ./
RUN chmod +x ./entrypoint.sh
ENTRYPOINT ["./entrypoint.sh"]

View File

@ -1,4 +1,4 @@
FROM swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow-base:v1.0
FROM FROM infiniflow/ragflow-base:v2.0
USER root
WORKDIR /ragflow

View File

@ -17,8 +17,8 @@
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.5.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.5.0"></a>
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.6.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.6.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=1570EF" alt="license">
</a>
@ -26,7 +26,20 @@
## 💡 What is RAGFlow?
[RAGFlow](https://demo.ragflow.io) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
## 📌 Latest Updates
- 2024-05-21 Supports streaming output and text chunk retrieval API.
- 2024-05-15 Integrates OpenAI GPT-4o.
- 2024-05-08 Integrates LLM DeepSeek-V2.
- 2024-04-26 Adds file management.
- 2024-04-19 Supports conversation API ([detail](./docs/conversation_api.md)).
- 2024-04-16 Integrates an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding), and [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.
- 2024-04-11 Supports [Xinference](./docs/xinference.md) for local LLM deployment.
- 2024-04-10 Adds a new layout recognition model for analyzing legal documents.
- 2024-04-08 Supports [Ollama](./docs/ollama.md) for local LLM deployment.
- 2024-04-07 Supports Chinese UI.
## 🌟 Key Features
@ -56,17 +69,6 @@
- Multiple recall paired with fused re-ranking.
- Intuitive APIs for seamless integration with business.
## 📌 Latest Features
- 2024-05-08 Integrates LLM DeepSeek.
- 2024-04-26 Adds file management.
- 2024-04-19 Supports conversation API ([detail](./docs/conversation_api.md)).
- 2024-04-16 Integrates an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding), and [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.
- 2024-04-11 Supports [Xinference](./docs/xinference.md) for local LLM deployment.
- 2024-04-10 Adds a new layout recognition model for analyzing Laws documentation.
- 2024-04-08 Supports [Ollama](./docs/ollama.md) for local LLM deployment.
- 2024-04-07 Supports Chinese UI.
## 🔎 System Architecture
<div align="center" style="margin-top:20px;margin-bottom:20px;">
@ -114,12 +116,14 @@
3. Build the pre-built Docker images and start up the server:
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.6.0`, before running the following commands.
```bash
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d
```
> Please note that running the above commands will automatically download the development version docker image of RAGFlow. If you want to download and run a specific version of docker image, please find the RAGFLOW_VERSION variable in the docker/.env file, change it to the corresponding version, for example, RAGFLOW_VERSION=v0.5.0, and run the above commands.
> The core image is about 9 GB in size and may take a while to load.
@ -247,8 +251,32 @@ $ chmod +x ./entrypoint.sh
$ bash ./entrypoint.sh
```
7. Start the WebUI service
```bash
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ vim .umirc.ts
# Modify proxy.target to 127.0.0.1:9380
$ npm run dev
```
8. Deploy the WebUI service
```bash
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ umi build
$ mkdir -p /ragflow/web
$ cp -r dist /ragflow/web
$ apt install nginx -y
$ cp ../docker/nginx/proxy.conf /etc/nginx
$ cp ../docker/nginx/nginx.conf /etc/nginx
$ cp ../docker/nginx/ragflow.conf /etc/nginx/conf.d
$ systemctl start nginx
```
## 📚 Documentation
- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/faq.md)
## 📜 Roadmap

View File

@ -17,8 +17,8 @@
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.5.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.5.0"></a>
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.6.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.6.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=1570EF" alt="license">
</a>
@ -26,7 +26,22 @@
## 💡 RAGFlow とは?
[RAGFlow](https://demo.ragflow.io) は、深い文書理解に基づいたオープンソースの RAG (Retrieval-Augmented Generation) エンジンである。LLM大規模言語モデルを組み合わせることで、様々な複雑なフォーマットのデータから根拠のある引用に裏打ちされた、信頼できる質問応答機能を実現し、あらゆる規模のビジネスに適した RAG ワークフローを提供します。
[RAGFlow](https://ragflow.io/) は、深い文書理解に基づいたオープンソースの RAG (Retrieval-Augmented Generation) エンジンである。LLM大規模言語モデルを組み合わせることで、様々な複雑なフォーマットのデータから根拠のある引用に裏打ちされた、信頼できる質問応答機能を実現し、あらゆる規模のビジネスに適した RAG ワークフローを提供します。
## 📌 最新情報
- 2024-05-21 ストリーミング出力とテキストチャンク取得APIをサポート。
- 2024-05-15 OpenAI GPT-4oを統合しました。
- 2024-05-08 LLM DeepSeek-V2を統合しました。
- 2024-04-26 「ファイル管理」機能を追加しました。
- 2024-04-19 会話 API をサポートします ([詳細](./docs/conversation_api.md))。
- 2024-04-16 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) から埋め込みモデル「bce-embedding-base_v1」を追加します。
- 2024-04-16 [FastEmbed](https://github.com/qdrant/fastembed) は、軽量かつ高速な埋め込み用に設計されています。
- 2024-04-11 ローカル LLM デプロイメント用に [Xinference](./docs/xinference.md) をサポートします。
- 2024-04-10 メソッド「Laws」に新しいレイアウト認識モデルを追加します。
- 2024-04-08 [Ollama](./docs/ollama.md) を使用した大規模モデルのローカライズされたデプロイメントをサポートします。
- 2024-04-07 中国語インターフェースをサポートします。
## 🌟 主な特徴
@ -56,18 +71,6 @@
- 複数の想起と融合された再ランク付け。
- 直感的な API によってビジネスとの統合がシームレスに。
## 📌 最新の機能
- 2024-05-08
- 2024-04-26 「ファイル管理」機能を追加しました。
- 2024-04-19 会話 API をサポートします ([詳細](./docs/conversation_api.md))。
- 2024-04-16 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) から埋め込みモデル「bce-embedding-base_v1」を追加します。
- 2024-04-16 [FastEmbed](https://github.com/qdrant/fastembed) は、軽量かつ高速な埋め込み用に設計されています。
- 2024-04-11 ローカル LLM デプロイメント用に [Xinference](./docs/xinference.md) をサポートします。
- 2024-04-10 メソッド「Laws」に新しいレイアウト認識モデルを追加します。
- 2024-04-08 [Ollama](./docs/ollama.md) を使用した大規模モデルのローカライズされたデプロイメントをサポートします。
- 2024-04-07 中国語インターフェースをサポートします。
## 🔎 システム構成
<div align="center" style="margin-top:20px;margin-bottom:20px;">
@ -121,7 +124,7 @@
$ docker compose up -d
```
> 上記のコマンドを実行すると、RAGFlowの開発版dockerイメージが自動的にダウンロードされます。 特定のバージョンのDockerイメージをダウンロードして実行したい場合は、docker/.envファイルのRAGFLOW_VERSION変数を見つけて、対応するバージョンに変更してください。 例えば、RAGFLOW_VERSION=v0.5.0として、上記のコマンドを実行してください。
> 上記のコマンドを実行すると、RAGFlowの開発版dockerイメージが自動的にダウンロードされます。 特定のバージョンのDockerイメージをダウンロードして実行したい場合は、docker/.envファイルのRAGFLOW_VERSION変数を見つけて、対応するバージョンに変更してください。 例えば、RAGFLOW_VERSION=v0.6.0として、上記のコマンドを実行してください。
> コアイメージのサイズは約 9 GB で、ロードに時間がかかる場合があります。
@ -183,7 +186,7 @@
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v0.5.0 .
$ docker build -t infiniflow/ragflow:v0.6.0 .
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d
@ -251,6 +254,7 @@ $ bash ./entrypoint.sh
## 📚 ドキュメンテーション
- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/faq.md)
## 📜 ロードマップ

View File

@ -17,8 +17,8 @@
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.5.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.5.0"></a>
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.6.0-brightgreen"
alt="docker pull infiniflow/ragflow:v0.6.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=1570EF" alt="license">
</a>
@ -26,7 +26,20 @@
## 💡 RAGFlow 是什么?
[RAGFlow](https://demo.ragflow.io) 是一款基于深度文档理解构建的开源 RAGRetrieval-Augmented Generation引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程结合大语言模型LLM针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。
[RAGFlow](https://ragflow.io/) 是一款基于深度文档理解构建的开源 RAGRetrieval-Augmented Generation引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程结合大语言模型LLM针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。
## 📌 近期更新
- 2024-05-21 支持流式结果输出和文本块获取API。
- 2024-05-15 集成大模型 OpenAI GPT-4o。
- 2024-05-08 集成大模型 DeepSeek。
- 2024-04-26 增添了'文件管理'功能。
- 2024-04-19 支持对话 API ([更多](./docs/conversation_api.md))。
- 2024-04-16 集成嵌入模型 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) 和 专为轻型和高速嵌入而设计的 [FastEmbed](https://github.com/qdrant/fastembed)。
- 2024-04-11 支持用 [Xinference](./docs/xinference.md) 本地化部署大模型。
- 2024-04-10 为Laws版面分析增加了底层模型。
- 2024-04-08 支持用 [Ollama](./docs/ollama.md) 本地化部署大模型。
- 2024-04-07 支持中文界面。
## 🌟 主要功能
@ -56,17 +69,6 @@
- 基于多路召回、融合重排序。
- 提供易用的 API可以轻松集成到各类企业系统。
## 📌 新增功能
- 2024-05-08 集成大模型 DeepSeek
- 2024-04-26 增添了'文件管理'功能.
- 2024-04-19 支持对话 API ([更多](./docs/conversation_api.md)).
- 2024-04-16 集成嵌入模型 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) 和 专为轻型和高速嵌入而设计的 [FastEmbed](https://github.com/qdrant/fastembed) 。
- 2024-04-11 支持用 [Xinference](./docs/xinference.md) 本地化部署大模型。
- 2024-04-10 为Laws版面分析增加了底层模型。
- 2024-04-08 支持用 [Ollama](./docs/ollama.md) 本地化部署大模型。
- 2024-04-07 支持中文界面。
## 🔎 系统架构
<div align="center" style="margin-top:20px;margin-bottom:20px;">
@ -120,7 +122,7 @@
$ docker compose -f docker-compose-CN.yml up -d
```
> 请注意,运行上述命令会自动下载 RAGFlow 的开发版本 docker 镜像。如果你想下载并运行特定版本的 docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.5.0,然后运行上述命令。
> 请注意,运行上述命令会自动下载 RAGFlow 的开发版本 docker 镜像。如果你想下载并运行特定版本的 docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.6.0,然后运行上述命令。
> 核心镜像文件大约 9 GB可能需要一定时间拉取。请耐心等待。
@ -182,7 +184,7 @@
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v0.5.0 .
$ docker build -t infiniflow/ragflow:v0.6.0 .
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d
@ -247,9 +249,31 @@ $ docker compose -f docker-compose-base.yml up -d
$ chmod +x ./entrypoint.sh
$ bash ./entrypoint.sh
```
7. 启动WebUI服务
```bash
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ vim .umirc.ts
# 修改proxy.target为127.0.0.1:9380
$ npm run dev
```
8. 部署WebUI服务
```bash
$ cd web
$ npm install --registry=https://registry.npmmirror.com --force
$ umi build
$ mkdir -p /ragflow/web
$ cp -r dist /ragflow/web
$ apt install nginx -y
$ cp ../docker/nginx/proxy.conf /etc/nginx
$ cp ../docker/nginx/nginx.conf /etc/nginx
$ cp ../docker/nginx/ragflow.conf /etc/nginx/conf.d
$ systemctl start nginx
```
## 📚 技术文档
- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/faq.md)
## 📜 路线图

View File

@ -13,19 +13,23 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
import re
from datetime import datetime, timedelta
from flask import request
from flask import request, Response
from flask_login import login_required, current_user
from api.db import FileType, ParserType
from api.db.db_models import APIToken, API4Conversation
from api.db.db_models import APIToken, API4Conversation, Task
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
from api.db.services.dialog_service import DialogService, chat
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import queue_tasks, TaskService
from api.db.services.user_service import UserTenantService
from api.settings import RetCode
from api.utils import get_uuid, current_timestamp, datetime_format
@ -35,6 +39,9 @@ from itsdangerous import URLSafeTimedSerializer
from api.utils.file_utils import filename_type, thumbnail
from rag.utils.minio_conn import MINIO
from rag.utils.es_conn import ELASTICSEARCH
from rag.nlp import search
from elasticsearch_dsl import Q
def generate_confirmation_token(tenent_id):
serializer = URLSafeTimedSerializer(tenent_id)
@ -164,6 +171,7 @@ def completion():
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
if "quote" not in req: req["quote"] = False
msg = []
for m in req["messages"]:
@ -180,13 +188,48 @@ def completion():
return get_data_error_result(retmsg="Dialog not found!")
del req["conversation_id"]
del req["messages"]
ans = chat(dia, msg, **req)
if not conv.reference:
conv.reference = []
conv.reference.append(ans["reference"])
conv.message.append({"role": "assistant", "content": ans["answer"]})
API4ConversationService.append_message(conv.id, conv.to_dict())
return get_json_result(data=ans)
conv.message.append({"role": "assistant", "content": ""})
conv.reference.append({"chunks": [], "doc_aggs": []})
def fillin_conv(ans):
nonlocal conv
if not conv.reference:
conv.reference.append(ans["reference"])
else: conv.reference[-1] = ans["reference"]
conv.message[-1] = {"role": "assistant", "content": ans["answer"]}
def stream():
nonlocal dia, msg, req, conv
try:
for ans in chat(dia, msg, True, **req):
fillin_conv(ans)
yield "data:"+json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
API4ConversationService.append_message(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
"data": {"answer": "**ERROR**: "+str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:"+json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
if req.get("stream", True):
resp = Response(stream(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
else:
answer = None
for ans in chat(dia, msg, **req):
answer = ans
fillin_conv(ans)
API4ConversationService.append_message(conv.id, conv.to_dict())
break
return get_json_result(data=answer)
except Exception as e:
return server_error_response(e)
@ -233,6 +276,13 @@ def upload():
if file.filename == '':
return get_json_result(
data=False, retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, tenant_id)
kb_root_folder = FileService.get_kb_folder(tenant_id)
kb_folder = FileService.new_a_file_from_kb(kb.tenant_id, kb.name, kb_root_folder["id"])
try:
if DocumentService.get_doc_count(kb.tenant_id) >= int(os.environ.get('MAX_FILE_NUM_PER_USER', 8192)):
return get_data_error_result(
@ -264,11 +314,82 @@ def upload():
"size": len(blob),
"thumbnail": thumbnail(filename, blob)
}
form_data=request.form
if "parser_id" in form_data.keys():
if request.form.get("parser_id").strip() in list(vars(ParserType).values())[1:-3]:
doc["parser_id"] = request.form.get("parser_id").strip()
if doc["type"] == FileType.VISUAL:
doc["parser_id"] = ParserType.PICTURE.value
if re.search(r"\.(ppt|pptx|pages)$", filename):
doc["parser_id"] = ParserType.PRESENTATION.value
doc = DocumentService.insert(doc)
return get_json_result(data=doc.to_json())
doc_result = DocumentService.insert(doc)
FileService.add_file_from_kb(doc, kb_folder["id"], kb.tenant_id)
except Exception as e:
return server_error_response(e)
if "run" in form_data.keys():
if request.form.get("run").strip() == "1":
try:
info = {"run": 1, "progress": 0}
info["progress_msg"] = ""
info["chunk_num"] = 0
info["token_num"] = 0
DocumentService.update_by_id(doc["id"], info)
# if str(req["run"]) == TaskStatus.CANCEL.value:
tenant_id = DocumentService.get_tenant_id(doc["id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
#e, doc = DocumentService.get_by_id(doc["id"])
TaskService.filter_delete([Task.doc_id == doc["id"]])
e, doc = DocumentService.get_by_id(doc["id"])
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_minio_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
except Exception as e:
return server_error_response(e)
return get_json_result(data=doc_result.to_json())
@manager.route('/list_chunks', methods=['POST'])
# @login_required
def list_chunks():
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
form_data = request.form
try:
if "doc_name" in form_data.keys():
tenant_id = DocumentService.get_tenant_id_by_name(form_data['doc_name'])
q = Q("match", docnm_kwd=form_data['doc_name'])
elif "doc_id" in form_data.keys():
tenant_id = DocumentService.get_tenant_id(form_data['doc_id'])
q = Q("match", doc_id=form_data['doc_id'])
else:
return get_json_result(
data=False,retmsg="Can't find doc_name or doc_id"
)
res_es_search = ELASTICSEARCH.search(q,idxnm=search.index_name(tenant_id),timeout="600s")
res = [{} for _ in range(len(res_es_search['hits']['hits']))]
for index , chunk in enumerate(res_es_search['hits']['hits']):
res[index]['doc_name'] = chunk['_source']['docnm_kwd']
res[index]['content'] = chunk['_source']['content_with_weight']
if 'img_id' in chunk['_source'].keys():
res[index]['img_id'] = chunk['_source']['img_id']
except Exception as e:
return server_error_response(e)
return get_json_result(data=res)

View File

@ -38,7 +38,7 @@ import re
@manager.route('/list', methods=['POST'])
@login_required
@validate_request("doc_id")
def list():
def list_chunk():
req = request.json
doc_id = req["doc_id"]
page = int(req.get("page", 1))

View File

@ -13,12 +13,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request
from flask import request, Response, jsonify
from flask_login import login_required
from api.db.services.dialog_service import DialogService, ConversationService, chat
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.utils.api_utils import get_json_result
import json
@manager.route('/set', methods=['POST'])
@ -103,9 +104,12 @@ def list_convsersation():
@manager.route('/completion', methods=['POST'])
@login_required
@validate_request("conversation_id", "messages")
#@validate_request("conversation_id", "messages")
def completion():
req = request.json
#req = {"conversation_id": "9aaaca4c11d311efa461fa163e197198", "messages": [
# {"role": "user", "content": "上海有吗?"}
#]}
msg = []
for m in req["messages"]:
if m["role"] == "system":
@ -123,13 +127,48 @@ def completion():
return get_data_error_result(retmsg="Dialog not found!")
del req["conversation_id"]
del req["messages"]
ans = chat(dia, msg, **req)
if not conv.reference:
conv.reference = []
conv.reference.append(ans["reference"])
conv.message.append({"role": "assistant", "content": ans["answer"]})
ConversationService.update_by_id(conv.id, conv.to_dict())
return get_json_result(data=ans)
conv.message.append({"role": "assistant", "content": ""})
conv.reference.append({"chunks": [], "doc_aggs": []})
def fillin_conv(ans):
nonlocal conv
if not conv.reference:
conv.reference.append(ans["reference"])
else: conv.reference[-1] = ans["reference"]
conv.message[-1] = {"role": "assistant", "content": ans["answer"]}
def stream():
nonlocal dia, msg, req, conv
try:
for ans in chat(dia, msg, True, **req):
fillin_conv(ans)
yield "data:"+json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
"data": {"answer": "**ERROR**: "+str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:"+json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
if req.get("stream", True):
resp = Response(stream(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
else:
answer = None
for ans in chat(dia, msg, **req):
answer = ans
fillin_conv(ans)
ConversationService.update_by_id(conv.id, conv.to_dict())
break
return get_json_result(data=answer)
except Exception as e:
return server_error_response(e)

View File

@ -136,7 +136,7 @@ def get_kb_names(kb_ids):
@manager.route('/list', methods=['GET'])
@login_required
def list():
def list_dialogs():
try:
diags = DialogService.query(
tenant_id=current_user.id,

View File

@ -23,7 +23,7 @@ from elasticsearch_dsl import Q
from flask import request
from flask_login import login_required, current_user
from api.db.db_models import Task
from api.db.db_models import Task, File
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.task_service import TaskService, queue_tasks
@ -33,7 +33,7 @@ from api.db.services import duplicate_name
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.db import FileType, TaskStatus, ParserType
from api.db import FileType, TaskStatus, ParserType, FileSource
from api.db.services.document_service import DocumentService
from api.settings import RetCode
from api.utils.api_utils import get_json_result
@ -59,12 +59,19 @@ def upload():
return get_json_result(
data=False, retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, current_user.id)
kb_root_folder = FileService.get_kb_folder(current_user.id)
kb_folder = FileService.new_a_file_from_kb(kb.tenant_id, kb.name, kb_root_folder["id"])
err = []
for file in file_objs:
try:
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
MAX_FILE_NUM_PER_USER = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(kb.tenant_id) >= MAX_FILE_NUM_PER_USER:
raise RuntimeError("Exceed the maximum file number of a free user!")
@ -99,6 +106,8 @@ def upload():
if re.search(r"\.(ppt|pptx|pages)$", filename):
doc["parser_id"] = ParserType.PRESENTATION.value
DocumentService.insert(doc)
FileService.add_file_from_kb(doc, kb_folder["id"], kb.tenant_id)
except Exception as e:
err.append(file.filename + ": " + str(e))
if err:
@ -145,7 +154,7 @@ def create():
@manager.route('/list', methods=['GET'])
@login_required
def list():
def list_docs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(
@ -228,34 +237,36 @@ def rm():
req = request.json
doc_ids = req["doc_id"]
if isinstance(doc_ids, str): doc_ids = [doc_ids]
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, current_user.id)
errors = ""
for doc_id in doc_ids:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0)
if not DocumentService.delete(doc):
b, n = File2DocumentService.get_minio_address(doc_id=doc_id)
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
informs = File2DocumentService.get_by_document_id(doc_id)
if not informs:
MINIO.rm(doc.kb_id, doc.location)
else:
File2DocumentService.delete_by_document_id(doc_id)
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc_id)
MINIO.rm(b, n)
except Exception as e:
errors += str(e)
if errors: return server_error_response(e)
if errors:
return get_json_result(data=False, retmsg=errors, retcode=RetCode.SERVER_ERROR)
return get_json_result(data=True)
@ -307,9 +318,10 @@ def rename():
data=False,
retmsg="The extension of file can't be changed",
retcode=RetCode.ARGUMENT_ERROR)
if DocumentService.query(name=req["name"], kb_id=doc.kb_id):
return get_data_error_result(
retmsg="Duplicated document name in the same knowledgebase.")
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_data_error_result(
retmsg="Duplicated document name in the same knowledgebase.")
if not DocumentService.update_by_id(
req["doc_id"], {"name": req["name"]}):
@ -334,12 +346,8 @@ def get(doc_id):
if not e:
return get_data_error_result(retmsg="Document not found!")
informs = File2DocumentService.get_by_document_id(doc_id)
if not informs:
response = flask.make_response(MINIO.get(doc.kb_id, doc.location))
else:
e, file = FileService.get_by_id(informs[0].file_id)
response = flask.make_response(MINIO.get(file.parent_id, doc.location))
b,n = File2DocumentService.get_minio_address(doc_id=doc_id)
response = flask.make_response(MINIO.get(b, n))
ext = re.search(r"\.([^.]+)$", doc.name)
if ext:

View File

@ -58,11 +58,7 @@ def convert():
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0)
if not DocumentService.delete(doc):
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
File2DocumentService.delete_by_file_id(id)
@ -125,11 +121,7 @@ def rm():
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0)
if not DocumentService.delete(doc):
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
return get_json_result(data=True)

View File

@ -26,7 +26,7 @@ from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.db import FileType
from api.db import FileType, FileSource
from api.db.services import duplicate_name
from api.db.services.file_service import FileService
from api.settings import RetCode
@ -45,7 +45,7 @@ def upload():
if not pf_id:
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder.id
pf_id = root_folder["id"]
if 'file' not in request.files:
return get_json_result(
@ -132,7 +132,7 @@ def create():
input_file_type = request.json.get("type")
if not pf_id:
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder.id
pf_id = root_folder["id"]
try:
if not FileService.is_parent_folder_exist(pf_id):
@ -165,7 +165,7 @@ def create():
@manager.route('/list', methods=['GET'])
@login_required
def list():
def list_files():
pf_id = request.args.get("parent_id")
keywords = request.args.get("keywords", "")
@ -176,7 +176,8 @@ def list():
desc = request.args.get("desc", True)
if not pf_id:
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder.id
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, current_user.id)
try:
e, file = FileService.get_by_id(pf_id)
if not e:
@ -199,7 +200,7 @@ def list():
def get_root_folder():
try:
root_folder = FileService.get_root_folder(current_user.id)
return get_json_result(data={"root_folder": root_folder.to_json()})
return get_json_result(data={"root_folder": root_folder})
except Exception as e:
return server_error_response(e)
@ -250,6 +251,8 @@ def rm():
return get_data_error_result(retmsg="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
if file.source_type == FileSource.KNOWLEDGEBASE:
continue
if file.type == FileType.FOLDER.value:
file_id_list = FileService.get_all_innermost_file_ids(file_id, [])
@ -274,11 +277,7 @@ def rm():
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0)
if not DocumentService.delete(doc):
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
File2DocumentService.delete_by_file_id(file_id)
@ -303,9 +302,10 @@ def rename():
data=False,
retmsg="The extension of file can't be changed",
retcode=RetCode.ARGUMENT_ERROR)
if FileService.query(name=req["name"], pf_id=file.parent_id):
return get_data_error_result(
retmsg="Duplicated file name in the same folder.")
for file in FileService.query(name=req["name"], pf_id=file.parent_id):
if file.name == req["name"]:
return get_data_error_result(
retmsg="Duplicated file name in the same folder.")
if not FileService.update_by_id(
req["file_id"], {"name": req["name"]}):

View File

@ -19,12 +19,14 @@ from flask_login import login_required, current_user
from api.db.services import duplicate_name
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid, get_format_time
from api.db import StatusEnum, UserTenantRole
from api.db import StatusEnum, UserTenantRole, FileSource
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.db_models import Knowledgebase
from api.db.db_models import Knowledgebase, File
from api.settings import stat_logger, RetCode
from api.utils.api_utils import get_json_result
from rag.nlp import search
@ -109,7 +111,7 @@ def detail():
@manager.route('/list', methods=['GET'])
@login_required
def list():
def list_kbs():
page_number = request.args.get("page", 1)
items_per_page = request.args.get("page_size", 150)
orderby = request.args.get("orderby", "create_time")
@ -136,17 +138,14 @@ def rm():
data=False, retmsg=f'Only owner of knowledgebase authorized for this operation.', retcode=RetCode.OPERATING_ERROR)
for doc in DocumentService.query(kb_id=req["kb_id"]):
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(kbs[0].tenant_id))
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0)
if not DocumentService.delete(doc):
if not DocumentService.remove_document(doc, kbs[0].tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc.id)
if not KnowledgebaseService.update_by_id(
req["kb_id"], {"status": StatusEnum.INVALID.value}):
if not KnowledgebaseService.delete_by_id(req["kb_id"]):
return get_data_error_result(
retmsg="Database error (Knowledgebase removal)!")
return get_json_result(data=True)

View File

@ -142,6 +142,16 @@ def add_llm():
return get_json_result(data=True)
@manager.route('/delete_llm', methods=['POST'])
@login_required
@validate_request("llm_factory", "llm_name")
def delete_llm():
req = request.json
TenantLLMService.filter_delete(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
return get_json_result(data=True)
@manager.route('/my_llms', methods=['GET'])
@login_required
def my_llms():
@ -165,7 +175,7 @@ def my_llms():
@manager.route('/list', methods=['GET'])
@login_required
def list():
def list_app():
model_type = request.args.get("model_type")
try:
objs = TenantLLMService.query(tenant_id=current_user.id)
@ -184,7 +194,7 @@ def list():
res = {}
for m in llms:
if model_type and m["model_type"] != model_type:
if model_type and m["model_type"].find(model_type)<0:
continue
if m["fid"] not in res:
res[m["fid"]] = []

67
api/apps/system_app.py Normal file
View File

@ -0,0 +1,67 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
#
from flask_login import login_required
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import get_json_result
from api.versions import get_rag_version
from rag.settings import SVR_QUEUE_NAME
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.minio_conn import MINIO
from timeit import default_timer as timer
from rag.utils.redis_conn import REDIS_CONN
@manager.route('/version', methods=['GET'])
@login_required
def version():
return get_json_result(data=get_rag_version())
@manager.route('/status', methods=['GET'])
@login_required
def status():
res = {}
st = timer()
try:
res["es"] = ELASTICSEARCH.health()
res["es"]["elapsed"] = "{:.1f}".format((timer() - st)*1000.)
except Exception as e:
res["es"] = {"status": "red", "elapsed": "{:.1f}".format((timer() - st)*1000.), "error": str(e)}
st = timer()
try:
MINIO.health()
res["minio"] = {"status": "green", "elapsed": "{:.1f}".format((timer() - st)*1000.)}
except Exception as e:
res["minio"] = {"status": "red", "elapsed": "{:.1f}".format((timer() - st)*1000.), "error": str(e)}
st = timer()
try:
KnowledgebaseService.get_by_id("x")
res["mysql"] = {"status": "green", "elapsed": "{:.1f}".format((timer() - st)*1000.)}
except Exception as e:
res["mysql"] = {"status": "red", "elapsed": "{:.1f}".format((timer() - st)*1000.), "error": str(e)}
st = timer()
try:
qinfo = REDIS_CONN.health(SVR_QUEUE_NAME)
res["redis"] = {"status": "green", "elapsed": "{:.1f}".format((timer() - st)*1000.), "pending": qinfo["pending"]}
except Exception as e:
res["redis"] = {"status": "red", "elapsed": "{:.1f}".format((timer() - st)*1000.), "error": str(e)}
return get_json_result(data=res)

View File

@ -122,6 +122,79 @@ def github_callback():
return redirect("/?auth=%s" % user.get_id())
@manager.route('/feishu_callback', methods=['GET'])
def feishu_callback():
import requests
app_access_token_res = requests.post(FEISHU_OAUTH.get("app_access_token_url"), data=json.dumps({
"app_id": FEISHU_OAUTH.get("app_id"),
"app_secret": FEISHU_OAUTH.get("app_secret")
}), headers={"Content-Type": "application/json; charset=utf-8"})
app_access_token_res = app_access_token_res.json()
if app_access_token_res['code'] != 0:
return redirect("/?error=%s" % app_access_token_res)
res = requests.post(FEISHU_OAUTH.get("user_access_token_url"), data=json.dumps({
"grant_type": FEISHU_OAUTH.get("grant_type"),
"code": request.args.get('code')
}), headers={"Content-Type": "application/json; charset=utf-8",
'Authorization': f"Bearer {app_access_token_res['app_access_token']}"})
res = res.json()
if res['code'] != 0:
return redirect("/?error=%s" % res["message"])
if "contact:user.email:readonly" not in res["data"]["scope"].split(" "):
return redirect("/?error=contact:user.email:readonly not in scope")
session["access_token"] = res["data"]["access_token"]
session["access_token_from"] = "feishu"
userinfo = user_info_from_feishu(session["access_token"])
users = UserService.query(email=userinfo["email"])
user_id = get_uuid()
if not users:
try:
try:
avatar = download_img(userinfo["avatar_url"])
except Exception as e:
stat_logger.exception(e)
avatar = ""
users = user_register(user_id, {
"access_token": session["access_token"],
"email": userinfo["email"],
"avatar": avatar,
"nickname": userinfo["en_name"],
"login_channel": "feishu",
"last_login_time": get_format_time(),
"is_superuser": False,
})
if not users:
raise Exception('Register user failure.')
if len(users) > 1:
raise Exception('Same E-mail exist!')
user = users[0]
login_user(user)
return redirect("/?auth=%s" % user.get_id())
except Exception as e:
rollback_user_registration(user_id)
stat_logger.exception(e)
return redirect("/?error=%s" % str(e))
user = users[0]
user.access_token = get_uuid()
login_user(user)
user.save()
return redirect("/?auth=%s" % user.get_id())
def user_info_from_feishu(access_token):
import requests
headers = {"Content-Type": "application/json; charset=utf-8",
'Authorization': f"Bearer {access_token}"}
res = requests.get(
f"https://open.feishu.cn/open-apis/authen/v1/user_info",
headers=headers)
user_info = res.json()["data"]
user_info["email"] = None if user_info.get("email") == "" else user_info["email"]
return user_info
def user_info_from_github(access_token):
import requests
headers = {"Accept": "application/json",
@ -200,7 +273,7 @@ def rollback_user_registration(user_id):
except Exception as e:
pass
try:
TenantLLM.delete().where(TenantLLM.tenant_id == user_id).excute()
TenantLLM.delete().where(TenantLLM.tenant_id == user_id).execute()
except Exception as e:
pass

View File

@ -83,3 +83,11 @@ class ParserType(StrEnum):
NAIVE = "naive"
PICTURE = "picture"
ONE = "one"
class FileSource(StrEnum):
LOCAL = ""
KNOWLEDGEBASE = "knowledgebase"
S3 = "s3"
KNOWLEDGEBASE_FOLDER_NAME=".knowledgebase"

View File

@ -21,14 +21,13 @@ import operator
from functools import wraps
from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
from flask_login import UserMixin
from playhouse.migrate import MySQLMigrator, migrate
from peewee import (
BigAutoField, BigIntegerField, BooleanField, CharField,
CompositeKey, Insert, IntegerField, TextField, FloatField, DateTimeField,
BigIntegerField, BooleanField, CharField,
CompositeKey, IntegerField, TextField, FloatField, DateTimeField,
Field, Model, Metadata
)
from playhouse.pool import PooledMySQLDatabase
from api.db import SerializedType, ParserType
from api.settings import DATABASE, stat_logger, SECRET_KEY
from api.utils.log_utils import getLogger
@ -344,7 +343,7 @@ class DataBaseModel(BaseModel):
@DB.connection_context()
def init_database_tables():
def init_database_tables(alter_fields=[]):
members = inspect.getmembers(sys.modules[__name__], inspect.isclass)
table_objs = []
create_failed_list = []
@ -361,6 +360,7 @@ def init_database_tables():
if create_failed_list:
LOGGER.info(f"create tables failed: {create_failed_list}")
raise Exception(f"create tables failed: {create_failed_list}")
migrate_db()
def fill_db_model_object(model_object, human_model_dict):
@ -386,7 +386,7 @@ class User(DataBaseModel, UserMixin):
max_length=32,
null=True,
help_text="English|Chinese",
default="English")
default="Chinese" if "zh_CN" in os.getenv("LANG", "") else "English")     
color_schema = CharField(
max_length=32,
null=True,
@ -578,7 +578,7 @@ class Knowledgebase(DataBaseModel):
language = CharField(
max_length=32,
null=True,
default="English",
default="Chinese" if "zh_CN" in os.getenv("LANG", "") else "English",
help_text="English|Chinese")
description = TextField(null=True, help_text="KB description")
embd_id = CharField(
@ -699,6 +699,11 @@ class File(DataBaseModel):
help_text="where dose it store")
size = IntegerField(default=0)
type = CharField(max_length=32, null=False, help_text="file extension")
source_type = CharField(
max_length=128,
null=False,
default="",
help_text="where dose this document come from")
class Meta:
db_table = "file"
@ -750,11 +755,11 @@ class Dialog(DataBaseModel):
language = CharField(
max_length=32,
null=True,
default="Chinese",
default="Chinese" if "zh_CN" in os.getenv("LANG", "") else "English",
help_text="English|Chinese")
llm_id = CharField(max_length=128, null=False, help_text="default llm ID")
llm_setting = JSONField(null=False, default={"temperature": 0.1, "top_p": 0.3, "frequency_penalty": 0.7,
"presence_penalty": 0.4, "max_tokens": 215})
"presence_penalty": 0.4, "max_tokens": 512})
prompt_type = CharField(
max_length=16,
null=False,
@ -817,3 +822,14 @@ class API4Conversation(DataBaseModel):
class Meta:
db_table = "api_4_conversation"
def migrate_db():
try:
with DB.transaction():
migrator = MySQLMigrator(DB)
migrate(
migrator.add_column('file', 'source_type', CharField(max_length=128, null=False, default="", help_text="where dose this document come from"))
)
except Exception as e:
pass

View File

@ -16,10 +16,13 @@
import os
import time
import uuid
from copy import deepcopy
from api.db import LLMType, UserTenantRole
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
from api.db.services import UserService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
from api.db.services.user_service import TenantService, UserTenantService
from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL
@ -143,6 +146,12 @@ def init_llm_factory():
llm_infos = [
# ---------------------- OpenAI ------------------------
{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4o",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": LLMType.CHAT.value + "," + LLMType.IMAGE2TEXT.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "gpt-3.5-turbo",
"tags": "LLM,CHAT,4K",
@ -160,6 +169,18 @@ def init_llm_factory():
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "text-embedding-3-small",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "text-embedding-3-large",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "whisper-1",
@ -370,6 +391,25 @@ def init_llm_factory():
LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
LLMService.filter_delete([LLMService.model.fid == "QAnything"])
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
## insert openai two embedding models to the current openai user.
print("Start to insert 2 OpenAI embedding models...")
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
for tid in tenant_ids:
for row in TenantLLMService.query(llm_factory="OpenAI", tenant_id=tid):
row = row.to_dict()
row["model_type"] = LLMType.EMBEDDING.value
row["llm_name"] = "text-embedding-3-small"
row["used_tokens"] = 0
try:
TenantLLMService.save(**row)
row = deepcopy(row)
row["llm_name"] = "text-embedding-3-large"
TenantLLMService.save(**row)
except Exception as e:
pass
break
for kb_id in KnowledgebaseService.get_all_ids():
KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
"""
drop table llm;
drop table llm_factories;

View File

@ -14,6 +14,7 @@
# limitations under the License.
#
import re
from copy import deepcopy
from api.db import LLMType
from api.db.db_models import Dialog, Conversation
@ -71,7 +72,7 @@ def message_fit_in(msg, max_length=4000):
return max_length, msg
def chat(dialog, messages, **kwargs):
def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
llm = LLMService.query(llm_name=dialog.llm_id)
if not llm:
@ -82,7 +83,9 @@ def chat(dialog, messages, **kwargs):
else: max_tokens = llm[0].max_tokens
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
if len(embd_nms) != 1:
yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
questions = [m["content"] for m in messages if m["role"] == "user"]
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
@ -94,7 +97,9 @@ def chat(dialog, messages, **kwargs):
if field_map:
chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
if ans: return ans
if ans:
yield ans
return
for p in prompt_config["parameters"]:
if p["key"] == "knowledge":
@ -112,14 +117,16 @@ def chat(dialog, messages, **kwargs):
else:
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight, top=1024, aggs=False)
dialog.vector_similarity_weight,
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
top=1024, aggs=False)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
chat_logger.info(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
if not knowledges and prompt_config.get("empty_response"):
return {
"answer": prompt_config["empty_response"], "reference": kbinfos}
yield {"answer": prompt_config["empty_response"], "reference": kbinfos}
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n".join(knowledges)
gen_conf = dialog.llm_setting
@ -130,33 +137,45 @@ def chat(dialog, messages, **kwargs):
gen_conf["max_tokens"] = min(
gen_conf["max_tokens"],
max_tokens - used_token_count)
answer = chat_mdl.chat(
prompt_config["system"].format(
**kwargs), msg, gen_conf)
chat_logger.info("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retrievaler.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs: recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
def decorate_answer(answer):
nonlocal prompt_config, knowledges, kwargs, kbinfos
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retrievaler.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs: recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
for c in kbinfos["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api")>=0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
return {"answer": answer, "reference": kbinfos}
refs = deepcopy(kbinfos)
for c in refs["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api")>=0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
return {"answer": answer, "reference": refs}
if stream:
answer = ""
for ans in chat_mdl.chat_streamly(prompt_config["system"].format(**kwargs), msg, gen_conf):
answer = ans
yield {"answer": answer, "reference": {}}
yield decorate_answer(answer)
else:
answer = chat_mdl.chat(
prompt_config["system"].format(
**kwargs), msg, gen_conf)
chat_logger.info("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
yield decorate_answer(answer)
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):

View File

@ -16,6 +16,7 @@
import random
from datetime import datetime
from elasticsearch_dsl import Q
from peewee import fn
from api.settings import stat_logger
from api.utils import current_timestamp, get_format_time
@ -40,8 +41,9 @@ class DocumentService(CommonService):
orderby, desc, keywords):
if keywords:
docs = cls.model.select().where(
cls.model.kb_id == kb_id,
cls.model.name.like(f"%%{keywords}%%"))
(cls.model.kb_id == kb_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
else:
docs = cls.model.select().where(cls.model.kb_id == kb_id)
count = docs.count()
@ -68,27 +70,12 @@ class DocumentService(CommonService):
raise RuntimeError("Database error (Knowledgebase)!")
return doc
@classmethod
@DB.connection_context()
def delete(cls, doc):
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
if not KnowledgebaseService.update_by_id(
kb.id, {"doc_num": kb.doc_num - 1}):
raise RuntimeError("Database error (Knowledgebase)!")
return cls.delete_by_id(doc.id)
@classmethod
@DB.connection_context()
def remove_document(cls, doc, tenant_id):
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
cls.increment_chunk_num(
doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0)
if not cls.delete(doc):
raise RuntimeError("Database error (Document removal)!")
MINIO.rm(doc.kb_id, doc.location)
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
cls.clear_chunk_num(doc.id)
return cls.delete_by_id(doc.id)
@classmethod
@ -150,6 +137,22 @@ class DocumentService(CommonService):
Knowledgebase.id == kb_id).execute()
return num
@classmethod
@DB.connection_context()
def clear_chunk_num(cls, doc_id):
doc = cls.model.get_by_id(doc_id)
assert doc, "Can't fine document in database."
num = Knowledgebase.update(
token_num=Knowledgebase.token_num -
doc.token_num,
chunk_num=Knowledgebase.chunk_num -
doc.chunk_num,
doc_num=Knowledgebase.doc_num-1
).where(
Knowledgebase.id == doc.kb_id).execute()
return num
@classmethod
@DB.connection_context()
def get_tenant_id(cls, doc_id):
@ -163,6 +166,19 @@ class DocumentService(CommonService):
return
return docs[0]["tenant_id"]
@classmethod
@DB.connection_context()
def get_tenant_id_by_name(cls, name):
docs = cls.model.select(
Knowledgebase.tenant_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.name == name, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
return
return docs[0]["tenant_id"]
@classmethod
@DB.connection_context()
def get_thumbnails(cls, docids):
@ -249,3 +265,9 @@ class DocumentService(CommonService):
except Exception as e:
stat_logger.error("fetch task exception:" + str(e))
@classmethod
@DB.connection_context()
def get_kb_doc_count(cls, kb_id):
return len(cls.model.select(cls.model.id).where(
cls.model.kb_id == kb_id).dicts())

View File

@ -15,12 +15,12 @@
#
from datetime import datetime
from api.db import FileSource
from api.db.db_models import DB
from api.db.db_models import File, Document, File2Document
from api.db.db_models import File, File2Document
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.file_service import FileService
from api.utils import current_timestamp, datetime_format
from api.utils import current_timestamp, datetime_format, get_uuid
class File2DocumentService(CommonService):
@ -71,13 +71,15 @@ class File2DocumentService(CommonService):
@DB.connection_context()
def get_minio_address(cls, doc_id=None, file_id=None):
if doc_id:
ids = File2DocumentService.get_by_document_id(doc_id)
f2d = cls.get_by_document_id(doc_id)
else:
ids = File2DocumentService.get_by_file_id(file_id)
if ids:
e, file = FileService.get_by_id(ids[0].file_id)
return file.parent_id, file.location
else:
assert doc_id, "please specify doc_id"
e, doc = DocumentService.get_by_id(doc_id)
return doc.kb_id, doc.location
f2d = cls.get_by_file_id(file_id)
if f2d:
file = File.get_by_id(f2d[0].file_id)
if file.source_type == FileSource.LOCAL:
return file.parent_id, file.location
doc_id = f2d[0].document_id
assert doc_id, "please specify doc_id"
e, doc = DocumentService.get_by_id(doc_id)
return doc.kb_id, doc.location

View File

@ -16,10 +16,12 @@
from flask_login import current_user
from peewee import fn
from api.db import FileType
from api.db import FileType, KNOWLEDGEBASE_FOLDER_NAME, FileSource
from api.db.db_models import DB, File2Document, Knowledgebase
from api.db.db_models import File, Document
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.utils import get_uuid
@ -32,11 +34,16 @@ class FileService(CommonService):
orderby, desc, keywords):
if keywords:
files = cls.model.select().where(
(cls.model.tenant_id == tenant_id)
& (cls.model.parent_id == pf_id), (fn.LOWER(cls.model.name).like(f"%%{keywords.lower()}%%")))
(cls.model.tenant_id == tenant_id),
(cls.model.parent_id == pf_id),
(fn.LOWER(cls.model.name).contains(keywords.lower())),
~(cls.model.id == pf_id)
)
else:
files = cls.model.select().where((cls.model.tenant_id == tenant_id)
& (cls.model.parent_id == pf_id))
files = cls.model.select().where((cls.model.tenant_id == tenant_id),
(cls.model.parent_id == pf_id),
~(cls.model.id == pf_id)
)
count = files.count()
if desc:
files = files.order_by(cls.model.getter_by(orderby).desc())
@ -135,29 +142,69 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_root_folder(cls, tenant_id):
file = cls.model.select().where(cls.model.tenant_id == tenant_id and
cls.model.parent_id == cls.model.id)
if not file:
file_id = get_uuid()
file = {
"id": file_id,
"parent_id": file_id,
"tenant_id": tenant_id,
"created_by": tenant_id,
"name": "/",
"type": FileType.FOLDER.value,
"size": 0,
"location": "",
}
cls.save(**file)
else:
file_id = file[0].id
for file in cls.model.select().where((cls.model.tenant_id == tenant_id),
(cls.model.parent_id == cls.model.id)
):
return file.to_dict()
e, file = cls.get_by_id(file_id)
if not e:
raise RuntimeError("Database error (File retrieval)!")
file_id = get_uuid()
file = {
"id": file_id,
"parent_id": file_id,
"tenant_id": tenant_id,
"created_by": tenant_id,
"name": "/",
"type": FileType.FOLDER.value,
"size": 0,
"location": "",
}
cls.save(**file)
return file
@classmethod
@DB.connection_context()
def get_kb_folder(cls, tenant_id):
for root in cls.model.select().where(cls.model.tenant_id == tenant_id and
cls.model.parent_id == cls.model.id):
for folder in cls.model.select().where(cls.model.tenant_id == tenant_id and
cls.model.parent_id == root.id and
cls.model.name == KNOWLEDGEBASE_FOLDER_NAME
):
return folder.to_dict()
assert False, "Can't find the KB folder. Database init error."
@classmethod
@DB.connection_context()
def new_a_file_from_kb(cls, tenant_id, name, parent_id, ty=FileType.FOLDER.value, size=0, location=""):
for file in cls.query(tenant_id=tenant_id, parent_id=parent_id, name=name):
return file.to_dict()
file = {
"id": get_uuid(),
"parent_id": parent_id,
"tenant_id": tenant_id,
"created_by": tenant_id,
"name": name,
"type": ty,
"size": size,
"location": location,
"source_type": FileSource.KNOWLEDGEBASE
}
cls.save(**file)
return file
@classmethod
@DB.connection_context()
def init_knowledgebase_docs(cls, root_id, tenant_id):
for _ in cls.model.select().where((cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)\
& (cls.model.parent_id == root_id)):
return
folder = cls.new_a_file_from_kb(tenant_id, KNOWLEDGEBASE_FOLDER_NAME, root_id)
for kb in Knowledgebase.select(*[Knowledgebase.id, Knowledgebase.name]).where(Knowledgebase.tenant_id==tenant_id):
kb_folder = cls.new_a_file_from_kb(tenant_id, kb.name, folder["id"])
for doc in DocumentService.query(kb_id=kb.id):
FileService.add_file_from_kb(doc.to_dict(), kb_folder["id"], tenant_id)
@classmethod
@DB.connection_context()
def get_parent_folder(cls, file_id):
@ -241,3 +288,20 @@ class FileService(CommonService):
dfs(folder_id)
return size
@classmethod
@DB.connection_context()
def add_file_from_kb(cls, doc, kb_folder_id, tenant_id):
for _ in File2DocumentService.get_by_document_id(doc["id"]): return
file = {
"id": get_uuid(),
"parent_id": kb_folder_id,
"tenant_id": tenant_id,
"created_by": tenant_id,
"name": doc["name"],
"type": doc["type"],
"size": doc["size"],
"location": doc["location"],
"source_type": FileSource.KNOWLEDGEBASE
}
cls.save(**file)
File2DocumentService.save(**{"id": get_uuid(), "file_id": file["id"], "document_id": doc["id"]})

View File

@ -1,67 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.db import TenantPermission
from api.db.db_models import DB, Tenant
from api.db.db_models import Knowledgebase
from api.db.services.common_service import CommonService
from api.db import StatusEnum
class KnowledgebaseService(CommonService):
model = Knowledgebase
@classmethod
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
page_number, items_per_page, orderby, desc):
kbs = cls.model.select().where(
((cls.model.tenant_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (cls.model.tenant_id == user_id))
& (cls.model.status == StatusEnum.VALID.value)
)
if desc:
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
else:
kbs = kbs.order_by(cls.model.getter_by(orderby).asc())
kbs = kbs.paginate(page_number, items_per_page)
return list(kbs.dicts())
@classmethod
@DB.connection_context()
def get_detail(cls, kb_id):
fields = [
cls.model.id,
Tenant.embd_id,
cls.model.avatar,
cls.model.name,
cls.model.description,
cls.model.permission,
cls.model.doc_num,
cls.model.token_num,
cls.model.chunk_num,
cls.model.parser_id]
kbs = cls.model.select(*fields).join(Tenant, on=((Tenant.id == cls.model.tenant_id)&(Tenant.status== StatusEnum.VALID.value))).where(
(cls.model.id == kb_id),
(cls.model.status == StatusEnum.VALID.value)
)
if not kbs:
return
d = kbs[0].to_dict()
d["embd_id"] = kbs[0].tenant.embd_id
return d

View File

@ -112,3 +112,8 @@ class KnowledgebaseService(CommonService):
if kb:
return True, kb[0]
return False, None
@classmethod
@DB.connection_context()
def get_all_ids(cls):
return [m["id"] for m in cls.model.select(cls.model.id).dicts()]

View File

@ -81,7 +81,7 @@ class TenantLLMService(CommonService):
if not model_config:
if llm_type == LLMType.EMBEDDING.value:
llm = LLMService.query(llm_name=llm_name)
if llm and llm[0].fid in ["Youdao", "FastEmbed"]:
if llm and llm[0].fid in ["Youdao", "FastEmbed", "DeepSeek"]:
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": llm_name, "api_base": ""}
if not model_config:
if llm_name == "flag-embedding":
@ -135,6 +135,16 @@ class TenantLLMService(CommonService):
.execute()
return num
@classmethod
@DB.connection_context()
def get_openai_models(cls):
objs = cls.model.select().where(
(cls.model.llm_factory == "OpenAI"),
~(cls.model.llm_name == "text-embedding-3-small"),
~(cls.model.llm_name == "text-embedding-3-large")
).dicts()
return list(objs)
class LLMBundle(object):
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
@ -172,8 +182,18 @@ class LLMBundle(object):
def chat(self, system, history, gen_conf):
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
if TenantLLMService.increase_usage(
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
database_logger.error(
"Can't update token usage for {}/CHAT".format(self.tenant_id))
return txt
def chat_streamly(self, system, history, gen_conf):
for txt in self.mdl.chat_streamly(system, history, gen_conf):
if isinstance(txt, int):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, txt, self.llm_name):
database_logger.error(
"Can't update token usage for {}/CHAT".format(self.tenant_id))
return
yield txt

View File

@ -96,7 +96,7 @@ class TaskService(CommonService):
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
except Exception as e:
pass
return True
return False
@classmethod
@DB.connection_context()
@ -159,4 +159,4 @@ def queue_tasks(doc, bucket, name):
DocumentService.begin2parse(doc["id"])
for t in tsks:
REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=t)
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=t), "Can't access Redis. Please check the Redis' status."

View File

@ -86,6 +86,12 @@ default_llm = {
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"DeepSeek": {
"chat_model": "deepseek-chat",
"embedding_model": "BAAI/bge-large-zh-v1.5",
"image2text_model": "",
"asr_model": "",
}
}
LLM = get_base_config("user_default_llm", {})
@ -152,6 +158,7 @@ CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get(
"switch", False)
HTTP_APP_KEY = AUTHENTICATION_CONF.get("client", {}).get("http_app_key")
GITHUB_OAUTH = get_base_config("oauth", {}).get("github")
FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")
WECHAT_OAUTH = get_base_config("oauth", {}).get("wechat")
# site

View File

@ -25,7 +25,6 @@ from flask import (
from werkzeug.http import HTTP_STATUS_CODES
from api.utils import json_dumps
from api.versions import get_rag_version
from api.settings import RetCode
from api.settings import (
REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC,
@ -84,9 +83,6 @@ def request(**kwargs):
return sess.send(prepped, stream=stream, timeout=timeout)
rag_version = get_rag_version() or ''
def get_exponential_backoff_interval(retries, full_jitter=False):
"""Calculate the exponential backoff wait time."""
# Will be zero if factor equals 0

View File

@ -156,7 +156,7 @@ def filename_type(filename):
return FileType.PDF.value
if re.match(
r".*\.(doc|docx|ppt|pptx|yml|xml|htm|json|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md)$", filename):
r".*\.(doc|docx|ppt|pptx|yml|xml|htm|json|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt)$", filename):
return FileType.DOC.value
if re.match(
@ -174,7 +174,7 @@ def thumbnail(filename, blob):
if re.match(r".*\.pdf$", filename):
pdf = pdfplumber.open(BytesIO(blob))
buffered = BytesIO()
pdf.pages[0].to_image().annotated.save(buffered, format="png")
pdf.pages[0].to_image(resolution=32).annotated.save(buffered, format="png")
return "data:image/png;base64," + \
base64.b64encode(buffered.getvalue()).decode("utf-8")

View File

@ -14,17 +14,15 @@
# limitations under the License.
#
import os
import dotenv
import typing
from api.utils.file_utils import get_project_base_directory
def get_versions() -> typing.Mapping[str, typing.Any]:
return dotenv.dotenv_values(
dotenv_path=os.path.join(get_project_base_directory(), "rag.env")
)
dotenv.load_dotenv(dotenv.find_dotenv())
return dotenv.dotenv_values()
def get_rag_version() -> typing.Optional[str]:
return get_versions().get("RAG")
return get_versions().get("RAGFLOW_VERSION", "dev")

View File

@ -28,6 +28,12 @@ oauth:
client_id: xxxxxxxxxxxxxxxxxxxxxxxxx
secret_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
url: https://github.com/login/oauth/access_token
feishu:
app_id: cli_xxxxxxxxxxxxxxxxxxx
app_secret: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
app_access_token_url: https://open.feishu.cn/open-apis/auth/v3/app_access_token/internal
user_access_token_url: https://open.feishu.cn/open-apis/authen/v1/oidc/access_token
grant_type: 'authorization_code'
authentication:
client:
switch: false
@ -38,4 +44,4 @@ authentication:
permission:
switch: false
component: false
dataset: false
dataset: false

View File

@ -7,30 +7,39 @@ from rag.nlp import find_codec
class RAGFlowExcelParser:
def html(self, fnm):
def html(self, fnm, chunk_rows=256):
if isinstance(fnm, str):
wb = load_workbook(fnm)
else:
wb = load_workbook(BytesIO(fnm))
tb = ""
tb_chunks = []
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
if not rows:continue
tb += f"<table><caption>{sheetname}</caption><tr>"
if not rows: continue
tb_rows_0 = "<tr>"
for t in list(rows[0]):
tb += f"<th>{t.value}</th>"
tb += "</tr>"
for r in list(rows[1:]):
tb += "<tr>"
for i, c in enumerate(r):
if c.value is None:
tb += "<td></td>"
else:
tb += f"<td>{c.value}</td>"
tb += "</tr>"
tb += "</table>\n"
return tb
tb_rows_0 += f"<th>{t.value}</th>"
tb_rows_0 += "</tr>"
for chunk_i in range((len(rows) - 1) // chunk_rows + 1):
tb = ""
tb += f"<table><caption>{sheetname}</caption>"
tb += tb_rows_0
for r in list(rows[1 + chunk_i * chunk_rows:1 + (chunk_i + 1) * chunk_rows]):
tb += "<tr>"
for i, c in enumerate(r):
if c.value is None:
tb += "<td></td>"
else:
tb += f"<td>{c.value}</td>"
tb += "</tr>"
tb += "</table>\n"
tb_chunks.append(tb)
return tb_chunks
def __call__(self, fnm):
if isinstance(fnm, str):

View File

@ -749,6 +749,7 @@ class RAGFlowPdfParser:
"layoutno", "")))
left, top, right, bott = b["x0"], b["top"], b["x1"], b["bottom"]
if right < left: right = left + 1
poss.append((pn + self.page_from, left, right, top, bott))
return self.page_images[pn] \
.crop((left * ZM, top * ZM,

View File

@ -29,7 +29,7 @@ REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
RAGFLOW_VERSION=dev
RAGFLOW_VERSION=0.6.0
TIMEZONE='Asia/Shanghai'

View File

@ -4,18 +4,20 @@
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/
PY=/root/miniconda3/envs/py11/bin/python
PY=python3
if [[ -z "$WS" || $WS -lt 1 ]]; then
WS=1
fi
function task_exe(){
while [ 1 -eq 1 ];do
$PY rag/svr/task_executor.py $1 $2;
$PY rag/svr/task_executor.py ;
done
}
WS=1
for ((i=0;i<WS;i++))
do
task_exe $i $WS &
task_exe &
done
while [ 1 -eq 1 ];do

View File

@ -0,0 +1,132 @@
# Configure a knowledge base
Knowledge base, hallucination-free chat, and file management are three pillars of RAGFlow. RAGFlow's AI chats are based on knowledge bases. Each of RAGFlow's knowledge bases serves as a knowledge source, *parsing* files uploaded from your local machine and file references generated in **File Management** into the real 'knowledge' for future AI chats. This guide demonstrates some basic usages of the knowledge base feature, covering the following topics:
- Create a knowledge base
- Configure a knowledge base
- Search for a knowledge base
- Delete a knowledge base
## Create knowledge base
With multiple knowledge bases, you can build more flexible, diversified question answering. To create your first knowledge base:
![create knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/110541ed-6cea-4a03-a11c-414a0948ba80)
_Each time a knowledge base is created, a folder with the same name is generated in the **root/.knowledgebase** directory._
## Configure knowledge base
The following screen shot shows the configuration page of a knowledge base. A proper configuration of your knowledge base is crucial for future AI chats. For example, choosing the wrong embedding model or chunk method would cause unexpected semantic loss or mismatched answers in chats.
![knowledge base configuration](https://github.com/infiniflow/ragflow/assets/93570324/384c671a-8b9c-468c-b1c9-1401128a9b65)
This section covers the following topics:
- Select chunk method
- Select embedding model
- Upload file
- Parse file
- Intervene with file parsing results
- Run retrieval testing
### Select chunk method
RAGFlow offers multiple chunking template to facilitate chunking files of different layouts and ensure semantic integrity. In **Chunk method**, you can choose the default template that suits the layouts and formats of your files. The following table shows the descriptions and the compatible file formats of each supported chunk template:
| **Template** | Description | File format |
| ------------ | ------------------------------------------------------------ | ---------------------------------------------------- |
| General | Files are consecutively chunked based on a preset chunk token number. | DOCX, EXCEL, PPT, PDF, TXT, JPEG, JPG, PNG, TIF, GIF |
| Q&A | | EXCEL, CSV/TXT |
| Manual | | PDF |
| Table | | EXCEL, CSV/TXT |
| Paper | | PDF |
| Book | | DOCX, PDF, TXT |
| Laws | | DOCX, PDF, TXT |
| Presentation | | PDF, PPTX |
| Picture | | JPEG, JPG, PNG, TIF, GIF |
| One | The entire document is chunked as one. | DOCX, EXCEL, PDF, TXT |
You can also change the chunk template for a particular file on the **Datasets** page.
![change chunk method](https://github.com/infiniflow/ragflow/assets/93570324/ac116353-2793-42b2-b181-65e7082bed42)
### Select embedding model
An embedding model builds vector index on file chunks. Once you have chosen an embedding model and used it to parse a file, you are no longer allowed to change it. To switch to a different embedding model, you *must* deletes all completed file chunks in the knowledge base. The obvious reason is that we must *ensure* that all files in a specific knowledge base are parsed using the *same* embedding model (ensure that they are compared in the same embedding space).
The following embedding models can be deployed locally:
- BAAI/bge-base-en-v1.5
- BAAI/bge-large-en-v1.5
- BAAI/bge-small-en-v1.5
- BAAI/bge-small-zh-v1.5
- jinaai/jina-embeddings-v2-base-en
- jinaai/jina-embeddings-v2-small-en
- nomic-ai/nomic-embed-text-v1.5
- sentence-transformers/all-MiniLM-L6-v2
- maidalun1020/bce-embedding-base_v1
### Upload file
- RAGFlow's **File Management** allows you to link a file to multiple knowledge bases, in which case each target knowledge base holds a reference to the file.
- In **Knowledge Base**, you are also given the option of uploading a single file or a folder of files (bulk upload) from your local machine to a knowledge base, in which case the knowledge base holds file copies.
While uploading files directly to a knowledge base seems more convenient, we *highly* recommend uploading files to **File Management** and then linking them to the target knowledge bases. This way, you can avoid permanently deleting files uploaded to the knowledge base.
### Parse file
File parsing is a crucial topic in knowledge base configuration. The meaning of file parsing in RAGFlow is twofold: chunking files based on file layout and building embedding and full-text (keyword) indexes on these chunks. After having selected the chunk method and embedding model, you can start parsing an file:
![parse file](https://github.com/infiniflow/ragflow/assets/93570324/5311f166-6426-447f-aa1f-bd488f1cfc7b)
- Click the play button next to **UNSTART** to start file parsing.
- Click the red-cross icon and then refresh, if your file parsing stalls for a long time.
- As shown above, RAGFlow allows you to use a different chunk method for a particular file, offering flexibility beyond the default method.
- As shown above, RAGFlow allows you to enable or disable individual files, offering finer control over knowledge base-based AI chats.
### Intervene with file parsing results
RAGFlow features visibility and explainability, allowing you to view the chunking results and intervene where necessary. To do so:
1. Click on the file that completes file parsing to view the chunking results:
_You are taken to the **Chunk** page:_
![chunks](https://github.com/infiniflow/ragflow/assets/93570324/0547fd0e-e71b-41f8-8e0e-31649c85fd3d)
2. Hover over each snapshot for a quick view of each chunk.
3. Double click the chunked texts to add keywords or make *manual* changes where necessary:
![update chunk](https://github.com/infiniflow/ragflow/assets/93570324/1d84b408-4e9f-46fd-9413-8c1059bf9c76)
4. In Retrieval testing, ask a quick question in **Test text** to double check if your configurations work:
_As you can tell from the following, RAGFlow responds with truthful citations._
![retrieval test](https://github.com/infiniflow/ragflow/assets/93570324/c03f06f6-f41f-4b20-a97e-ae405d3a950c)
### Run retrieval testing
RAGFlow uses multiple recall of both full-text search and vector search in its chats. Prior to setting up an AI chat, consider adjusting the following parameters to ensure that the intended information always turns up in answers:
- Similarity threshold: Chunks with similarities below the threshold will be filtered. Defaultly set to 0.2.
- Vector similarity weight: The percentage by which vector similarity contributes to the overall score. Defaultly set to 0.3.
![retrieval test](https://github.com/infiniflow/ragflow/assets/93570324/c03f06f6-f41f-4b20-a97e-ae405d3a950c)
## Search for knowledge base
As of RAGFlow v0.5.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)
## Delete knowledge base
You are allowed to delete a knowledge base. Hover your mouse over the three dot of the intended knowledge base card and the **Delete** option appears. Once you delete a knowledge base, the associated folder under **root/.knowledge** directory is AUTOMATICALLY REMOVED. The consequence is:
- The files uploaded directly to the knowledge base are gone;
- The file references, which you created from within **File Management**, are gone, but the associated files still exist in **File Management**.
![delete knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/fec7a508-6cfe-4bca-af90-81d3fdb94098)

View File

@ -220,8 +220,10 @@ This will be called to get the answer to users' questions.
| name | type | optional | description|
|------|-------|----|----|
| conversation_id| string | No | This is from calling /new_conversation.|
| messages| json | No | All the conversation history stored here including the latest user's question.|
| messages| json | No | The latest question, such as `[{"role": "user", "content": "How are you doing!"}]`|
| quote | bool | Yes | Default: true |
| stream | bool | Yes | Default: true |
| doc_ids | string | Yes | Document IDs which is delimited by comma, like `c790da40ea8911ee928e0242ac180005,c790da40ea8911ee928e0242ac180005`. The retrieved content is limited in these documents. |
### Response
```json
@ -315,10 +317,12 @@ This is usually used when upload a file to.
### Parameter:
| name | type | optional | description |
|---------|--------|----------|----------------------------------------|
| file | file | No | Upload file. |
| kb_name | string | No | Choose the upload knowledge base name. |
| name | type | optional | description |
|-----------|--------|----------|---------------------------------------------------------|
| file | file | No | Upload file. |
| kb_name | string | No | Choose the upload knowledge base name. |
| parser_id | string | Yes | Choose the parsing method. |
| run | string | Yes | Parsing will start automatically when the value is "1". |
### Response
```json
@ -362,3 +366,38 @@ This is usually used when upload a file to.
}
```
## Get document chunks
Get the chunks of the document based on doc_name or doc_id.
### Path: /api/list_chunks/
### Method: POST
### Parameter:
| Name | Type | Optional | Description |
|----------|--------|----------|---------------------------------|
| `doc_name` | string | Yes | The name of the document in the knowledge base. It must not be empty if `doc_id` is not set.|
| `doc_id` | string | Yes | The ID of the document in the knowledge base. It must not be empty if `doc_name` is not set.|
### Response
```json
{
"data": [
{
"content": "Figure 14: Per-request neural-net processingof RL-Cache.\n103\n(sn)\nCPU\n 102\nGPU\n8101\n100\n8\n16 64 256 1K\n4K",
"doc_name": "RL-Cache.pdf",
"img_id": "0335167613f011ef91240242ac120006-b46c3524952f82dbe061ce9b123f2211"
},
{
"content": "4.3 ProcessingOverheadof RL-CacheACKNOWLEDGMENTSThis section evaluates how e￿ectively our RL-Cache implemen-tation leverages modern multi-core CPUs and GPUs to keep the per-request neural-net processing overhead low. Figure 14 depictsThis researchwas supported inpart by the Regional Government of Madrid (grant P2018/TCS-4499, EdgeData-CM)andU.S. National Science Foundation (grants CNS-1763617 andCNS-1717179).REFERENCES",
"doc_name": "RL-Cache.pdf",
"img_id": "0335167613f011ef91240242ac120006-d4c12c43938eb55d2d8278eea0d7e6d7"
}
],
"retcode": 0,
"retmsg": "success"
}
```

View File

@ -186,12 +186,14 @@ Parsing requests have to wait in queue due to limited server resources. We are c
If your RAGFlow is deployed *locally*, try the following:
1. Check the log of your RAGFlow server to see if it is running properly:
```bash
docker logs -f ragflow-server
```
2. Check if the **task_executor.py** process exists.
3. Check if your RAGFlow server can access hf-mirror.com or huggingface.com.
1. Click the red cross icon next to **Parsing Status** and refresh the file parsing process.
2. If the issue still persists, try the following:
- check the log of your RAGFlow server to see if it is running properly:
```bash
docker logs -f ragflow-server
```
- Check if the **task_executor.py** process exists.
- Check if your RAGFlow server can access hf-mirror.com or huggingface.com.
#### 4.5 Why does my pdf parsing stall near completion, while the log does not show any error?
@ -264,7 +266,7 @@ This is because you forgot to update the `vm.max_map_count` value in **/etc/sysc
#### 4.11 `{"data":null,"retcode":100,"retmsg":"<NotFound '404: Not Found'>"}`
Your IP address or port number may be incorrect. If you are using the default configurations, enter http://<IP_OF_YOUR_MACHINE> (**NOT 9380, AND NO PORT NUMBER REQUIRED!**) in your browser. This should work.
Your IP address or port number may be incorrect. If you are using the default configurations, enter `http://<IP_OF_YOUR_MACHINE>` (**NOT 9380, AND NO PORT NUMBER REQUIRED!**) in your browser. This should work.
#### 4.12 `Ollama - Mistral instance running at 127.0.0.1:11434 but cannot add Ollama as model in RagFlow`
@ -367,11 +369,11 @@ You can use Ollama to deploy local LLM. See [here](https://github.com/infiniflow
2. Right click the desired knowledge base to display the **Configuration** dialogue.
3. Choose **Q&A** as the chunk method and click **Save** to confirm your change.
### 7 Do I need to connect to Redis?
### 7. Do I need to connect to Redis?
No, connecting to Redis is not required.
### 8 `Error: Range of input length should be [1, 30000]`
### 8. `Error: Range of input length should be [1, 30000]`
This error occurs because there are too many chunks matching your search criteria. Try reducing the **TopN** and increasing **Similarity threshold** to fix this issue:
@ -382,7 +384,15 @@ This error occurs because there are too many chunks matching your search criteri
![topn](https://github.com/infiniflow/ragflow/assets/93570324/7ec72ab3-0dd2-4cff-af44-e2663b67b2fc)
### 9 How to update RAGFlow to the latest version?
### 9. How to upgrade RAGFlow?
You can upgrade RAGFlow to either the dev version or the latest version:
- Dev versions are for developers and contributors. They are published on a nightly basis and may crash because they are not fully tested. We cannot guarantee their validity and you are at your own risk trying out latest, untested features.
- The latest version refers to the most recent, officially published release. It is stable and works best with regular users.
To upgrade RAGFlow to the dev version:
1. Pull the latest source code
```bash
@ -403,3 +413,30 @@ This error occurs because there are too many chunks matching your search criteri
```bash
docker compose -f docker-compose-CN.yml up -d
```
To upgrade RAGFlow to the latest version:
1. Update **ragflow/docker/.env** as follows:
```bash
RAGFLOW_VERSION=latest
```
2. Pull the latest source code:
```bash
cd ragflow
git pull
```
3. If you used `docker compose up -d` to start up RAGFlow server:
```bash
docker pull infiniflow/ragflow:latest
```
```bash
docker compose up ragflow -d
```
4. If you used `docker compose -f docker-compose-CN.yml up -d` to start up RAGFlow server:
```bash
docker pull swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:latest
```
```bash
docker compose -f docker-compose-CN.yml up -d
```

79
docs/manage_files.md Normal file
View File

@ -0,0 +1,79 @@
# Manage files
Knowledge base, hallucination-free chat, and file management are three pillars of RAGFlow. RAGFlow's file management allows you to upload files individually or in bulk. You can then link an uploaded file to multiple target knowledge bases. This guide showcases some basic usages of the file management feature.
## Create folder
RAGFlow's file management allows you to establish your file system with nested folder structures. To create a folder in the root directory of RAGFlow:
![create new folder](https://github.com/infiniflow/ragflow/assets/93570324/3a37a5f4-43a6-426d-a62a-e5cd2ff7a533)
> Each knowledge base in RAGFlow has a corresponding folder under the **root/.knowledgebase** directory. You are not allowed to create a subfolder within it.
## Upload file
RAGFlow's file management supports file uploads from your local machine, allowing both individual and bulk uploads:
![upload file](https://github.com/infiniflow/ragflow/assets/93570324/5d7ded14-ce2b-4703-8567-9356a978f45c)
![bulk upload](https://github.com/infiniflow/ragflow/assets/93570324/def0db55-824c-4236-b809-a98d8c8674e3)
## Preview file
RAGFlow's file management supports previewing files in the following formats:
- Documents (PDF, DOCS)
- Tables (XLSX)
- Pictures (JPEG, JPG, PNG, TIF, GIF)
![preview](https://github.com/infiniflow/ragflow/assets/93570324/2e931362-8bbf-482c-ac86-b68b09d331bc)
## Link file to knowledge bases
RAGFlow's file management allows you to *link* an uploaded file to multiple knowledge bases, creating a file reference in each target knowledge base. Therefore, deleting a file in your file management will AUTOMATICALLY REMOVE all related file references across the knowledge bases.
![link knowledgebase](https://github.com/infiniflow/ragflow/assets/93570324/6c6b8db4-3269-4e35-9434-6089887e3e3f)
You can link your file to one knowledge base or multiple knowledge bases at one time:
![link multiple kb](https://github.com/infiniflow/ragflow/assets/93570324/6c508803-fb1f-435d-b688-683066fd7fff)
## Move file to specified folder
As of RAGFlow v0.5.0, this feature is *not* available.
## Search files or folders
As of RAGFlow v0.5.0, the search feature is still in a rudimentary form, supporting only file and folder search in the current directory by name (files or folders in the child directory will not be retrieved).
![search file](https://github.com/infiniflow/ragflow/assets/93570324/77ffc2e5-bd80-4ed1-841f-068e664efffe)
## Rename file or folder
RAGFlow's file management allows you to rename a file or folder:
![rename_file](https://github.com/infiniflow/ragflow/assets/93570324/5abb0704-d9e9-4b43-9ed4-5750ccee011f)
## Delete files or folders
RAGFlow's file management allows you to delete files or folders individually or in bulk.
To delete a file or folder:
![delete file](https://github.com/infiniflow/ragflow/assets/93570324/85872728-125d-45e9-a0ee-21e9d4cedb8b)
To bulk delete files or folders:
![bulk delete](https://github.com/infiniflow/ragflow/assets/93570324/519b99ab-ec7f-4c8a-8cea-e0b6dcb3cb46)
> - You are not allowed to delete the **root/.knowledgebase** folder.
> - Deleting files that have been linked to knowledge bases will AUTOMATICALLY REMOVE all associated file references across the knowledge bases.
## Download uploaded file
RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.5.0, bulk download is not supported, nor can you download an entire folder.

203
docs/quickstart.md Normal file
View File

@ -0,0 +1,203 @@
# Quickstart
RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. When integrated with LLMs, it is capable of providing truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
This quick start guide describes a general process from:
- Starting up a local RAGFlow server,
- Creating a knowledge base,
- Intervening with file parsing, to
- Establishing an AI chat based on your datasets.
## Prerequisites
- CPU >= 4 cores
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).
## Start up the server
1. Ensure `vm.max_map_count` >= 262144 ([more](./docs/max_map_count.md)):
> To check the value of `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Reset `vm.max_map_count` to a value at least 262144 if it is not.
>
> ```bash
> # In this case, we set it to 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
>
> ```bash
> vm.max_map_count=262144
> ```
2. Clone the repo:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Build the pre-built Docker images and start up the server:
> Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.6.0`, before running the following commands.
```bash
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d
```
> The core image is about 9 GB in size and may take a while to load.
4. Check the server status after having the server up and running:
```bash
$ docker logs -f ragflow-server
```
_The following output confirms a successful launch of the system:_
```bash
____ ______ __
/ __ \ ____ _ ____ _ / ____// /____ _ __
/ /_/ // __ `// __ `// /_ / // __ \| | /| / /
/ _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/
/____/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anomaly` error because, at that moment, your RAGFlow may not be fully initialized.
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> - With default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
## Configure LLMs
RAGFlow is a RAG engine, and it needs to work with an LLM to offer grounded, hallucination-free question-answering capabilities. For now, RAGFlow supports the following LLMs, and the list is expanding:
- OpenAI
- Tongyi-Qianwen
- Moonshot
- DeepSeek-V2
> RAGFlow also supports deploying LLMs locally using Ollama or Xinference, but this part is not covered in this quick start guide.
To add and configure an LLM:
1. Click on your logo on the top right of the page **>** **Model Providers**:
![2 add llm](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
> Each RAGFlow account is able to use **text-embedding-v2** for free, a embedding model of Tongyi-Qianwen. This is why you can see Tongyi-Qianwen in the **Added models** list. And you may need to update your Tongyi-Qianwen API key at a later point.
2. Click on the desired LLM and update the API key accordingly (DeepSeek-V2 in this case):
![update api key](https://github.com/infiniflow/ragflow/assets/93570324/4e5e13ef-a98d-42e6-bcb1-0c6045fc1666)
*Your added models appear as follows:*
![added available models](https://github.com/infiniflow/ragflow/assets/93570324/d08b80e4-f921-480a-b41d-11832489c916)
3. Click **System Model Settings** to select the default models:
- Chat model,
- Embedding model,
- Image-to-text model.
![system model settings](https://github.com/infiniflow/ragflow/assets/93570324/cdcc1da5-4494-44cd-ad5b-1222ed6acc3f)
> Some of the models, such as the image-to-text model **qwen-vl-max**, are subsidiary to a particular LLM. And you may need to update your API key accordingly to use these models.
## Create your first knowledge base
You are allowed to upload files to a knowledge base in RAGFlow and parse them into datasets. A knowledge base is virtually a collection of datasets. Question answering in RAGFlow can be based on a particular knowledge base or multiple knowledge bases. File formats that RAGFlow supports include documents (PDF, DOC, DOCX, TXT, MD), tables (CSV, XLSX, XLS), pictures (JPEG, JPG, PNG, TIF, GIF), and slides (PPT, PPTX).
To create your first knowledge base:
1. Click the **Knowledge Base** tab in the top middle of the page **>** **Create knowledge base**.
2. Input the name of your knowledge base and click **OK** to confirm your changes.
_You are taken to the **Configuration** page of your knowledge base._
![knowledge base configuration](https://github.com/infiniflow/ragflow/assets/93570324/384c671a-8b9c-468c-b1c9-1401128a9b65)
3. RAGFlow offers multiple chunk templates that cater to different document layouts and file formats. Select the embedding model and chunk method (template) for your knowledge base.
> IMPORTANT: Once you have selected an embedding model and used it to parse a file, you are no longer allowed to change it. The obvious reason is that we must ensure that all files in a specific knowledge base are parsed using the *same* embedding model (ensure that they are being compared in the same embedding space).
_You are taken to the **Dataset** page of your knowledge base._
4. Click **+ Add file** **>** **Local files** to start uploading a particular file to the knowledge base.
5. In the uploaded file entry, click the play button to start file parsing:
![file parsing](https://github.com/infiniflow/ragflow/assets/93570324/19f273fa-0ab0-435e-bdf4-a47fb080a078)
_When the file parsing completes, its parsing status changes to **SUCCESS**._
## Intervene with file parsing
RAGFlow features visibility and explainability, allowing you to view the chunking results and intervene where necessary. To do so:
1. Click on the file that completes file parsing to view the chunking results:
_You are taken to the **Chunk** page:_
![chunks](https://github.com/infiniflow/ragflow/assets/93570324/0547fd0e-e71b-41f8-8e0e-31649c85fd3d)
2. Hover over each snapshot for a quick view of each chunk.
3. Double click the chunked texts to add keywords or make *manual* changes where necessary:
![update chunk](https://github.com/infiniflow/ragflow/assets/93570324/1d84b408-4e9f-46fd-9413-8c1059bf9c76)
4. In Retrieval testing, ask a quick question in **Test text** to double check if your configurations work:
_As you can tell from the following, RAGFlow responds with truthful citations._
![retrieval test](https://github.com/infiniflow/ragflow/assets/93570324/c03f06f6-f41f-4b20-a97e-ae405d3a950c)
## Set up an AI chat
Conversations in RAGFlow are based on a particular knowledge base or multiple knowledge bases. Once you have created your knowledge base and finished file parsing, you can go ahead and start an AI conversation.
1. Click the **Chat** tab in the middle top of the mage **>** **Create an assistant** to show the **Chat Configuration** dialogue *of your next dialogue*.
> RAGFlow offer the flexibility of choosing a different chat model for each dialogue, while allowing you to set the default models in **System Model Settings**.
2. Update **Assistant Setting**:
- Name your assistant and specify your knowledge bases.
- **Empty response**:
- If you wish to *confine* RAGFlow's answers to your knowledge bases, leave a response here. Then when it doesn't retrieve an answer, it *uniformly* responds with what you set here.
- If you wish RAGFlow to *improvise* when it doesn't retrieve an answer from your knowledge bases, leave it blank, which may give rise to hallucinations.
3. Update **Prompt Engine** or leave it as is for the beginning.
4. Update **Model Setting**.
5. RAGFlow also offers conversation APIs. Hover over your dialogue **>** **Chat Bot API** to integrate RAGFlow's chat capabilities into your applications:
![chatbot api](https://github.com/infiniflow/ragflow/assets/93570324/fec23715-f9af-4ac2-81e5-942c5035c5e6)
6. Now, let's start the show:
![question1](https://github.com/infiniflow/ragflow/assets/93570324/bb72dd67-b35e-4b2a-87e9-4e4edbd6e677)
![question2](https://github.com/infiniflow/ragflow/assets/93570324/7cc585ae-88d0-4aa2-817d-0370b2ad7230)

54
docs/start_chat.md Normal file
View File

@ -0,0 +1,54 @@
# Start an AI chat
Knowledge base, hallucination-free chat, and file management are three pillars of RAGFlow. Chats in RAGFlow are based on a particular knowledge base or multiple knowledge bases. Once you have created your knowledge base and finished file parsing, you can go ahead and start an AI conversation.
## Start an AI chat
You start an AI conversation by creating an assistant.
1. Click the **Chat** tab in the middle top of the page **>** **Create an assistant** to show the **Chat Configuration** dialogue *of your next dialogue*.
> RAGFlow offers you the flexibility of choosing a different chat model for each dialogue, while allowing you to set the default models in **System Model Settings**.
2. Update **Assistant Setting**:
- **Assistant name** is the name of your chat assistant. Each assistant corresponds to a dialogue with a unique combination of knowledge bases, prompts, hybrid search configurations, and large model settings.
- **Empty response**:
- If you wish to *confine* RAGFlow's answers to your knowledge bases, leave a response here. Then when it doesn't retrieve an answer, it *uniformly* responds with what you set here.
- If you wish RAGFlow to *improvise* when it doesn't retrieve an answer from your knowledge bases, leave it blank, which may give rise to hallucinations.
- **Show Quote**: This is a key feature of RAGFlow and enabled by default. RAGFlow does not work like a black box. instead, it clearly shows the sources of information that its responses are based on.
- Select the corresponding knowledge bases. You can select one or multiple knowledge bases, but ensure that they use the same embedding model, otherwise an error would occur.
3. Update **Prompt Engine**:
- In **System**, you fill in the prompts for your LLM, you can also leave the default prompt as-is for the beginning.
- **Similarity threshold** sets the similarity "bar" for each chunk of text. The default is 0.2. Text chunks with lower similarity scores are filtered out of the final response.
- **Vector similarity weight** is set to 0.3 by default. RAGFlow uses a hybrid score system, combining keyword similarity and vector similarity, for evaluating the relevance of different text chunks. This value sets the weight assigned to the vector similarity component in the hybrid score.
- **Top N** determines the *maximum* number of chunks to feed to the LLM. In other words, even if more chunks are retrieved, only the top N chunks are provided as input.
- **Variable**:
4. Update **Model Setting**:
- In **Model**: you select the chat model. Though you have selected the default chat model in **System Model Settings**, RAGFlow allows you to choose an alternative chat model for your dialogue.
- **Freedom** refers to the level that the LLM improvises. From **Improvise**, **Precise**, to **Balance**, each freedom level corresponds to a unique combination of **Temperature**, **Top P**, **Presence Penalty**, and **Frequency Penalty**.
- **Temperature**: Level of the prediction randomness of the LLM. The higher the value, the more creative the LLM is.
- **Top P** is also known as "nucleus sampling". See [here](https://en.wikipedia.org/wiki/Top-p_sampling) for more information.
- **Max Tokens**: The maximum length of the LLM's responses. Note that the responses may be curtailed if this value is set too low.
5. Now, let's start the show:
![question1](https://github.com/infiniflow/ragflow/assets/93570324/bb72dd67-b35e-4b2a-87e9-4e4edbd6e677)
![question2](https://github.com/infiniflow/ragflow/assets/93570324/7cc585ae-88d0-4aa2-817d-0370b2ad7230)
## Update settings of an existing dialogue
Hover over an intended dialogue **>** **Edit** to show the chat configuration dialogue:
![update chat configuration](https://github.com/infiniflow/ragflow/assets/93570324/e08397c7-2a4c-44e1-9032-13d30e99d741)
## Integrate chat capabilities into your application
RAGFlow also offers conversation APIs. Hover over your dialogue **>** **Chat Bot API** to integrate RAGFlow's chat capabilities into your application:
![chatbot api](https://github.com/infiniflow/ragflow/assets/93570324/fec23715-f9af-4ac2-81e5-942c5035c5e6)

View File

@ -134,9 +134,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = ExcelParser()
sections = [(excel_parser.html(binary), "")]
sections = [(l, "") for l in excel_parser.html(binary) if l]
elif re.search(r"\.(txt|md)$", filename, re.IGNORECASE):
elif re.search(r"\.(txt|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:

View File

@ -78,7 +78,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = ExcelParser()
sections = [excel_parser.html(binary)]
sections = excel_parser.html(binary, 1000000000)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")

View File

@ -25,7 +25,8 @@ EmbeddingModel = {
"Tongyi-Qianwen": DefaultEmbedding, #QWenEmbed,
"ZHIPU-AI": ZhipuEmbed,
"FastEmbed": FastEmbed,
"Youdao": YoudaoEmbed
"Youdao": YoudaoEmbed,
"DeepSeek": DefaultEmbedding
}

View File

@ -44,6 +44,31 @@ class Base(ABC):
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
stream=True,
**gen_conf)
for resp in response:
if not resp.choices[0].delta.content:continue
ans += resp.choices[0].delta.content
total_tokens += 1
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
yield ans
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class GptTurbo(Base):
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
@ -97,6 +122,35 @@ class QWenChat(Base):
return "**ERROR**: " + response.message, tk_count
def chat_streamly(self, system, history, gen_conf):
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
try:
response = Generation.call(
self.model_name,
messages=history,
result_format='message',
stream=True,
**gen_conf
)
tk_count = 0
for resp in response:
if resp.status_code == HTTPStatus.OK:
ans = resp.output.choices[0]['message']['content']
tk_count = resp.usage.total_tokens
if resp.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
yield ans
else:
yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**"
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
class ZhipuChat(Base):
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
@ -122,6 +176,35 @@ class ZhipuChat(Base):
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
ans = ""
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
stream=True,
**gen_conf
)
tk_count = 0
for resp in response:
if not resp.choices[0].delta.content:continue
delta = resp.choices[0].delta.content
ans += delta
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
tk_count = resp.usage.total_tokens
if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
class OllamaChat(Base):
def __init__(self, key, model_name, **kwargs):
@ -148,3 +231,86 @@ class OllamaChat(Base):
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
options = {}
if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
ans = ""
try:
response = self.client.chat(
model=self.model_name,
messages=history,
stream=True,
options=options
)
for resp in response:
if resp["done"]:
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
ans += resp["message"]["content"]
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
class LocalLLM(Base):
class RPCProxy:
def __init__(self, host, port):
self.host = host
self.port = int(port)
self.__conn()
def __conn(self):
from multiprocessing.connection import Client
self._connection = Client(
(self.host, self.port), authkey=b'infiniflow-token4kevinhu')
def __getattr__(self, name):
import pickle
def do_rpc(*args, **kwargs):
for _ in range(3):
try:
self._connection.send(
pickle.dumps((name, args, kwargs)))
return pickle.loads(self._connection.recv())
except Exception as e:
self.__conn()
raise Exception("RPC connection lost!")
return do_rpc
def __init__(self, key, model_name="glm-3-turbo"):
self.client = LocalLLM.RPCProxy("127.0.0.1", 7860)
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
ans = self.client.chat(
history,
gen_conf
)
return ans, num_tokens_from_string(ans)
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
token_count = 0
answer = ""
try:
for ans in self.client.chat_streamly(history, gen_conf):
answer += ans
token_count += 1
yield answer
except Exception as e:
yield answer + "\n**ERROR**: " + str(e)
yield token_count

View File

@ -27,8 +27,7 @@ import torch
import numpy as np
from api.utils.file_utils import get_project_base_directory, get_home_cache_dir
from rag.utils import num_tokens_from_string
from rag.utils import num_tokens_from_string, truncate
try:
flag_model = FlagModel(os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"),
@ -70,7 +69,7 @@ class DefaultEmbedding(Base):
self.model = flag_model
def encode(self, texts: list, batch_size=32):
texts = [t[:2000] for t in texts]
texts = [truncate(t, 2048) for t in texts]
token_count = 0
for t in texts:
token_count += num_tokens_from_string(t)
@ -93,12 +92,14 @@ class OpenAIEmbed(Base):
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
texts = [truncate(t, 8196) for t in texts]
res = self.client.embeddings.create(input=texts,
model=self.model_name)
return np.array([d.embedding for d in res.data]), res.usage.total_tokens
return np.array([d.embedding for d in res.data]
), res.usage.total_tokens
def encode_queries(self, text):
res = self.client.embeddings.create(input=[text],
res = self.client.embeddings.create(input=[truncate(text, 8196)],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
@ -112,7 +113,7 @@ class QWenEmbed(Base):
import dashscope
res = []
token_count = 0
texts = [txt[:2048] for txt in texts]
texts = [truncate(t, 2048) for t in texts]
for i in range(0, len(texts), batch_size):
resp = dashscope.TextEmbedding.call(
model=self.model_name,

View File

@ -2,9 +2,10 @@ import argparse
import pickle
import random
import time
from copy import deepcopy
from multiprocessing.connection import Listener
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
def torch_gc():
@ -95,6 +96,32 @@ def chat(messages, gen_conf):
return str(e)
def chat_streamly(messages, gen_conf):
global tokenizer
model = Model()
try:
torch_gc()
conf = deepcopy(gen_conf)
print(messages, conf)
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
streamer = TextStreamer(tokenizer)
conf["inputs"] = model_inputs.input_ids
conf["streamer"] = streamer
conf["max_new_tokens"] = conf["max_tokens"]
del conf["max_tokens"]
thread = Thread(target=model.generate, kwargs=conf)
thread.start()
for _, new_text in enumerate(streamer):
yield new_text
except Exception as e:
yield "**ERROR**: " + str(e)
def Model():
global models
random.seed(time.time())
@ -113,6 +140,7 @@ if __name__ == "__main__":
handler = RPCHandler()
handler.register_function(chat)
handler.register_function(chat_streamly)
models = []
for _ in range(1):

View File

@ -36,7 +36,7 @@ class EsQueryer:
patts = [
(r"是*(什么样的|哪家|一下|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""),
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
(r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down)", " ")
(r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down) ", " ")
]
for r, p in patts:
txt = re.sub(r, p, txt, flags=re.IGNORECASE)
@ -44,7 +44,7 @@ class EsQueryer:
def question(self, txt, tbl="qa", min_match="60%"):
txt = re.sub(
r"[ \r\n\t,,。??/`!&]+",
r"[ \r\n\t,,。??/`!&\^%%]+",
" ",
rag_tokenizer.tradi2simp(
rag_tokenizer.strQ2B(
@ -53,9 +53,10 @@ class EsQueryer:
if not self.isChinese(txt):
tks = rag_tokenizer.tokenize(txt).split(" ")
q = copy.deepcopy(tks)
for i in range(1, len(tks)):
q.append("\"%s %s\"^2" % (tks[i - 1], tks[i]))
tks_w = self.tw.weights(tks)
q = [re.sub(r"[ \\\"']+", "", tk)+"^{:.4f}".format(w) for tk, w in tks_w]
for i in range(1, len(tks_w)):
q.append("\"%s %s\"^%.4f" % (tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1])*2))
if not q:
q.append(txt)
return Q("bool",

View File

@ -52,16 +52,21 @@ class Dealer:
def search(self, req, idxnm, emb_mdl=None):
qst = req.get("question", "")
bqry, keywords = self.qryr.question(qst)
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
if req.get("doc_ids"):
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
if "available_int" in req:
if req["available_int"] == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(
Q("bool", must_not=Q("range", available_int={"lt": 1})))
def add_filters(bqry):
nonlocal req
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
if req.get("doc_ids"):
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
if "available_int" in req:
if req["available_int"] == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(
Q("bool", must_not=Q("range", available_int={"lt": 1})))
return bqry
bqry = add_filters(bqry)
bqry.boost = 0.05
s = Search()
@ -117,8 +122,7 @@ class Dealer:
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
if self.es.getTotal(res) == 0 and "knn" in s:
bqry, _ = self.qryr.question(qst, min_match="10%")
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
bqry = add_filters(bqry)
s["query"] = bqry.to_dict()
s["knn"]["filter"] = bqry.to_dict()
s["knn"]["similarity"] = 0.17

View File

@ -80,7 +80,7 @@ def set_progress(task_id, from_page=0, to_page=-1,
if to_page > 0:
if msg:
msg = f"Page({from_page+1}~{to_page+1}): " + msg
msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
d = {"progress_msg": msg}
if prog is not None:
d["progress"] = prog
@ -109,6 +109,7 @@ def collect():
if not msg: return pd.DataFrame()
if TaskService.do_cancel(msg["id"]):
cron_logger.info("Task {} has been canceled.".format(msg["id"]))
return pd.DataFrame()
tasks = TaskService.get_tasks(msg["id"])
assert tasks, "{} empty task!".format(msg["id"])
@ -123,7 +124,7 @@ def get_minio_binary(bucket, name):
def build(row):
if row["size"] > DOC_MAXIMUM_SIZE:
set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
return []
callback = partial(
@ -137,12 +138,12 @@ def build(row):
bucket, name = File2DocumentService.get_minio_address(doc_id=row["doc_id"])
binary = get_minio_binary(bucket, name)
cron_logger.info(
"From minio({}) {}/{}".format(timer()-st, row["location"], row["name"]))
"From minio({}) {}/{}".format(timer() - st, row["location"], row["name"]))
cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
to_page=row["to_page"], lang=row["language"], callback=callback,
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
cron_logger.info(
"Chunkking({}) {}/{}".format(timer()-st, row["location"], row["name"]))
"Chunkking({}) {}/{}".format(timer() - st, row["location"], row["name"]))
except TimeoutError as e:
callback(-1, f"Internal server error: Fetch file timeout. Could you try it again.")
cron_logger.error(
@ -172,7 +173,7 @@ def build(row):
d.update(ck)
md5 = hashlib.md5()
md5.update((ck["content_with_weight"] +
str(d["doc_id"])).encode("utf-8"))
str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
@ -254,13 +255,13 @@ def main():
try:
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
except Exception as e:
traceback.print_stack(e)
callback(prog=-1, msg=str(e))
callback(-1, msg=str(e))
cron_logger.error(str(e))
continue
st = timer()
cks = build(r)
cron_logger.info("Build chunks({}): {}".format(r["name"], timer()-st))
cron_logger.info("Build chunks({}): {}".format(r["name"], timer() - st))
if cks is None:
continue
if not cks:
@ -270,7 +271,7 @@ def main():
## set_progress(r["did"], -1, "ERROR: ")
callback(
msg="Finished slicing files(%d). Start to embedding the content." %
len(cks))
len(cks))
st = timer()
try:
tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
@ -278,14 +279,19 @@ def main():
callback(-1, "Embedding error:{}".format(str(e)))
cron_logger.error(str(e))
tk_count = 0
cron_logger.info("Embedding elapsed({}): {}".format(r["name"], timer()-st))
cron_logger.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
callback(msg="Finished embedding({})! Start to build index!".format(timer()-st))
callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer() - st))
init_kb(r)
chunk_count = len(set([c["_id"] for c in cks]))
st = timer()
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
cron_logger.info("Indexing elapsed({}): {}".format(r["name"], timer()-st))
es_r = ""
for b in range(0, len(cks), 32):
es_r = ELASTICSEARCH.bulk(cks[b:b + 32], search.index_name(r["tenant_id"]))
if b % 128 == 0:
callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
cron_logger.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
if es_r:
callback(-1, "Index failure!")
ELASTICSEARCH.deleteByQuery(
@ -300,9 +306,8 @@ def main():
DocumentService.increment_chunk_num(
r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
cron_logger.info(
"Chunk doc({}), token({}), chunks({}), elapsed:{}".format(
r["id"], tk_count, len(cks), timer()-st))
"Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
r["id"], tk_count, len(cks), timer() - st))
if __name__ == "__main__":

View File

@ -63,3 +63,7 @@ def num_tokens_from_string(string: str) -> int:
num_tokens = len(encoder.encode(string))
return num_tokens
def truncate(string: str, max_len: int) -> int:
"""Returns truncated text if the length of text exceed max_len."""
return encoder.decode(encoder.encode(string)[:max_len])

View File

@ -43,6 +43,9 @@ class ESConnection:
v = v["number"].split(".")[0]
return int(v) >= 7
def health(self):
return dict(self.es.cluster.health())
def upsert(self, df, idxnm=""):
res = []
for d in df:

View File

@ -34,6 +34,16 @@ class RAGFlowMinio(object):
del self.conn
self.conn = None
def health(self):
bucket, fnm, binary = "txtxtxtxt1", "txtxtxtxt1", b"_t@@@1"
if not self.conn.bucket_exists(bucket):
self.conn.make_bucket(bucket)
r = self.conn.put_object(bucket, fnm,
BytesIO(binary),
len(binary)
)
return r
def put(self, bucket, fnm, binary):
for _ in range(3):
try:

View File

@ -44,6 +44,10 @@ class RedisDB:
logging.warning("Redis can't be connected.")
return self.REDIS
def health(self, queue_name):
self.REDIS.ping()
return self.REDIS.xinfo_groups(queue_name)[0]
def is_alive(self):
return self.REDIS is not None

View File

@ -78,8 +78,6 @@ pycryptodomex==3.20.0
pydantic==2.6.2
pydantic_core==2.16.3
PyJWT==2.8.0
PyMuPDF==1.23.25
PyMuPDFb==1.23.22
PyMySQL==1.1.0
PyPDF2==3.0.1
pypdfium2==4.27.0

View File

@ -0,0 +1 @@
PORT=9222

View File

@ -1,7 +1,9 @@
import { defineConfig } from 'umi';
import { appName } from './src/conf.json';
import routes from './src/routes';
export default defineConfig({
title: appName,
outputPath: 'dist',
// alias: { '@': './src' },
npmClient: 'npm',
@ -25,10 +27,13 @@ export default defineConfig({
},
},
devtool: 'source-map',
copy: ['src/conf.json'],
proxy: {
'/v1': {
target: 'http://123.60.95.134:9380/',
target: '',
changeOrigin: true,
ws: true,
logger: console,
// pathRewrite: { '^/v1': '/v1' },
},
},

5513
web/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@ -3,7 +3,7 @@
"author": "zhaofengchao <13723060510@163.com>",
"scripts": {
"build": "umi build",
"dev": "cross-env PORT=9200 umi dev",
"dev": "cross-env UMI_DEV_SERVER_COMPRESS=none umi dev",
"postinstall": "umi setup",
"lint": "umi lint --eslint-only",
"setup": "umi setup",
@ -19,14 +19,16 @@
"axios": "^1.6.3",
"classnames": "^2.5.1",
"dayjs": "^1.11.10",
"eventsource-parser": "^1.1.2",
"i18next": "^23.7.16",
"i18next-browser-languagedetector": "^8.0.0",
"js-base64": "^3.7.5",
"jsencrypt": "^3.3.2",
"lodash": "^4.17.21",
"mammoth": "^1.7.2",
"rc-tween-one": "^3.0.6",
"react-chat-elements": "^12.0.13",
"react-copy-to-clipboard": "^5.1.0",
"react-file-viewer": "^1.2.1",
"react-i18next": "^14.0.0",
"react-infinite-scroll-component": "^6.1.0",
"react-markdown": "^9.0.1",

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

24
web/src/assets/svg/es.svg Normal file
View File

@ -0,0 +1,24 @@
<svg t="1716195941333" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="7780"
width="200" height="200">
<path
d="M1024 534.4c0-85.76-53.12-160.96-133.44-190.08 3.52-17.92 5.44-36.16 5.44-55.04C896 129.92 766.4 0 606.72 0c-93.12 0-179.84 44.8-234.24 120A153.632 153.632 0 0 0 278.4 87.68a153.632 153.632 0 0 0-144 207.04c-79.68 28.8-134.4 105.6-134.4 190.72 0 86.4 53.44 161.6 133.76 190.72-3.52 17.92-5.12 36.48-5.12 55.04 0 159.04 129.6 288.64 288.64 288.64 93.44 0 180.16-44.8 234.24-120.64a152 152 0 0 0 94.08 32.64 153.632 153.632 0 0 0 144-207.04c79.68-28.48 134.4-105.28 134.4-190.4"
fill="#FFFFFF" p-id="7781"></path>
<path
d="M402.56 439.36l224 102.08 225.92-198.08c3.2-16.32 4.8-32.64 4.8-49.6 0-139.52-113.28-252.8-252.8-252.8-83.52 0-161.28 40.96-208.32 109.76l-37.76 195.2 44.16 93.44z"
fill="#FFD00A" p-id="7782"></path>
<path
d="M170.56 676.48c-3.2 16.32-4.8 33.28-4.8 50.56 0 139.84 113.6 253.44 253.44 253.44 84.16 0 162.24-41.28 209.28-111.04l37.44-194.56-49.92-95.04-224.96-102.4-220.48 199.04z"
fill="#20B9AF" p-id="7783"></path>
<path
d="M169.28 288.96l153.6 36.16 33.6-174.72c-21.12-16-47.04-24.96-73.6-24.96-66.88 0-120.96 54.4-120.96 120.96 0 15.04 2.56 29.12 7.36 42.56"
fill="#EE5096" p-id="7784"></path>
<path
d="M155.84 325.44c-68.48 22.72-116.16 88.64-116.16 160.96 0 70.4 43.52 133.44 108.8 158.08l215.36-194.88-39.68-84.48-168.32-39.68z"
fill="#12A5DF" p-id="7785"></path>
<path
d="M667.84 869.44c21.12 16.32 46.72 24.96 73.28 24.96 66.88 0 120.96-54.4 120.96-120.96 0-14.72-2.56-28.8-7.36-42.24l-153.28-35.84-33.6 174.08z"
fill="#90C640" p-id="7786"></path>
<path
d="M699.2 655.36l168.96 39.36c68.48-22.72 116.48-88.32 116.48-160.96 0-70.4-43.52-133.12-109.12-158.08l-220.8 193.6 44.48 86.08z"
fill="#05799F" p-id="7787"></path>
</svg>

After

Width:  |  Height:  |  Size: 1.9 KiB

View File

@ -1,29 +0,0 @@
<svg width="32" height="34" viewBox="0 0 32 34" fill="none" xmlns="http://www.w3.org/2000/svg">
<path fill-rule="evenodd" clip-rule="evenodd"
d="M3.43265 20.7677C4.15835 21.5062 4.15834 22.7035 3.43262 23.4419L3.39546 23.4797C2.66974 24.2182 1.49312 24.2182 0.767417 23.4797C0.0417107 22.7412 0.0417219 21.544 0.767442 20.8055L0.804608 20.7677C1.53033 20.0292 2.70694 20.0293 3.43265 20.7677Z"
fill="#B2DDFF" />
<path fill-rule="evenodd" clip-rule="evenodd"
d="M12.1689 21.3375C12.8933 22.0773 12.8912 23.2746 12.1641 24.0117L7.01662 29.2307C6.2896 29.9678 5.11299 29.9657 4.38859 29.2259C3.66419 28.4861 3.66632 27.2888 4.39334 26.5517L9.54085 21.3327C10.2679 20.5956 11.4445 20.5977 12.1689 21.3375Z"
fill="#53B1FD" />
<path fill-rule="evenodd" clip-rule="evenodd"
d="M19.1551 30.3217C19.7244 29.4528 20.8781 29.218 21.7321 29.7973L21.8436 29.8729C22.6975 30.4522 22.9283 31.6262 22.359 32.4952C21.7897 33.3641 20.6359 33.5989 19.782 33.0196L19.6705 32.944C18.8165 32.3647 18.5858 31.1907 19.1551 30.3217Z"
fill="#B2DDFF" />
<path fill-rule="evenodd" clip-rule="evenodd"
d="M31.4184 20.6544C32.1441 21.3929 32.1441 22.5902 31.4184 23.3286L28.8911 25.9003C28.1654 26.6388 26.9887 26.6388 26.263 25.9003C25.5373 25.1619 25.5373 23.9646 26.263 23.2261L28.7903 20.6544C29.516 19.916 30.6927 19.916 31.4184 20.6544Z"
fill="#53B1FD" />
<path fill-rule="evenodd" clip-rule="evenodd"
d="M31.4557 11.1427C32.1814 11.8812 32.1814 13.0785 31.4557 13.8169L12.7797 32.8209C12.054 33.5594 10.8774 33.5594 10.1517 32.8209C9.42599 32.0825 9.42599 30.8852 10.1517 30.1467L28.8277 11.1427C29.5534 10.4043 30.73 10.4043 31.4557 11.1427Z"
fill="#1570EF" />
<path fill-rule="evenodd" clip-rule="evenodd"
d="M27.925 5.29994C28.6508 6.0384 28.6508 7.23568 27.925 7.97414L17.184 18.9038C16.4583 19.6423 15.2817 19.6423 14.556 18.9038C13.8303 18.1653 13.8303 16.9681 14.556 16.2296L25.297 5.29994C26.0227 4.56148 27.1993 4.56148 27.925 5.29994Z"
fill="#1570EF" />
<path fill-rule="evenodd" clip-rule="evenodd"
d="M22.256 1.59299C22.9822 2.33095 22.983 3.52823 22.2578 4.26718L8.45055 18.3358C7.72533 19.0748 6.54871 19.0756 5.82251 18.3376C5.09631 17.5996 5.09552 16.4024 5.82075 15.6634L19.6279 1.59478C20.3532 0.855827 21.5298 0.855022 22.256 1.59299Z"
fill="#1570EF" />
<path fill-rule="evenodd" clip-rule="evenodd"
d="M8.58225 6.09619C9.30671 6.83592 9.30469 8.0332 8.57772 8.77038L3.17006 14.2541C2.4431 14.9913 1.26649 14.9893 0.542025 14.2495C-0.182438 13.5098 -0.180413 12.3125 0.546548 11.5753L5.95421 6.09159C6.68117 5.3544 7.85778 5.35646 8.58225 6.09619Z"
fill="#53B1FD" />
<path fill-rule="evenodd" clip-rule="evenodd"
d="M11.893 0.624023C12.9193 0.624023 13.7513 1.47063 13.7513 2.51497V2.70406C13.7513 3.7484 12.9193 4.59501 11.893 4.59501C10.8667 4.59501 10.0347 3.7484 10.0347 2.70406V2.51497C10.0347 1.47063 10.8667 0.624023 11.893 0.624023Z"
fill="#B2DDFF" />
</svg>

Before

Width:  |  Height:  |  Size: 3.0 KiB

View File

@ -0,0 +1,10 @@
<svg t="1716195854453" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="5857"
width="200" height="200">
<path
d="M638.855218 56.525807s99.268136 159.838523 132.357514 216.623262a2.523766 2.523766 0 0 1 0 2.944394 2.383557 2.383557 0 0 1-3.50523 0L596.231612 97.326693l42.623606-40.800886z"
fill="#dd113c" p-id="5858"></path>
<path
d="M346.518971 639.655999a588.878771 588.878771 0 0 1 116.654081-165.446893 597.291325 597.291325 0 0 1 58.32704-51.176369v126.188308L346.518971 639.655999zM245.568325 756.590498l275.931767-140.209231v321.079139l62.112689 80.760517v-434.648616l37.716283-19.489084a187.179324 187.179324 0 0 0 51.456788-296.121896L530.753901 119.479752a31.547077 31.547077 0 0 1 1.542302-44.446327 31.687286 31.687286 0 0 1 44.586535 1.542302l19.909711 20.750966 42.062769-40.941095c-50.335114-65.337502-112.167385-57.065157-147.64032-24.396407a90.575163 90.575163 0 0 0-3.925859 127.870819l143.574253 149.60325a128.151237 128.151237 0 0 1-28.041846 197.414597l-19.489083 10.095065V314.090164A649.589368 649.589368 0 0 0 245.568325 755.889452v0.701046z"
fill="#dd113c" p-id="5859"></path>
<path d="M583.612781 583.432097v65.617921l-62.112689 31.547077v-65.197293z" fill="#dd113c" p-id="5860"></path>
</svg>

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

@ -0,0 +1,9 @@
<svg t="1716195691568" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4834"
width="200" height="200">
<path
d="M1001.632 793.792c-7.84-13.856-26.016-37.536-93.12-83.2a1096.224 1096.224 0 0 0-125.152-74.144c-30.592-82.784-89.824-190.112-176.256-319.36-93.056-139.168-201.12-197.792-321.888-174.56a756.608 756.608 0 0 0-40.928-37.696C213.824 78.688 139.2 56.48 96.32 60.736c-19.424 1.952-34.016 9.056-43.36 21.088-21.664 27.904-14.432 68.064 85.504 198.912 19.008 55.616 23.072 84.672 23.072 99.296 0 30.912 15.968 66.368 49.984 110.752l-32 109.504c-28.544 97.792 23.328 224.288 71.616 268.384 25.76 23.552 47.456 20.032 58.176 15.84 21.504-8.448 38.848-29.472 50.048-89.504 5.728 14.112 11.808 29.312 18.208 45.6 34.56 87.744 68.352 136.288 106.336 152.736a32.032 32.032 0 0 0 25.44-58.688c-9.408-4.096-35.328-23.712-72.288-117.504-31.168-79.136-53.856-132.064-69.376-161.856a32.224 32.224 0 0 0-35.328-16.48 32.032 32.032 0 0 0-25.024 29.92c-3.872 91.04-13.056 130.4-19.2 147.008-26.496-30.464-68.128-125.984-47.232-197.536 20.768-71.232 32.992-112.928 36.64-125.248a31.936 31.936 0 0 0-5.888-29.28c-41.664-51.168-46.176-75.584-46.176-83.712 0-29.472-9.248-70.4-28.288-125.152a31.104 31.104 0 0 0-4.768-8.896c-53.824-70.112-73.6-105.216-80.832-121.888 25.632 1.216 74.336 15.04 91.008 29.376a660.8 660.8 0 0 1 49.024 46.304c8 8.448 19.968 11.872 31.232 8.928 100.192-25.92 188.928 21.152 271.072 144 87.808 131.328 146.144 238.048 173.408 317.216a32 32 0 0 0 16.384 18.432 1004.544 1004.544 0 0 1 128.8 75.264c7.392 5.024 14.048 9.696 20.064 14.016h-98.848a32.032 32.032 0 0 0-24.352 52.736 3098.752 3098.752 0 0 0 97.856 110.464 32 32 0 1 0 46.56-43.872 2237.6 2237.6 0 0 1-50.08-55.328h110.08a32.032 32.032 0 0 0 27.84-47.776z"
p-id="4835"></path>
<path
d="M320 289.472c12.672 21.76 22.464 37.344 29.344 46.784 8.288 16.256 21.184 29.248 29.44 45.536l2.016-1.984c14.528-9.952 25.92-49.504 2.752-75.488-12.032-18.176-51.04-17.664-63.552-14.848z"
p-id="4836"></path>
</svg>

After

Width:  |  Height:  |  Size: 2.0 KiB

View File

@ -0,0 +1,6 @@
<svg t="1716195575286" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="3818"
width="200" height="200">
<path
d="M959.744 602.16l0.256 0.064v101.952c0 10.24-10.752 21.44-35.072 35.84-22.976 13.696-91.968 47.616-163.328 82.624l-35.712 17.536c-65.088 32-126.016 62.208-149.184 76.032-52.8 31.36-82.048 31.104-123.712 8.32-41.6-22.72-305.28-144.256-352.704-170.176-23.744-12.992-36.224-23.936-36.224-34.24v-103.424c0.384 10.368 12.48 21.248 36.224 34.24C147.776 676.8 411.328 798.4 452.992 821.12c41.664 22.784 70.912 23.04 123.712-8.32 52.672-31.36 300.416-147.712 348.224-176.128 23.232-13.824 34.56-24.768 34.88-34.56l-0.064 0.064z m0-168.576h0.192v101.952c0 10.24-10.752 21.44-35.072 35.968-47.808 28.416-295.552 144.768-348.224 176.128-52.8 31.36-82.048 31.04-123.712 8.32-41.6-22.72-305.28-144.32-352.704-170.24C76.48 572.8 64 561.92 64 551.536v-103.424c0.384 10.24 12.48 21.248 36.224 34.176 47.488 25.92 311.04 147.52 352.704 170.24 41.664 22.72 70.912 23.04 123.712-8.32 52.672-31.36 300.416-147.712 348.224-176.192 23.168-13.824 34.56-24.704 34.88-34.432zM462.656 81.84c55.36-22.72 74.56-23.488 121.664-3.776 47.168 19.776 293.376 131.648 339.968 151.104 24 10.048 35.84 19.2 35.456 29.632H960v101.952c0 10.176-10.816 21.44-35.072 35.904C877.056 425.072 629.376 541.44 576.64 572.8c-52.736 31.36-81.984 31.104-123.648 8.32-41.664-22.656-305.28-144.32-352.768-170.24C76.544 397.936 64 387.056 64 376.688V273.28c-0.32-10.304 11.072-19.968 34.368-30.464 46.656-20.8 308.8-138.24 364.288-160.896v-0.064z m129.792 238.4l-207.552 36.352 144.832 68.608 62.72-104.96z m128.704-113.6l-135.936 61.44 122.688 55.36 13.376-5.952 122.752-55.424-122.88-55.424z m-392.32 13.44c-61.248 0-110.912 22.016-110.912 49.152 0 27.072 49.664 49.088 110.976 49.088s110.912-21.952 110.912-49.088-49.6-49.088-110.912-49.088l-0.064-0.064z m134.656-101.888l20.096 42.304-66.88 27.52 89.6 9.216 28.032 53.248 17.408-47.744 77.632-9.216-60.16-25.728 16-43.712-59.136 22.08-62.592-27.968z"
fill="#D82A1F" p-id="3819"></path>
</svg>

After

Width:  |  Height:  |  Size: 2.0 KiB

View File

@ -15,7 +15,6 @@ import {
Modal,
Select,
Space,
Switch,
Tooltip,
} from 'antd';
import omit from 'lodash/omit';
@ -23,6 +22,7 @@ import React, { useEffect, useMemo } from 'react';
import { useFetchParserListOnMount } from './hooks';
import { useTranslate } from '@/hooks/commonHooks';
import LayoutRecognize from '../layout-recognize';
import styles from './index.less';
interface IProps extends Omit<IModalManagerChildrenProps, 'showModal'> {
@ -228,17 +228,7 @@ const ChunkMethodModal: React.FC<IProps> = ({
</Form.List>
</>
)}
{showOne && (
<Form.Item
name={['parser_config', 'layout_recognize']}
label={t('layoutRecognize')}
initialValue={true}
valuePropName="checked"
tooltip={t('layoutRecognizeTip')}
>
<Switch />
</Form.Item>
)}
{showOne && <LayoutRecognize></LayoutRecognize>}
{showPages && (
<Form.Item
noStyle

View File

@ -0,0 +1,19 @@
import { useTranslate } from '@/hooks/commonHooks';
import { Form, Switch } from 'antd';
const LayoutRecognize = () => {
const { t } = useTranslate('knowledgeDetails');
return (
<Form.Item
name={['parser_config', 'layout_recognize']}
label={t('layoutRecognize')}
initialValue={true}
valuePropName="checked"
tooltip={t('layoutRecognizeTip')}
>
<Switch />
</Form.Item>
);
};
export default LayoutRecognize;

View File

@ -1,22 +1,24 @@
import { api_host } from '@/utils/api';
import React from 'react';
interface IProps extends React.PropsWithChildren {
documentId: string;
link: string;
preventDefault?: boolean;
color?: string;
}
const NewDocumentLink = ({
children,
documentId,
link,
preventDefault = false,
color = 'rgb(15, 79, 170)',
}: IProps) => {
return (
<a
target="_blank"
onClick={!preventDefault ? undefined : (e) => e.preventDefault()}
href={`${api_host}/document/get/${documentId}`}
href={link}
rel="noreferrer"
style={{ color, wordBreak: 'break-all' }}
>
{children}
</a>

View File

@ -0,0 +1,18 @@
import axios from 'axios';
import { useCallback, useEffect, useState } from 'react';
export const useCatchDocumentError = (url: string) => {
const [error, setError] = useState<string>('');
const fetchDocument = useCallback(async () => {
const { data } = await axios.get(url);
if (data.retcode !== 0) {
setError(data?.retmsg);
}
}, [url]);
useEffect(() => {
fetchDocument();
}, [fetchDocument]);
return error;
};

View File

@ -14,6 +14,8 @@ import {
Popup,
} from 'react-pdf-highlighter';
import FileError from '@/pages/document-viewer/file-error';
import { useCatchDocumentError } from './hooks';
import styles from './index.less';
interface IProps {
@ -34,10 +36,12 @@ const HighlightPopup = ({
) : null;
const DocumentPreviewer = ({ chunk, documentId, visible }: IProps) => {
const url = useGetDocumentUrl(documentId);
const getDocumentUrl = useGetDocumentUrl(documentId);
const { highlights: state, setWidthAndHeight } = useGetChunkHighlights(chunk);
const ref = useRef<(highlight: IHighlight) => void>(() => {});
const [loaded, setLoaded] = useState(false);
const url = getDocumentUrl();
const error = useCatchDocumentError(url);
const resetHash = () => {};
@ -58,6 +62,7 @@ const DocumentPreviewer = ({ chunk, documentId, visible }: IProps) => {
url={url}
beforeLoad={<Skeleton active />}
workerSrc="/pdfjs-dist/pdf.worker.min.js"
errorMessage={<FileError>{error}</FileError>}
>
{(pdfDocument) => {
pdfDocument.getPage(1).then((page) => {

3
web/src/conf.json Normal file
View File

@ -0,0 +1,3 @@
{
"appName": "RAGFlow"
}

View File

@ -68,3 +68,25 @@ export const FileMimeTypeMap = {
xlsx: 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
mp4: 'video/mp4',
};
export const Domain = 'demo.ragflow.io';
//#region file preview
export const Images = [
'jpg',
'jpeg',
'png',
'gif',
'bmp',
'tif',
'tiff',
'webp',
// 'svg',
'ico',
];
// Without FileViewer
export const ExceptiveType = ['xlsx', 'xls', 'pdf', 'docx', ...Images];
export const SupportedPreviewDocumentTypes = [...ExceptiveType];
//#endregion

View File

@ -31,14 +31,14 @@ export const settledModelVariableMap = {
top_p: 0.3,
frequency_penalty: 0.7,
presence_penalty: 0.4,
max_tokens: 215,
max_tokens: 512,
},
[ModelVariableType.Balance]: {
temperature: 0.5,
top_p: 0.5,
frequency_penalty: 0.7,
presence_penalty: 0.4,
max_tokens: 215,
max_tokens: 512,
},
};

View File

@ -4,6 +4,7 @@ export enum UserSettingRouteKey {
Profile = 'profile',
Password = 'password',
Model = 'model',
System = 'system',
Team = 'team',
Logout = 'logout',
}
@ -12,6 +13,7 @@ export const UserSettingRouteMap = {
[UserSettingRouteKey.Profile]: 'Profile',
[UserSettingRouteKey.Password]: 'Password',
[UserSettingRouteKey.Model]: 'Model Providers',
[UserSettingRouteKey.System]: 'System Version',
[UserSettingRouteKey.Team]: 'Team',
[UserSettingRouteKey.Logout]: 'Log out',
};

View File

@ -154,6 +154,9 @@ export const useRemoveConversation = () => {
return removeConversation;
};
/*
@deprecated
*/
export const useCompleteConversation = () => {
const dispatch = useDispatch();
@ -283,20 +286,4 @@ export const useFetchSharedConversation = () => {
return fetchSharedConversation;
};
export const useCompleteSharedConversation = () => {
const dispatch = useDispatch();
const completeSharedConversation = useCallback(
(payload: any) => {
return dispatch<any>({
type: 'chatModel/completeExternalConversation',
payload: payload,
});
},
[dispatch],
);
return completeSharedConversation;
};
//#endregion

View File

@ -9,12 +9,15 @@ import { useDispatch, useSelector } from 'umi';
import { useGetKnowledgeSearchParams } from './routeHook';
import { useOneNamespaceEffectsLoading } from './storeHooks';
export const useGetDocumentUrl = (documentId: string) => {
const url = useMemo(() => {
return `${api_host}/document/get/${documentId}`;
}, [documentId]);
export const useGetDocumentUrl = (documentId?: string) => {
const getDocumentUrl = useCallback(
(id?: string) => {
return `${api_host}/document/get/${documentId || id}`;
},
[documentId],
);
return url;
return getDocumentUrl;
};
export const useGetChunkHighlights = (selectedChunk: IChunk) => {

View File

@ -4,7 +4,10 @@ import {
IMyLlmValue,
IThirdOAIModelCollection,
} from '@/interfaces/database/llm';
import { IAddLlmRequestBody } from '@/interfaces/request/llm';
import {
IAddLlmRequestBody,
IDeleteLlmRequestBody,
} from '@/interfaces/request/llm';
import { sortLLmFactoryListBySpecifiedOrder } from '@/utils/commonUtil';
import { useCallback, useEffect, useMemo } from 'react';
import { useDispatch, useSelector } from 'umi';
@ -64,13 +67,15 @@ export const useSelectLlmOptionsByModelType = () => {
const groupOptionsByModelType = (modelType: LlmModelType) => {
return Object.entries(llmInfo)
.filter(([, value]) =>
modelType ? value.some((x) => x.model_type === modelType) : true,
modelType ? value.some((x) => x.model_type.includes(modelType)) : true,
)
.map(([key, value]) => {
return {
label: key,
options: value
.filter((x) => (modelType ? x.model_type === modelType : true))
.filter((x) =>
modelType ? x.model_type.includes(modelType) : true,
)
.map((x) => ({
label: x.llm_name,
value: x.llm_name,
@ -211,7 +216,7 @@ export const useSaveTenantInfo = () => {
export const useAddLlm = () => {
const dispatch = useDispatch();
const saveTenantInfo = useCallback(
const addLlm = useCallback(
(requestBody: IAddLlmRequestBody) => {
return dispatch<any>({
type: 'settingModel/add_llm',
@ -221,5 +226,21 @@ export const useAddLlm = () => {
[dispatch],
);
return saveTenantInfo;
return addLlm;
};
export const useDeleteLlm = () => {
const dispatch = useDispatch();
const deleteLlm = useCallback(
(requestBody: IDeleteLlmRequestBody) => {
return dispatch<any>({
type: 'settingModel/delete_llm',
payload: requestBody,
});
},
[dispatch],
);
return deleteLlm;
};

View File

@ -1,9 +1,15 @@
import { Authorization } from '@/constants/authorization';
import { LanguageTranslationMap } from '@/constants/common';
import { Pagination } from '@/interfaces/common';
import { IAnswer } from '@/interfaces/database/chat';
import { IKnowledgeFile } from '@/interfaces/database/knowledge';
import { IChangeParserConfigRequestBody } from '@/interfaces/request/document';
import api from '@/utils/api';
import { getAuthorization } from '@/utils/authorizationUtil';
import { PaginationProps } from 'antd';
import { useCallback, useMemo, useState } from 'react';
import axios from 'axios';
import { EventSourceParserStream } from 'eventsource-parser/stream';
import { useCallback, useEffect, useMemo, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDispatch } from 'umi';
import { useSetModalState, useTranslate } from './commonHooks';
@ -113,3 +119,80 @@ export const useSetPagination = (namespace: string) => {
return setPagination;
};
export interface AppConf {
appName: string;
}
export const useFetchAppConf = () => {
const [appConf, setAppConf] = useState<AppConf>({} as AppConf);
const fetchAppConf = useCallback(async () => {
const ret = await axios.get('/conf.json');
setAppConf(ret.data);
}, []);
useEffect(() => {
fetchAppConf();
}, [fetchAppConf]);
return appConf;
};
export const useSendMessageWithSse = (
url: string = api.completeConversation,
) => {
const [answer, setAnswer] = useState<IAnswer>({} as IAnswer);
const [done, setDone] = useState(true);
const send = useCallback(
async (body: any) => {
try {
setDone(false);
const response = await fetch(url, {
method: 'POST',
headers: {
[Authorization]: getAuthorization(),
'Content-Type': 'application/json',
},
body: JSON.stringify(body),
});
const reader = response?.body
?.pipeThrough(new TextDecoderStream())
.pipeThrough(new EventSourceParserStream())
.getReader();
while (true) {
const x = await reader?.read();
if (x) {
const { done, value } = x;
try {
const val = JSON.parse(value?.data || '');
const d = val?.data;
if (typeof d !== 'boolean') {
console.info('data:', d);
setAnswer(d);
}
} catch (e) {
console.warn(e);
}
if (done) {
console.info('done');
break;
}
}
}
console.info('done?');
setDone(true);
return response;
} catch (e) {
setDone(true);
console.warn(e);
}
},
[url],
);
return { send, answer, done };
};

View File

@ -1,7 +1,8 @@
import { ITenantInfo } from '@/interfaces/database/knowledge';
import { IUserInfo } from '@/interfaces/database/userSetting';
import { ISystemStatus, IUserInfo } from '@/interfaces/database/userSetting';
import userService from '@/services/userService';
import authorizationUtil from '@/utils/authorizationUtil';
import { useCallback, useEffect, useMemo } from 'react';
import { useCallback, useEffect, useMemo, useState } from 'react';
import { history, useDispatch, useSelector } from 'umi';
export const useFetchUserInfo = () => {
@ -92,3 +93,41 @@ export const useSaveSetting = () => {
return saveSetting;
};
export const useFetchSystemVersion = () => {
const [version, setVersion] = useState('');
const [loading, setLoading] = useState(false);
const fetchSystemVersion = useCallback(async () => {
setLoading(true);
const { data } = await userService.getSystemVersion();
if (data.retcode === 0) {
setVersion(data.data);
setLoading(false);
}
}, []);
return { fetchSystemVersion, version, loading };
};
export const useFetchSystemStatus = () => {
const [systemStatus, setSystemStatus] = useState<ISystemStatus>(
{} as ISystemStatus,
);
const [loading, setLoading] = useState(false);
const fetchSystemStatus = useCallback(async () => {
setLoading(true);
const { data } = await userService.getSystemStatus();
if (data.retcode === 0) {
setSystemStatus(data.data);
setLoading(false);
}
}, []);
return {
systemStatus,
fetchSystemStatus,
loading,
};
};

View File

@ -72,6 +72,11 @@ export interface IReference {
total: number;
}
export interface IAnswer {
answer: string;
reference: IReference;
}
export interface Docagg {
count: number;
doc_id: string;

View File

@ -12,6 +12,7 @@ export interface IFile {
type: string;
update_date: string;
update_time: number;
source_type: string;
}
export interface IFolder {
@ -27,4 +28,5 @@ export interface IFolder {
type: string;
update_date: string;
update_time: number;
source_type: string;
}

View File

@ -19,3 +19,31 @@ export interface IUserInfo {
update_date: string;
update_time: number;
}
export interface ISystemStatus {
es: Es;
minio: Minio;
mysql: Minio;
redis: Redis;
}
interface Redis {
status: string;
elapsed: number;
error: string;
pending: number;
}
export interface Minio {
status: string;
elapsed: number;
error: string;
}
interface Es {
status: string;
elapsed: number;
error: string;
number_of_nodes: number;
active_shards: number;
}

View File

@ -4,3 +4,8 @@ export interface IAddLlmRequestBody {
model_type: string;
api_base?: string; // chat|embedding|speech2text|image2text
}
export interface IDeleteLlmRequestBody {
llm_factory: string; // Ollama
llm_name: string;
}

View File

@ -18,6 +18,7 @@
.appIcon {
vertical-align: middle;
max-width: 36px;
}
.appName {

View File

@ -1,7 +1,6 @@
import { ReactComponent as StarIon } from '@/assets/svg/chat-star.svg';
import { ReactComponent as FileIcon } from '@/assets/svg/file-management.svg';
import { ReactComponent as KnowledgeBaseIcon } from '@/assets/svg/knowledge-base.svg';
import { ReactComponent as Logo } from '@/assets/svg/logo.svg';
import { useTranslate } from '@/hooks/commonHooks';
import { useNavigateWithFromState } from '@/hooks/routeHook';
import { Layout, Radio, Space, theme } from 'antd';
@ -9,6 +8,7 @@ import { useCallback, useMemo } from 'react';
import { useLocation } from 'umi';
import Toolbar from '../right-toolbar';
import { useFetchAppConf } from '@/hooks/logicHooks';
import styles from './index.less';
const { Header } = Layout;
@ -20,6 +20,7 @@ const RagHeader = () => {
const navigate = useNavigateWithFromState();
const { pathname } = useLocation();
const { t } = useTranslate('header');
const appConf = useFetchAppConf();
const tagsData = useMemo(
() => [
@ -56,8 +57,8 @@ const RagHeader = () => {
}}
>
<Space size={12} onClick={handleLogoClick} className={styles.logoWrapper}>
<Logo className={styles.appIcon}></Logo>
<span className={styles.appName}>RAGFlow</span>
<img src="/logo.svg" alt="" className={styles.appIcon} />
<span className={styles.appName}>{appConf.appName}</span>
</Space>
<Space size={[0, 8]} wrap>
<Radio.Group

View File

@ -1,4 +1,5 @@
import i18n from 'i18next';
import LanguageDetector from 'i18next-browser-languagedetector';
import { initReactI18next } from 'react-i18next';
import translation_en from './en';
@ -11,13 +12,19 @@ const resources = {
'zh-TRADITIONAL': translation_zh_traditional,
};
i18n.use(initReactI18next).init({
resources,
lng: 'en',
fallbackLng: 'en',
interpolation: {
escapeValue: false,
},
});
i18n
.use(initReactI18next)
.use(LanguageDetector)
.init({
detection: {
lookupLocalStorage: 'lng',
},
supportedLngs: ['en', 'zh', 'zh-TRADITIONAL'],
resources,
fallbackLng: 'en',
interpolation: {
escapeValue: false,
},
});
export default i18n;

View File

@ -25,6 +25,7 @@ export default {
comingSoon: 'Coming Soon',
download: 'Download',
close: 'Close',
preview: 'Preview',
},
login: {
login: 'Sign in',
@ -381,6 +382,7 @@ export default {
partialTitle: 'Partial Embed',
extensionTitle: 'Chrome Extension',
tokenError: 'Please create API Token first!',
searching: 'searching...',
},
setting: {
profile: 'Profile',
@ -391,6 +393,7 @@ export default {
model: 'Model Providers',
modelDescription: 'Set the model parameter and API Key here.',
team: 'Team',
system: 'System',
logout: 'Log out',
username: 'Username',
usernameMessage: 'Please input your username!',
@ -494,7 +497,7 @@ export default {
knowledgeBase: 'Knowledge Base',
size: 'Size',
action: 'Action',
addToKnowledge: 'Add to Knowledge Base',
addToKnowledge: 'Link to Knowledge Base',
pleaseSelect: 'Please select',
newFolder: 'New Folder',
file: 'File',
@ -505,6 +508,8 @@ export default {
'Support for a single or bulk upload. Strictly prohibited from uploading company data or other banned files.',
local: 'Local uploads',
s3: 'S3 uploads',
preview: 'Preview',
fileError: 'File error',
},
footer: {
profile: 'All rights reserved @ React',

View File

@ -25,6 +25,7 @@ export default {
comingSoon: '即將推出',
download: '下載',
close: '关闭',
preview: '預覽',
},
login: {
login: '登入',
@ -352,6 +353,7 @@ export default {
partialTitle: '部分嵌入',
extensionTitle: 'Chrome 插件',
tokenError: '請先創建 Api Token!',
searching: '搜索中',
},
setting: {
profile: '概述',
@ -362,6 +364,7 @@ export default {
modelDescription: '在此設置模型參數和 API Key。',
team: '團隊',
logout: '登出',
system: '系統',
username: '使用者名稱',
usernameMessage: '請輸入用戶名',
photo: '頭像',
@ -458,7 +461,7 @@ export default {
knowledgeBase: '知識庫',
size: '大小',
action: '操作',
addToKnowledge: '添加到知識庫',
addToKnowledge: '鏈接知識庫',
pleaseSelect: '請選擇',
newFolder: '新建文件夾',
uploadFile: '上傳文件',
@ -468,6 +471,8 @@ export default {
directory: '文件夾',
local: '本地上傳',
s3: 'S3 上傳',
preview: '預覽',
fileError: '文件錯誤',
},
footer: {
profile: '“保留所有權利 @ react”',

View File

@ -25,6 +25,7 @@ export default {
comingSoon: '即将推出',
download: '下载',
close: '关闭',
preview: '预览',
},
login: {
login: '登录',
@ -369,6 +370,7 @@ export default {
partialTitle: '部分嵌入',
extensionTitle: 'Chrome 插件',
tokenError: '请先创建 Api Token!',
searching: '搜索中',
},
setting: {
profile: '概要',
@ -378,6 +380,7 @@ export default {
model: '模型提供商',
modelDescription: '在此设置模型参数和 API Key。',
team: '团队',
system: '系统',
logout: '登出',
username: '用户名',
usernameMessage: '请输入用户名',
@ -475,7 +478,7 @@ export default {
knowledgeBase: '知识库',
size: '大小',
action: '操作',
addToKnowledge: '添加到知识库',
addToKnowledge: '链接知识库',
pleaseSelect: '请选择',
newFolder: '新建文件夹',
uploadFile: '上传文件',
@ -486,6 +489,8 @@ export default {
directory: '文件夹',
local: '本地上传',
s3: 'S3 上传',
preview: '预览',
fileError: '文件错误',
},
footer: {
profile: 'All rights reserved @ React',

View File

@ -11,6 +11,8 @@ import {
import { useGetChunkHighlights } from '../../hooks';
import { useGetDocumentUrl } from './hooks';
import { useCatchDocumentError } from '@/components/pdf-previewer/hooks';
import FileError from '@/pages/document-viewer/file-error';
import styles from './index.less';
interface IProps {
@ -30,9 +32,11 @@ const HighlightPopup = ({
// TODO: merge with DocumentPreviewer
const Preview = ({ selectedChunkId }: IProps) => {
const url = useGetDocumentUrl();
useCatchDocumentError(url);
const { highlights: state, setWidthAndHeight } =
useGetChunkHighlights(selectedChunkId);
const ref = useRef<(highlight: IHighlight) => void>(() => {});
const error = useCatchDocumentError(url);
const resetHash = () => {};
@ -48,6 +52,7 @@ const Preview = ({ selectedChunkId }: IProps) => {
url={url}
beforeLoad={<Skeleton active />}
workerSrc="/pdfjs-dist/pdf.worker.min.js"
errorMessage={<FileError>{error}</FileError>}
>
{(pdfDocument) => {
pdfDocument.getPage(1).then((page) => {

View File

@ -106,8 +106,8 @@ const KnowledgeFile = () => {
},
{
title: t('uploadDate'),
dataIndex: 'create_date',
key: 'create_date',
dataIndex: 'create_time',
key: 'create_time',
render(value) {
return formatDate(value);
},

View File

@ -55,7 +55,7 @@ const PopoverContent = ({ record }: IProps) => {
{
key: 'process_duation',
label: t('processDuration'),
children: record.process_duation,
children: `${record.process_duation.toFixed(2)} s`,
},
{
key: 'progress_msg',

View File

@ -6,6 +6,7 @@ import {
useSubmitKnowledgeConfiguration,
} from './hooks';
import LayoutRecognize from '@/components/layout-recognize';
import MaxTokenNumber from '@/components/max-token-number';
import { useTranslate } from '@/hooks/commonHooks';
import { FormInstance } from 'antd/lib';
@ -99,11 +100,17 @@ const ConfigurationForm = ({ form }: { form: FormInstance }) => {
const parserId = getFieldValue('parser_id');
if (parserId === 'naive') {
return <MaxTokenNumber></MaxTokenNumber>;
return (
<>
<MaxTokenNumber></MaxTokenNumber>
<LayoutRecognize></LayoutRecognize>
</>
);
}
return null;
}}
</Form.Item>
<Form.Item>
<div className={styles.buttonWrapper}>
<Space>

View File

@ -1,5 +1,5 @@
import SimilaritySlider from '@/components/similarity-slider';
import { Button, Card, Divider, Flex, Form, Input, Slider } from 'antd';
import { Button, Card, Divider, Flex, Form, Input } from 'antd';
import { FormInstance } from 'antd/lib';
import { useTranslate } from '@/hooks/commonHooks';
@ -9,7 +9,6 @@ import styles from './index.less';
type FieldType = {
similarity_threshold?: number;
vector_similarity_weight?: number;
top_k?: number;
question: string;
};
@ -36,22 +35,8 @@ const TestingControl = ({ form, handleTesting }: IProps) => {
<p>{t('testingDescription')}</p>
<Divider></Divider>
<section>
<Form
name="testing"
layout="vertical"
form={form}
initialValues={{
top_k: 1024,
}}
>
<Form name="testing" layout="vertical" form={form}>
<SimilaritySlider isTooltipShown></SimilaritySlider>
<Form.Item<FieldType>
label="Top K"
name={'top_k'}
tooltip={t('topKTip')}
>
<Slider marks={{ 0: 0, 2048: 2048 }} max={2048} />
</Form.Item>
<Card size="small" title={t('testText')}>
<Form.Item<FieldType>
name={'question'}

View File

@ -1,5 +1,6 @@
import { ReactComponent as NavigationPointerIcon } from '@/assets/svg/navigation-pointer.svg';
import NewDocumentLink from '@/components/new-document-link';
import { useGetDocumentUrl } from '@/hooks/documentHooks';
import { ITestingDocument } from '@/interfaces/database/knowledge';
import { isPdf } from '@/utils/documentUtils';
import { Table, TableProps } from 'antd';
@ -15,6 +16,7 @@ const SelectFiles = ({ handleTesting }: IProps) => {
);
const dispatch = useDispatch();
const getDocumentUrl = useGetDocumentUrl();
const columns: TableProps<ITestingDocument>['columns'] = [
{
@ -35,7 +37,10 @@ const SelectFiles = ({ handleTesting }: IProps) => {
key: 'view',
width: 50,
render: (_, { doc_id, doc_name }) => (
<NewDocumentLink documentId={doc_id} preventDefault={!isPdf(doc_name)}>
<NewDocumentLink
link={getDocumentUrl(doc_id)}
preventDefault={!isPdf(doc_name)}
>
<NavigationPointerIcon />
</NewDocumentLink>
),

View File

@ -22,6 +22,15 @@ const AssistantSetting = ({ show }: ISegmentedContentProps) => {
return e?.fileList;
};
const uploadButtion = (
<button style={{ border: 0, background: 'none' }} type="button">
<PlusOutlined />
<div style={{ marginTop: 8 }}>
{t('upload', { keyPrefix: 'common' })}
</div>
</button>
)
return (
<section
className={classNames({
@ -46,12 +55,7 @@ const AssistantSetting = ({ show }: ISegmentedContentProps) => {
maxCount={1}
showUploadList={{ showPreviewIcon: false, showRemoveIcon: false }}
>
<button style={{ border: 0, background: 'none' }} type="button">
<PlusOutlined />
<div style={{ marginTop: 8 }}>
{t('upload', { keyPrefix: 'common' })}
</div>
</button>
{show ? uploadButtion : null}
</Upload>
</Form.Item>
<Form.Item

View File

@ -36,6 +36,9 @@
// .referenceIcon {
// padding: 0 6px;
// }
.thumbnailImg {
max-width: 20px;
}
}
.messageItemLeft {

View File

@ -6,16 +6,7 @@ import { useSelectFileThumbnails } from '@/hooks/knowledgeHook';
import { useSelectUserInfo } from '@/hooks/userSettingHook';
import { IReference, Message } from '@/interfaces/database/chat';
import { IChunk } from '@/interfaces/database/knowledge';
import {
Avatar,
Button,
Drawer,
Flex,
Input,
List,
Skeleton,
Spin,
} from 'antd';
import { Avatar, Button, Drawer, Flex, Input, List, Spin } from 'antd';
import classNames from 'classnames';
import { useMemo } from 'react';
import {
@ -30,20 +21,26 @@ import MarkdownContent from '../markdown-content';
import SvgIcon from '@/components/svg-icon';
import { useTranslate } from '@/hooks/commonHooks';
import { useGetDocumentUrl } from '@/hooks/documentHooks';
import { getExtension, isPdf } from '@/utils/documentUtils';
import { buildMessageItemReference } from '../utils';
import styles from './index.less';
const MessageItem = ({
item,
reference,
loading = false,
clickDocumentButton,
}: {
item: Message;
reference: IReference;
loading?: boolean;
clickDocumentButton: (documentId: string, chunk: IChunk) => void;
}) => {
const userInfo = useSelectUserInfo();
const fileThumbnails = useSelectFileThumbnails();
const getDocumentUrl = useGetDocumentUrl();
const { t } = useTranslate('chat');
const isAssistant = item.role === MessageType.Assistant;
@ -51,6 +48,14 @@ const MessageItem = ({
return reference?.doc_aggs ?? [];
}, [reference?.doc_aggs]);
const content = useMemo(() => {
let text = item.content;
if (text === '') {
text = t('searching');
}
return loading ? text?.concat('~~2$$') : text;
}, [item.content, loading, t]);
return (
<div
className={classNames(styles.messageItem, {
@ -83,15 +88,11 @@ const MessageItem = ({
<Flex vertical gap={8} flex={1}>
<b>{isAssistant ? '' : userInfo.nickname}</b>
<div className={styles.messageText}>
{item.content !== '' ? (
<MarkdownContent
content={item.content}
reference={reference}
clickDocumentButton={clickDocumentButton}
></MarkdownContent>
) : (
<Skeleton active className={styles.messageEmpty} />
)}
<MarkdownContent
content={content}
reference={reference}
clickDocumentButton={clickDocumentButton}
></MarkdownContent>
</div>
{isAssistant && referenceDocumentList.length > 0 && (
<List
@ -104,7 +105,10 @@ const MessageItem = ({
<List.Item>
<Flex gap={'small'} align="center">
{fileThumbnail ? (
<img src={fileThumbnail}></img>
<img
src={fileThumbnail}
className={styles.thumbnailImg}
></img>
) : (
<SvgIcon
name={`file-icon/${fileExtension}`}
@ -113,7 +117,7 @@ const MessageItem = ({
)}
<NewDocumentLink
documentId={item.doc_id}
link={getDocumentUrl(item.doc_id)}
preventDefault={!isPdf(item.doc_name)}
>
{item.doc_name}
@ -137,13 +141,19 @@ const ChatContainer = () => {
currentConversation: conversation,
addNewestConversation,
removeLatestMessage,
addNewestAnswer,
} = useFetchConversationOnMount();
const {
handleInputChange,
handlePressEnter,
value,
loading: sendLoading,
} = useSendMessage(conversation, addNewestConversation, removeLatestMessage);
} = useSendMessage(
conversation,
addNewestConversation,
removeLatestMessage,
addNewestAnswer,
);
const { visible, hideModal, documentId, selectedChunk, clickDocumentButton } =
useClickDrawer();
const disabled = useGetSendButtonDisabled();
@ -157,19 +167,17 @@ const ChatContainer = () => {
<Flex flex={1} vertical className={styles.messageContainer}>
<div>
<Spin spinning={loading}>
{conversation?.message?.map((message) => {
const assistantMessages = conversation?.message
?.filter((x) => x.role === MessageType.Assistant)
.slice(1);
const referenceIndex = assistantMessages.findIndex(
(x) => x.id === message.id,
);
const reference = conversation.reference[referenceIndex];
{conversation?.message?.map((message, i) => {
return (
<MessageItem
loading={
message.role === MessageType.Assistant &&
sendLoading &&
conversation?.message.length - 1 === i
}
key={message.id}
item={message}
reference={reference}
reference={buildMessageItemReference(conversation, message)}
clickDocumentButton={clickDocumentButton}
></MessageItem>
);

Some files were not shown because too many files have changed in this diff Show More