Compare commits

...

73 Commits

Author SHA1 Message Date
1f4a17863f Feat: read web api testcases (#12383)
### What problem does this PR solve?

Web API testcase for list_messages, get_recent_message.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2026-01-01 12:52:40 +08:00
4d3a3a97ef Update HELP command of ADMIN CLI (#12387)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2026-01-01 12:52:13 +08:00
ff1020ccfb ADMIN CLI: support grant/revoke user admin authorization (#12381)
### What problem does this PR solve?

```
admin> grant admin 'aaa@aaa1.com';
Fail to grant aaa@aaa1.com admin authorization, code: 404, message: User 'aaa@aaa1.com' not found
admin> grant admin 'aaa@aaa.com';
Grant successfully!
admin> revoke admin 'aaa1@aaa.com';
Fail to revoke aaa1@aaa.com admin authorization, code: 404, message: User 'aaa1@aaa.com' not found
admin> revoke admin 'aaa@aaa.com';
Revoke successfully!
admin> revoke admin 'aaa@aaa.com';
aaa@aaa.com isn't superuser, yet!
admin> grant admin 'aaa@aaa.com';
Grant successfully!
admin> grant admin 'aaa@aaa.com';
aaa@aaa.com is already superuser!
admin> revoke admin 'aaa@aaa.com';
Revoke successfully!

```

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2026-01-01 12:49:34 +08:00
ca3bd2cf9f Update README (#12386)
### Type of change

- [x] Documentation Update
2025-12-31 20:07:40 +08:00
eb661c028d Fix Tika version mismatch in Dockerfile.deps (3.0.0 → 3.2.3) (#12267)
Fixes #12266 

Dockerfile.deps still referenced `tika-server-standard-3.0.0.jar` even
after
the project moved to Tika 3.2.3 for security reasons.

This caused Docker builds to fail due to a version mismatch and missing
artifact.

Changes:
- Update Dockerfile.deps to consistently use Tika 3.2.3

No functional changes beyond dependency alignment.

Co-authored-by: Liu An <asiro@qq.com>
2025-12-31 19:55:39 +08:00
10c28c5ecd Feat: Refactoring the documentation page using shadcn. #10427 (#12376)
### What problem does this PR solve?

Feat: Refactoring the documentation page using shadcn. #10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-31 19:00:37 +08:00
96810b7d97 Fix: webdav connector (#12380)
### What problem does this PR solve?

fix webdav #11422

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-31 19:00:00 +08:00
365f9b01ae Fix: metadata data synchronization issues; add memory tab in home page (#12368)
### What problem does this PR solve?

fix: metadata data synchronization issues; add memory tab in home page

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-31 17:19:04 +08:00
7d4d687dde Feat: Bitbucket connector (#12332)
### What problem does this PR solve?

Feat: Bitbucket connector NOT READY TO MERGE

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-31 17:18:30 +08:00
6a664fea3b Docs: Updated v0.23.0 release notes (#12374)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-12-31 17:10:15 +08:00
dcdc1b0ec7 Fix urls for basic docs (#12372)
### Type of change

- [x] Documentation Update
2025-12-31 17:02:34 +08:00
4af4c36e60 Docs: Added v0.23.1 release notes (#12371)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-12-31 16:43:56 +08:00
05e5244d94 Refactor docs of RAGFlow admin (#12361)
### What problem does this PR solve?

as title

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-31 14:42:53 +08:00
c2ee2bf7fe Feat: add Zendesk data source integration with configuration and sync capabilities (#12344)
### What problem does this PR solve?
issue:
#12313
change:
add Zendesk data source integration with configuration and sync
capabilities

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-31 14:40:49 +08:00
461c81e14a Fix: KG search issue. (#12364)
### What problem does this PR solve?

Close #12347

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-31 14:40:27 +08:00
675d18d359 Add docs category file (#12359)
### What problem does this PR solve?

As title.

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-31 13:56:11 +08:00
750335978c Fix: Batch parsing problem (#12358)
### What problem does this PR solve?

Fix: Batch parsing problem

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-31 13:52:50 +08:00
ae7c623a35 fix(rag/prompts): Restructure metadata extraction rules for precision (#12360)
### What problem does this PR solve?

- Simplified and consolidated extraction rules
- Emphasized strict evidence-based extraction only
- Strengthened enum handling and hallucination prevention
- Clarified output requirements for empty results

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-31 13:52:33 +08:00
f24bdc0f83 Remove doc of health check (#12363)
### What problem does this PR solve?

System web page is disabled since v0.22.0, and the health check API is
also described in API reference. This document is obsolete.

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-31 13:49:38 +08:00
07ef35b7e6 Docs: Update version references to v0.23.1 in READMEs and docs (#12349)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.23.0 to v0.23.1
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-12-31 12:49:42 +08:00
7c9823a1ff Update release notes (#12356)
### What problem does this PR solve?

As title

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-31 12:49:09 +08:00
a0c3bcf798 [Bug] Don't display not used component status in admin status dashboard (#12355)
### What problem does this PR solve?

Currently, all components in configs are displayed even they are not
used. This PR is to fix it.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-31 12:40:52 +08:00
1a4a7d1705 Fix: apply kb configured llm issue. (#12354)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-31 12:40:28 +08:00
f141947085 [Feature] Admin: sort user list by email (#12350)
### What problem does this PR solve?

Sort the user list by user email address.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-31 11:55:18 +08:00
a07e947644 Feat: Fixed the issue where the newly created agent begin node displayed "undefined". #10427 (#12348)
### What problem does this PR solve?
Feat: Fixed the issue where the newly created agent begin node displayed
"undefined". #10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-31 11:19:33 +08:00
ae4692a845 Fix: Bug fixed (#12345)
### What problem does this PR solve?

Fix: Bug fixed
- Memory type multilingual display
- Name modification is prohibited in Data source
- Jump directly to Metadata settings

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-31 10:43:57 +08:00
7dac269429 fix: correct session reference initialization to prevent dialogue misalignment (#12343)
## Summary

Fixes #12311

Changes the `reference` field initialization from `[{}]` to `[]` in
session creation.

### Problem

When creating a session via the SDK API, the `reference` field was
incorrectly initialized as `[{}]`. This caused:
- First dialogue round: Empty reference
- Second dialogue round: Reference pointing to first round's data
- Overall misalignment between dialogue rounds and their references

### Solution

Changed the initialization to `[]` (empty list), which:
- Matches the `Conversation` model's expected default
- Ensures references grow correctly one-to-one with assistant responses
- Aligns with the service layer's expectations

### Testing

After applying this fix:
1. Create a session via `POST /api/v1/chats/{conversation_id}/sessions`
2. Send multiple questions via `POST
/api/v1/chats/{conversation_id}/completions`
3. View the conversation on web - references should now align correctly
with each dialogue round
2025-12-31 10:25:49 +08:00
ec5575dce2 fix(admin-ui): pagination auto reset to first page when after refetching data (#12339)
### What problem does this PR solve?

Admin user enabling/disabling a user will causing user list reset to
first page

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-31 09:39:13 +08:00
6fee60e110 Docs: What is RAG & What is Agent context engine (#12341)
### Type of change

- [x] Documentation Update
2025-12-30 21:29:21 +08:00
52f91c2388 Refine: image/table context. (#12336)
### What problem does this PR solve?

#12303

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-30 20:24:27 +08:00
348265afc1 Feat: Display mode at the begin node #10427 (#12326)
### What problem does this PR solve?

Feat: Display mode at the begin node #10427
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-30 19:53:24 +08:00
a7e466142d Fix: Dataset parse logic (#12330)
### What problem does this PR solve?

Fix: Dataset  logic of parser

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-30 19:53:00 +08:00
2fccf3924d Feat: Adapt the theme of the documentation page. #10427 (#12337)
### What problem does this PR solve?

Feat: Adapt the theme of the documentation page. #10427
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-30 19:35:44 +08:00
4705d07e11 fix: malformed dynamic translation key chunk.docType.${chunkType} (#12329)
### What problem does this PR solve?

Back-end may returns empty array on `"doc_type_kwd"` property which
causes translation key malformed.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-30 19:33:20 +08:00
68be3b9a3d Update release workflow (#12335)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-30 19:06:27 +08:00
e2d17d808b Potential fix for code scanning alert no. 62: Workflow does not contain permissions (#12334)
Potential fix for
[https://github.com/infiniflow/ragflow/security/code-scanning/62](https://github.com/infiniflow/ragflow/security/code-scanning/62)

In general, the fix is to explicitly declare a `permissions:` block so
the GITHUB_TOKEN used by this workflow only has the scopes required:
read access to repository contents and write access to
contents/releases. Since this workflow creates or moves tags and
creates/overwrites releases via `softprops/action-gh-release`, it needs
`contents: write`. There is no evidence that it needs other elevated
scopes (issues, pull-requests, actions, etc.), so these should remain at
their default of `none` by omission.

The best minimal fix without changing existing functionality is to add a
workflow-level `permissions:` block near the top of
`.github/workflows/release.yml`, after `name:` and before `on:` (or
anywhere at the root level, but this is conventional). This will apply
to all jobs (there is only `jobs.release`) and ensure that the
GITHUB_TOKEN has only `contents: write`. No additional imports or
methods are needed because this is a YAML configuration change only.

Concretely:
- Edit `.github/workflows/release.yml`.
- Insert:

```yaml
permissions:
  contents: write
```

between line 2 (empty line after `name: release`) and line 3 (`on:`). No
other lines need to be changed.


_Suggested fixes powered by Copilot Autofix. Review carefully before
merging._

Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
2025-12-30 18:59:51 +08:00
95edbd43ba Update model providers (#12333)
### What problem does this PR solve?

As title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-30 18:51:35 +08:00
b96d553cd8 Update release workflow (#12327)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-30 17:25:27 +08:00
bffdb5fb11 Feat: add IMAP data source integration with configuration and sync capabilities (#12316)
### What problem does this PR solve?
issue:
#12217 [#12313](https://github.com/infiniflow/ragflow/issues/12313)
change:
add IMAP data source integration with configuration and sync
capabilities

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-30 17:09:13 +08:00
109e782493 Feat: On the agent page and chat page, you can only select knowledge bases that use the same embedding model. #12320 (#12321)
### What problem does this PR solve?

Feat: On the agent page and chat page, you can only select knowledge
bases that use the same embedding model. #12320

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-30 17:08:30 +08:00
ff2c70608d Fix: judge index exist before delete memory message. (#12318)
### What problem does this PR solve?

Judge index exist before delete memory message.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-30 15:54:07 +08:00
5903d1c8f1 Feat: GitHub connector (#12314)
### What problem does this PR solve?

Feat: GitHub connector

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-30 15:09:52 +08:00
f0392e7501 Fix IDE warnings (#12315)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-30 15:04:09 +08:00
4037788e0c Fix: Dataset parse error (#12310)
### What problem does this PR solve?

Fix: Dataset parse error

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-30 13:08:20 +08:00
59884ab0fb Fix TypeError in meta_filter when using numeric metadata (#12286)
The filter_out function in metadata_utils.py was using a list of tuples
to evaluate conditions. Python eagerly evaluates all tuple elements when
constructing the list, causing "input in value" to be evaluated even
when the operator is "=". When input and value are floats (after numeric
conversion), this causes TypeError: "argument of type 'float' is not
iterable".

This change replaces the tuple list with if-elif chain, ensuring only
the matching condition is evaluated.

### What problem does this PR solve?

Fixes #12285

When using comparison operators like `=`, `>`, `<` with numeric
metadata, the `filter_out` function throws `TypeError("argument of type
'float' is not iterable")`. This is because Python eagerly evaluates all
tuple elements when constructing a list, causing `input in value` to be
evaluated even when the operator is `=`.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-12-30 11:56:48 +08:00
4a6d37f0e8 Fix: use async task to save memory (#12308)
### What problem does this PR solve?

Use async task to save memory.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
2025-12-30 11:41:38 +08:00
731e2d5f26 api key delete bug - Bug #3045 (#12299)
Description:
Fixed an issue where deleting an API token would fail because it was
incorrectly using current_user.id as the tenant_id instead of querying
the actual tenant ID from UserTenantService.

Changes:

Updated rm() endpoint to fetch the correct tenant_id from
UserTenantService before deleting the API token
Added proper error handling with try/except block
Code style cleanup: consistent quote usage and formatting
Related Issue: #3045

https://github.com/infiniflow/ragflow/issues/3045

Co-authored-by: Mardani, Ramin <ramin.mardani@sscinc.com>
2025-12-30 11:27:04 +08:00
df3cbb9b9e Refactor code (#12305)
### What problem does this PR solve?

as title

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-30 11:09:18 +08:00
5402666b19 docs: fix typos (#12301)
### What problem does this PR solve?

fix typos

### Type of change

- [x] Documentation Update
2025-12-30 09:39:28 +08:00
4ec6a4e493 Feat: Remove the code that outputs jsonschema from the webhook.#10427 (#12297)
### What problem does this PR solve?

Feat: Remove the code that outputs jsonschema from the webhook.#10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-29 17:46:05 +08:00
2d5ad42128 docs: add optional proxy arguments for Docker build instructions (#12272)
### What problem does this PR solve?

Adds instructions for passing optional HTTP/HTTPS proxy arguments when
building the Docker image.

This helps users behind a proxy to successfully build the RAGFlow Docker
image without modifying the Dockerfile itself.

### Type of change

- [x] Documentation Update
2025-12-29 17:43:55 +08:00
dccda35f65 Fix: S3 parameter error (#12290)
### What problem does this PR solve?

Fix: S3 parameter error

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-29 17:38:01 +08:00
d142b9095e Fix: pick message to delete (#12295)
### What problem does this PR solve?

Pick unforgotten message when not found forgotten message to delete.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 17:10:46 +08:00
c2c079886f Revert "Feat: github connector" (#12296)
Reverts infiniflow/ragflow#12292
2025-12-29 17:06:40 +08:00
c3ae1aaecd Feat: Gitlab connector (#12248)
### What problem does this PR solve?

Feat: Gitlab connector
Fix: submit button in darkmode

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-29 17:05:20 +08:00
f099bc1236 Feat: github connector (#12292)
### What problem does this PR solve?

Feat: github connector

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-29 16:57:20 +08:00
0b5d1ebefa refactor: docling parser will close bytes io (#12280)
### What problem does this PR solve?

docling parser will close bytes io

### Type of change

- [x] Refactoring
2025-12-29 13:33:27 +08:00
082c2ed11c helm: improvements (#10976)
- fix(ingress): use root context ($) for fullname inside range
- fix(statefulset): use updateStrategy instead of strategy for
mysql/infinity/elasticsearch/opensearch
- feat(mysql): add external mode via mysql.enabled=false with env
MYSQL_HOST/PORT and MYSQL_USER (default root)
- feat(minio/redis): add external mode via *.enabled=false with env
*_HOST/PORT
- feat(global): add global.repo for image registry prefix and
global.imagePullSecrets for all pods
- feat: helper template ragflow.imageRepo to render image with global
repo
- chore(env): allow optional MINIO_HOST, MINIO_PASSWORD, REDIS_PASSWORD
(remove required); keep MYSQL_PASSWORD required
- docs(helm): add helm/README.md and update usage
- refactor(images): apply global repo to all components and init
containers
- test: align test busybox image with global repo helper

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-12-29 13:29:47 +08:00
a764f0a5b2 Feat: Add Asana data source integration and configuration options (#12239)
### What problem does this PR solve?

change: Add Asana data source integration and configuration options

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-29 13:28:37 +08:00
Rin
651d9fff9f security: replace unsafe eval with ast.literal_eval in vision operators (#12236)
Addresses a potential RCE vulnerability in NormalizeImage by using
ast.literal_eval for safer string parsing.

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-12-29 13:28:09 +08:00
fddfce303c Fix (sdk): ensure variables defined in rm_chunk API (#12274)
### What problem does this PR solve?

Fixes a bug in the `rm_chunk` SDK interface where an `UnboundLocalError`
could
occur if `chunk_ids` is not provided in the request. 

- `unique_chunk_ids` and `duplicate_messages` are now always initialized
  in the `else` branch when `chunk_ids` is missing.
- API behavior remains unchanged when `chunk_ids` is present.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 13:18:23 +08:00
a24fc8291b Fix: If there is an error message on the chat page, the subsequent message references will not display correctly. #12252 (#12283)
### What problem does this PR solve?

Fix: If there is an error message on the chat page, the subsequent
message references will not display correctly. #12252

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 12:58:12 +08:00
37e4485415 feat: add MDX file support (#12261)
Feat: add MDX file support  #12057 
### What problem does this PR solve?

<img width="1055" height="270" alt="image"
src="https://github.com/user-attachments/assets/a0ab49f9-7806-41cd-8a96-f593591ab36b"
/>

The page states that MDX files are supported, but uploading fails with
the error: "x.mdx: This type of file has not been supported yet!"
<img width="381" height="110" alt="image"
src="https://github.com/user-attachments/assets/4bbb7d08-cb47-416a-95fc-bc90b90fcc39"
/>


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-29 12:54:31 +08:00
8d3f9d61da Fix: Delete chunk images on document parser config change. (#12262)
### What problem does this PR solve?

Modifying a document’s parser config previously left behind obsolete
chunk images. If the dataset isn’t manually deleted, these images
accumulate and waste storage. This PR fixes the issue by automatically
removing associated images when the parser config changes.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 12:54:11 +08:00
27c55f6514 Fix the consistency of ts and datetime (#12288)
### What problem does this PR solve?

#12279
#11942 

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-29 12:37:13 +08:00
9883c572cd Refactor: keep timestamp consistency (#12279)
### What problem does this PR solve?

keep timestamp consistency

### Type of change

- [x] Refactoring
2025-12-29 12:02:43 +08:00
f9619defcc Fix: init memory size from es (#12282)
### What problem does this PR solve?

Handle return when none exist index.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 12:01:45 +08:00
01f0ced1e6 Fix IDE warnings (#12281)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-29 12:01:18 +08:00
647fb115a0 Fix: Data-source S3 page style (#12255)
### What problem does this PR solve?

Fix: Data-source S3 page style

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-29 09:46:35 +08:00
2114b9e3ad Update deploy_local_llm.mdx (#12276)
### Type of change

- [x] Documentation Update
2025-12-28 19:46:50 +08:00
45b96acf6b Update deploy_local_llm.mdx vllm guide picture (#12275)
### Type of change
- [x] Documentation Update
2025-12-28 19:29:33 +08:00
Rin
3305215144 docs: add security warnings for default passwords in .env (#12250)
Enhances security by adding explicit warnings in the environment
template about changing default passwords for MySQL, Elasticsearch, and
MinIO before deployment.
2025-12-28 14:02:17 +08:00
86b03f399a Fix error in docs (#12269)
### What problem does this PR solve?

As title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-28 11:55:52 +08:00
246 changed files with 9718 additions and 2959 deletions

View File

@ -10,6 +10,12 @@ on:
tags:
- "v*.*.*" # normal release
permissions:
contents: write
actions: read
checks: read
statuses: read
# https://docs.github.com/en/actions/using-jobs/using-concurrency
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
@ -76,6 +82,14 @@ jobs:
# The body field does not support environment variable substitution directly.
body_path: release_body.md
- name: Build and push image
run: |
sudo docker login --username infiniflow --password-stdin <<< ${{ secrets.DOCKERHUB_TOKEN }}
sudo docker build --build-arg NEED_MIRROR=1 --build-arg HTTPS_PROXY=${HTTPS_PROXY} --build-arg HTTP_PROXY=${HTTP_PROXY} -t infiniflow/ragflow:${RELEASE_TAG} -f Dockerfile .
sudo docker tag infiniflow/ragflow:${RELEASE_TAG} infiniflow/ragflow:latest
sudo docker push infiniflow/ragflow:${RELEASE_TAG}
sudo docker push infiniflow/ragflow:latest
- name: Build and push ragflow-sdk
if: startsWith(github.ref, 'refs/tags/v')
run: |
@ -85,11 +99,3 @@ jobs:
if: startsWith(github.ref, 'refs/tags/v')
run: |
cd admin/client && uv build && uv publish --token ${{ secrets.PYPI_API_TOKEN }}
- name: Build and push image
run: |
sudo docker login --username infiniflow --password-stdin <<< ${{ secrets.DOCKERHUB_TOKEN }}
sudo docker build --build-arg NEED_MIRROR=1 --build-arg HTTPS_PROXY=${HTTPS_PROXY} --build-arg HTTP_PROXY=${HTTP_PROXY} -t infiniflow/ragflow:${RELEASE_TAG} -f Dockerfile .
sudo docker tag infiniflow/ragflow:${RELEASE_TAG} infiniflow/ragflow:latest
sudo docker push infiniflow/ragflow:${RELEASE_TAG}
sudo docker push infiniflow/ragflow:latest

View File

@ -19,17 +19,17 @@ RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/huggingface.co
# This is the only way to run python-tika without internet access. Without this set, the default is to check the tika version and pull latest every time from Apache.
RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/,target=/deps \
cp -r /deps/nltk_data /root/ && \
cp /deps/tika-server-standard-3.0.0.jar /deps/tika-server-standard-3.0.0.jar.md5 /ragflow/ && \
cp /deps/tika-server-standard-3.2.3.jar /deps/tika-server-standard-3.2.3.jar.md5 /ragflow/ && \
cp /deps/cl100k_base.tiktoken /ragflow/9b5ad71b2ce5302211f9c61530b329a4922fc6a4
ENV TIKA_SERVER_JAR="file:///ragflow/tika-server-standard-3.0.0.jar"
ENV TIKA_SERVER_JAR="file:///ragflow/tika-server-standard-3.2.3.jar"
ENV DEBIAN_FRONTEND=noninteractive
# Setup apt
# Python package and implicit dependencies:
# opencv-python: libglib2.0-0 libglx-mesa0 libgl1
# aspose-slides: pkg-config libicu-dev libgdiplus libssl1.1_1.1.1f-1ubuntu2_amd64.deb
# python-pptx: default-jdk tika-server-standard-3.0.0.jar
# python-pptx: default-jdk tika-server-standard-3.2.3.jar
# selenium: libatk-bridge2.0-0 chrome-linux64-121-0-6167-85
# Building C extensions: libpython3-dev libgtk-4-1 libnss3 xdg-utils libgbm-dev
RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \

View File

@ -3,7 +3,7 @@
FROM scratch
# Copy resources downloaded via download_deps.py
COPY chromedriver-linux64-121-0-6167-85 chrome-linux64-121-0-6167-85 cl100k_base.tiktoken libssl1.1_1.1.1f-1ubuntu2_amd64.deb libssl1.1_1.1.1f-1ubuntu2_arm64.deb tika-server-standard-3.0.0.jar tika-server-standard-3.0.0.jar.md5 libssl*.deb uv-x86_64-unknown-linux-gnu.tar.gz /
COPY chromedriver-linux64-121-0-6167-85 chrome-linux64-121-0-6167-85 cl100k_base.tiktoken libssl1.1_1.1.1f-1ubuntu2_amd64.deb libssl1.1_1.1.1f-1ubuntu2_arm64.deb tika-server-standard-3.2.3.jar tika-server-standard-3.2.3.jar.md5 libssl*.deb uv-x86_64-unknown-linux-gnu.tar.gz /
COPY nltk_data /nltk_data

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.1">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -37,7 +37,7 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/12241">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
@ -72,7 +72,7 @@
## 💡 What is RAGFlow?
[RAGFlow](https://ragflow.io/) is a leading open-source Retrieval-Augmented Generation (RAG) engine that fuses cutting-edge RAG with Agent capabilities to create a superior context layer for LLMs. It offers a streamlined RAG workflow adaptable to enterprises of any scale. Powered by a converged context engine and pre-built agent templates, RAGFlow enables developers to transform complex data into high-fidelity, production-ready AI systems with exceptional efficiency and precision.
[RAGFlow](https://ragflow.io/) is a leading open-source Retrieval-Augmented Generation ([RAG](https://ragflow.io/basics/what-is-rag)) engine that fuses cutting-edge RAG with Agent capabilities to create a superior context layer for LLMs. It offers a streamlined RAG workflow adaptable to enterprises of any scale. Powered by a converged [context engine](https://ragflow.io/basics/what-is-agent-context-engine) and pre-built agent templates, RAGFlow enables developers to transform complex data into high-fidelity, production-ready AI systems with exceptional efficiency and precision.
## 🎮 Demo
@ -188,12 +188,12 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.23.0` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.23.0`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server.
> The command below downloads the `v0.23.1` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.23.1`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server.
```bash
$ cd ragflow/docker
# git checkout v0.23.0
# git checkout v0.23.1
# Optional: use a stable tag (see releases: https://github.com/infiniflow/ragflow/releases)
# This step ensures the **entrypoint.sh** file in the code matches the Docker image version.
@ -233,7 +233,7 @@ releases! 🌟
* Running on all addresses (0.0.0.0)
```
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anormal`
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network abnormal`
> error because, at that moment, your RAGFlow may not be fully initialized.
>
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
@ -303,6 +303,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
Or if you are behind a proxy, you can pass proxy arguments:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Launch service from source for development
1. Install `uv` and `pre-commit`, or skip this step if they are already installed:
@ -387,7 +396,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 📜 Roadmap
See the [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214)
See the [RAGFlow Roadmap 2026](https://github.com/infiniflow/ragflow/issues/12241)
## 🏄 Community

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.1">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -37,7 +37,7 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Dokumentasi</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Peta Jalan</a> |
<a href="https://github.com/infiniflow/ragflow/issues/12241">Peta Jalan</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
@ -72,7 +72,7 @@
## 💡 Apa Itu RAGFlow?
[RAGFlow](https://ragflow.io/) adalah mesin RAG (Retrieval-Augmented Generation) open-source terkemuka yang mengintegrasikan teknologi RAG mutakhir dengan kemampuan Agent untuk menciptakan lapisan kontekstual superior bagi LLM. Menyediakan alur kerja RAG yang efisien dan dapat diadaptasi untuk perusahaan segala skala. Didukung oleh mesin konteks terkonvergensi dan template Agent yang telah dipra-bangun, RAGFlow memungkinkan pengembang mengubah data kompleks menjadi sistem AI kesetiaan-tinggi dan siap-produksi dengan efisiensi dan presisi yang luar biasa.
[RAGFlow](https://ragflow.io/) adalah mesin [RAG](https://ragflow.io/basics/what-is-rag) (Retrieval-Augmented Generation) open-source terkemuka yang mengintegrasikan teknologi RAG mutakhir dengan kemampuan Agent untuk menciptakan lapisan kontekstual superior bagi LLM. Menyediakan alur kerja RAG yang efisien dan dapat diadaptasi untuk perusahaan segala skala. Didukung oleh mesin konteks terkonvergensi dan template Agent yang telah dipra-bangun, RAGFlow memungkinkan pengembang mengubah data kompleks menjadi sistem AI kesetiaan-tinggi dan siap-produksi dengan efisiensi dan presisi yang luar biasa.
## 🎮 Demo
@ -188,12 +188,12 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.23.0 dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.23.0, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server.
> Perintah di bawah ini mengunduh edisi v0.23.1 dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.23.1, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server.
```bash
$ cd ragflow/docker
# git checkout v0.23.0
# git checkout v0.23.1
# Opsional: gunakan tag stabil (lihat releases: https://github.com/infiniflow/ragflow/releases)
# This steps ensures the **entrypoint.sh** file in the code matches the Docker image version.
@ -233,7 +233,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
* Running on all addresses (0.0.0.0)
```
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network anormal`
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network abnormal`
> karena RAGFlow mungkin belum sepenuhnya siap.
>
2. Buka browser web Anda, masukkan alamat IP server Anda, dan login ke RAGFlow.
@ -277,6 +277,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
Jika berada di belakang proxy, Anda dapat melewatkan argumen proxy:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal `uv` dan `pre-commit`, atau lewati langkah ini jika sudah terinstal:
@ -359,7 +368,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 📜 Roadmap
Lihat [Roadmap RAGFlow 2025](https://github.com/infiniflow/ragflow/issues/4214)
Lihat [Roadmap RAGFlow 2026](https://github.com/infiniflow/ragflow/issues/12241)
## 🏄 Komunitas

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.1">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -37,7 +37,7 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/12241">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
@ -53,7 +53,7 @@
## 💡 RAGFlow とは?
[RAGFlow](https://ragflow.io/) は、先進的なRAGRetrieval-Augmented Generation技術と Agent 機能を融合し、大規模言語モデルLLMに優れたコンテキスト層を構築する最先端のオープンソース RAG エンジンです。あらゆる規模の企業に対応可能な合理化された RAG ワークフローを提供し、統合型コンテキストエンジンと事前構築されたAgentテンプレートにより、開発者が複雑なデータを驚異的な効率性と精度で高精細なプロダクションレディAIシステムへ変換することを可能にします。
[RAGFlow](https://ragflow.io/) は、先進的な[RAG](https://ragflow.io/basics/what-is-rag)Retrieval-Augmented Generation技術と Agent 機能を融合し、大規模言語モデルLLMに優れたコンテキスト層を構築する最先端のオープンソース RAG エンジンです。あらゆる規模の企業に対応可能な合理化された RAG ワークフローを提供し、統合型[コンテキストエンジン](https://ragflow.io/basics/what-is-agent-context-engine)と事前構築されたAgentテンプレートにより、開発者が複雑なデータを驚異的な効率性と精度で高精細なプロダクションレディAIシステムへ変換することを可能にします。
## 🎮 Demo
@ -168,12 +168,12 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.23.0 エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.23.0 とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.23.1 エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.23.1 とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。
```bash
$ cd ragflow/docker
# git checkout v0.23.0
# git checkout v0.23.1
# 任意: 安定版タグを利用 (一覧: https://github.com/infiniflow/ragflow/releases)
# この手順は、コード内の entrypoint.sh ファイルが Docker イメージのバージョンと一致していることを確認します。
@ -277,6 +277,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
プロキシ環境下にいる場合は、プロキシ引数を指定できます:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 ソースコードからサービスを起動する方法
1. `uv` と `pre-commit` をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
@ -359,7 +368,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 📜 ロードマップ
[RAGFlow ロードマップ 2025](https://github.com/infiniflow/ragflow/issues/4214) を参照
[RAGFlow ロードマップ 2026](https://github.com/infiniflow/ragflow/issues/12241) を参照
## 🏄 コミュニティ

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.1">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -37,7 +37,7 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/12241">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
@ -54,7 +54,7 @@
## 💡 RAGFlow란?
[RAGFlow](https://ragflow.io/) 는 최첨단 RAG(Retrieval-Augmented Generation)와 Agent 기능을 융합하여 대규모 언어 모델(LLM)을 위한 우수한 컨텍스트 계층을 생성하는 선도적인 오픈소스 RAG 엔진입니다. 모든 규모의 기업에 적용 가능한 효율적인 RAG 워크플로를 제공하며, 통합 컨텍스트 엔진과 사전 구축된 Agent 템플릿을 통해 개발자들이 복잡한 데이터를 예외적인 효율성과 정밀도로 고급 구현도의 프로덕션 준비 완료 AI 시스템으로 변환할 수 있도록 지원합니다.
[RAGFlow](https://ragflow.io/) 는 최첨단 [RAG](https://ragflow.io/basics/what-is-rag)(Retrieval-Augmented Generation)와 Agent 기능을 융합하여 대규모 언어 모델(LLM)을 위한 우수한 컨텍스트 계층을 생성하는 선도적인 오픈소스 RAG 엔진입니다. 모든 규모의 기업에 적용 가능한 효율적인 RAG 워크플로를 제공하며, 통합 [컨텍스트 엔진](https://ragflow.io/basics/what-is-agent-context-engine)과 사전 구축된 Agent 템플릿을 통해 개발자들이 복잡한 데이터를 예외적인 효율성과 정밀도로 고급 구현도의 프로덕션 준비 완료 AI 시스템으로 변환할 수 있도록 지원합니다.
## 🎮 데모
@ -170,12 +170,12 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.23.0 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.23.0과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.23.1 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.23.1과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오.
```bash
$ cd ragflow/docker
# git checkout v0.23.0
# git checkout v0.23.1
# Optional: use a stable tag (see releases: https://github.com/infiniflow/ragflow/releases)
# 이 단계는 코드의 entrypoint.sh 파일이 Docker 이미지 버전과 일치하도록 보장합니다.
@ -214,7 +214,7 @@
* Running on all addresses (0.0.0.0)
```
> 만약 확인 단계를 건너뛰고 바로 RAGFlow에 로그인하면, RAGFlow가 완전히 초기화되지 않았기 때문에 브라우저에서 `network anormal` 오류가 발생할 수 있습니다.
> 만약 확인 단계를 건너뛰고 바로 RAGFlow에 로그인하면, RAGFlow가 완전히 초기화되지 않았기 때문에 브라우저에서 `network abnormal` 오류가 발생할 수 있습니다.
2. 웹 브라우저에 서버의 IP 주소를 입력하고 RAGFlow에 로그인하세요.
> 기본 설정을 사용할 경우, `http://IP_OF_YOUR_MACHINE`만 입력하면 됩니다 (포트 번호는 제외). 기본 HTTP 서비스 포트 `80`은 기본 구성으로 사용할 때 생략할 수 있습니다.
@ -271,6 +271,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
프록시 환경인 경우, 프록시 인수를 전달할 수 있습니다:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 소스 코드로 서비스를 시작합니다.
1. `uv` 와 `pre-commit` 을 설치하거나, 이미 설치된 경우 이 단계를 건너뜁니다:
@ -363,7 +372,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 📜 로드맵
[RAGFlow 로드맵 2025](https://github.com/infiniflow/ragflow/issues/4214)을 확인하세요.
[RAGFlow 로드맵 2026](https://github.com/infiniflow/ragflow/issues/12241)을 확인하세요.
## 🏄 커뮤니티

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.1">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -37,7 +37,7 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Documentação</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/12241">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
@ -73,7 +73,7 @@
## 💡 O que é o RAGFlow?
[RAGFlow](https://ragflow.io/) é um mecanismo de RAG (Retrieval-Augmented Generation) open-source líder que fusiona tecnologias RAG de ponta com funcionalidades Agent para criar uma camada contextual superior para LLMs. Oferece um fluxo de trabalho RAG otimizado adaptável a empresas de qualquer escala. Alimentado por um motor de contexto convergente e modelos Agent pré-construídos, o RAGFlow permite que desenvolvedores transformem dados complexos em sistemas de IA de alta fidelidade e pronto para produção com excepcional eficiência e precisão.
[RAGFlow](https://ragflow.io/) é um mecanismo de [RAG](https://ragflow.io/basics/what-is-rag) (Retrieval-Augmented Generation) open-source líder que fusiona tecnologias RAG de ponta com funcionalidades Agent para criar uma camada contextual superior para LLMs. Oferece um fluxo de trabalho RAG otimizado adaptável a empresas de qualquer escala. Alimentado por [um motor de contexto](https://ragflow.io/basics/what-is-agent-context-engine) convergente e modelos Agent pré-construídos, o RAGFlow permite que desenvolvedores transformem dados complexos em sistemas de IA de alta fidelidade e pronto para produção com excepcional eficiência e precisão.
## 🎮 Demo
@ -188,12 +188,12 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição`v0.23.0` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.23.0`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor.
> O comando abaixo baixa a edição`v0.23.1` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.23.1`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor.
```bash
$ cd ragflow/docker
# git checkout v0.23.0
# git checkout v0.23.1
# Opcional: use uma tag estável (veja releases: https://github.com/infiniflow/ragflow/releases)
# Esta etapa garante que o arquivo entrypoint.sh no código corresponda à versão da imagem do Docker.
@ -232,7 +232,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
* Rodando em todos os endereços (0.0.0.0)
```
> Se você pular essa etapa de confirmação e acessar diretamente o RAGFlow, seu navegador pode exibir um erro `network anormal`, pois, nesse momento, seu RAGFlow pode não estar totalmente inicializado.
> Se você pular essa etapa de confirmação e acessar diretamente o RAGFlow, seu navegador pode exibir um erro `network abnormal`, pois, nesse momento, seu RAGFlow pode não estar totalmente inicializado.
>
5. No seu navegador, insira o endereço IP do seu servidor e faça login no RAGFlow.
@ -294,6 +294,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
Se você estiver atrás de um proxy, pode passar argumentos de proxy:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
1. Instale o `uv` e o `pre-commit`, ou pule esta etapa se eles já estiverem instalados:
@ -376,7 +385,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 📜 Roadmap
Veja o [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214)
Veja o [RAGFlow Roadmap 2026](https://github.com/infiniflow/ragflow/issues/12241)
## 🏄 Comunidade

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.1">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -37,7 +37,7 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/12241">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
@ -72,7 +72,7 @@
## 💡 RAGFlow 是什麼?
[RAGFlow](https://ragflow.io/) 是一款領先的開源 RAGRetrieval-Augmented Generation引擎通過融合前沿的 RAG 技術與 Agent 能力,為大型語言模型提供卓越的上下文層。它提供可適配任意規模企業的端到端 RAG 工作流,憑藉融合式上下文引擎與預置的 Agent 模板,助力開發者以極致效率與精度將複雜數據轉化為高可信、生產級的人工智能系統。
[RAGFlow](https://ragflow.io/) 是一款領先的開源 [RAG](https://ragflow.io/basics/what-is-rag)Retrieval-Augmented Generation引擎通過融合前沿的 RAG 技術與 Agent 能力,為大型語言模型提供卓越的上下文層。它提供可適配任意規模企業的端到端 RAG 工作流,憑藉融合式[上下文引擎](https://ragflow.io/basics/what-is-agent-context-engine)與預置的 Agent 模板,助力開發者以極致效率與精度將複雜數據轉化為高可信、生產級的人工智能系統。
## 🎮 Demo 試用
@ -125,7 +125,7 @@
### 🍔 **相容各類異質資料來源**
- 支援豐富的文件類型,包括 Word 文件、PPT、excel 表格、txt 檔案、圖片、PDF、影印件、印件、結構化資料、網頁等。
- 支援豐富的文件類型,包括 Word 文件、PPT、excel 表格、txt 檔案、圖片、PDF、影印件、印件、結構化資料、網頁等。
### 🛀 **全程無憂、自動化的 RAG 工作流程**
@ -187,12 +187,12 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow Docker 映像 `v0.23.0`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.23.0` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。
> 執行以下指令會自動下載 RAGFlow Docker 映像 `v0.23.1`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.23.1` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。
```bash
$ cd ragflow/docker
# git checkout v0.23.0
# git checkout v0.23.1
# 可選使用穩定版標籤查看發佈https://github.com/infiniflow/ragflow/releases
# 此步驟確保程式碼中的 entrypoint.sh 檔案與 Docker 映像版本一致。
@ -237,7 +237,7 @@
* Running on all addresses (0.0.0.0)
```
> 如果您跳過這一步驟系統確認步驟就登入 RAGFlow你的瀏覽器有可能會提示 `network anormal` 或 `網路異常`,因為 RAGFlow 可能並未完全啟動成功。
> 如果您跳過這一步驟系統確認步驟就登入 RAGFlow你的瀏覽器有可能會提示 `network abnormal` 或 `網路異常`,因為 RAGFlow 可能並未完全啟動成功。
>
5. 在你的瀏覽器中輸入你的伺服器對應的 IP 位址並登入 RAGFlow。
@ -303,6 +303,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
若您位於代理環境,可傳遞代理參數:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以原始碼啟動服務
1. 安裝 `uv` 和 `pre-commit`。如已安裝,可跳過此步驟:
@ -390,7 +399,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 📜 路線圖
詳見 [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214) 。
詳見 [RAGFlow Roadmap 2026](https://github.com/infiniflow/ragflow/issues/12241) 。
## 🏄 開源社群

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.0">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.23.1">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -37,7 +37,7 @@
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://github.com/infiniflow/ragflow/issues/12241">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
@ -72,7 +72,7 @@
## 💡 RAGFlow 是什么?
[RAGFlow](https://ragflow.io/) 是一款领先的开源检索增强生成RAG引擎通过融合前沿的 RAG 技术与 Agent 能力,为大型语言模型提供卓越的上下文层。它提供可适配任意规模企业的端到端 RAG 工作流,凭借融合式上下文引擎与预置的 Agent 模板,助力开发者以极致效率与精度将复杂数据转化为高可信、生产级的人工智能系统。
[RAGFlow](https://ragflow.io/) 是一款领先的开源检索增强生成([RAG](https://ragflow.io/basics/what-is-rag))引擎,通过融合前沿的 RAG 技术与 Agent 能力,为大型语言模型提供卓越的上下文层。它提供可适配任意规模企业的端到端 RAG 工作流,凭借融合式[上下文引擎](https://ragflow.io/basics/what-is-agent-context-engine)与预置的 Agent 模板,助力开发者以极致效率与精度将复杂数据转化为高可信、生产级的人工智能系统。
## 🎮 Demo 试用
@ -188,12 +188,12 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow Docker 镜像 `v0.23.0`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.23.0` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。
> 运行以下命令会自动下载 RAGFlow Docker 镜像 `v0.23.1`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.23.1` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。
```bash
$ cd ragflow/docker
# git checkout v0.23.0
# git checkout v0.23.1
# 可选使用稳定版本标签查看发布https://github.com/infiniflow/ragflow/releases
# 这一步确保代码中的 entrypoint.sh 文件与 Docker 镜像的版本保持一致。
@ -238,7 +238,7 @@
* Running on all addresses (0.0.0.0)
```
> 如果您在没有看到上面的提示信息出来之前,就尝试登录 RAGFlow你的浏览器有可能会提示 `network anormal` 或 `网络异常`。
> 如果您在没有看到上面的提示信息出来之前,就尝试登录 RAGFlow你的浏览器有可能会提示 `network abnormal` 或 `网络异常`。
5. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。
> 上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80
@ -302,6 +302,15 @@ cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
如果您处在代理环境下,可以传递代理参数:
```bash
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以源代码启动服务
1. 安装 `uv` 和 `pre-commit`。如已经安装,可跳过本步骤:
@ -393,7 +402,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 📜 路线图
详见 [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214) 。
详见 [RAGFlow Roadmap 2026](https://github.com/infiniflow/ragflow/issues/12241) 。
## 🏄 开源社区

View File

@ -48,7 +48,7 @@ It consists of a server-side Service and a command-line client (CLI), both imple
1. Ensure the Admin Service is running.
2. Install ragflow-cli.
```bash
pip install ragflow-cli==0.23.0
pip install ragflow-cli==0.23.1
```
3. Launch the CLI client:
```bash

View File

@ -53,6 +53,8 @@ sql_command: list_services
| alter_user_role
| show_user_permission
| show_version
| grant_admin
| revoke_admin
// meta command definition
meta_command: "\\" meta_command_name [meta_args]
@ -77,6 +79,7 @@ DROP: "DROP"i
USER: "USER"i
ALTER: "ALTER"i
ACTIVE: "ACTIVE"i
ADMIN: "ADMIN"i
PASSWORD: "PASSWORD"i
DATASETS: "DATASETS"i
OF: "OF"i
@ -123,6 +126,9 @@ revoke_permission: REVOKE action_list ON identifier FROM ROLE identifier ";"
alter_user_role: ALTER USER quoted_string SET ROLE identifier ";"
show_user_permission: SHOW USER PERMISSION quoted_string ";"
grant_admin: GRANT ADMIN quoted_string ";"
revoke_admin: REVOKE ADMIN quoted_string ";"
show_version: SHOW VERSION ";"
action_list: identifier ("," identifier)*
@ -249,6 +255,14 @@ class AdminTransformer(Transformer):
def show_version(self, items):
return {"type": "show_version"}
def grant_admin(self, items):
user_name = items[2]
return {"type": "grant_admin", "user_name": user_name}
def revoke_admin(self, items):
user_name = items[2]
return {"type": "revoke_admin", "user_name": user_name}
def action_list(self, items):
return items
@ -286,6 +300,43 @@ def encode_to_base64(input_string):
return base64_encoded.decode("utf-8")
def show_help():
"""Help info"""
help_text = """
Commands:
LIST SERVICES
SHOW SERVICE <service>
STARTUP SERVICE <service>
SHUTDOWN SERVICE <service>
RESTART SERVICE <service>
LIST USERS
SHOW USER <user>
DROP USER <user>
CREATE USER <user> <password>
ALTER USER PASSWORD <user> <new_password>
ALTER USER ACTIVE <user> <on/off>
LIST DATASETS OF <user>
LIST AGENTS OF <user>
CREATE ROLE <role>
DROP ROLE <role>
ALTER ROLE <role> SET DESCRIPTION <description>
LIST ROLES
SHOW ROLE <role>
GRANT <action_list> ON <function> TO ROLE <role>
REVOKE <action_list> ON <function> TO ROLE <role>
ALTER USER <user> SET ROLE <role>
SHOW USER PERMISSION <user>
SHOW VERSION
GRANT ADMIN <user>
REVOKE ADMIN <user>
Meta Commands:
\\?, \\h, \\help Show this help
\\q, \\quit, \\exit Quit the CLI
"""
print(help_text)
class AdminCLI(Cmd):
def __init__(self):
super().__init__()
@ -370,7 +421,7 @@ class AdminCLI(Cmd):
res_json = response.json()
error_code = res_json.get("code", -1)
if error_code == 0:
self.session.headers.update({"Content-Type": "application/json", "Authorization": response.headers["Authorization"], "User-Agent": "RAGFlow-CLI/0.23.0"})
self.session.headers.update({"Content-Type": "application/json", "Authorization": response.headers["Authorization"], "User-Agent": "RAGFlow-CLI/0.23.1"})
print("Authentication successful.")
return True
else:
@ -566,6 +617,10 @@ class AdminCLI(Cmd):
self._show_user_permission(command_dict)
case "show_version":
self._show_version(command_dict)
case "grant_admin":
self._grant_admin(command_dict)
case "revoke_admin":
self._revoke_admin(command_dict)
case "meta":
self._handle_meta_command(command_dict)
case _:
@ -698,6 +753,33 @@ class AdminCLI(Cmd):
else:
print(f"Unknown activate status: {activate_status}.")
def _grant_admin(self, command):
user_name_tree: Tree = command["user_name"]
user_name: str = user_name_tree.children[0].strip("'\"")
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/admin"
# print(f"Grant admin: {url}")
# return
response = self.session.put(url)
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
else:
print(f"Fail to grant {user_name} admin authorization, code: {res_json['code']}, message: {res_json['message']}")
def _revoke_admin(self, command):
user_name_tree: Tree = command["user_name"]
user_name: str = user_name_tree.children[0].strip("'\"")
url = f"http://{self.host}:{self.port}/api/v1/admin/users/{user_name}/admin"
# print(f"Revoke admin: {url}")
# return
response = self.session.delete(url)
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
else:
print(f"Fail to revoke {user_name} admin authorization, code: {res_json['code']}, message: {res_json['message']}")
def _handle_list_datasets(self, command):
username_tree: Tree = command["user_name"]
user_name: str = username_tree.children[0].strip("'\"")
@ -873,36 +955,12 @@ class AdminCLI(Cmd):
args = command.get("args", [])
if meta_command in ["?", "h", "help"]:
self.show_help()
show_help()
elif meta_command in ["q", "quit", "exit"]:
print("Goodbye!")
else:
print(f"Meta command '{meta_command}' with args {args}")
def show_help(self):
"""Help info"""
help_text = """
Commands:
LIST SERVICES
SHOW SERVICE <service>
STARTUP SERVICE <service>
SHUTDOWN SERVICE <service>
RESTART SERVICE <service>
LIST USERS
SHOW USER <user>
DROP USER <user>
CREATE USER <user> <password>
ALTER USER PASSWORD <user> <new_password>
ALTER USER ACTIVE <user> <on/off>
LIST DATASETS OF <user>
LIST AGENTS OF <user>
Meta Commands:
\\?, \\h, \\help Show this help
\\q, \\quit, \\exit Quit the CLI
"""
print(help_text)
def main():
import sys

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow-cli"
version = "0.23.0"
version = "0.23.1"
description = "Admin Service's client of [RAGFlow](https://github.com/infiniflow/ragflow). The Admin Service provides user management and system monitoring. "
authors = [{ name = "Lynn", email = "lynn_inf@hotmail.com" }]
license = { text = "Apache License, Version 2.0" }

2
admin/client/uv.lock generated
View File

@ -196,7 +196,7 @@ wheels = [
[[package]]
name = "ragflow-cli"
version = "0.23.0"
version = "0.23.1"
source = { virtual = "." }
dependencies = [
{ name = "beartype" },

View File

@ -158,6 +158,36 @@ def alter_user_activate_status(username):
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/admin', methods=['PUT'])
@login_required
@check_admin_auth
def grant_admin(username):
try:
if current_user.email == username:
return error_response(f"can't grant current user: {username}", 409)
msg = UserMgr.grant_admin(username)
return success_response(None, msg)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/admin', methods=['DELETE'])
@login_required
@check_admin_auth
def revoke_admin(username):
try:
if current_user.email == username:
return error_response(f"can't grant current user: {username}", 409)
msg = UserMgr.revoke_admin(username)
return success_response(None, msg)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>', methods=['GET'])
@login_required
@check_admin_auth

View File

@ -13,6 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import logging
import re
from werkzeug.security import check_password_hash
@ -135,6 +137,38 @@ class UserMgr:
UserService.update_user(usr.id, {"is_active": target_status})
return f"Turn {_activate_status} user activate status successfully!"
@staticmethod
def grant_admin(username: str):
# use email to find user. check exist and unique.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# check activate status different from new
usr = user_list[0]
if usr.is_superuser:
return f"{usr} is already superuser!"
# update is_active
UserService.update_user(usr.id, {"is_superuser": True})
return "Grant successfully!"
@staticmethod
def revoke_admin(username: str):
# use email to find user. check exist and unique.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# check activate status different from new
usr = user_list[0]
if not usr.is_superuser:
return f"{usr} isn't superuser, yet!"
# update is_active
UserService.update_user(usr.id, {"is_superuser": False})
return "Revoke successfully!"
class UserServiceMgr:
@ -179,10 +213,14 @@ class ServiceMgr:
@staticmethod
def get_all_services():
doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
result = []
configs = SERVICE_CONFIGS.configs
for service_id, config in enumerate(configs):
config_dict = config.to_dict()
if config_dict['service_type'] == 'retrieval':
if config_dict['extra']['retrieval_type'] != doc_engine:
continue
try:
service_detail = ServiceMgr.get_service_details(service_id)
if "status" in service_detail:

View File

@ -33,7 +33,7 @@ from common.connection_utils import timeout
from common.misc_utils import get_uuid
from common import settings
from api.db.joint_services.memory_message_service import save_to_memory
from api.db.joint_services.memory_message_service import queue_save_to_memory_task
class MessageParam(ComponentParamBase):
@ -437,17 +437,4 @@ class Message(ComponentBase):
"user_input": self._canvas.get_sys_query(),
"agent_response": content
}
res = []
for memory_id in self._param.memory_ids:
success, msg = await save_to_memory(memory_id, message_dict)
res.append({
"memory_id": memory_id,
"success": success,
"msg": msg
})
if all([r["success"] for r in res]):
return True, "Successfully added to memories."
error_text = "Some messages failed to add. " + " ".join([f"Add to memory {r['memory_id']} failed, detail: {r['msg']}" for r in res if not r["success"]])
logging.error(error_text)
return False, error_text
return await queue_save_to_memory_task(self._param.memory_ids, message_dict)

View File

@ -202,7 +202,7 @@ class Retrieval(ToolBase, ABC):
kbinfos["chunks"] = settings.retriever.retrieval_by_children(kbinfos["chunks"],
[kb.tenant_id for kb in kbs])
if self._param.use_kg:
ck = settings.kg_retriever.retrieval(query,
ck = await settings.kg_retriever.retrieval(query,
[kb.tenant_id for kb in kbs],
kb_ids,
embd_mdl,
@ -215,7 +215,7 @@ class Retrieval(ToolBase, ABC):
kbinfos = {"chunks": [], "doc_aggs": []}
if self._param.use_kg and kbs:
ck = settings.kg_retriever.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl,
ck = await settings.kg_retriever.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl,
LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
if self.check_if_canceled("Retrieval processing"):
return

View File

@ -381,7 +381,7 @@ async def retrieval_test():
rank_feature=labels
)
if use_kg:
ck = settings.kg_retriever.retrieval(_question,
ck = await settings.kg_retriever.retrieval(_question,
tenant_ids,
kb_ids,
embd_mdl,

View File

@ -746,6 +746,7 @@ async def change_parser():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
DocumentService.delete_chunk_images(doc, tenant_id)
if settings.docStoreConn.index_exist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
return None

View File

@ -159,7 +159,8 @@ async def delete_memory(memory_id):
return get_json_result(message=True, code=RetCode.NOT_FOUND)
try:
MemoryService.delete_memory(memory_id)
MessageService.delete_message({"memory_id": memory_id}, memory.tenant_id, memory_id)
if MessageService.has_index(memory.tenant_id, memory_id):
MessageService.delete_message({"memory_id": memory_id}, memory.tenant_id, memory_id)
return get_json_result(message=True)
except Exception as e:
logging.error(e)

View File

@ -150,7 +150,7 @@ async def retrieval(tenant_id):
)
if use_kg:
ck = settings.kg_retriever.retrieval(question,
ck = await settings.kg_retriever.retrieval(question,
[tenant_id],
[kb_id],
embd_mdl,

View File

@ -1286,6 +1286,9 @@ async def rm_chunk(tenant_id, dataset_id, document_id):
if "chunk_ids" in req:
unique_chunk_ids, duplicate_messages = check_duplicate_ids(req["chunk_ids"], "chunk")
condition["id"] = unique_chunk_ids
else:
unique_chunk_ids = []
duplicate_messages = []
chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
if chunk_number != 0:
DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)
@ -1576,7 +1579,7 @@ async def retrieval_test(tenant_id):
if cks:
ranks["chunks"] = cks
if use_kg:
ck = settings.kg_retriever.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
ck = await settings.kg_retriever.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)

View File

@ -60,7 +60,7 @@ async def create(tenant_id, chat_id):
"name": req.get("name", "New session"),
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
"user_id": req.get("user_id", ""),
"reference": [{}],
"reference": [],
}
if not conv.get("name"):
return get_error_data_result(message="`name` can not be empty.")
@ -1116,7 +1116,7 @@ async def retrieval_test_embedded():
local_doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
)
if use_kg:
ck = settings.kg_retriever.retrieval(_question, tenant_ids, kb_ids, embd_mdl,
ck = await settings.kg_retriever.retrieval(_question, tenant_ids, kb_ids, embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)

View File

@ -177,7 +177,7 @@ def healthz():
return jsonify(result), (200 if all_ok else 500)
@manager.route("/ping", methods=["GET"]) # noqa: F821
@manager.route("/ping", methods=["GET"]) # noqa: F821
def ping():
return "pong", 200
@ -213,7 +213,7 @@ def new_token():
if not tenants:
return get_data_error_result(message="Tenant not found!")
tenant_id = [tenant for tenant in tenants if tenant.role == 'owner'][0].tenant_id
tenant_id = [tenant for tenant in tenants if tenant.role == "owner"][0].tenant_id
obj = {
"tenant_id": tenant_id,
"token": generate_confirmation_token(),
@ -268,13 +268,12 @@ def token_list():
if not tenants:
return get_data_error_result(message="Tenant not found!")
tenant_id = [tenant for tenant in tenants if tenant.role == 'owner'][0].tenant_id
tenant_id = [tenant for tenant in tenants if tenant.role == "owner"][0].tenant_id
objs = APITokenService.query(tenant_id=tenant_id)
objs = [o.to_dict() for o in objs]
for o in objs:
if not o["beta"]:
o["beta"] = generate_confirmation_token().replace(
"ragflow-", "")[:32]
o["beta"] = generate_confirmation_token().replace("ragflow-", "")[:32]
APITokenService.filter_update([APIToken.tenant_id == tenant_id, APIToken.token == o["token"]], o)
return get_json_result(data=objs)
except Exception as e:
@ -307,13 +306,19 @@ def rm(token):
type: boolean
description: Deletion status.
"""
APITokenService.filter_delete(
[APIToken.tenant_id == current_user.id, APIToken.token == token]
)
return get_json_result(data=True)
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
APITokenService.filter_delete([APIToken.tenant_id == tenant_id, APIToken.token == token])
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/config', methods=['GET']) # noqa: F821
@manager.route("/config", methods=["GET"]) # noqa: F821
def get_config():
"""
Get system configuration.
@ -330,6 +335,4 @@ def get_config():
type: integer 0 means disabled, 1 means enabled
description: Whether user registration is enabled
"""
return get_json_result(data={
"registerEnabled": settings.REGISTER_ENABLED
})
return get_json_result(data={"registerEnabled": settings.REGISTER_ENABLED})

View File

@ -16,9 +16,14 @@
import logging
from typing import List
from api.db.services.task_service import TaskService
from common import settings
from common.time_utils import current_timestamp, timestamp_to_date, format_iso_8601_to_ymd_hms
from common.constants import MemoryType, LLMType
from common.doc_store.doc_store_base import FusionExpr
from common.misc_utils import get_uuid
from api.db.db_utils import bulk_insert_into_db
from api.db.db_models import Task
from api.db.services.memory_service import MemoryService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.llm_service import LLMBundle
@ -82,32 +87,44 @@ async def save_to_memory(memory_id: str, message_dict: dict):
"forget_at": None,
"status": True
} for content in extracted_content]]
embedding_model = LLMBundle(tenant_id, llm_type=LLMType.EMBEDDING, llm_name=memory.embd_id)
vector_list, _ = embedding_model.encode([msg["content"] for msg in message_list])
for idx, msg in enumerate(message_list):
msg["content_embed"] = vector_list[idx]
vector_dimension = len(vector_list[0])
if not MessageService.has_index(tenant_id, memory_id):
created = MessageService.create_index(tenant_id, memory_id, vector_size=vector_dimension)
if not created:
return False, "Failed to create message index."
return await embed_and_save(memory, message_list)
new_msg_size = sum([MessageService.calculate_message_size(m) for m in message_list])
current_memory_size = get_memory_size_cache(memory_id, tenant_id)
if new_msg_size + current_memory_size > memory.memory_size:
size_to_delete = current_memory_size + new_msg_size - memory.memory_size
if memory.forgetting_policy == "FIFO":
message_ids_to_delete, delete_size = MessageService.pick_messages_to_delete_by_fifo(memory_id, tenant_id, size_to_delete)
MessageService.delete_message({"message_id": message_ids_to_delete}, tenant_id, memory_id)
decrease_memory_size_cache(memory_id, delete_size)
else:
return False, "Failed to insert message into memory. Memory size reached limit and cannot decide which to delete."
fail_cases = MessageService.insert_message(message_list, tenant_id, memory_id)
if fail_cases:
return False, "Failed to insert message into memory. Details: " + "; ".join(fail_cases)
increase_memory_size_cache(memory_id, new_msg_size)
return True, "Message saved successfully."
async def save_extracted_to_memory_only(memory_id: str, message_dict, source_message_id: int):
memory = MemoryService.get_by_memory_id(memory_id)
if not memory:
return False, f"Memory '{memory_id}' not found."
if memory.memory_type == MemoryType.RAW.value:
return True, f"Memory '{memory_id}' don't need to extract."
tenant_id = memory.tenant_id
extracted_content = await extract_by_llm(
tenant_id,
memory.llm_id,
{"temperature": memory.temperature},
get_memory_type_human(memory.memory_type),
message_dict.get("user_input", ""),
message_dict.get("agent_response", "")
)
message_list = [{
"message_id": REDIS_CONN.generate_auto_increment_id(namespace="memory"),
"message_type": content["message_type"],
"source_id": source_message_id,
"memory_id": memory_id,
"user_id": "",
"agent_id": message_dict["agent_id"],
"session_id": message_dict["session_id"],
"content": content["content"],
"valid_at": content["valid_at"],
"invalid_at": content["invalid_at"] if content["invalid_at"] else None,
"forget_at": None,
"status": True
} for content in extracted_content]
if not message_list:
return True, "No memory extracted from raw message."
return await embed_and_save(memory, message_list)
async def extract_by_llm(tenant_id: str, llm_id: str, extract_conf: dict, memory_type: List[str], user_input: str,
@ -136,6 +153,36 @@ async def extract_by_llm(tenant_id: str, llm_id: str, extract_conf: dict, memory
} for message_type, extracted_content_list in res_json.items() for extracted_content in extracted_content_list]
async def embed_and_save(memory, message_list: list[dict]):
embedding_model = LLMBundle(memory.tenant_id, llm_type=LLMType.EMBEDDING, llm_name=memory.embd_id)
vector_list, _ = embedding_model.encode([msg["content"] for msg in message_list])
for idx, msg in enumerate(message_list):
msg["content_embed"] = vector_list[idx]
vector_dimension = len(vector_list[0])
if not MessageService.has_index(memory.tenant_id, memory.id):
created = MessageService.create_index(memory.tenant_id, memory.id, vector_size=vector_dimension)
if not created:
return False, "Failed to create message index."
new_msg_size = sum([MessageService.calculate_message_size(m) for m in message_list])
current_memory_size = get_memory_size_cache(memory.tenant_id, memory.id)
if new_msg_size + current_memory_size > memory.memory_size:
size_to_delete = current_memory_size + new_msg_size - memory.memory_size
if memory.forgetting_policy == "FIFO":
message_ids_to_delete, delete_size = MessageService.pick_messages_to_delete_by_fifo(memory.id, memory.tenant_id,
size_to_delete)
MessageService.delete_message({"message_id": message_ids_to_delete}, memory.tenant_id, memory.id)
decrease_memory_size_cache(memory.id, delete_size)
else:
return False, "Failed to insert message into memory. Memory size reached limit and cannot decide which to delete."
fail_cases = MessageService.insert_message(message_list, memory.tenant_id, memory.id)
if fail_cases:
return False, "Failed to insert message into memory. Details: " + "; ".join(fail_cases)
increase_memory_size_cache(memory.id, new_msg_size)
return True, "Message saved successfully."
def query_message(filter_dict: dict, params: dict):
"""
:param filter_dict: {
@ -231,3 +278,112 @@ def init_memory_size_cache():
def judge_system_prompt_is_default(system_prompt: str, memory_type: int|list[str]):
memory_type_list = memory_type if isinstance(memory_type, list) else get_memory_type_human(memory_type)
return system_prompt == PromptAssembler.assemble_system_prompt({"memory_type": memory_type_list})
async def queue_save_to_memory_task(memory_ids: list[str], message_dict: dict):
"""
:param memory_ids:
:param message_dict: {
"user_id": str,
"agent_id": str,
"session_id": str,
"user_input": str,
"agent_response": str
}
"""
def new_task(_memory_id: str, _source_id: int):
return {
"id": get_uuid(),
"doc_id": _memory_id,
"task_type": "memory",
"progress": 0.0,
"digest": str(_source_id)
}
not_found_memory = []
failed_memory = []
for memory_id in memory_ids:
memory = MemoryService.get_by_memory_id(memory_id)
if not memory:
not_found_memory.append(memory_id)
continue
raw_message_id = REDIS_CONN.generate_auto_increment_id(namespace="memory")
raw_message = {
"message_id": raw_message_id,
"message_type": MemoryType.RAW.name.lower(),
"source_id": 0,
"memory_id": memory_id,
"user_id": "",
"agent_id": message_dict["agent_id"],
"session_id": message_dict["session_id"],
"content": f"User Input: {message_dict.get('user_input')}\nAgent Response: {message_dict.get('agent_response')}",
"valid_at": timestamp_to_date(current_timestamp()),
"invalid_at": None,
"forget_at": None,
"status": True
}
res, msg = await embed_and_save(memory, [raw_message])
if not res:
failed_memory.append({"memory_id": memory_id, "fail_msg": msg})
continue
task = new_task(memory_id, raw_message_id)
bulk_insert_into_db(Task, [task], replace_on_conflict=True)
task_message = {
"id": task["id"],
"task_id": task["id"],
"task_type": task["task_type"],
"memory_id": memory_id,
"source_id": raw_message_id,
"message_dict": message_dict
}
if not REDIS_CONN.queue_product(settings.get_svr_queue_name(priority=0), message=task_message):
failed_memory.append({"memory_id": memory_id, "fail_msg": "Can't access Redis."})
error_msg = ""
if not_found_memory:
error_msg = f"Memory {not_found_memory} not found."
if failed_memory:
error_msg += "".join([f"Memory {fm['memory_id']} failed. Detail: {fm['fail_msg']}" for fm in failed_memory])
if error_msg:
return False, error_msg
return True, "All add to task."
async def handle_save_to_memory_task(task_param: dict):
"""
:param task_param: {
"id": task_id
"memory_id": id
"source_id": id
"message_dict": {
"user_id": str,
"agent_id": str,
"session_id": str,
"user_input": str,
"agent_response": str
}
}
"""
_, task = TaskService.get_by_id(task_param["id"])
if not task:
return False, f"Task {task_param['id']} is not found."
if task.progress == -1:
return False, f"Task {task_param['id']} is already failed."
now_time = current_timestamp()
TaskService.update_by_id(task_param["id"], {"begin_at": timestamp_to_date(now_time)})
memory_id = task_param["memory_id"]
source_id = task_param["source_id"]
message_dict = task_param["message_dict"]
success, msg = await save_extracted_to_memory_only(memory_id, message_dict, source_id)
if success:
TaskService.update_progress(task.id, {"progress": 1.0, "progress_msg": msg})
return True, msg
logging.error(msg)
TaskService.update_progress(task.id, {"progress": -1, "progress_msg": None})
return False, msg

View File

@ -421,7 +421,7 @@ async def async_chat(dialog, messages, stream=True, **kwargs):
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"):
ck = settings.kg_retriever.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
ck = await settings.kg_retriever.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)

View File

@ -342,21 +342,7 @@ class DocumentService(CommonService):
cls.clear_chunk_num(doc.id)
try:
TaskService.filter_delete([Task.doc_id == doc.id])
page = 0
page_size = 1000
all_chunk_ids = []
while True:
chunks = settings.docStoreConn.search(["img_id"], [], {"doc_id": doc.id}, [], OrderByExpr(),
page * page_size, page_size, search.index_name(tenant_id),
[doc.kb_id])
chunk_ids = settings.docStoreConn.get_doc_ids(chunks)
if not chunk_ids:
break
all_chunk_ids.extend(chunk_ids)
page += 1
for cid in all_chunk_ids:
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, cid):
settings.STORAGE_IMPL.rm(doc.kb_id, cid)
cls.delete_chunk_images(doc, tenant_id)
if doc.thumbnail and not doc.thumbnail.startswith(IMG_BASE64_PREFIX):
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, doc.thumbnail):
settings.STORAGE_IMPL.rm(doc.kb_id, doc.thumbnail)
@ -378,6 +364,23 @@ class DocumentService(CommonService):
pass
return cls.delete_by_id(doc.id)
@classmethod
@DB.connection_context()
def delete_chunk_images(cls, doc, tenant_id):
page = 0
page_size = 1000
while True:
chunks = settings.docStoreConn.search(["img_id"], [], {"doc_id": doc.id}, [], OrderByExpr(),
page * page_size, page_size, search.index_name(tenant_id),
[doc.kb_id])
chunk_ids = settings.docStoreConn.get_doc_ids(chunks)
if not chunk_ids:
break
for cid in chunk_ids:
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, cid):
settings.STORAGE_IMPL.rm(doc.kb_id, cid)
page += 1
@classmethod
@DB.connection_context()
def get_newly_uploaded(cls):

View File

@ -65,6 +65,7 @@ class EvaluationService(CommonService):
(success, dataset_id or error_message)
"""
try:
timestamp= current_timestamp()
dataset_id = get_uuid()
dataset = {
"id": dataset_id,
@ -73,8 +74,8 @@ class EvaluationService(CommonService):
"description": description,
"kb_ids": kb_ids,
"created_by": user_id,
"create_time": current_timestamp(),
"update_time": current_timestamp(),
"create_time": timestamp,
"update_time": timestamp,
"status": StatusEnum.VALID.value
}

View File

@ -64,10 +64,13 @@ class TenantLangfuseService(CommonService):
@classmethod
def save(cls, **kwargs):
kwargs["create_time"] = current_timestamp()
kwargs["create_date"] = datetime_format(datetime.now())
kwargs["update_time"] = current_timestamp()
kwargs["update_date"] = datetime_format(datetime.now())
current_ts = current_timestamp()
current_date = datetime_format(datetime.now())
kwargs["create_time"] = current_ts
kwargs["create_date"] = current_date
kwargs["update_time"] = current_ts
kwargs["update_date"] = current_date
obj = cls.model.create(**kwargs)
return obj

View File

@ -169,11 +169,12 @@ class PipelineOperationLogService(CommonService):
operation_status=operation_status,
avatar=avatar,
)
log["create_time"] = current_timestamp()
log["create_date"] = datetime_format(datetime.now())
log["update_time"] = current_timestamp()
log["update_date"] = datetime_format(datetime.now())
timestamp = current_timestamp()
datetime_now = datetime_format(datetime.now())
log["create_time"] = timestamp
log["create_date"] = datetime_now
log["update_time"] = timestamp
log["update_date"] = datetime_now
with DB.atomic():
obj = cls.save(**log)

View File

@ -28,10 +28,13 @@ class SearchService(CommonService):
@classmethod
def save(cls, **kwargs):
kwargs["create_time"] = current_timestamp()
kwargs["create_date"] = datetime_format(datetime.now())
kwargs["update_time"] = current_timestamp()
kwargs["update_date"] = datetime_format(datetime.now())
current_ts = current_timestamp()
current_date = datetime_format(datetime.now())
kwargs["create_time"] = current_ts
kwargs["create_date"] = current_date
kwargs["update_time"] = current_ts
kwargs["update_date"] = current_date
obj = cls.model.create(**kwargs)
return obj

View File

@ -116,10 +116,13 @@ class UserService(CommonService):
kwargs["password"] = generate_password_hash(
str(kwargs["password"]))
kwargs["create_time"] = current_timestamp()
kwargs["create_date"] = datetime_format(datetime.now())
kwargs["update_time"] = current_timestamp()
kwargs["update_date"] = datetime_format(datetime.now())
current_ts = current_timestamp()
current_date = datetime_format(datetime.now())
kwargs["create_time"] = current_ts
kwargs["create_date"] = current_date
kwargs["update_time"] = current_ts
kwargs["update_date"] = current_date
obj = cls.model(**kwargs).save(force_insert=True)
return obj
@ -161,7 +164,7 @@ class UserService(CommonService):
@classmethod
@DB.connection_context()
def get_all_users(cls):
users = cls.model.select()
users = cls.model.select().order_by(cls.model.email)
return list(users)

View File

@ -42,7 +42,7 @@ def filename_type(filename):
if re.match(r".*\.pdf$", filename):
return FileType.PDF.value
if re.match(r".*\.(msg|eml|doc|docx|ppt|pptx|yml|xml|htm|json|jsonl|ldjson|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|html|sql)$", filename):
if re.match(r".*\.(msg|eml|doc|docx|ppt|pptx|yml|xml|htm|json|jsonl|ldjson|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|mdx|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|html|sql)$", filename):
return FileType.DOC.value
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus)$", filename):

View File

@ -69,6 +69,7 @@ CONTENT_TYPE_MAP = {
# Web
"md": "text/markdown",
"markdown": "text/markdown",
"mdx": "text/markdown",
"htm": "text/html",
"html": "text/html",
"json": "application/json",

View File

@ -129,7 +129,12 @@ class FileSource(StrEnum):
OCI_STORAGE = "oci_storage"
GOOGLE_CLOUD_STORAGE = "google_cloud_storage"
AIRTABLE = "airtable"
ASANA = "asana"
GITHUB = "github"
GITLAB = "gitlab"
IMAP = "imap"
BITBUCKET = "bitbucket"
ZENDESK = "zendesk"
class PipelineTaskType(StrEnum):
PARSE = "Parse"
@ -137,6 +142,7 @@ class PipelineTaskType(StrEnum):
RAPTOR = "RAPTOR"
GRAPH_RAG = "GraphRAG"
MINDMAP = "Mindmap"
MEMORY = "Memory"
VALID_PIPELINE_TASK_TYPES = {PipelineTaskType.PARSE, PipelineTaskType.DOWNLOAD, PipelineTaskType.RAPTOR,

View File

@ -34,9 +34,11 @@ from .google_drive.connector import GoogleDriveConnector
from .jira.connector import JiraConnector
from .sharepoint_connector import SharePointConnector
from .teams_connector import TeamsConnector
from .webdav_connector import WebDAVConnector
from .moodle_connector import MoodleConnector
from .airtable_connector import AirtableConnector
from .asana_connector import AsanaConnector
from .imap_connector import ImapConnector
from .zendesk_connector import ZendeskConnector
from .config import BlobType, DocumentSource
from .models import Document, TextSection, ImageSection, BasicExpertInfo
from .exceptions import (
@ -59,7 +61,6 @@ __all__ = [
"JiraConnector",
"SharePointConnector",
"TeamsConnector",
"WebDAVConnector",
"MoodleConnector",
"BlobType",
"DocumentSource",
@ -73,4 +74,7 @@ __all__ = [
"InsufficientPermissionsError",
"UnexpectedValidationError",
"AirtableConnector",
"AsanaConnector",
"ImapConnector",
"ZendeskConnector",
]

View File

@ -1,6 +1,6 @@
from datetime import datetime, timezone
import logging
from typing import Any
from typing import Any, Generator
import requests
@ -8,8 +8,8 @@ from pyairtable import Api as AirtableApi
from common.data_source.config import AIRTABLE_CONNECTOR_SIZE_THRESHOLD, INDEX_BATCH_SIZE, DocumentSource
from common.data_source.exceptions import ConnectorMissingCredentialError
from common.data_source.interfaces import LoadConnector
from common.data_source.models import Document, GenerateDocumentsOutput
from common.data_source.interfaces import LoadConnector, PollConnector
from common.data_source.models import Document, GenerateDocumentsOutput, SecondsSinceUnixEpoch
from common.data_source.utils import extract_size_bytes, get_file_ext
class AirtableClientNotSetUpError(PermissionError):
@ -19,7 +19,7 @@ class AirtableClientNotSetUpError(PermissionError):
)
class AirtableConnector(LoadConnector):
class AirtableConnector(LoadConnector, PollConnector):
"""
Lightweight Airtable connector.
@ -132,6 +132,26 @@ class AirtableConnector(LoadConnector):
if batch:
yield batch
def poll_source(self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch) -> Generator[list[Document], None, None]:
"""Poll source to get documents"""
start_dt = datetime.fromtimestamp(start, tz=timezone.utc)
end_dt = datetime.fromtimestamp(end, tz=timezone.utc)
for batch in self.load_from_state():
filtered: list[Document] = []
for doc in batch:
if not doc.doc_updated_at:
continue
doc_dt = doc.doc_updated_at.astimezone(timezone.utc)
if start_dt <= doc_dt < end_dt:
filtered.append(doc)
if filtered:
yield filtered
if __name__ == "__main__":
import os

View File

@ -0,0 +1,454 @@
from collections.abc import Iterator
import time
from datetime import datetime
import logging
from typing import Any, Dict
import asana
import requests
from common.data_source.config import CONTINUE_ON_CONNECTOR_FAILURE, INDEX_BATCH_SIZE, DocumentSource
from common.data_source.interfaces import LoadConnector, PollConnector
from common.data_source.models import Document, GenerateDocumentsOutput, SecondsSinceUnixEpoch
from common.data_source.utils import extract_size_bytes, get_file_ext
# https://github.com/Asana/python-asana/tree/master?tab=readme-ov-file#documentation-for-api-endpoints
class AsanaTask:
def __init__(
self,
id: str,
title: str,
text: str,
link: str,
last_modified: datetime,
project_gid: str,
project_name: str,
) -> None:
self.id = id
self.title = title
self.text = text
self.link = link
self.last_modified = last_modified
self.project_gid = project_gid
self.project_name = project_name
def __str__(self) -> str:
return f"ID: {self.id}\nTitle: {self.title}\nLast modified: {self.last_modified}\nText: {self.text}"
class AsanaAPI:
def __init__(
self, api_token: str, workspace_gid: str, team_gid: str | None
) -> None:
self._user = None
self.workspace_gid = workspace_gid
self.team_gid = team_gid
self.configuration = asana.Configuration()
self.api_client = asana.ApiClient(self.configuration)
self.tasks_api = asana.TasksApi(self.api_client)
self.attachments_api = asana.AttachmentsApi(self.api_client)
self.stories_api = asana.StoriesApi(self.api_client)
self.users_api = asana.UsersApi(self.api_client)
self.project_api = asana.ProjectsApi(self.api_client)
self.project_memberships_api = asana.ProjectMembershipsApi(self.api_client)
self.workspaces_api = asana.WorkspacesApi(self.api_client)
self.api_error_count = 0
self.configuration.access_token = api_token
self.task_count = 0
def get_tasks(
self, project_gids: list[str] | None, start_date: str
) -> Iterator[AsanaTask]:
"""Get all tasks from the projects with the given gids that were modified since the given date.
If project_gids is None, get all tasks from all projects in the workspace."""
logging.info("Starting to fetch Asana projects")
projects = self.project_api.get_projects(
opts={
"workspace": self.workspace_gid,
"opt_fields": "gid,name,archived,modified_at",
}
)
start_seconds = int(time.mktime(datetime.now().timetuple()))
projects_list = []
project_count = 0
for project_info in projects:
project_gid = project_info["gid"]
if project_gids is None or project_gid in project_gids:
projects_list.append(project_gid)
else:
logging.debug(
f"Skipping project: {project_gid} - not in accepted project_gids"
)
project_count += 1
if project_count % 100 == 0:
logging.info(f"Processed {project_count} projects")
logging.info(f"Found {len(projects_list)} projects to process")
for project_gid in projects_list:
for task in self._get_tasks_for_project(
project_gid, start_date, start_seconds
):
yield task
logging.info(f"Completed fetching {self.task_count} tasks from Asana")
if self.api_error_count > 0:
logging.warning(
f"Encountered {self.api_error_count} API errors during task fetching"
)
def _get_tasks_for_project(
self, project_gid: str, start_date: str, start_seconds: int
) -> Iterator[AsanaTask]:
project = self.project_api.get_project(project_gid, opts={})
project_name = project.get("name", project_gid)
team = project.get("team") or {}
team_gid = team.get("gid")
if project.get("archived"):
logging.info(f"Skipping archived project: {project_name} ({project_gid})")
return
if not team_gid:
logging.info(
f"Skipping project without a team: {project_name} ({project_gid})"
)
return
if project.get("privacy_setting") == "private":
if self.team_gid and team_gid != self.team_gid:
logging.info(
f"Skipping private project not in configured team: {project_name} ({project_gid})"
)
return
logging.info(
f"Processing private project in configured team: {project_name} ({project_gid})"
)
simple_start_date = start_date.split(".")[0].split("+")[0]
logging.info(
f"Fetching tasks modified since {simple_start_date} for project: {project_name} ({project_gid})"
)
opts = {
"opt_fields": "name,memberships,memberships.project,completed_at,completed_by,created_at,"
"created_by,custom_fields,dependencies,due_at,due_on,external,html_notes,liked,likes,"
"modified_at,notes,num_hearts,parent,projects,resource_subtype,resource_type,start_on,"
"workspace,permalink_url",
"modified_since": start_date,
}
tasks_from_api = self.tasks_api.get_tasks_for_project(project_gid, opts)
for data in tasks_from_api:
self.task_count += 1
if self.task_count % 10 == 0:
end_seconds = time.mktime(datetime.now().timetuple())
runtime_seconds = end_seconds - start_seconds
if runtime_seconds > 0:
logging.info(
f"Processed {self.task_count} tasks in {runtime_seconds:.0f} seconds "
f"({self.task_count / runtime_seconds:.2f} tasks/second)"
)
logging.debug(f"Processing Asana task: {data['name']}")
text = self._construct_task_text(data)
try:
text += self._fetch_and_add_comments(data["gid"])
last_modified_date = self.format_date(data["modified_at"])
text += f"Last modified: {last_modified_date}\n"
task = AsanaTask(
id=data["gid"],
title=data["name"],
text=text,
link=data["permalink_url"],
last_modified=datetime.fromisoformat(data["modified_at"]),
project_gid=project_gid,
project_name=project_name,
)
yield task
except Exception:
logging.error(
f"Error processing task {data['gid']} in project {project_gid}",
exc_info=True,
)
self.api_error_count += 1
def _construct_task_text(self, data: Dict) -> str:
text = f"{data['name']}\n\n"
if data["notes"]:
text += f"{data['notes']}\n\n"
if data["created_by"] and data["created_by"]["gid"]:
creator = self.get_user(data["created_by"]["gid"])["name"]
created_date = self.format_date(data["created_at"])
text += f"Created by: {creator} on {created_date}\n"
if data["due_on"]:
due_date = self.format_date(data["due_on"])
text += f"Due date: {due_date}\n"
if data["completed_at"]:
completed_date = self.format_date(data["completed_at"])
text += f"Completed on: {completed_date}\n"
text += "\n"
return text
def _fetch_and_add_comments(self, task_gid: str) -> str:
text = ""
stories_opts: Dict[str, str] = {}
story_start = time.time()
stories = self.stories_api.get_stories_for_task(task_gid, stories_opts)
story_count = 0
comment_count = 0
for story in stories:
story_count += 1
if story["resource_subtype"] == "comment_added":
comment = self.stories_api.get_story(
story["gid"], opts={"opt_fields": "text,created_by,created_at"}
)
commenter = self.get_user(comment["created_by"]["gid"])["name"]
text += f"Comment by {commenter}: {comment['text']}\n\n"
comment_count += 1
story_duration = time.time() - story_start
logging.debug(
f"Processed {story_count} stories (including {comment_count} comments) in {story_duration:.2f} seconds"
)
return text
def get_attachments(self, task_gid: str) -> list[dict]:
"""
Fetch full attachment info (including download_url) for a task.
"""
attachments: list[dict] = []
try:
# Step 1: list attachment compact records
for att in self.attachments_api.get_attachments_for_object(
parent=task_gid,
opts={}
):
gid = att.get("gid")
if not gid:
continue
try:
# Step 2: expand to full attachment
full = self.attachments_api.get_attachment(
attachment_gid=gid,
opts={
"opt_fields": "name,download_url,size,created_at"
}
)
if full.get("download_url"):
attachments.append(full)
except Exception:
logging.exception(
f"Failed to fetch attachment detail {gid} for task {task_gid}"
)
self.api_error_count += 1
except Exception:
logging.exception(f"Failed to list attachments for task {task_gid}")
self.api_error_count += 1
return attachments
def get_accessible_emails(
self,
workspace_id: str,
project_ids: list[str] | None,
team_id: str | None,
):
ws_users = self.users_api.get_users(
opts={
"workspace": workspace_id,
"opt_fields": "gid,name,email"
}
)
workspace_users = {
u["gid"]: u.get("email")
for u in ws_users
if u.get("email")
}
if not project_ids:
return set(workspace_users.values())
project_emails = set()
for pid in project_ids:
project = self.project_api.get_project(
pid,
opts={"opt_fields": "team,privacy_setting"}
)
if project["privacy_setting"] == "private":
if team_id and project.get("team", {}).get("gid") != team_id:
continue
memberships = self.project_memberships_api.get_project_membership(
pid,
opts={"opt_fields": "user.gid,user.email"}
)
for m in memberships:
email = m["user"].get("email")
if email:
project_emails.add(email)
return project_emails
def get_user(self, user_gid: str) -> Dict:
if self._user is not None:
return self._user
self._user = self.users_api.get_user(user_gid, {"opt_fields": "name,email"})
if not self._user:
logging.warning(f"Unable to fetch user information for user_gid: {user_gid}")
return {"name": "Unknown"}
return self._user
def format_date(self, date_str: str) -> str:
date = datetime.fromisoformat(date_str)
return time.strftime("%Y-%m-%d", date.timetuple())
def get_time(self) -> str:
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
class AsanaConnector(LoadConnector, PollConnector):
def __init__(
self,
asana_workspace_id: str,
asana_project_ids: str | None = None,
asana_team_id: str | None = None,
batch_size: int = INDEX_BATCH_SIZE,
continue_on_failure: bool = CONTINUE_ON_CONNECTOR_FAILURE,
) -> None:
self.workspace_id = asana_workspace_id
self.project_ids_to_index: list[str] | None = (
asana_project_ids.split(",") if asana_project_ids else None
)
self.asana_team_id = asana_team_id if asana_team_id else None
self.batch_size = batch_size
self.continue_on_failure = continue_on_failure
self.size_threshold = None
logging.info(
f"AsanaConnector initialized with workspace_id: {asana_workspace_id}"
)
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self.api_token = credentials["asana_api_token_secret"]
self.asana_client = AsanaAPI(
api_token=self.api_token,
workspace_gid=self.workspace_id,
team_gid=self.asana_team_id,
)
self.workspace_users_email = self.asana_client.get_accessible_emails(self.workspace_id, self.project_ids_to_index, self.asana_team_id)
logging.info("Asana credentials loaded and API client initialized")
return None
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch | None
) -> GenerateDocumentsOutput:
start_time = datetime.fromtimestamp(start).isoformat()
logging.info(f"Starting Asana poll from {start_time}")
docs_batch: list[Document] = []
tasks = self.asana_client.get_tasks(self.project_ids_to_index, start_time)
for task in tasks:
docs = self._task_to_documents(task)
docs_batch.extend(docs)
if len(docs_batch) >= self.batch_size:
logging.info(f"Yielding batch of {len(docs_batch)} documents")
yield docs_batch
docs_batch = []
if docs_batch:
logging.info(f"Yielding final batch of {len(docs_batch)} documents")
yield docs_batch
logging.info("Asana poll completed")
def load_from_state(self) -> GenerateDocumentsOutput:
logging.info("Starting full index of all Asana tasks")
return self.poll_source(start=0, end=None)
def _task_to_documents(self, task: AsanaTask) -> list[Document]:
docs: list[Document] = []
attachments = self.asana_client.get_attachments(task.id)
for att in attachments:
try:
resp = requests.get(att["download_url"], timeout=30)
resp.raise_for_status()
file_blob = resp.content
filename = att.get("name", "attachment")
size_bytes = extract_size_bytes(att)
if (
self.size_threshold is not None
and isinstance(size_bytes, int)
and size_bytes > self.size_threshold
):
logging.warning(
f"{filename} exceeds size threshold of {self.size_threshold}. Skipping."
)
continue
docs.append(
Document(
id=f"asana:{task.id}:{att['gid']}",
blob=file_blob,
extension=get_file_ext(filename) or "",
size_bytes=size_bytes,
doc_updated_at=task.last_modified,
source=DocumentSource.ASANA,
semantic_identifier=filename,
primary_owners=list(self.workspace_users_email),
)
)
except Exception:
logging.exception(
f"Failed to download attachment {att.get('gid')} for task {task.id}"
)
return docs
if __name__ == "__main__":
import time
import os
logging.info("Starting Asana connector test")
connector = AsanaConnector(
os.environ["WORKSPACE_ID"],
os.environ["PROJECT_IDS"],
os.environ["TEAM_ID"],
)
connector.load_credentials(
{
"asana_api_token_secret": os.environ["API_TOKEN"],
}
)
logging.info("Loading all documents from Asana")
all_docs = connector.load_from_state()
current = time.time()
one_day_ago = current - 24 * 60 * 60 # 1 day
logging.info("Polling for documents updated in the last 24 hours")
latest_docs = connector.poll_source(one_day_ago, current)
for docs in all_docs:
for doc in docs:
print(doc.id)
logging.info("Asana connector test completed")

View File

View File

@ -0,0 +1,388 @@
from __future__ import annotations
import copy
from collections.abc import Callable
from collections.abc import Iterator
from datetime import datetime
from datetime import timezone
from typing import Any
from typing import TYPE_CHECKING
from typing_extensions import override
from common.data_source.config import INDEX_BATCH_SIZE
from common.data_source.config import DocumentSource
from common.data_source.config import REQUEST_TIMEOUT_SECONDS
from common.data_source.exceptions import (
ConnectorMissingCredentialError,
CredentialExpiredError,
InsufficientPermissionsError,
UnexpectedValidationError,
)
from common.data_source.interfaces import CheckpointedConnector
from common.data_source.interfaces import CheckpointOutput
from common.data_source.interfaces import IndexingHeartbeatInterface
from common.data_source.interfaces import SecondsSinceUnixEpoch
from common.data_source.interfaces import SlimConnectorWithPermSync
from common.data_source.models import ConnectorCheckpoint
from common.data_source.models import ConnectorFailure
from common.data_source.models import DocumentFailure
from common.data_source.models import SlimDocument
from common.data_source.bitbucket.utils import (
build_auth_client,
list_repositories,
map_pr_to_document,
paginate,
PR_LIST_RESPONSE_FIELDS,
SLIM_PR_LIST_RESPONSE_FIELDS,
)
if TYPE_CHECKING:
import httpx
class BitbucketConnectorCheckpoint(ConnectorCheckpoint):
"""Checkpoint state for resumable Bitbucket PR indexing.
Fields:
repos_queue: Materialized list of repository slugs to process.
current_repo_index: Index of the repository currently being processed.
next_url: Bitbucket "next" URL for continuing pagination within the current repo.
"""
repos_queue: list[str] = []
current_repo_index: int = 0
next_url: str | None = None
class BitbucketConnector(
CheckpointedConnector[BitbucketConnectorCheckpoint],
SlimConnectorWithPermSync,
):
"""Connector for indexing Bitbucket Cloud pull requests.
Args:
workspace: Bitbucket workspace ID.
repositories: Comma-separated list of repository slugs to index.
projects: Comma-separated list of project keys to index all repositories within.
batch_size: Max number of documents to yield per batch.
"""
def __init__(
self,
workspace: str,
repositories: str | None = None,
projects: str | None = None,
batch_size: int = INDEX_BATCH_SIZE,
) -> None:
self.workspace = workspace
self._repositories = (
[s.strip() for s in repositories.split(",") if s.strip()]
if repositories
else None
)
self._projects: list[str] | None = (
[s.strip() for s in projects.split(",") if s.strip()] if projects else None
)
self.batch_size = batch_size
self.email: str | None = None
self.api_token: str | None = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
"""Load API token-based credentials.
Expects a dict with keys: `bitbucket_email`, `bitbucket_api_token`.
"""
self.email = credentials.get("bitbucket_email")
self.api_token = credentials.get("bitbucket_api_token")
if not self.email or not self.api_token:
raise ConnectorMissingCredentialError("Bitbucket")
return None
def _client(self) -> httpx.Client:
"""Build an authenticated HTTP client or raise if credentials missing."""
if not self.email or not self.api_token:
raise ConnectorMissingCredentialError("Bitbucket")
return build_auth_client(self.email, self.api_token)
def _iter_pull_requests_for_repo(
self,
client: httpx.Client,
repo_slug: str,
params: dict[str, Any] | None = None,
start_url: str | None = None,
on_page: Callable[[str | None], None] | None = None,
) -> Iterator[dict[str, Any]]:
base = f"https://api.bitbucket.org/2.0/repositories/{self.workspace}/{repo_slug}/pullrequests"
yield from paginate(
client,
base,
params,
start_url=start_url,
on_page=on_page,
)
def _build_params(
self,
fields: str = PR_LIST_RESPONSE_FIELDS,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
) -> dict[str, Any]:
"""Build Bitbucket fetch params.
Always include OPEN, MERGED, and DECLINED PRs. If both ``start`` and
``end`` are provided, apply a single updated_on time window.
"""
def _iso(ts: SecondsSinceUnixEpoch) -> str:
return datetime.fromtimestamp(ts, tz=timezone.utc).isoformat()
def _tc_epoch(
lower_epoch: SecondsSinceUnixEpoch | None,
upper_epoch: SecondsSinceUnixEpoch | None,
) -> str | None:
if lower_epoch is not None and upper_epoch is not None:
lower_iso = _iso(lower_epoch)
upper_iso = _iso(upper_epoch)
return f'(updated_on > "{lower_iso}" AND updated_on <= "{upper_iso}")'
return None
params: dict[str, Any] = {"fields": fields, "pagelen": 50}
time_clause = _tc_epoch(start, end)
q = '(state = "OPEN" OR state = "MERGED" OR state = "DECLINED")'
if time_clause:
q = f"{q} AND {time_clause}"
params["q"] = q
return params
def _iter_target_repositories(self, client: httpx.Client) -> Iterator[str]:
"""Yield repository slugs based on configuration.
Priority:
- repositories list
- projects list (list repos by project key)
- workspace (all repos)
"""
if self._repositories:
for slug in self._repositories:
yield slug
return
if self._projects:
for project_key in self._projects:
for repo in list_repositories(client, self.workspace, project_key):
slug_val = repo.get("slug")
if isinstance(slug_val, str) and slug_val:
yield slug_val
return
for repo in list_repositories(client, self.workspace, None):
slug_val = repo.get("slug")
if isinstance(slug_val, str) and slug_val:
yield slug_val
@override
def load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: BitbucketConnectorCheckpoint,
) -> CheckpointOutput[BitbucketConnectorCheckpoint]:
"""Resumable PR ingestion across repos and pages within a time window.
Yields Documents (or ConnectorFailure for per-PR mapping failures) and returns
an updated checkpoint that records repo position and next page URL.
"""
new_checkpoint = copy.deepcopy(checkpoint)
with self._client() as client:
# Materialize target repositories once
if not new_checkpoint.repos_queue:
# Preserve explicit order; otherwise ensure deterministic ordering
repos_list = list(self._iter_target_repositories(client))
new_checkpoint.repos_queue = sorted(set(repos_list))
new_checkpoint.current_repo_index = 0
new_checkpoint.next_url = None
repos = new_checkpoint.repos_queue
if not repos or new_checkpoint.current_repo_index >= len(repos):
new_checkpoint.has_more = False
return new_checkpoint
repo_slug = repos[new_checkpoint.current_repo_index]
first_page_params = self._build_params(
fields=PR_LIST_RESPONSE_FIELDS,
start=start,
end=end,
)
def _on_page(next_url: str | None) -> None:
new_checkpoint.next_url = next_url
for pr in self._iter_pull_requests_for_repo(
client,
repo_slug,
params=first_page_params,
start_url=new_checkpoint.next_url,
on_page=_on_page,
):
try:
document = map_pr_to_document(pr, self.workspace, repo_slug)
yield document
except Exception as e:
pr_id = pr.get("id")
pr_link = (
f"https://bitbucket.org/{self.workspace}/{repo_slug}/pull-requests/{pr_id}"
if pr_id is not None
else None
)
yield ConnectorFailure(
failed_document=DocumentFailure(
document_id=(
f"{DocumentSource.BITBUCKET.value}:{self.workspace}:{repo_slug}:pr:{pr_id}"
if pr_id is not None
else f"{DocumentSource.BITBUCKET.value}:{self.workspace}:{repo_slug}:pr:unknown"
),
document_link=pr_link,
),
failure_message=f"Failed to process Bitbucket PR: {e}",
exception=e,
)
# Advance to next repository (if any) and set has_more accordingly
new_checkpoint.current_repo_index += 1
new_checkpoint.next_url = None
new_checkpoint.has_more = new_checkpoint.current_repo_index < len(repos)
return new_checkpoint
@override
def build_dummy_checkpoint(self) -> BitbucketConnectorCheckpoint:
"""Create an initial checkpoint with work remaining."""
return BitbucketConnectorCheckpoint(has_more=True)
@override
def validate_checkpoint_json(
self, checkpoint_json: str
) -> BitbucketConnectorCheckpoint:
"""Validate and deserialize a checkpoint instance from JSON."""
return BitbucketConnectorCheckpoint.model_validate_json(checkpoint_json)
def retrieve_all_slim_docs_perm_sync(
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> Iterator[list[SlimDocument]]:
"""Return only document IDs for all existing pull requests."""
batch: list[SlimDocument] = []
params = self._build_params(
fields=SLIM_PR_LIST_RESPONSE_FIELDS,
start=start,
end=end,
)
with self._client() as client:
for slug in self._iter_target_repositories(client):
for pr in self._iter_pull_requests_for_repo(
client, slug, params=params
):
pr_id = pr["id"]
doc_id = f"{DocumentSource.BITBUCKET.value}:{self.workspace}:{slug}:pr:{pr_id}"
batch.append(SlimDocument(id=doc_id))
if len(batch) >= self.batch_size:
yield batch
batch = []
if callback:
if callback.should_stop():
# Note: this is not actually used for permission sync yet, just pruning
raise RuntimeError(
"bitbucket_pr_sync: Stop signal detected"
)
callback.progress("bitbucket_pr_sync", len(batch))
if batch:
yield batch
def validate_connector_settings(self) -> None:
"""Validate Bitbucket credentials and workspace access by probing a lightweight endpoint.
Raises:
CredentialExpiredError: on HTTP 401
InsufficientPermissionsError: on HTTP 403
UnexpectedValidationError: on any other failure
"""
try:
with self._client() as client:
url = f"https://api.bitbucket.org/2.0/repositories/{self.workspace}"
resp = client.get(
url,
params={"pagelen": 1, "fields": "pagelen"},
timeout=REQUEST_TIMEOUT_SECONDS,
)
if resp.status_code == 401:
raise CredentialExpiredError(
"Invalid or expired Bitbucket credentials (HTTP 401)."
)
if resp.status_code == 403:
raise InsufficientPermissionsError(
"Insufficient permissions to access Bitbucket workspace (HTTP 403)."
)
if resp.status_code < 200 or resp.status_code >= 300:
raise UnexpectedValidationError(
f"Unexpected Bitbucket error (status={resp.status_code})."
)
except Exception as e:
# Network or other unexpected errors
if isinstance(
e,
(
CredentialExpiredError,
InsufficientPermissionsError,
UnexpectedValidationError,
ConnectorMissingCredentialError,
),
):
raise
raise UnexpectedValidationError(
f"Unexpected error while validating Bitbucket settings: {e}"
)
if __name__ == "__main__":
bitbucket = BitbucketConnector(
workspace="<YOUR_WORKSPACE>"
)
bitbucket.load_credentials({
"bitbucket_email": "<YOUR_EMAIL>",
"bitbucket_api_token": "<YOUR_API_TOKEN>",
})
bitbucket.validate_connector_settings()
print("Credentials validated successfully.")
start_time = datetime.fromtimestamp(0, tz=timezone.utc)
end_time = datetime.now(timezone.utc)
for doc_batch in bitbucket.retrieve_all_slim_docs_perm_sync(
start=start_time.timestamp(),
end=end_time.timestamp(),
):
for doc in doc_batch:
print(doc)
bitbucket_checkpoint = bitbucket.build_dummy_checkpoint()
while bitbucket_checkpoint.has_more:
gen = bitbucket.load_from_checkpoint(
start=start_time.timestamp(),
end=end_time.timestamp(),
checkpoint=bitbucket_checkpoint,
)
while True:
try:
doc = next(gen)
print(doc)
except StopIteration as e:
bitbucket_checkpoint = e.value
break

View File

@ -0,0 +1,288 @@
from __future__ import annotations
import time
from collections.abc import Callable
from collections.abc import Iterator
from datetime import datetime
from datetime import timezone
from typing import Any
import httpx
from common.data_source.config import REQUEST_TIMEOUT_SECONDS, DocumentSource
from common.data_source.cross_connector_utils.rate_limit_wrapper import (
rate_limit_builder,
)
from common.data_source.utils import sanitize_filename
from common.data_source.models import BasicExpertInfo, Document
from common.data_source.cross_connector_utils.retry_wrapper import retry_builder
# Fields requested from Bitbucket PR list endpoint to ensure rich PR data
PR_LIST_RESPONSE_FIELDS: str = ",".join(
[
"next",
"page",
"pagelen",
"values.author",
"values.close_source_branch",
"values.closed_by",
"values.comment_count",
"values.created_on",
"values.description",
"values.destination",
"values.draft",
"values.id",
"values.links",
"values.merge_commit",
"values.participants",
"values.reason",
"values.rendered",
"values.reviewers",
"values.source",
"values.state",
"values.summary",
"values.task_count",
"values.title",
"values.type",
"values.updated_on",
]
)
# Minimal fields for slim retrieval (IDs only)
SLIM_PR_LIST_RESPONSE_FIELDS: str = ",".join(
[
"next",
"page",
"pagelen",
"values.id",
]
)
# Minimal fields for repository list calls
REPO_LIST_RESPONSE_FIELDS: str = ",".join(
[
"next",
"page",
"pagelen",
"values.slug",
"values.full_name",
"values.project.key",
]
)
class BitbucketRetriableError(Exception):
"""Raised for retriable Bitbucket conditions (429, 5xx)."""
class BitbucketNonRetriableError(Exception):
"""Raised for non-retriable Bitbucket client errors (4xx except 429)."""
@retry_builder(
tries=6,
delay=1,
backoff=2,
max_delay=30,
exceptions=(BitbucketRetriableError, httpx.RequestError),
)
@rate_limit_builder(max_calls=60, period=60)
def bitbucket_get(
client: httpx.Client, url: str, params: dict[str, Any] | None = None
) -> httpx.Response:
"""Perform a GET against Bitbucket with retry and rate limiting.
Retries on 429 and 5xx responses, and on transport errors. Honors
`Retry-After` header for 429 when present by sleeping before retrying.
"""
try:
response = client.get(url, params=params, timeout=REQUEST_TIMEOUT_SECONDS)
except httpx.RequestError:
# Allow retry_builder to handle retries of transport errors
raise
try:
response.raise_for_status()
except httpx.HTTPStatusError as e:
status = e.response.status_code if e.response is not None else None
if status == 429:
retry_after = e.response.headers.get("Retry-After") if e.response else None
if retry_after is not None:
try:
time.sleep(int(retry_after))
except (TypeError, ValueError):
pass
raise BitbucketRetriableError("Bitbucket rate limit exceeded (429)") from e
if status is not None and 500 <= status < 600:
raise BitbucketRetriableError(f"Bitbucket server error: {status}") from e
if status is not None and 400 <= status < 500:
raise BitbucketNonRetriableError(f"Bitbucket client error: {status}") from e
# Unknown status, propagate
raise
return response
def build_auth_client(email: str, api_token: str) -> httpx.Client:
"""Create an authenticated httpx client for Bitbucket Cloud API."""
return httpx.Client(auth=(email, api_token), http2=True)
def paginate(
client: httpx.Client,
url: str,
params: dict[str, Any] | None = None,
start_url: str | None = None,
on_page: Callable[[str | None], None] | None = None,
) -> Iterator[dict[str, Any]]:
"""Iterate over paginated Bitbucket API responses yielding individual values.
Args:
client: Authenticated HTTP client.
url: Base collection URL (first page when start_url is None).
params: Query params for the first page.
start_url: If provided, start from this absolute URL (ignores params).
on_page: Optional callback invoked after each page with the next page URL.
"""
next_url = start_url or url
# If resuming from a next URL, do not pass params again
query = params.copy() if params else None
query = None if start_url else query
while next_url:
resp = bitbucket_get(client, next_url, params=query)
data = resp.json()
values = data.get("values", [])
for item in values:
yield item
next_url = data.get("next")
if on_page is not None:
on_page(next_url)
# only include params on first call, next_url will contain all necessary params
query = None
def list_repositories(
client: httpx.Client, workspace: str, project_key: str | None = None
) -> Iterator[dict[str, Any]]:
"""List repositories in a workspace, optionally filtered by project key."""
base_url = f"https://api.bitbucket.org/2.0/repositories/{workspace}"
params: dict[str, Any] = {
"fields": REPO_LIST_RESPONSE_FIELDS,
"pagelen": 100,
# Ensure deterministic ordering
"sort": "full_name",
}
if project_key:
params["q"] = f'project.key="{project_key}"'
yield from paginate(client, base_url, params)
def map_pr_to_document(pr: dict[str, Any], workspace: str, repo_slug: str) -> Document:
"""Map a Bitbucket pull request JSON to Onyx Document."""
pr_id = pr["id"]
title = pr.get("title") or f"PR {pr_id}"
description = pr.get("description") or ""
state = pr.get("state")
draft = pr.get("draft", False)
author = pr.get("author", {})
reviewers = pr.get("reviewers", [])
participants = pr.get("participants", [])
link = pr.get("links", {}).get("html", {}).get("href") or (
f"https://bitbucket.org/{workspace}/{repo_slug}/pull-requests/{pr_id}"
)
created_on = pr.get("created_on")
updated_on = pr.get("updated_on")
updated_dt = (
datetime.fromisoformat(updated_on.replace("Z", "+00:00")).astimezone(
timezone.utc
)
if isinstance(updated_on, str)
else None
)
source_branch = pr.get("source", {}).get("branch", {}).get("name", "")
destination_branch = pr.get("destination", {}).get("branch", {}).get("name", "")
approved_by = [
_get_user_name(p.get("user", {})) for p in participants if p.get("approved")
]
primary_owner = None
if author:
primary_owner = BasicExpertInfo(
display_name=_get_user_name(author),
)
# secondary_owners = [
# BasicExpertInfo(display_name=_get_user_name(r)) for r in reviewers
# ] or None
reviewer_names = [_get_user_name(r) for r in reviewers]
# Create a concise summary of key PR info
created_date = created_on.split("T")[0] if created_on else "N/A"
updated_date = updated_on.split("T")[0] if updated_on else "N/A"
content_text = (
"Pull Request Information:\n"
f"- Pull Request ID: {pr_id}\n"
f"- Title: {title}\n"
f"- State: {state or 'N/A'} {'(Draft)' if draft else ''}\n"
)
if state == "DECLINED":
content_text += f"- Reason: {pr.get('reason', 'N/A')}\n"
content_text += (
f"- Author: {_get_user_name(author) if author else 'N/A'}\n"
f"- Reviewers: {', '.join(reviewer_names) if reviewer_names else 'N/A'}\n"
f"- Branch: {source_branch} -> {destination_branch}\n"
f"- Created: {created_date}\n"
f"- Updated: {updated_date}"
)
if description:
content_text += f"\n\nDescription:\n{description}"
metadata: dict[str, str | list[str]] = {
"object_type": "PullRequest",
"workspace": workspace,
"repository": repo_slug,
"pr_key": f"{workspace}/{repo_slug}#{pr_id}",
"id": str(pr_id),
"title": title,
"state": state or "",
"draft": str(bool(draft)),
"link": link,
"author": _get_user_name(author) if author else "",
"reviewers": reviewer_names,
"approved_by": approved_by,
"comment_count": str(pr.get("comment_count", "")),
"task_count": str(pr.get("task_count", "")),
"created_on": created_on or "",
"updated_on": updated_on or "",
"source_branch": source_branch,
"destination_branch": destination_branch,
"closed_by": (
_get_user_name(pr.get("closed_by", {})) if pr.get("closed_by") else ""
),
"close_source_branch": str(bool(pr.get("close_source_branch", False))),
}
name = sanitize_filename(title, "md")
return Document(
id=f"{DocumentSource.BITBUCKET.value}:{workspace}:{repo_slug}:pr:{pr_id}",
blob=content_text.encode("utf-8"),
source=DocumentSource.BITBUCKET,
extension=".md",
semantic_identifier=f"#{pr_id}: {name}",
size_bytes=len(content_text.encode("utf-8")),
doc_updated_at=updated_dt,
primary_owners=[primary_owner] if primary_owner else None,
# secondary_owners=secondary_owners,
metadata=metadata,
)
def _get_user_name(user: dict[str, Any]) -> str:
return user.get("display_name") or user.get("nickname") or "unknown"

View File

@ -13,6 +13,9 @@ def get_current_tz_offset() -> int:
return round(time_diff.total_seconds() / 3600)
# Default request timeout, mostly used by connectors
REQUEST_TIMEOUT_SECONDS = int(os.environ.get("REQUEST_TIMEOUT_SECONDS") or 60)
ONE_MINUTE = 60
ONE_HOUR = 3600
ONE_DAY = ONE_HOUR * 24
@ -54,6 +57,13 @@ class DocumentSource(str, Enum):
DROPBOX = "dropbox"
BOX = "box"
AIRTABLE = "airtable"
ASANA = "asana"
GITHUB = "github"
GITLAB = "gitlab"
IMAP = "imap"
BITBUCKET = "bitbucket"
ZENDESK = "zendesk"
class FileOrigin(str, Enum):
"""File origins"""
@ -231,6 +241,8 @@ _REPLACEMENT_EXPANSIONS = "body.view.value"
BOX_WEB_OAUTH_REDIRECT_URI = os.environ.get("BOX_WEB_OAUTH_REDIRECT_URI", "http://localhost:9380/v1/connector/box/oauth/web/callback")
GITHUB_CONNECTOR_BASE_URL = os.environ.get("GITHUB_CONNECTOR_BASE_URL") or None
class HtmlBasedConnectorTransformLinksStrategy(str, Enum):
# remove links entirely
STRIP = "strip"
@ -256,6 +268,18 @@ AIRTABLE_CONNECTOR_SIZE_THRESHOLD = int(
os.environ.get("AIRTABLE_CONNECTOR_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
ASANA_CONNECTOR_SIZE_THRESHOLD = int(
os.environ.get("ASANA_CONNECTOR_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
IMAP_CONNECTOR_SIZE_THRESHOLD = int(
os.environ.get("IMAP_CONNECTOR_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
ZENDESK_CONNECTOR_SKIP_ARTICLE_LABELS = os.environ.get(
"ZENDESK_CONNECTOR_SKIP_ARTICLE_LABELS", ""
).split(",")
_USER_NOT_FOUND = "Unknown Confluence User"
_COMMENT_EXPANSION_FIELDS = ["body.storage.value"]

View File

@ -0,0 +1,217 @@
import sys
import time
import logging
from collections.abc import Generator
from datetime import datetime
from typing import Generic
from typing import TypeVar
from common.data_source.interfaces import (
BaseConnector,
CheckpointedConnector,
CheckpointedConnectorWithPermSync,
CheckpointOutput,
LoadConnector,
PollConnector,
)
from common.data_source.models import ConnectorCheckpoint, ConnectorFailure, Document
TimeRange = tuple[datetime, datetime]
CT = TypeVar("CT", bound=ConnectorCheckpoint)
def batched_doc_ids(
checkpoint_connector_generator: CheckpointOutput[CT],
batch_size: int,
) -> Generator[set[str], None, None]:
batch: set[str] = set()
for document, failure, next_checkpoint in CheckpointOutputWrapper[CT]()(
checkpoint_connector_generator
):
if document is not None:
batch.add(document.id)
elif (
failure and failure.failed_document and failure.failed_document.document_id
):
batch.add(failure.failed_document.document_id)
if len(batch) >= batch_size:
yield batch
batch = set()
if len(batch) > 0:
yield batch
class CheckpointOutputWrapper(Generic[CT]):
"""
Wraps a CheckpointOutput generator to give things back in a more digestible format,
specifically for Document outputs.
The connector format is easier for the connector implementor (e.g. it enforces exactly
one new checkpoint is returned AND that the checkpoint is at the end), thus the different
formats.
"""
def __init__(self) -> None:
self.next_checkpoint: CT | None = None
def __call__(
self,
checkpoint_connector_generator: CheckpointOutput[CT],
) -> Generator[
tuple[Document | None, ConnectorFailure | None, CT | None],
None,
None,
]:
# grabs the final return value and stores it in the `next_checkpoint` variable
def _inner_wrapper(
checkpoint_connector_generator: CheckpointOutput[CT],
) -> CheckpointOutput[CT]:
self.next_checkpoint = yield from checkpoint_connector_generator
return self.next_checkpoint # not used
for document_or_failure in _inner_wrapper(checkpoint_connector_generator):
if isinstance(document_or_failure, Document):
yield document_or_failure, None, None
elif isinstance(document_or_failure, ConnectorFailure):
yield None, document_or_failure, None
else:
raise ValueError(
f"Invalid document_or_failure type: {type(document_or_failure)}"
)
if self.next_checkpoint is None:
raise RuntimeError(
"Checkpoint is None. This should never happen - the connector should always return a checkpoint."
)
yield None, None, self.next_checkpoint
class ConnectorRunner(Generic[CT]):
"""
Handles:
- Batching
- Additional exception logging
- Combining different connector types to a single interface
"""
def __init__(
self,
connector: BaseConnector,
batch_size: int,
# cannot be True for non-checkpointed connectors
include_permissions: bool,
time_range: TimeRange | None = None,
):
if not isinstance(connector, CheckpointedConnector) and include_permissions:
raise ValueError(
"include_permissions cannot be True for non-checkpointed connectors"
)
self.connector = connector
self.time_range = time_range
self.batch_size = batch_size
self.include_permissions = include_permissions
self.doc_batch: list[Document] = []
def run(self, checkpoint: CT) -> Generator[
tuple[list[Document] | None, ConnectorFailure | None, CT | None],
None,
None,
]:
"""Adds additional exception logging to the connector."""
try:
if isinstance(self.connector, CheckpointedConnector):
if self.time_range is None:
raise ValueError("time_range is required for CheckpointedConnector")
start = time.monotonic()
if self.include_permissions:
if not isinstance(
self.connector, CheckpointedConnectorWithPermSync
):
raise ValueError(
"Connector does not support permission syncing"
)
load_from_checkpoint = (
self.connector.load_from_checkpoint_with_perm_sync
)
else:
load_from_checkpoint = self.connector.load_from_checkpoint
checkpoint_connector_generator = load_from_checkpoint(
start=self.time_range[0].timestamp(),
end=self.time_range[1].timestamp(),
checkpoint=checkpoint,
)
next_checkpoint: CT | None = None
# this is guaranteed to always run at least once with next_checkpoint being non-None
for document, failure, next_checkpoint in CheckpointOutputWrapper[CT]()(
checkpoint_connector_generator
):
if document is not None and isinstance(document, Document):
self.doc_batch.append(document)
if failure is not None:
yield None, failure, None
if len(self.doc_batch) >= self.batch_size:
yield self.doc_batch, None, None
self.doc_batch = []
# yield remaining documents
if len(self.doc_batch) > 0:
yield self.doc_batch, None, None
self.doc_batch = []
yield None, None, next_checkpoint
logging.debug(
f"Connector took {time.monotonic() - start} seconds to get to the next checkpoint."
)
else:
finished_checkpoint = self.connector.build_dummy_checkpoint()
finished_checkpoint.has_more = False
if isinstance(self.connector, PollConnector):
if self.time_range is None:
raise ValueError("time_range is required for PollConnector")
for document_batch in self.connector.poll_source(
start=self.time_range[0].timestamp(),
end=self.time_range[1].timestamp(),
):
yield document_batch, None, None
yield None, None, finished_checkpoint
elif isinstance(self.connector, LoadConnector):
for document_batch in self.connector.load_from_state():
yield document_batch, None, None
yield None, None, finished_checkpoint
else:
raise ValueError(f"Invalid connector. type: {type(self.connector)}")
except Exception:
exc_type, _, exc_traceback = sys.exc_info()
# Traverse the traceback to find the last frame where the exception was raised
tb = exc_traceback
if tb is None:
logging.error("No traceback found for exception")
raise
while tb.tb_next:
tb = tb.tb_next # Move to the next frame in the traceback
# Get the local variables from the frame where the exception occurred
local_vars = tb.tb_frame.f_locals
local_vars_str = "\n".join(
f"{key}: {value}" for key, value in local_vars.items()
)
logging.error(
f"Error in connector. type: {exc_type};\n"
f"local_vars below -> \n{local_vars_str[:1024]}"
)
raise

View File

@ -0,0 +1,126 @@
import time
import logging
from collections.abc import Callable
from functools import wraps
from typing import Any
from typing import cast
from typing import TypeVar
import requests
F = TypeVar("F", bound=Callable[..., Any])
class RateLimitTriedTooManyTimesError(Exception):
pass
class _RateLimitDecorator:
"""Builds a generic wrapper/decorator for calls to external APIs that
prevents making more than `max_calls` requests per `period`
Implementation inspired by the `ratelimit` library:
https://github.com/tomasbasham/ratelimit.
NOTE: is not thread safe.
"""
def __init__(
self,
max_calls: int,
period: float, # in seconds
sleep_time: float = 2, # in seconds
sleep_backoff: float = 2, # applies exponential backoff
max_num_sleep: int = 0,
):
self.max_calls = max_calls
self.period = period
self.sleep_time = sleep_time
self.sleep_backoff = sleep_backoff
self.max_num_sleep = max_num_sleep
self.call_history: list[float] = []
self.curr_calls = 0
def __call__(self, func: F) -> F:
@wraps(func)
def wrapped_func(*args: list, **kwargs: dict[str, Any]) -> Any:
# cleanup calls which are no longer relevant
self._cleanup()
# check if we've exceeded the rate limit
sleep_cnt = 0
while len(self.call_history) == self.max_calls:
sleep_time = self.sleep_time * (self.sleep_backoff**sleep_cnt)
logging.warning(
f"Rate limit exceeded for function {func.__name__}. "
f"Waiting {sleep_time} seconds before retrying."
)
time.sleep(sleep_time)
sleep_cnt += 1
if self.max_num_sleep != 0 and sleep_cnt >= self.max_num_sleep:
raise RateLimitTriedTooManyTimesError(
f"Exceeded '{self.max_num_sleep}' retries for function '{func.__name__}'"
)
self._cleanup()
# add the current call to the call history
self.call_history.append(time.monotonic())
return func(*args, **kwargs)
return cast(F, wrapped_func)
def _cleanup(self) -> None:
curr_time = time.monotonic()
time_to_expire_before = curr_time - self.period
self.call_history = [
call_time
for call_time in self.call_history
if call_time > time_to_expire_before
]
rate_limit_builder = _RateLimitDecorator
"""If you want to allow the external service to tell you when you've hit the rate limit,
use the following instead"""
R = TypeVar("R", bound=Callable[..., requests.Response])
def wrap_request_to_handle_ratelimiting(
request_fn: R, default_wait_time_sec: int = 30, max_waits: int = 30
) -> R:
def wrapped_request(*args: list, **kwargs: dict[str, Any]) -> requests.Response:
for _ in range(max_waits):
response = request_fn(*args, **kwargs)
if response.status_code == 429:
try:
wait_time = int(
response.headers.get("Retry-After", default_wait_time_sec)
)
except ValueError:
wait_time = default_wait_time_sec
time.sleep(wait_time)
continue
return response
raise RateLimitTriedTooManyTimesError(f"Exceeded '{max_waits}' retries")
return cast(R, wrapped_request)
_rate_limited_get = wrap_request_to_handle_ratelimiting(requests.get)
_rate_limited_post = wrap_request_to_handle_ratelimiting(requests.post)
class _RateLimitedRequest:
get = _rate_limited_get
post = _rate_limited_post
rl_requests = _RateLimitedRequest

View File

@ -0,0 +1,88 @@
from collections.abc import Callable
import logging
from logging import Logger
from typing import Any
from typing import cast
from typing import TypeVar
import requests
from retry import retry
from common.data_source.config import REQUEST_TIMEOUT_SECONDS
F = TypeVar("F", bound=Callable[..., Any])
logger = logging.getLogger(__name__)
def retry_builder(
tries: int = 20,
delay: float = 0.1,
max_delay: float | None = 60,
backoff: float = 2,
jitter: tuple[float, float] | float = 1,
exceptions: type[Exception] | tuple[type[Exception], ...] = (Exception,),
) -> Callable[[F], F]:
"""Builds a generic wrapper/decorator for calls to external APIs that
may fail due to rate limiting, flakes, or other reasons. Applies exponential
backoff with jitter to retry the call."""
def retry_with_default(func: F) -> F:
@retry(
tries=tries,
delay=delay,
max_delay=max_delay,
backoff=backoff,
jitter=jitter,
logger=cast(Logger, logger),
exceptions=exceptions,
)
def wrapped_func(*args: list, **kwargs: dict[str, Any]) -> Any:
return func(*args, **kwargs)
return cast(F, wrapped_func)
return retry_with_default
def request_with_retries(
method: str,
url: str,
*,
data: dict[str, Any] | None = None,
headers: dict[str, Any] | None = None,
params: dict[str, Any] | None = None,
timeout: int = REQUEST_TIMEOUT_SECONDS,
stream: bool = False,
tries: int = 8,
delay: float = 1,
backoff: float = 2,
) -> requests.Response:
@retry(tries=tries, delay=delay, backoff=backoff, logger=cast(Logger, logger))
def _make_request() -> requests.Response:
response = requests.request(
method=method,
url=url,
data=data,
headers=headers,
params=params,
timeout=timeout,
stream=stream,
)
try:
response.raise_for_status()
except requests.exceptions.HTTPError:
logging.exception(
"Request failed:\n%s",
{
"method": method,
"url": url,
"data": data,
"headers": headers,
"params": params,
"timeout": timeout,
"stream": stream,
},
)
raise
return response
return _make_request()

View File

@ -18,6 +18,7 @@ class UploadMimeTypes:
"text/plain",
"text/markdown",
"text/x-markdown",
"text/mdx",
"text/x-config",
"text/tab-separated-values",
"application/json",

View File

View File

@ -0,0 +1,973 @@
import copy
import logging
from collections.abc import Callable
from collections.abc import Generator
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from enum import Enum
from typing import Any
from typing import cast
from github import Github, Auth
from github import RateLimitExceededException
from github import Repository
from github.GithubException import GithubException
from github.Issue import Issue
from github.NamedUser import NamedUser
from github.PaginatedList import PaginatedList
from github.PullRequest import PullRequest
from pydantic import BaseModel
from typing_extensions import override
from common.data_source.utils import sanitize_filename
from common.data_source.config import DocumentSource, GITHUB_CONNECTOR_BASE_URL
from common.data_source.exceptions import (
ConnectorMissingCredentialError,
ConnectorValidationError,
CredentialExpiredError,
InsufficientPermissionsError,
UnexpectedValidationError,
)
from common.data_source.interfaces import CheckpointedConnectorWithPermSyncGH, CheckpointOutput
from common.data_source.models import (
ConnectorCheckpoint,
ConnectorFailure,
Document,
DocumentFailure,
ExternalAccess,
SecondsSinceUnixEpoch,
)
from common.data_source.connector_runner import ConnectorRunner
from .models import SerializedRepository
from .rate_limit_utils import sleep_after_rate_limit_exception
from .utils import deserialize_repository
from .utils import get_external_access_permission
ITEMS_PER_PAGE = 100
CURSOR_LOG_FREQUENCY = 50
_MAX_NUM_RATE_LIMIT_RETRIES = 5
ONE_DAY = timedelta(days=1)
SLIM_BATCH_SIZE = 100
# Cases
# X (from start) standard run, no fallback to cursor-based pagination
# X (from start) standard run errors, fallback to cursor-based pagination
# X error in the middle of a page
# X no errors: run to completion
# X (from checkpoint) standard run, no fallback to cursor-based pagination
# X (from checkpoint) continue from cursor-based pagination
# - retrying
# - no retrying
# things to check:
# checkpoint state on return
# checkpoint progress (no infinite loop)
class DocMetadata(BaseModel):
repo: str
def get_nextUrl_key(pag_list: PaginatedList[PullRequest | Issue]) -> str:
if "_PaginatedList__nextUrl" in pag_list.__dict__:
return "_PaginatedList__nextUrl"
for key in pag_list.__dict__:
if "__nextUrl" in key:
return key
for key in pag_list.__dict__:
if "nextUrl" in key:
return key
return ""
def get_nextUrl(
pag_list: PaginatedList[PullRequest | Issue], nextUrl_key: str
) -> str | None:
return getattr(pag_list, nextUrl_key) if nextUrl_key else None
def set_nextUrl(
pag_list: PaginatedList[PullRequest | Issue], nextUrl_key: str, nextUrl: str
) -> None:
if nextUrl_key:
setattr(pag_list, nextUrl_key, nextUrl)
elif nextUrl:
raise ValueError("Next URL key not found: " + str(pag_list.__dict__))
def _paginate_until_error(
git_objs: Callable[[], PaginatedList[PullRequest | Issue]],
cursor_url: str | None,
prev_num_objs: int,
cursor_url_callback: Callable[[str | None, int], None],
retrying: bool = False,
) -> Generator[PullRequest | Issue, None, None]:
num_objs = prev_num_objs
pag_list = git_objs()
nextUrl_key = get_nextUrl_key(pag_list)
if cursor_url:
set_nextUrl(pag_list, nextUrl_key, cursor_url)
elif retrying:
# if we are retrying, we want to skip the objects retrieved
# over previous calls. Unfortunately, this WILL retrieve all
# pages before the one we are resuming from, so we really
# don't want this case to be hit often
logging.warning(
"Retrying from a previous cursor-based pagination call. "
"This will retrieve all pages before the one we are resuming from, "
"which may take a while and consume many API calls."
)
pag_list = cast(PaginatedList[PullRequest | Issue], pag_list[prev_num_objs:])
num_objs = 0
try:
# this for loop handles cursor-based pagination
for issue_or_pr in pag_list:
num_objs += 1
yield issue_or_pr
# used to store the current cursor url in the checkpoint. This value
# is updated during iteration over pag_list.
cursor_url_callback(get_nextUrl(pag_list, nextUrl_key), num_objs)
if num_objs % CURSOR_LOG_FREQUENCY == 0:
logging.info(
f"Retrieved {num_objs} objects with current cursor url: {get_nextUrl(pag_list, nextUrl_key)}"
)
except Exception as e:
logging.exception(f"Error during cursor-based pagination: {e}")
if num_objs - prev_num_objs > 0:
raise
if get_nextUrl(pag_list, nextUrl_key) is not None and not retrying:
logging.info(
"Assuming that this error is due to cursor "
"expiration because no objects were retrieved. "
"Retrying from the first page."
)
yield from _paginate_until_error(
git_objs, None, prev_num_objs, cursor_url_callback, retrying=True
)
return
# for no cursor url or if we reach this point after a retry, raise the error
raise
def _get_batch_rate_limited(
# We pass in a callable because we want git_objs to produce a fresh
# PaginatedList each time it's called to avoid using the same object for cursor-based pagination
# from a partial offset-based pagination call.
git_objs: Callable[[], PaginatedList],
page_num: int,
cursor_url: str | None,
prev_num_objs: int,
cursor_url_callback: Callable[[str | None, int], None],
github_client: Github,
attempt_num: int = 0,
) -> Generator[PullRequest | Issue, None, None]:
if attempt_num > _MAX_NUM_RATE_LIMIT_RETRIES:
raise RuntimeError(
"Re-tried fetching batch too many times. Something is going wrong with fetching objects from Github"
)
try:
if cursor_url:
# when this is set, we are resuming from an earlier
# cursor-based pagination call.
yield from _paginate_until_error(
git_objs, cursor_url, prev_num_objs, cursor_url_callback
)
return
objs = list(git_objs().get_page(page_num))
# fetch all data here to disable lazy loading later
# this is needed to capture the rate limit exception here (if one occurs)
for obj in objs:
if hasattr(obj, "raw_data"):
getattr(obj, "raw_data")
yield from objs
except RateLimitExceededException:
sleep_after_rate_limit_exception(github_client)
yield from _get_batch_rate_limited(
git_objs,
page_num,
cursor_url,
prev_num_objs,
cursor_url_callback,
github_client,
attempt_num + 1,
)
except GithubException as e:
if not (
e.status == 422
and (
"cursor" in (e.message or "")
or "cursor" in (e.data or {}).get("message", "")
)
):
raise
# Fallback to a cursor-based pagination strategy
# This can happen for "large datasets," but there's no documentation
# On the error on the web as far as we can tell.
# Error message:
# "Pagination with the page parameter is not supported for large datasets,
# please use cursor based pagination (after/before)"
yield from _paginate_until_error(
git_objs, cursor_url, prev_num_objs, cursor_url_callback
)
def _get_userinfo(user: NamedUser) -> dict[str, str]:
def _safe_get(attr_name: str) -> str | None:
try:
return cast(str | None, getattr(user, attr_name))
except GithubException:
logging.debug(f"Error getting {attr_name} for user")
return None
return {
k: v
for k, v in {
"login": _safe_get("login"),
"name": _safe_get("name"),
"email": _safe_get("email"),
}.items()
if v is not None
}
def _convert_pr_to_document(
pull_request: PullRequest, repo_external_access: ExternalAccess | None
) -> Document:
repo_name = pull_request.base.repo.full_name if pull_request.base else ""
doc_metadata = DocMetadata(repo=repo_name)
file_content_byte = pull_request.body.encode('utf-8') if pull_request.body else b""
name = sanitize_filename(pull_request.title, "md")
return Document(
id=pull_request.html_url,
blob= file_content_byte,
source=DocumentSource.GITHUB,
external_access=repo_external_access,
semantic_identifier=f"{pull_request.number}:{name}",
# updated_at is UTC time but is timezone unaware, explicitly add UTC
# as there is logic in indexing to prevent wrong timestamped docs
# due to local time discrepancies with UTC
doc_updated_at=(
pull_request.updated_at.replace(tzinfo=timezone.utc)
if pull_request.updated_at
else None
),
extension=".md",
# this metadata is used in perm sync
size_bytes=len(file_content_byte) if file_content_byte else 0,
primary_owners=[],
doc_metadata=doc_metadata.model_dump(),
metadata={
k: [str(vi) for vi in v] if isinstance(v, list) else str(v)
for k, v in {
"object_type": "PullRequest",
"id": pull_request.number,
"merged": pull_request.merged,
"state": pull_request.state,
"user": _get_userinfo(pull_request.user) if pull_request.user else None,
"assignees": [
_get_userinfo(assignee) for assignee in pull_request.assignees
],
"repo": (
pull_request.base.repo.full_name if pull_request.base else None
),
"num_commits": str(pull_request.commits),
"num_files_changed": str(pull_request.changed_files),
"labels": [label.name for label in pull_request.labels],
"created_at": (
pull_request.created_at.replace(tzinfo=timezone.utc)
if pull_request.created_at
else None
),
"updated_at": (
pull_request.updated_at.replace(tzinfo=timezone.utc)
if pull_request.updated_at
else None
),
"closed_at": (
pull_request.closed_at.replace(tzinfo=timezone.utc)
if pull_request.closed_at
else None
),
"merged_at": (
pull_request.merged_at.replace(tzinfo=timezone.utc)
if pull_request.merged_at
else None
),
"merged_by": (
_get_userinfo(pull_request.merged_by)
if pull_request.merged_by
else None
),
}.items()
if v is not None
},
)
def _fetch_issue_comments(issue: Issue) -> str:
comments = issue.get_comments()
return "\nComment: ".join(comment.body for comment in comments)
def _convert_issue_to_document(
issue: Issue, repo_external_access: ExternalAccess | None
) -> Document:
repo_name = issue.repository.full_name if issue.repository else ""
doc_metadata = DocMetadata(repo=repo_name)
file_content_byte = issue.body.encode('utf-8') if issue.body else b""
name = sanitize_filename(issue.title, "md")
return Document(
id=issue.html_url,
blob=file_content_byte,
source=DocumentSource.GITHUB,
extension=".md",
external_access=repo_external_access,
semantic_identifier=f"{issue.number}:{name}",
# updated_at is UTC time but is timezone unaware
doc_updated_at=issue.updated_at.replace(tzinfo=timezone.utc),
# this metadata is used in perm sync
doc_metadata=doc_metadata.model_dump(),
size_bytes=len(file_content_byte) if file_content_byte else 0,
primary_owners=[_get_userinfo(issue.user) if issue.user else None],
metadata={
k: [str(vi) for vi in v] if isinstance(v, list) else str(v)
for k, v in {
"object_type": "Issue",
"id": issue.number,
"state": issue.state,
"user": _get_userinfo(issue.user) if issue.user else None,
"assignees": [_get_userinfo(assignee) for assignee in issue.assignees],
"repo": issue.repository.full_name if issue.repository else None,
"labels": [label.name for label in issue.labels],
"created_at": (
issue.created_at.replace(tzinfo=timezone.utc)
if issue.created_at
else None
),
"updated_at": (
issue.updated_at.replace(tzinfo=timezone.utc)
if issue.updated_at
else None
),
"closed_at": (
issue.closed_at.replace(tzinfo=timezone.utc)
if issue.closed_at
else None
),
"closed_by": (
_get_userinfo(issue.closed_by) if issue.closed_by else None
),
}.items()
if v is not None
},
)
class GithubConnectorStage(Enum):
START = "start"
PRS = "prs"
ISSUES = "issues"
class GithubConnectorCheckpoint(ConnectorCheckpoint):
stage: GithubConnectorStage
curr_page: int
cached_repo_ids: list[int] | None = None
cached_repo: SerializedRepository | None = None
# Used for the fallback cursor-based pagination strategy
num_retrieved: int
cursor_url: str | None = None
def reset(self) -> None:
"""
Resets curr_page, num_retrieved, and cursor_url to their initial values (0, 0, None)
"""
self.curr_page = 0
self.num_retrieved = 0
self.cursor_url = None
def make_cursor_url_callback(
checkpoint: GithubConnectorCheckpoint,
) -> Callable[[str | None, int], None]:
def cursor_url_callback(cursor_url: str | None, num_objs: int) -> None:
# we want to maintain the old cursor url so code after retrieval
# can determine that we are using the fallback cursor-based pagination strategy
if cursor_url:
checkpoint.cursor_url = cursor_url
checkpoint.num_retrieved = num_objs
return cursor_url_callback
class GithubConnector(CheckpointedConnectorWithPermSyncGH[GithubConnectorCheckpoint]):
def __init__(
self,
repo_owner: str,
repositories: str | None = None,
state_filter: str = "all",
include_prs: bool = True,
include_issues: bool = False,
) -> None:
self.repo_owner = repo_owner
self.repositories = repositories
self.state_filter = state_filter
self.include_prs = include_prs
self.include_issues = include_issues
self.github_client: Github | None = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
# defaults to 30 items per page, can be set to as high as 100
token = credentials["github_access_token"]
auth = Auth.Token(token)
if GITHUB_CONNECTOR_BASE_URL:
self.github_client = Github(
auth=auth,
base_url=GITHUB_CONNECTOR_BASE_URL,
per_page=ITEMS_PER_PAGE,
)
else:
self.github_client = Github(
auth=auth,
per_page=ITEMS_PER_PAGE,
)
return None
def get_github_repo(
self, github_client: Github, attempt_num: int = 0
) -> Repository.Repository:
if attempt_num > _MAX_NUM_RATE_LIMIT_RETRIES:
raise RuntimeError(
"Re-tried fetching repo too many times. Something is going wrong with fetching objects from Github"
)
try:
return github_client.get_repo(f"{self.repo_owner}/{self.repositories}")
except RateLimitExceededException:
sleep_after_rate_limit_exception(github_client)
return self.get_github_repo(github_client, attempt_num + 1)
def get_github_repos(
self, github_client: Github, attempt_num: int = 0
) -> list[Repository.Repository]:
"""Get specific repositories based on comma-separated repo_name string."""
if attempt_num > _MAX_NUM_RATE_LIMIT_RETRIES:
raise RuntimeError(
"Re-tried fetching repos too many times. Something is going wrong with fetching objects from Github"
)
try:
repos = []
# Split repo_name by comma and strip whitespace
repo_names = [
name.strip() for name in (cast(str, self.repositories)).split(",")
]
for repo_name in repo_names:
if repo_name: # Skip empty strings
try:
repo = github_client.get_repo(f"{self.repo_owner}/{repo_name}")
repos.append(repo)
except GithubException as e:
logging.warning(
f"Could not fetch repo {self.repo_owner}/{repo_name}: {e}"
)
return repos
except RateLimitExceededException:
sleep_after_rate_limit_exception(github_client)
return self.get_github_repos(github_client, attempt_num + 1)
def get_all_repos(
self, github_client: Github, attempt_num: int = 0
) -> list[Repository.Repository]:
if attempt_num > _MAX_NUM_RATE_LIMIT_RETRIES:
raise RuntimeError(
"Re-tried fetching repos too many times. Something is going wrong with fetching objects from Github"
)
try:
# Try to get organization first
try:
org = github_client.get_organization(self.repo_owner)
return list(org.get_repos())
except GithubException:
# If not an org, try as a user
user = github_client.get_user(self.repo_owner)
return list(user.get_repos())
except RateLimitExceededException:
sleep_after_rate_limit_exception(github_client)
return self.get_all_repos(github_client, attempt_num + 1)
def _pull_requests_func(
self, repo: Repository.Repository
) -> Callable[[], PaginatedList[PullRequest]]:
return lambda: repo.get_pulls(
state=self.state_filter, sort="updated", direction="desc"
)
def _issues_func(
self, repo: Repository.Repository
) -> Callable[[], PaginatedList[Issue]]:
return lambda: repo.get_issues(
state=self.state_filter, sort="updated", direction="desc"
)
def _fetch_from_github(
self,
checkpoint: GithubConnectorCheckpoint,
start: datetime | None = None,
end: datetime | None = None,
include_permissions: bool = False,
) -> Generator[Document | ConnectorFailure, None, GithubConnectorCheckpoint]:
if self.github_client is None:
raise ConnectorMissingCredentialError("GitHub")
checkpoint = copy.deepcopy(checkpoint)
# First run of the connector, fetch all repos and store in checkpoint
if checkpoint.cached_repo_ids is None:
repos = []
if self.repositories:
if "," in self.repositories:
# Multiple repositories specified
repos = self.get_github_repos(self.github_client)
else:
# Single repository (backward compatibility)
repos = [self.get_github_repo(self.github_client)]
else:
# All repositories
repos = self.get_all_repos(self.github_client)
if not repos:
checkpoint.has_more = False
return checkpoint
curr_repo = repos.pop()
checkpoint.cached_repo_ids = [repo.id for repo in repos]
checkpoint.cached_repo = SerializedRepository(
id=curr_repo.id,
headers=curr_repo.raw_headers,
raw_data=curr_repo.raw_data,
)
checkpoint.stage = GithubConnectorStage.PRS
checkpoint.curr_page = 0
# save checkpoint with repo ids retrieved
return checkpoint
if checkpoint.cached_repo is None:
raise ValueError("No repo saved in checkpoint")
# Deserialize the repository from the checkpoint
repo = deserialize_repository(checkpoint.cached_repo, self.github_client)
cursor_url_callback = make_cursor_url_callback(checkpoint)
repo_external_access: ExternalAccess | None = None
if include_permissions:
repo_external_access = get_external_access_permission(
repo, self.github_client
)
if self.include_prs and checkpoint.stage == GithubConnectorStage.PRS:
logging.info(f"Fetching PRs for repo: {repo.name}")
pr_batch = _get_batch_rate_limited(
self._pull_requests_func(repo),
checkpoint.curr_page,
checkpoint.cursor_url,
checkpoint.num_retrieved,
cursor_url_callback,
self.github_client,
)
checkpoint.curr_page += 1 # NOTE: not used for cursor-based fallback
done_with_prs = False
num_prs = 0
pr = None
print("start: ", start)
for pr in pr_batch:
num_prs += 1
print("-"*40)
print("PR name", pr.title)
print("updated at", pr.updated_at)
print("-"*40)
print("\n")
# we iterate backwards in time, so at this point we stop processing prs
if (
start is not None
and pr.updated_at
and pr.updated_at.replace(tzinfo=timezone.utc) <= start
):
done_with_prs = True
break
# Skip PRs updated after the end date
if (
end is not None
and pr.updated_at
and pr.updated_at.replace(tzinfo=timezone.utc) > end
):
continue
try:
yield _convert_pr_to_document(
cast(PullRequest, pr), repo_external_access
)
except Exception as e:
error_msg = f"Error converting PR to document: {e}"
logging.exception(error_msg)
yield ConnectorFailure(
failed_document=DocumentFailure(
document_id=str(pr.id), document_link=pr.html_url
),
failure_message=error_msg,
exception=e,
)
continue
# If we reach this point with a cursor url in the checkpoint, we were using
# the fallback cursor-based pagination strategy. That strategy tries to get all
# PRs, so having curosr_url set means we are done with prs. However, we need to
# return AFTER the checkpoint reset to avoid infinite loops.
# if we found any PRs on the page and there are more PRs to get, return the checkpoint.
# In offset mode, while indexing without time constraints, the pr batch
# will be empty when we're done.
used_cursor = checkpoint.cursor_url is not None
if num_prs > 0 and not done_with_prs and not used_cursor:
return checkpoint
# if we went past the start date during the loop or there are no more
# prs to get, we move on to issues
checkpoint.stage = GithubConnectorStage.ISSUES
checkpoint.reset()
if used_cursor:
# save the checkpoint after changing stage; next run will continue from issues
return checkpoint
checkpoint.stage = GithubConnectorStage.ISSUES
if self.include_issues and checkpoint.stage == GithubConnectorStage.ISSUES:
logging.info(f"Fetching issues for repo: {repo.name}")
issue_batch = list(
_get_batch_rate_limited(
self._issues_func(repo),
checkpoint.curr_page,
checkpoint.cursor_url,
checkpoint.num_retrieved,
cursor_url_callback,
self.github_client,
)
)
checkpoint.curr_page += 1
done_with_issues = False
num_issues = 0
for issue in issue_batch:
num_issues += 1
issue = cast(Issue, issue)
# we iterate backwards in time, so at this point we stop processing prs
if (
start is not None
and issue.updated_at.replace(tzinfo=timezone.utc) <= start
):
done_with_issues = True
break
# Skip PRs updated after the end date
if (
end is not None
and issue.updated_at.replace(tzinfo=timezone.utc) > end
):
continue
if issue.pull_request is not None:
# PRs are handled separately
continue
try:
yield _convert_issue_to_document(issue, repo_external_access)
except Exception as e:
error_msg = f"Error converting issue to document: {e}"
logging.exception(error_msg)
yield ConnectorFailure(
failed_document=DocumentFailure(
document_id=str(issue.id),
document_link=issue.html_url,
),
failure_message=error_msg,
exception=e,
)
continue
# if we found any issues on the page, and we're not done, return the checkpoint.
# don't return if we're using cursor-based pagination to avoid infinite loops
if num_issues > 0 and not done_with_issues and not checkpoint.cursor_url:
return checkpoint
# if we went past the start date during the loop or there are no more
# issues to get, we move on to the next repo
checkpoint.stage = GithubConnectorStage.PRS
checkpoint.reset()
checkpoint.has_more = len(checkpoint.cached_repo_ids) > 0
if checkpoint.cached_repo_ids:
next_id = checkpoint.cached_repo_ids.pop()
next_repo = self.github_client.get_repo(next_id)
checkpoint.cached_repo = SerializedRepository(
id=next_id,
headers=next_repo.raw_headers,
raw_data=next_repo.raw_data,
)
checkpoint.stage = GithubConnectorStage.PRS
checkpoint.reset()
if checkpoint.cached_repo_ids:
logging.info(
f"{len(checkpoint.cached_repo_ids)} repos remaining (IDs: {checkpoint.cached_repo_ids})"
)
else:
logging.info("No more repos remaining")
return checkpoint
def _load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: GithubConnectorCheckpoint,
include_permissions: bool = False,
) -> CheckpointOutput[GithubConnectorCheckpoint]:
start_datetime = datetime.fromtimestamp(start, tz=timezone.utc)
# add a day for timezone safety
end_datetime = datetime.fromtimestamp(end, tz=timezone.utc) + ONE_DAY
# Move start time back by 3 hours, since some Issues/PRs are getting dropped
# Could be due to delayed processing on GitHub side
# The non-updated issues since last poll will be shortcut-ed and not embedded
# adjusted_start_datetime = start_datetime - timedelta(hours=3)
adjusted_start_datetime = start_datetime
epoch = datetime.fromtimestamp(0, tz=timezone.utc)
if adjusted_start_datetime < epoch:
adjusted_start_datetime = epoch
return self._fetch_from_github(
checkpoint,
start=adjusted_start_datetime,
end=end_datetime,
include_permissions=include_permissions,
)
@override
def load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: GithubConnectorCheckpoint,
) -> CheckpointOutput[GithubConnectorCheckpoint]:
return self._load_from_checkpoint(
start, end, checkpoint, include_permissions=False
)
@override
def load_from_checkpoint_with_perm_sync(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: GithubConnectorCheckpoint,
) -> CheckpointOutput[GithubConnectorCheckpoint]:
return self._load_from_checkpoint(
start, end, checkpoint, include_permissions=True
)
def validate_connector_settings(self) -> None:
if self.github_client is None:
raise ConnectorMissingCredentialError("GitHub credentials not loaded.")
if not self.repo_owner:
raise ConnectorValidationError(
"Invalid connector settings: 'repo_owner' must be provided."
)
try:
if self.repositories:
if "," in self.repositories:
# Multiple repositories specified
repo_names = [name.strip() for name in self.repositories.split(",")]
if not repo_names:
raise ConnectorValidationError(
"Invalid connector settings: No valid repository names provided."
)
# Validate at least one repository exists and is accessible
valid_repos = False
validation_errors = []
for repo_name in repo_names:
if not repo_name:
continue
try:
test_repo = self.github_client.get_repo(
f"{self.repo_owner}/{repo_name}"
)
logging.info(
f"Successfully accessed repository: {self.repo_owner}/{repo_name}"
)
test_repo.get_contents("")
valid_repos = True
# If at least one repo is valid, we can proceed
break
except GithubException as e:
validation_errors.append(
f"Repository '{repo_name}': {e.data.get('message', str(e))}"
)
if not valid_repos:
error_msg = (
"None of the specified repositories could be accessed: "
)
error_msg += ", ".join(validation_errors)
raise ConnectorValidationError(error_msg)
else:
# Single repository (backward compatibility)
test_repo = self.github_client.get_repo(
f"{self.repo_owner}/{self.repositories}"
)
test_repo.get_contents("")
else:
# Try to get organization first
try:
org = self.github_client.get_organization(self.repo_owner)
total_count = org.get_repos().totalCount
if total_count == 0:
raise ConnectorValidationError(
f"Found no repos for organization: {self.repo_owner}. "
"Does the credential have the right scopes?"
)
except GithubException as e:
# Check for missing SSO
MISSING_SSO_ERROR_MESSAGE = "You must grant your Personal Access token access to this organization".lower()
if MISSING_SSO_ERROR_MESSAGE in str(e).lower():
SSO_GUIDE_LINK = (
"https://docs.github.com/en/enterprise-cloud@latest/authentication/"
"authenticating-with-saml-single-sign-on/"
"authorizing-a-personal-access-token-for-use-with-saml-single-sign-on"
)
raise ConnectorValidationError(
f"Your GitHub token is missing authorization to access the "
f"`{self.repo_owner}` organization. Please follow the guide to "
f"authorize your token: {SSO_GUIDE_LINK}"
)
# If not an org, try as a user
user = self.github_client.get_user(self.repo_owner)
# Check if we can access any repos
total_count = user.get_repos().totalCount
if total_count == 0:
raise ConnectorValidationError(
f"Found no repos for user: {self.repo_owner}. "
"Does the credential have the right scopes?"
)
except RateLimitExceededException:
raise UnexpectedValidationError(
"Validation failed due to GitHub rate-limits being exceeded. Please try again later."
)
except GithubException as e:
if e.status == 401:
raise CredentialExpiredError(
"GitHub credential appears to be invalid or expired (HTTP 401)."
)
elif e.status == 403:
raise InsufficientPermissionsError(
"Your GitHub token does not have sufficient permissions for this repository (HTTP 403)."
)
elif e.status == 404:
if self.repositories:
if "," in self.repositories:
raise ConnectorValidationError(
f"None of the specified GitHub repositories could be found for owner: {self.repo_owner}"
)
else:
raise ConnectorValidationError(
f"GitHub repository not found with name: {self.repo_owner}/{self.repositories}"
)
else:
raise ConnectorValidationError(
f"GitHub user or organization not found: {self.repo_owner}"
)
else:
raise ConnectorValidationError(
f"Unexpected GitHub error (status={e.status}): {e.data}"
)
except Exception as exc:
raise Exception(
f"Unexpected error during GitHub settings validation: {exc}"
)
def validate_checkpoint_json(
self, checkpoint_json: str
) -> GithubConnectorCheckpoint:
return GithubConnectorCheckpoint.model_validate_json(checkpoint_json)
def build_dummy_checkpoint(self) -> GithubConnectorCheckpoint:
return GithubConnectorCheckpoint(
stage=GithubConnectorStage.PRS, curr_page=0, has_more=True, num_retrieved=0
)
if __name__ == "__main__":
# Initialize the connector
connector = GithubConnector(
repo_owner="EvoAgentX",
repositories="EvoAgentX",
include_issues=True,
include_prs=False,
)
connector.load_credentials(
{"github_access_token": "<Your_GitHub_Access_Token>"}
)
if connector.github_client:
get_external_access_permission(
connector.get_github_repos(connector.github_client).pop(),
connector.github_client,
)
# Create a time range from epoch to now
end_time = datetime.now(timezone.utc)
start_time = datetime.fromtimestamp(0, tz=timezone.utc)
time_range = (start_time, end_time)
# Initialize the runner with a batch size of 10
runner: ConnectorRunner[GithubConnectorCheckpoint] = ConnectorRunner(
connector, batch_size=10, include_permissions=False, time_range=time_range
)
# Get initial checkpoint
checkpoint = connector.build_dummy_checkpoint()
# Run the connector
while checkpoint.has_more:
for doc_batch, failure, next_checkpoint in runner.run(checkpoint):
if doc_batch:
print(f"Retrieved batch of {len(doc_batch)} documents")
for doc in doc_batch:
print(f"Document: {doc.semantic_identifier}")
if failure:
print(f"Failure: {failure.failure_message}")
if next_checkpoint:
checkpoint = next_checkpoint

View File

@ -0,0 +1,17 @@
from typing import Any
from github import Repository
from github.Requester import Requester
from pydantic import BaseModel
class SerializedRepository(BaseModel):
# id is part of the raw_data as well, just pulled out for convenience
id: int
headers: dict[str, str | int]
raw_data: dict[str, Any]
def to_Repository(self, requester: Requester) -> Repository.Repository:
return Repository.Repository(
requester, self.headers, self.raw_data, completed=True
)

View File

@ -0,0 +1,24 @@
import time
import logging
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from github import Github
def sleep_after_rate_limit_exception(github_client: Github) -> None:
"""
Sleep until the GitHub rate limit resets.
Args:
github_client: The GitHub client that hit the rate limit
"""
sleep_time = github_client.get_rate_limit().core.reset.replace(
tzinfo=timezone.utc
) - datetime.now(tz=timezone.utc)
sleep_time += timedelta(minutes=1) # add an extra minute just to be safe
logging.info(
"Ran into Github rate-limit. Sleeping %s seconds.", sleep_time.seconds
)
time.sleep(sleep_time.total_seconds())

View File

@ -0,0 +1,44 @@
import logging
from github import Github
from github.Repository import Repository
from common.data_source.models import ExternalAccess
from .models import SerializedRepository
def get_external_access_permission(
repo: Repository, github_client: Github
) -> ExternalAccess:
"""
Get the external access permission for a repository.
This functionality requires Enterprise Edition.
"""
# RAGFlow doesn't implement the Onyx EE external-permissions system.
# Default to private/unknown permissions.
return ExternalAccess.empty()
def deserialize_repository(
cached_repo: SerializedRepository, github_client: Github
) -> Repository:
"""
Deserialize a SerializedRepository back into a Repository object.
"""
# Try to access the requester - different PyGithub versions may use different attribute names
try:
# Try to get the requester using getattr to avoid linter errors
requester = getattr(github_client, "_requester", None)
if requester is None:
requester = getattr(github_client, "_Github__requester", None)
if requester is None:
# If we can't find the requester attribute, we need to fall back to recreating the repo
raise AttributeError("Could not find requester attribute")
return cached_repo.to_Repository(requester)
except Exception as e:
# If all else fails, re-fetch the repo directly
logging.warning("Failed to deserialize repository: %s. Attempting to re-fetch.", e)
repo_id = cached_repo.id
return github_client.get_repo(repo_id)

View File

@ -0,0 +1,340 @@
import fnmatch
import itertools
from collections import deque
from collections.abc import Iterable
from collections.abc import Iterator
from datetime import datetime
from datetime import timezone
from typing import Any
from typing import TypeVar
import gitlab
from gitlab.v4.objects import Project
from common.data_source.config import DocumentSource, INDEX_BATCH_SIZE
from common.data_source.exceptions import ConnectorMissingCredentialError
from common.data_source.exceptions import ConnectorValidationError
from common.data_source.exceptions import CredentialExpiredError
from common.data_source.exceptions import InsufficientPermissionsError
from common.data_source.exceptions import UnexpectedValidationError
from common.data_source.interfaces import GenerateDocumentsOutput
from common.data_source.interfaces import LoadConnector
from common.data_source.interfaces import PollConnector
from common.data_source.interfaces import SecondsSinceUnixEpoch
from common.data_source.models import BasicExpertInfo
from common.data_source.models import Document
from common.data_source.utils import get_file_ext
T = TypeVar("T")
# List of directories/Files to exclude
exclude_patterns = [
"logs",
".github/",
".gitlab/",
".pre-commit-config.yaml",
]
def _batch_gitlab_objects(git_objs: Iterable[T], batch_size: int) -> Iterator[list[T]]:
it = iter(git_objs)
while True:
batch = list(itertools.islice(it, batch_size))
if not batch:
break
yield batch
def get_author(author: Any) -> BasicExpertInfo:
return BasicExpertInfo(
display_name=author.get("name"),
)
def _convert_merge_request_to_document(mr: Any) -> Document:
mr_text = mr.description or ""
doc = Document(
id=mr.web_url,
blob=mr_text,
source=DocumentSource.GITLAB,
semantic_identifier=mr.title,
extension=".md",
# updated_at is UTC time but is timezone unaware, explicitly add UTC
# as there is logic in indexing to prevent wrong timestamped docs
# due to local time discrepancies with UTC
doc_updated_at=mr.updated_at.replace(tzinfo=timezone.utc),
size_bytes=len(mr_text.encode("utf-8")),
primary_owners=[get_author(mr.author)],
metadata={"state": mr.state, "type": "MergeRequest", "web_url": mr.web_url},
)
return doc
def _convert_issue_to_document(issue: Any) -> Document:
issue_text = issue.description or ""
doc = Document(
id=issue.web_url,
blob=issue_text,
source=DocumentSource.GITLAB,
semantic_identifier=issue.title,
extension=".md",
# updated_at is UTC time but is timezone unaware, explicitly add UTC
# as there is logic in indexing to prevent wrong timestamped docs
# due to local time discrepancies with UTC
doc_updated_at=issue.updated_at.replace(tzinfo=timezone.utc),
size_bytes=len(issue_text.encode("utf-8")),
primary_owners=[get_author(issue.author)],
metadata={
"state": issue.state,
"type": issue.type if issue.type else "Issue",
"web_url": issue.web_url,
},
)
return doc
def _convert_code_to_document(
project: Project, file: Any, url: str, projectName: str, projectOwner: str
) -> Document:
# Dynamically get the default branch from the project object
default_branch = project.default_branch
# Fetch the file content using the correct branch
file_content_obj = project.files.get(
file_path=file["path"], ref=default_branch # Use the default branch
)
# BoxConnector uses raw bytes for blob. Keep the same here.
file_content_bytes = file_content_obj.decode()
file_url = f"{url}/{projectOwner}/{projectName}/-/blob/{default_branch}/{file['path']}"
# Try to use the last commit timestamp for incremental sync.
# Falls back to "now" if the commit lookup fails.
last_commit_at = None
try:
# Query commit history for this file on the default branch.
commits = project.commits.list(
ref_name=default_branch,
path=file["path"],
per_page=1,
)
if commits:
# committed_date is ISO string like "2024-01-01T00:00:00.000+00:00"
committed_date = commits[0].committed_date
if isinstance(committed_date, str):
last_commit_at = datetime.strptime(
committed_date, "%Y-%m-%dT%H:%M:%S.%f%z"
).astimezone(timezone.utc)
elif isinstance(committed_date, datetime):
last_commit_at = committed_date.astimezone(timezone.utc)
except Exception:
last_commit_at = None
# Create and return a Document object
doc = Document(
# Use a stable ID so reruns don't create duplicates.
id=file_url,
blob=file_content_bytes,
source=DocumentSource.GITLAB,
semantic_identifier=file.get("name"),
extension=get_file_ext(file.get("name")),
doc_updated_at=last_commit_at or datetime.now(tz=timezone.utc),
size_bytes=len(file_content_bytes) if file_content_bytes is not None else 0,
primary_owners=[], # Add owners if needed
metadata={
"type": "CodeFile",
"path": file.get("path"),
"ref": default_branch,
"project": f"{projectOwner}/{projectName}",
"web_url": file_url,
},
)
return doc
def _should_exclude(path: str) -> bool:
"""Check if a path matches any of the exclude patterns."""
return any(fnmatch.fnmatch(path, pattern) for pattern in exclude_patterns)
class GitlabConnector(LoadConnector, PollConnector):
def __init__(
self,
project_owner: str,
project_name: str,
batch_size: int = INDEX_BATCH_SIZE,
state_filter: str = "all",
include_mrs: bool = True,
include_issues: bool = True,
include_code_files: bool = False,
) -> None:
self.project_owner = project_owner
self.project_name = project_name
self.batch_size = batch_size
self.state_filter = state_filter
self.include_mrs = include_mrs
self.include_issues = include_issues
self.include_code_files = include_code_files
self.gitlab_client: gitlab.Gitlab | None = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self.gitlab_client = gitlab.Gitlab(
credentials["gitlab_url"], private_token=credentials["gitlab_access_token"]
)
return None
def validate_connector_settings(self) -> None:
if self.gitlab_client is None:
raise ConnectorMissingCredentialError("GitLab")
try:
self.gitlab_client.auth()
self.gitlab_client.projects.get(
f"{self.project_owner}/{self.project_name}",
lazy=True,
)
except gitlab.exceptions.GitlabAuthenticationError as e:
raise CredentialExpiredError(
"Invalid or expired GitLab credentials."
) from e
except gitlab.exceptions.GitlabAuthorizationError as e:
raise InsufficientPermissionsError(
"Insufficient permissions to access GitLab resources."
) from e
except gitlab.exceptions.GitlabGetError as e:
raise ConnectorValidationError(
"GitLab project not found or not accessible."
) from e
except Exception as e:
raise UnexpectedValidationError(
f"Unexpected error while validating GitLab settings: {e}"
) from e
def _fetch_from_gitlab(
self, start: datetime | None = None, end: datetime | None = None
) -> GenerateDocumentsOutput:
if self.gitlab_client is None:
raise ConnectorMissingCredentialError("Gitlab")
project: Project = self.gitlab_client.projects.get(
f"{self.project_owner}/{self.project_name}"
)
start_utc = start.astimezone(timezone.utc) if start else None
end_utc = end.astimezone(timezone.utc) if end else None
# Fetch code files
if self.include_code_files:
# Fetching using BFS as project.report_tree with recursion causing slow load
queue = deque([""]) # Start with the root directory
while queue:
current_path = queue.popleft()
files = project.repository_tree(path=current_path, all=True)
for file_batch in _batch_gitlab_objects(files, self.batch_size):
code_doc_batch: list[Document] = []
for file in file_batch:
if _should_exclude(file["path"]):
continue
if file["type"] == "blob":
doc = _convert_code_to_document(
project,
file,
self.gitlab_client.url,
self.project_name,
self.project_owner,
)
# Apply incremental window filtering for code files too.
if start_utc is not None and doc.doc_updated_at <= start_utc:
continue
if end_utc is not None and doc.doc_updated_at > end_utc:
continue
code_doc_batch.append(doc)
elif file["type"] == "tree":
queue.append(file["path"])
if code_doc_batch:
yield code_doc_batch
if self.include_mrs:
merge_requests = project.mergerequests.list(
state=self.state_filter,
order_by="updated_at",
sort="desc",
iterator=True,
)
for mr_batch in _batch_gitlab_objects(merge_requests, self.batch_size):
mr_doc_batch: list[Document] = []
for mr in mr_batch:
mr.updated_at = datetime.strptime(
mr.updated_at, "%Y-%m-%dT%H:%M:%S.%f%z"
)
if start_utc is not None and mr.updated_at <= start_utc:
yield mr_doc_batch
return
if end_utc is not None and mr.updated_at > end_utc:
continue
mr_doc_batch.append(_convert_merge_request_to_document(mr))
yield mr_doc_batch
if self.include_issues:
issues = project.issues.list(state=self.state_filter, iterator=True)
for issue_batch in _batch_gitlab_objects(issues, self.batch_size):
issue_doc_batch: list[Document] = []
for issue in issue_batch:
issue.updated_at = datetime.strptime(
issue.updated_at, "%Y-%m-%dT%H:%M:%S.%f%z"
)
# Avoid re-syncing the last-seen item.
if start_utc is not None and issue.updated_at <= start_utc:
yield issue_doc_batch
return
if end_utc is not None and issue.updated_at > end_utc:
continue
issue_doc_batch.append(_convert_issue_to_document(issue))
yield issue_doc_batch
def load_from_state(self) -> GenerateDocumentsOutput:
return self._fetch_from_gitlab()
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
start_datetime = datetime.fromtimestamp(start, tz=timezone.utc)
end_datetime = datetime.fromtimestamp(end, tz=timezone.utc)
return self._fetch_from_gitlab(start_datetime, end_datetime)
if __name__ == "__main__":
import os
connector = GitlabConnector(
# gitlab_url="https://gitlab.com/api/v4",
project_owner=os.environ["PROJECT_OWNER"],
project_name=os.environ["PROJECT_NAME"],
batch_size=INDEX_BATCH_SIZE,
state_filter="all",
include_mrs=True,
include_issues=True,
include_code_files=True,
)
connector.load_credentials(
{
"gitlab_access_token": os.environ["GITLAB_ACCESS_TOKEN"],
"gitlab_url": os.environ["GITLAB_URL"],
}
)
document_batches = connector.load_from_state()
for f in document_batches:
print("Batch:", f)
print("Finished loading from state.")

View File

@ -8,10 +8,10 @@ from common.data_source.config import INDEX_BATCH_SIZE, SLIM_BATCH_SIZE, Documen
from common.data_source.google_util.auth import get_google_creds
from common.data_source.google_util.constant import DB_CREDENTIALS_PRIMARY_ADMIN_KEY, MISSING_SCOPES_ERROR_STR, SCOPE_INSTRUCTIONS, USER_FIELDS
from common.data_source.google_util.resource import get_admin_service, get_gmail_service
from common.data_source.google_util.util import _execute_single_retrieval, execute_paginated_retrieval, sanitize_filename, clean_string
from common.data_source.google_util.util import _execute_single_retrieval, execute_paginated_retrieval, clean_string
from common.data_source.interfaces import LoadConnector, PollConnector, SecondsSinceUnixEpoch, SlimConnectorWithPermSync
from common.data_source.models import BasicExpertInfo, Document, ExternalAccess, GenerateDocumentsOutput, GenerateSlimDocumentOutput, SlimDocument, TextSection
from common.data_source.utils import build_time_range_query, clean_email_and_extract_name, get_message_body, is_mail_service_disabled_error, gmail_time_str_to_utc
from common.data_source.utils import build_time_range_query, clean_email_and_extract_name, get_message_body, is_mail_service_disabled_error, gmail_time_str_to_utc, sanitize_filename
# Constants for Gmail API fields
THREAD_LIST_FIELDS = "nextPageToken, threads(id)"

View File

@ -191,43 +191,6 @@ def get_credentials_from_env(email: str, oauth: bool = False, source="drive") ->
DB_CREDENTIALS_AUTHENTICATION_METHOD: "uploaded",
}
def sanitize_filename(name: str) -> str:
"""
Soft sanitize for MinIO/S3:
- Replace only prohibited characters with a space.
- Preserve readability (no ugly underscores).
- Collapse multiple spaces.
"""
if name is None:
return "file.txt"
name = str(name).strip()
# Characters that MUST NOT appear in S3/MinIO object keys
# Replace them with a space (not underscore)
forbidden = r'[\\\?\#\%\*\:\|\<\>"]'
name = re.sub(forbidden, " ", name)
# Replace slashes "/" (S3 interprets as folder) with space
name = name.replace("/", " ")
# Collapse multiple spaces into one
name = re.sub(r"\s+", " ", name)
# Trim both ends
name = name.strip()
# Enforce reasonable max length
if len(name) > 200:
base, ext = os.path.splitext(name)
name = base[:180].rstrip() + ext
# Ensure there is an extension (your original logic)
if not os.path.splitext(name)[1]:
name += ".txt"
return name
def clean_string(text: str | None) -> str | None:
"""

View File

@ -0,0 +1,724 @@
import copy
import email
from email.header import decode_header
import imaplib
import logging
import os
import re
from datetime import datetime, timedelta
from datetime import timezone
from email.message import Message
from email.utils import collapse_rfc2231_value, parseaddr
from enum import Enum
from typing import Any
from typing import cast
import bs4
from pydantic import BaseModel
from common.data_source.config import IMAP_CONNECTOR_SIZE_THRESHOLD, DocumentSource
from common.data_source.interfaces import CheckpointOutput, CheckpointedConnectorWithPermSync, CredentialsConnector, CredentialsProviderInterface
from common.data_source.models import BasicExpertInfo, ConnectorCheckpoint, Document, ExternalAccess, SecondsSinceUnixEpoch
_DEFAULT_IMAP_PORT_NUMBER = int(os.environ.get("IMAP_PORT", 993))
_IMAP_OKAY_STATUS = "OK"
_PAGE_SIZE = 100
_USERNAME_KEY = "imap_username"
_PASSWORD_KEY = "imap_password"
class Header(str, Enum):
SUBJECT_HEADER = "subject"
FROM_HEADER = "from"
TO_HEADER = "to"
CC_HEADER = "cc"
DELIVERED_TO_HEADER = (
"Delivered-To" # Used in mailing lists instead of the "to" header.
)
DATE_HEADER = "date"
MESSAGE_ID_HEADER = "Message-ID"
class EmailHeaders(BaseModel):
"""
Model for email headers extracted from IMAP messages.
"""
id: str
subject: str
sender: str
recipients: str | None
cc: str | None
date: datetime
@classmethod
def from_email_msg(cls, email_msg: Message) -> "EmailHeaders":
def _decode(header: str, default: str | None = None) -> str | None:
value = email_msg.get(header, default)
if not value:
return None
decoded_fragments = decode_header(value)
decoded_strings: list[str] = []
for decoded_value, encoding in decoded_fragments:
if isinstance(decoded_value, bytes):
try:
decoded_strings.append(
decoded_value.decode(encoding or "utf-8", errors="replace")
)
except LookupError:
decoded_strings.append(
decoded_value.decode("utf-8", errors="replace")
)
elif isinstance(decoded_value, str):
decoded_strings.append(decoded_value)
else:
decoded_strings.append(str(decoded_value))
return "".join(decoded_strings)
def _parse_date(date_str: str | None) -> datetime | None:
if not date_str:
return None
try:
return email.utils.parsedate_to_datetime(date_str)
except (TypeError, ValueError):
return None
message_id = _decode(header=Header.MESSAGE_ID_HEADER)
if not message_id:
message_id = f"<generated-{uuid.uuid4()}@imap.local>"
# It's possible for the subject line to not exist or be an empty string.
subject = _decode(header=Header.SUBJECT_HEADER) or "Unknown Subject"
from_ = _decode(header=Header.FROM_HEADER)
to = _decode(header=Header.TO_HEADER)
if not to:
to = _decode(header=Header.DELIVERED_TO_HEADER)
cc = _decode(header=Header.CC_HEADER)
date_str = _decode(header=Header.DATE_HEADER)
date = _parse_date(date_str=date_str)
if not date:
date = datetime.now(tz=timezone.utc)
# If any of the above are `None`, model validation will fail.
# Therefore, no guards (i.e.: `if <header> is None: raise RuntimeError(..)`) were written.
return cls.model_validate(
{
"id": message_id,
"subject": subject,
"sender": from_,
"recipients": to,
"cc": cc,
"date": date,
}
)
class CurrentMailbox(BaseModel):
mailbox: str
todo_email_ids: list[str]
# An email has a list of mailboxes.
# Each mailbox has a list of email-ids inside of it.
#
# Usage:
# To use this checkpointer, first fetch all the mailboxes.
# Then, pop a mailbox and fetch all of its email-ids.
# Then, pop each email-id and fetch its content (and parse it, etc..).
# When you have popped all email-ids for this mailbox, pop the next mailbox and repeat the above process until you're done.
#
# For initial checkpointing, set both fields to `None`.
class ImapCheckpoint(ConnectorCheckpoint):
todo_mailboxes: list[str] | None = None
current_mailbox: CurrentMailbox | None = None
class LoginState(str, Enum):
LoggedIn = "logged_in"
LoggedOut = "logged_out"
class ImapConnector(
CredentialsConnector,
CheckpointedConnectorWithPermSync,
):
def __init__(
self,
host: str,
port: int = _DEFAULT_IMAP_PORT_NUMBER,
mailboxes: list[str] | None = None,
) -> None:
self._host = host
self._port = port
self._mailboxes = mailboxes
self._credentials: dict[str, Any] | None = None
@property
def credentials(self) -> dict[str, Any]:
if not self._credentials:
raise RuntimeError(
"Credentials have not been initialized; call `set_credentials_provider` first"
)
return self._credentials
def _get_mail_client(self) -> imaplib.IMAP4_SSL:
"""
Returns a new `imaplib.IMAP4_SSL` instance.
The `imaplib.IMAP4_SSL` object is supposed to be an "ephemeral" object; it's not something that you can login,
logout, then log back into again. I.e., the following will fail:
```py
mail_client.login(..)
mail_client.logout();
mail_client.login(..)
```
Therefore, you need a fresh, new instance in order to operate with IMAP. This function gives one to you.
# Notes
This function will throw an error if the credentials have not yet been set.
"""
def get_or_raise(name: str) -> str:
value = self.credentials.get(name)
if not value:
raise RuntimeError(f"Credential item {name=} was not found")
if not isinstance(value, str):
raise RuntimeError(
f"Credential item {name=} must be of type str, instead received {type(name)=}"
)
return value
username = get_or_raise(_USERNAME_KEY)
password = get_or_raise(_PASSWORD_KEY)
mail_client = imaplib.IMAP4_SSL(host=self._host, port=self._port)
status, _data = mail_client.login(user=username, password=password)
if status != _IMAP_OKAY_STATUS:
raise RuntimeError(f"Failed to log into imap server; {status=}")
return mail_client
def _load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ImapCheckpoint,
include_perm_sync: bool,
) -> CheckpointOutput[ImapCheckpoint]:
checkpoint = cast(ImapCheckpoint, copy.deepcopy(checkpoint))
checkpoint.has_more = True
mail_client = self._get_mail_client()
if checkpoint.todo_mailboxes is None:
# This is the dummy checkpoint.
# Fill it with mailboxes first.
if self._mailboxes:
checkpoint.todo_mailboxes = _sanitize_mailbox_names(self._mailboxes)
else:
fetched_mailboxes = _fetch_all_mailboxes_for_email_account(
mail_client=mail_client
)
if not fetched_mailboxes:
raise RuntimeError(
"Failed to find any mailboxes for this email account"
)
checkpoint.todo_mailboxes = _sanitize_mailbox_names(fetched_mailboxes)
return checkpoint
if (
not checkpoint.current_mailbox
or not checkpoint.current_mailbox.todo_email_ids
):
if not checkpoint.todo_mailboxes:
checkpoint.has_more = False
return checkpoint
mailbox = checkpoint.todo_mailboxes.pop()
email_ids = _fetch_email_ids_in_mailbox(
mail_client=mail_client,
mailbox=mailbox,
start=start,
end=end,
)
checkpoint.current_mailbox = CurrentMailbox(
mailbox=mailbox,
todo_email_ids=email_ids,
)
_select_mailbox(
mail_client=mail_client, mailbox=checkpoint.current_mailbox.mailbox
)
current_todos = cast(
list, copy.deepcopy(checkpoint.current_mailbox.todo_email_ids[:_PAGE_SIZE])
)
checkpoint.current_mailbox.todo_email_ids = (
checkpoint.current_mailbox.todo_email_ids[_PAGE_SIZE:]
)
for email_id in current_todos:
email_msg = _fetch_email(mail_client=mail_client, email_id=email_id)
if not email_msg:
logging.warning(f"Failed to fetch message {email_id=}; skipping")
continue
email_headers = EmailHeaders.from_email_msg(email_msg=email_msg)
msg_dt = email_headers.date
if msg_dt.tzinfo is None:
msg_dt = msg_dt.replace(tzinfo=timezone.utc)
else:
msg_dt = msg_dt.astimezone(timezone.utc)
start_dt = datetime.fromtimestamp(start, tz=timezone.utc)
end_dt = datetime.fromtimestamp(end, tz=timezone.utc)
if not (start_dt < msg_dt <= end_dt):
continue
email_doc = _convert_email_headers_and_body_into_document(
email_msg=email_msg,
email_headers=email_headers,
include_perm_sync=include_perm_sync,
)
yield email_doc
attachments = extract_attachments(email_msg)
for att in attachments:
yield attachment_to_document(email_doc, att, email_headers)
return checkpoint
# impls for BaseConnector
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self._credentials = credentials
return None
def validate_connector_settings(self) -> None:
self._get_mail_client()
# impls for CredentialsConnector
def set_credentials_provider(
self, credentials_provider: CredentialsProviderInterface
) -> None:
self._credentials = credentials_provider.get_credentials()
# impls for CheckpointedConnector
def load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ImapCheckpoint,
) -> CheckpointOutput[ImapCheckpoint]:
return self._load_from_checkpoint(
start=start, end=end, checkpoint=checkpoint, include_perm_sync=False
)
def build_dummy_checkpoint(self) -> ImapCheckpoint:
return ImapCheckpoint(has_more=True)
def validate_checkpoint_json(self, checkpoint_json: str) -> ImapCheckpoint:
return ImapCheckpoint.model_validate_json(json_data=checkpoint_json)
# impls for CheckpointedConnectorWithPermSync
def load_from_checkpoint_with_perm_sync(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ImapCheckpoint,
) -> CheckpointOutput[ImapCheckpoint]:
return self._load_from_checkpoint(
start=start, end=end, checkpoint=checkpoint, include_perm_sync=True
)
def _fetch_all_mailboxes_for_email_account(mail_client: imaplib.IMAP4_SSL) -> list[str]:
status, mailboxes_data = mail_client.list('""', "*")
if status != _IMAP_OKAY_STATUS:
raise RuntimeError(f"Failed to fetch mailboxes; {status=}")
mailboxes = []
for mailboxes_raw in mailboxes_data:
if isinstance(mailboxes_raw, bytes):
mailboxes_str = mailboxes_raw.decode()
elif isinstance(mailboxes_raw, str):
mailboxes_str = mailboxes_raw
else:
logging.warning(
f"Expected the mailbox data to be of type str, instead got {type(mailboxes_raw)=} {mailboxes_raw}; skipping"
)
continue
# The mailbox LIST response output can be found here:
# https://www.rfc-editor.org/rfc/rfc3501.html#section-7.2.2
#
# The general format is:
# `(<name-attributes>) <hierarchy-delimiter> <mailbox-name>`
#
# The below regex matches on that pattern; from there, we select the 3rd match (index 2), which is the mailbox-name.
match = re.match(r'\([^)]*\)\s+"([^"]+)"\s+"?(.+?)"?$', mailboxes_str)
if not match:
logging.warning(
f"Invalid mailbox-data formatting structure: {mailboxes_str=}; skipping"
)
continue
mailbox = match.group(2)
mailboxes.append(mailbox)
if not mailboxes:
logging.warning(
"No mailboxes parsed from LIST response; falling back to INBOX"
)
return ["INBOX"]
return mailboxes
def _select_mailbox(mail_client: imaplib.IMAP4_SSL, mailbox: str) -> bool:
try:
status, _ = mail_client.select(mailbox=mailbox, readonly=True)
if status != _IMAP_OKAY_STATUS:
return False
return True
except Exception:
return False
def _fetch_email_ids_in_mailbox(
mail_client: imaplib.IMAP4_SSL,
mailbox: str,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
) -> list[str]:
if not _select_mailbox(mail_client, mailbox):
logging.warning(f"Skip mailbox: {mailbox}")
return []
start_dt = datetime.fromtimestamp(start, tz=timezone.utc)
end_dt = datetime.fromtimestamp(end, tz=timezone.utc) + timedelta(days=1)
start_str = start_dt.strftime("%d-%b-%Y")
end_str = end_dt.strftime("%d-%b-%Y")
search_criteria = f'(SINCE "{start_str}" BEFORE "{end_str}")'
status, email_ids_byte_array = mail_client.search(None, search_criteria)
if status != _IMAP_OKAY_STATUS or not email_ids_byte_array:
raise RuntimeError(f"Failed to fetch email ids; {status=}")
email_ids: bytes = email_ids_byte_array[0]
return [email_id.decode() for email_id in email_ids.split()]
def _fetch_email(mail_client: imaplib.IMAP4_SSL, email_id: str) -> Message | None:
status, msg_data = mail_client.fetch(message_set=email_id, message_parts="(RFC822)")
if status != _IMAP_OKAY_STATUS or not msg_data:
return None
data = msg_data[0]
if not isinstance(data, tuple):
raise RuntimeError(
f"Message data should be a tuple; instead got a {type(data)=} {data=}"
)
_, raw_email = data
return email.message_from_bytes(raw_email)
def _convert_email_headers_and_body_into_document(
email_msg: Message,
email_headers: EmailHeaders,
include_perm_sync: bool,
) -> Document:
sender_name, sender_addr = _parse_singular_addr(raw_header=email_headers.sender)
to_addrs = (
_parse_addrs(email_headers.recipients)
if email_headers.recipients
else []
)
cc_addrs = (
_parse_addrs(email_headers.cc)
if email_headers.cc
else []
)
all_participants = to_addrs + cc_addrs
expert_info_map = {
recipient_addr: BasicExpertInfo(
display_name=recipient_name, email=recipient_addr
)
for recipient_name, recipient_addr in all_participants
}
if sender_addr not in expert_info_map:
expert_info_map[sender_addr] = BasicExpertInfo(
display_name=sender_name, email=sender_addr
)
email_body = _parse_email_body(email_msg=email_msg, email_headers=email_headers)
primary_owners = list(expert_info_map.values())
external_access = (
ExternalAccess(
external_user_emails=set(expert_info_map.keys()),
external_user_group_ids=set(),
is_public=False,
)
if include_perm_sync
else None
)
return Document(
id=email_headers.id,
title=email_headers.subject,
blob=email_body,
size_bytes=len(email_body),
semantic_identifier=email_headers.subject,
metadata={},
extension='.txt',
doc_updated_at=email_headers.date,
source=DocumentSource.IMAP,
primary_owners=primary_owners,
external_access=external_access,
)
def extract_attachments(email_msg: Message, max_bytes: int = IMAP_CONNECTOR_SIZE_THRESHOLD):
attachments = []
if not email_msg.is_multipart():
return attachments
for part in email_msg.walk():
if part.get_content_maintype() == "multipart":
continue
disposition = (part.get("Content-Disposition") or "").lower()
filename = part.get_filename()
if not (
disposition.startswith("attachment")
or (disposition.startswith("inline") and filename)
):
continue
payload = part.get_payload(decode=True)
if not payload:
continue
if len(payload) > max_bytes:
continue
attachments.append({
"filename": filename or "attachment.bin",
"content_type": part.get_content_type(),
"content_bytes": payload,
"size_bytes": len(payload),
})
return attachments
def decode_mime_filename(raw: str | None) -> str | None:
if not raw:
return None
try:
raw = collapse_rfc2231_value(raw)
except Exception:
pass
parts = decode_header(raw)
decoded = []
for value, encoding in parts:
if isinstance(value, bytes):
decoded.append(value.decode(encoding or "utf-8", errors="replace"))
else:
decoded.append(value)
return "".join(decoded)
def attachment_to_document(
parent_doc: Document,
att: dict,
email_headers: EmailHeaders,
):
raw_filename = att["filename"]
filename = decode_mime_filename(raw_filename) or "attachment.bin"
ext = "." + filename.split(".")[-1] if "." in filename else ""
return Document(
id=f"{parent_doc.id}#att:{filename}",
source=DocumentSource.IMAP,
semantic_identifier=filename,
extension=ext,
blob=att["content_bytes"],
size_bytes=att["size_bytes"],
doc_updated_at=email_headers.date,
primary_owners=parent_doc.primary_owners,
metadata={
"parent_email_id": parent_doc.id,
"parent_subject": email_headers.subject,
"attachment_filename": filename,
"attachment_content_type": att["content_type"],
},
)
def _parse_email_body(
email_msg: Message,
email_headers: EmailHeaders,
) -> str:
body = None
for part in email_msg.walk():
if part.is_multipart():
# Multipart parts are *containers* for other parts, not the actual content itself.
# Therefore, we skip until we find the individual parts instead.
continue
charset = part.get_content_charset() or "utf-8"
try:
raw_payload = part.get_payload(decode=True)
if not isinstance(raw_payload, bytes):
logging.warning(
"Payload section from email was expected to be an array of bytes, instead got "
f"{type(raw_payload)=}, {raw_payload=}"
)
continue
body = raw_payload.decode(charset)
break
except (UnicodeDecodeError, LookupError) as e:
logging.warning(f"Could not decode part with charset {charset}. Error: {e}")
continue
if not body:
logging.warning(
f"Email with {email_headers.id=} has an empty body; returning an empty string"
)
return ""
soup = bs4.BeautifulSoup(markup=body, features="html.parser")
return " ".join(str_section for str_section in soup.stripped_strings)
def _sanitize_mailbox_names(mailboxes: list[str]) -> list[str]:
"""
Mailboxes with special characters in them must be enclosed by double-quotes, as per the IMAP protocol.
Just to be safe, we wrap *all* mailboxes with double-quotes.
"""
return [f'"{mailbox}"' for mailbox in mailboxes if mailbox]
def _parse_addrs(raw_header: str) -> list[tuple[str, str]]:
addrs = raw_header.split(",")
name_addr_pairs = [parseaddr(addr=addr) for addr in addrs if addr]
return [(name, addr) for name, addr in name_addr_pairs if addr]
def _parse_singular_addr(raw_header: str) -> tuple[str, str]:
addrs = _parse_addrs(raw_header=raw_header)
if not addrs:
return ("Unknown", "unknown@example.com")
elif len(addrs) >= 2:
raise RuntimeError(
f"Expected a singular address, but instead got multiple; {raw_header=} {addrs=}"
)
return addrs[0]
if __name__ == "__main__":
import time
import uuid
from types import TracebackType
from common.data_source.utils import load_all_docs_from_checkpoint_connector
class OnyxStaticCredentialsProvider(
CredentialsProviderInterface["OnyxStaticCredentialsProvider"]
):
"""Implementation (a very simple one!) to handle static credentials."""
def __init__(
self,
tenant_id: str | None,
connector_name: str,
credential_json: dict[str, Any],
):
self._tenant_id = tenant_id
self._connector_name = connector_name
self._credential_json = credential_json
self._provider_key = str(uuid.uuid4())
def __enter__(self) -> "OnyxStaticCredentialsProvider":
return self
def __exit__(
self,
exc_type: type[BaseException] | None,
exc_value: BaseException | None,
traceback: TracebackType | None,
) -> None:
pass
def get_tenant_id(self) -> str | None:
return self._tenant_id
def get_provider_key(self) -> str:
return self._provider_key
def get_credentials(self) -> dict[str, Any]:
return self._credential_json
def set_credentials(self, credential_json: dict[str, Any]) -> None:
self._credential_json = credential_json
def is_dynamic(self) -> bool:
return False
# from tests.daily.connectors.utils import load_all_docs_from_checkpoint_connector
# from onyx.connectors.credentials_provider import OnyxStaticCredentialsProvider
host = os.environ.get("IMAP_HOST")
mailboxes_str = os.environ.get("IMAP_MAILBOXES","INBOX")
username = os.environ.get("IMAP_USERNAME")
password = os.environ.get("IMAP_PASSWORD")
mailboxes = (
[mailbox.strip() for mailbox in mailboxes_str.split(",")]
if mailboxes_str
else []
)
if not host:
raise RuntimeError("`IMAP_HOST` must be set")
imap_connector = ImapConnector(
host=host,
mailboxes=mailboxes,
)
imap_connector.set_credentials_provider(
OnyxStaticCredentialsProvider(
tenant_id=None,
connector_name=DocumentSource.IMAP,
credential_json={
_USERNAME_KEY: username,
_PASSWORD_KEY: password,
},
)
)
END = time.time()
START = END - 1 * 24 * 60 * 60
for doc in load_all_docs_from_checkpoint_connector(
connector=imap_connector,
start=START,
end=END,
):
print(doc.id,doc.extension)

View File

@ -5,7 +5,7 @@ from abc import ABC, abstractmethod
from enum import IntFlag, auto
from types import TracebackType
from typing import Any, Dict, Generator, TypeVar, Generic, Callable, TypeAlias
from collections.abc import Iterator
from anthropic import BaseModel
from common.data_source.models import (
@ -16,6 +16,7 @@ from common.data_source.models import (
SecondsSinceUnixEpoch, GenerateSlimDocumentOutput
)
GenerateDocumentsOutput = Iterator[list[Document]]
class LoadConnector(ABC):
"""Load connector interface"""
@ -236,16 +237,13 @@ class BaseConnector(abc.ABC, Generic[CT]):
def validate_perm_sync(self) -> None:
"""
Don't override this; add a function to perm_sync_valid.py in the ee package
to do permission sync validation
Permission-sync validation hook.
RAGFlow doesn't ship the Onyx EE permission-sync validation package.
Connectors that support permission sync should override
`validate_connector_settings()` as needed.
"""
"""
validate_connector_settings_fn = fetch_ee_implementation_or_noop(
"onyx.connectors.perm_sync_valid",
"validate_perm_sync",
noop_return_value=None,
)
validate_connector_settings_fn(self)"""
return None
def set_allow_images(self, value: bool) -> None:
"""Implement if the underlying connector wants to skip/allow image downloading
@ -344,6 +342,17 @@ class CheckpointOutputWrapper(Generic[CT]):
yield None, None, self.next_checkpoint
class CheckpointedConnectorWithPermSyncGH(CheckpointedConnector[CT]):
@abc.abstractmethod
def load_from_checkpoint_with_perm_sync(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: CT,
) -> CheckpointOutput[CT]:
raise NotImplementedError
# Slim connectors retrieve just the ids of documents
class SlimConnector(BaseConnector):
@abc.abstractmethod

View File

@ -94,8 +94,10 @@ class Document(BaseModel):
blob: bytes
doc_updated_at: datetime
size_bytes: int
externale_access: Optional[ExternalAccess] = None
primary_owners: Optional[list] = None
metadata: Optional[dict[str, Any]] = None
doc_metadata: Optional[dict[str, Any]] = None
class BasicExpertInfo(BaseModel):

View File

@ -1149,3 +1149,137 @@ def parallel_yield(gens: list[Iterator[R]], max_workers: int = 10) -> Iterator[R
future_to_index[executor.submit(_next_or_none, ind, gens[ind])] = next_ind
next_ind += 1
del future_to_index[future]
def sanitize_filename(name: str, extension: str = "txt") -> str:
"""
Soft sanitize for MinIO/S3:
- Replace only prohibited characters with a space.
- Preserve readability (no ugly underscores).
- Collapse multiple spaces.
"""
if name is None:
return f"file.{extension}"
name = str(name).strip()
# Characters that MUST NOT appear in S3/MinIO object keys
# Replace them with a space (not underscore)
forbidden = r'[\\\?\#\%\*\:\|\<\>"]'
name = re.sub(forbidden, " ", name)
# Replace slashes "/" (S3 interprets as folder) with space
name = name.replace("/", " ")
# Collapse multiple spaces into one
name = re.sub(r"\s+", " ", name)
# Trim both ends
name = name.strip()
# Enforce reasonable max length
if len(name) > 200:
base, ext = os.path.splitext(name)
name = base[:180].rstrip() + ext
if not os.path.splitext(name)[1]:
name += f".{extension}"
return name
F = TypeVar("F", bound=Callable[..., Any])
class _RateLimitDecorator:
"""Builds a generic wrapper/decorator for calls to external APIs that
prevents making more than `max_calls` requests per `period`
Implementation inspired by the `ratelimit` library:
https://github.com/tomasbasham/ratelimit.
NOTE: is not thread safe.
"""
def __init__(
self,
max_calls: int,
period: float, # in seconds
sleep_time: float = 2, # in seconds
sleep_backoff: float = 2, # applies exponential backoff
max_num_sleep: int = 0,
):
self.max_calls = max_calls
self.period = period
self.sleep_time = sleep_time
self.sleep_backoff = sleep_backoff
self.max_num_sleep = max_num_sleep
self.call_history: list[float] = []
self.curr_calls = 0
def __call__(self, func: F) -> F:
@wraps(func)
def wrapped_func(*args: list, **kwargs: dict[str, Any]) -> Any:
# cleanup calls which are no longer relevant
self._cleanup()
# check if we've exceeded the rate limit
sleep_cnt = 0
while len(self.call_history) == self.max_calls:
sleep_time = self.sleep_time * (self.sleep_backoff**sleep_cnt)
logging.warning(
f"Rate limit exceeded for function {func.__name__}. "
f"Waiting {sleep_time} seconds before retrying."
)
time.sleep(sleep_time)
sleep_cnt += 1
if self.max_num_sleep != 0 and sleep_cnt >= self.max_num_sleep:
raise RateLimitTriedTooManyTimesError(
f"Exceeded '{self.max_num_sleep}' retries for function '{func.__name__}'"
)
self._cleanup()
# add the current call to the call history
self.call_history.append(time.monotonic())
return func(*args, **kwargs)
return cast(F, wrapped_func)
def _cleanup(self) -> None:
curr_time = time.monotonic()
time_to_expire_before = curr_time - self.period
self.call_history = [
call_time
for call_time in self.call_history
if call_time > time_to_expire_before
]
rate_limit_builder = _RateLimitDecorator
def retry_builder(
tries: int = 20,
delay: float = 0.1,
max_delay: float | None = 60,
backoff: float = 2,
jitter: tuple[float, float] | float = 1,
exceptions: type[Exception] | tuple[type[Exception], ...] = (Exception,),
) -> Callable[[F], F]:
"""Builds a generic wrapper/decorator for calls to external APIs that
may fail due to rate limiting, flakes, or other reasons. Applies exponential
backoff with jitter to retry the call."""
def retry_with_default(func: F) -> F:
@retry(
tries=tries,
delay=delay,
max_delay=max_delay,
backoff=backoff,
jitter=jitter,
logger=logging.getLogger(__name__),
exceptions=exceptions,
)
def wrapped_func(*args: list, **kwargs: dict[str, Any]) -> Any:
return func(*args, **kwargs)
return cast(F, wrapped_func)
return retry_with_default

View File

@ -82,10 +82,6 @@ class WebDAVConnector(LoadConnector, PollConnector):
base_url=self.base_url,
auth=(username, password)
)
# Test connection
self.client.exists(self.remote_path)
except Exception as e:
logging.error(f"Failed to connect to WebDAV server: {e}")
raise ConnectorMissingCredentialError(
@ -308,60 +304,79 @@ class WebDAVConnector(LoadConnector, PollConnector):
yield batch
def validate_connector_settings(self) -> None:
"""Validate WebDAV connector settings
"""Validate WebDAV connector settings.
Raises:
ConnectorMissingCredentialError: If credentials are not loaded
ConnectorValidationError: If settings are invalid
Validation should exercise the same code-paths used by the connector
(directory listing / PROPFIND), avoiding exists() which may probe with
methods that differ across servers.
"""
if self.client is None:
raise ConnectorMissingCredentialError(
"WebDAV credentials not loaded."
)
raise ConnectorMissingCredentialError("WebDAV credentials not loaded.")
if not self.base_url:
raise ConnectorValidationError(
"No base URL was provided in connector settings."
)
raise ConnectorValidationError("No base URL was provided in connector settings.")
# Normalize directory path: for collections, many servers behave better with trailing '/'
test_path = self.remote_path or "/"
if not test_path.startswith("/"):
test_path = f"/{test_path}"
if test_path != "/" and not test_path.endswith("/"):
test_path = f"{test_path}/"
try:
if not self.client.exists(self.remote_path):
raise ConnectorValidationError(
f"Remote path '{self.remote_path}' does not exist on WebDAV server."
)
# Use the same behavior as real sync: list directory with details (PROPFIND)
self.client.ls(test_path, detail=True)
except Exception as e:
error_message = str(e)
# Prefer structured status codes if present on the exception/response
status = None
for attr in ("status_code", "code"):
v = getattr(e, attr, None)
if isinstance(v, int):
status = v
break
if status is None:
resp = getattr(e, "response", None)
v = getattr(resp, "status_code", None)
if isinstance(v, int):
status = v
if "401" in error_message or "unauthorized" in error_message.lower():
raise CredentialExpiredError(
"WebDAV credentials appear invalid or expired."
)
if "403" in error_message or "forbidden" in error_message.lower():
# If we can classify by status code, do it
if status == 401:
raise CredentialExpiredError("WebDAV credentials appear invalid or expired.")
if status == 403:
raise InsufficientPermissionsError(
f"Insufficient permissions to access path '{self.remote_path}' on WebDAV server."
)
if "404" in error_message or "not found" in error_message.lower():
if status == 404:
raise ConnectorValidationError(
f"Remote path '{self.remote_path}' does not exist on WebDAV server."
)
# Fallback: avoid brittle substring matching that caused false positives.
# Provide the original exception for diagnosis.
raise ConnectorValidationError(
f"Unexpected WebDAV client error: {e}"
f"WebDAV validation failed for path '{test_path}': {repr(e)}"
)
if __name__ == "__main__":
credentials_dict = {
"username": os.environ.get("WEBDAV_USERNAME"),
"password": os.environ.get("WEBDAV_PASSWORD"),
}
credentials_dict = {
"username": "user",
"password": "pass",
}
connector = WebDAVConnector(
base_url=os.environ.get("WEBDAV_URL") or "https://webdav.example.com",
remote_path=os.environ.get("WEBDAV_PATH") or "/",
base_url="http://172.17.0.1:8080/",
remote_path="/",
)
try:

View File

@ -0,0 +1,667 @@
import copy
import logging
import time
from collections.abc import Callable
from collections.abc import Iterator
from typing import Any
import requests
from pydantic import BaseModel
from requests.exceptions import HTTPError
from typing_extensions import override
from common.data_source.config import ZENDESK_CONNECTOR_SKIP_ARTICLE_LABELS, DocumentSource
from common.data_source.exceptions import ConnectorValidationError, CredentialExpiredError, InsufficientPermissionsError
from common.data_source.html_utils import parse_html_page_basic
from common.data_source.interfaces import CheckpointOutput, CheckpointOutputWrapper, CheckpointedConnector, IndexingHeartbeatInterface, SlimConnectorWithPermSync
from common.data_source.models import BasicExpertInfo, ConnectorCheckpoint, ConnectorFailure, Document, DocumentFailure, GenerateSlimDocumentOutput, SecondsSinceUnixEpoch, SlimDocument
from common.data_source.utils import retry_builder, time_str_to_utc,rate_limit_builder
MAX_PAGE_SIZE = 30 # Zendesk API maximum
MAX_AUTHOR_MAP_SIZE = 50_000 # Reset author map cache if it gets too large
_SLIM_BATCH_SIZE = 1000
class ZendeskCredentialsNotSetUpError(PermissionError):
def __init__(self) -> None:
super().__init__(
"Zendesk Credentials are not set up, was load_credentials called?"
)
class ZendeskClient:
def __init__(
self,
subdomain: str,
email: str,
token: str,
calls_per_minute: int | None = None,
):
self.base_url = f"https://{subdomain}.zendesk.com/api/v2"
self.auth = (f"{email}/token", token)
self.make_request = request_with_rate_limit(self, calls_per_minute)
def request_with_rate_limit(
client: ZendeskClient, max_calls_per_minute: int | None = None
) -> Callable[[str, dict[str, Any]], dict[str, Any]]:
@retry_builder()
@(
rate_limit_builder(max_calls=max_calls_per_minute, period=60)
if max_calls_per_minute
else lambda x: x
)
def make_request(endpoint: str, params: dict[str, Any]) -> dict[str, Any]:
response = requests.get(
f"{client.base_url}/{endpoint}", auth=client.auth, params=params
)
if response.status_code == 429:
retry_after = response.headers.get("Retry-After")
if retry_after is not None:
# Sleep for the duration indicated by the Retry-After header
time.sleep(int(retry_after))
elif (
response.status_code == 403
and response.json().get("error") == "SupportProductInactive"
):
return response.json()
response.raise_for_status()
return response.json()
return make_request
class ZendeskPageResponse(BaseModel):
data: list[dict[str, Any]]
meta: dict[str, Any]
has_more: bool
def _get_content_tag_mapping(client: ZendeskClient) -> dict[str, str]:
content_tags: dict[str, str] = {}
params = {"page[size]": MAX_PAGE_SIZE}
try:
while True:
data = client.make_request("guide/content_tags", params)
for tag in data.get("records", []):
content_tags[tag["id"]] = tag["name"]
# Check if there are more pages
if data.get("meta", {}).get("has_more", False):
params["page[after]"] = data["meta"]["after_cursor"]
else:
break
return content_tags
except Exception as e:
raise Exception(f"Error fetching content tags: {str(e)}")
def _get_articles(
client: ZendeskClient, start_time: int | None = None, page_size: int = MAX_PAGE_SIZE
) -> Iterator[dict[str, Any]]:
params = {"page[size]": page_size, "sort_by": "updated_at", "sort_order": "asc"}
if start_time is not None:
params["start_time"] = start_time
while True:
data = client.make_request("help_center/articles", params)
for article in data["articles"]:
yield article
if not data.get("meta", {}).get("has_more"):
break
params["page[after]"] = data["meta"]["after_cursor"]
def _get_article_page(
client: ZendeskClient,
start_time: int | None = None,
after_cursor: str | None = None,
page_size: int = MAX_PAGE_SIZE,
) -> ZendeskPageResponse:
params = {"page[size]": page_size, "sort_by": "updated_at", "sort_order": "asc"}
if start_time is not None:
params["start_time"] = start_time
if after_cursor is not None:
params["page[after]"] = after_cursor
data = client.make_request("help_center/articles", params)
return ZendeskPageResponse(
data=data["articles"],
meta=data["meta"],
has_more=bool(data["meta"].get("has_more", False)),
)
def _get_tickets(
client: ZendeskClient, start_time: int | None = None
) -> Iterator[dict[str, Any]]:
params = {"start_time": start_time or 0}
while True:
data = client.make_request("incremental/tickets.json", params)
for ticket in data["tickets"]:
yield ticket
if not data.get("end_of_stream", False):
params["start_time"] = data["end_time"]
else:
break
# TODO: maybe these don't need to be their own functions?
def _get_tickets_page(
client: ZendeskClient, start_time: int | None = None
) -> ZendeskPageResponse:
params = {"start_time": start_time or 0}
# NOTE: for some reason zendesk doesn't seem to be respecting the start_time param
# in my local testing with very few tickets. We'll look into it if this becomes an
# issue in larger deployments
data = client.make_request("incremental/tickets.json", params)
if data.get("error") == "SupportProductInactive":
raise ValueError(
"Zendesk Support Product is not active for this account, No tickets to index"
)
return ZendeskPageResponse(
data=data["tickets"],
meta={"end_time": data["end_time"]},
has_more=not bool(data.get("end_of_stream", False)),
)
def _fetch_author(
client: ZendeskClient, author_id: str | int
) -> BasicExpertInfo | None:
# Skip fetching if author_id is invalid
# cast to str to avoid issues with zendesk changing their types
if not author_id or str(author_id) == "-1":
return None
try:
author_data = client.make_request(f"users/{author_id}", {})
user = author_data.get("user")
return (
BasicExpertInfo(display_name=user.get("name"), email=user.get("email"))
if user and user.get("name") and user.get("email")
else None
)
except requests.exceptions.HTTPError:
# Handle any API errors gracefully
return None
def _article_to_document(
article: dict[str, Any],
content_tags: dict[str, str],
author_map: dict[str, BasicExpertInfo],
client: ZendeskClient,
) -> tuple[dict[str, BasicExpertInfo] | None, Document]:
author_id = article.get("author_id")
if not author_id:
author = None
else:
author = (
author_map.get(author_id)
if author_id in author_map
else _fetch_author(client, author_id)
)
new_author_mapping = {author_id: author} if author_id and author else None
updated_at = article.get("updated_at")
update_time = time_str_to_utc(updated_at) if updated_at else None
text = parse_html_page_basic(article.get("body") or "")
blob = text.encode("utf-8", errors="replace")
# Build metadata
metadata: dict[str, str | list[str]] = {
"labels": [str(label) for label in article.get("label_names", []) if label],
"content_tags": [
content_tags[tag_id]
for tag_id in article.get("content_tag_ids", [])
if tag_id in content_tags
],
}
# Remove empty values
metadata = {k: v for k, v in metadata.items() if v}
return new_author_mapping, Document(
id=f"article:{article['id']}",
source=DocumentSource.ZENDESK,
semantic_identifier=article["title"],
extension=".txt",
blob=blob,
size_bytes=len(blob),
doc_updated_at=update_time,
primary_owners=[author] if author else None,
metadata=metadata,
)
def _get_comment_text(
comment: dict[str, Any],
author_map: dict[str, BasicExpertInfo],
client: ZendeskClient,
) -> tuple[dict[str, BasicExpertInfo] | None, str]:
author_id = comment.get("author_id")
if not author_id:
author = None
else:
author = (
author_map.get(author_id)
if author_id in author_map
else _fetch_author(client, author_id)
)
new_author_mapping = {author_id: author} if author_id and author else None
comment_text = f"Comment{' by ' + author.display_name if author and author.display_name else ''}"
comment_text += f"{' at ' + comment['created_at'] if comment.get('created_at') else ''}:\n{comment['body']}"
return new_author_mapping, comment_text
def _ticket_to_document(
ticket: dict[str, Any],
author_map: dict[str, BasicExpertInfo],
client: ZendeskClient,
) -> tuple[dict[str, BasicExpertInfo] | None, Document]:
submitter_id = ticket.get("submitter")
if not submitter_id:
submitter = None
else:
submitter = (
author_map.get(submitter_id)
if submitter_id in author_map
else _fetch_author(client, submitter_id)
)
new_author_mapping = (
{submitter_id: submitter} if submitter_id and submitter else None
)
updated_at = ticket.get("updated_at")
update_time = time_str_to_utc(updated_at) if updated_at else None
metadata: dict[str, str | list[str]] = {}
if status := ticket.get("status"):
metadata["status"] = status
if priority := ticket.get("priority"):
metadata["priority"] = priority
if tags := ticket.get("tags"):
metadata["tags"] = tags
if ticket_type := ticket.get("type"):
metadata["ticket_type"] = ticket_type
# Fetch comments for the ticket
comments_data = client.make_request(f"tickets/{ticket.get('id')}/comments", {})
comments = comments_data.get("comments", [])
comment_texts = []
for comment in comments:
new_author_mapping, comment_text = _get_comment_text(
comment, author_map, client
)
if new_author_mapping:
author_map.update(new_author_mapping)
comment_texts.append(comment_text)
comments_text = "\n\n".join(comment_texts)
subject = ticket.get("subject")
full_text = f"Ticket Subject:\n{subject}\n\nComments:\n{comments_text}"
blob = full_text.encode("utf-8", errors="replace")
return new_author_mapping, Document(
id=f"zendesk_ticket_{ticket['id']}",
blob=blob,
extension=".txt",
size_bytes=len(blob),
source=DocumentSource.ZENDESK,
semantic_identifier=f"Ticket #{ticket['id']}: {subject or 'No Subject'}",
doc_updated_at=update_time,
primary_owners=[submitter] if submitter else None,
metadata=metadata,
)
class ZendeskConnectorCheckpoint(ConnectorCheckpoint):
# We use cursor-based paginated retrieval for articles
after_cursor_articles: str | None
# We use timestamp-based paginated retrieval for tickets
next_start_time_tickets: int | None
cached_author_map: dict[str, BasicExpertInfo] | None
cached_content_tags: dict[str, str] | None
class ZendeskConnector(
SlimConnectorWithPermSync, CheckpointedConnector[ZendeskConnectorCheckpoint]
):
def __init__(
self,
content_type: str = "articles",
calls_per_minute: int | None = None,
) -> None:
self.content_type = content_type
self.subdomain = ""
# Fetch all tags ahead of time
self.content_tags: dict[str, str] = {}
self.calls_per_minute = calls_per_minute
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
# Subdomain is actually the whole URL
subdomain = (
credentials["zendesk_subdomain"]
.replace("https://", "")
.split(".zendesk.com")[0]
)
self.subdomain = subdomain
self.client = ZendeskClient(
subdomain,
credentials["zendesk_email"],
credentials["zendesk_token"],
calls_per_minute=self.calls_per_minute,
)
return None
@override
def load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ZendeskConnectorCheckpoint,
) -> CheckpointOutput[ZendeskConnectorCheckpoint]:
if self.client is None:
raise ZendeskCredentialsNotSetUpError()
if checkpoint.cached_content_tags is None:
checkpoint.cached_content_tags = _get_content_tag_mapping(self.client)
return checkpoint # save the content tags to the checkpoint
self.content_tags = checkpoint.cached_content_tags
if self.content_type == "articles":
checkpoint = yield from self._retrieve_articles(start, end, checkpoint)
return checkpoint
elif self.content_type == "tickets":
checkpoint = yield from self._retrieve_tickets(start, end, checkpoint)
return checkpoint
else:
raise ValueError(f"Unsupported content_type: {self.content_type}")
def _retrieve_articles(
self,
start: SecondsSinceUnixEpoch | None,
end: SecondsSinceUnixEpoch | None,
checkpoint: ZendeskConnectorCheckpoint,
) -> CheckpointOutput[ZendeskConnectorCheckpoint]:
checkpoint = copy.deepcopy(checkpoint)
# This one is built on the fly as there may be more many more authors than tags
author_map: dict[str, BasicExpertInfo] = checkpoint.cached_author_map or {}
after_cursor = checkpoint.after_cursor_articles
doc_batch: list[Document] = []
response = _get_article_page(
self.client,
start_time=int(start) if start else None,
after_cursor=after_cursor,
)
articles = response.data
has_more = response.has_more
after_cursor = response.meta.get("after_cursor")
for article in articles:
if (
article.get("body") is None
or article.get("draft")
or any(
label in ZENDESK_CONNECTOR_SKIP_ARTICLE_LABELS
for label in article.get("label_names", [])
)
):
continue
try:
new_author_map, document = _article_to_document(
article, self.content_tags, author_map, self.client
)
except Exception as e:
logging.error(f"Error processing article {article['id']}: {e}")
yield ConnectorFailure(
failed_document=DocumentFailure(
document_id=f"{article.get('id')}",
document_link=article.get("html_url", ""),
),
failure_message=str(e),
exception=e,
)
continue
if new_author_map:
author_map.update(new_author_map)
updated_at = document.doc_updated_at
updated_ts = updated_at.timestamp() if updated_at else None
if updated_ts is not None:
if start is not None and updated_ts <= start:
continue
if end is not None and updated_ts > end:
continue
doc_batch.append(document)
if not has_more:
yield from doc_batch
checkpoint.has_more = False
return checkpoint
# Sometimes no documents are retrieved, but the cursor
# is still updated so the connector makes progress.
yield from doc_batch
checkpoint.after_cursor_articles = after_cursor
last_doc_updated_at = doc_batch[-1].doc_updated_at if doc_batch else None
checkpoint.has_more = bool(
end is None
or last_doc_updated_at is None
or last_doc_updated_at.timestamp() <= end
)
checkpoint.cached_author_map = (
author_map if len(author_map) <= MAX_AUTHOR_MAP_SIZE else None
)
return checkpoint
def _retrieve_tickets(
self,
start: SecondsSinceUnixEpoch | None,
end: SecondsSinceUnixEpoch | None,
checkpoint: ZendeskConnectorCheckpoint,
) -> CheckpointOutput[ZendeskConnectorCheckpoint]:
checkpoint = copy.deepcopy(checkpoint)
if self.client is None:
raise ZendeskCredentialsNotSetUpError()
author_map: dict[str, BasicExpertInfo] = checkpoint.cached_author_map or {}
doc_batch: list[Document] = []
next_start_time = int(checkpoint.next_start_time_tickets or start or 0)
ticket_response = _get_tickets_page(self.client, start_time=next_start_time)
tickets = ticket_response.data
has_more = ticket_response.has_more
next_start_time = ticket_response.meta["end_time"]
for ticket in tickets:
if ticket.get("status") == "deleted":
continue
try:
new_author_map, document = _ticket_to_document(
ticket=ticket,
author_map=author_map,
client=self.client,
)
except Exception as e:
logging.error(f"Error processing ticket {ticket['id']}: {e}")
yield ConnectorFailure(
failed_document=DocumentFailure(
document_id=f"{ticket.get('id')}",
document_link=ticket.get("url", ""),
),
failure_message=str(e),
exception=e,
)
continue
if new_author_map:
author_map.update(new_author_map)
updated_at = document.doc_updated_at
updated_ts = updated_at.timestamp() if updated_at else None
if updated_ts is not None:
if start is not None and updated_ts <= start:
continue
if end is not None and updated_ts > end:
continue
doc_batch.append(document)
if not has_more:
yield from doc_batch
checkpoint.has_more = False
return checkpoint
yield from doc_batch
checkpoint.next_start_time_tickets = next_start_time
last_doc_updated_at = doc_batch[-1].doc_updated_at if doc_batch else None
checkpoint.has_more = bool(
end is None
or last_doc_updated_at is None
or last_doc_updated_at.timestamp() <= end
)
checkpoint.cached_author_map = (
author_map if len(author_map) <= MAX_AUTHOR_MAP_SIZE else None
)
return checkpoint
def retrieve_all_slim_docs_perm_sync(
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
slim_doc_batch: list[SlimDocument] = []
if self.content_type == "articles":
articles = _get_articles(
self.client, start_time=int(start) if start else None
)
for article in articles:
slim_doc_batch.append(
SlimDocument(
id=f"article:{article['id']}",
)
)
if len(slim_doc_batch) >= _SLIM_BATCH_SIZE:
yield slim_doc_batch
slim_doc_batch = []
elif self.content_type == "tickets":
tickets = _get_tickets(
self.client, start_time=int(start) if start else None
)
for ticket in tickets:
slim_doc_batch.append(
SlimDocument(
id=f"zendesk_ticket_{ticket['id']}",
)
)
if len(slim_doc_batch) >= _SLIM_BATCH_SIZE:
yield slim_doc_batch
slim_doc_batch = []
else:
raise ValueError(f"Unsupported content_type: {self.content_type}")
if slim_doc_batch:
yield slim_doc_batch
@override
def validate_connector_settings(self) -> None:
if self.client is None:
raise ZendeskCredentialsNotSetUpError()
try:
_get_article_page(self.client, start_time=0)
except HTTPError as e:
# Check for HTTP status codes
if e.response.status_code == 401:
raise CredentialExpiredError(
"Your Zendesk credentials appear to be invalid or expired (HTTP 401)."
) from e
elif e.response.status_code == 403:
raise InsufficientPermissionsError(
"Your Zendesk token does not have sufficient permissions (HTTP 403)."
) from e
elif e.response.status_code == 404:
raise ConnectorValidationError(
"Zendesk resource not found (HTTP 404)."
) from e
else:
raise ConnectorValidationError(
f"Unexpected Zendesk error (status={e.response.status_code}): {e}"
) from e
@override
def validate_checkpoint_json(
self, checkpoint_json: str
) -> ZendeskConnectorCheckpoint:
return ZendeskConnectorCheckpoint.model_validate_json(checkpoint_json)
@override
def build_dummy_checkpoint(self) -> ZendeskConnectorCheckpoint:
return ZendeskConnectorCheckpoint(
after_cursor_articles=None,
next_start_time_tickets=None,
cached_author_map=None,
cached_content_tags=None,
has_more=True,
)
if __name__ == "__main__":
import os
connector = ZendeskConnector(content_type="articles")
connector.load_credentials(
{
"zendesk_subdomain": os.environ["ZENDESK_SUBDOMAIN"],
"zendesk_email": os.environ["ZENDESK_EMAIL"],
"zendesk_token": os.environ["ZENDESK_TOKEN"],
}
)
current = time.time()
one_day_ago = current - 24 * 60 * 60 # 1 day
checkpoint = connector.build_dummy_checkpoint()
while checkpoint.has_more:
gen = connector.load_from_checkpoint(
one_day_ago, current, checkpoint
)
wrapper = CheckpointOutputWrapper()
any_doc = False
for document, failure, next_checkpoint in wrapper(gen):
if document:
print("got document:", document.id)
any_doc = True
checkpoint = next_checkpoint
if any_doc:
break

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ast
import logging
from typing import Any, Callable, Dict
@ -49,8 +50,8 @@ def meta_filter(metas: dict, filters: list[dict], logic: str = "and"):
try:
if isinstance(input, list):
input = input[0]
input = float(input)
value = float(value)
input = ast.literal_eval(input)
value = ast.literal_eval(value)
except Exception:
pass
if isinstance(input, str):
@ -58,28 +59,41 @@ def meta_filter(metas: dict, filters: list[dict], logic: str = "and"):
if isinstance(value, str):
value = value.lower()
for conds in [
(operator == "contains", input in value if not isinstance(input, list) else all([i in value for i in input])),
(operator == "not contains", input not in value if not isinstance(input, list) else all([i not in value for i in input])),
(operator == "in", input in value if not isinstance(input, list) else all([i in value for i in input])),
(operator == "not in", input not in value if not isinstance(input, list) else all([i not in value for i in input])),
(operator == "start with", str(input).lower().startswith(str(value).lower()) if not isinstance(input, list) else "".join([str(i).lower() for i in input]).startswith(str(value).lower())),
(operator == "end with", str(input).lower().endswith(str(value).lower()) if not isinstance(input, list) else "".join([str(i).lower() for i in input]).endswith(str(value).lower())),
(operator == "empty", not input),
(operator == "not empty", input),
(operator == "=", input == value),
(operator == "", input != value),
(operator == ">", input > value),
(operator == "<", input < value),
(operator == "", input >= value),
(operator == "", input <= value),
]:
try:
if all(conds):
ids.extend(docids)
break
except Exception:
pass
matched = False
try:
if operator == "contains":
matched = input in value if not isinstance(input, list) else all(i in value for i in input)
elif operator == "not contains":
matched = input not in value if not isinstance(input, list) else all(i not in value for i in input)
elif operator == "in":
matched = input in value if not isinstance(input, list) else all(i in value for i in input)
elif operator == "not in":
matched = input not in value if not isinstance(input, list) else all(i not in value for i in input)
elif operator == "start with":
matched = str(input).lower().startswith(str(value).lower()) if not isinstance(input, list) else "".join([str(i).lower() for i in input]).startswith(str(value).lower())
elif operator == "end with":
matched = str(input).lower().endswith(str(value).lower()) if not isinstance(input, list) else "".join([str(i).lower() for i in input]).endswith(str(value).lower())
elif operator == "empty":
matched = not input
elif operator == "not empty":
matched = bool(input)
elif operator == "=":
matched = input == value
elif operator == "":
matched = input != value
elif operator == ">":
matched = input > value
elif operator == "<":
matched = input < value
elif operator == "":
matched = input >= value
elif operator == "":
matched = input <= value
except Exception:
pass
if matched:
ids.extend(docids)
return ids
for k, v2docs in metas.items():

View File

@ -334,6 +334,9 @@ def init_settings():
DOC_BULK_SIZE = int(os.environ.get("DOC_BULK_SIZE", 4))
EMBEDDING_BATCH_SIZE = int(os.environ.get("EMBEDDING_BATCH_SIZE", 16))
os.environ["DOTNET_SYSTEM_GLOBALIZATION_INVARIANT"] = "1"
def check_and_install_torch():
global PARALLEL_DEVICES
try:

View File

@ -78,14 +78,21 @@ class DoclingParser(RAGFlowPdfParser):
def __images__(self, fnm, zoomin: int = 1, page_from=0, page_to=600, callback=None):
self.page_from = page_from
self.page_to = page_to
bytes_io = None
try:
opener = pdfplumber.open(fnm) if isinstance(fnm, (str, PathLike)) else pdfplumber.open(BytesIO(fnm))
if not isinstance(fnm, (str, PathLike)):
bytes_io = BytesIO(fnm)
opener = pdfplumber.open(fnm) if isinstance(fnm, (str, PathLike)) else pdfplumber.open(bytes_io)
with opener as pdf:
pages = pdf.pages[page_from:page_to]
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).original for p in pages]
except Exception as e:
self.page_images = []
self.logger.exception(e)
finally:
if bytes_io:
bytes_io.close()
def _make_line_tag(self,bbox: _BBox) -> str:
if bbox is None:

View File

@ -476,11 +476,13 @@ class RAGFlowPdfParser:
self.boxes = bxs
def _naive_vertical_merge(self, zoomin=3):
bxs = self._assign_column(self.boxes, zoomin)
#bxs = self._assign_column(self.boxes, zoomin)
bxs = self.boxes
grouped = defaultdict(list)
for b in bxs:
grouped[(b["page_number"], b.get("col_id", 0))].append(b)
# grouped[(b["page_number"], b.get("col_id", 0))].append(b)
grouped[(b["page_number"], "x")].append(b)
merged_boxes = []
for (pg, col), bxs in grouped.items():
@ -551,7 +553,7 @@ class RAGFlowPdfParser:
merged_boxes.extend(bxs)
self.boxes = sorted(merged_boxes, key=lambda x: (x["page_number"], x.get("col_id", 0), x["top"]))
#self.boxes = sorted(merged_boxes, key=lambda x: (x["page_number"], x.get("col_id", 0), x["top"]))
def _final_reading_order_merge(self, zoomin=3):
if not self.boxes:
@ -1061,8 +1063,8 @@ class RAGFlowPdfParser:
self.total_page = len(self.pdf.pages)
except Exception:
logging.exception("RAGFlowPdfParser __images__")
except Exception as e:
logging.exception(f"RAGFlowPdfParser __images__, exception: {e}")
logging.info(f"__images__ dedupe_chars cost {timer() - start}s")
self.outlines = []
@ -1206,7 +1208,7 @@ class RAGFlowPdfParser:
start = timer()
self._text_merge()
self._concat_downward()
#self._naive_vertical_merge(zoomin)
self._naive_vertical_merge(zoomin)
if callback:
callback(0.92, "Text merged ({:.2f}s)".format(timer() - start))

View File

@ -16,6 +16,7 @@
import logging
import sys
import ast
import six
import cv2
import numpy as np
@ -108,7 +109,14 @@ class NormalizeImage:
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
if isinstance(scale, str):
scale = eval(scale)
try:
scale = float(scale)
except ValueError:
if '/' in scale:
parts = scale.split('/')
scale = ast.literal_eval(parts[0]) / ast.literal_eval(parts[1])
else:
scale = ast.literal_eval(scale)
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]

View File

@ -1,3 +1,10 @@
# -----------------------------------------------------------------------------
# SECURITY WARNING: DO NOT DEPLOY WITH DEFAULT PASSWORDS
# For non-local deployments, please change all passwords (ELASTIC_PASSWORD,
# MYSQL_PASSWORD, MINIO_PASSWORD, etc.) to strong, unique values.
# You can generate a random string using: openssl rand -hex 32
# -----------------------------------------------------------------------------
# ------------------------------
# docker env var for specifying vector db type at startup
# (based on the vector db type, the corresponding docker
@ -30,6 +37,7 @@ ES_HOST=es01
ES_PORT=1200
# The password for Elasticsearch.
# WARNING: Change this for production!
ELASTIC_PASSWORD=infini_rag_flow
# the hostname where OpenSearch service is exposed, set it not the same as elasticsearch
@ -85,6 +93,7 @@ OB_DATAFILE_SIZE=${OB_DATAFILE_SIZE:-20G}
OB_LOG_DISK_SIZE=${OB_LOG_DISK_SIZE:-20G}
# The password for MySQL.
# WARNING: Change this for production!
MYSQL_PASSWORD=infini_rag_flow
# The hostname where the MySQL service is exposed
MYSQL_HOST=mysql
@ -128,11 +137,11 @@ ADMIN_SVR_HTTP_PORT=9381
SVR_MCP_PORT=9382
# The RAGFlow Docker image to download. v0.22+ doesn't include embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.23.0
RAGFLOW_IMAGE=infiniflow/ragflow:v0.23.1
# If you cannot download the RAGFlow Docker image:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:v0.23.0
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:v0.23.0
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:v0.23.1
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:v0.23.1
#
# - For the `nightly` edition, uncomment either of the following:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly

View File

@ -77,7 +77,7 @@ The [.env](./.env) file contains important environment variables for Docker.
- `SVR_HTTP_PORT`
The port used to expose RAGFlow's HTTP API service to the host machine, allowing **external** access to the service running inside the Docker container. Defaults to `9380`.
- `RAGFLOW-IMAGE`
The Docker image edition. Defaults to `infiniflow/ragflow:v0.23.0`. The RAGFlow Docker image does not include embedding models.
The Docker image edition. Defaults to `infiniflow/ragflow:v0.23.1`. The RAGFlow Docker image does not include embedding models.
> [!TIP]

View File

@ -0,0 +1,8 @@
{
"label": "Basics",
"position": 2,
"link": {
"type": "generated-index",
"description": "Basic concepts."
}
}

View File

@ -0,0 +1,61 @@
---
sidebar_position: 2
slug: /what-is-agent-context-engine
---
# What is Agent context engine?
From 2025, a silent revolution began beneath the dazzling surface of AI Agents. While the world marveled at agents that could write code, analyze data, and automate workflows, a fundamental bottleneck emerged: why do even the most advanced agents still stumble on simple questions, forget previous conversations, or misuse available tools?
The answer lies not in the intelligence of the Large Language Model (LLM) itself, but in the quality of the Context it receives. An LLM, no matter how powerful, is only as good as the information we feed it. Todays cutting-edge agents are often crippled by a cumbersome, manual, and error-prone process of context assembly—a process known as Context Engineering.
This is where the Agent Context Engine comes in. It is not merely an incremental improvement but a foundational shift, representing the evolution of RAG from a singular technique into the core data and intelligence substrate for the entire Agent ecosystem.
## Beyond the hype: The reality of today's "intelligent" Agents
Today, the “intelligence” behind most AI Agents hides a mountain of human labor. Developers must:
- Hand-craft elaborate prompt templates
- Hard-code document-retrieval logic for every task
- Juggle tool descriptions, conversation history, and knowledge snippets inside a tiny context window
- Repeat the whole process for each new scenario
This pattern is called Context Engineering. It is deeply tied to expert know-how, almost impossible to scale, and prohibitively expensive to maintain. When an enterprise needs to keep dozens of distinct agents alive, the artisanal workshop model collapses under its own weight.
The mission of an Agent Context Engine is to turn Context Engineering from an “art” into an industrial-grade science.
Deconstructing the Agent Context Engine
So, what exactly is an Agent Context Engine? It is a unified, intelligent, and automated platform responsible for the end-to-end process of assembling the optimal context for an LLM or Agent at the moment of inference. It moves from artisanal crafting to industrialized production.
At its core, an Agent Context Engine is built on a triumvirate of next-generation retrieval capabilities, seamlessly integrated into a single service layer:
1. The Knowledge Core (Advanced RAG): This is the evolution of traditional RAG. It moves beyond simple chunk-and-embed to intelligently process static, private enterprise knowledge. Techniques like TreeRAG (building LLM-generated document outlines for "locate-then-expand" retrieval) and GraphRAG (extracting entity networks to find semantically distant connections) work to close the "semantic gap." The engines Ingestion Pipeline acts as the ETL for unstructured data, parsing multi-format documents and using LLMs to enrich content with summaries, metadata, and structure before indexing.
2. The Memory Layer: An Agents intelligence is defined by its ability to learn from interaction. The Memory Layer is a specialized retrieval system for dynamic, episodic data: conversation history, user preferences, and the agents own internal state (e.g., "waiting for human input"). It manages the lifecycle of this data—storing raw dialogue, triggering summarization into semantic memory, and retrieving relevant past interactions to provide continuity and personalization. Technologically, it is a close sibling to RAG, but focused on a temporal stream of data.
3. The Tool Orchestrator: As MCP (Model Context Protocol) enables the connection of hundreds of internal services as tools, a new problem arises: tool selection. The Context Engine solves this with Tool Retrieval. Instead of dumping all tool descriptions into the prompt, it maintains an index of tools and—critically—an index of Playbooks or Guidelines (best practices on when and how to use tools). For a given task, it retrieves only the most relevant tools and instructions, transforming the LLMs job from "searching a haystack" to "following a recipe."
## Why we need a dedicated engine? The case for a unified substrate
The necessity of an Agent Context Engine becomes clear when we examine the alternative: siloed, manually wired components.
- The Data Silo Problem: Knowledge, memory, and tools reside in separate systems, requiring complex integration for each new agent.
- The Assembly Line Bottleneck: Developers spend more time on context plumbing than on agent logic, slowing innovation to a crawl.
- The "Context Ownership" Dilemma: In manually engineered systems, context logic is buried in code, owned by developers, and opaque to business users. An Engine makes context a configurable, observable, and customer-owned asset.
The shift from Context Engineering to a Context Platform/Engine marks the maturation of enterprise AI, as summarized in the table below:
| Dimension | Context engineering (present) | Context engineering/Platform (future) |
| ------------------- | -------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------- |
| Context creation | Manual, artisanal work by developers and prompt engineers. | Automated, driven by intelligent ingestion pipelines and configurable rules. |
| Context delivery | Hard-coded prompts and static retrieval logic embedded in agent workflows. | Dynamic, real-time retrieval and assembly based on the agent's live state and intent. |
| Context maintenance | A development and operational burden, logic locked in code. | A manageable platform function, with visibility and control returned to the business. |
## RAGFlow: A resolute march toward the context engine of Agents
This is the future RAGFlow is forging.
We left behind the label of “yet another RAG system” long ago. From DeepDoc—our deeply-optimized, multimodal document parser—to the bleeding-edge architectures that bridge semantic chasms in complex RAG scenarios, all the way to a full-blown, enterprise-grade ingestion pipeline, every evolutionary step RAGFlow takes is a deliberate stride toward the ultimate form: an Agentic Context Engine.
We believe tomorrows enterprise AI advantage will hinge not on who owns the largest model, but on who can feed that model the highest-quality, most real-time, and most relevant context. An Agentic Context Engine is the critical infrastructure that turns this vision into reality.
In the paradigm shift from “hand-crafted prompts” to “intelligent context,” RAGFlow is determined to be the most steadfast propeller and enabler. We invite every developer, enterprise, and researcher who cares about the future of AI agents to follow RAGFlows journey—so together we can witness and build the cornerstone of the next-generation AI stack.

107
docs/basics/rag.md Normal file
View File

@ -0,0 +1,107 @@
---
sidebar_position: 1
slug: /what-is-rag
---
# What is Retreival-Augmented-Generation (RAG)
Since large language models (LLMs) became the focus of technology, their ability to handle general knowledge has been astonishing. However, when questions shift to internal corporate documents, proprietary knowledge bases, or real-time data, the limitations of LLMs become glaringly apparent: they cannot access private information outside their training data. Retrieval-Augmented Generation (RAG) was born precisely to address this core need. Before an LLM generates an answer, it first retrieves the most relevant context from an external knowledge base and inputs it as "reference material" to the LLM, thereby guiding it to produce accurate answers. In short, RAG elevates LLMs from "relying on memory" to "having evidence to rely on," significantly improving their accuracy and trustworthiness in specialized fields and real-time information queries.
## Why RAG is important?
Although LLMs excel in language understanding and generation, they have inherent limitations:
- Static Knowledge: The model's knowledge is based on a data snapshot from its training time and cannot be automatically updated, making it difficult to perceive the latest information.
- Blind Spot to External Data: They cannot directly access corporate private documents, real-time information streams, or domain-specific content.
- Hallucination Risk: When lacking accurate evidence, they may still fabricate plausible-sounding but false answers to maintain conversational fluency.
The introduction of RAG provides LLMs with real-time, credible "factual grounding." Its core mechanism is divided into two stages:
- Retrieval Stage: Based on the user's question, quickly retrieve the most relevant documents or data fragments from an external knowledge base.
- Generation Stage: The LLM organizes and generates the final answer by incorporating the retrieved information as context, combined with its own linguistic capabilities.
This upgrades LLMs from "speaking from memory" to "speaking with documentation," significantly enhancing reliability in professional and enterprise-level applications.
## How RAG works?
Retrieval-Augmented Generation enables LLMs to generate higher-quality responses by leveraging real-time, external, or private data sources through the introduction of an information retrieval mechanism. Its workflow can be divided into following key steps:
### Data processing and vectorization
The knowledge required by RAG comes from unstructured data in various formats, such as documents, database records, or API return content. This data typically needs to be chunked, then transformed into vectors via an embedding model, and stored in a vector database.
Why is Chunking Needed? Indexing entire documents directly faces the following problems:
- Decreased Retrieval Precision: Vectorizing long documents leads to semantic "averaging," losing details.
- Context Length Limitation: LLMs have a finite context window, requiring filtering of the most relevant parts for input.
- Cost and Efficiency: Embedding computation and retrieval costs are higher for long texts.
Therefore, an intelligent chunking strategy is key to balancing information integrity, retrieval granularity, and computational efficiency.
### Retrieve relevant information
The user's query is also converted into a vector to perform semantic relevance searches (e.g., calculating cosine similarity) in the vector database, matching and recalling the most relevant text fragments.
### Context construction and answer generation
The retrieved relevant content is added to the LLM's context as factual grounding, and the LLM finally generates the answer. Therefore, RAG can be seen as Context Engineering 1.0 for automated context construction.
## Deep dive into existing RAG architecture: beyond vector retrieval
An industrial-grade RAG system is far from being as simple as "vector search + LLM"; its complexity and challenges are primarily embedded in the retrieval process.
### Data complexity: multimodal document processing
Core Challenge: Corporate knowledge mostly exists in the form of multimodal documents containing text, charts, tables, and formulas. Simple OCR extraction loses a large amount of semantic information.
Advanced Practice: Leading solutions, such as RAGFlow, tend to use Visual Language Models (VLM) or specialized parsing models like DeepDoc to "translate" multimodal documents into unimodal text rich in structural and semantic information. Converting multimodal information into high-quality unimodal text has become standard practice for advanced RAG.
### The complexity of chunking: the trade-off between precision and context
A simple "chunk-embed-retrieve" pipeline has an inherent contradiction:
- Semantic Matching requires small text chunks to ensure clear semantic focus.
- Context Understanding requires large text chunks to ensure complete and coherent information.
This forces system design into a difficult trade-off between "precise but fragmented" and "complete but vague."
Advanced Practice: Leading solutions, such as RAGFlow, employ semantic enhancement techniques like constructing semantic tables of contents and knowledge graphs. These not only address semantic fragmentation caused by physical chunking but also enable the discovery of relevant content across documents based on entity-relationship networks.
### Why is a vector database insufficient for serving RAG?
Vector databases excel at semantic similarity search, but RAG requires precise and reliable answers, demanding more capabilities from the retrieval system:
- Hybrid Search: Relying solely on vector retrieval may miss exact keyword matches (e.g., product codes, regulation numbers). Hybrid search, combining vector retrieval with keyword retrieval (BM25), ensures both semantic breadth and keyword precision.
- Tensor or Multi-Vector Representation: To support cross-modal data, employing tensor or multi-vector representation has become an important trend.
- Metadata Filtering: Filtering based on attributes like date, department, and type is a rigid requirement in business scenarios.
Therefore, the retrieval layer of RAG is a composite system based on vector search but must integrate capabilities like full-text search, re-ranking, and metadata filtering.
## RAG and memory: Retrieval from the same source but different streams
Within the agent framework, the essence of the memory mechanism is the same as RAG: both retrieve relevant information from storage based on current needs. The key difference lies in the data source:
- RAG: Targets pre-existing static or dynamic private data provided by the user in advance (e.g., documents, databases).
- Memory: Targets dynamic data generated or perceived by the agent in real-time during interaction (e.g., conversation history, environmental state, tool execution results).
They are highly consistent at the technical base (e.g., vector retrieval, keyword matching) and can be seen as the same retrieval capability applied in different scenarios ("existing knowledge" vs. "interaction memory"). A complete agent system often includes both an RAG module for inherent knowledge and a Memory module for interaction history.
## RAG applications
RAG has demonstrated clear value in several typical scenarios:
1. Enterprise Knowledge Q&A and Internal Search
By vectorizing corporate private data and combining it with an LLM, RAG can directly return natural language answers based on authoritative sources, rather than document lists. While meeting intelligent Q&A needs, it inherently aligns with corporate requirements for data security, access control, and compliance.
2. Complex Document Understanding and Professional Q&A
For structurally complex documents like contracts and regulations, the value of RAG lies in its ability to generate accurate, verifiable answers while maintaining context integrity. Its system accuracy largely depends on text chunking and semantic understanding strategies.
3. Dynamic Knowledge Fusion and Decision Support
In business scenarios requiring the synthesis of information from multiple sources, RAG evolves into a knowledge orchestration and reasoning support system for business decisions. Through a multi-path recall mechanism, it fuses knowledge from different systems and formats, maintaining factual consistency and logical controllability during the generation phase.
## The future of RAG
The evolution of RAG is unfolding along several clear paths:
1. RAG as the data foundation for Agents
RAG and agents have an architecture vs. scenario relationship. For agents to achieve autonomous and reliable decision-making and execution, they must rely on accurate and timely knowledge. RAG provides them with a standardized capability to access private domain knowledge and is an inevitable choice for building knowledge-aware agents.
2. Advanced RAG: Using LLMs to optimize retrieval itself
The core feature of next-generation RAG is fully utilizing the reasoning capabilities of LLMs to optimize the retrieval process, such as rewriting queries, summarizing or fusing results, or implementing intelligent routing. Empowering every aspect of retrieval with LLMs is key to breaking through current performance bottlenecks.
3. Towards context engineering 2.0
Current RAG can be viewed as Context Engineering 1.0, whose core is assembling static knowledge context for single Q&A tasks. The forthcoming Context Engineering 2.0 will extend with RAG technology at its core, becoming a system that automatically and dynamically assembles comprehensive context for agents. The context fused by this system will come not only from documents but also include interaction memory, available tools/skills, and real-time environmental information. This marks the transition of agent development from a "handicraft workshop" model to the industrial starting point of automated context engineering.
The essence of RAG is to build a dedicated, efficient, and trustworthy external data interface for large language models; its core is Retrieval, not Generation. Starting from the practical need to solve private data access, its technical depth is reflected in the optimization of retrieval for complex unstructured data. With its deep integration into agent architectures and its development towards automated context engineering, RAG is evolving from a technology that improves Q&A quality into the core infrastructure for building the next generation of trustworthy, controllable, and scalable intelligent applications.

View File

@ -99,7 +99,7 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
- `SVR_HTTP_PORT`
The port used to expose RAGFlow's HTTP API service to the host machine, allowing **external** access to the service running inside the Docker container. Defaults to `9380`.
- `RAGFLOW-IMAGE`
The Docker image edition. Defaults to `infiniflow/ragflow:v0.23.0` (the RAGFlow Docker image without embedding models).
The Docker image edition. Defaults to `infiniflow/ragflow:v0.23.1` (the RAGFlow Docker image without embedding models).
:::tip NOTE
If you cannot download the RAGFlow Docker image, try the following mirrors.

View File

@ -47,7 +47,7 @@ After building the infiniflow/ragflow:nightly image, you are ready to launch a f
1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.23.0` to `infiniflow/ragflow:nightly` to use the pre-built image.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.23.1` to `infiniflow/ragflow:nightly` to use the pre-built image.
2. Launch the Service

View File

@ -0,0 +1,8 @@
{
"label": "Administration",
"position": 6,
"link": {
"type": "generated-index",
"description": "RAGFlow administration"
}
}

View File

@ -1,43 +1,11 @@
---
sidebar_position: 6
slug: /manage_users_and_services
sidebar_position: 2
slug: /admin_cli
---
# Admin CLI
# Admin CLI and Admin Service
The Admin CLI and Admin Service form a client-server architectural suite for RAGFlow system administration. The Admin CLI serves as an interactive command-line interface that receives instructions and displays execution results from the Admin Service in real-time. This duo enables real-time monitoring of system operational status, supporting visibility into RAGFlow Server services and dependent components including MySQL, Elasticsearch, Redis, and MinIO. In administrator mode, they provide user management capabilities that allow viewing users and performing critical operations—such as user creation, password updates, activation status changes, and comprehensive user data deletion—even when corresponding web interface functionalities are disabled.
## Starting the Admin Service
### Launching from source code
1. Before start Admin Service, please make sure RAGFlow system is already started.
2. Launch from source code:
```bash
python admin/server/admin_server.py
```
The service will start and listen for incoming connections from the CLI on the configured port.
### Using docker image
1. Before startup, please configure the `docker_compose.yml` file to enable admin server:
```bash
command:
- --enable-adminserver
```
2. Start the containers, the service will start and listen for incoming connections from the CLI on the configured port.
The RAGFlow Admin CLI is a command-line-based system administration tool that offers administrators an efficient and flexible method for system interaction and control. Operating on a client-server architecture, it communicates in real-time with the Admin Service, receiving administrator commands and dynamically returning execution results.
## Using the Admin CLI
@ -46,7 +14,7 @@ The Admin CLI and Admin Service form a client-server architectural suite for RAG
2. Install ragflow-cli.
```bash
pip install ragflow-cli==0.23.0
pip install ragflow-cli==0.23.1
```
3. Launch the CLI client:

View File

@ -0,0 +1,39 @@
---
sidebar_position: 0
slug: /admin_service
---
# Admin Service
The Admin Service is the core backend management service of the RAGFlow system, providing comprehensive system administration capabilities through centralized API interfaces for managing and controlling the entire platform. Adopting a client-server architecture, it supports access and operations via both a Web UI and an Admin CLI, ensuring flexible and efficient execution of administrative tasks.
The core functions of the Admin Service include real-time monitoring of the operational status of the RAGFlow server and its critical dependent components—such as MySQL, Elasticsearch, Redis, and MinIO—along with full-featured user management. In administrator mode, it enables key operations such as viewing user information, creating users, updating passwords, modifying activation status, and performing complete user data deletion. These functions remain accessible via the Admin CLI even when the web management interface is disabled, ensuring the system stays under control at all times.
With its unified interface design, the Admin Service combines the convenience of visual administration with the efficiency and stability of command-line operations, serving as a crucial foundation for the reliable operation and secure management of the RAGFlow system.
## Starting the Admin Service
### Launching from source code
1. Before start Admin Service, please make sure RAGFlow system is already started.
2. Launch from source code:
```bash
python admin/server/admin_server.py
```
The service will start and listen for incoming connections from the CLI on the configured port.
### Using docker image
1. Before startup, please configure the `docker_compose.yml` file to enable admin server:
```bash
command:
- --enable-adminserver
```
2. Start the containers, the service will start and listen for incoming connections from the CLI on the configured port.

View File

@ -1,6 +1,6 @@
---
sidebar_position: 7
slug: /accessing_admin_ui
sidebar_position: 1
slug: /admin_ui
---
# Admin UI

View File

@ -34,7 +34,7 @@ Enabling TOC extraction requires significant memory, computational resources, an
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/auto_metadata_settings.png)
3. Click **+** to add new fields and enter the congiruation page.
3. Click **+** to add new fields and enter the configuration page.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/metadata_field_settings.png)

View File

@ -133,7 +133,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
## Search for dataset
As of RAGFlow v0.23.0, the search feature is still in a rudimentary form, supporting only dataset search by name.
As of RAGFlow v0.23.1, the search feature is still in a rudimentary form, supporting only dataset search by name.
![search dataset](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/search_datasets.jpg)

View File

@ -87,4 +87,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.23.0, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.23.1, bulk download is not supported, nor can you download an entire folder.

View File

@ -0,0 +1,8 @@
{
"label": "Migration",
"position": 5,
"link": {
"type": "generated-index",
"description": "RAGFlow migration guide"
}
}

View File

@ -340,13 +340,13 @@ Application startup complete.
setting->model providers->search->vllm->add ,configure as follow:
![add vllm](https://github.com/user-attachments/assets/6f1d9f1a-3507-465b-87a3-4427254fff86)
![add vllm](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ragflow_vllm.png)
select vllm chat model as default llm model as follow:
![chat](https://github.com/user-attachments/assets/05efbd4b-2c18-4c6b-8d1c-52bae712372d)
![chat](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ragflow_vllm1.png)
### 5.3 chat with vllm chat model
create chat->create conversations-chat as follow:
![chat](https://github.com/user-attachments/assets/dc1885f6-23a9-48f1-8850-d5f59b5e8f67)
![chat](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ragflow_vllm2.png)

View File

@ -1,109 +0,0 @@
---
sidebar_position: 8
slug: /run_health_check
---
# Monitoring
Double-check the health status of RAGFlow's dependencies.
---
The operation of RAGFlow depends on four services:
- **Elasticsearch** (default) or [Infinity](https://github.com/infiniflow/infinity) as the document engine
- **MySQL**
- **Redis**
- **MinIO** for object storage
If an exception or error occurs related to any of the above services, such as `Exception: Can't connect to ES cluster`, refer to this document to check their health status.
You can also click you avatar in the top right corner of the page **>** System to view the visualized health status of RAGFlow's core services. The following screenshot shows that all services are 'green' (running healthily). The task executor displays the *cumulative* number of completed and failed document parsing tasks from the past 30 minutes:
![system_status_page](https://github.com/user-attachments/assets/b0c1a11e-93e3-4947-b17a-1bfb4cdab6e4)
Services with a yellow or red light are not running properly. The following is a screenshot of the system page after running `docker stop ragflow-es-10`:
![es_failed](https://github.com/user-attachments/assets/06056540-49f5-48bf-9cc9-a7086bc75790)
You can click on a specific 30-second time interval to view the details of completed and failed tasks:
![done_tasks](https://github.com/user-attachments/assets/49b25ec4-03af-48cf-b2e5-c892f6eaa261)
![done_vs_failed](https://github.com/user-attachments/assets/eaa928d0-a31c-4072-adea-046091e04599)
## API Health Check
In addition to checking the system dependencies from the **avatar > System** page in the UI, you can directly query the backend health check endpoint:
```bash
http://IP_OF_YOUR_MACHINE/v1/system/healthz
```
Here `<port>` refers to the actual port of your backend service (e.g., `7897`, `9222`, etc.).
Key points:
- **No login required** (no `@login_required` decorator)
- Returns results in JSON format
- If all dependencies are healthy → HTTP **200 OK**
- If any dependency fails → HTTP **500 Internal Server Error**
### Example 1: All services healthy (HTTP 200)
```bash
http://127.0.0.1/v1/system/healthz
```
Response:
```http
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 120
```
Explanation:
- Database (MySQL/Postgres), Redis, document engine (Elasticsearch/Infinity), and object storage (MinIO) are all healthy.
- The `status` field returns `"ok"`.
### Example 2: One service unhealthy (HTTP 500)
For example, if Redis is down:
Response:
```http
HTTP/1.1 500 INTERNAL SERVER ERROR
Content-Type: application/json
Content-Length: 300
```
Explanation:
- `redis` is marked as `"nok"`, with detailed error info under `_meta.redis.error`.
- The overall `status` is `"nok"`, so the endpoint returns 500.
---
This endpoint allows you to monitor RAGFlows core dependencies programmatically in scripts or external monitoring systems, without relying on the frontend UI.
"redis": "nok",
"doc_engine": "ok",
"storage": "ok",
"status": "nok",
"_meta": {
"redis": {
"elapsed": "5.2",
"error": "Lost connection!"
}
}
}
```
Explanation:
- `redis` is marked as `"nok"`, with detailed error info under `_meta.redis.error`.
- The overall `status` is `"nok"`, so the endpoint returns 500.
---
This endpoint allows you to monitor RAGFlows core dependencies programmatically in scripts or external monitoring systems, without relying on the frontend UI.

View File

@ -60,16 +60,16 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
git pull
```
3. Switch to the latest, officially published release, e.g., `v0.23.0`:
3. Switch to the latest, officially published release, e.g., `v0.23.1`:
```bash
git checkout -f v0.23.0
git checkout -f v0.23.1
```
4. Update **ragflow/docker/.env**:
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.23.0
RAGFLOW_IMAGE=infiniflow/ragflow:v0.23.1
```
5. Update the RAGFlow image and restart RAGFlow:
@ -90,10 +90,10 @@ No, you do not need to. Upgrading RAGFlow in itself will *not* remove your uploa
1. From an environment with Internet access, pull the required Docker image.
2. Save the Docker image to a **.tar** file.
```bash
docker save -o ragflow.v0.23.0.tar infiniflow/ragflow:v0.23.0
docker save -o ragflow.v0.23.1.tar infiniflow/ragflow:v0.23.1
```
3. Copy the **.tar** file to the target server.
4. Load the **.tar** file into Docker:
```bash
docker load -i ragflow.v0.23.0.tar
docker load -i ragflow.v0.23.1.tar
```

View File

@ -46,7 +46,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.23.0 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
RAGFlow v0.23.1 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs
defaultValue="linux"
@ -186,7 +186,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/docker
$ git checkout -f v0.23.0
$ git checkout -f v0.23.1
```
3. Use the pre-built Docker images and start up the server:
@ -202,7 +202,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
| RAGFlow image tag | Image size (GB) | Stable? |
| ------------------- | --------------- | ------------------------ |
| v0.23.0 | &approx;2 | Stable release |
| v0.23.1 | &approx;2 | Stable release |
| nightly | &approx;2 | _Unstable_ nightly build |
```mdx-code-block

View File

@ -1603,7 +1603,7 @@ In streaming mode, not all responses include a reference, as this depends on the
##### question: `str`
The question to start an AI-powered conversation. Ifthe **Begin** component takes parameters, a question is not required.
The question to start an AI-powered conversation. If the **Begin** component takes parameters, a question is not required.
##### stream: `bool`

View File

@ -13,61 +13,58 @@ A complete list of models supported by RAGFlow, which will continue to expand.
<APITable>
```
| Provider | Chat | Embedding | Rerank | Img2txt | Speech2txt | TTS |
| --------------------- | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ |
| Anthropic | :heavy_check_mark: | | | | | |
| Azure-OpenAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | |
| BAAI | | :heavy_check_mark: | :heavy_check_mark: | | | |
| BaiChuan | :heavy_check_mark: | :heavy_check_mark: | | | | |
| BaiduYiyan | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| Bedrock | :heavy_check_mark: | :heavy_check_mark: | | | | |
| Cohere | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| DeepSeek | :heavy_check_mark: | | | | | |
| FastEmbed | | :heavy_check_mark: | | | | |
| Fish Audio | | | | | | :heavy_check_mark: |
| Gemini | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| Google Cloud | :heavy_check_mark: | | | | | |
| GPUStack | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: |
| Groq | :heavy_check_mark: | | | | | |
| HuggingFace | :heavy_check_mark: | :heavy_check_mark: | | | | |
| Jina | | :heavy_check_mark: | :heavy_check_mark: | | | |
| LeptonAI | :heavy_check_mark: | | | | | |
| LocalAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| LM-Studio | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| MiniMax | :heavy_check_mark: | | | | | |
| Mistral | :heavy_check_mark: | :heavy_check_mark: | | | | |
| ModelScope | :heavy_check_mark: | | | | | |
| Moonshot | :heavy_check_mark: | | | :heavy_check_mark: | | |
| Novita AI | :heavy_check_mark: | :heavy_check_mark: | | | | |
| NVIDIA | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| Ollama | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| OpenAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| OpenAI-API-Compatible | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| OpenRouter | :heavy_check_mark: | | | :heavy_check_mark: | | |
| PerfXCloud | :heavy_check_mark: | :heavy_check_mark: | | | | |
| Replicate | :heavy_check_mark: | :heavy_check_mark: | | | | |
| PPIO | :heavy_check_mark: | | | | | |
| SILICONFLOW | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| StepFun | :heavy_check_mark: | | | | | |
| Tencent Hunyuan | :heavy_check_mark: | | | | | |
| Tencent Cloud | | | | | :heavy_check_mark: | |
| TogetherAI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| Tongyi-Qianwen | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Upstage | :heavy_check_mark: | :heavy_check_mark: | | | | |
| VLLM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| VolcEngine | :heavy_check_mark: | | | | | |
| Voyage AI | | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| Xinference | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| XunFei Spark | :heavy_check_mark: | | | | | :heavy_check_mark: |
| xAI | :heavy_check_mark: | | | :heavy_check_mark: | | |
| Youdao | | :heavy_check_mark: | :heavy_check_mark: | | | |
| ZHIPU-AI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| 01.AI | :heavy_check_mark: | | | | | |
| DeepInfra | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: |
| 302.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| CometAPI | :heavy_check_mark: | :heavy_check_mark: | | | | |
| DeerAPI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | :heavy_check_mark: |
| Jiekou.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | | |
| Provider | LLM | Image2Text | Speech2text | TTS | Embedding | Rerank | OCR |
| --------------------- | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ |
| Anthropic | :heavy_check_mark: | | | | | | |
| Azure-OpenAI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| BaiChuan | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| BaiduYiyan | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| Bedrock | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| Cohere | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| DeepSeek | :heavy_check_mark: | | | | | | |
| Fish Audio | | | | :heavy_check_mark: | | | |
| Gemini | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| Google Cloud | :heavy_check_mark: | | | | | | |
| GPUStack | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| Groq | :heavy_check_mark: | | | | | | |
| HuggingFace | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| Jina | | | | | :heavy_check_mark: | :heavy_check_mark: | |
| LocalAI | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| LongCat | :heavy_check_mark: | | | | | | |
| LM-Studio | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| MiniMax | :heavy_check_mark: | | | | | | |
| MinerU | | | | | | | :heavy_check_mark: |
| Mistral | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| ModelScope | :heavy_check_mark: | | | | | | |
| Moonshot | :heavy_check_mark: | :heavy_check_mark: | | | | | |
| NovitaAI | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| NVIDIA | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| Ollama | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| OpenAI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| OpenAI-API-Compatible | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| OpenRouter | :heavy_check_mark: | :heavy_check_mark: | | | | | |
| Replicate | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| PPIO | :heavy_check_mark: | | | | | | |
| SILICONFLOW | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| StepFun | :heavy_check_mark: | | | | | | |
| Tencent Hunyuan | :heavy_check_mark: | | | | | | |
| Tencent Cloud | | | :heavy_check_mark: | | | | |
| TogetherAI | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| TokenPony | :heavy_check_mark: | | | | | | |
| Tongyi-Qianwen | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| Upstage | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| VLLM | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| VolcEngine | :heavy_check_mark: | | | | | | |
| Voyage AI | | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| Xinference | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| XunFei Spark | :heavy_check_mark: | | | :heavy_check_mark: | | | |
| xAI | :heavy_check_mark: | :heavy_check_mark: | | | | | |
| ZHIPU-AI | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| DeepInfra | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| 302.AI | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| CometAPI | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| DeerAPI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | | |
| Jiekou.AI | :heavy_check_mark: | | | | :heavy_check_mark: | :heavy_check_mark: | |
```mdx-code-block
</APITable>

View File

@ -7,9 +7,34 @@ slug: /release_notes
Key features, improvements and bug fixes in the latest releases.
## v0.23.1
Released on December 31, 2025.
### Improvements
- Memory: Enhances the stability of memory extraction when all memory types are selected.
- RAG: Refines the context window extraction strategy for images and tables.
### Fixed issues
- Memory:
- The RAGFlow server failed to start if an empty memory object existed.
- Unable to delete a newly created empty Memory.
- RAG: MDX file parsing was not supported.
### Data sources
- GitHub
- Gitlab
- Asana
- IMAP
## v0.23.0
Released on December 29, 2025.
Released on December 27, 2025.
### New features
@ -32,7 +57,8 @@ Released on December 29, 2025.
### Improvements
- Bumps RAGFlow's document engine, [Infinity](https://github.com/infiniflow/infinity) to v0.6.13 (backward compatible).
- RAG: Accelerates GraphRAG generation significantly.
- Bumps RAGFlow's document engine, [Infinity](https://github.com/infiniflow/infinity) to v0.6.15 (backward compatible).
### Data sources

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import json
import logging
from collections import defaultdict
@ -32,21 +33,21 @@ from common.doc_store.doc_store_base import OrderByExpr
class KGSearch(Dealer):
def _chat(self, llm_bdl, system, history, gen_conf):
async def _chat(self, llm_bdl, system, history, gen_conf):
response = get_llm_cache(llm_bdl.llm_name, system, history, gen_conf)
if response:
return response
response = llm_bdl.chat(system, history, gen_conf)
response = await llm_bdl.async_chat(system, history, gen_conf)
if response.find("**ERROR**") >= 0:
raise Exception(response)
set_llm_cache(llm_bdl.llm_name, system, response, history, gen_conf)
return response
def query_rewrite(self, llm, question, idxnms, kb_ids):
async def query_rewrite(self, llm, question, idxnms, kb_ids):
ty2ents = get_entity_type2samples(idxnms, kb_ids)
hint_prompt = PROMPTS["minirag_query2kwd"].format(query=question,
TYPE_POOL=json.dumps(ty2ents, ensure_ascii=False, indent=2))
result = self._chat(llm, hint_prompt, [{"role": "user", "content": "Output:"}], {})
result = await self._chat(llm, hint_prompt, [{"role": "user", "content": "Output:"}], {})
try:
keywords_data = json_repair.loads(result)
type_keywords = keywords_data.get("answer_type_keywords", [])
@ -138,7 +139,7 @@ class KGSearch(Dealer):
idxnms, kb_ids)
return self._ent_info_from_(es_res, 0)
def retrieval(self, question: str,
async def retrieval(self, question: str,
tenant_ids: str | list[str],
kb_ids: list[str],
emb_mdl,
@ -158,7 +159,7 @@ class KGSearch(Dealer):
idxnms = [index_name(tid) for tid in tenant_ids]
ty_kwds = []
try:
ty_kwds, ents = self.query_rewrite(llm, qst, [index_name(tid) for tid in tenant_ids], kb_ids)
ty_kwds, ents = await self.query_rewrite(llm, qst, [index_name(tid) for tid in tenant_ids], kb_ids)
logging.info(f"Q: {qst}, Types: {ty_kwds}, Entities: {ents}")
except Exception as e:
logging.exception(e)
@ -334,5 +335,5 @@ if __name__ == "__main__":
embed_bdl = LLMBundle(args.tenant_id, LLMType.EMBEDDING, kb.embd_id)
kg = KGSearch(settings.docStoreConn)
print(kg.retrieval({"question": args.question, "kb_ids": [kb_id]},
search.index_name(kb.tenant_id), [kb_id], embed_bdl, llm_bdl))
print(asyncio.run(kg.retrieval({"question": args.question, "kb_ids": [kb_id]},
search.index_name(kb.tenant_id), [kb_id], embed_bdl, llm_bdl)))

133
helm/README.md Normal file
View File

@ -0,0 +1,133 @@
# RAGFlow Helm Chart
A Helm chart to deploy RAGFlow and its dependencies on Kubernetes.
- Components: RAGFlow (web/api) and optional dependencies (Infinity/Elasticsearch/OpenSearch, MySQL, MinIO, Redis)
- Requirements: Kubernetes >= 1.24, Helm >= 3.10
## Install
```bash
helm upgrade --install ragflow ./ \
--namespace ragflow --create-namespace
```
Uninstall:
```bash
helm uninstall ragflow -n ragflow
```
## Global Settings
- `global.repo`: Prepend a global image registry prefix for all images.
- Behavior: Replaces the registry part and keeps the image path (e.g., `quay.io/minio/minio` -> `registry.example.com/myproj/minio/minio`).
- Example: `global.repo: "registry.example.com/myproj"`
- `global.imagePullSecrets`: List of image pull secrets applied to all Pods.
- Example:
```yaml
global:
imagePullSecrets:
- name: regcred
```
## External Services (MySQL / MinIO / Redis)
The chart can deploy in-cluster services or connect to external ones. Toggle with `*.enabled`. When disabled, provide host/port via `env.*`.
- MySQL
- `mysql.enabled`: default `true`
- If `false`, set:
- `env.MYSQL_HOST` (required), `env.MYSQL_PORT` (default `3306`)
- `env.MYSQL_DBNAME` (default `rag_flow`), `env.MYSQL_PASSWORD` (required)
- `env.MYSQL_USER` (default `root` if omitted)
- MinIO
- `minio.enabled`: default `true`
- Configure:
- `env.MINIO_HOST` (optional external host), `env.MINIO_PORT` (default `9000`)
- `env.MINIO_ROOT_USER` (default `rag_flow`), `env.MINIO_PASSWORD` (optional)
- Redis (Valkey)
- `redis.enabled`: default `true`
- If `false`, set:
- `env.REDIS_HOST` (required), `env.REDIS_PORT` (default `6379`)
- `env.REDIS_PASSWORD` (optional; empty disables auth if server allows)
Notes:
- When `*.enabled=true`, the chart renders in-cluster resources and injects corresponding `*_HOST`/`*_PORT` automatically.
- Sensitive variables like `MYSQL_PASSWORD` are required; `MINIO_PASSWORD` and `REDIS_PASSWORD` are optional. All secrets are stored in a Secret.
### Example: use external MySQL, MinIO, and Redis
```yaml
# values.override.yaml
mysql:
enabled: false # use external MySQL
minio:
enabled: false # use external MinIO (S3 compatible)
redis:
enabled: false # use external Redis/Valkey
env:
# MySQL
MYSQL_HOST: mydb.example.com
MYSQL_PORT: "3306"
MYSQL_USER: root
MYSQL_DBNAME: rag_flow
MYSQL_PASSWORD: "<your-mysql-password>"
# MinIO
MINIO_HOST: s3.example.com
MINIO_PORT: "9000"
MINIO_ROOT_USER: rag_flow
MINIO_PASSWORD: "<your-minio-secret>"
# Redis
REDIS_HOST: redis.example.com
REDIS_PORT: "6379"
REDIS_PASSWORD: "<your-redis-pass>"
```
Apply:
```bash
helm upgrade --install ragflow ./helm -n ragflow -f values.override.yaml
```
## Document Engine Selection
Choose one of `infinity` (default), `elasticsearch`, or `opensearch` via `env.DOC_ENGINE`. The chart renders only the selected engine and sets the appropriate host variables.
```yaml
env:
DOC_ENGINE: infinity # or: elasticsearch | opensearch
# For elasticsearch
ELASTIC_PASSWORD: "<es-pass>"
# For opensearch
OPENSEARCH_PASSWORD: "<os-pass>"
```
## Ingress
Expose the web UI via Ingress:
```yaml
ingress:
enabled: true
className: nginx
hosts:
- host: ragflow.example.com
paths:
- path: /
pathType: Prefix
```
## Validate the Chart
```bash
helm lint ./helm
helm template ragflow ./helm > rendered.yaml
```
## Notes
- By default, the chart uses `DOC_ENGINE: infinity` and deploys in-cluster MySQL, MinIO, and Redis.
- The chart injects derived `*_HOST`/`*_PORT` and required secrets into a single Secret (`<release>-ragflow-env-config`).
- `global.repo` and `global.imagePullSecrets` apply to all Pods; per-component `*.image.pullSecrets` still work and are merged with global settings.

View File

@ -42,6 +42,31 @@ app.kubernetes.io/version: {{ .Chart.AppVersion | quote }}
app.kubernetes.io/managed-by: {{ .Release.Service }}
{{- end }}
{{/*
Resolve image repository with optional global repo prefix.
If .Values.global.repo is set, replace registry part and keep image path.
Detect existing registry by first segment containing '.' or ':' or being 'localhost'.
Usage: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.foo.image.repository) }}
*/}}
{{- define "ragflow.imageRepo" -}}
{{- $root := .root -}}
{{- $repo := .repo -}}
{{- $global := $root.Values.global -}}
{{- if and $global $global.repo }}
{{- $parts := splitList "/" $repo -}}
{{- $first := index $parts 0 -}}
{{- $hasRegistry := or (regexMatch "\\." $first) (regexMatch ":" $first) (eq $first "localhost") -}}
{{- if $hasRegistry -}}
{{- $path := join "/" (rest $parts) -}}
{{- printf "%s/%s" $global.repo $path -}}
{{- else -}}
{{- printf "%s/%s" $global.repo $repo -}}
{{- end -}}
{{- else -}}
{{- $repo -}}
{{- end -}}
{{- end }}
{{/*
Selector labels
*/}}

View File

@ -32,7 +32,7 @@ spec:
{{- include "ragflow.selectorLabels" . | nindent 6 }}
app.kubernetes.io/component: elasticsearch
{{- with .Values.elasticsearch.deployment.strategy }}
strategy:
updateStrategy:
{{- . | toYaml | nindent 4 }}
{{- end }}
template:
@ -44,9 +44,9 @@ spec:
checksum/config-es: {{ include (print $.Template.BasePath "/elasticsearch-config.yaml") . | sha256sum }}
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.elasticsearch.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.elasticsearch.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.elasticsearch.image.pullSecrets }}
@ -55,7 +55,7 @@ spec:
{{- end }}
initContainers:
- name: fix-data-volume-permissions
image: {{ .Values.elasticsearch.initContainers.alpine.repository }}:{{ .Values.elasticsearch.initContainers.alpine.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.elasticsearch.initContainers.alpine.repository) }}:{{ .Values.elasticsearch.initContainers.alpine.tag }}
{{- with .Values.elasticsearch.initContainers.alpine.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -67,7 +67,7 @@ spec:
- mountPath: /usr/share/elasticsearch/data
name: es-data
- name: sysctl
image: {{ .Values.elasticsearch.initContainers.busybox.repository }}:{{ .Values.elasticsearch.initContainers.busybox.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.elasticsearch.initContainers.busybox.repository) }}:{{ .Values.elasticsearch.initContainers.busybox.tag }}
{{- with .Values.elasticsearch.initContainers.busybox.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -77,7 +77,7 @@ spec:
command: ["sysctl", "-w", "vm.max_map_count=262144"]
containers:
- name: elasticsearch
image: {{ .Values.elasticsearch.image.repository }}:{{ .Values.elasticsearch.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.elasticsearch.image.repository) }}:{{ .Values.elasticsearch.image.tag }}
{{- with .Values.elasticsearch.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}

View File

@ -9,20 +9,39 @@ metadata:
type: Opaque
stringData:
{{- range $key, $val := .Values.env }}
{{- if $val }}
{{- if and $val (ne $key "MYSQL_HOST") (ne $key "MYSQL_PORT") (ne $key "MYSQL_USER") (ne $key "MINIO_HOST") (ne $key "MINIO_PORT") (ne $key "REDIS_HOST") (ne $key "REDIS_PORT") }}
{{ $key }}: {{ quote $val }}
{{- end }}
{{- end }}
{{- /*
Use host names derived from internal cluster DNS
*/}}
{{- if .Values.redis.enabled }}
REDIS_HOST: {{ printf "%s-redis.%s.svc" (include "ragflow.fullname" .) .Release.Namespace }}
REDIS_PORT: "6379"
{{- else }}
REDIS_HOST: {{ required "env.REDIS_HOST is required when redis.enabled=false" .Values.env.REDIS_HOST | quote }}
REDIS_PORT: {{ default "6379" .Values.env.REDIS_PORT | quote }}
{{- end }}
{{- if .Values.mysql.enabled }}
MYSQL_HOST: {{ printf "%s-mysql.%s.svc" (include "ragflow.fullname" .) .Release.Namespace }}
MYSQL_PORT: "3306"
{{- else }}
MYSQL_HOST: {{ required "env.MYSQL_HOST is required when mysql.enabled=false" .Values.env.MYSQL_HOST | quote }}
MYSQL_PORT: {{ default "3306" .Values.env.MYSQL_PORT | quote }}
MYSQL_USER: {{ default "root" .Values.env.MYSQL_USER | quote }}
{{- end }}
{{- if .Values.minio.enabled }}
MINIO_HOST: {{ printf "%s-minio.%s.svc" (include "ragflow.fullname" .) .Release.Namespace }}
MINIO_PORT: "9000"
{{- else }}
MINIO_HOST: {{ default "" .Values.env.MINIO_HOST | quote }}
MINIO_PORT: {{ default "9000" .Values.env.MINIO_PORT | quote }}
{{- end }}
{{- /*
Fail if passwords are not provided in release values
*/}}
REDIS_PASSWORD: {{ .Values.env.REDIS_PASSWORD | required "REDIS_PASSWORD is required" }}
REDIS_PASSWORD: {{ default "" .Values.env.REDIS_PASSWORD }}
{{- /*
NOTE: MySQL uses MYSQL_ROOT_PASSWORD env var but Ragflow container expects
MYSQL_PASSWORD so we need to define both as the same value here.
@ -31,10 +50,9 @@ stringData:
MYSQL_PASSWORD: {{ . }}
MYSQL_ROOT_PASSWORD: {{ . }}
{{- end }}
{{- with .Values.env.MINIO_PASSWORD | required "MINIO_PASSWORD is required" }}
MINIO_PASSWORD: {{ . }}
MINIO_ROOT_PASSWORD: {{ . }}
{{- end }}
{{- $minioPass := default "" .Values.env.MINIO_PASSWORD }}
MINIO_PASSWORD: {{ $minioPass }}
MINIO_ROOT_PASSWORD: {{ $minioPass }}
{{- /*
Only provide env vars for enabled doc engine
*/}}

View File

@ -32,7 +32,7 @@ spec:
{{- include "ragflow.selectorLabels" . | nindent 6 }}
app.kubernetes.io/component: infinity
{{- with .Values.infinity.deployment.strategy }}
strategy:
updateStrategy:
{{- . | toYaml | nindent 4 }}
{{- end }}
template:
@ -43,9 +43,9 @@ spec:
annotations:
checksum/config: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.infinity.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.infinity.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.infinity.image.pullSecrets }}
@ -54,7 +54,7 @@ spec:
{{- end }}
containers:
- name: infinity
image: {{ .Values.infinity.image.repository }}:{{ .Values.infinity.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.infinity.image.repository) }}:{{ .Values.infinity.image.tag }}
{{- with .Values.infinity.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}

View File

@ -35,7 +35,7 @@ spec:
{{- end }}
backend:
service:
name: {{ $.Release.Name }}
name: {{ include "ragflow.fullname" $ }}
port:
name: http
{{- end }}

View File

@ -1,3 +1,4 @@
{{- if .Values.minio.enabled }}
---
apiVersion: v1
kind: PersistentVolumeClaim
@ -43,9 +44,9 @@ spec:
{{- include "ragflow.labels" . | nindent 8 }}
app.kubernetes.io/component: minio
spec:
{{- if or .Values.imagePullSecrets .Values.minio.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.minio.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.minio.image.pullSecrets }}
@ -54,7 +55,7 @@ spec:
{{- end }}
containers:
- name: minio
image: {{ .Values.minio.image.repository }}:{{ .Values.minio.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.minio.image.repository) }}:{{ .Values.minio.image.tag }}
{{- with .Values.minio.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -103,3 +104,4 @@ spec:
port: 9001
targetPort: console
type: {{ .Values.minio.service.type }}
{{- end }}

View File

@ -1,3 +1,4 @@
{{- if .Values.mysql.enabled }}
---
apiVersion: v1
kind: ConfigMap
@ -7,3 +8,4 @@ data:
init.sql: |-
CREATE DATABASE IF NOT EXISTS rag_flow;
USE rag_flow;
{{- end }}

View File

@ -1,3 +1,4 @@
{{- if .Values.mysql.enabled }}
---
apiVersion: v1
kind: PersistentVolumeClaim
@ -32,7 +33,7 @@ spec:
{{- include "ragflow.selectorLabels" . | nindent 6 }}
app.kubernetes.io/component: mysql
{{- with .Values.mysql.deployment.strategy }}
strategy:
updateStrategy:
{{- . | toYaml | nindent 4 }}
{{- end }}
template:
@ -44,9 +45,9 @@ spec:
checksum/config-mysql: {{ include (print $.Template.BasePath "/mysql-config.yaml") . | sha256sum }}
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.mysql.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.mysql.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.mysql.image.pullSecrets }}
@ -55,7 +56,7 @@ spec:
{{- end }}
containers:
- name: mysql
image: {{ .Values.mysql.image.repository }}:{{ .Values.mysql.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.mysql.image.repository) }}:{{ .Values.mysql.image.tag }}
{{- with .Values.mysql.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -108,3 +109,4 @@ spec:
port: 3306
targetPort: mysql
type: {{ .Values.mysql.service.type }}
{{- end }}

View File

@ -32,7 +32,7 @@ spec:
{{- include "ragflow.selectorLabels" . | nindent 6 }}
app.kubernetes.io/component: opensearch
{{- with .Values.opensearch.deployment.strategy }}
strategy:
updateStrategy:
{{- . | toYaml | nindent 4 }}
{{- end }}
template:
@ -44,9 +44,9 @@ spec:
checksum/config-opensearch: {{ include (print $.Template.BasePath "/opensearch-config.yaml") . | sha256sum }}
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.opensearch.image.pullSecrets }}
{{- if or .Values.global.imagePullSecrets .Values.opensearch.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- with .Values.global.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.opensearch.image.pullSecrets }}
@ -55,7 +55,7 @@ spec:
{{- end }}
initContainers:
- name: fix-data-volume-permissions
image: {{ .Values.opensearch.initContainers.alpine.repository }}:{{ .Values.opensearch.initContainers.alpine.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.opensearch.initContainers.alpine.repository) }}:{{ .Values.opensearch.initContainers.alpine.tag }}
{{- with .Values.opensearch.initContainers.alpine.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -67,7 +67,7 @@ spec:
- mountPath: /usr/share/opensearch/data
name: opensearch-data
- name: sysctl
image: {{ .Values.opensearch.initContainers.busybox.repository }}:{{ .Values.opensearch.initContainers.busybox.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.opensearch.initContainers.busybox.repository) }}:{{ .Values.opensearch.initContainers.busybox.tag }}
{{- with .Values.opensearch.initContainers.busybox.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
@ -77,7 +77,7 @@ spec:
command: ["sysctl", "-w", "vm.max_map_count=262144"]
containers:
- name: opensearch
image: {{ .Values.opensearch.image.repository }}:{{ .Values.opensearch.image.tag }}
image: {{ include "ragflow.imageRepo" (dict "root" . "repo" .Values.opensearch.image.repository) }}:{{ .Values.opensearch.image.tag }}
{{- with .Values.opensearch.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}

Some files were not shown because too many files have changed in this diff Show More