Compare commits

..

156 Commits

Author SHA1 Message Date
42edecc98f Add 'SHOW VERSION' to document (#11082)
### What problem does this PR solve?

As title

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-06 19:34:47 +08:00
af98763e27 Admin: add 'show version' (#11079)
### What problem does this PR solve?

```
admin> show version;
show_version
+-----------------------+
| version               |
+-----------------------+
| v0.21.0-241-gc6cf58d5 |
+-----------------------+
admin> \q
Goodbye!

```

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-06 19:24:46 +08:00
5a8fbc5a81 Fix: Can't add more models (#11076)
### What problem does this PR solve?

Currently we cannot add any models, since factory is a string, and the
return type of get_allowed_llm_factories() is List[object]
https://github.com/infiniflow/ragflow/pull/11003

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-06 18:54:13 +08:00
0cd8024c34 Feat: RAPTOR handle cancel gracefully (#11074)
### What problem does this PR solve?

RAPTOR handle cancel gracefully.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-06 17:18:03 +08:00
3bd1fefe1f Feat: debug sync data. (#11073)
### What problem does this PR solve?

#10953 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-06 16:48:04 +08:00
e18c408759 Feat: Add variable aggregator node #10427 (#11070)
### What problem does this PR solve?

Feat: Add variable aggregator node #10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-06 16:18:00 +08:00
23b81eae77 Feat: GraphRAG handle cancel gracefully (#11061)
### What problem does this PR solve?

 GraghRAG handle cancel gracefully. #10997.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-06 16:12:20 +08:00
66c01c7274 Minor tweaks (#11060)
### What problem does this PR solve?

Minor tweaks

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-06 15:28:48 +08:00
4b8ce08050 Fix: fix pdf_parser ignored in rag/app/naive.py (#11065)
### What problem does this PR solve?

Fix: fix pdf_parser ignored in rag/app/naive.py #11000

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-06 15:20:35 +08:00
ca30ef83bf Feat: Add variable assignment node #10427 (#11058)
### What problem does this PR solve?

Feat: Add variable assignment node #10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-06 14:42:47 +08:00
d469ae6d50 Feat: The agent operator and message operator can only select string variables as prompt words. #10427 (#11054)
### What problem does this PR solve?

Feat: The agent operator and message operator can only select string
variables as prompt words. #10427
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-06 13:58:20 +08:00
f581a1c4e5 Feature: Added data source functionality #10703 (#11046)
### What problem does this PR solve?

Feature: Added data source functionality

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-06 11:53:46 +08:00
15c75bbf15 Refa: Remove HuggingFace repo downloads (#11048)
### What problem does this PR solve?

- Removed download_model function and HuggingFace repo download loop

### Type of change

- [x] Refactoring
2025-11-06 11:53:33 +08:00
adbb8319e0 Fix: add fields for logs. (#11039)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-06 09:49:57 +08:00
f98b24c9bf Move api.settings to common.settings (#11036)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-06 09:36:38 +08:00
87c9a054d3 Feat: The value of data operations operators can be either input or referenced from variables. #10427 (#11037)
### What problem does this PR solve?

Feat: The value of data operations operators can be either input or
referenced from variables. #10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-05 20:04:23 +08:00
cd6ed4b380 Feat: add webhook component. (#11033)
### What problem does this PR solve?

#10427

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-05 19:59:23 +08:00
f29a3dd651 fix:data operations update (#11013)
### What problem does this PR solve?

change:data operations update

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-05 19:59:10 +08:00
e658beee38 Fix: Fixed the issue of errors when using agents created from templates. #10427 (#11035)
### What problem does this PR solve?

Fix: Fixed the issue of errors when using agents created from templates.
#10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-05 19:15:43 +08:00
17ea5c1dee Fix: MCP cannot handle empty Auth field properly (#11034)
### What problem does this PR solve?

Fix MCP cannot handle empty Auth field properly, then result in 

```bash
2025-11-05 11:10:41,919 INFO     51209 Negotiated protocol version: 2025-06-18
2025-11-05 11:10:41,920 INFO     51209 client_session initialized successfully
2025-11-05 11:10:41,994 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:10:41] "GET /api/v1/datasets?page=1&page_size=1000&orderby=create_time&desc=True HTTP/1.1" 200 -
2025-11-05 11:10:41,999 INFO     51209 Want to clean up 1 MCP sessions
2025-11-05 11:10:42,000 INFO     51209 1 MCP sessions has been cleaned up. 0 in global context.
2025-11-05 11:10:42,001 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:10:42] "POST /v1/mcp_server/test_mcp HTTP/1.1" 200 -
2025-11-05 11:11:30,441 INFO     51209 Negotiated protocol version: 2025-06-18
2025-11-05 11:11:30,442 INFO     51209 client_session initialized successfully
2025-11-05 11:11:30,520 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:11:30] "GET /api/v1/datasets?page=1&page_size=1000&orderby=create_time&desc=True HTTP/1.1" 200 -
2025-11-05 11:11:30,525 INFO     51209 Want to clean up 1 MCP sessions
2025-11-05 11:11:30,526 INFO     51209 1 MCP sessions has been cleaned up. 0 in global context.
2025-11-05 11:11:30,527 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:11:30] "POST /v1/mcp_server/test_mcp HTTP/1.1" 200 -
2025-11-05 11:11:31,476 INFO     51209 Negotiated protocol version: 2025-06-18
2025-11-05 11:11:31,476 INFO     51209 client_session initialized successfully
2025-11-05 11:11:31,549 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:11:31] "GET /api/v1/datasets?page=1&page_size=1000&orderby=create_time&desc=True HTTP/1.1" 200 -
2025-11-05 11:11:31,552 INFO     51209 Want to clean up 1 MCP sessions
2025-11-05 11:11:31,553 INFO     51209 1 MCP sessions has been cleaned up. 0 in global context.
2025-11-05 11:11:31,554 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:11:31] "POST /v1/mcp_server/test_mcp HTTP/1.1" 200 -
2025-11-05 11:11:51,930 ERROR    51209 unhandled errors in a TaskGroup (1 sub-exception)
  + Exception Group Traceback (most recent call last):
  |   File "/home/xxxxxxxxx/workspace/ragflow/rag/utils/mcp_tool_call_conn.py", line 86, in _mcp_server_loop
  |     async with streamablehttp_client(url, headers) as (read_stream, write_stream, _):
  |   File "/home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/contextlib.py", line 217, in __aexit__
  |     await self.gen.athrow(typ, value, traceback)
  |   File "/home/xxxxxxxxx/workspace/ragflow/.venv/lib/python3.10/site-packages/mcp/client/streamable_http.py", line 478, in streamablehttp_client
  |     async with anyio.create_task_group() as tg:
  |   File "/home/xxxxxxxxx/workspace/ragflow/.venv/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 781, in __aexit__
  |     raise BaseExceptionGroup(
  | exceptiongroup.ExceptionGroup: unhandled errors in a TaskGroup (1 sub-exception)
  +-+---------------- 1 ----------------
    | Traceback (most recent call last):
    |   File "/home/xxxxxxxxx/workspace/ragflow/.venv/lib/python3.10/site-packages/mcp/client/streamable_http.py", line 409, in handle_request_async
    |     await self._handle_post_request(ctx)
    |   File "/home/xxxxxxxxx/workspace/ragflow/.venv/lib/python3.10/site-packages/mcp/client/streamable_http.py", line 278, in _handle_post_request
    |     response.raise_for_status()
    |   File "/home/xxxxxxxxx/workspace/ragflow/.venv/lib/python3.10/site-packages/httpx/_models.py", line 829, in raise_for_status
    |     raise HTTPStatusError(message, request=request, response=self)
    | httpx.HTTPStatusError: Server error '502 Bad Gateway' for url 'http://192.168.1.38:9382/mcp'
    | For more information check: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/502
    +------------------------------------
2025-11-05 11:11:51,942 ERROR    51209 Error fetching tools from MCP server: streamable-http: http://192.168.1.38:9382/mcp
Traceback (most recent call last):
  File "/home/xxxxxxxxx/workspace/ragflow/rag/utils/mcp_tool_call_conn.py", line 168, in get_tools
    return future.result(timeout=timeout)
  File "/home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/concurrent/futures/_base.py", line 458, in result
    return self.__get_result()
  File "/home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
    raise self._exception
  File "<@beartype(rag.utils.mcp_tool_call_conn.MCPToolCallSession._get_tools_from_mcp_server) at 0x7d58f02e2c20>", line 40, in _get_tools_from_mcp_server
  File "/home/xxxxxxxxx/workspace/ragflow/rag/utils/mcp_tool_call_conn.py", line 160, in _get_tools_from_mcp_server
    result: ListToolsResult = await self._call_mcp_server("list_tools", timeout=timeout)
  File "<@beartype(rag.utils.mcp_tool_call_conn.MCPToolCallSession._call_mcp_server) at 0x7d58f02e2b00>", line 63, in _call_mcp_server
  File "/home/xxxxxxxxx/workspace/ragflow/rag/utils/mcp_tool_call_conn.py", line 139, in _call_mcp_server
    raise result
ValueError: Connection failed (possibly due to auth error). Please check authentication settings first
2025-11-05 11:11:51,943 ERROR    51209 Test MCP error: Connection failed (possibly due to auth error). Please check authentication settings first
Traceback (most recent call last):
  File "/home/xxxxxxxxx/workspace/ragflow/api/apps/mcp_server_app.py", line 429, in test_mcp
    tools = tool_call_session.get_tools(timeout)
  File "<@beartype(rag.utils.mcp_tool_call_conn.MCPToolCallSession.get_tools) at 0x7d58f02e2cb0>", line 40, in get_tools
  File "/home/xxxxxxxxx/workspace/ragflow/rag/utils/mcp_tool_call_conn.py", line 168, in get_tools
    return future.result(timeout=timeout)
  File "/home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/concurrent/futures/_base.py", line 458, in result
    return self.__get_result()
  File "/home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
    raise self._exception
  File "<@beartype(rag.utils.mcp_tool_call_conn.MCPToolCallSession._get_tools_from_mcp_server) at 0x7d58f02e2c20>", line 40, in _get_tools_from_mcp_server
  File "/home/xxxxxxxxx/workspace/ragflow/rag/utils/mcp_tool_call_conn.py", line 160, in _get_tools_from_mcp_server
    result: ListToolsResult = await self._call_mcp_server("list_tools", timeout=timeout)
  File "<@beartype(rag.utils.mcp_tool_call_conn.MCPToolCallSession._call_mcp_server) at 0x7d58f02e2b00>", line 63, in _call_mcp_server
  File "/home/xxxxxxxxx/workspace/ragflow/rag/utils/mcp_tool_call_conn.py", line 139, in _call_mcp_server
    raise result
ValueError: Connection failed (possibly due to auth error). Please check authentication settings first
2025-11-05 11:11:51,944 INFO     51209 Want to clean up 1 MCP sessions
2025-11-05 11:11:51,945 INFO     51209 1 MCP sessions has been cleaned up. 0 in global context.
2025-11-05 11:11:51,946 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:11:51] "POST /v1/mcp_server/test_mcp HTTP/1.1" 200 -
2025-11-05 11:12:20,484 INFO     51209 Negotiated protocol version: 2025-06-18
2025-11-05 11:12:20,485 INFO     51209 client_session initialized successfully
2025-11-05 11:12:20,570 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:12:20] "GET /api/v1/datasets?page=1&page_size=1000&orderby=create_time&desc=True HTTP/1.1" 200 -
2025-11-05 11:12:20,573 INFO     51209 Want to clean up 1 MCP sessions
2025-11-05 11:12:20,574 INFO     51209 1 MCP sessions has been cleaned up. 0 in global context.
2025-11-05 11:12:20,575 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:12:20] "POST /v1/mcp_server/test_mcp HTTP/1.1" 200 -
2025-11-05 11:15:02,119 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:15:02] "GET /api/v1/datasets?page=1&page_size=1000&orderby=create_time&desc=True HTTP/1.1" 200 -
2025-11-05 11:16:24,967 INFO     51209 127.0.0.1 - - [05/Nov/2025 11:16:24] "GET /api/v1/datasets?page=1&page_size=1000&orderby=create_time&desc=True HTTP/1.1" 200 -
2025-11-05 11:30:24,284 ERROR    51209 Task was destroyed but it is pending!
task: <Task pending name='Task-58' coro=<MCPToolCallSession._mcp_server_loop() running at <@beartype(rag.utils.mcp_tool_call_conn.MCPToolCallSession._mcp_server_loop) at 0x7d58f02e29e0>:11> wait_for=<Future pending cb=[Task.task_wakeup()]> cb=[_chain_future.<locals>._call_set_state() at /home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/asyncio/futures.py:392]>
2025-11-05 11:30:24,285 ERROR    51209 Task was destroyed but it is pending!
task: <Task pending name='Task-67' coro=<Queue.get() running at /home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/asyncio/queues.py:159> wait_for=<Future pending cb=[Task.task_wakeup()]> cb=[_release_waiter(<Future pendi...ask_wakeup()]>)() at /home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/asyncio/tasks.py:387]>
Exception ignored in: <coroutine object Queue.get at 0x7d585480ace0>
Traceback (most recent call last):
  File "/home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/asyncio/queues.py", line 161, in get
    getter.cancel()  # Just in case getter is not done yet.
  File "/home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/asyncio/base_events.py", line 753, in call_soon
    self._check_closed()
  File "/home/xxxxxxxxx/.local/share/uv/python/cpython-3.10.16-linux-x86_64-gnu/lib/python3.10/asyncio/base_events.py", line 515, in _check_closed
    raise RuntimeError('Event loop is closed')
RuntimeError: Event loop is closed

```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-05 19:15:27 +08:00
4e76220e25 Feat: Submit clean data operations form data to the backend. #10427 (#11030)
### What problem does this PR solve?

Feat: Submit clean data operations form data to the backend. #10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-05 17:32:35 +08:00
24335485bf Fix: get_allowed_llm_factories() return type (#11031)
### What problem does this PR solve?

Fix: get_allowed_llm_factories() return type #11003

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

<img width="2880" height="215" alt="截图 2025-11-05 17-02-01"
src="https://github.com/user-attachments/assets/ee892077-21f9-4b1e-a1d2-b921fa7f6121"
/>
2025-11-05 17:32:12 +08:00
121c51661d Fix: Markdown table extractor (#11018)
### What problem does this PR solve?

Now markdown table extractor supports <table ...>. #10966 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-05 16:10:21 +08:00
02d10f8eda Move var from rag.settings to common.globals (#11022)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-05 15:48:50 +08:00
dddf766470 Feat: start data sync service. (#11026)
### What problem does this PR solve?

#10953 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-05 15:43:15 +08:00
8584d4b642 Fix: numeric string miss transformation. (#11025)
### What problem does this PR solve?

#11024

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-05 15:14:30 +08:00
b86e07088b Fix: escape multi-steps issues. (#11016)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-05 14:51:00 +08:00
1a9215bc6f Move some vars to globals (#11017)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-05 14:14:38 +08:00
cf9611c96f Feat: Support more chunking methods (#11000)
### What problem does this PR solve?

Feat: Support more chunking methods #10772 

This PR enables multiple chunking methods — including books, laws,
naive, one, and presentation — to be used with all existing PDF parsers
(DeepDOC, MinerU, Docling, TCADP, Plain Text, and Vision modes).

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-05 13:00:42 +08:00
f126875ec6 Apply some tweaks on Admin UI (#11011)
### What problem does this PR solve?

- Fix selected radio button text misaligned with radio button dot
- Fix `<ScrollArea>` scrollbar z-index issue
- Add backdrop blur effect on scrollbar thumbs
- Adjust some styles to match the design 


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-05 12:58:43 +08:00
89410d2381 fix:api /factories wrong return (#11015)
### What problem does this PR solve?

change:
api /factories wrong return

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-05 12:50:11 +08:00
96c015fb85 Fix and refactor imports (#11010)
### What problem does this PR solve?

1. Move EMBEDDING_CFG to common.globals
2. Fix error imports
3. Move signal handles to common/signal_utils.py

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-05 11:07:54 +08:00
ca40b56839 Feat:Data Operations (#11002)
### What problem does this PR solve?

new component:Data Operations

#10427

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-05 10:49:41 +08:00
3654ae61c1 feat: add allowed factories variable to allow admins to restrict llms users can add (#11003)
### What problem does this PR solve?

Currently, if we want to restrict the allowed factories users can use we
need to delete from the database table manually. The proposal of this PR
is to include a variable to that, if set, will restrict the LLM
factories the users can see and add. This allow us to not touch the
llm_factories.json or the database if the LLM factory is already
inserted.

Obs.: All the lint changes were from the pre-commit hook which I did not
change.

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-11-05 10:47:50 +08:00
bab3fce136 Move some constants to common (#11004)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-05 08:01:39 +08:00
4bbbf92331 Refa: link connector to KB. (#10991)
### What problem does this PR solve?

#10953

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-04 20:13:52 +08:00
db9fa3042b Feat: Add a form with data operations operators #10427 (#11001)
### What problem does this PR solve?

Feat: Add a form with data operations operators #10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-04 19:42:59 +08:00
880a6a0428 Move some enumerate type to constants.py (#10998)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-04 19:25:25 +08:00
465a140727 Feat: refine Confluence connector (#10994)
### What problem does this PR solve?

Refine Confluence connector.
#10953

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Refactoring
2025-11-04 17:29:11 +08:00
2677617f93 Feat: supports MinerU http-client/server method (#10961)
### What problem does this PR solve?

Add support for MinerU http-client/server method.

To use MinerU with vLLM server:

1. Set up a vLLM server running MinerU:
   ```bash
   mineru-vllm-server --port 30000
   ```

2. Configure the following environment variables:
- `MINERU_EXECUTABLE=/ragflow/uv_tools/.venv/bin/mineru` (or the path to
your MinerU executable)
   - `MINERU_BACKEND="vlm-http-client"`
   - `MINERU_SERVER_URL="http://your-vllm-server-ip:30000"`

3. Follow the standard MinerU setup steps as described above.

With this configuration, RAGFlow will connect to your vLLM server to
perform document parsing, which can significantly improve parsing
performance for complex documents while reducing the resource
requirements on your RAGFlow server.



![1](https://github.com/user-attachments/assets/46624a0c-0f3b-423e-ace8-81801e97a27d)

![2](https://github.com/user-attachments/assets/66ccc004-a598-47d4-93cb-fe176834f83b)


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update

---------

Co-authored-by: writinwaters <cai.keith@gmail.com>
2025-11-04 16:03:30 +08:00
03038c7d3d Update RetCode to common.constants (#10984)
### What problem does this PR solve?

1. Update RetCode to common.constants
2. Decouple the admin and API modules

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-04 15:12:53 +08:00
16d2be623c Minor tweaks (#10987)
### What problem does this PR solve?

1. Rename identifier name
2. Fix some return statement
3. Fix some typos

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-04 14:15:31 +08:00
021b2ac51a Feat: Add data operation node #10427 (#10985)
### What problem does this PR solve?

Feat: Add data operation node #10427

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-04 13:48:44 +08:00
19f71a961a Fix: Create dataset performance unmatched between HTTP api and web ui (#10960)
### What problem does this PR solve?

Fix: Create dataset performance unmatched between HTTP api and web ui
#10925

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-04 13:45:14 +08:00
1e45137284 Move 'timeout' to common folder (#10983)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-04 11:51:12 +08:00
5283a10387 Fix:wrong param in meta_data_filter (#10978)
### What problem does this PR solve?
change:
wrong param in meta_data_filter

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-04 11:22:10 +08:00
d55344bc11 Remove unused code (#10981)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-04 11:10:29 +08:00
640e8e3f3e Chore(docker): Remove outdated sandbox config (#10977)
### What problem does this PR solve?

Remove outdated sandbox config

### Type of change

- [x] Refactoring
2025-11-04 10:59:56 +08:00
c20f5675c6 Fix: elasticsearch connection hardcoded (#10975)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/10930

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-04 10:59:35 +08:00
378bdfccfc Refactor log utils (#10973)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-03 20:25:02 +08:00
395ce16b3c Fix: correct MCP server authentication header format in frontend (#9819)
- Fix MCP test connection authentication issues by updating frontend
request format
- Add variables field with authorization_token for template substitution
- Change headers to use proper Authorization Bearer format with template
variable

🤖 Generated with [Claude Code](https://claude.ai/code)

### What problem does this PR solve?

correct MCP server authentication header format in frontend
### Type of change

 * [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Marvion <marvionliu@wukongjx.cn>
Co-authored-by: Claude <noreply@anthropic.com>
2025-11-03 20:00:27 +08:00
be3ae0eda9 Feat: Add variables to the metadata filtering function of the knowledge retrieval component. #10861 (#10974)
### What problem does this PR solve?

Feat: Add variables to the metadata filtering function of the knowledge
retrieval component. #10861

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 19:59:45 +08:00
3e5a39482e Feat: Support multiple data sources synchronizations (#10954)
### What problem does this PR solve?
#10953

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 19:59:18 +08:00
9a486e0f51 Move some funcs from api to rag module (#10972)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-03 19:26:09 +08:00
ee9ac15174 Feat: Fixed an issue where dragged operators within an iteration were not associated with the iteration. #10866 (#10969)
### What problem does this PR solve?

Feat: Fixed an issue where dragged operators within an iteration were
not associated with the iteration. #10866

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 19:19:26 +08:00
ac465ba2a6 Feat:add variables to the metadata filtering function of the knowledg… (#10967)
…e retrieval component.

### What problem does this PR solve?

issue:
#10861 
change:
add variables to the metadata filtering function of the knowledge
retrieval component

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 19:19:09 +08:00
fd4aa79c07 Fix:missing embedding vector on Tokenizer (#10964)
### What problem does this PR solve?
issue:
[#10890](https://github.com/infiniflow/ragflow/issues/10890)
change:
missing embedding vector on Tokenizer
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-03 19:17:05 +08:00
2d83c64eed Fix:wrong describe_with_prompt() in ollama (#10963)
### What problem does this PR solve?

change:
wrong describe_with_prompt() in ollama

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-03 19:16:41 +08:00
1284647694 Refactor file utils (#10970)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-03 18:54:55 +08:00
076d811086 Introduce common/config_utils.py (#10968)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-03 17:25:06 +08:00
121d3fd815 Introduce common/constants.py (#10965)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-03 16:32:37 +08:00
d008a4df9f Move base64_image related functions to common directory (#10957)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-03 15:20:46 +08:00
5a88c01111 Feat: Filter structured output data directly during the rendering stage. #10866 (#10958)
### What problem does this PR solve?

Feat: Filter structured output data directly during the rendering stage.
#10866

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 14:48:35 +08:00
256b0fb19c Remove redundant ut (#10955)
### What problem does this PR solve?

Remove redundant ut cases.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-03 13:04:20 +08:00
78631a3fd3 Move some functions out of 'api/utils/common.py' (#10948)
### What problem does this PR solve?

as title.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-03 12:34:47 +08:00
4117f41758 Fix: decode error in email parser app (#10920)
### What problem does this PR solve?

Fix: UnicodeDecodeError: 'gb2312' codec can't decode byte 0xab in
position 560: illegal multibyte sequence.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-03 12:31:06 +08:00
a52bdf0b7e Feat: The structured output of the variable query can also be clicked. #10866 (#10952)
### What problem does this PR solve?

Feat: The structured output of the variable query can also be clicked.
#10866

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 12:30:30 +08:00
b47361432a Fix: API: chunk.update does not update positions (#10945)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/10944

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-03 11:01:44 +08:00
061d8f78e5 Feat: location rule for http (#10901)
### What problem does this PR solve?

Location rule for http.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 11:01:24 +08:00
7ec587fa9e Feat: Admin UI whitelist management and role management (#10910)
### What problem does this PR solve?

Add whitelist management and role management in Admin UI

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 09:52:23 +08:00
685311814f description (#10928)
### Type of change

- [x] Documentation Update
2025-11-03 09:50:21 +08:00
410c0a829d Feat: The query variable of a loop operator can be a nested array variable. #10866 (#10921)
### What problem does this PR solve?

Feat: The query variable of a loop operator can be a nested array
variable. #10866

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 09:40:47 +08:00
33371cda11 Fix:output_structure in agent (#10907)
### What problem does this PR solve?
change:
output_structure in agent

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-11-03 09:39:53 +08:00
fa210e7c58 Feat: parsing hyperlinks in docx and pdf & Fix: default parser config of toc extraction (#10877)
### What problem does this PR solve?

Feat: parsing hyperlinks in docx and pdf #10848
Fix: default parser config of toc extraction

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-03 09:34:12 +08:00
360f5c1179 Move token related functions to common (#10942)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-03 08:50:05 +08:00
44f2d6f5da Move 'get_project_base_directory' to common directory (#10940)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-02 21:05:28 +08:00
57a83eca8a Remove unused code (#10938)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-02 16:25:16 +08:00
6447b737ab Move singleton to common directory (#10935)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-11-02 12:24:08 +08:00
fe4852cb71 TEI auto truncate inputs (#10916)
### What problem does this PR solve?

TEI auto truncate inputs

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-31 16:46:20 +08:00
f52e56c2d6 Remove 'get_lan_ip' and add common misc_utils.py (#10880)
### What problem does this PR solve?

Add get_uuid, download_img and hash_str2int into misc_utils.py

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-10-31 16:42:01 +08:00
e9debfd74d Fix: The nodes on the canvas were not updated in time after the operator name was modified. #10866 (#10911)
### What problem does this PR solve?

Fix: The nodes on the canvas were not updated in time after the operator
name was modified. #10866

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-31 14:46:03 +08:00
d8a7fb6f2b Fix: Fixed the styling and logic issues on the model provider page #10703 (#10909)
### What problem does this PR solve?

Fix: Fixed the styling and logic issues on the model provider page

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-31 13:42:28 +08:00
c8a82da722 Feat: Rename the files in the jsonjoy-builder directory to lowercase. #10866 (#10908)
### What problem does this PR solve?

Feat: Rename the files in the jsonjoy-builder directory to lowercase.
#10866

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-10-31 13:42:11 +08:00
09dd786674 Fix:KeyError: 'table_body' of mineru parser (#10773)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/10769

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-31 10:07:56 +08:00
0ecccd27eb Refactor:improve the logic for rerank models to cal the total token count (#10882)
### What problem does this PR solve?

improve the logic for rerank models to cal the total token count

### Type of change

- [x] Refactoring
2025-10-31 09:46:16 +08:00
5a830ea68b Refactor(setting-model): Refactor the model management interface and optimize the component structure. #10703 (#10905)
### What problem does this PR solve?

Refactor(setting-model): Refactor the model management interface and
optimize the component structure. #10703

### Type of change

- [x] Refactoring
2025-10-31 09:27:30 +08:00
ff2365b146 Replaced twine with uv 2025-10-30 21:08:00 +08:00
ac75bcdf95 Feat: Modify the style of the query variable dropdown list. #10866 (#10903)
### What problem does this PR solve?

Feat: Modify the style of the query variable dropdown list. #10866

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-10-30 20:14:15 +08:00
a62a1a5012 Fix(ci): Add error handling to Docker image removal in tests workflow (#10904)
### What problem does this PR solve?

Add '|| true' to docker rmi command to prevent workflow failure when
image removal fails. This ensures the CI pipeline continues even if the
Docker image cannot be removed for any reason.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-30 20:14:02 +08:00
361c74ab42 Fix several admin UI issues (#10869)
### What problem does this PR solve?

- Fix login card will overlap title in admin login page.
- Disable unnecessary `listRoles()` query in user management page and
create user form
- Disable admin UI API queries and mutations retry mechanism
- Fix page not redirect to login page automatically if API reports
unauthorized (401)
- Fix change password form not reset when change password modal close
- Resolve admin UI content (mostly long texts) may break layout main box
issue

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-30 20:13:39 +08:00
5059d3db18 Feat: The query variables of the subsequent operators can reference the structured variables defined in the agent operator. #10866 (#10902)
### What problem does this PR solve?

Feat: The query variables of the subsequent operators can reference the
structured variables defined in the agent operator. #10866

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-10-30 19:06:44 +08:00
5674d762f7 Feat:check embedding model api (#10854)
### What problem does this PR solve?
change:
Randomly sample `check_num` chunks from knowledge base `kb_id`, re-embed
them using `embd_id`, and compare with stored vectors via cosine
similarity. If `avg_cos_sim > 0.99`, return success (`code=0`);
otherwise return business failure (`code=10`).

url:
`/v1/kb/check_embedding`

Request Body:
```
{
  "kb_id": "<dataset_id>",
  "embd_id": "BAAI/bge-m3@SILICONFLOW",
  "check_num": 5
}

```
Success Response:
```
{
  "code": 0,
  "message": "success",
  "data": {
    "summary": { "avg_cos_sim": 0.999999, "sampled": 5, "valid": 5, "max_cos_sim":0.999999,"min_cos_sim":0.999999,"model":"BAAI/bge-m3@SILICONFLOW" },
    "results": [ ... ]
  }
}
```

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-10-30 19:06:16 +08:00
fa38aed01b Fix: the input length exceeds the context length (#10895)
### What problem does this PR solve?

Fix: the input length exceeds the context length #10750

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-30 19:00:53 +08:00
ab52ffc9c0 Fix: law parser (#10897)
### What problem does this PR solve?

Fix: law parser  #10888

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-30 19:00:11 +08:00
5f65c7f48e Fix: video parser should follow selected VLM in pipeline (#10900)
### What problem does this PR solve?

Video parser should follow selected VLM, rather than default one.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-30 17:59:50 +08:00
bb9504d1cc Fix:enhance delimiters in markdown parser (#10896)
### What problem does this PR solve?
issue:
[#10890](https://github.com/infiniflow/ragflow/issues/10890)
change:
enhance delimiters in markdown parser
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-30 17:36:51 +08:00
5d79912274 Feat: location rule for admin UI (#10894)
### What problem does this PR solve?

Location rule for admin UI.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-10-30 17:32:32 +08:00
b52f09adfe Mineru api support (#10874)
### What problem does this PR solve?

support local mineru api in docker instance. like no gpu in wsl on
windows, but has mineru api with gpu support.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-10-30 17:31:46 +08:00
27f0d82102 Fix: opensearch retrieval error (#10891)
### What problem does this PR solve?

Fix: opensearch retrieval error #10828

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-30 17:30:54 +08:00
4be3754340 Bump infinity to 0.6.2 (#10887)
### What problem does this PR solve?

Bump infinity to 0.6.2
https://github.com/infiniflow/infinity/issues/3052

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-30 11:34:42 +08:00
52ceac62ab Feat: add German translations for all agent templates and optimized line breaks for template titles (#10643)
### What does this PR solve?
German translation for all agent template and optimizing line breaks in
the title for the new translation.

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-10-30 10:56:28 +08:00
871b1d7f9b Feat: Allow other operators to reference the structured output defined by the agent operator. #10866 (#10886)
### What problem does this PR solve?

Feat: Allow other operators to reference the structured output defined
by the agent operator. #10866
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-10-30 10:36:07 +08:00
bfdf02c6ce Chore(docker): add standard HTTP/HTTPS and MCP ports to .env configuration (#10881)
### What problem does this PR solve?

Added SVR_WEB_HTTP_PORT=80, SVR_WEB_HTTPS_PORT=443, and
SVR_MCP_PORT=9382 to the Docker environment configuration to support
standard web ports and Model Control Protocol access.

### Type of change

- [x] Update config
2025-10-30 09:32:08 +08:00
a3bb4aadcc Fix: predictable token generation (#10868)
### What problem does this PR solve?

Fix predictable token generation.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-30 09:31:36 +08:00
40b2c48957 Chore(config): remove Youdao and BAAI embedding model providers (#10873)
### What problem does this PR solve?

This commit removes the Youdao and BAAI entries from the LLM factories
configuration as they are no longer needed or supported.

### Type of change

- [x] Config update
2025-10-29 19:38:57 +08:00
55eb525fdc Feat: rename file to avoid package name conflict (#10863)
### What problem does this PR solve?

Feat: rename file to avoid package name conflict

### Type of change

- [x] Refactoring
2025-10-29 12:19:57 +08:00
4e69100ca7 Feat: Configure structured data output for agent forms #10866 (#10867)
### What problem does this PR solve?

Feat: Configure structured data output for agent forms #10866

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-10-29 12:19:24 +08:00
415de50419 Update web/README.md (#10864)
### What problem does this PR solve?

Add 'how to access login UI and admin UI'.

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-10-29 10:48:34 +08:00
4332948cf9 Update admin client default port to 9381 (#10862)
### What problem does this PR solve?

Now admin client default port is '8080', update it to '9381'

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-10-29 10:44:41 +08:00
c0c2a10680 Feat: allow initialize Redis without password (#10856)
### What problem does this PR solve?

Allow initialize Redis without password.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-10-29 09:45:28 +08:00
95fad5d523 Fix: Chat session completion (#10851)
### What problem does this PR solve?
Fix: Chat session completion #10791
### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
2025-10-29 09:44:02 +08:00
119713153c Test: update test cases for chunk retrieval pagination (#10839)
### What problem does this PR solve?

Updated test cases in test_retrieval_chunks.py to:
- Remove skip mark from page pagination test case (#6646 resolved)
- Add skip marks for page_size=1 tests due to new issue (#10692)

### Type of change

- [x] Test update
2025-10-29 09:41:36 +08:00
d86d7061ea Refactor: Improve how to get total token count for AnthropicCV (#10658)
### What problem does this PR solve?

 Improve how to get total token count for AnthropicCV

### Type of change

- [x] Refactoring
2025-10-29 09:41:15 +08:00
e86bd723d1 Update Octoverse to README (#10859)
### Type of change

- [x] Documentation Update
2025-10-29 00:34:39 +08:00
2c0035dcea Feat: Admin UI (#10857)
### What problem does this PR solve?

Add admin UI for RAGFlow

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-10-28 22:25:43 +08:00
c3b0ab43e7 Fix release.yml 2025-10-28 21:29:48 +08:00
f93be47f51 Remove 'DID YOU KNOW', when start front-end (#10853)
### What problem does this PR solve?

Remove 'DID YOU KNOW', when start front-end

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-10-28 19:40:58 +08:00
bb4cc365c1 Add readme in web (#10855)
### What problem does this PR solve?

As title

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-10-28 19:38:06 +08:00
c5d1139f7b Fix: Refactor the similarity slider component and modify the style of the dataset-test page #10703 (#10846)
### What problem does this PR solve?

Fix: Refactor the similarity slider component and modify the style of
the dataset-test page

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-28 19:17:05 +08:00
11247d1a9d Feat: Adjust the style of the agent operator form tool #10703 (#10841)
### What problem does this PR solve?

Feat: Adjust the style of the agent operator form tool #10703

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-10-28 19:16:49 +08:00
5a200f7652 Add time utils (#10849)
### What problem does this PR solve?

- Add time utilities and unit tests

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-10-28 19:09:14 +08:00
057ae646f2 Fix: logging issues (#10836)
### What problem does this PR solve?

Fix: logging issues #10835 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-28 14:10:47 +08:00
6d7b2337bd Fix release.yml 2025-10-28 13:54:57 +08:00
755989e330 Fix release.yml 2025-10-28 13:29:00 +08:00
5b10daa72a Fix runner label 2025-10-28 13:17:57 +08:00
1bf974b592 Fix ragflow image (#10838)
### What problem does this PR solve?

Fix ragflow image

### Type of change

- [x] Other (please describe): CI
2025-10-28 13:03:45 +08:00
c9b08b7560 Customize service ports in tests.yml (#10834)
### What problem does this PR solve?

Customize service ports in tests.yml

### Type of change

- [x] Other (please describe): CI
2025-10-28 12:07:42 +08:00
60a6cf7c7a Fix:remove unexpected keyword argument in table_structure_recognizer logging (#10831)
### What problem does this PR solve?
issue:
#10825
change:
remove unexpected keyword argument in table_structure_recognizer logging

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-28 11:02:43 +08:00
8572e1f3db Fix: Add video icon in knowledge base #10703 (#10832)
### What problem does this PR solve?

Fix: Add video icon in knowledge base

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-28 11:02:01 +08:00
84d1ffe44c Feature/add new models for token pony and bug fix for use llm (#10823)
new models for token pony and bug fix for use llm

Co-authored-by: huangzl <huangzl@shinemo.com>
2025-10-28 10:04:41 +08:00
766d900a41 Refactor: rename rmSpace to remove_redundant_spaces (#10796)
### What problem does this PR solve?

- rename rmSpace to remove_redundant_spaces
- move clean_markdown_block to common module
- add unit tests for remove_redundant_spaces and clean_markdown_block

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-10-28 09:46:32 +08:00
e59458c36b Fix: parsing excel with chartsheet & Clamp begin to a minimum of 0 to prevent negative indexing (#10819)
### What problem does this PR solve?

Fix: parsing excel with chartsheet #10815

Fix: Clamp begin to a minimum of 0 to prevent negative indexing #10804
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-28 09:40:37 +08:00
850e119a81 Doc: Updated How to update MinerU's settings (#10818)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-10-27 19:38:42 +08:00
0a78920bff Feat: Modify the style of the agent operator form #10703 (#10821)
### What problem does this PR solve?

Feat: Modify the style of the agent operator form #10703

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-10-27 19:37:52 +08:00
0089e2b30c Fix: bug fixes and icon replacement #10703 (#10814)
### What problem does this PR solve?

Fix: bug fixes and icon replacement #10703

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 19:02:18 +08:00
b7cb4d3e35 Feat:All-in-one MinerU and Docling (#10813)
### What problem does this PR solve?

issue:
[#10789](https://github.com/infiniflow/ragflow/issues/10789)
change:
All-in-one MinerU and Docling

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-10-27 19:01:15 +08:00
fd1ad18489 Feat: Adjust the style of the toolbar at the bottom of the agent canvas #10703 (#10807)
### What problem does this PR solve?

Feat: Adjust the style of the toolbar at the bottom of the agent canvas
#10703
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-10-27 17:04:32 +08:00
5acc407240 Feat: MinerU supports VLM-Transfomers backend (#10809)
### What problem does this PR solve?

MinerU supports VLM-Transfomers backend.

Set `MINERU_BACKEND="pipeline"` to choose the backend. (Options:
pipeline | vlm-transformers, default is pipeline)

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-10-27 17:04:13 +08:00
16ec6ad346 Fix: Pass kwargs in python api #10699 (#10808)
### What problem does this PR solve?

Fix: Pass kwargs in python api #10699

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 15:18:56 +08:00
5312b75362 Fix: Home and team page style adjustment, and some bug fixes #10703 (#10805)
### What problem does this PR solve?

Fix: Home and team page style adjustment, and some bug fixes #10703

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 15:15:12 +08:00
33a189f620 Feat: add TCADP Parser (#10775)
### What problem does this PR solve?

This PR adds a new TCADP (Tencent Cloud Advanced Document Processing)
parser to RAGFlow, enabling users to leverage Tencent Cloud's document
parsing capabilities for more accurate and structured document
processing. The implementation includes:
New TCADP Parser: A complete implementation of Tencent Cloud's document
parsing API without SDK dependency
Configuration Support: Added configuration options in service_conf.yaml
for Tencent Cloud API credentials
Frontend Integration: Updated UI components to support the new TCADP
parser option
Error Handling: Comprehensive error handling and retry mechanisms for
API calls
Result Processing: Support for both SSE streaming and JSON response
formats from Tencent Cloud API

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-10-27 15:14:58 +08:00
56def59c2b Fix:Error retrieving DOCX image (docx.image.exceptions.UnrecognizedImageError) (#10794)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/10776

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-10-27 13:23:16 +08:00
7fbab750af Doc: readme updates. (#10801)
### Type of change

- [x] Documentation Update
2025-10-27 12:20:23 +08:00
3bd0b99495 Fix: gemini cv model chat issue. (#10799)
### What problem does this PR solve?

#10787
#10781

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 11:43:56 +08:00
ff34c4232e More doc on RAGFlow image (#10800)
### What problem does this PR solve?

More doc on RAGFlow image

### Type of change

- [x] Documentation Update
2025-10-27 11:31:56 +08:00
c5ac571676 Fixed the bug that passing an empty array will not update (#10755)
### What problem does this PR solve?
Fixed the bug that the "dataset_ids" field will not be updated if an
empty array is passed when updating the assistant

### Type of change

- [*] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 11:29:20 +08:00
97401c1e33 Removing value={field} from EditTag (#10767)
### What problem does this PR solve?

Could not delete Entity Types from the Knowledge Graph settings. The
list was not updated on pressing the X on a tag.

What I think happened:
- value={field} was passing ['parser_config','entity_types'] to EditTag
instead of the real tags.
- That blocked AntD Form from injecting the right value/onChange.
- Clicking X filtered the wrong “value,” so no visible change.

Fix:
- Remove value={field} and let Form.Item control EditTag.
- EditTag now gets the real tags array and emits onChange(tags), Form
captures it.


Now it works.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 11:09:20 +08:00
24ab857471 Feat: Adjust the style of the canvas node #10703 (#10795)
### What problem does this PR solve?

Feat: Adjust the style of the canvas node #10703


### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-10-27 10:36:36 +08:00
50e93d1528 Fix: Opendal miss tenant id (#10774)
### What problem does this PR solve?

as https://github.com/infiniflow/ragflow/pull/10712

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 10:28:08 +08:00
42fbeb285a Docs/supplement incomplete params (#10758)
### What problem does this PR solve?
Supplement incomplete parameters of "Update document" interface
### Type of change
- [*] Documentation Update
2025-10-27 09:34:05 +08:00
51fb08be98 Fix: Fixed the issue where dataset log avatars were displayed incorrectly #9869 (#10764)
### What problem does this PR solve?

Fix: Fixed the issue where dataset log avatars were displayed
incorrectly #9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 09:33:14 +08:00
501b7d4d01 Fix: prio synonym match than wordnet for english (#10762)
### What problem does this PR solve?

Fix: prio synonym match than wordnet for english

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 09:32:55 +08:00
1d57801c0c Fix:ERROR 20 Method rag.nlp.search.Dealer.search() parameter highlight="None" violates type hint bool | list, as <class "builtins.NoneType"> "None" not list or bool. (#10743)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/10733

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-27 09:29:39 +08:00
73144e278b Don't release full image (#10654)
### What problem does this PR solve?

Introduced gpu profile in .env
Added Dockerfile_tei
fix datrie
Removed LIGHTEN flag

### Type of change

- [x] Documentation Update
- [x] Refactoring
2025-10-23 23:02:27 +08:00
92739ea804 Move test files (#10765)
### What problem does this PR solve?

Move some test files to test/testcases

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-10-23 22:31:55 +08:00
0ff2042fc1 Feat: add Docling parser (#10759)
### What problem does this PR solve?
issue:
#3945
change:
add Docling parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-10-23 19:44:25 +08:00
679 changed files with 38977 additions and 18222 deletions

View File

@ -16,7 +16,7 @@ concurrency:
jobs:
release:
runs-on: [ "self-hosted", "overseas" ]
runs-on: [ "self-hosted", "ragflow-test" ]
steps:
- name: Ensure workspace ownership
run: echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
@ -75,62 +75,20 @@ jobs:
# The body field does not support environment variable substitution directly.
body_path: release_body.md
# https://github.com/marketplace/actions/docker-login
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: infiniflow
password: ${{ secrets.DOCKERHUB_TOKEN }}
# https://github.com/marketplace/actions/build-and-push-docker-images
- name: Build and push full image
uses: docker/build-push-action@v6
with:
context: .
push: true
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}
infiniflow/ragflow:latest-full
file: Dockerfile
platforms: linux/amd64
# https://github.com/marketplace/actions/build-and-push-docker-images
- name: Build and push slim image
uses: docker/build-push-action@v6
with:
context: .
push: true
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
infiniflow/ragflow:latest-slim
file: Dockerfile
build-args: LIGHTEN=1
platforms: linux/amd64
- name: Build ragflow-sdk
- name: Build and push ragflow-sdk
if: startsWith(github.ref, 'refs/tags/v')
run: |
cd sdk/python && \
uv build
cd sdk/python && uv build && uv publish --token ${{ secrets.PYPI_API_TOKEN }}
- name: Publish package distributions to PyPI
if: startsWith(github.ref, 'refs/tags/v')
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: sdk/python/dist/
password: ${{ secrets.PYPI_API_TOKEN }}
verbose: true
- name: Build ragflow-cli
- name: Build and push ragflow-cli
if: startsWith(github.ref, 'refs/tags/v')
run: |
cd admin/client && \
uv build
cd admin/client && uv build && uv publish --token ${{ secrets.PYPI_API_TOKEN }}
- name: Publish client package distributions to PyPI
if: startsWith(github.ref, 'refs/tags/v')
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: admin/client/dist/
password: ${{ secrets.PYPI_API_TOKEN }}
verbose: true
- name: Build and push image
run: |
echo ${{ secrets.DOCKERHUB_TOKEN }} | sudo docker login --username infiniflow --password-stdin
sudo docker build --build-arg NEED_MIRROR=1 -t infiniflow/ragflow:${RELEASE_TAG} -f Dockerfile .
sudo docker tag infiniflow/ragflow:${RELEASE_TAG} infiniflow/ragflow:latest
sudo docker push infiniflow/ragflow:${RELEASE_TAG}
sudo docker push infiniflow/ragflow:latest

View File

@ -10,7 +10,7 @@ on:
- '*.md'
- '*.mdx'
pull_request:
types: [ opened, synchronize, reopened, labeled ]
types: [ labeled, synchronize, reopened ]
paths-ignore:
- 'docs/**'
- '*.md'
@ -29,7 +29,7 @@ jobs:
# https://docs.github.com/en/actions/using-jobs/using-conditions-to-control-job-execution
# https://github.com/orgs/community/discussions/26261
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'ci') }}
runs-on: [ "self-hosted", "debug" ]
runs-on: [ "self-hosted", "ragflow-test" ]
steps:
# https://github.com/hmarr/debug-action
#- uses: hmarr/debug-action@v2
@ -49,20 +49,20 @@ jobs:
- name: Check workflow duplication
if: ${{ !cancelled() && !failure() && (github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'ci')) }}
run: |
if [[ ${{ github.event_name }} != 'pull_request' ]]; then
if [[ "$GITHUB_EVENT_NAME" != "pull_request" && "$GITHUB_EVENT_NAME" != "schedule" ]]; then
HEAD=$(git rev-parse HEAD)
# Find a PR that introduced a given commit
gh auth login --with-token <<< "${{ secrets.GITHUB_TOKEN }}"
PR_NUMBER=$(gh pr list --search ${HEAD} --state merged --json number --jq .[0].number)
echo "HEAD=${HEAD}"
echo "PR_NUMBER=${PR_NUMBER}"
if [[ -n ${PR_NUMBER} ]]; then
if [[ -n "${PR_NUMBER}" ]]; then
PR_SHA_FP=${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}/PR_${PR_NUMBER}
if [[ -f ${PR_SHA_FP} ]]; then
if [[ -f "${PR_SHA_FP}" ]]; then
read -r PR_SHA PR_RUN_ID < "${PR_SHA_FP}"
# Calculate the hash of the current workspace content
HEAD_SHA=$(git rev-parse HEAD^{tree})
if [[ ${HEAD_SHA} == ${PR_SHA} ]]; then
if [[ "${HEAD_SHA}" == "${PR_SHA}" ]]; then
echo "Cancel myself since the workspace content hash is the same with PR #${PR_NUMBER} merged. See ${GITHUB_SERVER_URL}/${GITHUB_REPOSITORY}/actions/runs/${PR_RUN_ID} for details."
gh run cancel ${GITHUB_RUN_ID}
while true; do
@ -91,122 +91,140 @@ jobs:
version: ">=0.11.x"
args: "check"
- name: Build ragflow:nightly-slim
run: |
RUNNER_WORKSPACE_PREFIX=${RUNNER_WORKSPACE_PREFIX:-$HOME}
sudo docker pull ubuntu:22.04
sudo DOCKER_BUILDKIT=1 docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
- name: Build ragflow:nightly
run: |
sudo DOCKER_BUILDKIT=1 docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
- name: Start ragflow:nightly-slim
run: |
sudo docker compose -f docker/docker-compose.yml down --volumes --remove-orphans
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Stop ragflow:nightly-slim
if: always() # always run this step even if previous steps failed
run: |
sudo docker compose -f docker/docker-compose.yml down -v
RUNNER_WORKSPACE_PREFIX=${RUNNER_WORKSPACE_PREFIX:-$HOME}
RAGFLOW_IMAGE=infiniflow/ragflow:${GITHUB_RUN_ID}
echo "RAGFLOW_IMAGE=${RAGFLOW_IMAGE}" >> $GITHUB_ENV
sudo docker pull ubuntu:22.04
sudo DOCKER_BUILDKIT=1 docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t ${RAGFLOW_IMAGE} .
if [[ "$GITHUB_EVENT_NAME" == "schedule" ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
echo "HTTP_API_TEST_LEVEL=${HTTP_API_TEST_LEVEL}" >> $GITHUB_ENV
echo "RAGFLOW_CONTAINER=${GITHUB_RUN_ID}-ragflow-cpu-1" >> $GITHUB_ENV
- name: Start ragflow:nightly
run: |
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
# Determine runner number (default to 1 if not found)
RUNNER_NUM=$(sudo docker inspect $(hostname) --format '{{index .Config.Labels "com.docker.compose.container-number"}}' 2>/dev/null || true)
RUNNER_NUM=${RUNNER_NUM:-1}
# Compute port numbers using bash arithmetic
ES_PORT=$((1200 + RUNNER_NUM * 10))
OS_PORT=$((1201 + RUNNER_NUM * 10))
INFINITY_THRIFT_PORT=$((23817 + RUNNER_NUM * 10))
INFINITY_HTTP_PORT=$((23820 + RUNNER_NUM * 10))
INFINITY_PSQL_PORT=$((5432 + RUNNER_NUM * 10))
MYSQL_PORT=$((5455 + RUNNER_NUM * 10))
MINIO_PORT=$((9000 + RUNNER_NUM * 10))
MINIO_CONSOLE_PORT=$((9001 + RUNNER_NUM * 10))
REDIS_PORT=$((6379 + RUNNER_NUM * 10))
TEI_PORT=$((6380 + RUNNER_NUM * 10))
KIBANA_PORT=$((6601 + RUNNER_NUM * 10))
SVR_HTTP_PORT=$((9380 + RUNNER_NUM * 10))
ADMIN_SVR_HTTP_PORT=$((9381 + RUNNER_NUM * 10))
SVR_MCP_PORT=$((9382 + RUNNER_NUM * 10))
SANDBOX_EXECUTOR_MANAGER_PORT=$((9385 + RUNNER_NUM * 10))
SVR_WEB_HTTP_PORT=$((80 + RUNNER_NUM * 10))
SVR_WEB_HTTPS_PORT=$((443 + RUNNER_NUM * 10))
# Persist computed ports into docker/.env so docker-compose uses the correct host bindings
echo "" >> docker/.env
echo -e "ES_PORT=${ES_PORT}" >> docker/.env
echo -e "OS_PORT=${OS_PORT}" >> docker/.env
echo -e "INFINITY_THRIFT_PORT=${INFINITY_THRIFT_PORT}" >> docker/.env
echo -e "INFINITY_HTTP_PORT=${INFINITY_HTTP_PORT}" >> docker/.env
echo -e "INFINITY_PSQL_PORT=${INFINITY_PSQL_PORT}" >> docker/.env
echo -e "MYSQL_PORT=${MYSQL_PORT}" >> docker/.env
echo -e "MINIO_PORT=${MINIO_PORT}" >> docker/.env
echo -e "MINIO_CONSOLE_PORT=${MINIO_CONSOLE_PORT}" >> docker/.env
echo -e "REDIS_PORT=${REDIS_PORT}" >> docker/.env
echo -e "TEI_PORT=${TEI_PORT}" >> docker/.env
echo -e "KIBANA_PORT=${KIBANA_PORT}" >> docker/.env
echo -e "SVR_HTTP_PORT=${SVR_HTTP_PORT}" >> docker/.env
echo -e "ADMIN_SVR_HTTP_PORT=${ADMIN_SVR_HTTP_PORT}" >> docker/.env
echo -e "SVR_MCP_PORT=${SVR_MCP_PORT}" >> docker/.env
echo -e "SANDBOX_EXECUTOR_MANAGER_PORT=${SANDBOX_EXECUTOR_MANAGER_PORT}" >> docker/.env
echo -e "SVR_WEB_HTTP_PORT=${SVR_WEB_HTTP_PORT}" >> docker/.env
echo -e "SVR_WEB_HTTPS_PORT=${SVR_WEB_HTTPS_PORT}" >> docker/.env
echo -e "COMPOSE_PROFILES=\${COMPOSE_PROFILES},tei-cpu" >> docker/.env
echo -e "TEI_MODEL=BAAI/bge-small-en-v1.5" >> docker/.env
echo -e "RAGFLOW_IMAGE=${RAGFLOW_IMAGE}" >> docker/.env
echo "HOST_ADDRESS=http://host.docker.internal:${SVR_HTTP_PORT}" >> $GITHUB_ENV
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} up -d
uv sync --python 3.10 --only-group test --no-default-groups --frozen && uv pip install sdk/python
- name: Run sdk tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
UV_LINK_MODE=copy uv sync --python 3.10 --only-group test --no-default-groups --frozen && uv pip install sdk/python && uv run --only-group test --no-default-groups pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api
source .venv/bin/activate && pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api
- name: Run frontend api tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && UV_LINK_MODE=copy uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
source .venv/bin/activate && pytest -s --tb=short sdk/python/test/test_frontend_api/get_email.py sdk/python/test/test_frontend_api/test_dataset.py
- name: Run http api tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
UV_LINK_MODE=copy uv sync --python 3.10 --only-group test --no-default-groups --frozen && uv run --only-group test --no-default-groups pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api
source .venv/bin/activate && pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed
run: |
sudo docker compose -f docker/docker-compose.yml down -v
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} down -v
- name: Start ragflow:nightly
run: |
sudo DOC_ENGINE=infinity docker compose -f docker/docker-compose.yml up -d
sed -i '1i DOC_ENGINE=infinity' docker/.env
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} up -d
- name: Run sdk tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
UV_LINK_MODE=copy uv sync --python 3.10 --only-group test --no-default-groups --frozen && uv pip install sdk/python && DOC_ENGINE=infinity uv run --only-group test --no-default-groups pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api
source .venv/bin/activate && DOC_ENGINE=infinity pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api
- name: Run frontend api tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && UV_LINK_MODE=copy uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
source .venv/bin/activate && DOC_ENGINE=infinity pytest -s --tb=short sdk/python/test/test_frontend_api/get_email.py sdk/python/test/test_frontend_api/test_dataset.py
- name: Run http api tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
UV_LINK_MODE=copy uv sync --python 3.10 --only-group test --no-default-groups --frozen && DOC_ENGINE=infinity uv run --only-group test --no-default-groups pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api
source .venv/bin/activate && DOC_ENGINE=infinity pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed
run: |
sudo DOC_ENGINE=infinity docker compose -f docker/docker-compose.yml down -v
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} down -v
sudo docker rmi -f ${RAGFLOW_IMAGE:-NO_IMAGE} || true

116
CLAUDE.md Normal file
View File

@ -0,0 +1,116 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It's a full-stack application with:
- Python backend (Flask-based API server)
- React/TypeScript frontend (built with UmiJS)
- Microservices architecture with Docker deployment
- Multiple data stores (MySQL, Elasticsearch/Infinity, Redis, MinIO)
## Architecture
### Backend (`/api/`)
- **Main Server**: `api/ragflow_server.py` - Flask application entry point
- **Apps**: Modular Flask blueprints in `api/apps/` for different functionalities:
- `kb_app.py` - Knowledge base management
- `dialog_app.py` - Chat/conversation handling
- `document_app.py` - Document processing
- `canvas_app.py` - Agent workflow canvas
- `file_app.py` - File upload/management
- **Services**: Business logic in `api/db/services/`
- **Models**: Database models in `api/db/db_models.py`
### Core Processing (`/rag/`)
- **Document Processing**: `deepdoc/` - PDF parsing, OCR, layout analysis
- **LLM Integration**: `rag/llm/` - Model abstractions for chat, embedding, reranking
- **RAG Pipeline**: `rag/flow/` - Chunking, parsing, tokenization
- **Graph RAG**: `graphrag/` - Knowledge graph construction and querying
### Agent System (`/agent/`)
- **Components**: Modular workflow components (LLM, retrieval, categorize, etc.)
- **Templates**: Pre-built agent workflows in `agent/templates/`
- **Tools**: External API integrations (Tavily, Wikipedia, SQL execution, etc.)
### Frontend (`/web/`)
- React/TypeScript with UmiJS framework
- Ant Design + shadcn/ui components
- State management with Zustand
- Tailwind CSS for styling
## Common Development Commands
### Backend Development
```bash
# Install Python dependencies
uv sync --python 3.10 --all-extras
uv run download_deps.py
pre-commit install
# Start dependent services
docker compose -f docker/docker-compose-base.yml up -d
# Run backend (requires services to be running)
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
# Run tests
uv run pytest
# Linting
ruff check
ruff format
```
### Frontend Development
```bash
cd web
npm install
npm run dev # Development server
npm run build # Production build
npm run lint # ESLint
npm run test # Jest tests
```
### Docker Development
```bash
# Full stack with Docker
cd docker
docker compose -f docker-compose.yml up -d
# Check server status
docker logs -f ragflow-server
# Rebuild images
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## Key Configuration Files
- `docker/.env` - Environment variables for Docker deployment
- `docker/service_conf.yaml.template` - Backend service configuration
- `pyproject.toml` - Python dependencies and project configuration
- `web/package.json` - Frontend dependencies and scripts
## Testing
- **Python**: pytest with markers (p1/p2/p3 priority levels)
- **Frontend**: Jest with React Testing Library
- **API Tests**: HTTP API and SDK tests in `test/` and `sdk/python/test/`
## Database Engines
RAGFlow supports switching between Elasticsearch (default) and Infinity:
- Set `DOC_ENGINE=infinity` in `docker/.env` to use Infinity
- Requires container restart: `docker compose down -v && docker compose up -d`
## Development Environment Requirements
- Python 3.10-3.12
- Node.js >=18.20.4
- Docker & Docker Compose
- uv package manager
- 16GB+ RAM, 50GB+ disk space

View File

@ -4,8 +4,6 @@ USER root
SHELL ["/bin/bash", "-c"]
ARG NEED_MIRROR=0
ARG LIGHTEN=0
ENV LIGHTEN=${LIGHTEN}
WORKDIR /ragflow
@ -17,13 +15,6 @@ RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/huggingface.co
/huggingface.co/InfiniFlow/text_concat_xgb_v1.0 \
/huggingface.co/InfiniFlow/deepdoc \
| tar -xf - --strip-components=3 -C /ragflow/rag/res/deepdoc
RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/huggingface.co,target=/huggingface.co \
if [ "$LIGHTEN" != "1" ]; then \
(tar -cf - \
/huggingface.co/BAAI/bge-large-zh-v1.5 \
/huggingface.co/maidalun1020/bce-embedding-base_v1 \
| tar -xf - --strip-components=2 -C /root/.ragflow) \
fi
# https://github.com/chrismattmann/tika-python
# This is the only way to run python-tika without internet access. Without this set, the default is to check the tika version and pull latest every time from Apache.
@ -63,11 +54,11 @@ RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
apt install -y ghostscript
RUN if [ "$NEED_MIRROR" == "1" ]; then \
pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple && \
pip3 config set global.trusted-host mirrors.aliyun.com; \
pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && \
pip3 config set global.trusted-host pypi.tuna.tsinghua.edu.cn; \
mkdir -p /etc/uv && \
echo "[[index]]" > /etc/uv/uv.toml && \
echo 'url = "https://mirrors.aliyun.com/pypi/simple"' >> /etc/uv/uv.toml && \
echo 'url = "https://pypi.tuna.tsinghua.edu.cn/simple"' >> /etc/uv/uv.toml && \
echo "default = true" >> /etc/uv/uv.toml; \
fi; \
pipx install uv
@ -151,15 +142,11 @@ COPY pyproject.toml uv.lock ./
# uv records index url into uv.lock but doesn't failover among multiple indexes
RUN --mount=type=cache,id=ragflow_uv,target=/root/.cache/uv,sharing=locked \
if [ "$NEED_MIRROR" == "1" ]; then \
sed -i 's|pypi.org|mirrors.aliyun.com/pypi|g' uv.lock; \
sed -i 's|pypi.org|pypi.tuna.tsinghua.edu.cn|g' uv.lock; \
else \
sed -i 's|mirrors.aliyun.com/pypi|pypi.org|g' uv.lock; \
sed -i 's|pypi.tuna.tsinghua.edu.cn|pypi.org|g' uv.lock; \
fi; \
if [ "$LIGHTEN" == "1" ]; then \
uv sync --python 3.10 --frozen; \
else \
uv sync --python 3.10 --frozen --all-extras; \
fi
uv sync --python 3.10 --frozen
COPY web web
COPY docs docs
@ -169,11 +156,7 @@ RUN --mount=type=cache,id=ragflow_npm,target=/root/.npm,sharing=locked \
COPY .git /ragflow/.git
RUN version_info=$(git describe --tags --match=v* --first-parent --always); \
if [ "$LIGHTEN" == "1" ]; then \
version_info="$version_info slim"; \
else \
version_info="$version_info full"; \
fi; \
version_info="$version_info"; \
echo "RAGFlow version: $version_info"; \
echo $version_info > /ragflow/VERSION
@ -202,6 +185,7 @@ COPY agentic_reasoning agentic_reasoning
COPY pyproject.toml uv.lock ./
COPY mcp mcp
COPY plugin plugin
COPY common common
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template
COPY docker/entrypoint.sh ./

14
Dockerfile_tei Normal file
View File

@ -0,0 +1,14 @@
FROM ghcr.io/huggingface/text-embeddings-inference:cpu-1.8
# uv tool install huggingface_hub
# hf download --local-dir tei_data/BAAI/bge-small-en-v1.5 BAAI/bge-small-en-v1.5
# hf download --local-dir tei_data/BAAI/bge-m3 BAAI/bge-m3
# hf download --local-dir tei_data/Qwen/Qwen3-Embedding-0.6B Qwen/Qwen3-Embedding-0.6B
COPY tei_data /data
# curl -X POST http://localhost:6380/embed -H "Content-Type: application/json" -d '{"inputs": "Hello, world! This is a test sentence."}'
# curl -X POST http://tei:80/embed -H "Content-Type: application/json" -d '{"inputs": "Hello, world! This is a test sentence."}'
# [[-0.058816575,0.019564206,0.026697718,...]]
# curl -X POST http://localhost:6380/v1/embeddings -H "Content-Type: application/json" -d '{"input": "Hello, world! This is a test sentence."}'
# {"object":"list","data":[{"object":"embedding","embedding":[-0.058816575,0.019564206,...],"index":0}],"model":"BAAI/bge-small-en-v1.5","usage":{"prompt_tokens":12,"total_tokens":12}}

View File

@ -43,7 +43,9 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
@ -84,6 +86,7 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Latest Updates
- 2025-10-23 Supports MinerU & Docling as document parsing methods.
- 2025-10-15 Supports orchestrable ingestion pipeline.
- 2025-08-08 Supports OpenAI's latest GPT-5 series models.
- 2025-08-01 Supports agentic workflow and MCP.
@ -174,41 +177,42 @@ releases! 🌟
> ```bash
> vm.max_map_count=262144
> ```
>
2. Clone the repo:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Start up the server using the pre-built Docker images:
> [!CAUTION]
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.21.1-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.21.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1` for the full edition `v0.21.1`.
> The command below downloads the `v0.21.1-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.21.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server.
```bash
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | -------------------------- |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;2 | | _Unstable_ nightly build |
> Note: Starting with `v0.22.0`, we ship only the slim edition and no longer append the **-slim** suffix to the image tag.
4. Check the server status after having the server up and running:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_The following output confirms a successful launch of the system:_
@ -226,14 +230,17 @@ releases! 🌟
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anormal`
> error because, at that moment, your RAGFlow may not be fully initialized.
>
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default
> HTTP serving port `80` can be omitted when using the default configurations.
>
6. In [service_conf.yaml.template](./docker/service_conf.yaml.template), select the desired LLM factory in `user_default_llm` and update
the `API_KEY` field with the corresponding API key.
> See [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) for more information.
>
_The show is on!_
@ -272,7 +279,6 @@ RAGFlow uses Elasticsearch by default for storing full text and vectors. To swit
> `-v` will delete the docker container volumes, and the existing data will be cleared.
2. Set `DOC_ENGINE` in **docker/.env** to `infinity`.
3. Start the containers:
```bash
@ -286,16 +292,6 @@ RAGFlow uses Elasticsearch by default for storing full text and vectors. To swit
This image is approximately 2 GB in size and relies on external LLM and embedding services.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Build a Docker image including embedding models
This image is approximately 9 GB in size. As it includes embedding models, it relies on external LLM services only.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -309,17 +305,15 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
pipx install uv pre-commit
```
2. Clone the source code and install Python dependencies:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
```bash
@ -331,13 +325,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. If you cannot access HuggingFace, set the `HF_ENDPOINT` environment variable to use a mirror site:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. If your operating system does not have jemalloc, please install it as follows:
```bash
@ -350,7 +342,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
# macOS
sudo brew install jemalloc
```
6. Launch backend service:
```bash
@ -358,14 +349,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. Install frontend dependencies:
```bash
cd web
npm install
```
8. Launch frontend service:
```bash
@ -375,14 +364,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
_The following output confirms a successful launch of the system:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Stop RAGFlow front-end and back-end service after development is complete:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Documentation
- [Quickstart](https://ragflow.io/docs/dev/)

View File

@ -43,7 +43,13 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
<details open>
<summary><b>📕 Daftar Isi </b> </summary>
@ -80,6 +86,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Pembaruan Terbaru
- 2025-10-23 Mendukung MinerU & Docling sebagai metode penguraian dokumen.
- 2025-10-15 Dukungan untuk jalur data yang terorkestrasi.
- 2025-08-08 Mendukung model seri GPT-5 terbaru dari OpenAI.
- 2025-08-01 Mendukung alur kerja agen dan MCP.
@ -168,41 +175,42 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> ```bash
> vm.max_map_count=262144
> ```
>
2. Clone repositori:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Bangun image Docker pre-built dan jalankan server:
> [!CAUTION]
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.21.1-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.21.1-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1 untuk edisi lengkap v0.21.1.
> Perintah di bawah ini mengunduh edisi v0.21.1 dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.21.1, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server.
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | -------------------------- |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;2 | | _Unstable_ nightly build |
> Catatan: Mulai dari `v0.22.0`, kami hanya menyediakan edisi slim dan tidak lagi menambahkan akhiran **-slim** pada tag image.
1. Periksa status server setelah server aktif dan berjalan:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_Output berikut menandakan bahwa sistem berhasil diluncurkan:_
@ -220,14 +228,17 @@ $ docker compose -f docker-compose.yml up -d
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network anormal`
> karena RAGFlow mungkin belum sepenuhnya siap.
>
2. Buka browser web Anda, masukkan alamat IP server Anda, dan login ke RAGFlow.
> Dengan pengaturan default, Anda hanya perlu memasukkan `http://IP_DEVICE_ANDA` (**tanpa** nomor port) karena
> port HTTP default `80` bisa dihilangkan saat menggunakan konfigurasi default.
>
3. Dalam [service_conf.yaml.template](./docker/service_conf.yaml.template), pilih LLM factory yang diinginkan di `user_default_llm` dan perbarui
bidang `API_KEY` dengan kunci API yang sesuai.
> Lihat [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) untuk informasi lebih lanjut.
>
_Sistem telah siap digunakan!_
@ -253,16 +264,6 @@ Pembaruan konfigurasi ini memerlukan reboot semua kontainer agar efektif:
Image ini berukuran sekitar 2 GB dan bergantung pada aplikasi LLM eksternal dan embedding.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Membangun Docker Image Termasuk Model Embedding
Image ini berukuran sekitar 9 GB. Karena sudah termasuk model embedding, ia hanya bergantung pada aplikasi LLM eksternal.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -276,17 +277,15 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
pipx install uv pre-commit
```
2. Clone kode sumber dan instal dependensi Python:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Jalankan aplikasi yang diperlukan (MinIO, Elasticsearch, Redis, dan MySQL) menggunakan Docker Compose:
```bash
@ -298,13 +297,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. Jika Anda tidak dapat mengakses HuggingFace, atur variabel lingkungan `HF_ENDPOINT` untuk menggunakan situs mirror:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. Jika sistem operasi Anda tidak memiliki jemalloc, instal sebagai berikut:
```bash
@ -315,7 +312,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
# mac
sudo brew install jemalloc
```
6. Jalankan aplikasi backend:
```bash
@ -323,14 +319,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. Instal dependensi frontend:
```bash
cd web
npm install
```
8. Jalankan aplikasi frontend:
```bash
@ -340,15 +334,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
_Output berikut menandakan bahwa sistem berhasil diluncurkan:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Hentikan layanan front-end dan back-end RAGFlow setelah pengembangan selesai:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Dokumentasi
- [Quickstart](https://ragflow.io/docs/dev/)

View File

@ -43,7 +43,13 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
## 💡 RAGFlow とは?
@ -60,6 +66,7 @@
## 🔥 最新情報
- 2025-10-23 ドキュメント解析方法として MinerU と Docling をサポートします。
- 2025-10-15 オーケストレーションされたデータパイプラインのサポート。
- 2025-08-08 OpenAI の最新 GPT-5 シリーズモデルをサポートします。
- 2025-08-01 エージェントワークフローとMCPをサポート。
@ -147,41 +154,42 @@
> ```bash
> vm.max_map_count=262144
> ```
>
2. リポジトリをクローンする:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. ビルド済みの Docker イメージをビルドし、サーバーを起動する:
> [!CAUTION]
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.21.1-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.21.1-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.21.1 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.21.1 エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.21.1 とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。
```bash
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | -------------------------- |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;2 | | _Unstable_ nightly build |
> 注意:`v0.22.0` 以降、当プロジェクトでは slim エディションのみを提供し、イメージタグに **-slim** サフィックスを付けなくなりました。
1. サーバーを立ち上げた後、サーバーの状態を確認する:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_以下の出力は、システムが正常に起動したことを確認するものです:_
@ -197,12 +205,15 @@
```
> もし確認ステップをスキップして直接 RAGFlow にログインした場合、その時点で RAGFlow が完全に初期化されていない可能性があるため、ブラウザーがネットワーク異常エラーを表示するかもしれません。
>
2. ウェブブラウザで、プロンプトに従ってサーバーの IP アドレスを入力し、RAGFlow にログインします。
> デフォルトの設定を使用する場合、デフォルトの HTTP サービングポート `80` は省略できるので、与えられたシナリオでは、`http://IP_OF_YOUR_MACHINE`(ポート番号は省略)だけを入力すればよい。
>
3. [service_conf.yaml.template](./docker/service_conf.yaml.template) で、`user_default_llm` で希望の LLM ファクトリを選択し、`API_KEY` フィールドを対応する API キーで更新する。
> 詳しくは [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) を参照してください。
>
_これで初期設定完了ショーの開幕です_
@ -231,33 +242,27 @@
RAGFlow はデフォルトで Elasticsearch を使用して全文とベクトルを保存します。Infinityに切り替えhttps://github.com/infiniflow/infinity/)、次の手順に従います。
1. 実行中のすべてのコンテナを停止するには:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` は docker コンテナのボリュームを削除し、既存のデータをクリアします。
2. **docker/.env** の「DOC \_ ENGINE」を「infinity」に設定します。
3. 起動コンテナ:
```bash
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。
>
## 🔧 ソースコードで Docker イメージを作成(埋め込みモデルなし)
この Docker イメージのサイズは約 1GB で、外部の大モデルと埋め込みサービスに依存しています。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 ソースコードをコンパイルした Docker イメージ(埋め込みモデルを含む)
この Docker のサイズは約 9GB で、埋め込みモデルを含むため、外部の大モデルサービスのみが必要です。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -271,17 +276,15 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
pipx install uv pre-commit
```
2. ソースコードをクローンし、Python の依存関係をインストールする:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Docker Compose を使用して依存サービスMinIO、Elasticsearch、Redis、MySQLを起動する:
```bash
@ -293,13 +296,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. HuggingFace にアクセスできない場合は、`HF_ENDPOINT` 環境変数を設定してミラーサイトを使用してください:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. オペレーティングシステムにjemallocがない場合は、次のようにインストールします:
```bash
@ -310,7 +311,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
# mac
sudo brew install jemalloc
```
6. バックエンドサービスを起動する:
```bash
@ -318,14 +318,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. フロントエンドの依存関係をインストールする:
```bash
cd web
npm install
```
8. フロントエンドサービスを起動する:
```bash
@ -335,14 +333,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
_以下の画面で、システムが正常に起動したことを示します:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. 開発が完了したら、RAGFlow のフロントエンド サービスとバックエンド サービスを停止します:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 ドキュメンテーション
- [Quickstart](https://ragflow.io/docs/dev/)

View File

@ -43,7 +43,14 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
## 💡 RAGFlow란?
@ -60,6 +67,7 @@
## 🔥 업데이트
- 2025-10-23 문서 파싱 방법으로 MinerU 및 Docling을 지원합니다.
- 2025-10-15 조정된 데이터 파이프라인 지원.
- 2025-08-08 OpenAI의 최신 GPT-5 시리즈 모델을 지원합니다.
- 2025-08-01 에이전트 워크플로우와 MCP를 지원합니다.
@ -160,7 +168,7 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.21.1-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.21.1-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.21.1을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.21.1 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.21.1과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오.
```bash
$ cd ragflow/docker
@ -168,20 +176,22 @@
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly | &approx;2 | | _Unstable_ nightly build |
> 참고: `v0.22.0`부터는 slim 에디션만 배포하며 이미지 태그에 **-slim** 접미사를 더 이상 붙이지 않습니다.
1. 서버가 시작된 후 서버 상태를 확인하세요:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_다음 출력 결과로 시스템이 성공적으로 시작되었음을 확인합니다:_
@ -247,16 +257,6 @@ RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및
이 Docker 이미지의 크기는 약 1GB이며, 외부 대형 모델과 임베딩 서비스에 의존합니다.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 소스 코드로 Docker 이미지를 컴파일합니다(임베딩 모델 포함)
이 Docker의 크기는 약 9GB이며, 이미 임베딩 모델을 포함하고 있으므로 외부 대형 모델 서비스에만 의존하면 됩니다.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -276,7 +276,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```

View File

@ -43,7 +43,13 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
<details open>
<summary><b>📕 Índice</b></summary>
@ -80,7 +86,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Últimas Atualizações
- 10-15-2025 Suporte para pipelines de dados orquestrados.
- 23-10-2025 Suporta MinerU e Docling como métodos de análise de documentos.
- 15-10-2025 Suporte para pipelines de dados orquestrados.
- 08-08-2025 Suporta a mais recente série GPT-5 da OpenAI.
- 01-08-2025 Suporta fluxo de trabalho agente e MCP.
- 23-05-2025 Adicione o componente executor de código Python/JS ao Agente.
@ -147,84 +154,86 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
### 🚀 Iniciar o servidor
1. Certifique-se de que `vm.max_map_count` >= 262144:
1. Certifique-se de que `vm.max_map_count` >= 262144:
> Para verificar o valor de `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Se necessário, redefina `vm.max_map_count` para um valor de pelo menos 262144:
>
> ```bash
> # Neste caso, defina para 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> Essa mudança será resetada após a reinicialização do sistema. Para garantir que a alteração permaneça permanente, adicione ou atualize o valor de `vm.max_map_count` em **/etc/sysctl.conf**:
>
> ```bash
> vm.max_map_count=262144
> ```
> Para verificar o valor de `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Se necessário, redefina `vm.max_map_count` para um valor de pelo menos 262144:
>
> ```bash
> # Neste caso, defina para 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> Essa mudança será resetada após a reinicialização do sistema. Para garantir que a alteração permaneça permanente, adicione ou atualize o valor de `vm.max_map_count` em **/etc/sysctl.conf**:
>
> ```bash
> vm.max_map_count=262144
> ```
>
2. Clone o repositório:
2. Clone o repositório:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Inicie o servidor usando as imagens Docker pré-compiladas:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Inicie o servidor usando as imagens Docker pré-compiladas:
> [!CAUTION]
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.21.1-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.21.1-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1` para a edição completa `v0.21.1`.
> O comando abaixo baixa a edição`v0.21.1` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.21.1`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor.
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
# To use GPU to accelerate embedding and DeepDoc tasks:
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.21.1 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.21.1-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | --------------------------------- | ------------------------------ |
| v0.21.1 | &approx;9 | ✔️ | Lançamento estável |
| v0.21.1-slim | &approx;2 | ❌ | Lançamento estável |
| nightly | &approx;2 | ❌ | Construção noturna instável |
4. Verifique o status do servidor após tê-lo iniciado:
> Observação: A partir da`v0.22.0`, distribuímos apenas a edição slim e não adicionamos mais o sufixo **-slim** às tags das imagens.
```bash
$ docker logs -f ragflow-server
```
4. Verifique o status do servidor após tê-lo iniciado:
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
```bash
$ docker logs -f docker-ragflow-cpu-1
```
```bash
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
* Rodando em todos os endereços (0.0.0.0)
```
```bash
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
> Se você pular essa etapa de confirmação e acessar diretamente o RAGFlow, seu navegador pode exibir um erro `network anormal`, pois, nesse momento, seu RAGFlow pode não estar totalmente inicializado.
* Rodando em todos os endereços (0.0.0.0)
```
5. No seu navegador, insira o endereço IP do seu servidor e faça login no RAGFlow.
> Se você pular essa etapa de confirmação e acessar diretamente o RAGFlow, seu navegador pode exibir um erro `network anormal`, pois, nesse momento, seu RAGFlow pode não estar totalmente inicializado.
>
5. No seu navegador, insira o endereço IP do seu servidor e faça login no RAGFlow.
> Com as configurações padrão, você só precisa digitar `http://IP_DO_SEU_MÁQUINA` (**sem** o número da porta), pois a porta HTTP padrão `80` pode ser omitida ao usar as configurações padrão.
> Com as configurações padrão, você só precisa digitar `http://IP_DO_SEU_MÁQUINA` (**sem** o número da porta), pois a porta HTTP padrão `80` pode ser omitida ao usar as configurações padrão.
>
6. Em [service_conf.yaml.template](./docker/service_conf.yaml.template), selecione a fábrica LLM desejada em `user_default_llm` e atualize o campo `API_KEY` com a chave de API correspondente.
6. Em [service_conf.yaml.template](./docker/service_conf.yaml.template), selecione a fábrica LLM desejada em `user_default_llm` e atualize o campo `API_KEY` com a chave de API correspondente.
> Consulte [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) para mais informações.
> Consulte [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) para mais informações.
>
_O show está no ar!_
@ -255,9 +264,9 @@ O RAGFlow usa o Elasticsearch por padrão para armazenar texto completo e vetore
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` irá deletar os volumes do contêiner, e os dados existentes serão apagados.
2. Defina `DOC_ENGINE` no **docker/.env** para `infinity`.
3. Inicie os contêineres:
```bash
@ -271,16 +280,6 @@ O RAGFlow usa o Elasticsearch por padrão para armazenar texto completo e vetore
Esta imagem tem cerca de 2 GB de tamanho e depende de serviços externos de LLM e incorporação.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Criar uma imagem Docker incluindo modelos de incorporação
Esta imagem tem cerca de 9 GB de tamanho. Como inclui modelos de incorporação, depende apenas de serviços externos de LLM.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -294,17 +293,15 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
pipx install uv pre-commit
```
2. Clone o código-fonte e instale as dependências Python:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # instala os módulos Python dependentes do RAGFlow
uv sync --python 3.10 # instala os módulos Python dependentes do RAGFlow
uv run download_deps.py
pre-commit install
```
3. Inicie os serviços dependentes (MinIO, Elasticsearch, Redis e MySQL) usando Docker Compose:
```bash
@ -316,24 +313,21 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. Se não conseguir acessar o HuggingFace, defina a variável de ambiente `HF_ENDPOINT` para usar um site espelho:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. Se o seu sistema operacional não tiver jemalloc, instale-o da seguinte maneira:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum instalar jemalloc
# mac
sudo brew install jemalloc
```
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum instalar jemalloc
# mac
sudo brew install jemalloc
```
6. Lance o serviço de back-end:
```bash
@ -341,14 +335,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. Instale as dependências do front-end:
```bash
cd web
npm install
```
8. Lance o serviço de front-end:
```bash
@ -358,13 +350,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Pare os serviços de front-end e back-end do RAGFlow após a conclusão do desenvolvimento:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Documentação

View File

@ -43,7 +43,9 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
@ -83,6 +85,7 @@
## 🔥 近期更新
- 2025-10-23 支援 MinerU 和 Docling 作為文件解析方法。
- 2025-10-15 支援可編排的資料管道。
- 2025-08-08 支援 OpenAI 最新的 GPT-5 系列模型。
- 2025-08-01 支援 agentic workflow 和 MCP
@ -170,47 +173,48 @@
> ```bash
> vm.max_map_count=262144
> ```
>
2. 克隆倉庫:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. 進入 **docker** 資料夾,利用事先編譯好的 Docker 映像啟動伺服器:
> [!CAUTION]
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.21.1-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.21.1-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1` 來下載 RAGFlow 鏡像的 `v0.21.1` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.21.1`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.21.1` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。
```bash
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | -------------------------- |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;2 | | _Unstable_ nightly build |
> [!TIP]
> 如果你遇到 Docker 映像檔拉不下來的問題,可以在 **docker/.env** 檔案內根據變數 `RAGFLOW_IMAGE` 的註解提示選擇華為雲或阿里雲的對應映像。
>
> - 華為雲鏡像名:`swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow`
> - 阿里雲鏡像名:`registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow`
> 注意:自 `v0.22.0` 起,我們僅發佈 slim 版本,並且不再在映像標籤後附加 **-slim** 後綴。
> [!TIP]
> 如果你遇到 Docker 映像檔拉不下來的問題,可以在 **docker/.env** 檔案內根據變數 `RAGFLOW_IMAGE` 的註解提示選擇華為雲或阿里雲的對應映像。
>
> - 華為雲鏡像名:`swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow`
> - 阿里雲鏡像名:`registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow`
4. 伺服器啟動成功後再次確認伺服器狀態:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_出現以下介面提示說明伺服器啟動成功_
@ -226,12 +230,15 @@
```
> 如果您跳過這一步驟系統確認步驟就登入 RAGFlow你的瀏覽器有可能會提示 `network anormal` 或 `網路異常`,因為 RAGFlow 可能並未完全啟動成功。
>
5. 在你的瀏覽器中輸入你的伺服器對應的 IP 位址並登入 RAGFlow。
> 上面這個範例中,您只需輸入 http://IP_OF_YOUR_MACHINE 即可:未改動過設定則無需輸入連接埠(預設的 HTTP 服務連接埠 80
>
6. 在 [service_conf.yaml.template](./docker/service_conf.yaml.template) 檔案的 `user_default_llm` 欄位設定 LLM factory並在 `API_KEY` 欄填入和你選擇的大模型相對應的 API key。
> 詳見 [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup)。
>
_好戲開始接著奏樂接著舞 _
@ -249,7 +256,7 @@
> [./docker/README](./docker/README.md) 解釋了 [service_conf.yaml.template](./docker/service_conf.yaml.template) 用到的環境變數設定和服務配置。
如需更新預設的 HTTP 服務連接埠(80), 可以在[docker-compose.yml](./docker/docker-compose.yml) 檔案中將配置`80:80` 改為`<YOUR_SERVING_PORT>:80` 。
如需更新預設的 HTTP 服務連接埠(80), 可以在[docker-compose.yml](./docker/docker-compose.yml) 檔案中將配置 `80:80` 改為 `<YOUR_SERVING_PORT>:80` 。
> 所有系統配置都需要透過系統重新啟動生效:
>
@ -266,10 +273,9 @@ RAGFlow 預設使用 Elasticsearch 儲存文字和向量資料. 如果要切換
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` 將會刪除 docker 容器的 volumes已有的資料會被清空。
2. 設定 **docker/.env** 目錄中的 `DOC_ENGINE` 為 `infinity`.
3. 啟動容器:
```bash
@ -286,17 +292,7 @@ RAGFlow 預設使用 Elasticsearch 儲存文字和向量資料. 如果要切換
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 原始碼編譯 Docker 映像(包含 embedding 模型)
本 Docker 大小約 9 GB 左右。由於已包含 embedding 模型,所以只需依賴外部的大模型服務即可。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以原始碼啟動服務
@ -307,17 +303,15 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
pipx install uv pre-commit
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
2. 下載原始碼並安裝 Python 依賴:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. 透過 Docker Compose 啟動依賴的服務MinIO, Elasticsearch, Redis, and MySQL
```bash
@ -329,13 +323,11 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. 如果無法存取 HuggingFace可以把環境變數 `HF_ENDPOINT` 設為對應的鏡像網站:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. 如果你的操作系统没有 jemalloc请按照如下方式安装
```bash
@ -346,7 +338,6 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
# mac
sudo brew install jemalloc
```
6. 啟動後端服務:
```bash
@ -354,14 +345,12 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. 安裝前端依賴:
```bash
cd web
npm install
```
8. 啟動前端服務:
```bash
@ -371,15 +360,16 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
以下界面說明系統已成功啟動_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
```
```
9. 開發完成後停止 RAGFlow 前端和後端服務:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 技術文檔
- [Quickstart](https://ragflow.io/docs/dev/)

View File

@ -43,7 +43,9 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
@ -83,6 +85,7 @@
## 🔥 近期更新
- 2025-10-23 支持 MinerU 和 Docling 作为文档解析方法。
- 2025-10-15 支持可编排的数据管道。
- 2025-08-08 支持 OpenAI 最新的 GPT-5 系列模型。
- 2025-08-01 支持 agentic workflow 和 MCP。
@ -183,7 +186,7 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.21.1-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.21.1-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1` 来下载 RAGFlow 镜像的 `v0.21.1` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.21.1`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.21.1` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。
```bash
$ cd ragflow/docker
@ -191,15 +194,17 @@
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly | &approx;2 | | _Unstable_ nightly build |
> 注意:从 `v0.22.0` 开始,我们只发布 slim 版本,并且不再在镜像标签后附加 **-slim** 后缀。
> [!TIP]
> 如果你遇到 Docker 镜像拉不下来的问题,可以在 **docker/.env** 文件内根据变量 `RAGFLOW_IMAGE` 的注释提示选择华为云或者阿里云的相应镜像。
@ -210,7 +215,7 @@
4. 服务器启动成功后再次确认服务器状态:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_出现以下界面提示说明服务器启动成功_
@ -286,17 +291,7 @@ RAGFlow 默认使用 Elasticsearch 存储文本和向量数据. 如果要切换
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 源码编译 Docker 镜像(包含 embedding 模型)
本 Docker 大小约 9 GB 左右。由于已包含 embedding 模型,所以只需依赖外部的大模型服务即可。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以源代码启动服务
@ -313,7 +308,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```

View File

@ -23,6 +23,7 @@ from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from typing import Dict, List, Any
from lark import Lark, Transformer, Tree
import requests
import getpass
GRAMMAR = r"""
start: command
@ -51,6 +52,7 @@ sql_command: list_services
| revoke_permission
| alter_user_role
| show_user_permission
| show_version
// meta command definition
meta_command: "\\" meta_command_name [meta_args]
@ -92,6 +94,7 @@ FOR: "FOR"i
RESOURCES: "RESOURCES"i
ON: "ON"i
SET: "SET"i
VERSION: "VERSION"i
list_services: LIST SERVICES ";"
show_service: SHOW SERVICE NUMBER ";"
@ -120,6 +123,8 @@ revoke_permission: REVOKE action_list ON identifier FROM ROLE identifier ";"
alter_user_role: ALTER USER quoted_string SET ROLE identifier ";"
show_user_permission: SHOW USER PERMISSION quoted_string ";"
show_version: SHOW VERSION ";"
action_list: identifier ("," identifier)*
identifier: WORD
@ -246,6 +251,9 @@ class AdminTransformer(Transformer):
user_name = items[3]
return {"type": "show_user_permission", "user_name": user_name}
def show_version(self, items):
return {"type": "show_version"}
def action_list(self, items):
return items
@ -359,7 +367,7 @@ class AdminCLI(Cmd):
if single_command:
admin_passwd = arguments['password']
else:
admin_passwd = input(f"password for {self.admin_account}: ").strip()
admin_passwd = getpass.getpass(f"password for {self.admin_account}: ").strip()
try:
self.admin_password = encrypt(admin_passwd)
response = self.session.post(url, json={'email': self.admin_account, 'password': self.admin_password})
@ -473,7 +481,7 @@ class AdminCLI(Cmd):
def parse_connection_args(self, args: List[str]) -> Dict[str, Any]:
parser = argparse.ArgumentParser(description='Admin CLI Client', add_help=False)
parser.add_argument('-h', '--host', default='localhost', help='Admin service host')
parser.add_argument('-p', '--port', type=int, default=8080, help='Admin service port')
parser.add_argument('-p', '--port', type=int, default=9381, help='Admin service port')
parser.add_argument('-w', '--password', default='admin', type=str, help='Superuser password')
parser.add_argument('command', nargs='?', help='Single command')
try:
@ -555,6 +563,8 @@ class AdminCLI(Cmd):
self._alter_user_role(command_dict)
case 'show_user_permission':
self._show_user_permission(command_dict)
case 'show_version':
self._show_version(command_dict)
case 'meta':
self._handle_meta_command(command_dict)
case _:
@ -861,6 +871,16 @@ class AdminCLI(Cmd):
print(
f"Fail to show user: {user_name_str} permission, code: {res_json['code']}, message: {res_json['message']}")
def _show_version(self, command):
print("show_version")
url = f'http://{self.host}:{self.port}/api/v1/admin/version'
response = self.session.get(url)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to show version, code: {res_json['code']}, message: {res_json['message']}")
def _handle_meta_command(self, command):
meta_command = command['command']
args = command.get('args', [])

View File

@ -23,13 +23,15 @@ import traceback
from werkzeug.serving import run_simple
from flask import Flask
from routes import admin_bp
from api.utils.log_utils import init_root_logger
from api.constants import SERVICE_CONF
from api import settings
from common.log_utils import init_root_logger
from common.constants import SERVICE_CONF
from common.config_utils import show_configs
from common import settings
from config import load_configurations, SERVICE_CONFIGS
from auth import init_default_admin, setup_auth
from flask_session import Session
from flask_login import LoginManager
from common.versions import get_ragflow_version
stop_event = threading.Event()
@ -51,6 +53,8 @@ if __name__ == '__main__':
os.environ.get("MAX_CONTENT_LENGTH", 1024 * 1024 * 1024)
)
Session(app)
logging.info(f'RAGFlow version: {get_ragflow_version()}')
show_configs()
login_manager = LoginManager()
login_manager.init_app(app)
settings.init_settings()
@ -65,7 +69,7 @@ if __name__ == '__main__':
port=9381,
application=app,
threaded=True,
use_reloader=True,
use_reloader=False,
use_debugger=True,
)
except Exception:

View File

@ -23,21 +23,15 @@ from flask import request, jsonify
from flask_login import current_user, login_user
from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
from api import settings
from api.common.exceptions import AdminException, UserNotFoundError
from api.db.init_data import encode_to_base64
from api.common.base64 import encode_to_base64
from api.db.services import UserService
from api.db import ActiveEnum, StatusEnum
from common.constants import ActiveEnum, StatusEnum
from api.utils.crypt import decrypt
from api.utils import (
current_timestamp,
datetime_format,
get_format_time,
get_uuid,
)
from api.utils.api_utils import (
construct_response,
)
from common.misc_utils import get_uuid
from common.time_utils import current_timestamp, datetime_format, get_format_time
from common.connection_utils import construct_response
from common import settings
def setup_auth(login_manager):

View File

@ -21,7 +21,7 @@ from enum import Enum
from pydantic import BaseModel
from typing import Any
from api.utils.configs import read_config
from common.config_utils import read_config
from urllib.parse import urlparse

View File

@ -24,6 +24,7 @@ from responses import success_response, error_response
from services import UserMgr, ServiceMgr, UserServiceMgr
from roles import RoleMgr
from api.common.exceptions import AdminException
from common.versions import get_ragflow_version
admin_bp = Blueprint('admin', __name__, url_prefix='/api/v1/admin')
@ -369,3 +370,13 @@ def get_user_permission(user_name: str):
return success_response(res)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/version', methods=['GET'])
@login_required
@check_admin_auth
def show_version():
try:
res = {"version": get_ragflow_version()}
return success_response(res)
except Exception as e:
return error_response(str(e), 500)

View File

@ -17,7 +17,7 @@
import re
from werkzeug.security import check_password_hash
from api.db import ActiveEnum
from common.constants import ActiveEnum
from api.db.services import UserService
from api.db.joint_services.user_account_service import create_new_user, delete_user_data
from api.db.services.canvas_service import UserCanvasService

View File

@ -26,7 +26,7 @@ from typing import Any, Union, Tuple
from agent.component import component_class
from agent.component.base import ComponentBase
from api.db.services.file_service import FileService
from api.utils import get_uuid, hash_str2int
from common.misc_utils import get_uuid, hash_str2int
from rag.prompts.generator import chunks_format
from rag.utils.redis_conn import REDIS_CONN
@ -153,6 +153,33 @@ class Graph:
def get_tenant_id(self):
return self._tenant_id
def get_value_with_variable(self,value: str) -> Any:
pat = re.compile(r"\{* *\{([a-zA-Z:0-9]+@[A-Za-z:0-9_.-]+|sys\.[a-z_]+)\} *\}*")
out_parts = []
last = 0
for m in pat.finditer(value):
out_parts.append(value[last:m.start()])
key = m.group(1)
v = self.get_variable_value(key)
if v is None:
rep = ""
elif isinstance(v, partial):
buf = []
for chunk in v():
buf.append(chunk)
rep = "".join(buf)
elif isinstance(v, str):
rep = v
else:
rep = json.dumps(v, ensure_ascii=False)
out_parts.append(rep)
last = m.end()
out_parts.append(value[last:])
return("".join(out_parts))
def get_variable_value(self, exp: str) -> Any:
exp = exp.strip("{").strip("}").strip(" ").strip("{").strip("}")
if exp.find("@") < 0:
@ -161,7 +188,32 @@ class Graph:
cpn = self.get_component(cpn_id)
if not cpn:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
parts = var_nm.split(".", 1)
root_key = parts[0]
rest = parts[1] if len(parts) > 1 else ""
root_val = cpn["obj"].output(root_key)
if not rest:
return root_val
return self.get_variable_param_value(root_val,rest)
def get_variable_param_value(self, obj: Any, path: str) -> Any:
cur = obj
if not path:
return cur
for key in path.split('.'):
if cur is None:
return None
if isinstance(cur, str):
try:
cur = json.loads(cur)
except Exception:
return None
if isinstance(cur, dict):
cur = cur.get(key)
else:
cur = getattr(cur, key, None)
return cur
class Canvas(Graph):
@ -225,6 +277,14 @@ class Canvas(Graph):
for k, cpn in self.components.items():
self.components[k]["obj"].reset(True)
if kwargs.get("webhook_payload"):
for k, cpn in self.components.items():
if self.components[k]["obj"].component_name.lower() == "webhook":
for kk, vv in kwargs["webhook_payload"].items():
self.components[k]["obj"].set_output(kk, vv)
self.components[k]["obj"].reset(True)
for k in kwargs.keys():
if k in ["query", "user_id", "files"] and kwargs[k]:
if k == "files":
@ -256,12 +316,21 @@ class Canvas(Graph):
def _run_batch(f, t):
with ThreadPoolExecutor(max_workers=5) as executor:
thr = []
for i in range(f, t):
i = f
while i < t:
cpn = self.get_component_obj(self.path[i])
if cpn.component_name.lower() in ["begin", "userfillup"]:
thr.append(executor.submit(cpn.invoke, inputs=kwargs.get("inputs", {})))
i += 1
else:
thr.append(executor.submit(cpn.invoke, **cpn.get_input()))
for _, ele in cpn.get_input_elements().items():
if isinstance(ele, dict) and ele.get("_cpn_id") and ele.get("_cpn_id") not in self.path[:i]:
self.path.pop(i)
t -= 1
break
else:
thr.append(executor.submit(cpn.invoke, **cpn.get_input()))
i += 1
for t in thr:
t.result()
@ -291,6 +360,7 @@ class Canvas(Graph):
"thoughts": self.get_component_thoughts(self.path[i])
})
_run_batch(idx, to)
to = len(self.path)
# post processing of components invocation
for i in range(idx, to):
cpn = self.get_component(self.path[i])

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import importlib
import inspect
@ -50,9 +50,10 @@ del _package_path, _import_submodules, _extract_classes_from_module
def component_class(class_name):
for mdl in ["agent.component", "agent.tools", "rag.flow"]:
for module_name in ["agent.component", "agent.tools", "rag.flow"]:
try:
return getattr(importlib.import_module(mdl), class_name)
except Exception:
return getattr(importlib.import_module(module_name), class_name)
except Exception as e:
logging.warning(f"Can't import module: {module_name}, error: {e}")
pass
assert False, f"Can't import {class_name}"

View File

@ -27,7 +27,7 @@ from agent.tools.base import LLMToolPluginCallSession, ToolParamBase, ToolBase,
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.mcp_server_service import MCPServerService
from api.utils.api_utils import timeout
from common.connection_utils import timeout
from rag.prompts.generator import next_step, COMPLETE_TASK, analyze_task, \
citation_prompt, reflect, rank_memories, kb_prompt, citation_plus, full_question, message_fit_in
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, mcp_tool_metadata_to_openai_tool
@ -158,7 +158,12 @@ class Agent(LLM, ToolBase):
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]):
output_structure=None
try:
output_structure=self._param.outputs['structured']
except Exception:
pass
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not output_structure and not (ex and ex["goto"]):
self.set_output("content", partial(self.stream_output_with_tools, prompt, msg, user_defined_prompt))
return

View File

@ -25,7 +25,7 @@ from typing import Any, List, Union
import pandas as pd
import trio
from agent import settings
from api.utils.api_utils import timeout
from common.connection_utils import timeout
_FEEDED_DEPRECATED_PARAMS = "_feeded_deprecated_params"
@ -514,6 +514,7 @@ class ComponentBase(ABC):
def get_param(self, name):
if hasattr(self._param, name):
return getattr(self._param, name)
return None
def debug(self, **kwargs):
return self._invoke(**kwargs)
@ -521,7 +522,7 @@ class ComponentBase(ABC):
def get_parent(self) -> Union[object, None]:
pid = self._canvas.get_component(self._id).get("parent_id")
if not pid:
return
return None
return self._canvas.get_component(pid)["obj"]
def get_upstream(self) -> List[str]:
@ -546,7 +547,7 @@ class ComponentBase(ABC):
def exception_handler(self):
if not self._param.exception_method:
return
return None
return {
"goto": self._param.exception_goto,
"default_value": self._param.exception_default_value

View File

@ -18,10 +18,10 @@ import os
import re
from abc import ABC
from api.db import LLMType
from common.constants import LLMType
from api.db.services.llm_service import LLMBundle
from agent.component.llm import LLMParam, LLM
from api.utils.api_utils import timeout
from common.connection_utils import timeout
from rag.llm.chat_model import ERROR_PREFIX

View File

@ -0,0 +1,202 @@
from abc import ABC
import ast
import os
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
class DataOperationsParam(ComponentParamBase):
"""
Define the Data Operations component parameters.
"""
def __init__(self):
super().__init__()
self.query = []
self.operations = "literal_eval"
self.select_keys = []
self.filter_values=[]
self.updates=[]
self.remove_keys=[]
self.rename_keys=[]
self.outputs = {
"result": {
"value": [],
"type": "Array of Object"
}
}
def check(self):
self.check_valid_value(self.operations, "Support operations", ["select_keys", "literal_eval","combine","filter_values","append_or_update","remove_keys","rename_keys"])
class DataOperations(ComponentBase,ABC):
component_name = "DataOperations"
def get_input_form(self) -> dict[str, dict]:
return {
k: {"name": o.get("name", ""), "type": "line"}
for input_item in (self._param.query or [])
for k, o in self.get_input_elements_from_text(input_item).items()
}
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
self.input_objects=[]
inputs = getattr(self._param, "query", None)
if not isinstance(inputs, (list, tuple)):
inputs = [inputs]
for input_ref in inputs:
input_object=self._canvas.get_variable_value(input_ref)
if input_object is None:
continue
if isinstance(input_object,dict):
self.input_objects.append(input_object)
elif isinstance(input_object,list):
self.input_objects.extend(x for x in input_object if isinstance(x, dict))
else:
continue
if self._param.operations == "select_keys":
self._select_keys()
elif self._param.operations == "recursive_eval":
self._literal_eval()
elif self._param.operations == "combine":
self._combine()
elif self._param.operations == "filter_values":
self._filter_values()
elif self._param.operations == "append_or_update":
self._append_or_update()
elif self._param.operations == "remove_keys":
self._remove_keys()
else:
self._rename_keys()
def _select_keys(self):
filter_criteria: list[str] = self._param.select_keys
results = [{key: value for key, value in data_dict.items() if key in filter_criteria} for data_dict in self.input_objects]
self.set_output("result", results)
def _recursive_eval(self, data):
if isinstance(data, dict):
return {k: self.recursive_eval(v) for k, v in data.items()}
if isinstance(data, list):
return [self.recursive_eval(item) for item in data]
if isinstance(data, str):
try:
if (
data.strip().startswith(("{", "[", "(", "'", '"'))
or data.strip().lower() in ("true", "false", "none")
or data.strip().replace(".", "").isdigit()
):
return ast.literal_eval(data)
except (ValueError, SyntaxError, TypeError, MemoryError):
return data
else:
return data
return data
def _literal_eval(self):
self.set_output("result", self._recursive_eval(self.input_objects))
def _combine(self):
result={}
for obj in self.input_objects:
for key, value in obj.items():
if key not in result:
result[key] = value
elif isinstance(result[key], list):
if isinstance(value, list):
result[key].extend(value)
else:
result[key].append(value)
else:
result[key] = (
[result[key], value] if not isinstance(value, list) else [result[key], *value]
)
self.set_output("result", result)
def norm(self,v):
s = "" if v is None else str(v)
return s
def match_rule(self, obj, rule):
key = rule.get("key")
op = (rule.get("operator") or "equals").lower()
target = self.norm(rule.get("value"))
target = self._canvas.get_value_with_variable(target) or target
if key not in obj:
return False
val = obj.get(key, None)
v = self.norm(val)
if op == "=":
return v == target
if op == "":
return v != target
if op == "contains":
return target in v
if op == "start with":
return v.startswith(target)
if op == "end with":
return v.endswith(target)
return False
def _filter_values(self):
results=[]
rules = (getattr(self._param, "filter_values", None) or [])
for obj in self.input_objects:
if not rules:
results.append(obj)
continue
if all(self.match_rule(obj, r) for r in rules):
results.append(obj)
self.set_output("result", results)
def _append_or_update(self):
results=[]
updates = getattr(self._param, "updates", []) or []
for obj in self.input_objects:
new_obj = dict(obj)
for item in updates:
if not isinstance(item, dict):
continue
k = (item.get("key") or "").strip()
if not k:
continue
new_obj[k] = self._canvas.get_value_with_variable(item.get("value")) or item.get("value")
results.append(new_obj)
self.set_output("result", results)
def _remove_keys(self):
results = []
remove_keys = getattr(self._param, "remove_keys", []) or []
for obj in (self.input_objects or []):
new_obj = dict(obj)
for k in remove_keys:
if not isinstance(k, str):
continue
new_obj.pop(k, None)
results.append(new_obj)
self.set_output("result", results)
def _rename_keys(self):
results = []
rename_pairs = getattr(self._param, "rename_keys", []) or []
for obj in (self.input_objects or []):
new_obj = dict(obj)
for pair in rename_pairs:
if not isinstance(pair, dict):
continue
old = (pair.get("old_key") or "").strip()
new = (pair.get("new_key") or "").strip()
if not old or not new or old == new:
continue
if old in new_obj:
new_obj[new] = new_obj.pop(old)
results.append(new_obj)
self.set_output("result", results)
def thoughts(self) -> str:
return "DataOperation in progress"

View File

@ -23,7 +23,7 @@ from abc import ABC
import requests
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
from deepdoc.parser import HtmlParser

View File

@ -16,6 +16,13 @@
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
"""
class VariableModel(BaseModel):
data_type: Annotated[Literal["string", "number", "Object", "Boolean", "Array<string>", "Array<number>", "Array<object>", "Array<boolean>"], Field(default="Array<string>")]
input_mode: Annotated[Literal["constant", "variable"], Field(default="constant")]
value: Annotated[Any, Field(default=None)]
model_config = ConfigDict(extra="forbid")
"""
class IterationParam(ComponentParamBase):
"""

View File

@ -21,12 +21,12 @@ from copy import deepcopy
from typing import Any, Generator
import json_repair
from functools import partial
from api.db import LLMType
from common.constants import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
from rag.prompts.generator import tool_call_summary, message_fit_in, citation_prompt
from common.connection_utils import timeout
from rag.prompts.generator import tool_call_summary, message_fit_in, citation_prompt, structured_output_prompt
class LLMParam(ComponentParamBase):
@ -214,10 +214,14 @@ class LLM(ComponentBase):
prompt, msg, _ = self._prepare_prompt_variables()
error: str = ""
if self._param.output_structure:
prompt += "\nThe output MUST follow this JSON format:\n"+json.dumps(self._param.output_structure, ensure_ascii=False, indent=2)
prompt += "\nRedundant information is FORBIDDEN."
output_structure=None
try:
output_structure = self._param.outputs['structured']
except Exception:
pass
if output_structure:
schema=json.dumps(output_structure, ensure_ascii=False, indent=2)
prompt += structured_output_prompt(schema)
for _ in range(self._param.max_retries+1):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
error = ""
@ -228,7 +232,7 @@ class LLM(ComponentBase):
error = ans
continue
try:
self.set_output("structured_content", json_repair.loads(clean_formated_answer(ans)))
self.set_output("structured", json_repair.loads(clean_formated_answer(ans)))
return
except Exception:
msg.append({"role": "user", "content": "The answer can't not be parsed as JSON"})
@ -239,7 +243,7 @@ class LLM(ComponentBase):
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]):
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not output_structure and not (ex and ex["goto"]):
self.set_output("content", partial(self._stream_output, prompt, msg))
return

View File

@ -23,7 +23,7 @@ from typing import Any
from agent.component.base import ComponentBase, ComponentParamBase
from jinja2 import Template as Jinja2Template
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class MessageParam(ComponentParamBase):
@ -49,6 +49,9 @@ class MessageParam(ComponentParamBase):
class Message(ComponentBase):
component_name = "Message"
def get_input_elements(self) -> dict[str, Any]:
return self.get_input_elements_from_text("".join(self._param.content))
def get_kwargs(self, script:str, kwargs:dict = {}, delimiter:str=None) -> tuple[str, dict[str, str | list | Any]]:
for k,v in self.get_input_elements_from_text(script).items():
if k in kwargs:

View File

@ -16,9 +16,11 @@
import os
import re
from abc import ABC
from typing import Any
from jinja2 import Template as Jinja2Template
from agent.component.base import ComponentParamBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
from .message import Message
@ -43,6 +45,9 @@ class StringTransformParam(ComponentParamBase):
class StringTransform(Message, ABC):
component_name = "StringTransform"
def get_input_elements(self) -> dict[str, Any]:
return self.get_input_elements_from_text(self._param.script)
def get_input_form(self) -> dict[str, dict]:
if self._param.method == "split":
return {

View File

@ -19,7 +19,7 @@ from abc import ABC
from typing import Any
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class SwitchParam(ComponentParamBase):

View File

@ -0,0 +1,38 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agent.component.base import ComponentParamBase, ComponentBase
class WebhookParam(ComponentParamBase):
"""
Define the Begin component parameters.
"""
def __init__(self):
super().__init__()
def get_input_form(self) -> dict[str, dict]:
return getattr(self, "inputs")
class Webhook(ComponentBase):
component_name = "Webhook"
def _invoke(self, **kwargs):
pass
def thoughts(self) -> str:
return ""

View File

@ -2,10 +2,12 @@
"id": 23,
"title": {
"en": "Advanced Ingestion Pipeline",
"de": "Erweiterte Ingestion Pipeline",
"zh": "编排复杂的 Ingestion Pipeline"
},
"description": {
"en": "This template demonstrates how to use an LLM to generate summaries, keywords, Q&A, and metadata for each chunk to support diverse retrieval needs.",
"de": "Diese Vorlage demonstriert, wie ein LLM verwendet wird, um Zusammenfassungen, Schlüsselwörter, Fragen & Antworten und Metadaten für jedes Segment zu generieren, um vielfältige Abrufanforderungen zu unterstützen.",
"zh": "此模板演示如何利用大模型为切片生成摘要、关键词、问答及元数据,以满足多样化的召回需求。"
},
"canvas_type": "Ingestion Pipeline",

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -2,10 +2,12 @@
"id": 24,
"title": {
"en": "Chunk Summary",
"de": "Segmentzusammenfassung",
"zh": "总结切片"
},
"description": {
"en": "This template uses an LLM to generate chunk summaries for building text and vector indexes. During retrieval, summaries enhance matching, and the original chunks are returned as results.",
"de": "Diese Vorlage nutzt ein LLM zur Generierung von Segmentzusammenfassungen für den Aufbau von Text- und Vektorindizes. Bei der Abfrage verbessern die Zusammenfassungen die Übereinstimmung, während die ursprünglichen Segmente als Ergebnisse zurückgegeben werden.",
"zh": "此模板利用大模型生成切片摘要,并据此建立全文索引与向量。检索时以摘要提升匹配效果,最终召回对应的原文切片。"
},
"canvas_type": "Ingestion Pipeline",

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -2,9 +2,11 @@
"id": 8,
"title": {
"en": "Generate SEO Blog",
"de": "SEO Blog generieren",
"zh": "生成SEO博客"},
"description": {
"en": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.",
"de": "Dies ist eine Multi-Agenten-Version des Workflows zur Erstellung von SEO-Blogs. Sie simuliert ein kleines Team von KI-„Autoren“, in dem jeder Agent eine spezielle Rolle übernimmt genau wie in einem echten Redaktionsteam.",
"zh": "多智能体架构可根据简单的用户输入自动生成完整的SEO博客文章。模拟小型“作家”团队其中每个智能体扮演一个专业角色——就像真正的编辑团队。"},
"canvas_type": "Agent",
"dsl": {

File diff suppressed because one or more lines are too long

View File

@ -2,9 +2,11 @@
"id": 20,
"title": {
"en": "Report Agent Using Knowledge Base",
"de": "Berichtsagent mit Wissensdatenbank",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"de": "Ein Berichtsgenerierungsassistent, der eine lokale Wissensdatenbank nutzt, mit erweiterten Fähigkeiten in Aufgabenplanung, Schlussfolgerung und reflektierender Analyse. Empfohlen für akademische Forschungspapier-Fragen und -Antworten.",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Agent",
"dsl": {

View File

@ -1,10 +1,12 @@
{
"id": 21,
"title": {
"en": "Report Agent Using Knowledge Base",
"en": "Report Agent Using Knowledge Base",
"de": "Berichtsagent mit Wissensdatenbank",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"de": "Ein Berichtsgenerierungsassistent, der eine lokale Wissensdatenbank nutzt, mit erweiterten Fähigkeiten in Aufgabenplanung, Schlussfolgerung und reflektierender Analyse. Empfohlen für akademische Forschungspapier-Fragen und -Antworten.",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Recommended",
"dsl": {

View File

@ -2,9 +2,11 @@
"id": 12,
"title": {
"en": "Generate SEO Blog",
"de": "SEO Blog generieren",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You don't need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"de": "Dieser Workflow generiert automatisch einen vollständigen SEO-optimierten Blogartikel basierend auf einer einfachen Benutzereingabe. Sie benötigen keine Schreiberfahrung. Geben Sie einfach ein Thema oder eine kurze Anfrage ein das System übernimmt den Rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Marketing",
"dsl": {
@ -916,4 +918,4 @@
"retrieval": []
},
"avatar": ""
}
}

View File

@ -2,9 +2,11 @@
"id": 4,
"title": {
"en": "Generate SEO Blog",
"de": "SEO Blog generieren",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You don't need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"de": "Dieser Workflow generiert automatisch einen vollständigen SEO-optimierten Blogartikel basierend auf einer einfachen Benutzereingabe. Sie benötigen keine Schreiberfahrung. Geben Sie einfach ein Thema oder eine kurze Anfrage ein das System übernimmt den Rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Recommended",
"dsl": {
@ -916,4 +918,4 @@
"retrieval": []
},
"avatar": ""
}
}

View File

@ -2,10 +2,12 @@
"id": 17,
"title": {
"en": "SQL Assistant",
"de": "SQL Assistent",
"zh": "SQL助理"},
"description": {
"en": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., Show me last quarters top 10 products by revenue) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"zh": "用户能够将简单文本问题转化为完整的SQL查询并输出结果。只需输入您的问题例如“展示上个季度前十名按收入排序的产品”SQL助理就会生成精确的SQL语句对其运行您的数据库并几秒钟内返回结果。"},
"en": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., 'Show me last quarter's top 10 products by revenue') and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"de": "SQL-Assistent ist ein KI-gestütztes Tool, mit dem Geschäftsanwender einfache englische Fragen in vollständige SQL-Abfragen umwandeln können. Geben Sie einfach Ihre Frage ein (z.B. 'Zeige mir die Top 10 Produkte des letzten Quartals nach Umsatz') und der SQL-Assistent generiert das exakte SQL, führt es gegen Ihre Datenbank aus und liefert die Ergebnisse in Sekunden.",
"zh": "用户能够将简单文本问题转化为完整的SQL查询并输出结果。只需输入您的问题例如展示上个季度前十名按收入排序的产品SQL助理就会生成精确的SQL语句对其运行您的数据库并几秒钟内返回结果。"},
"canvas_type": "Marketing",
"dsl": {
"components": {
@ -713,4 +715,4 @@
"retrieval": []
},
"avatar": ""
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -2,10 +2,12 @@
"id": 25,
"title": {
"en": "Title Chunker",
"de": "Titel basierte Segmentierung",
"zh": "标题切片"
},
"description": {
"en": "This template slices the parsed file based on its title structure. It is ideal for documents with well-defined headings, such as product manuals, legal contracts, research reports, and academic papers.",
"de": "Diese Vorlage segmentiert die geparste Datei basierend auf ihrer Titelstruktur. Sie eignet sich ideal für Dokumente mit klar definierten Überschriften, wie Produkthandbücher, Verträge, Forschungsberichte und wissenschaftliche Arbeiten.",
"zh": "此模板将解析后的文件按标题结构进行切片,适用于具有清晰标题层级的文档类型,如产品手册、合同法规、研究报告和学术论文等。"
},
"canvas_type": "Ingestion Pipeline",

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -16,7 +16,7 @@
import argparse
import os
from agent.canvas import Canvas
from api import settings
from common import settings
if __name__ == '__main__':
parser = argparse.ArgumentParser()

View File

@ -19,7 +19,7 @@ import time
from abc import ABC
import arxiv
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class ArXivParam(ToolParamBase):

View File

@ -20,7 +20,7 @@ from copy import deepcopy
from functools import partial
from typing import TypedDict, List, Any
from agent.component.base import ComponentParamBase, ComponentBase
from api.utils import hash_str2int
from common.misc_utils import hash_str2int
from rag.llm.chat_model import ToolCallSession
from rag.prompts.generator import kb_prompt
from rag.utils.mcp_tool_call_conn import MCPToolCallSession

View File

@ -21,8 +21,8 @@ from strenum import StrEnum
from typing import Optional
from pydantic import BaseModel, Field, field_validator
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api import settings
from api.utils.api_utils import timeout
from common.connection_utils import timeout
from common import settings
class Language(StrEnum):

View File

@ -19,7 +19,7 @@ import time
from abc import ABC
from duckduckgo_search import DDGS
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class DuckDuckGoParam(ToolParamBase):

View File

@ -25,7 +25,7 @@ from email.header import Header
from email.utils import formataddr
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class EmailParam(ToolParamBase):

View File

@ -22,7 +22,7 @@ import pymysql
import psycopg2
import pyodbc
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class ExeSQLParam(ToolParamBase):

View File

@ -19,7 +19,7 @@ import time
from abc import ABC
import requests
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class GitHubParam(ToolParamBase):

View File

@ -19,7 +19,7 @@ import time
from abc import ABC
from serpapi import GoogleSearch
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class GoogleParam(ToolParamBase):

View File

@ -19,7 +19,7 @@ import time
from abc import ABC
from scholarly import scholarly
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class GoogleScholarParam(ToolParamBase):

View File

@ -21,7 +21,7 @@ from Bio import Entrez
import re
import xml.etree.ElementTree as ET
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class PubMedParam(ToolParamBase):

View File

@ -13,17 +13,19 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from functools import partial
import json
import os
import re
from abc import ABC
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api.db import LLMType
from common.constants import LLMType
from api.db.services.document_service import DocumentService
from api.db.services.dialog_service import meta_filter
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import timeout
from common import settings
from common.connection_utils import timeout
from rag.app.tag import label_question
from rag.prompts.generator import cross_languages, kb_prompt, gen_meta_filter
@ -131,7 +133,35 @@ class Retrieval(ToolBase, ABC):
if not doc_ids:
doc_ids = None
elif self._param.meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, self._param.meta_data_filter["manual"]))
filters=self._param.meta_data_filter["manual"]
for flt in filters:
pat = re.compile(r"\{* *\{([a-zA-Z:0-9]+@[A-Za-z:0-9_.-]+|sys\.[a-z_]+)\} *\}*")
s = flt["value"]
out_parts = []
last = 0
for m in pat.finditer(s):
out_parts.append(s[last:m.start()])
key = m.group(1)
v = self._canvas.get_variable_value(key)
if v is None:
rep = ""
elif isinstance(v, partial):
buf = []
for chunk in v():
buf.append(chunk)
rep = "".join(buf)
elif isinstance(v, str):
rep = v
else:
rep = json.dumps(v, ensure_ascii=False)
out_parts.append(rep)
last = m.end()
out_parts.append(s[last:])
flt["value"] = "".join(out_parts)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None

View File

@ -19,7 +19,7 @@ import time
from abc import ABC
import requests
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class SearXNGParam(ToolParamBase):

View File

@ -19,7 +19,7 @@ import time
from abc import ABC
from tavily import TavilyClient
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class TavilySearchParam(ToolParamBase):

View File

@ -21,7 +21,7 @@ import pandas as pd
import pywencai
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class WenCaiParam(ToolParamBase):

View File

@ -19,7 +19,7 @@ import time
from abc import ABC
import wikipedia
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class WikipediaParam(ToolParamBase):

View File

@ -20,7 +20,7 @@ from abc import ABC
import pandas as pd
import yfinance as yf
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
from common.connection_utils import timeout
class YahooFinanceParam(ToolParamBase):

View File

@ -24,16 +24,16 @@ from flask_cors import CORS
from flasgger import Swagger
from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
from api.db import StatusEnum
from common.constants import StatusEnum
from api.db.db_models import close_connection
from api.db.services import UserService
from api.utils.json import CustomJSONEncoder
from api.utils.json_encode import CustomJSONEncoder
from api.utils import commands
from flask_mail import Mail
from flask_session import Session
from flask_login import LoginManager
from api import settings
from common import settings
from api.utils.api_utils import server_error_response
from api.constants import API_VERSION

View File

@ -21,7 +21,7 @@ from flask import request, Response
from api.db.services.llm_service import LLMBundle
from flask_login import login_required, current_user
from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileType, LLMType, ParserType, FileSource
from api.db import VALID_FILE_TYPES, FileType
from api.db.db_models import APIToken, Task, File
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
@ -32,20 +32,21 @@ from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import queue_tasks, TaskService
from api.db.services.user_service import UserTenantService
from api import settings
from api.utils import get_uuid, current_timestamp, datetime_format
from common.misc_utils import get_uuid
from common.constants import RetCode, VALID_TASK_STATUS, LLMType, ParserType, FileSource
from api.utils.api_utils import server_error_response, get_data_error_result, get_json_result, validate_request, \
generate_confirmation_token
from api.utils.file_utils import filename_type, thumbnail
from rag.app.tag import label_question
from rag.prompts.generator import keyword_extraction
from rag.utils.storage_factory import STORAGE_IMPL
from common.time_utils import current_timestamp, datetime_format
from api.db.services.canvas_service import UserCanvasService
from agent.canvas import Canvas
from functools import partial
from pathlib import Path
from common import settings
@manager.route('/new_token', methods=['POST']) # noqa: F821
@ -58,7 +59,7 @@ def new_token():
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
obj = {"tenant_id": tenant_id, "token": generate_confirmation_token(tenant_id),
obj = {"tenant_id": tenant_id, "token": generate_confirmation_token(),
"create_time": current_timestamp(),
"create_date": datetime_format(datetime.now()),
"update_time": None,
@ -144,7 +145,7 @@ def set_conversation():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
try:
if objs[0].source == "agent":
e, cvs = UserCanvasService.get_by_id(objs[0].dialog_id)
@ -185,7 +186,7 @@ def completion():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
req = request.json
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
@ -351,7 +352,7 @@ def get_conversation(conversation_id):
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
try:
e, conv = API4ConversationService.get_by_id(conversation_id)
@ -361,7 +362,7 @@ def get_conversation(conversation_id):
conv = conv.to_dict()
if token != APIToken.query(dialog_id=conv['dialog_id'])[0].token:
return get_json_result(data=False, message='Authentication error: API key is invalid for this conversation_id!"',
code=settings.RetCode.AUTHENTICATION_ERROR)
code=RetCode.AUTHENTICATION_ERROR)
for referenct_i in conv['reference']:
if referenct_i is None or len(referenct_i) == 0:
@ -382,7 +383,7 @@ def upload():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
kb_name = request.form.get("kb_name").strip()
tenant_id = objs[0].tenant_id
@ -398,12 +399,12 @@ def upload():
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
data=False, message='No file part!', code=RetCode.ARGUMENT_ERROR)
file = request.files['file']
if file.filename == '':
return get_json_result(
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
data=False, message='No file selected!', code=RetCode.ARGUMENT_ERROR)
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
@ -426,10 +427,10 @@ def upload():
message="This type of file has not been supported yet!")
location = filename
while STORAGE_IMPL.obj_exist(kb_id, location):
while settings.STORAGE_IMPL.obj_exist(kb_id, location):
location += "_"
blob = request.files['file'].read()
STORAGE_IMPL.put(kb_id, location, blob)
settings.STORAGE_IMPL.put(kb_id, location, blob)
doc = {
"id": get_uuid(),
"kb_id": kb.id,
@ -495,17 +496,17 @@ def upload_parse():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
data=False, message='No file part!', code=RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
data=False, message='No file selected!', code=RetCode.ARGUMENT_ERROR)
doc_ids = doc_upload_and_parse(request.form.get("conversation_id"), file_objs, objs[0].tenant_id)
return get_json_result(data=doc_ids)
@ -518,7 +519,7 @@ def list_chunks():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
req = request.json
@ -558,7 +559,7 @@ def get_chunk(chunk_id):
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
try:
tenant_id = objs[0].tenant_id
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
@ -583,7 +584,7 @@ def list_kb_docs():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
req = request.json
tenant_id = objs[0].tenant_id
@ -636,7 +637,7 @@ def docinfos():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
req = request.json
doc_ids = req["doc_ids"]
docs = DocumentService.get_by_ids(doc_ids)
@ -650,7 +651,7 @@ def document_rm():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
tenant_id = objs[0].tenant_id
req = request.json
@ -697,12 +698,12 @@ def document_rm():
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc_id)
STORAGE_IMPL.rm(b, n)
settings.STORAGE_IMPL.rm(b, n)
except Exception as e:
errors += str(e)
if errors:
return get_json_result(data=False, message=errors, code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=False, message=errors, code=RetCode.SERVER_ERROR)
return get_json_result(data=True)
@ -717,7 +718,7 @@ def completion_faq():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
@ -790,7 +791,7 @@ def completion_faq():
if ans["reference"]["chunks"][chunk_idx]["img_id"]:
try:
bkt, nm = ans["reference"]["chunks"][chunk_idx]["img_id"].split("-")
response = STORAGE_IMPL.get(bkt, nm)
response = settings.STORAGE_IMPL.get(bkt, nm)
data_type_picture["url"] = base64.b64encode(response).decode('utf-8')
data.append(data_type_picture)
break
@ -835,7 +836,7 @@ def completion_faq():
if ans["reference"]["chunks"][chunk_idx]["img_id"]:
try:
bkt, nm = ans["reference"]["chunks"][chunk_idx]["img_id"].split("-")
response = STORAGE_IMPL.get(bkt, nm)
response = settings.STORAGE_IMPL.get(bkt, nm)
data_type_picture["url"] = base64.b64encode(response).decode('utf-8')
data.append(data_type_picture)
break
@ -856,7 +857,7 @@ def retrieval():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
data=False, message='Authentication error: API key is invalid!"', code=RetCode.AUTHENTICATION_ERROR)
req = request.json
kb_ids = req.get("kb_id", [])
@ -867,7 +868,7 @@ def retrieval():
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))
highlight = bool(req.get("highlight", False))
highlight = bool(req.get("highlight", False))
try:
kbs = KnowledgebaseService.get_by_ids(kb_ids)
@ -875,7 +876,7 @@ def retrieval():
if len(embd_nms) != 1:
return get_json_result(
data=False, message='Knowledge bases use different embedding models or does not exist."',
code=settings.RetCode.AUTHENTICATION_ERROR)
code=RetCode.AUTHENTICATION_ERROR)
embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, llm_name=kbs[0].embd_id)
rerank_mdl = None
@ -894,5 +895,5 @@ def retrieval():
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
code=RetCode.DATA_ERROR)
return server_error_response(e)

View File

@ -34,7 +34,7 @@ class GithubOAuthClient(OAuthClient):
def fetch_user_info(self, access_token, **kwargs):
"""
Fetch github user info.
Fetch GitHub user info.
"""
user_info = {}
try:

View File

@ -43,7 +43,8 @@ class OIDCClient(OAuthClient):
self.jwks_uri = config['jwks_uri']
def _load_oidc_metadata(self, issuer):
@staticmethod
def _load_oidc_metadata(issuer):
"""
Load OIDC metadata from `/.well-known/openid-configuration`.
"""

View File

@ -25,7 +25,6 @@ from flask import request, Response
from flask_login import login_required, current_user
from agent.component import LLM
from api import settings
from api.db import CanvasCategory, FileType
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService, API4ConversationService
from api.db.services.document_service import DocumentService
@ -34,8 +33,8 @@ from api.db.services.pipeline_operation_log_service import PipelineOperationLogS
from api.db.services.task_service import queue_dataflow, CANVAS_DEBUG_DOC_ID, TaskService
from api.db.services.user_service import TenantService
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.settings import RetCode
from api.utils import get_uuid
from common.constants import RetCode
from common.misc_utils import get_uuid
from api.utils.api_utils import get_json_result, server_error_response, validate_request, get_data_error_result
from agent.canvas import Canvas
from peewee import MySQLDatabase, PostgresqlDatabase
@ -46,6 +45,7 @@ from api.utils.file_utils import filename_type, read_potential_broken_pdf
from rag.flow.pipeline import Pipeline
from rag.nlp import search
from rag.utils.redis_conn import REDIS_CONN
from common import settings
@manager.route('/templates', methods=['GET']) # noqa: F821

View File

@ -21,8 +21,6 @@ import xxhash
from flask import request
from flask_login import current_user, login_required
from api import settings
from api.db import LLMType, ParserType
from api.db.services.dialog_service import meta_filter
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
@ -34,8 +32,9 @@ from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question
from rag.nlp import rag_tokenizer, search
from rag.prompts.generator import gen_meta_filter, cross_languages, keyword_extraction
from rag.settings import PAGERANK_FLD
from rag.utils import rmSpace
from common.string_utils import remove_redundant_spaces
from common.constants import RetCode, LLMType, ParserType, PAGERANK_FLD
from common import settings
@manager.route('/list', methods=['POST']) # noqa: F821
@ -65,7 +64,7 @@ def list_chunk():
for id in sres.ids:
d = {
"chunk_id": id,
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
"content_with_weight": remove_redundant_spaces(sres.highlight[id]) if question and id in sres.highlight else sres.field[
id].get(
"content_with_weight", ""),
"doc_id": sres.field[id]["doc_id"],
@ -83,7 +82,7 @@ def list_chunk():
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found!',
code=settings.RetCode.DATA_ERROR)
code=RetCode.DATA_ERROR)
return server_error_response(e)
@ -115,7 +114,7 @@ def get():
except Exception as e:
if str(e).find("NotFoundError") >= 0:
return get_json_result(data=False, message='Chunk not found!',
code=settings.RetCode.DATA_ERROR)
code=RetCode.DATA_ERROR)
return server_error_response(e)
@ -200,7 +199,6 @@ def switch():
@login_required
@validate_request("chunk_ids", "doc_id")
def rm():
from rag.utils.storage_factory import STORAGE_IMPL
req = request.json
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
@ -214,8 +212,8 @@ def rm():
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
for cid in deleted_chunk_ids:
if STORAGE_IMPL.obj_exist(doc.kb_id, cid):
STORAGE_IMPL.rm(doc.kb_id, cid)
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, cid):
settings.STORAGE_IMPL.rm(doc.kb_id, cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -292,7 +290,7 @@ def retrieval_test():
kb_ids = [kb_ids]
if not kb_ids:
return get_json_result(data=False, message='Please specify dataset firstly.',
code=settings.RetCode.DATA_ERROR)
code=RetCode.DATA_ERROR)
doc_ids = req.get("doc_ids", [])
use_kg = req.get("use_kg", False)
@ -326,7 +324,7 @@ def retrieval_test():
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
code=RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
@ -371,7 +369,7 @@ def retrieval_test():
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
code=RetCode.DATA_ERROR)
return server_error_response(e)

107
api/apps/connector_app.py Normal file
View File

@ -0,0 +1,107 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
from flask import request
from flask_login import login_required, current_user
from api.db import InputType
from api.db.services.connector_service import ConnectorService, Connector2KbService, SyncLogsService
from api.utils.api_utils import get_json_result, validate_request, get_data_error_result
from common.misc_utils import get_uuid
from common.constants import RetCode, TaskStatus
@manager.route("/set", methods=["POST"]) # noqa: F821
@login_required
def set_connector():
req = request.json
if req.get("id"):
conn = {fld: req[fld] for fld in ["prune_freq", "refresh_freq", "config", "timeout_secs"] if fld in req}
ConnectorService.update_by_id(req["id"], conn)
else:
req["id"] = get_uuid()
conn = {
"id": req["id"],
"tenant_id": current_user.id,
"name": req["name"],
"source": req["source"],
"input_type": InputType.POLL,
"config": req["config"],
"refresh_freq": int(req.get("refresh_freq", 30)),
"prune_freq": int(req.get("prune_freq", 720)),
"timeout_secs": int(req.get("timeout_secs", 60*29)),
"status": TaskStatus.SCHEDULE
}
conn["status"] = TaskStatus.SCHEDULE
ConnectorService.save(**conn)
time.sleep(1)
e, conn = ConnectorService.get_by_id(req["id"])
return get_json_result(data=conn.to_dict())
@manager.route("/list", methods=["GET"]) # noqa: F821
@login_required
def list_connector():
return get_json_result(data=ConnectorService.list(current_user.id))
@manager.route("/<connector_id>", methods=["GET"]) # noqa: F821
@login_required
def get_connector(connector_id):
e, conn = ConnectorService.get_by_id(connector_id)
if not e:
return get_data_error_result(message="Can't find this Connector!")
return get_json_result(data=conn.to_dict())
@manager.route("/<connector_id>/logs", methods=["GET"]) # noqa: F821
@login_required
def list_logs(connector_id):
req = request.args.to_dict(flat=True)
arr, total = SyncLogsService.list_sync_tasks(connector_id, int(req.get("page", 1)), int(req.get("page_size", 15)))
return get_json_result(data={"total": total, "logs": arr})
@manager.route("/<connector_id>/resume", methods=["PUT"]) # noqa: F821
@login_required
def resume(connector_id):
req = request.json
if req.get("resume"):
ConnectorService.resume(connector_id, TaskStatus.SCHEDULE)
else:
ConnectorService.resume(connector_id, TaskStatus.CANCEL)
return get_json_result(data=True)
@manager.route("/<connector_id>/link", methods=["POST"]) # noqa: F821
@validate_request("kb_ids")
@login_required
def link_kb(connector_id):
req = request.json
errors = Connector2KbService.link_kb(connector_id, req["kb_ids"], current_user.id)
if errors:
return get_json_result(data=False, message=errors, code=RetCode.SERVER_ERROR)
return get_json_result(data=True)
@manager.route("/<connector_id>/rm", methods=["POST"]) # noqa: F821
@login_required
def rm_connector(connector_id):
ConnectorService.resume(connector_id, TaskStatus.CANCEL)
ConnectorService.delete_by_id(connector_id)
return get_json_result(data=True)

View File

@ -19,8 +19,6 @@ import logging
from copy import deepcopy
from flask import Response, request
from flask_login import current_user, login_required
from api import settings
from api.db import LLMType
from api.db.db_models import APIToken
from api.db.services.conversation_service import ConversationService, structure_answer
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap
@ -31,6 +29,7 @@ from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from rag.prompts.template import load_prompt
from rag.prompts.generator import chunks_format
from common.constants import RetCode, LLMType
@manager.route("/set", methods=["POST"]) # noqa: F821
@ -93,7 +92,7 @@ def get():
avatar = dialog[0].icon
break
else:
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=RetCode.OPERATING_ERROR)
for ref in conv.reference:
if isinstance(ref, list):
@ -142,7 +141,7 @@ def rm():
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
break
else:
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=RetCode.OPERATING_ERROR)
ConversationService.delete_by_id(cid)
return get_json_result(data=True)
except Exception as e:
@ -155,7 +154,7 @@ def list_conversation():
dialog_id = request.args["dialog_id"]
try:
if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
return get_json_result(data=False, message="Only owner of dialog authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of dialog authorized for this operation.", code=RetCode.OPERATING_ERROR)
convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
convs = [d.to_dict() for d in convs]

View File

@ -18,13 +18,13 @@ from flask import request
from flask_login import login_required, current_user
from api.db.services import duplicate_name
from api.db.services.dialog_service import DialogService
from api.db import StatusEnum
from common.constants import StatusEnum
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService, UserTenantService
from api import settings
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from common.misc_utils import get_uuid
from common.constants import RetCode
from api.utils.api_utils import get_json_result
@ -219,7 +219,7 @@ def rm():
else:
return get_json_result(
data=False, message='Only owner of dialog authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
code=RetCode.OPERATING_ERROR)
dialog_list.append({"id": id,"status":StatusEnum.INVALID.value})
DialogService.update_many_by_id(dialog_list)
return get_json_result(data=True)

View File

@ -23,30 +23,31 @@ import flask
from flask import request
from flask_login import current_user, login_required
from api import settings
from api.common.check_team_permission import check_kb_team_permission
from api.constants import FILE_NAME_LEN_LIMIT, IMG_BASE64_PREFIX
from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileSource, FileType, ParserType, TaskStatus
from api.db.db_models import File, Task
from api.db import VALID_FILE_TYPES, FileType
from api.db.db_models import Task
from api.db.services import duplicate_name
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import TaskService, cancel_all_task_of, queue_tasks, queue_dataflow
from api.db.services.task_service import TaskService, cancel_all_task_of
from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from common.misc_utils import get_uuid
from api.utils.api_utils import (
get_data_error_result,
get_json_result,
server_error_response,
validate_request,
)
from api.utils.file_utils import filename_type, get_project_base_directory, thumbnail
from api.utils.file_utils import filename_type, thumbnail
from common.file_utils import get_project_base_directory
from common.constants import RetCode, VALID_TASK_STATUS, ParserType, TaskStatus
from api.utils.web_utils import CONTENT_TYPE_MAP, html2pdf, is_valid_url
from deepdoc.parser.html_parser import RAGFlowHtmlParser
from rag.nlp import search, rag_tokenizer
from rag.utils.storage_factory import STORAGE_IMPL
from common import settings
@manager.route("/upload", methods=["POST"]) # noqa: F821
@ -55,29 +56,29 @@ from rag.utils.storage_factory import STORAGE_IMPL
def upload():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="No file part!", code=RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == "":
return get_json_result(data=False, message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="No file selected!", code=RetCode.ARGUMENT_ERROR)
if len(file_obj.filename.encode("utf-8")) > FILE_NAME_LEN_LIMIT:
return get_json_result(data=False, message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
if not check_kb_team_permission(kb, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
err, files = FileService.upload_document(kb, file_objs, current_user.id)
if err:
return get_json_result(data=files, message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=files, message="\n".join(err), code=RetCode.SERVER_ERROR)
if not files:
return get_json_result(data=files, message="There seems to be an issue with your file format. Please verify it is correct and not corrupted.", code=settings.RetCode.DATA_ERROR)
return get_json_result(data=files, message="There seems to be an issue with your file format. Please verify it is correct and not corrupted.", code=RetCode.DATA_ERROR)
files = [f[0] for f in files] # remove the blob
return get_json_result(data=files)
@ -89,16 +90,16 @@ def upload():
def web_crawl():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
name = request.form.get("name")
url = request.form.get("url")
if not is_valid_url(url):
return get_json_result(data=False, message="The URL format is invalid", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="The URL format is invalid", code=RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
if check_kb_team_permission(kb, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
blob = html2pdf(url)
if not blob:
@ -117,9 +118,9 @@ def web_crawl():
raise RuntimeError("This type of file has not been supported yet!")
location = filename
while STORAGE_IMPL.obj_exist(kb_id, location):
while settings.STORAGE_IMPL.obj_exist(kb_id, location):
location += "_"
STORAGE_IMPL.put(kb_id, location, blob)
settings.STORAGE_IMPL.put(kb_id, location, blob)
doc = {
"id": get_uuid(),
"kb_id": kb.id,
@ -155,12 +156,12 @@ def create():
req = request.json
kb_id = req["kb_id"]
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
if len(req["name"].encode("utf-8")) > FILE_NAME_LEN_LIMIT:
return get_json_result(data=False, message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=RetCode.ARGUMENT_ERROR)
if req["name"].strip() == "":
return get_json_result(data=False, message="File name can't be empty.", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="File name can't be empty.", code=RetCode.ARGUMENT_ERROR)
req["name"] = req["name"].strip()
try:
@ -210,13 +211,13 @@ def create():
def list_docs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
tenants = UserTenantService.query(user_id=current_user.id)
for tenant in tenants:
if KnowledgebaseService.query(tenant_id=tenant.tenant_id, id=kb_id):
break
else:
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=RetCode.OPERATING_ERROR)
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 0))
@ -272,13 +273,13 @@ def get_filter():
kb_id = req.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
tenants = UserTenantService.query(user_id=current_user.id)
for tenant in tenants:
if KnowledgebaseService.query(tenant_id=tenant.tenant_id, id=kb_id):
break
else:
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=RetCode.OPERATING_ERROR)
keywords = req.get("keywords", "")
@ -310,7 +311,7 @@ def docinfos():
doc_ids = req["doc_ids"]
for doc_id in doc_ids:
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
docs = DocumentService.get_by_ids(doc_ids)
return get_json_result(data=list(docs.dicts()))
@ -320,7 +321,7 @@ def docinfos():
def thumbnails():
doc_ids = request.args.getlist("doc_ids")
if not doc_ids:
return get_json_result(data=False, message='Lack of "Document ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "Document ID"', code=RetCode.ARGUMENT_ERROR)
try:
docs = DocumentService.get_thumbnails(doc_ids)
@ -343,7 +344,7 @@ def change_status():
status = str(req.get("status", ""))
if status not in ["0", "1"]:
return get_json_result(data=False, message='"Status" must be either 0 or 1!', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='"Status" must be either 0 or 1!', code=RetCode.ARGUMENT_ERROR)
result = {}
for doc_id in doc_ids:
@ -385,50 +386,12 @@ def rm():
for doc_id in doc_ids:
if not DocumentService.accessible4deletion(doc_id, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, current_user.id)
errors = ""
kb_table_num_map = {}
for doc_id in doc_ids:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
TaskService.filter_delete([Task.doc_id == doc_id])
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
deleted_file_count = 0
if f2d:
deleted_file_count = FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc_id)
if deleted_file_count > 0:
STORAGE_IMPL.rm(b, n)
doc_parser = doc.parser_id
if doc_parser == ParserType.TABLE:
kb_id = doc.kb_id
if kb_id not in kb_table_num_map:
counts = DocumentService.count_by_kb_id(kb_id=kb_id, keywords="", run_status=[TaskStatus.DONE], types=[])
kb_table_num_map[kb_id] = counts
kb_table_num_map[kb_id] -= 1
if kb_table_num_map[kb_id] <= 0:
KnowledgebaseService.delete_field_map(kb_id)
except Exception as e:
errors += str(e)
errors = FileService.delete_docs(doc_ids, current_user.id)
if errors:
return get_json_result(data=False, message=errors, code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=False, message=errors, code=RetCode.SERVER_ERROR)
return get_json_result(data=True)
@ -440,7 +403,7 @@ def run():
req = request.json
for doc_id in req["doc_ids"]:
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
try:
kb_table_num_map = {}
for id in req["doc_ids"]:
@ -473,23 +436,7 @@ def run():
if str(req["run"]) == TaskStatus.RUNNING.value:
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
doc_parser = doc.get("parser_id", ParserType.NAIVE)
if doc_parser == ParserType.TABLE:
kb_id = doc.get("kb_id")
if not kb_id:
continue
if kb_id not in kb_table_num_map:
count = DocumentService.count_by_kb_id(kb_id=kb_id, keywords="", run_status=[TaskStatus.DONE], types=[])
kb_table_num_map[kb_id] = count
if kb_table_num_map[kb_id] <= 0:
KnowledgebaseService.delete_field_map(kb_id)
if doc.get("pipeline_id", ""):
queue_dataflow(tenant_id, flow_id=doc["pipeline_id"], task_id=get_uuid(), doc_id=id)
else:
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name, 0)
DocumentService.run(tenant_id, doc, kb_table_num_map)
return get_json_result(data=True)
except Exception as e:
@ -502,15 +449,15 @@ def run():
def rename():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
return get_json_result(data=False, message="The extension of file can't be changed", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="The extension of file can't be changed", code=RetCode.ARGUMENT_ERROR)
if len(req["name"].encode("utf-8")) > FILE_NAME_LEN_LIMIT:
return get_json_result(data=False, message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=RetCode.ARGUMENT_ERROR)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
@ -553,7 +500,7 @@ def get(doc_id):
return get_data_error_result(message="Document not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
response = flask.make_response(STORAGE_IMPL.get(b, n))
response = flask.make_response(settings.STORAGE_IMPL.get(b, n))
ext = re.search(r"\.([^.]+)$", doc.name.lower())
ext = ext.group(1) if ext else None
@ -575,7 +522,7 @@ def change_parser():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
@ -629,7 +576,7 @@ def get_image(image_id):
if len(arr) != 2:
return get_data_error_result(message="Image not found.")
bkt, nm = image_id.split("-")
response = flask.make_response(STORAGE_IMPL.get(bkt, nm))
response = flask.make_response(settings.STORAGE_IMPL.get(bkt, nm))
response.headers.set("Content-Type", "image/JPEG")
return response
except Exception as e:
@ -641,12 +588,12 @@ def get_image(image_id):
@validate_request("conversation_id")
def upload_and_parse():
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="No file part!", code=RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == "":
return get_json_result(data=False, message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="No file selected!", code=RetCode.ARGUMENT_ERROR)
doc_ids = doc_upload_and_parse(request.form.get("conversation_id"), file_objs, current_user.id)
@ -659,7 +606,7 @@ def parse():
url = request.json.get("url") if request.json else ""
if url:
if not is_valid_url(url):
return get_json_result(data=False, message="The URL format is invalid", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="The URL format is invalid", code=RetCode.ARGUMENT_ERROR)
download_path = os.path.join(get_project_base_directory(), "logs/downloads")
os.makedirs(download_path, exist_ok=True)
from seleniumwire.webdriver import Chrome, ChromeOptions
@ -692,13 +639,13 @@ def parse():
r = re.search(r"filename=\"([^\"]+)\"", str(res_headers))
if not r or not r.group(1):
return get_json_result(data=False, message="Can't not identify downloaded file", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="Can't not identify downloaded file", code=RetCode.ARGUMENT_ERROR)
f = File(r.group(1), os.path.join(download_path, r.group(1)))
txt = FileService.parse_docs([f], current_user.id)
return get_json_result(data=txt)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="No file part!", code=RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist("file")
txt = FileService.parse_docs(file_objs, current_user.id)
@ -712,18 +659,18 @@ def parse():
def set_meta():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
try:
meta = json.loads(req["meta"])
if not isinstance(meta, dict):
return get_json_result(data=False, message="Only dictionary type supported.", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="Only dictionary type supported.", code=RetCode.ARGUMENT_ERROR)
for k, v in meta.items():
if not isinstance(v, str) and not isinstance(v, int) and not isinstance(v, float):
return get_json_result(data=False, message=f"The type is not supported: {v}", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message=f"The type is not supported: {v}", code=RetCode.ARGUMENT_ERROR)
except Exception as e:
return get_json_result(data=False, message=f"Json syntax error: {e}", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message=f"Json syntax error: {e}", code=RetCode.ARGUMENT_ERROR)
if not isinstance(meta, dict):
return get_json_result(data=False, message='Meta data should be in Json map format, like {"key": "value"}', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Meta data should be in Json map format, like {"key": "value"}', code=RetCode.ARGUMENT_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])

View File

@ -23,10 +23,10 @@ from flask import request
from flask_login import login_required, current_user
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from common.misc_utils import get_uuid
from common.constants import RetCode
from api.db import FileType
from api.db.services.document_service import DocumentService
from api import settings
from api.utils.api_utils import get_json_result
@ -108,7 +108,7 @@ def rm():
file_ids = req["file_ids"]
if not file_ids:
return get_json_result(
data=False, message='Lack of "Files ID"', code=settings.RetCode.ARGUMENT_ERROR)
data=False, message='Lack of "Files ID"', code=RetCode.ARGUMENT_ERROR)
try:
for file_id in file_ids:
informs = File2DocumentService.get_by_file_id(file_id)

View File

@ -26,15 +26,15 @@ from api.common.check_team_permission import check_file_team_permission
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.db import FileType, FileSource
from common.misc_utils import get_uuid
from common.constants import RetCode, FileSource
from api.db import FileType
from api.db.services import duplicate_name
from api.db.services.file_service import FileService
from api import settings
from api.utils.api_utils import get_json_result
from api.utils.file_utils import filename_type
from api.utils.web_utils import CONTENT_TYPE_MAP
from rag.utils.storage_factory import STORAGE_IMPL
from common import settings
@manager.route('/upload', methods=['POST']) # noqa: F821
@ -49,21 +49,21 @@ def upload():
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
data=False, message='No file part!', code=RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
data=False, message='No file selected!', code=RetCode.ARGUMENT_ERROR)
file_res = []
try:
e, pf_folder = FileService.get_by_id(pf_id)
if not e:
return get_data_error_result( message="Can't find this folder!")
for file_obj in file_objs:
MAX_FILE_NUM_PER_USER = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(current_user.id) >= MAX_FILE_NUM_PER_USER:
MAX_FILE_NUM_PER_USER: int = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
if 0 < MAX_FILE_NUM_PER_USER <= DocumentService.get_doc_count(current_user.id):
return get_data_error_result( message="Exceed the maximum file number of a free user!")
# split file name path
@ -95,14 +95,14 @@ def upload():
# file type
filetype = filename_type(file_obj_names[file_len - 1])
location = file_obj_names[file_len - 1]
while STORAGE_IMPL.obj_exist(last_folder.id, location):
while settings.STORAGE_IMPL.obj_exist(last_folder.id, location):
location += "_"
blob = file_obj.read()
filename = duplicate_name(
FileService.query,
name=file_obj_names[file_len - 1],
parent_id=last_folder.id)
STORAGE_IMPL.put(last_folder.id, location, blob)
settings.STORAGE_IMPL.put(last_folder.id, location, blob)
file = {
"id": get_uuid(),
"parent_id": last_folder.id,
@ -134,7 +134,7 @@ def create():
try:
if not FileService.is_parent_folder_exist(pf_id):
return get_json_result(
data=False, message="Parent Folder Doesn't Exist!", code=settings.RetCode.OPERATING_ERROR)
data=False, message="Parent Folder Doesn't Exist!", code=RetCode.OPERATING_ERROR)
if FileService.query(name=req["name"], parent_id=pf_id):
return get_data_error_result(
message="Duplicated folder name in the same folder.")
@ -245,7 +245,7 @@ def rm():
def _delete_single_file(file):
try:
if file.location:
STORAGE_IMPL.rm(file.parent_id, file.location)
settings.STORAGE_IMPL.rm(file.parent_id, file.location)
except Exception:
logging.exception(f"Fail to remove object: {file.parent_id}/{file.location}")
@ -279,7 +279,7 @@ def rm():
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")
if not check_file_team_permission(file, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
if file.source_type == FileSource.KNOWLEDGEBASE:
continue
@ -306,14 +306,14 @@ def rename():
if not e:
return get_data_error_result(message="File not found!")
if not check_file_team_permission(file, current_user.id):
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='No authorization.', code=RetCode.AUTHENTICATION_ERROR)
if file.type != FileType.FOLDER.value \
and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
file.name.lower()).suffix:
return get_json_result(
data=False,
message="The extension of file can't be changed",
code=settings.RetCode.ARGUMENT_ERROR)
code=RetCode.ARGUMENT_ERROR)
for file in FileService.query(name=req["name"], pf_id=file.parent_id):
if file.name == req["name"]:
return get_data_error_result(
@ -344,12 +344,12 @@ def get(file_id):
if not e:
return get_data_error_result(message="Document not found!")
if not check_file_team_permission(file, current_user.id):
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='No authorization.', code=RetCode.AUTHENTICATION_ERROR)
blob = STORAGE_IMPL.get(file.parent_id, file.location)
blob = settings.STORAGE_IMPL.get(file.parent_id, file.location)
if not blob:
b, n = File2DocumentService.get_storage_address(file_id=file_id)
blob = STORAGE_IMPL.get(b, n)
blob = settings.STORAGE_IMPL.get(b, n)
response = flask.make_response(blob)
ext = re.search(r"\.([^.]+)$", file.name.lower())
@ -376,7 +376,7 @@ def move():
ok, dest_folder = FileService.get_by_id(dest_parent_id)
if not ok or not dest_folder:
return get_data_error_result(message="Parent Folder not found!")
return get_data_error_result(message="Parent folder not found!")
files = FileService.get_by_ids(file_ids)
if not files:
@ -387,14 +387,14 @@ def move():
for file_id in file_ids:
file = files_dict.get(file_id)
if not file:
return get_data_error_result(message="File or Folder not found!")
return get_data_error_result(message="File or folder not found!")
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")
if not check_file_team_permission(file, current_user.id):
return get_json_result(
data=False,
message="No authorization.",
code=settings.RetCode.AUTHENTICATION_ERROR,
code=RetCode.AUTHENTICATION_ERROR,
)
def _move_entry_recursive(source_file_entry, dest_folder):
@ -428,11 +428,11 @@ def move():
filename = source_file_entry.name
new_location = filename
while STORAGE_IMPL.obj_exist(dest_folder.id, new_location):
while settings.STORAGE_IMPL.obj_exist(dest_folder.id, new_location):
new_location += "_"
try:
STORAGE_IMPL.move(old_parent_id, old_location, dest_folder.id, new_location)
settings.STORAGE_IMPL.move(old_parent_id, old_location, dest_folder.id, new_location)
except Exception as storage_err:
raise RuntimeError(f"Move file failed at storage layer: {str(storage_err)}")

View File

@ -15,11 +15,15 @@
#
import json
import logging
import random
from flask import request
from flask_login import login_required, current_user
import numpy as np
from api.db.services import duplicate_name
from api.db.services.connector_service import Connector2KbService
from api.db.services.llm_service import LLMBundle
from api.db.services.document_service import DocumentService, queue_raptor_o_graphrag_tasks
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
@ -27,81 +31,33 @@ from api.db.services.pipeline_operation_log_service import PipelineOperationLogS
from api.db.services.task_service import TaskService, GRAPH_RAPTOR_FAKE_DOC_ID
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import get_error_data_result, server_error_response, get_data_error_result, validate_request, not_allowed_parameters
from api.utils import get_uuid
from api.db import PipelineTaskType, StatusEnum, FileSource, VALID_FILE_TYPES, VALID_TASK_STATUS
from api.db import VALID_FILE_TYPES
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.db_models import File
from api.utils.api_utils import get_json_result
from api import settings
from rag.nlp import search
from api.constants import DATASET_NAME_LIMIT
from rag.settings import PAGERANK_FLD
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL
from rag.utils.doc_store_conn import OrderByExpr
from common.constants import RetCode, PipelineTaskType, StatusEnum, VALID_TASK_STATUS, FileSource, LLMType, PAGERANK_FLD
from common import settings
@manager.route('/create', methods=['post']) # noqa: F821
@login_required
@validate_request("name")
def create():
req = request.json
dataset_name = req["name"]
if not isinstance(dataset_name, str):
return get_data_error_result(message="Dataset name must be string.")
if dataset_name.strip() == "":
return get_data_error_result(message="Dataset name can't be empty.")
if len(dataset_name.encode("utf-8")) > DATASET_NAME_LIMIT:
return get_data_error_result(
message=f"Dataset name length is {len(dataset_name)} which is larger than {DATASET_NAME_LIMIT}")
req = KnowledgebaseService.create_with_name(
name = req.pop("name", None),
tenant_id = current_user.id,
parser_id = req.pop("parser_id", None),
**req
)
dataset_name = dataset_name.strip()
dataset_name = duplicate_name(
KnowledgebaseService.query,
name=dataset_name,
tenant_id=current_user.id,
status=StatusEnum.VALID.value)
try:
req["id"] = get_uuid()
req["name"] = dataset_name
req["tenant_id"] = current_user.id
req["created_by"] = current_user.id
if not req.get("parser_id"):
req["parser_id"] = "naive"
e, t = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Tenant not found.")
req["parser_config"] = {
"layout_recognize": "DeepDOC",
"chunk_token_num": 512,
"delimiter": "\n",
"auto_keywords": 0,
"auto_questions": 0,
"html4excel": False,
"topn_tags": 3,
"raptor": {
"use_raptor": True,
"prompt": "Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize.",
"max_token": 256,
"threshold": 0.1,
"max_cluster": 64,
"random_seed": 0
},
"graphrag": {
"use_graphrag": True,
"entity_types": [
"organization",
"person",
"geo",
"event",
"category"
],
"method": "light"
}
}
if not KnowledgebaseService.save(**req):
return get_data_error_result()
return get_json_result(data={"kb_id": req["id"]})
return get_json_result(data={"kb_id":req["id"]})
except Exception as e:
return server_error_response(e)
@ -125,14 +81,14 @@ def update():
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
try:
if not KnowledgebaseService.query(
created_by=current_user.id, id=req["kb_id"]):
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
code=RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(req["kb_id"])
if not e:
@ -146,6 +102,10 @@ def update():
message="Duplicated knowledgebase name.")
del req["kb_id"]
connectors = []
if "connectors" in req:
connectors = req["connectors"]
del req["connectors"]
if not KnowledgebaseService.update_by_id(kb.id, req):
return get_data_error_result()
@ -162,6 +122,9 @@ def update():
if not e:
return get_data_error_result(
message="Database error (Knowledgebase rename)!")
errors = Connector2KbService.link_connectors(kb.id, [conn["id"] for conn in connectors], current_user.id)
if errors:
logging.error("Link KB errors: ", errors)
kb = kb.to_dict()
kb.update(req)
@ -183,12 +146,14 @@ def detail():
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
code=RetCode.OPERATING_ERROR)
kb = KnowledgebaseService.get_detail(kb_id)
if not kb:
return get_data_error_result(
message="Can't find this knowledgebase!")
kb["size"] = DocumentService.get_total_size_by_kb_id(kb_id=kb["id"],keywords="", run_status=[], types=[])
kb["connectors"] = Connector2KbService.list_connectors(kb_id)
for key in ["graphrag_task_finish_at", "raptor_task_finish_at", "mindmap_task_finish_at"]:
if finish_at := kb.get(key):
kb[key] = finish_at.strftime("%Y-%m-%d %H:%M:%S")
@ -241,7 +206,7 @@ def rm():
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
try:
kbs = KnowledgebaseService.query(
@ -249,7 +214,7 @@ def rm():
if not kbs:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
code=RetCode.OPERATING_ERROR)
for doc in DocumentService.query(kb_id=req["kb_id"]):
if not DocumentService.remove_document(doc, kbs[0].tenant_id):
@ -267,8 +232,8 @@ def rm():
for kb in kbs:
settings.docStoreConn.delete({"kb_id": kb.id}, search.index_name(kb.tenant_id), kb.id)
settings.docStoreConn.deleteIdx(search.index_name(kb.tenant_id), kb.id)
if hasattr(STORAGE_IMPL, 'remove_bucket'):
STORAGE_IMPL.remove_bucket(kb.id)
if hasattr(settings.STORAGE_IMPL, 'remove_bucket'):
settings.STORAGE_IMPL.remove_bucket(kb.id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -281,7 +246,7 @@ def list_tags(kb_id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
@ -300,7 +265,7 @@ def list_tags_from_kbs():
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
@ -318,7 +283,7 @@ def rm_tags(kb_id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
e, kb = KnowledgebaseService.get_by_id(kb_id)
@ -338,7 +303,7 @@ def rename_tags(kb_id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
e, kb = KnowledgebaseService.get_by_id(kb_id)
@ -356,7 +321,7 @@ def knowledge_graph(kb_id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(kb_id)
req = {
@ -396,7 +361,7 @@ def delete_knowledge_graph(kb_id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(kb_id)
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
@ -413,7 +378,7 @@ def get_meta():
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=DocumentService.get_meta_by_kbs(kb_ids))
@ -426,7 +391,7 @@ def get_basic_info():
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
basic_info = DocumentService.knowledgebase_basic_info(kb_id)
@ -439,7 +404,7 @@ def get_basic_info():
def list_pipeline_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
keywords = request.args.get("keywords", "")
@ -483,7 +448,7 @@ def list_pipeline_logs():
def list_pipeline_dataset_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
@ -517,7 +482,7 @@ def list_pipeline_dataset_logs():
def delete_pipeline_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
req = request.get_json()
log_ids = req.get("log_ids", [])
@ -532,7 +497,7 @@ def delete_pipeline_logs():
def pipeline_log_detail():
log_id = request.args.get("log_id")
if not log_id:
return get_json_result(data=False, message='Lack of "Pipeline log ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "Pipeline log ID"', code=RetCode.ARGUMENT_ERROR)
ok, log = PipelineOperationLogService.get_by_id(log_id)
if not ok:
@ -605,7 +570,7 @@ def trace_graphrag():
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_error_data_result(message="GraphRAG Task Not Found or Error Occurred")
return get_json_result(data={})
return get_json_result(data=task.to_dict())
@ -762,29 +727,173 @@ def delete_kb_task():
if not pipeline_task_type or pipeline_task_type not in [PipelineTaskType.GRAPH_RAG, PipelineTaskType.RAPTOR, PipelineTaskType.MINDMAP]:
return get_error_data_result(message="Invalid task type")
def cancel_task(task_id):
REDIS_CONN.set(f"{task_id}-cancel", "x")
match pipeline_task_type:
case PipelineTaskType.GRAPH_RAG:
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
kb_task_id_field = "graphrag_task_id"
task_id = kb.graphrag_task_id
kb_task_finish_at = "graphrag_task_finish_at"
cancel_task(task_id)
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
case PipelineTaskType.RAPTOR:
kb_task_id_field = "raptor_task_id"
task_id = kb.raptor_task_id
kb_task_finish_at = "raptor_task_finish_at"
cancel_task(task_id)
settings.docStoreConn.delete({"raptor_kwd": ["raptor"]}, search.index_name(kb.tenant_id), kb_id)
case PipelineTaskType.MINDMAP:
kb_task_id_field = "mindmap_task_id"
task_id = kb.mindmap_task_id
kb_task_finish_at = "mindmap_task_finish_at"
cancel_task(task_id)
case _:
return get_error_data_result(message="Internal Error: Invalid task type")
def cancel_task(task_id):
REDIS_CONN.set(f"{task_id}-cancel", "x")
cancel_task(task_id)
ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id_field: "", kb_task_finish_at: None})
if not ok:
return server_error_response(f"Internal error: cannot delete task {pipeline_task_type}")
return get_json_result(data=True)
@manager.route("/check_embedding", methods=["post"]) # noqa: F821
@login_required
def check_embedding():
def _guess_vec_field(src: dict) -> str | None:
for k in src or {}:
if k.endswith("_vec"):
return k
return None
def _as_float_vec(v):
if v is None:
return []
if isinstance(v, str):
return [float(x) for x in v.split("\t") if x != ""]
if isinstance(v, (list, tuple, np.ndarray)):
return [float(x) for x in v]
return []
def _to_1d(x):
a = np.asarray(x, dtype=np.float32)
return a.reshape(-1)
def _cos_sim(a, b, eps=1e-12):
a = _to_1d(a)
b = _to_1d(b)
na = np.linalg.norm(a)
nb = np.linalg.norm(b)
if na < eps or nb < eps:
return 0.0
return float(np.dot(a, b) / (na * nb))
def sample_random_chunks_with_vectors(
docStoreConn,
tenant_id: str,
kb_id: str,
n: int = 5,
base_fields=("docnm_kwd","doc_id","content_with_weight","page_num_int","position_int","top_int"),
):
index_nm = search.index_name(tenant_id)
res0 = docStoreConn.search(
selectFields=[], highlightFields=[],
condition={"kb_id": kb_id, "available_int": 1},
matchExprs=[], orderBy=OrderByExpr(),
offset=0, limit=1,
indexNames=index_nm, knowledgebaseIds=[kb_id]
)
total = docStoreConn.getTotal(res0)
if total <= 0:
return []
n = min(n, total)
offsets = sorted(random.sample(range(total), n))
out = []
for off in offsets:
res1 = docStoreConn.search(
selectFields=list(base_fields),
highlightFields=[],
condition={"kb_id": kb_id, "available_int": 1},
matchExprs=[], orderBy=OrderByExpr(),
offset=off, limit=1,
indexNames=index_nm, knowledgebaseIds=[kb_id]
)
ids = docStoreConn.getChunkIds(res1)
if not ids:
continue
cid = ids[0]
full_doc = docStoreConn.get(cid, index_nm, [kb_id]) or {}
vec_field = _guess_vec_field(full_doc)
vec = _as_float_vec(full_doc.get(vec_field))
out.append({
"chunk_id": cid,
"kb_id": kb_id,
"doc_id": full_doc.get("doc_id"),
"doc_name": full_doc.get("docnm_kwd"),
"vector_field": vec_field,
"vector_dim": len(vec),
"vector": vec,
"page_num_int": full_doc.get("page_num_int"),
"position_int": full_doc.get("position_int"),
"top_int": full_doc.get("top_int"),
"content_with_weight": full_doc.get("content_with_weight") or "",
})
return out
req = request.json
kb_id = req.get("kb_id", "")
embd_id = req.get("embd_id", "")
n = int(req.get("check_num", 5))
_, kb = KnowledgebaseService.get_by_id(kb_id)
tenant_id = kb.tenant_id
emb_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
samples = sample_random_chunks_with_vectors(settings.docStoreConn, tenant_id=tenant_id, kb_id=kb_id, n=n)
results, eff_sims = [], []
for ck in samples:
txt = (ck.get("content_with_weight") or "").strip()
if not txt:
results.append({"chunk_id": ck["chunk_id"], "reason": "no_text"})
continue
if not ck.get("vector"):
results.append({"chunk_id": ck["chunk_id"], "reason": "no_stored_vector"})
continue
try:
qv, _ = emb_mdl.encode_queries(txt)
sim = _cos_sim(qv, ck["vector"])
except Exception:
return get_error_data_result(message="embedding failure")
eff_sims.append(sim)
results.append({
"chunk_id": ck["chunk_id"],
"doc_id": ck["doc_id"],
"doc_name": ck["doc_name"],
"vector_field": ck["vector_field"],
"vector_dim": ck["vector_dim"],
"cos_sim": round(sim, 6),
})
summary = {
"kb_id": kb_id,
"model": embd_id,
"sampled": len(samples),
"valid": len(eff_sims),
"avg_cos_sim": round(float(np.mean(eff_sims)) if eff_sims else 0.0, 6),
"min_cos_sim": round(float(np.min(eff_sims)) if eff_sims else 0.0, 6),
"max_cos_sim": round(float(np.max(eff_sims)) if eff_sims else 0.0, 6),
}
if summary["avg_cos_sim"] > 0.99:
return get_json_result(data={"summary": summary, "results": results})
return get_json_result(code=RetCode.NOT_EFFECTIVE, message="failed", data={"summary": summary, "results": results})

View File

@ -15,24 +15,24 @@
#
import logging
import json
import os
from flask import request
from flask_login import login_required, current_user
from api.db.services.tenant_llm_service import LLMFactoriesService, TenantLLMService
from api.db.services.llm_service import LLMService
from api import settings
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db import StatusEnum, LLMType
from common.constants import StatusEnum, LLMType
from api.db.db_models import TenantLLM
from api.utils.api_utils import get_json_result
from api.utils.base64_image import test_image
from api.utils.api_utils import get_json_result, get_allowed_llm_factories
from rag.utils.base64_image import test_image
from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
@manager.route('/factories', methods=['GET']) # noqa: F821
@manager.route("/factories", methods=["GET"]) # noqa: F821
@login_required
def factories():
try:
fac = LLMFactoriesService.get_all()
fac = get_allowed_llm_factories()
fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
llms = LLMService.get_all()
mdl_types = {}
@ -43,14 +43,13 @@ def factories():
mdl_types[m.fid] = set([])
mdl_types[m.fid].add(m.model_type)
for f in fac:
f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK, LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
return get_json_result(data=fac)
except Exception as e:
return server_error_response(e)
@manager.route('/set_api_key', methods=['POST']) # noqa: F821
@manager.route("/set_api_key", methods=["POST"]) # noqa: F821
@login_required
@validate_request("llm_factory", "api_key")
def set_api_key():
@ -63,8 +62,7 @@ def set_api_key():
for llm in LLMService.query(fid=factory):
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
mdl = EmbeddingModel[factory](req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0:
@ -74,52 +72,40 @@ def set_api_key():
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"), **extra)
mdl = ChatModel[factory](req["api_key"], llm.llm_name, base_url=req.get("base_url"), **extra)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
{"temperature": 0.9, 'max_tokens': 50})
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {"temperature": 0.9, "max_tokens": 50})
if m.find("**ERROR**") >= 0:
raise Exception(m)
chat_passed = True
except Exception as e:
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
e)
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(e)
elif not rerank_passed and llm.model_type == LLMType.RERANK:
assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
mdl = RerankModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
mdl = RerankModel[factory](req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
if len(arr) == 0 or tc == 0:
raise Exception("Fail")
rerank_passed = True
logging.debug(f'passed model rerank {llm.llm_name}')
logging.debug(f"passed model rerank {llm.llm_name}")
except Exception as e:
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
e)
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(e)
if any([embd_passed, chat_passed, rerank_passed]):
msg = ''
msg = ""
break
if msg:
return get_data_error_result(message=msg)
llm_config = {
"api_key": req["api_key"],
"api_base": req.get("base_url", "")
}
llm_config = {"api_key": req["api_key"], "api_base": req.get("base_url", "")}
for n in ["model_type", "llm_name"]:
if n in req:
llm_config[n] = req[n]
for llm in LLMService.query(fid=factory):
llm_config["max_tokens"]=llm.max_tokens
if not TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id,
TenantLLM.llm_factory == factory,
TenantLLM.llm_name == llm.llm_name],
llm_config):
llm_config["max_tokens"] = llm.max_tokens
if not TenantLLMService.filter_update([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm.llm_name], llm_config):
TenantLLMService.save(
tenant_id=current_user.id,
llm_factory=factory,
@ -127,13 +113,13 @@ def set_api_key():
model_type=llm.model_type,
api_key=llm_config["api_key"],
api_base=llm_config["api_base"],
max_tokens=llm_config["max_tokens"]
max_tokens=llm_config["max_tokens"],
)
return get_json_result(data=True)
@manager.route('/add_llm', methods=['POST']) # noqa: F821
@manager.route("/add_llm", methods=["POST"]) # noqa: F821
@login_required
@validate_request("llm_factory")
def add_llm():
@ -142,6 +128,9 @@ def add_llm():
api_key = req.get("api_key", "x")
llm_name = req.get("llm_name")
if factory not in [f.name for f in get_allowed_llm_factories()]:
return get_data_error_result(message=f"LLM factory {factory} is not allowed")
def apikey_json(keys):
nonlocal req
return json.dumps({k: req.get(k, "") for k in keys})
@ -204,7 +193,7 @@ def add_llm():
"llm_name": llm_name,
"api_base": req.get("api_base", ""),
"api_key": api_key,
"max_tokens": req.get("max_tokens")
"max_tokens": req.get("max_tokens"),
}
msg = ""
@ -212,10 +201,7 @@ def add_llm():
extra = {"provider": factory}
if llm["model_type"] == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
key=llm['api_key'],
model_name=mdl_nm,
base_url=llm["api_base"])
mdl = EmbeddingModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0:
@ -225,54 +211,41 @@ def add_llm():
elif llm["model_type"] == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
key=llm['api_key'],
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"],
**extra,
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
"temperature": 0.9})
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {"temperature": 0.9})
if not tc and m.find("**ERROR**:") >= 0:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
e)
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.RERANK:
assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
try:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
mdl = RerankModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
arr, tc = mdl.similarity("Hello~ RAGFlower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0:
raise Exception("Not known.")
except KeyError:
msg += f"{factory} dose not support this model({factory}/{mdl_nm})"
except Exception as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
e)
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
mdl = CvModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
mdl = CvModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
try:
image_data = test_image
m, tc = mdl.describe(image_data)
if not m and not tc:
if not tc and m.find("**ERROR**:") >= 0:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.TTS:
assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
mdl = TTSModel[factory](
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)
mdl = TTSModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
try:
for resp in mdl.tts("Hello~ RAGFlower!"):
pass
@ -285,40 +258,46 @@ def add_llm():
if msg:
return get_data_error_result(message=msg)
if not TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory,
TenantLLM.llm_name == llm["llm_name"]], llm):
if not TenantLLMService.filter_update([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
TenantLLMService.save(**llm)
return get_json_result(data=True)
@manager.route('/delete_llm', methods=['POST']) # noqa: F821
@manager.route("/delete_llm", methods=["POST"]) # noqa: F821
@login_required
@validate_request("llm_factory", "llm_name")
def delete_llm():
req = request.json
TenantLLMService.filter_delete(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"],
TenantLLM.llm_name == req["llm_name"]])
TenantLLMService.filter_delete([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
return get_json_result(data=True)
@manager.route('/delete_factory', methods=['POST']) # noqa: F821
@manager.route("/enable_llm", methods=["POST"]) # noqa: F821
@login_required
@validate_request("llm_factory", "llm_name")
def enable_llm():
req = request.json
TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]], {"status": str(req.get("status", "1"))}
)
return get_json_result(data=True)
@manager.route("/delete_factory", methods=["POST"]) # noqa: F821
@login_required
@validate_request("llm_factory")
def delete_factory():
req = request.json
TenantLLMService.filter_delete(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
TenantLLMService.filter_delete([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
return get_json_result(data=True)
@manager.route('/my_llms', methods=['GET']) # noqa: F821
@manager.route("/my_llms", methods=["GET"]) # noqa: F821
@login_required
def my_llms():
try:
include_details = request.args.get('include_details', 'false').lower() == 'true'
include_details = request.args.get("include_details", "false").lower() == "true"
if include_details:
res = {}
@ -334,51 +313,46 @@ def my_llms():
break
if o_dict["llm_factory"] not in res:
res[o_dict["llm_factory"]] = {
"tags": factory_tags,
"llm": []
}
res[o_dict["llm_factory"]] = {"tags": factory_tags, "llm": []}
res[o_dict["llm_factory"]]["llm"].append({
"type": o_dict["model_type"],
"name": o_dict["llm_name"],
"used_token": o_dict["used_tokens"],
"api_base": o_dict["api_base"] or "",
"max_tokens": o_dict["max_tokens"] or 8192
})
res[o_dict["llm_factory"]]["llm"].append(
{
"type": o_dict["model_type"],
"name": o_dict["llm_name"],
"used_token": o_dict["used_tokens"],
"api_base": o_dict["api_base"] or "",
"max_tokens": o_dict["max_tokens"] or 8192,
"status": o_dict["status"] or "1",
}
)
else:
res = {}
for o in TenantLLMService.get_my_llms(current_user.id):
if o["llm_factory"] not in res:
res[o["llm_factory"]] = {
"tags": o["tags"],
"llm": []
}
res[o["llm_factory"]]["llm"].append({
"type": o["model_type"],
"name": o["llm_name"],
"used_token": o["used_tokens"]
})
res[o["llm_factory"]] = {"tags": o["tags"], "llm": []}
res[o["llm_factory"]]["llm"].append({"type": o["model_type"], "name": o["llm_name"], "used_token": o["used_tokens"], "status": o["status"]})
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET']) # noqa: F821
@manager.route("/list", methods=["GET"]) # noqa: F821
@login_required
def list_app():
self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
self_deployed = ["FastEmbed", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
weighted = []
model_type = request.args.get("model_type")
try:
objs = TenantLLMService.query(tenant_id=current_user.id)
facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key and o.status == StatusEnum.VALID.value])
status = {(o.llm_name + "@" + o.llm_factory) for o in objs if o.status == StatusEnum.VALID.value}
llms = LLMService.get_all()
llms = [m.to_dict()
for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted and (m.llm_name + "@" + m.fid) in status]
for m in llms:
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
if "tei-" in os.getenv("COMPOSE_PROFILES", "") and m["model_type"] == LLMType.EMBEDDING and m["fid"] == "Builtin" and m["llm_name"] == os.getenv("TEI_MODEL", ""):
m["available"] = True
llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
for o in objs:

View File

@ -16,13 +16,12 @@
from flask import Response, request
from flask_login import current_user, login_required
from api.db import VALID_MCP_SERVER_TYPES
from api.db.db_models import MCPServer
from api.db.services.mcp_server_service import MCPServerService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from common.constants import RetCode, VALID_MCP_SERVER_TYPES
from api.utils import get_uuid
from common.misc_utils import get_uuid
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request, \
get_mcp_tools
from api.utils.web_utils import get_float, safe_json_parse

View File

@ -15,15 +15,19 @@
#
import json
import logging
import time
from typing import Any, cast
from agent.canvas import Canvas
from api.db import CanvasCategory
from api.db.services.canvas_service import UserCanvasService
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.settings import RetCode
from api.utils import get_uuid
from common.constants import RetCode
from common.misc_utils import get_uuid
from api.utils.api_utils import get_data_error_result, get_error_data_result, get_json_result, token_required
from api.utils.api_utils import get_result
from flask import request
from flask import request, Response
@manager.route('/agents', methods=['GET']) # noqa: F821
@ -127,3 +131,49 @@ def delete_agent(tenant_id: str, agent_id: str):
UserCanvasService.delete_by_id(agent_id)
return get_json_result(data=True)
@manager.route('/webhook/<agent_id>', methods=['POST']) # noqa: F821
@token_required
def webhook(tenant_id: str, agent_id: str):
req = request.json
if not UserCanvasService.accessible(req["id"], tenant_id):
return get_json_result(
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
e, cvs = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
if cvs.canvas_category == CanvasCategory.DataFlow:
return get_data_error_result(message="Dataflow can not be triggered by webhook.")
try:
canvas = Canvas(cvs.dsl, tenant_id, agent_id)
except Exception as e:
return get_json_result(
data=False, message=str(e),
code=RetCode.EXCEPTION_ERROR)
def sse():
nonlocal canvas
try:
for ans in canvas.run(query=req.get("query", ""), files=req.get("files", []), user_id=req.get("user_id", tenant_id), webhook_payload=req):
yield "data:" + json.dumps(ans, ensure_ascii=False) + "\n\n"
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
except Exception as e:
logging.exception(e)
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": False}, ensure_ascii=False) + "\n\n"
resp = Response(sse(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp

View File

@ -17,13 +17,12 @@ import logging
from flask import request
from api import settings
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_service import TenantService
from api.utils import get_uuid
from common.misc_utils import get_uuid
from common.constants import RetCode, StatusEnum
from api.utils.api_utils import check_duplicate_ids, get_error_data_result, get_result, token_required
@ -45,7 +44,7 @@ def create(tenant_id):
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) > 1:
return get_result(message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_result(message='Datasets use different embedding models."', code=RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
# llm
llm = req.get("llm")
@ -167,8 +166,10 @@ def update(tenant_id, chat_id):
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) > 1:
return get_result(message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_result(message='Datasets use different embedding models."', code=RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
else:
req["kb_ids"] = []
llm = req.get("llm")
if llm:
if "model_name" in llm:

View File

@ -20,20 +20,17 @@ import os
import json
from flask import request
from peewee import OperationalError
from api import settings
from api.db import FileSource, StatusEnum
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService
from api.utils import get_uuid
from common.constants import RetCode, FileSource, StatusEnum
from api.utils.api_utils import (
deep_merge,
get_error_argument_result,
get_error_data_result,
get_error_operating_result,
get_error_permission_result,
get_parser_config,
get_result,
@ -50,7 +47,8 @@ from api.utils.validation_utils import (
validate_and_parse_request_args,
)
from rag.nlp import search
from rag.settings import PAGERANK_FLD
from common.constants import PAGERANK_FLD
from common import settings
@manager.route("/datasets", methods=["POST"]) # noqa: F821
@ -80,29 +78,28 @@ def create(tenant_id):
properties:
name:
type: string
description: Name of the dataset.
description: Dataset name (required).
avatar:
type: string
description: Base64 encoding of the avatar.
description: Optional base64-encoded avatar image.
description:
type: string
description: Description of the dataset.
description: Optional dataset description.
embedding_model:
type: string
description: Embedding model Name.
description: Optional embedding model name; if omitted, the tenant's default embedding model is used.
permission:
type: string
enum: ['me', 'team']
description: Dataset permission.
description: Visibility of the dataset (private to me or shared with team).
chunk_method:
type: string
enum: ["naive", "book", "email", "laws", "manual", "one", "paper",
"picture", "presentation", "qa", "table", "tag"
]
description: Chunking method.
"picture", "presentation", "qa", "table", "tag"]
description: Chunking method; if omitted, defaults to "naive".
parser_config:
type: object
description: Parser configuration.
description: Optional parser configuration; server-side defaults will be applied.
responses:
200:
description: Successful operation.
@ -117,44 +114,43 @@ def create(tenant_id):
# |----------------|-------------|
# | embedding_model| embd_id |
# | chunk_method | parser_id |
req, err = validate_and_parse_json_request(request, CreateDatasetReq)
if err is not None:
return get_error_argument_result(err)
req = KnowledgebaseService.create_with_name(
name = req.pop("name", None),
tenant_id = tenant_id,
parser_id = req.pop("parser_id", None),
**req
)
# Insert embedding model(embd id)
ok, t = TenantService.get_by_id(tenant_id)
if not ok:
return get_error_permission_result(message="Tenant not found")
if not req.get("embd_id"):
req["embd_id"] = t.embd_id
else:
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
if not ok:
return err
try:
if KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_operating_result(message=f"Dataset name '{req['name']}' already exists")
req["parser_config"] = get_parser_config(req["parser_id"], req["parser_config"])
req["id"] = get_uuid()
req["tenant_id"] = tenant_id
req["created_by"] = tenant_id
ok, t = TenantService.get_by_id(tenant_id)
if not ok:
return get_error_permission_result(message="Tenant not found")
if not req.get("embd_id"):
req["embd_id"] = t.embd_id
else:
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
if not ok:
return err
if not KnowledgebaseService.save(**req):
return get_error_data_result(message="Create dataset error.(Database error)")
ok, k = KnowledgebaseService.get_by_id(req["id"])
if not ok:
return get_error_data_result(message="Dataset created failed")
response_data = remap_dictionary_keys(k.to_dict())
return get_result(data=response_data)
except OperationalError as e:
if not KnowledgebaseService.save(**req):
return get_error_data_result()
ok, k = KnowledgebaseService.get_by_id(req["id"])
if not ok:
return get_error_data_result(message="Dataset created failed")
response_data = remap_dictionary_keys(k.to_dict())
return get_result(data=response_data)
except Exception as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
@manager.route("/datasets", methods=["DELETE"]) # noqa: F821
@token_required
def delete(tenant_id):
@ -488,7 +484,7 @@ def knowledge_graph(tenant_id, dataset_id):
return get_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(dataset_id)
req = {
@ -529,7 +525,7 @@ def delete_knowledge_graph(tenant_id, dataset_id):
return get_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
code=RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(dataset_id)
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]},

View File

@ -17,15 +17,14 @@ import logging
from flask import request, jsonify
from api.db import LLMType
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import validate_request, build_error_result, apikey_required
from rag.app.tag import label_question
from api.db.services.dialog_service import meta_filter, convert_conditions
from common.constants import RetCode, LLMType
from common import settings
@manager.route('/dify/retrieval', methods=['POST']) # noqa: F821
@apikey_required
@ -129,7 +128,7 @@ def retrieval(tenant_id):
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return build_error_result(message="Knowledgebase not found!", code=settings.RetCode.NOT_FOUND)
return build_error_result(message="Knowledgebase not found!", code=RetCode.NOT_FOUND)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
print(metadata_condition)
@ -179,7 +178,7 @@ def retrieval(tenant_id):
if str(e).find("not_found") > 0:
return build_error_result(
message='No chunk found! Check the chunk status please!',
code=settings.RetCode.NOT_FOUND
code=RetCode.NOT_FOUND
)
logging.exception(e)
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)
return build_error_result(message=str(e), code=RetCode.SERVER_ERROR)

View File

@ -24,9 +24,8 @@ from flask import request, send_file
from peewee import OperationalError
from pydantic import BaseModel, Field, validator
from api import settings
from api.constants import FILE_NAME_LEN_LIMIT
from api.db import FileSource, FileType, LLMType, ParserType, TaskStatus
from api.db import FileType
from api.db.db_models import File, Task
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
@ -41,8 +40,9 @@ from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question
from rag.nlp import rag_tokenizer, search
from rag.prompts.generator import cross_languages, keyword_extraction
from rag.utils import rmSpace
from rag.utils.storage_factory import STORAGE_IMPL
from common.string_utils import remove_redundant_spaces
from common.constants import RetCode, LLMType, ParserType, TaskStatus, FileSource
from common import settings
MAXIMUM_OF_UPLOADING_FILES = 256
@ -127,13 +127,13 @@ def upload(dataset_id, tenant_id):
description: Processing status.
"""
if "file" not in request.files:
return get_error_data_result(message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
return get_error_data_result(message="No file part!", code=RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == "":
return get_result(message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR)
return get_result(message="No file selected!", code=RetCode.ARGUMENT_ERROR)
if len(file_obj.filename.encode("utf-8")) > FILE_NAME_LEN_LIMIT:
return get_result(message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=settings.RetCode.ARGUMENT_ERROR)
return get_result(message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=RetCode.ARGUMENT_ERROR)
"""
# total size
total_size = 0
@ -145,7 +145,7 @@ def upload(dataset_id, tenant_id):
if total_size > MAX_TOTAL_FILE_SIZE:
return get_result(
message=f"Total file size exceeds 10MB limit! ({total_size / (1024 * 1024):.2f} MB)",
code=settings.RetCode.ARGUMENT_ERROR,
code=RetCode.ARGUMENT_ERROR,
)
"""
e, kb = KnowledgebaseService.get_by_id(dataset_id)
@ -153,7 +153,7 @@ def upload(dataset_id, tenant_id):
raise LookupError(f"Can't find the dataset with ID {dataset_id}!")
err, files = FileService.upload_document(kb, file_objs, tenant_id)
if err:
return get_result(message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
return get_result(message="\n".join(err), code=RetCode.SERVER_ERROR)
# rename key's name
renamed_doc_list = []
for file in files:
@ -253,12 +253,12 @@ def update_doc(tenant_id, dataset_id, document_id):
if len(req["name"].encode("utf-8")) > FILE_NAME_LEN_LIMIT:
return get_result(
message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.",
code=settings.RetCode.ARGUMENT_ERROR,
code=RetCode.ARGUMENT_ERROR,
)
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
return get_result(
message="The extension of file can't be changed",
code=settings.RetCode.ARGUMENT_ERROR,
code=RetCode.ARGUMENT_ERROR,
)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
@ -400,9 +400,9 @@ def download(tenant_id, dataset_id, document_id):
return get_error_data_result(message=f"The dataset not own the document {document_id}.")
# The process of downloading
doc_id, doc_location = File2DocumentService.get_storage_address(doc_id=document_id) # minio address
file_stream = STORAGE_IMPL.get(doc_id, doc_location)
file_stream = settings.STORAGE_IMPL.get(doc_id, doc_location)
if not file_stream:
return construct_json_result(message="This file is empty.", code=settings.RetCode.DATA_ERROR)
return construct_json_result(message="This file is empty.", code=RetCode.DATA_ERROR)
file = BytesIO(file_stream)
# Use send_file with a proper filename and MIME type
return send_file(
@ -670,16 +670,16 @@ def delete(tenant_id, dataset_id):
)
File2DocumentService.delete_by_document_id(doc_id)
STORAGE_IMPL.rm(b, n)
settings.STORAGE_IMPL.rm(b, n)
success_count += 1
except Exception as e:
errors += str(e)
if not_found:
return get_result(message=f"Documents not found: {not_found}", code=settings.RetCode.DATA_ERROR)
return get_result(message=f"Documents not found: {not_found}", code=RetCode.DATA_ERROR)
if errors:
return get_result(message=errors, code=settings.RetCode.SERVER_ERROR)
return get_result(message=errors, code=RetCode.SERVER_ERROR)
if duplicate_messages:
if success_count > 0:
@ -763,7 +763,7 @@ def parse(tenant_id, dataset_id):
queue_tasks(doc, bucket, name, 0)
success_count += 1
if not_found:
return get_result(message=f"Documents not found: {not_found}", code=settings.RetCode.DATA_ERROR)
return get_result(message=f"Documents not found: {not_found}", code=RetCode.DATA_ERROR)
if duplicate_messages:
if success_count > 0:
return get_result(
@ -969,7 +969,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
if req.get("id"):
chunk = settings.docStoreConn.get(req.get("id"), search.index_name(tenant_id), [dataset_id])
if not chunk:
return get_result(message=f"Chunk not found: {dataset_id}/{req.get('id')}", code=settings.RetCode.NOT_FOUND)
return get_result(message=f"Chunk not found: {dataset_id}/{req.get('id')}", code=RetCode.NOT_FOUND)
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
@ -1000,7 +1000,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
for id in sres.ids:
d = {
"id": id,
"content": (rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[id].get("content_with_weight", "")),
"content": (remove_redundant_spaces(sres.highlight[id]) if question and id in sres.highlight else sres.field[id].get("content_with_weight", "")),
"document_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_keywords": sres.field[id].get("important_kwd", []),
@ -1301,6 +1301,10 @@ def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["questions"]))
if "available" in req:
d["available_int"] = int(req["available"])
if "positions" in req:
if not isinstance(req["positions"], list):
return get_error_data_result("`positions` should be a list")
d["position_int"] = req["positions"]
embd_id = DocumentService.get_embd_id(document_id)
embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value, embd_id)
if doc.parser_id == ParserType.QA:
@ -1414,7 +1418,7 @@ def retrieval_test(tenant_id):
if len(embd_nms) != 1:
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.DATA_ERROR,
code=RetCode.DATA_ERROR,
)
if "question" not in req:
return get_error_data_result("`question` is required.")
@ -1505,6 +1509,6 @@ def retrieval_test(tenant_id):
if str(e).find("not_found") > 0:
return get_result(
message="No chunk found! Check the chunk status please!",
code=settings.RetCode.DATA_ERROR,
code=RetCode.DATA_ERROR,
)
return server_error_response(e)

View File

@ -26,13 +26,13 @@ from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import server_error_response, token_required
from api.utils import get_uuid
from common.misc_utils import get_uuid
from api.db import FileType
from api.db.services import duplicate_name
from api.db.services.file_service import FileService
from api.utils.api_utils import get_json_result
from api.utils.file_utils import filename_type
from rag.utils.storage_factory import STORAGE_IMPL
from common import settings
@manager.route('/file/upload', methods=['POST']) # noqa: F821
@ -126,7 +126,7 @@ def upload(tenant_id):
filetype = filename_type(file_obj_names[file_len - 1])
location = file_obj_names[file_len - 1]
while STORAGE_IMPL.obj_exist(last_folder.id, location):
while settings.STORAGE_IMPL.obj_exist(last_folder.id, location):
location += "_"
blob = file_obj.read()
filename = duplicate_name(FileService.query, name=file_obj_names[file_len - 1], parent_id=last_folder.id)
@ -142,7 +142,7 @@ def upload(tenant_id):
"size": len(blob),
}
file = FileService.insert(file)
STORAGE_IMPL.put(last_folder.id, location, blob)
settings.STORAGE_IMPL.put(last_folder.id, location, blob)
file_res.append(file.to_json())
return get_json_result(data=file_res)
except Exception as e:
@ -497,10 +497,10 @@ def rm(tenant_id):
e, file = FileService.get_by_id(inner_file_id)
if not e:
return get_json_result(message="File not found!", code=404)
STORAGE_IMPL.rm(file.parent_id, file.location)
settings.STORAGE_IMPL.rm(file.parent_id, file.location)
FileService.delete_folder_by_pf_id(tenant_id, file_id)
else:
STORAGE_IMPL.rm(file.parent_id, file.location)
settings.STORAGE_IMPL.rm(file.parent_id, file.location)
if not FileService.delete(file):
return get_json_result(message="Database error (File removal)!", code=500)
@ -614,10 +614,10 @@ def get(tenant_id, file_id):
if not e:
return get_json_result(message="Document not found!", code=404)
blob = STORAGE_IMPL.get(file.parent_id, file.location)
blob = settings.STORAGE_IMPL.get(file.parent_id, file.location)
if not blob:
b, n = File2DocumentService.get_storage_address(file_id=file_id)
blob = STORAGE_IMPL.get(b, n)
blob = settings.STORAGE_IMPL.get(b, n)
response = flask.make_response(blob)
ext = re.search(r"\.([^.]+)$", file.name)

View File

@ -21,11 +21,9 @@ import tiktoken
from flask import Response, jsonify, request
from agent.canvas import Canvas
from api import settings
from api.db import LLMType, StatusEnum
from api.db.db_models import APIToken
from api.db.services.api_service import API4ConversationService
from api.db.services.canvas_service import UserCanvasService, completionOpenAI
from api.db.services.canvas_service import UserCanvasService, completion_openai
from api.db.services.canvas_service import completion as agent_completion
from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion
@ -35,13 +33,14 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from common.misc_utils import get_uuid
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, \
get_result, server_error_response, token_required, validate_request
from rag.app.tag import label_question
from rag.prompts.template import load_prompt
from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format
from common.constants import RetCode, LLMType, StatusEnum
from common import settings
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
@token_required
@ -412,7 +411,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
stream = req.pop("stream", False)
if stream:
resp = Response(
completionOpenAI(
completion_openai(
tenant_id,
agent_id,
question,
@ -430,7 +429,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
else:
# For non-streaming, just return the response directly
response = next(
completionOpenAI(
completion_openai(
tenant_id,
agent_id,
question,
@ -959,7 +958,7 @@ def retrieval_test_embedded():
kb_ids = [kb_ids]
if not kb_ids:
return get_json_result(data=False, message='Please specify dataset firstly.',
code=settings.RetCode.DATA_ERROR)
code=RetCode.DATA_ERROR)
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
@ -996,7 +995,7 @@ def retrieval_test_embedded():
break
else:
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.",
code=settings.RetCode.OPERATING_ERROR)
code=RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
@ -1034,7 +1033,7 @@ def retrieval_test_embedded():
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message="No chunk found! Check the chunk status please!",
code=settings.RetCode.DATA_ERROR)
code=RetCode.DATA_ERROR)
return server_error_response(e)
@ -1104,7 +1103,7 @@ def detail_share_embedded():
break
else:
return get_json_result(data=False, message="Has no permission for this operation.",
code=settings.RetCode.OPERATING_ERROR)
code=RetCode.OPERATING_ERROR)
search = SearchService.get_detail(search_id)
if not search:

View File

@ -17,14 +17,13 @@
from flask import request
from flask_login import current_user, login_required
from api import settings
from api.constants import DATASET_NAME_LIMIT
from api.db import StatusEnum
from api.db.db_models import DB
from api.db.services import duplicate_name
from api.db.services.search_service import SearchService
from api.db.services.user_service import TenantService, UserTenantService
from api.utils import get_uuid
from common.misc_utils import get_uuid
from common.constants import RetCode, StatusEnum
from api.utils.api_utils import get_data_error_result, get_json_result, not_allowed_parameters, server_error_response, validate_request
@ -82,12 +81,12 @@ def update():
search_id = req["search_id"]
if not SearchService.accessible4deletion(search_id, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
try:
search_app = SearchService.query(tenant_id=tenant_id, id=search_id)[0]
if not search_app:
return get_json_result(data=False, message=f"Cannot find search {search_id}", code=settings.RetCode.DATA_ERROR)
return get_json_result(data=False, message=f"Cannot find search {search_id}", code=RetCode.DATA_ERROR)
if req["name"].lower() != search_app.name.lower() and len(SearchService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) >= 1:
return get_data_error_result(message="Duplicated search name.")
@ -129,7 +128,7 @@ def detail():
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
break
else:
return get_json_result(data=False, message="Has no permission for this operation.", code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Has no permission for this operation.", code=RetCode.OPERATING_ERROR)
search = SearchService.get_detail(search_id)
if not search:
@ -178,7 +177,7 @@ def rm():
req = request.get_json()
search_id = req["search_id"]
if not SearchService.accessible4deletion(search_id, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
try:
if not SearchService.delete_by_id(search_id):

View File

@ -23,21 +23,20 @@ from api.db.db_models import APIToken
from api.db.services.api_service import APITokenService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import UserTenantService
from api import settings
from api.utils import current_timestamp, datetime_format
from api.utils.api_utils import (
get_json_result,
get_data_error_result,
server_error_response,
generate_confirmation_token,
)
from api.versions import get_ragflow_version
from rag.utils.storage_factory import STORAGE_IMPL, STORAGE_IMPL_TYPE
from common.versions import get_ragflow_version
from common.time_utils import current_timestamp, datetime_format
from timeit import default_timer as timer
from rag.utils.redis_conn import REDIS_CONN
from flask import jsonify
from api.utils.health_utils import run_health_checks
from common import settings
@manager.route("/version", methods=["GET"]) # noqa: F821
@ -112,15 +111,15 @@ def status():
st = timer()
try:
STORAGE_IMPL.health()
settings.STORAGE_IMPL.health()
res["storage"] = {
"storage": STORAGE_IMPL_TYPE.lower(),
"storage": settings.STORAGE_IMPL_TYPE.lower(),
"status": "green",
"elapsed": "{:.1f}".format((timer() - st) * 1000.0),
}
except Exception as e:
res["storage"] = {
"storage": STORAGE_IMPL_TYPE.lower(),
"storage": settings.STORAGE_IMPL_TYPE.lower(),
"status": "red",
"elapsed": "{:.1f}".format((timer() - st) * 1000.0),
"error": str(e),
@ -217,8 +216,8 @@ def new_token():
tenant_id = [tenant for tenant in tenants if tenant.role == 'owner'][0].tenant_id
obj = {
"tenant_id": tenant_id,
"token": generate_confirmation_token(tenant_id),
"beta": generate_confirmation_token(generate_confirmation_token(tenant_id)).replace("ragflow-", "")[:32],
"token": generate_confirmation_token(),
"beta": generate_confirmation_token().replace("ragflow-", "")[:32],
"create_time": current_timestamp(),
"create_date": datetime_format(datetime.now()),
"update_time": None,
@ -274,7 +273,7 @@ def token_list():
objs = [o.to_dict() for o in objs]
for o in objs:
if not o["beta"]:
o["beta"] = generate_confirmation_token(generate_confirmation_token(tenants[0].tenant_id)).replace(
o["beta"] = generate_confirmation_token().replace(
"ragflow-", "")[:32]
APITokenService.filter_update([APIToken.tenant_id == tenant_id, APIToken.token == o["token"]], o)
return get_json_result(data=objs)

View File

@ -17,15 +17,17 @@
from flask import request
from flask_login import login_required, current_user
from api import settings
from api.apps import smtp_mail_server
from api.db import UserTenantRole, StatusEnum
from api.db import UserTenantRole
from api.db.db_models import UserTenant
from api.db.services.user_service import UserTenantService, UserService
from api.utils import get_uuid, delta_seconds
from common.constants import RetCode, StatusEnum
from common.misc_utils import get_uuid
from common.time_utils import delta_seconds
from api.utils.api_utils import get_json_result, validate_request, server_error_response, get_data_error_result
from api.utils.web_utils import send_invite_email
from common import settings
@manager.route("/<tenant_id>/user/list", methods=["GET"]) # noqa: F821
@ -35,7 +37,7 @@ def user_list(tenant_id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR)
code=RetCode.AUTHENTICATION_ERROR)
try:
users = UserTenantService.get_by_tenant_id(tenant_id)
@ -54,7 +56,7 @@ def create(tenant_id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR)
code=RetCode.AUTHENTICATION_ERROR)
req = request.json
invite_user_email = req["email"]
@ -108,7 +110,7 @@ def rm(tenant_id, user_id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR)
code=RetCode.AUTHENTICATION_ERROR)
try:
UserTenantService.filter_delete([UserTenant.tenant_id == tenant_id, UserTenant.user_id == user_id])

View File

@ -26,7 +26,6 @@ from flask import redirect, request, session, make_response
from flask_login import current_user, login_required, login_user, logout_user
from werkzeug.security import check_password_hash, generate_password_hash
from api import settings
from api.apps.auth import get_auth_client
from api.db import FileType, UserTenantRole
from api.db.db_models import TenantLLM
@ -34,15 +33,11 @@ from api.db.services.file_service import FileService
from api.db.services.llm_service import get_init_tenant_llm
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_service import TenantService, UserService, UserTenantService
from api.utils import (
current_timestamp,
datetime_format,
download_img,
get_format_time,
get_uuid,
)
from common.time_utils import current_timestamp, datetime_format, get_format_time
from common.misc_utils import download_img, get_uuid
from common.constants import RetCode
from common.connection_utils import construct_response
from api.utils.api_utils import (
construct_response,
get_data_error_result,
get_json_result,
server_error_response,
@ -62,6 +57,7 @@ from api.utils.web_utils import (
hash_code,
captcha_key,
)
from common import settings
@manager.route("/login", methods=["POST", "GET"]) # noqa: F821
@ -96,14 +92,14 @@ def login():
type: object
"""
if not request.json:
return get_json_result(data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="Unauthorized!")
return get_json_result(data=False, code=RetCode.AUTHENTICATION_ERROR, message="Unauthorized!")
email = request.json.get("email", "")
users = UserService.query(email=email)
if not users:
return get_json_result(
data=False,
code=settings.RetCode.AUTHENTICATION_ERROR,
code=RetCode.AUTHENTICATION_ERROR,
message=f"Email: {email} is not registered!",
)
@ -111,14 +107,14 @@ def login():
try:
password = decrypt(password)
except BaseException:
return get_json_result(data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password")
return get_json_result(data=False, code=RetCode.SERVER_ERROR, message="Fail to crypt password")
user = UserService.query_user(email, password)
if user and hasattr(user, 'is_active') and user.is_active == "0":
return get_json_result(
data=False,
code=settings.RetCode.FORBIDDEN,
code=RetCode.FORBIDDEN,
message="This account has been disabled, please contact the administrator!",
)
elif user:
@ -133,7 +129,7 @@ def login():
else:
return get_json_result(
data=False,
code=settings.RetCode.AUTHENTICATION_ERROR,
code=RetCode.AUTHENTICATION_ERROR,
message="Email and password do not match!",
)
@ -156,7 +152,7 @@ def get_login_channels():
return get_json_result(data=channels)
except Exception as e:
logging.exception(e)
return get_json_result(data=[], message=f"Load channels failure, error: {str(e)}", code=settings.RetCode.EXCEPTION_ERROR)
return get_json_result(data=[], message=f"Load channels failure, error: {str(e)}", code=RetCode.EXCEPTION_ERROR)
@manager.route("/login/<channel>", methods=["GET"]) # noqa: F821
@ -540,7 +536,7 @@ def setting_user():
if not check_password_hash(current_user.password, decrypt(request_data["password"])):
return get_json_result(
data=False,
code=settings.RetCode.AUTHENTICATION_ERROR,
code=RetCode.AUTHENTICATION_ERROR,
message="Password error!",
)
@ -568,7 +564,7 @@ def setting_user():
return get_json_result(data=True)
except Exception as e:
logging.exception(e)
return get_json_result(data=False, message="Update failure!", code=settings.RetCode.EXCEPTION_ERROR)
return get_json_result(data=False, message="Update failure!", code=RetCode.EXCEPTION_ERROR)
@manager.route("/info", methods=["GET"]) # noqa: F821
@ -698,7 +694,7 @@ def user_add():
return get_json_result(
data=False,
message="User registration is disabled!",
code=settings.RetCode.OPERATING_ERROR,
code=RetCode.OPERATING_ERROR,
)
req = request.json
@ -709,7 +705,7 @@ def user_add():
return get_json_result(
data=False,
message=f"Invalid email address: {email_address}!",
code=settings.RetCode.OPERATING_ERROR,
code=RetCode.OPERATING_ERROR,
)
# Check if the email address is already used
@ -717,7 +713,7 @@ def user_add():
return get_json_result(
data=False,
message=f"Email: {email_address} has already registered!",
code=settings.RetCode.OPERATING_ERROR,
code=RetCode.OPERATING_ERROR,
)
# Construct user info data
@ -752,7 +748,7 @@ def user_add():
return get_json_result(
data=False,
message=f"User registration failure, error: {str(e)}",
code=settings.RetCode.EXCEPTION_ERROR,
code=RetCode.EXCEPTION_ERROR,
)
@ -852,11 +848,11 @@ def forget_get_captcha():
"""
email = (request.args.get("email") or "")
if not email:
return get_json_result(data=False, code=settings.RetCode.ARGUMENT_ERROR, message="email is required")
return get_json_result(data=False, code=RetCode.ARGUMENT_ERROR, message="email is required")
users = UserService.query(email=email)
if not users:
return get_json_result(data=False, code=settings.RetCode.DATA_ERROR, message="invalid email")
return get_json_result(data=False, code=RetCode.DATA_ERROR, message="invalid email")
# Generate captcha text
allowed = string.ascii_uppercase + string.digits
@ -883,17 +879,17 @@ def forget_send_otp():
captcha = (req.get("captcha") or "").strip()
if not email or not captcha:
return get_json_result(data=False, code=settings.RetCode.ARGUMENT_ERROR, message="email and captcha required")
return get_json_result(data=False, code=RetCode.ARGUMENT_ERROR, message="email and captcha required")
users = UserService.query(email=email)
if not users:
return get_json_result(data=False, code=settings.RetCode.DATA_ERROR, message="invalid email")
return get_json_result(data=False, code=RetCode.DATA_ERROR, message="invalid email")
stored_captcha = REDIS_CONN.get(captcha_key(email))
if not stored_captcha:
return get_json_result(data=False, code=settings.RetCode.NOT_EFFECTIVE, message="invalid or expired captcha")
return get_json_result(data=False, code=RetCode.NOT_EFFECTIVE, message="invalid or expired captcha")
if (stored_captcha or "").strip().lower() != captcha.lower():
return get_json_result(data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="invalid or expired captcha")
return get_json_result(data=False, code=RetCode.AUTHENTICATION_ERROR, message="invalid or expired captcha")
# Delete captcha to prevent reuse
REDIS_CONN.delete(captcha_key(email))
@ -908,7 +904,7 @@ def forget_send_otp():
elapsed = RESEND_COOLDOWN_SECONDS
remaining = RESEND_COOLDOWN_SECONDS - elapsed
if remaining > 0:
return get_json_result(data=False, code=settings.RetCode.NOT_EFFECTIVE, message=f"you still have to wait {remaining} seconds")
return get_json_result(data=False, code=RetCode.NOT_EFFECTIVE, message=f"you still have to wait {remaining} seconds")
# Generate OTP (uppercase letters only) and store hashed
otp = "".join(secrets.choice(string.ascii_uppercase) for _ in range(OTP_LENGTH))
@ -933,9 +929,9 @@ def forget_send_otp():
ttl_min=ttl_min,
)
except Exception:
return get_json_result(data=False, code=settings.RetCode.SERVER_ERROR, message="failed to send email")
return get_json_result(data=False, code=RetCode.SERVER_ERROR, message="failed to send email")
return get_json_result(data=True, code=settings.RetCode.SUCCESS, message="verification passed, email sent")
return get_json_result(data=True, code=RetCode.SUCCESS, message="verification passed, email sent")
@manager.route("/forget", methods=["POST"]) # noqa: F821
@ -951,31 +947,31 @@ def forget():
new_pwd2 = req.get("confirm_new_password")
if not all([email, otp, new_pwd, new_pwd2]):
return get_json_result(data=False, code=settings.RetCode.ARGUMENT_ERROR, message="email, otp and passwords are required")
return get_json_result(data=False, code=RetCode.ARGUMENT_ERROR, message="email, otp and passwords are required")
# For reset, passwords are provided as-is (no decrypt needed)
if new_pwd != new_pwd2:
return get_json_result(data=False, code=settings.RetCode.ARGUMENT_ERROR, message="passwords do not match")
return get_json_result(data=False, code=RetCode.ARGUMENT_ERROR, message="passwords do not match")
users = UserService.query(email=email)
if not users:
return get_json_result(data=False, code=settings.RetCode.DATA_ERROR, message="invalid email")
return get_json_result(data=False, code=RetCode.DATA_ERROR, message="invalid email")
user = users[0]
# Verify OTP from Redis
k_code, k_attempts, k_last, k_lock = otp_keys(email)
if REDIS_CONN.get(k_lock):
return get_json_result(data=False, code=settings.RetCode.NOT_EFFECTIVE, message="too many attempts, try later")
return get_json_result(data=False, code=RetCode.NOT_EFFECTIVE, message="too many attempts, try later")
stored = REDIS_CONN.get(k_code)
if not stored:
return get_json_result(data=False, code=settings.RetCode.NOT_EFFECTIVE, message="expired otp")
return get_json_result(data=False, code=RetCode.NOT_EFFECTIVE, message="expired otp")
try:
stored_hash, salt_hex = str(stored).split(":", 1)
salt = bytes.fromhex(salt_hex)
except Exception:
return get_json_result(data=False, code=settings.RetCode.EXCEPTION_ERROR, message="otp storage corrupted")
return get_json_result(data=False, code=RetCode.EXCEPTION_ERROR, message="otp storage corrupted")
# Case-insensitive verification: OTP generated uppercase
calc = hash_code(otp.upper(), salt)
@ -988,7 +984,7 @@ def forget():
REDIS_CONN.set(k_attempts, attempts, OTP_TTL_SECONDS)
if attempts >= ATTEMPT_LIMIT:
REDIS_CONN.set(k_lock, int(time.time()), ATTEMPT_LOCK_SECONDS)
return get_json_result(data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="expired otp")
return get_json_result(data=False, code=RetCode.AUTHENTICATION_ERROR, message="expired otp")
# Success: consume OTP and reset password
REDIS_CONN.delete(k_code)
@ -1000,7 +996,7 @@ def forget():
UserService.update_user_password(user.id, new_pwd)
except Exception as e:
logging.exception(e)
return get_json_result(data=False, code=settings.RetCode.EXCEPTION_ERROR, message="failed to reset password")
return get_json_result(data=False, code=RetCode.EXCEPTION_ERROR, message="failed to reset password")
# Auto login (reuse login flow)
user.access_token = get_uuid()

View File

@ -17,8 +17,6 @@ NAME_LENGTH_LIMIT = 2**10
IMG_BASE64_PREFIX = "data:image/png;base64,"
SERVICE_CONF = "service_conf.yaml"
API_VERSION = "v1"
RAG_FLOW_SERVICE_NAME = "ragflow"
REQUEST_WAIT_SEC = 2

View File

@ -13,21 +13,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from enum import Enum
from enum import IntEnum
from strenum import StrEnum
class StatusEnum(Enum):
VALID = "1"
INVALID = "0"
class ActiveEnum(Enum):
ACTIVE = "1"
INACTIVE = "0"
class UserTenantRole(StrEnum):
OWNER = 'owner'
ADMIN = 'admin'
@ -56,76 +46,18 @@ class FileType(StrEnum):
VALID_FILE_TYPES = {FileType.PDF, FileType.DOC, FileType.VISUAL, FileType.AURAL, FileType.VIRTUAL, FileType.FOLDER, FileType.OTHER}
class LLMType(StrEnum):
CHAT = 'chat'
EMBEDDING = 'embedding'
SPEECH2TEXT = 'speech2text'
IMAGE2TEXT = 'image2text'
RERANK = 'rerank'
TTS = 'tts'
class ChatStyle(StrEnum):
CREATIVE = 'Creative'
PRECISE = 'Precise'
EVENLY = 'Evenly'
CUSTOM = 'Custom'
class TaskStatus(StrEnum):
UNSTART = "0"
RUNNING = "1"
CANCEL = "2"
DONE = "3"
FAIL = "4"
VALID_TASK_STATUS = {TaskStatus.UNSTART, TaskStatus.RUNNING, TaskStatus.CANCEL, TaskStatus.DONE, TaskStatus.FAIL}
class ParserType(StrEnum):
PRESENTATION = "presentation"
LAWS = "laws"
MANUAL = "manual"
PAPER = "paper"
RESUME = "resume"
BOOK = "book"
QA = "qa"
TABLE = "table"
NAIVE = "naive"
PICTURE = "picture"
ONE = "one"
AUDIO = "audio"
EMAIL = "email"
KG = "knowledge_graph"
TAG = "tag"
class FileSource(StrEnum):
LOCAL = ""
KNOWLEDGEBASE = "knowledgebase"
S3 = "s3"
class CanvasType(StrEnum):
ChatBot = "chatbot"
DocBot = "docbot"
class InputType(StrEnum):
LOAD_STATE = "load_state" # e.g. loading a current full state or a save state, such as from a file
POLL = "poll" # e.g. calling an API to get all documents in the last hour
EVENT = "event" # e.g. registered an endpoint as a listener, and processing connector events
SLIM_RETRIEVAL = "slim_retrieval"
class CanvasCategory(StrEnum):
Agent = "agent_canvas"
DataFlow = "dataflow_canvas"
VALID_CANVAS_CATEGORIES = {CanvasCategory.Agent, CanvasCategory.DataFlow}
class MCPServerType(StrEnum):
SSE = "sse"
STREAMABLE_HTTP = "streamable-http"
VALID_MCP_SERVER_TYPES = {MCPServerType.SSE, MCPServerType.STREAMABLE_HTTP}
class PipelineTaskType(StrEnum):
PARSE = "Parse"

View File

@ -21,6 +21,7 @@ import os
import sys
import time
import typing
from datetime import datetime, timezone
from enum import Enum
from functools import wraps
@ -30,22 +31,15 @@ from peewee import InterfaceError, OperationalError, BigIntegerField, BooleanFie
from playhouse.migrate import MySQLMigrator, PostgresqlMigrator, migrate
from playhouse.pool import PooledMySQLDatabase, PooledPostgresqlDatabase
from api import settings, utils
from api.db import ParserType, SerializedType
from api.utils.json import json_dumps, json_loads
from api import utils
from api.db import SerializedType
from api.utils.json_encode import json_dumps, json_loads
from api.utils.configs import deserialize_b64, serialize_b64
def singleton(cls, *args, **kw):
instances = {}
def _singleton():
key = str(cls) + str(os.getpid())
if key not in instances:
instances[key] = cls(*args, **kw)
return instances[key]
return _singleton
from common.time_utils import current_timestamp, timestamp_to_date, date_string_to_timestamp
from common.decorator import singleton
from common.constants import ParserType
from common import settings
CONTINUOUS_FIELD_TYPE = {IntegerField, FloatField, DateTimeField}
@ -189,7 +183,7 @@ class BaseModel(Model):
for i, v in enumerate(f_v):
if isinstance(v, str) and f_n in auto_date_timestamp_field():
# time type: %Y-%m-%d %H:%M:%S
f_v[i] = utils.date_string_to_timestamp(v)
f_v[i] = date_string_to_timestamp(v)
lt_value = f_v[0]
gt_value = f_v[1]
if lt_value is not None and gt_value is not None:
@ -218,9 +212,9 @@ class BaseModel(Model):
@classmethod
def insert(cls, __data=None, **insert):
if isinstance(__data, dict) and __data:
__data[cls._meta.combined["create_time"]] = utils.current_timestamp()
__data[cls._meta.combined["create_time"]] = current_timestamp()
if insert:
insert["create_time"] = utils.current_timestamp()
insert["create_time"] = current_timestamp()
return super().insert(__data, **insert)
@ -231,11 +225,11 @@ class BaseModel(Model):
if not normalized:
return {}
normalized[cls._meta.combined["update_time"]] = utils.current_timestamp()
normalized[cls._meta.combined["update_time"]] = current_timestamp()
for f_n in AUTO_DATE_TIMESTAMP_FIELD_PREFIX:
if {f"{f_n}_time", f"{f_n}_date"}.issubset(cls._meta.combined.keys()) and cls._meta.combined[f"{f_n}_time"] in normalized and normalized[cls._meta.combined[f"{f_n}_time"]] is not None:
normalized[cls._meta.combined[f"{f_n}_date"]] = utils.timestamp_to_date(normalized[cls._meta.combined[f"{f_n}_time"]])
normalized[cls._meta.combined[f"{f_n}_date"]] = timestamp_to_date(normalized[cls._meta.combined[f"{f_n}_time"]])
return normalized
@ -331,9 +325,9 @@ class RetryingPooledPostgresqlDatabase(PooledPostgresqlDatabase):
# 08006: connection_failure
# 08003: connection_does_not_exist
# 08000: connection_exception
error_messages = ['connection', 'server closed', 'connection refused',
error_messages = ['connection', 'server closed', 'connection refused',
'no connection to the server', 'terminating connection']
should_retry = any(msg in str(e).lower() for msg in error_messages)
if should_retry and attempt < self.max_retries:
@ -366,7 +360,7 @@ class RetryingPooledPostgresqlDatabase(PooledPostgresqlDatabase):
except (OperationalError, InterfaceError) as e:
error_messages = ['connection', 'server closed', 'connection refused',
'no connection to the server', 'terminating connection']
should_retry = any(msg in str(e).lower() for msg in error_messages)
if should_retry and attempt < self.max_retries:
@ -377,6 +371,7 @@ class RetryingPooledPostgresqlDatabase(PooledPostgresqlDatabase):
time.sleep(self.retry_delay * (2 ** attempt))
else:
raise
return None
class PooledDatabase(Enum):
@ -394,7 +389,7 @@ class BaseDataBase:
def __init__(self):
database_config = settings.DATABASE.copy()
db_name = database_config.pop("name")
pool_config = {
'max_retries': 5,
'retry_delay': 1,
@ -711,6 +706,7 @@ class TenantLLM(DataBaseModel):
api_base = CharField(max_length=255, null=True, help_text="API Base")
max_tokens = IntegerField(default=8192, index=True)
used_tokens = IntegerField(default=0, index=True)
status = CharField(max_length=1, null=False, help_text="is it validate(0: wasted, 1: validate)", default="1", index=True)
def __str__(self):
return self.llm_name
@ -1044,6 +1040,76 @@ class PipelineOperationLog(DataBaseModel):
db_table = "pipeline_operation_log"
class Connector(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
tenant_id = CharField(max_length=32, null=False, index=True)
name = CharField(max_length=128, null=False, help_text="Search name", index=False)
source = CharField(max_length=128, null=False, help_text="Data source", index=True)
input_type = CharField(max_length=128, null=False, help_text="poll/event/..", index=True)
config = JSONField(null=False, default={})
refresh_freq = IntegerField(default=0, index=False)
prune_freq = IntegerField(default=0, index=False)
timeout_secs = IntegerField(default=3600, index=False)
indexing_start = DateTimeField(null=True, index=True)
status = CharField(max_length=16, null=True, help_text="schedule", default="schedule", index=True)
def __str__(self):
return self.name
class Meta:
db_table = "connector"
class Connector2Kb(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
connector_id = CharField(max_length=32, null=False, index=True)
kb_id = CharField(max_length=32, null=False, index=True)
class Meta:
db_table = "connector2kb"
class DateTimeTzField(CharField):
field_type = 'VARCHAR'
def db_value(self, value: datetime|None) -> str|None:
if value is not None:
if value.tzinfo is not None:
return value.isoformat()
else:
return value.replace(tzinfo=timezone.utc).isoformat()
return value
def python_value(self, value: str|None) -> datetime|None:
if value is not None:
dt = datetime.fromisoformat(value)
if dt.tzinfo is None:
import pytz
return dt.replace(tzinfo=pytz.UTC)
return dt
return value
class SyncLogs(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
connector_id = CharField(max_length=32, index=True)
status = CharField(max_length=128, null=False, help_text="Processing status", index=True)
from_beginning = CharField(max_length=1, null=True, help_text="", default="0", index=False)
new_docs_indexed = IntegerField(default=0, index=False)
total_docs_indexed = IntegerField(default=0, index=False)
docs_removed_from_index = IntegerField(default=0, index=False)
error_msg = TextField(null=False, help_text="process message", default="")
error_count = IntegerField(default=0, index=False)
full_exception_trace = TextField(null=True, help_text="process message", default="")
time_started = DateTimeField(null=True, index=True)
poll_range_start = DateTimeTzField(max_length=255, null=True, index=True)
poll_range_end = DateTimeTzField(max_length=255, null=True, index=True)
kb_id = CharField(max_length=32, null=False, index=True)
class Meta:
db_table = "sync_logs"
def migrate_db():
logging.disable(logging.ERROR)
migrator = DatabaseMigrator[settings.DATABASE_TYPE.upper()].value(DB)
@ -1212,4 +1278,8 @@ def migrate_db():
migrate(migrator.alter_column_type("tenant_llm", "api_key", TextField(null=True, help_text="API KEY")))
except Exception:
pass
try:
migrate(migrator.add_column("tenant_llm", "status", CharField(max_length=1, null=False, help_text="is it validate(0: wasted, 1: validate)", default="1", index=True)))
except Exception:
pass
logging.disable(logging.NOTSET)

Some files were not shown because too many files have changed in this diff Show More