Compare commits

...

60 Commits

Author SHA1 Message Date
c8b79dfed4 The retrieval component needs to support returning JSON data(#10170) (#10171)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 17:28:29 +08:00
da80fa40bc fix python_api example (#10196)
### What problem does this PR solve?

Fix coding example in example

### Type of change

- [x] Documentation Update
2025-09-22 17:27:25 +08:00
94dbd4aac9 Refactor: use the same implement for total token count from res (#10197)
### What problem does this PR solve?
use the same implement for total token count from res

### Type of change

- [x] Refactoring
2025-09-22 17:17:06 +08:00
ca9f30e1a1 Add tree_merge for law parsers, significantly outperforming hierarchical_merge (#10202)
### What problem does this PR solve?
Add tree_merge for law parsers, significantly outperforming
hierarchical_merge, solved: #8637
1. Add tree_merge for law parsers, include build_tree and get_tree by
dfs.
2. add Copyright statement for helath_utils
### Type of change

- [x] Documentation Update
- [x] Performance Improvement
2025-09-22 16:33:21 +08:00
2e4295d5ca Chat Widget (#10187)
### What problem does this PR solve?

Add a chat widget. I'll probably need some assistance to get this ready
for merge!

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Mohamed Mathari <nocodeventure@Mac-mini-van-Mohamed.fritz.box>
2025-09-22 11:03:33 +08:00
d11b1628a1 Feat: add admin CLI and admin service (#10186)
### What problem does this PR solve?

Introduce new feature: RAGFlow system admin service and CLI

### Introduction

Admin Service is a dedicated management component designed to monitor,
maintain, and administrate the RAGFlow system. It provides comprehensive
tools for ensuring system stability, performing operational tasks, and
managing users and permissions efficiently.

The service offers monitoring of critical components, including the
RAGFlow server, Task Executor processes, and dependent services such as
MySQL, Infinity / Elasticsearch, Redis, and MinIO. It automatically
checks their health status, resource usage, and uptime, and performs
restarts in case of failures to minimize downtime.

For user and system management, it supports listing, creating,
modifying, and deleting users and their associated resources like
knowledge bases and Agents.

Built with scalability and reliability in mind, the Admin Service
ensures smooth system operation and simplifies maintenance workflows.

It consists of a server-side Service and a command-line client (CLI),
both implemented in Python. User commands are parsed using the Lark
parsing toolkit.

- **Admin Service**: A backend service that interfaces with the RAGFlow
system to execute administrative operations and monitor its status.
- **Admin CLI**: A command-line interface that allows users to connect
to the Admin Service and issue commands for system management.

### Starting the Admin Service

1. Before start Admin Service, please make sure RAGFlow system is
already started.

2.  Run the service script:
    ```bash
    python admin/admin_server.py
    ```
The service will start and listen for incoming connections from the CLI
on the configured port.

### Using the Admin CLI

1.  Ensure the Admin Service is running.
2.  Launch the CLI client:
    ```bash
    python admin/admin_client.py -h 0.0.0.0 -p 9381
## Supported Commands
Commands are case-insensitive and must be terminated with a semicolon
(`;`).
### Service Management Commands
-  [x] `LIST SERVICES;`
    -   Lists all available services within the RAGFlow system.
-  [ ] `SHOW SERVICE <id>;`
- Shows detailed status information for the service identified by
`<id>`.
-  [ ] `STARTUP SERVICE <id>;`
    -   Attempts to start the service identified by `<id>`.
-  [ ] `SHUTDOWN SERVICE <id>;`
- Attempts to gracefully shut down the service identified by `<id>`.
-  [ ] `RESTART SERVICE <id>;`
    -   Attempts to restart the service identified by `<id>`.
### User Management Commands
-  [x] `LIST USERS;`
    -   Lists all users known to the system.
-  [ ] `SHOW USER '<username>';`
- Shows details and permissions for the specified user. The username
must be enclosed in single or double quotes.
-  [ ] `DROP USER '<username>';`
    -   Removes the specified user from the system. Use with caution.
-  [ ] `ALTER USER PASSWORD '<username>' '<new_password>';`
    -   Changes the password for the specified user.
### Data and Agent Commands
-  [ ] `LIST DATASETS OF '<username>';`
    -   Lists the datasets associated with the specified user.
-  [ ] `LIST AGENTS OF '<username>';`
    -   Lists the agents associated with the specified user.
### Meta-Commands
Meta-commands are prefixed with a backslash (`\`).
-   `\?` or `\help`
    -   Shows help information for the available commands.
-   `\q` or `\quit`
    -   Exits the CLI application.
## Examples
```commandline
admin> list users;
+-------------------------------+------------------------+-----------+-------------+
| create_date                   | email                  | is_active | nickname    |
+-------------------------------+------------------------+-----------+-------------+
| Fri, 22 Nov 2024 16:03:41 GMT | jeffery@infiniflow.org | 1         | Jeffery     |
| Fri, 22 Nov 2024 16:10:55 GMT | aya@infiniflow.org     | 1         | Waterdancer |
+-------------------------------+------------------------+-----------+-------------+
admin> list services;
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| extra                                                                                     | host      | id | name          | port  | service_type   |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| {}                                                                                        | 0.0.0.0   | 0  | ragflow_0     | 9380  | ragflow_server |
| {'meta_type': 'mysql', 'password': 'infini_rag_flow', 'username': 'root'}                 | localhost | 1  | mysql         | 5455  | meta_data      |
| {'password': 'infini_rag_flow', 'store_type': 'minio', 'user': 'rag_flow'}                | localhost | 2  | minio         | 9000  | file_store     |
| {'password': 'infini_rag_flow', 'retrieval_type': 'elasticsearch', 'username': 'elastic'} | localhost | 3  | elasticsearch | 1200  | retrieval      |
| {'db_name': 'default_db', 'retrieval_type': 'infinity'}                                   | localhost | 4  | infinity      | 23817 | retrieval      |
| {'database': 1, 'mq_type': 'redis', 'password': 'infini_rag_flow'}                        | localhost | 5  | redis         | 6379  | message_queue  |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
```

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Signed-off-by: jinhai <haijin.chn@gmail.com>
2025-09-22 10:37:49 +08:00
45f9f428db Fix: enable scrolling at chat setting (#10184)
### What problem does this PR solve?

This PR is related to
[#9961](https://github.com/infiniflow/ragflow/issues/9961).
In the Chat Settings screen, the textarea did not support scrolling when
the content grew longer than its visible area, which made it less
convenient to use.
Also, there was no Japanese placeholder text to guide users on what to
enter in the field.

This PR improves the user experience by:
- Adding `overflow-y-auto` to the textarea so that long content can be
scrolled smoothly.
- Introducing a placeholder (`メッセージを入力してください...`) to provide clearer
guidance for users.


https://github.com/user-attachments/assets/95553331-087b-42c5-a41d-5dfe08047bae

### What has been considered

As an alternative solution, I explored replacing the textarea with the
existing `PromptEditor` component.
However, this approach triggered a `canvas not found.` alert.  
The current implementation of `PromptEditor` internally attempts to
fetch **agent (canvas) information**, but in the Chat Settings screen no
such ID exists. As a result, the API call fails and the backend returns
`canvas not found.`.

One possible workaround would be to extend `PromptEditor` with a
**“disable variable picker” flag**, ensuring that plugins are not loaded
in contexts like Chat Settings. While feasible, this would have a
broader impact across the codebase.

Given these considerations, I decided to address the issue in a simpler
way by applying a Tailwind utility (`overflow-y-auto`). Since the UI
design is expected to change in the future, this solution is considered
sufficient for now.
<img width="1501" height="794" alt="Screenshot 2025-09-20 at 15 00 12"
src="https://github.com/user-attachments/assets/85578ee8-489f-4ede-b3af-bafd7afe95bd"
/>


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)  
- [ ] New Feature (non-breaking change which adds functionality)  
- [ ] Documentation Update  
- [ ] Refactoring  
- [ ] Performance Improvement  
- [ ] Other (please describe):
2025-09-22 10:37:34 +08:00
902703d145 Fix: skip tag query if tag kbs are invalid (#10168)
### What problem does this PR solve?

Skip `tag_query` step if `tag_kbs` are empty. 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-19 19:12:18 +08:00
7ccca2143c perf: add get_all_kb_doc_count func to simplify kb.doc_num updating (#10169)
### What problem does this PR solve?

Add get_all_kb_doc_count func to simplify kb.doc_num updating.

### Type of change

- [x] Performance Improvement
2025-09-19 19:11:50 +08:00
70ce02faf4 Feat: add support for Anthropic third-party API (#10173)
### What problem does this PR solve?
issue:
[Bug]: anthropic model have not baseurl selecting,need add #8546
change:
This PR adds support for using Anthropic models through a third-party
API by allowing a custom base_url.
It ensures compatibility with both the official Anthropic endpoint and
external providers.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 19:06:14 +08:00
3f1741c8c6 Docs: How to accelerate question answering (#10179)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-09-19 18:18:46 +08:00
6c24ad7966 fix: correct rerank_model condition logic (#10174)
### What problem does this PR solve?

fix the rerank_model condition logic by correcting the np.isclose check.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-19 16:02:10 +08:00
4846589599 Docs: Input and output variables defined in the Input and Output sections must also be implemented in your code. (#10162)
### What problem does this PR solve?
 
#10089 

### Type of change

- [x] Documentation Update
2025-09-19 11:35:58 +08:00
a24547aa66 Support server health check by http://localhost:<port>/v1/system/healthz (#10150)
### What problem does this PR solve?

Support server health check. Solved issue: #10106

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 11:11:07 +08:00
a04c5247ab Feat: Add file convert to document API just like file2document_app.py (#10158)
### What problem does this PR solve?

Add file convert to document API just like file2document_app.py

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 09:59:54 +08:00
ed6a76dcc0 Add Firecrawl integration for RAGFlow (#10152)
## 🚀 Firecrawl Integration for RAGFlow

This PR implements the Firecrawl integration for RAGFlow as requested in
issue https://github.com/firecrawl/firecrawl/issues/2167

###  Features Implemented

- **Data Source Integration**: Firecrawl appears as a selectable data
source in RAGFlow
- **Configuration Management**: Users can input Firecrawl API keys
through RAGFlow's interface
- **Web Scraping**: Supports single URL scraping, website crawling, and
batch processing
- **Content Processing**: Converts scraped content to RAGFlow's document
format with chunking
- **Error Handling**: Comprehensive error handling for rate limits,
failed requests, and malformed content
- **UI Components**: Complete UI schema and workflow components for
RAGFlow integration

### 📁 Files Added

- `intergrations/firecrawl/` - Complete integration package
- `intergrations/firecrawl/integration.py` - RAGFlow integration entry
point
- `intergrations/firecrawl/firecrawl_connector.py` - API communication
- `intergrations/firecrawl/firecrawl_config.py` - Configuration
management
- `intergrations/firecrawl/firecrawl_processor.py` - Content processing
- `intergrations/firecrawl/firecrawl_ui.py` - UI components
- `intergrations/firecrawl/ragflow_integration.py` - Main integration
class
- `intergrations/firecrawl/README.md` - Complete documentation
- `intergrations/firecrawl/example_usage.py` - Usage examples

### 🧪 Testing

The integration has been thoroughly tested with:
- Configuration validation
- Connection testing
- Content processing and chunking
- UI component rendering
- Error handling scenarios

### 📋 Acceptance Criteria Met

-  Integration appears as selectable data source in RAGFlow's data
source options
-  Users can input Firecrawl API keys through RAGFlow's configuration
interface
-  Successfully scrapes content from provided URLs and imports into
RAGFlow's document store
-  Handles common edge cases (rate limits, failed requests, malformed
content)
-  Includes basic documentation and README updates
-  Code follows RAGFlow's existing patterns and coding standards

### �� Related Issue

https://github.com/firecrawl/firecrawl/issues/2167

---------

Co-authored-by: AB <aj@Ajays-MacBook-Air.local>
2025-09-19 09:58:17 +08:00
a0ccbec8bd Fix: knowledge base's embedded model form layout and dependency imports in the main branch. #9869 (#10160)
### What problem does this PR solve?

Fix: Fixed the knowledge base's embedded model form layout and
dependency imports in the main branch.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-19 09:57:21 +08:00
4693c5382a Feat: migrate OpenAI-compatible chats to LiteLLM (#10148)
### What problem does this PR solve?

Migrate OpenAI-compatible chats to LiteLLM.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 17:16:59 +08:00
ff3b4d0dcd Fix: Merge different types of models from the same manufacturer #10146 (#10157)
### What problem does this PR solve?

Fix: Merge different types of models from the same manufacturer #10146

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 17:15:54 +08:00
62d35b1b73 Fix: handle zero (#10149)
### What problem does this PR solve?

Handle zero and nan in calculate.
#10125

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 16:28:03 +08:00
91b609447d Fix: embedding model failure in CometAPI (#10137)
### What problem does this PR solve?

Related PR:
Feat: add CometAPI to LLMFactory and update related mappings #10119 

Change:
Fixes the issue where the embedding model in CometAPI was not being
called correctly

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: TensorNull <tensor.null@gmail.com>
2025-09-18 14:49:47 +08:00
c353840244 Feat: add support for KB document basic info (#10134)
### What problem does this PR solve?

Add support for KB document basic info

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 09:52:33 +08:00
f12b9fdcd4 Feat: add CometAPI to LLMFactory and update related mappings (#10119)
### Related issues
#10078

### What problem does this PR solve?
Integrate CometAPI provider.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-09-18 09:51:29 +08:00
80ede65bbe Docs: Updated database types supported by the Execute SQL tool (#10113)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-09-18 09:47:35 +08:00
52cf186028 Correct the text of vectorSimilarityWeight in zh.ts (#10128)
### What problem does this PR solve?

The original text for vectorSimilarityWeight in Chinese version was
"相似度相似度权重," which is obviously a malformed phrase. It has now been
changed to "向量相似度权重". Also, align it with the English version 'Vector
similarity weight'.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 09:46:54 +08:00
ea0f1d47a5 Support image recognition for url links in Markdown file, fix log error in code_exec (#10139)
### What problem does this PR solve?

Support image recognition with image links in markdown files, solved
issue: #8755
Fixed log info error in code_exec, solved issue: #10064

### Type of change (8755)

- [x] New Feature (non-breaking change which adds functionality)

### Type of change (10064)

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 09:44:17 +08:00
9fe7c92217 Build(deps): Bump axios from 1.9.0 to 1.12.0 in /sandbox/sandbox_base_image/nodejs (#10091)
Bumps [axios](https://github.com/axios/axios) from 1.9.0 to 1.12.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/axios/axios/releases">axios's
releases</a>.</em></p>
<blockquote>
<h2>Release v1.12.0</h2>
<h2>Release notes:</h2>
<h3>Bug Fixes</h3>
<ul>
<li>adding build artifacts (<a
href="9ec86de257">9ec86de</a>)</li>
<li>dont add dist on release (<a
href="a2edc3606a">a2edc36</a>)</li>
<li><strong>fetch-adapter:</strong> set correct Content-Type for Node
FormData (<a
href="https://redirect.github.com/axios/axios/issues/6998">#6998</a>)
(<a
href="a9f47afbf3">a9f47af</a>)</li>
<li><strong>node:</strong> enforce maxContentLength for data: URLs (<a
href="https://redirect.github.com/axios/axios/issues/7011">#7011</a>)
(<a
href="945435fc51">945435f</a>)</li>
<li>package exports (<a
href="https://redirect.github.com/axios/axios/issues/5627">#5627</a>)
(<a
href="aa78ac23fc">aa78ac2</a>)</li>
<li><strong>params:</strong> removing '[' and ']' from URL encode
exclude characters (<a
href="https://redirect.github.com/axios/axios/issues/3316">#3316</a>)
(<a
href="https://redirect.github.com/axios/axios/issues/5715">#5715</a>)
(<a
href="6d84189349">6d84189</a>)</li>
<li>release pr run (<a
href="fd7f404488">fd7f404</a>)</li>
<li><strong>types:</strong> change the type guard on isCancel (<a
href="https://redirect.github.com/axios/axios/issues/5595">#5595</a>)
(<a
href="0dbb7fd4f6">0dbb7fd</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li><strong>adapter:</strong> surface low‑level network error details;
attach original error via cause (<a
href="https://redirect.github.com/axios/axios/issues/6982">#6982</a>)
(<a
href="78b290c57c">78b290c</a>)</li>
<li><strong>fetch:</strong> add fetch, Request, Response env config
variables for the adapter; (<a
href="https://redirect.github.com/axios/axios/issues/7003">#7003</a>)
(<a
href="c959ff2901">c959ff2</a>)</li>
<li>support reviver on JSON.parse (<a
href="https://redirect.github.com/axios/axios/issues/5926">#5926</a>)
(<a
href="2a9763426e">2a97634</a>),
closes <a
href="https://redirect.github.com/axios/axios/issues/5924">#5924</a></li>
<li><strong>types:</strong> extend AxiosResponse interface to include
custom headers type (<a
href="https://redirect.github.com/axios/axios/issues/6782">#6782</a>)
(<a
href="7960d34ede">7960d34</a>)</li>
</ul>
<h3>Contributors to this release</h3>
<ul>
<li><!-- raw HTML omitted --> <a
href="https://github.com/WillianAgostini" title="+132/-16760
([#7002](https://github.com/axios/axios/issues/7002)
[#5926](https://github.com/axios/axios/issues/5926)
[#6782](https://github.com/axios/axios/issues/6782) )">Willian
Agostini</a></li>
<li><!-- raw HTML omitted --> <a
href="https://github.com/DigitalBrainJS" title="+4263/-293
([#7006](https://github.com/axios/axios/issues/7006)
[#7003](https://github.com/axios/axios/issues/7003) )">Dmitriy
Mozgovoy</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/mkhani01"
title="+111/-15 ([#6982](https://github.com/axios/axios/issues/6982)
)">khani</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/AmeerAssadi"
title="+123/-0 ([#7011](https://github.com/axios/axios/issues/7011)
)">Ameer Assadi</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/emiedonmokumo"
title="+55/-35 ([#6998](https://github.com/axios/axios/issues/6998)
)">Emiedonmokumo Dick-Boro</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/opsysdebug"
title="+8/-8 ([#6980](https://github.com/axios/axios/issues/6980)
)">Zeroday BYTE</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/jasonsaayman"
title="+7/-7 ([#6985](https://github.com/axios/axios/issues/6985)
[#6985](https://github.com/axios/axios/issues/6985) )">Jason
Saayman</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/HealGaren"
title="+5/-7 ([#5715](https://github.com/axios/axios/issues/5715)
)">최예찬</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/gligorkot"
title="+3/-1 ([#5627](https://github.com/axios/axios/issues/5627)
)">Gligor Kotushevski</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/adimit"
title="+2/-1 ([#5595](https://github.com/axios/axios/issues/5595)
)">Aleksandar Dimitrov</a></li>
</ul>
<h2>Release v1.11.0</h2>
<h2>Release notes:</h2>
<h3>Bug Fixes</h3>
<ul>
<li>form-data npm pakcage (<a
href="https://redirect.github.com/axios/axios/issues/6970">#6970</a>)
(<a
href="e72c193722">e72c193</a>)</li>
<li>prevent RangeError when using large Buffers (<a
href="https://redirect.github.com/axios/axios/issues/6961">#6961</a>)
(<a
href="a2214ca1bc">a2214ca</a>)</li>
<li><strong>types:</strong> resolve type discrepancies between ESM and
CJS TypeScript declaration files (<a
href="https://redirect.github.com/axios/axios/issues/6956">#6956</a>)
(<a
href="8517aa16f8">8517aa1</a>)</li>
</ul>
<h3>Contributors to this release</h3>
<ul>
<li><!-- raw HTML omitted --> <a href="https://github.com/izzygld"
title="+186/-93 ([#6970](https://github.com/axios/axios/issues/6970)
)">izzy goldman</a></li>
<li><!-- raw HTML omitted --> <a
href="https://github.com/manishsahanidev" title="+70/-0
([#6961](https://github.com/axios/axios/issues/6961) )">Manish
Sahani</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/noritaka1166"
title="+12/-10 ([#6938](https://github.com/axios/axios/issues/6938)
[#6939](https://github.com/axios/axios/issues/6939) )">Noritaka
Kobayashi</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/jrnail23"
title="+13/-2 ([#6956](https://github.com/axios/axios/issues/6956)
)">James Nail</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/Tejaswi1305"
title="+1/-1 ([#6894](https://github.com/axios/axios/issues/6894)
)">Tejaswi1305</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/axios/axios/blob/v1.x/CHANGELOG.md">axios's
changelog</a>.</em></p>
<blockquote>
<h1><a
href="https://github.com/axios/axios/compare/v1.11.0...v1.12.0">1.12.0</a>
(2025-09-11)</h1>
<h3>Bug Fixes</h3>
<ul>
<li>adding build artifacts (<a
href="9ec86de257">9ec86de</a>)</li>
<li>dont add dist on release (<a
href="a2edc3606a">a2edc36</a>)</li>
<li><strong>fetch-adapter:</strong> set correct Content-Type for Node
FormData (<a
href="https://redirect.github.com/axios/axios/issues/6998">#6998</a>)
(<a
href="a9f47afbf3">a9f47af</a>)</li>
<li><strong>node:</strong> enforce maxContentLength for data: URLs (<a
href="https://redirect.github.com/axios/axios/issues/7011">#7011</a>)
(<a
href="945435fc51">945435f</a>)</li>
<li>package exports (<a
href="https://redirect.github.com/axios/axios/issues/5627">#5627</a>)
(<a
href="aa78ac23fc">aa78ac2</a>)</li>
<li><strong>params:</strong> removing '[' and ']' from URL encode
exclude characters (<a
href="https://redirect.github.com/axios/axios/issues/3316">#3316</a>)
(<a
href="https://redirect.github.com/axios/axios/issues/5715">#5715</a>)
(<a
href="6d84189349">6d84189</a>)</li>
<li>release pr run (<a
href="fd7f404488">fd7f404</a>)</li>
<li><strong>types:</strong> change the type guard on isCancel (<a
href="https://redirect.github.com/axios/axios/issues/5595">#5595</a>)
(<a
href="0dbb7fd4f6">0dbb7fd</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li><strong>adapter:</strong> surface low‑level network error details;
attach original error via cause (<a
href="https://redirect.github.com/axios/axios/issues/6982">#6982</a>)
(<a
href="78b290c57c">78b290c</a>)</li>
<li><strong>fetch:</strong> add fetch, Request, Response env config
variables for the adapter; (<a
href="https://redirect.github.com/axios/axios/issues/7003">#7003</a>)
(<a
href="c959ff2901">c959ff2</a>)</li>
<li>support reviver on JSON.parse (<a
href="https://redirect.github.com/axios/axios/issues/5926">#5926</a>)
(<a
href="2a9763426e">2a97634</a>),
closes <a
href="https://redirect.github.com/axios/axios/issues/5924">#5924</a></li>
<li><strong>types:</strong> extend AxiosResponse interface to include
custom headers type (<a
href="https://redirect.github.com/axios/axios/issues/6782">#6782</a>)
(<a
href="7960d34ede">7960d34</a>)</li>
</ul>
<h3>Contributors to this release</h3>
<ul>
<li><!-- raw HTML omitted --> <a
href="https://github.com/WillianAgostini" title="+132/-16760
([#7002](https://github.com/axios/axios/issues/7002)
[#5926](https://github.com/axios/axios/issues/5926)
[#6782](https://github.com/axios/axios/issues/6782) )">Willian
Agostini</a></li>
<li><!-- raw HTML omitted --> <a
href="https://github.com/DigitalBrainJS" title="+4263/-293
([#7006](https://github.com/axios/axios/issues/7006)
[#7003](https://github.com/axios/axios/issues/7003) )">Dmitriy
Mozgovoy</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/mkhani01"
title="+111/-15 ([#6982](https://github.com/axios/axios/issues/6982)
)">khani</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/AmeerAssadi"
title="+123/-0 ([#7011](https://github.com/axios/axios/issues/7011)
)">Ameer Assadi</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/emiedonmokumo"
title="+55/-35 ([#6998](https://github.com/axios/axios/issues/6998)
)">Emiedonmokumo Dick-Boro</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/opsysdebug"
title="+8/-8 ([#6980](https://github.com/axios/axios/issues/6980)
)">Zeroday BYTE</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/jasonsaayman"
title="+7/-7 ([#6985](https://github.com/axios/axios/issues/6985)
[#6985](https://github.com/axios/axios/issues/6985) )">Jason
Saayman</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/HealGaren"
title="+5/-7 ([#5715](https://github.com/axios/axios/issues/5715)
)">최예찬</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/gligorkot"
title="+3/-1 ([#5627](https://github.com/axios/axios/issues/5627)
)">Gligor Kotushevski</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/adimit"
title="+2/-1 ([#5595](https://github.com/axios/axios/issues/5595)
)">Aleksandar Dimitrov</a></li>
</ul>
<h1><a
href="https://github.com/axios/axios/compare/v1.10.0...v1.11.0">1.11.0</a>
(2025-07-22)</h1>
<h3>Bug Fixes</h3>
<ul>
<li>form-data npm pakcage (<a
href="https://redirect.github.com/axios/axios/issues/6970">#6970</a>)
(<a
href="e72c193722">e72c193</a>)</li>
<li>prevent RangeError when using large Buffers (<a
href="https://redirect.github.com/axios/axios/issues/6961">#6961</a>)
(<a
href="a2214ca1bc">a2214ca</a>)</li>
<li><strong>types:</strong> resolve type discrepancies between ESM and
CJS TypeScript declaration files (<a
href="https://redirect.github.com/axios/axios/issues/6956">#6956</a>)
(<a
href="8517aa16f8">8517aa1</a>)</li>
</ul>
<h3>Contributors to this release</h3>
<ul>
<li><!-- raw HTML omitted --> <a href="https://github.com/izzygld"
title="+186/-93 ([#6970](https://github.com/axios/axios/issues/6970)
)">izzy goldman</a></li>
<li><!-- raw HTML omitted --> <a
href="https://github.com/manishsahanidev" title="+70/-0
([#6961](https://github.com/axios/axios/issues/6961) )">Manish
Sahani</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/noritaka1166"
title="+12/-10 ([#6938](https://github.com/axios/axios/issues/6938)
[#6939](https://github.com/axios/axios/issues/6939) )">Noritaka
Kobayashi</a></li>
<li><!-- raw HTML omitted --> <a href="https://github.com/jrnail23"
title="+13/-2 ([#6956](https://github.com/axios/axios/issues/6956)
)">James Nail</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="0d8ad6e1de"><code>0d8ad6e</code></a>
chore(release): v1.12.0 (<a
href="https://redirect.github.com/axios/axios/issues/7013">#7013</a>)</li>
<li><a
href="fd7f404488"><code>fd7f404</code></a>
fix: release pr run</li>
<li><a
href="a2edc3606a"><code>a2edc36</code></a>
fix: dont add dist on release</li>
<li><a
href="9ec86de257"><code>9ec86de</code></a>
fix: adding build artifacts</li>
<li><a
href="945435fc51"><code>945435f</code></a>
fix(node): enforce maxContentLength for data: URLs (<a
href="https://redirect.github.com/axios/axios/issues/7011">#7011</a>)</li>
<li><a
href="28e5e3016d"><code>28e5e30</code></a>
chore(sponsor): update sponsor block (<a
href="https://redirect.github.com/axios/axios/issues/7005">#7005</a>)</li>
<li><a
href="d03f245a40"><code>d03f245</code></a>
chore(CI): fixed release info script to use npm registry instead of git
as fi...</li>
<li><a
href="a0bc911379"><code>a0bc911</code></a>
chore: removing dist files from src (<a
href="https://redirect.github.com/axios/axios/issues/7002">#7002</a>)</li>
<li><a
href="c959ff2901"><code>c959ff2</code></a>
feat(fetch): add fetch, Request, Response env config variables for the
adapte...</li>
<li><a
href="a9f47afbf3"><code>a9f47af</code></a>
fix(fetch-adapter): set correct Content-Type for Node FormData (<a
href="https://redirect.github.com/axios/axios/issues/6998">#6998</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/axios/axios/compare/v1.9.0...v1.12.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=axios&package-manager=npm_and_yarn&previous-version=1.9.0&new-version=1.12.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the
[Security Alerts
page](https://github.com/infiniflow/ragflow/network/alerts).

</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-18 09:41:24 +08:00
d353f7f7f8 Feat/parse audio (#10133)
### What problem does this PR solve?

Dataflow support audio.  And fix giteeAI's sequence2text model. 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 09:31:32 +08:00
f3738b06f1 Fixes session_id passing in agent_openai completion. (#10124)
### What problem does this PR solve?

An exception happens if you give session_id to agent_open_ai completion.
Because session_id is being given as well as **req so it tries to send
session_id twice. But also the logic seemed odd on picking one of
session_id, id, metadata.id. So cleaned it up a little.

See #10111 

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
2025-09-17 17:54:06 +08:00
5a8bc88147 Docs: Removed /v1 from Ollama base URLs (#10067)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-09-17 13:48:29 +08:00
04ef5b2783 Fix: usage of postgresql -> postgres for db_type (#10120)
### What problem does this PR solve?

This PR fixes incorrect naming for PostgreSQL usage by replacing all
instances of `postgresql` with the correct `postgres` in the `db_type`
field. This resolves potential configuration errors and ensures
consistency when specifying the database type.

Also fixed handling of None for `get_queue_length`

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: cucusenok <BP-116: updated readme.md>
2025-09-17 10:30:45 +08:00
c9ea22ef69 Fix: set default chunk_token_num in html_parser (#10118)
### What problem does this PR solve?

issue:
[Bug]: Agent component (HTTP Request) "'>' not supported between
instances of 'int' and 'NoneType'"
[#10096](https://github.com/infiniflow/ragflow/issues/10096)

Change:
When the Invoke class instantiates HtmlParser without providing the
chunk_token_num parameter, the value defaults to None, leading to a
comparison error with block_token_count.

This change sets the default chunk_token_num to 512 to prevent such
errors.
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: BadwomanCraZY <511528396@qq.com>
2025-09-17 09:36:31 +08:00
152111fd9d Feat/parse img (#10112)
### What problem does this PR solve?

support parse image by OCR or VLM.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-16 17:53:37 +08:00
86f6da2f74 Feat: add support for the Ascend table structure recognizer (#10110)
### What problem does this PR solve?

Add support for the Ascend table structure recognizer.

Use the environment variable `TABLE_STRUCTURE_RECOGNIZER_TYPE=ascend` to
enable the Ascend table structure recognizer.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-16 13:57:06 +08:00
8c00cbc87a Fix(agent template): wrap template variables in curly braces (#10109)
### What problem does this PR solve?

Updated SQL assistant template to wrap variables like 'sys.query' and
'Agent:WickedGoatsDivide@content' in curly braces for better template
variable syntax consistency.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-16 13:56:56 +08:00
41e808f4e6 Docs: Added an Execute SQL tool reference (#10108)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-09-16 11:39:56 +08:00
bc0281040b Feat: add support for the Ascend layout recognizer (#10105)
### What problem does this PR solve?

Supports Ascend layout recognizer.

Use the environment variable `LAYOUT_RECOGNIZER_TYPE=ascend` to enable
the Ascend layout recognizer, and `ASCEND_LAYOUT_RECOGNIZER_DEVICE_ID=n`
(for example, n=0) to specify the Ascend device ID.

Ensure that you have installed the [ais
tools](https://gitee.com/ascend/tools/tree/master/ais-bench_workload/tool/ais_bench)
properly.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-16 09:51:15 +08:00
341a7b1473 Fix: judge not empty before delete (#10099)
### What problem does this PR solve?

judge not empty before delete session.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-15 17:49:52 +08:00
c29c395390 Fix: The same model appears twice in the drop-down box. #10102 (#10103)
### What problem does this PR solve?

Fix: The same model appears twice in the drop-down box. #10102

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-15 16:38:08 +08:00
a23a0f230c feat: add multiple docker tags (latest, latest_full, latest_slim) to … (#10040)
…release workflow (#10039)  
This change updates the GitHub Actions workflow to push additional
stable tags alongside version tags, enabling automated update tools like
Watchtower to detect and pull the latest images correctly.
Refs:
[https://github.com/infiniflow/ragflow/issues/10039](https://github.com/infiniflow/ragflow/issues/10039)

### What problem does this PR solve?  
Automated container update tools such as Watchtower rely on stable tags
like `latest` to identify the newest images. Previously, only
version-specific tags were pushed, which prevented these tools from
detecting new releases automatically. This PR adds multiple stable tags
(`latest-full`, `latest-slim`) alongside version tags to the Docker
image publishing workflow, ensuring smooth and reliable automated
updates without manual tag management.

### Type of change  
- [ ] Bug Fix (non-breaking change which fixes an issue)  
- [x] New Feature (non-breaking change which adds functionality)  
- [ ] Documentation Update  
- [ ] Refactoring  
- [ ] Performance Improvement  
- [ ] Other (please describe):

---------

Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-09-13 21:44:53 +08:00
2a88ce6be1 Fix: terminate onnx inference session manually (#10076)
### What problem does this PR solve?

terminate onnx inference session and release memory manually.

Issue #5050 
Issue #9992 
Issue #8805

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-12 17:18:26 +08:00
664b781d62 Feat: Translate the fields of the embedded dialog box on the agent page #3221 (#10072)
### What problem does this PR solve?

Feat: Translate the fields of the embedded dialog box on the agent page
#3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-12 16:01:12 +08:00
65571e5254 Feat: dataflow supports text (#10058)
### What problem does this PR solve?

dataflow supports text.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-11 19:03:51 +08:00
aa30f20730 Feat: Agent component support inserting variables(#10048) (#10055)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-11 19:03:19 +08:00
b9b278d441 Docs: How to connect to an MCP server as a client (#10043)
### What problem does this PR solve?

#9769 

### Type of change


- [x] Documentation Update
2025-09-11 19:02:50 +08:00
e1d86cfee3 Feat: add TokenPony model provider (#9932)
### What problem does this PR solve?

Add TokenPony as a LLM provider

Co-authored-by: huangzl <huangzl@shinemo.com>
2025-09-11 17:25:31 +08:00
8ebd07337f The chat dialog box cannot be fully displayed on a small screen #10034 (#10049)
### What problem does this PR solve?

The chat dialog box cannot be fully displayed on a small screen #10034

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-11 13:32:23 +08:00
dd584d57b0 Fix: Hide dataflow related functions #9869 (#10045)
### What problem does this PR solve?

Fix: Hide dataflow related functions #9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-11 12:02:26 +08:00
3d39b96c6f Fix: token num exceed (#10046)
### What problem does this PR solve?

fix text input exceed token num limit when using siliconflow's embedding
model BAAI/bge-large-zh-v1.5 and BAAI/bge-large-en-v1.5, truncate before
input.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-11 12:02:12 +08:00
179091b1a4 Fix: In ragflow/rag/app /naive.py, if there are multiple images in one line, the other images will be lost (#9968)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/9966

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-11 11:08:31 +08:00
d14d92a900 Feat: Translate the parser operator #9869 (#10037)
### What problem does this PR solve?

Feat: Translate the parser operator #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-11 11:07:26 +08:00
1936ad82d2 Refactor:Improve BytesIO usage for GeminiCV (#10042)
### What problem does this PR solve?
Improve BytesIO usage for GeminiCV

### Type of change
- [x] Refactoring
2025-09-11 11:07:15 +08:00
8a09f07186 feat: Added UI functions related to data-flow knowledge base #3221 (#10038)
### What problem does this PR solve?

feat: Added UI functions related to data-flow knowledge base #3221

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-11 09:51:18 +08:00
df8d31451b Feat: Import dsl from agent list page #9869 (#10033)
### What problem does this PR solve?

Feat: Import dsl from agent list page #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 18:22:16 +08:00
fc95d113c3 Feat(config): Update service config template new defaults (#10029)
### What problem does this PR solve?

- Update default LLM configuration with BAAI and model details #9404
- Add SMTP configuration section #9479
- Add OpenDAL storage configuration option #8232

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 16:39:26 +08:00
7d14455fbe Feat: Add type card to create agent dialog #9869 (#10025)
### What problem does this PR solve?

Feat: Add type card to create agent dialog #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 15:56:10 +08:00
bbe6ed3b90 Fix: Fixed the issue where newly added tool operators would disappear after editing the form #10013 (#10016)
### What problem does this PR solve?

Fix: Fixed the issue where newly added tool operators would disappear
after editing the form #10013

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-10 15:55:59 +08:00
127af4e45c Refactor:Improve BytesIO usage for image2base64 (#9997)
### What problem does this PR solve?

Improve BytesIO usage for image2base64

### Type of change

- [x] Refactoring
2025-09-10 15:55:33 +08:00
41cdba19ba Feat: dataflow supports markdown (#10003)
### What problem does this PR solve?

Dataflow supports markdown.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-10 13:31:02 +08:00
0d9c1f1c3c Feat: dataflow supports Spreadsheet and Word processor document (#9996)
### What problem does this PR solve?

Dataflow supports Spreadsheet and Word processor document

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 13:02:53 +08:00
194 changed files with 12208 additions and 1227 deletions

View File

@ -88,7 +88,9 @@ jobs:
with:
context: .
push: true
tags: infiniflow/ragflow:${{ env.RELEASE_TAG }}
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}
infiniflow/ragflow:latest-full
file: Dockerfile
platforms: linux/amd64
@ -98,7 +100,9 @@ jobs:
with:
context: .
push: true
tags: infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
infiniflow/ragflow:latest-slim
file: Dockerfile
build-args: LIGHTEN=1
platforms: linux/amd64

101
admin/README.md Normal file
View File

@ -0,0 +1,101 @@
# RAGFlow Admin Service & CLI
### Introduction
Admin Service is a dedicated management component designed to monitor, maintain, and administrate the RAGFlow system. It provides comprehensive tools for ensuring system stability, performing operational tasks, and managing users and permissions efficiently.
The service offers real-time monitoring of critical components, including the RAGFlow server, Task Executor processes, and dependent services such as MySQL, Elasticsearch, Redis, and MinIO. It automatically checks their health status, resource usage, and uptime, and performs restarts in case of failures to minimize downtime.
For user and system management, it supports listing, creating, modifying, and deleting users and their associated resources like knowledge bases and Agents.
Built with scalability and reliability in mind, the Admin Service ensures smooth system operation and simplifies maintenance workflows.
It consists of a server-side Service and a command-line client (CLI), both implemented in Python. User commands are parsed using the Lark parsing toolkit.
- **Admin Service**: A backend service that interfaces with the RAGFlow system to execute administrative operations and monitor its status.
- **Admin CLI**: A command-line interface that allows users to connect to the Admin Service and issue commands for system management.
### Starting the Admin Service
1. Before start Admin Service, please make sure RAGFlow system is already started.
2. Run the service script:
```bash
python admin/admin_server.py
```
The service will start and listen for incoming connections from the CLI on the configured port.
### Using the Admin CLI
1. Ensure the Admin Service is running.
2. Launch the CLI client:
```bash
python admin/admin_client.py -h 0.0.0.0 -p 9381
## Supported Commands
Commands are case-insensitive and must be terminated with a semicolon (`;`).
### Service Management Commands
- `LIST SERVICES;`
- Lists all available services within the RAGFlow system.
- `SHOW SERVICE <id>;`
- Shows detailed status information for the service identified by `<id>`.
- `STARTUP SERVICE <id>;`
- Attempts to start the service identified by `<id>`.
- `SHUTDOWN SERVICE <id>;`
- Attempts to gracefully shut down the service identified by `<id>`.
- `RESTART SERVICE <id>;`
- Attempts to restart the service identified by `<id>`.
### User Management Commands
- `LIST USERS;`
- Lists all users known to the system.
- `SHOW USER '<username>';`
- Shows details and permissions for the specified user. The username must be enclosed in single or double quotes.
- `DROP USER '<username>';`
- Removes the specified user from the system. Use with caution.
- `ALTER USER PASSWORD '<username>' '<new_password>';`
- Changes the password for the specified user.
### Data and Agent Commands
- `LIST DATASETS OF '<username>';`
- Lists the datasets associated with the specified user.
- `LIST AGENTS OF '<username>';`
- Lists the agents associated with the specified user.
### Meta-Commands
Meta-commands are prefixed with a backslash (`\`).
- `\?` or `\help`
- Shows help information for the available commands.
- `\q` or `\quit`
- Exits the CLI application.
## Examples
```commandline
admin> list users;
+-------------------------------+------------------------+-----------+-------------+
| create_date | email | is_active | nickname |
+-------------------------------+------------------------+-----------+-------------+
| Fri, 22 Nov 2024 16:03:41 GMT | jeffery@infiniflow.org | 1 | Jeffery |
| Fri, 22 Nov 2024 16:10:55 GMT | aya@infiniflow.org | 1 | Waterdancer |
+-------------------------------+------------------------+-----------+-------------+
admin> list services;
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| extra | host | id | name | port | service_type |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| {} | 0.0.0.0 | 0 | ragflow_0 | 9380 | ragflow_server |
| {'meta_type': 'mysql', 'password': 'infini_rag_flow', 'username': 'root'} | localhost | 1 | mysql | 5455 | meta_data |
| {'password': 'infini_rag_flow', 'store_type': 'minio', 'user': 'rag_flow'} | localhost | 2 | minio | 9000 | file_store |
| {'password': 'infini_rag_flow', 'retrieval_type': 'elasticsearch', 'username': 'elastic'} | localhost | 3 | elasticsearch | 1200 | retrieval |
| {'db_name': 'default_db', 'retrieval_type': 'infinity'} | localhost | 4 | infinity | 23817 | retrieval |
| {'database': 1, 'mq_type': 'redis', 'password': 'infini_rag_flow'} | localhost | 5 | redis | 6379 | message_queue |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
```

471
admin/admin_client.py Normal file
View File

@ -0,0 +1,471 @@
import argparse
import base64
from typing import Dict, List, Any
from lark import Lark, Transformer, Tree
import requests
from requests.auth import HTTPBasicAuth
GRAMMAR = r"""
start: command
command: sql_command | meta_command
sql_command: list_services
| show_service
| startup_service
| shutdown_service
| restart_service
| list_users
| show_user
| drop_user
| alter_user
| list_datasets
| list_agents
// meta command definition
meta_command: "\\" meta_command_name [meta_args]
meta_command_name: /[a-zA-Z?]+/
meta_args: (meta_arg)+
meta_arg: /[^\\s"']+/ | quoted_string
// command definition
LIST: "LIST"i
SERVICES: "SERVICES"i
SHOW: "SHOW"i
SERVICE: "SERVICE"i
SHUTDOWN: "SHUTDOWN"i
STARTUP: "STARTUP"i
RESTART: "RESTART"i
USERS: "USERS"i
DROP: "DROP"i
USER: "USER"i
ALTER: "ALTER"i
PASSWORD: "PASSWORD"i
DATASETS: "DATASETS"i
OF: "OF"i
AGENTS: "AGENTS"i
list_services: LIST SERVICES ";"
show_service: SHOW SERVICE NUMBER ";"
startup_service: STARTUP SERVICE NUMBER ";"
shutdown_service: SHUTDOWN SERVICE NUMBER ";"
restart_service: RESTART SERVICE NUMBER ";"
list_users: LIST USERS ";"
drop_user: DROP USER quoted_string ";"
alter_user: ALTER USER PASSWORD quoted_string quoted_string ";"
show_user: SHOW USER quoted_string ";"
list_datasets: LIST DATASETS OF quoted_string ";"
list_agents: LIST AGENTS OF quoted_string ";"
identifier: WORD
quoted_string: QUOTED_STRING
QUOTED_STRING: /'[^']+'/ | /"[^"]+"/
WORD: /[a-zA-Z0-9_\-\.]+/
NUMBER: /[0-9]+/
%import common.WS
%ignore WS
"""
class AdminTransformer(Transformer):
def start(self, items):
return items[0]
def command(self, items):
return items[0]
def list_services(self, items):
result = {'type': 'list_services'}
return result
def show_service(self, items):
service_id = int(items[2])
return {"type": "show_service", "number": service_id}
def startup_service(self, items):
service_id = int(items[2])
return {"type": "startup_service", "number": service_id}
def shutdown_service(self, items):
service_id = int(items[2])
return {"type": "shutdown_service", "number": service_id}
def restart_service(self, items):
service_id = int(items[2])
return {"type": "restart_service", "number": service_id}
def list_users(self, items):
return {"type": "list_users"}
def show_user(self, items):
user_name = items[2]
return {"type": "show_user", "username": user_name}
def drop_user(self, items):
user_name = items[2]
return {"type": "drop_user", "username": user_name}
def alter_user(self, items):
user_name = items[3]
new_password = items[4]
return {"type": "alter_user", "username": user_name, "password": new_password}
def list_datasets(self, items):
user_name = items[3]
return {"type": "list_datasets", "username": user_name}
def list_agents(self, items):
user_name = items[3]
return {"type": "list_agents", "username": user_name}
def meta_command(self, items):
command_name = str(items[0]).lower()
args = items[1:] if len(items) > 1 else []
# handle quoted parameter
parsed_args = []
for arg in args:
if hasattr(arg, 'value'):
parsed_args.append(arg.value)
else:
parsed_args.append(str(arg))
return {'type': 'meta', 'command': command_name, 'args': parsed_args}
def meta_command_name(self, items):
return items[0]
def meta_args(self, items):
return items
def encode_to_base64(input_string):
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
return base64_encoded.decode('utf-8')
class AdminCommandParser:
def __init__(self):
self.parser = Lark(GRAMMAR, start='start', parser='lalr', transformer=AdminTransformer())
self.command_history = []
def parse_command(self, command_str: str) -> Dict[str, Any]:
if not command_str.strip():
return {'type': 'empty'}
self.command_history.append(command_str)
try:
result = self.parser.parse(command_str)
return result
except Exception as e:
return {'type': 'error', 'message': f'Parse error: {str(e)}'}
class AdminCLI:
def __init__(self):
self.parser = AdminCommandParser()
self.is_interactive = False
self.admin_account = "admin@ragflow.io"
self.admin_password: str = "admin"
self.host: str = ""
self.port: int = 0
def verify_admin(self, args):
conn_info = self._parse_connection_args(args)
if 'error' in conn_info:
print(f"Error: {conn_info['error']}")
return
self.host = conn_info['host']
self.port = conn_info['port']
print(f"Attempt to access ip: {self.host}, port: {self.port}")
url = f'http://{self.host}:{self.port}/api/v1/admin/auth'
try_count = 0
while True:
try_count += 1
if try_count > 3:
return False
admin_passwd = input(f"password for {self.admin_account}: ").strip()
try:
self.admin_password = encode_to_base64(admin_passwd)
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
if response.status_code == 200:
res_json = response.json()
error_code = res_json.get('code', -1)
if error_code == 0:
print("Authentication successful.")
return True
else:
error_message = res_json.get('message', 'Unknown error')
print(f"Authentication failed: {error_message}, try again")
continue
else:
print(f"Bad responsestatus: {response.status_code}, try again")
except Exception:
print(f"Can't access {self.host}, port: {self.port}")
def _print_table_simple(self, data):
if not data:
print("No data to print")
return
columns = list(data[0].keys())
col_widths = {}
for col in columns:
max_width = len(str(col))
for item in data:
value_len = len(str(item.get(col, '')))
if value_len > max_width:
max_width = value_len
col_widths[col] = max(2, max_width)
# Generate delimiter
separator = "+" + "+".join(["-" * (col_widths[col] + 2) for col in columns]) + "+"
# Print header
print(separator)
header = "|" + "|".join([f" {col:<{col_widths[col]}} " for col in columns]) + "|"
print(header)
print(separator)
# Print data
for item in data:
row = "|"
for col in columns:
value = str(item.get(col, ''))
if len(value) > col_widths[col]:
value = value[:col_widths[col] - 3] + "..."
row += f" {value:<{col_widths[col]}} |"
print(row)
print(separator)
def run_interactive(self):
self.is_interactive = True
print("RAGFlow Admin command line interface - Type '\\?' for help, '\\q' to quit")
while True:
try:
command = input("admin> ").strip()
if not command:
continue
print(f"command: {command}")
result = self.parser.parse_command(command)
self.execute_command(result)
if isinstance(result, Tree):
continue
if result.get('type') == 'meta' and result.get('command') in ['q', 'quit', 'exit']:
break
except KeyboardInterrupt:
print("\nUse '\\q' to quit")
except EOFError:
print("\nGoodbye!")
break
def run_single_command(self, args):
conn_info = self._parse_connection_args(args)
if 'error' in conn_info:
print(f"Error: {conn_info['error']}")
return
def _parse_connection_args(self, args: List[str]) -> Dict[str, Any]:
parser = argparse.ArgumentParser(description='Admin CLI Client', add_help=False)
parser.add_argument('-h', '--host', default='localhost', help='Admin service host')
parser.add_argument('-p', '--port', type=int, default=8080, help='Admin service port')
try:
parsed_args, remaining_args = parser.parse_known_args(args)
return {
'host': parsed_args.host,
'port': parsed_args.port,
}
except SystemExit:
return {'error': 'Invalid connection arguments'}
def execute_command(self, parsed_command: Dict[str, Any]):
command_dict: dict
if isinstance(parsed_command, Tree):
command_dict = parsed_command.children[0]
else:
if parsed_command['type'] == 'error':
print(f"Error: {parsed_command['message']}")
return
else:
command_dict = parsed_command
# print(f"Parsed command: {command_dict}")
command_type = command_dict['type']
match command_type:
case 'list_services':
self._handle_list_services(command_dict)
case 'show_service':
self._handle_show_service(command_dict)
case 'restart_service':
self._handle_restart_service(command_dict)
case 'shutdown_service':
self._handle_shutdown_service(command_dict)
case 'startup_service':
self._handle_startup_service(command_dict)
case 'list_users':
self._handle_list_users(command_dict)
case 'show_user':
self._handle_show_user(command_dict)
case 'drop_user':
self._handle_drop_user(command_dict)
case 'alter_user':
self._handle_alter_user(command_dict)
case 'list_datasets':
self._handle_list_datasets(command_dict)
case 'list_agents':
self._handle_list_agents(command_dict)
case 'meta':
self._handle_meta_command(command_dict)
case _:
print(f"Command '{command_type}' would be executed with API")
def _handle_list_services(self, command):
print("Listing all services")
url = f'http://{self.host}:{self.port}/api/v1/admin/services'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = dict
if response.status_code == 200:
res_json = response.json()
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all users, code: {res_json['code']}, message: {res_json['message']}")
def _handle_show_service(self, command):
service_id: int = command['number']
print(f"Showing service: {service_id}")
def _handle_restart_service(self, command):
service_id: int = command['number']
print(f"Restart service {service_id}")
def _handle_shutdown_service(self, command):
service_id: int = command['number']
print(f"Shutdown service {service_id}")
def _handle_startup_service(self, command):
service_id: int = command['number']
print(f"Startup service {service_id}")
def _handle_list_users(self, command):
print("Listing all users")
url = f'http://{self.host}:{self.port}/api/v1/admin/users'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = dict
if response.status_code == 200:
res_json = response.json()
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all users, code: {res_json['code']}, message: {res_json['message']}")
def _handle_show_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Showing user: {username}")
def _handle_drop_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Drop user: {username}")
def _handle_alter_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
password_tree: Tree = command['password']
password: str = password_tree.children[0].strip("'\"")
print(f"Alter user: {username}, password: {password}")
def _handle_list_datasets(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Listing all datasets of user: {username}")
def _handle_list_agents(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Listing all agents of user: {username}")
def _handle_meta_command(self, command):
meta_command = command['command']
args = command.get('args', [])
if meta_command in ['?', 'h', 'help']:
self.show_help()
elif meta_command in ['q', 'quit', 'exit']:
print("Goodbye!")
else:
print(f"Meta command '{meta_command}' with args {args}")
def show_help(self):
"""Help info"""
help_text = """
Commands:
LIST SERVICES
SHOW SERVICE <service>
STARTUP SERVICE <service>
SHUTDOWN SERVICE <service>
RESTART SERVICE <service>
LIST USERS
SHOW USER <user>
DROP USER <user>
CREATE USER <user> <password>
ALTER USER PASSWORD <user> <new_password>
LIST DATASETS OF <user>
LIST AGENTS OF <user>
Meta Commands:
\\?, \\h, \\help Show this help
\\q, \\quit, \\exit Quit the CLI
"""
print(help_text)
def main():
import sys
cli = AdminCLI()
if len(sys.argv) == 1 or (len(sys.argv) > 1 and sys.argv[1] == '-'):
print(r"""
____ ___ ______________ ___ __ _
/ __ \/ | / ____/ ____/ /___ _ __ / | ____/ /___ ___ (_)___
/ /_/ / /| |/ / __/ /_ / / __ \ | /| / / / /| |/ __ / __ `__ \/ / __ \
/ _, _/ ___ / /_/ / __/ / / /_/ / |/ |/ / / ___ / /_/ / / / / / / / / / /
/_/ |_/_/ |_\____/_/ /_/\____/|__/|__/ /_/ |_\__,_/_/ /_/ /_/_/_/ /_/
""")
if cli.verify_admin(sys.argv):
cli.run_interactive()
else:
if cli.verify_admin(sys.argv):
cli.run_interactive()
# cli.run_single_command(sys.argv[1:])
if __name__ == '__main__':
main()

46
admin/admin_server.py Normal file
View File

@ -0,0 +1,46 @@
import os
import signal
import logging
import time
import threading
import traceback
from werkzeug.serving import run_simple
from flask import Flask
from routes import admin_bp
from api.utils.log_utils import init_root_logger
from api.constants import SERVICE_CONF
from config import load_configurations, SERVICE_CONFIGS
stop_event = threading.Event()
if __name__ == '__main__':
init_root_logger("admin_service")
logging.info(r"""
____ ___ ______________ ___ __ _
/ __ \/ | / ____/ ____/ /___ _ __ / | ____/ /___ ___ (_)___
/ /_/ / /| |/ / __/ /_ / / __ \ | /| / / / /| |/ __ / __ `__ \/ / __ \
/ _, _/ ___ / /_/ / __/ / / /_/ / |/ |/ / / ___ / /_/ / / / / / / / / / /
/_/ |_/_/ |_\____/_/ /_/\____/|__/|__/ /_/ |_\__,_/_/ /_/ /_/_/_/ /_/
""")
app = Flask(__name__)
app.register_blueprint(admin_bp)
SERVICE_CONFIGS.configs = load_configurations(SERVICE_CONF)
try:
logging.info("RAGFlow Admin service start...")
run_simple(
hostname="0.0.0.0",
port=9381,
application=app,
threaded=True,
use_reloader=True,
use_debugger=True,
)
except Exception:
traceback.print_exc()
stop_event.set()
time.sleep(1)
os.kill(os.getpid(), signal.SIGKILL)

57
admin/auth.py Normal file
View File

@ -0,0 +1,57 @@
import logging
import uuid
from functools import wraps
from flask import request, jsonify
from exceptions import AdminException
from api.db.init_data import encode_to_base64
from api.db.services import UserService
def check_admin(username: str, password: str):
users = UserService.query(email=username)
if not users:
logging.info(f"Username: {username} is not registered!")
user_info = {
"id": uuid.uuid1().hex,
"password": encode_to_base64("admin"),
"nickname": "admin",
"is_superuser": True,
"email": "admin@ragflow.io",
"creator": "system",
"status": "1",
}
if not UserService.save(**user_info):
raise AdminException("Can't init admin.", 500)
user = UserService.query_user(username, password)
if user:
return True
else:
return False
def login_verify(f):
@wraps(f)
def decorated(*args, **kwargs):
auth = request.authorization
if not auth or 'username' not in auth.parameters or 'password' not in auth.parameters:
return jsonify({
"code": 401,
"message": "Authentication required",
"data": None
}), 200
username = auth.parameters['username']
password = auth.parameters['password']
# TODO: to check the username and password from DB
if check_admin(username, password) is False:
return jsonify({
"code": 403,
"message": "Access denied",
"data": None
}), 200
return f(*args, **kwargs)
return decorated

280
admin/config.py Normal file
View File

@ -0,0 +1,280 @@
import logging
import threading
from enum import Enum
from pydantic import BaseModel
from typing import Any
from api.utils import read_config
from urllib.parse import urlparse
class ServiceConfigs:
def __init__(self):
self.configs = []
self.lock = threading.Lock()
SERVICE_CONFIGS = ServiceConfigs
class ServiceType(Enum):
METADATA = "metadata"
RETRIEVAL = "retrieval"
MESSAGE_QUEUE = "message_queue"
RAGFLOW_SERVER = "ragflow_server"
TASK_EXECUTOR = "task_executor"
FILE_STORE = "file_store"
class BaseConfig(BaseModel):
id: int
name: str
host: str
port: int
service_type: str
def to_dict(self) -> dict[str, Any]:
return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port, 'service_type': self.service_type}
class MetaConfig(BaseConfig):
meta_type: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['meta_type'] = self.meta_type
result['extra'] = extra_dict
return result
class MySQLConfig(MetaConfig):
username: str
password: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['username'] = self.username
extra_dict['password'] = self.password
result['extra'] = extra_dict
return result
class PostgresConfig(MetaConfig):
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
return result
class RetrievalConfig(BaseConfig):
retrieval_type: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['retrieval_type'] = self.retrieval_type
result['extra'] = extra_dict
return result
class InfinityConfig(RetrievalConfig):
db_name: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['db_name'] = self.db_name
result['extra'] = extra_dict
return result
class ElasticsearchConfig(RetrievalConfig):
username: str
password: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['username'] = self.username
extra_dict['password'] = self.password
result['extra'] = extra_dict
return result
class MessageQueueConfig(BaseConfig):
mq_type: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['mq_type'] = self.mq_type
result['extra'] = extra_dict
return result
class RedisConfig(MessageQueueConfig):
database: int
password: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['database'] = self.database
extra_dict['password'] = self.password
result['extra'] = extra_dict
return result
class RabbitMQConfig(MessageQueueConfig):
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
return result
class RAGFlowServerConfig(BaseConfig):
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
return result
class TaskExecutorConfig(BaseConfig):
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
return result
class FileStoreConfig(BaseConfig):
store_type: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['store_type'] = self.store_type
result['extra'] = extra_dict
return result
class MinioConfig(FileStoreConfig):
user: str
password: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['user'] = self.user
extra_dict['password'] = self.password
result['extra'] = extra_dict
return result
def load_configurations(config_path: str) -> list[BaseConfig]:
raw_configs = read_config(config_path)
configurations = []
ragflow_count = 0
id_count = 0
for k, v in raw_configs.items():
match (k):
case "ragflow":
name: str = f'ragflow_{ragflow_count}'
host: str = v['host']
http_port: int = v['http_port']
config = RAGFlowServerConfig(id=id_count, name=name, host=host, port=http_port, service_type="ragflow_server")
configurations.append(config)
id_count += 1
case "es":
name: str = 'elasticsearch'
url = v['hosts']
parsed = urlparse(url)
host: str = parsed.hostname
port: int = parsed.port
username: str = v.get('username')
password: str = v.get('password')
config = ElasticsearchConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval",
retrieval_type="elasticsearch",
username=username, password=password)
configurations.append(config)
id_count += 1
case "infinity":
name: str = 'infinity'
url = v['uri']
parts = url.split(':', 1)
host = parts[0]
port = int(parts[1])
database: str = v.get('db_name', 'default_db')
config = InfinityConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval", retrieval_type="infinity",
db_name=database)
configurations.append(config)
id_count += 1
case "minio":
name: str = 'minio'
url = v['host']
parts = url.split(':', 1)
host = parts[0]
port = int(parts[1])
user = v.get('user')
password = v.get('password')
config = MinioConfig(id=id_count, name=name, host=host, port=port, user=user, password=password, service_type="file_store",
store_type="minio")
configurations.append(config)
id_count += 1
case "redis":
name: str = 'redis'
url = v['host']
parts = url.split(':', 1)
host = parts[0]
port = int(parts[1])
password = v.get('password')
db: int = v.get('db')
config = RedisConfig(id=id_count, name=name, host=host, port=port, password=password, database=db,
service_type="message_queue", mq_type="redis")
configurations.append(config)
id_count += 1
case "mysql":
name: str = 'mysql'
host: str = v.get('host')
port: int = v.get('port')
username = v.get('user')
password = v.get('password')
config = MySQLConfig(id=id_count, name=name, host=host, port=port, username=username, password=password,
service_type="meta_data", meta_type="mysql")
configurations.append(config)
id_count += 1
case "admin":
pass
case _:
logging.warning(f"Unknown configuration key: {k}")
continue
return configurations

17
admin/exceptions.py Normal file
View File

@ -0,0 +1,17 @@
class AdminException(Exception):
def __init__(self, message, code=400):
super().__init__(message)
self.code = code
self.message = message
class UserNotFoundError(AdminException):
def __init__(self, username):
super().__init__(f"User '{username}' not found", 404)
class UserAlreadyExistsError(AdminException):
def __init__(self, username):
super().__init__(f"User '{username}' already exists", 409)
class CannotDeleteAdminError(AdminException):
def __init__(self):
super().__init__("Cannot delete admin account", 403)

0
admin/models.py Normal file
View File

15
admin/responses.py Normal file
View File

@ -0,0 +1,15 @@
from flask import jsonify
def success_response(data=None, message="Success", code = 0):
return jsonify({
"code": code,
"message": message,
"data": data
}), 200
def error_response(message="Error", code=-1, data=None):
return jsonify({
"code": code,
"message": message,
"data": data
}), 400

141
admin/routes.py Normal file
View File

@ -0,0 +1,141 @@
from flask import Blueprint, request
from auth import login_verify
from responses import success_response, error_response
from services import UserMgr, ServiceMgr
from exceptions import AdminException
admin_bp = Blueprint('admin', __name__, url_prefix='/api/v1/admin')
@admin_bp.route('/auth', methods=['GET'])
@login_verify
def auth_admin():
try:
return success_response(None, "Admin is authorized", 0)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users', methods=['GET'])
@login_verify
def list_users():
try:
users = UserMgr.get_all_users()
return success_response(users, "Get all users", 0)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users', methods=['POST'])
@login_verify
def create_user():
try:
data = request.get_json()
if not data or 'username' not in data or 'password' not in data:
return error_response("Username and password are required", 400)
username = data['username']
password = data['password']
role = data.get('role', 'user')
user = UserMgr.create_user(username, password, role)
return success_response(user, "User created successfully", 201)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>', methods=['DELETE'])
@login_verify
def delete_user(username):
try:
UserMgr.delete_user(username)
return success_response(None, "User and all data deleted successfully")
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/password', methods=['PUT'])
@login_verify
def change_password(username):
try:
data = request.get_json()
if not data or 'new_password' not in data:
return error_response("New password is required", 400)
new_password = data['new_password']
UserMgr.update_user_password(username, new_password)
return success_response(None, "Password updated successfully")
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>', methods=['GET'])
@login_verify
def get_user_details(username):
try:
user_details = UserMgr.get_user_details(username)
return success_response(user_details)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/services', methods=['GET'])
@login_verify
def get_services():
try:
services = ServiceMgr.get_all_services()
return success_response(services, "Get all services", 0)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/service_types/<service_type>', methods=['GET'])
@login_verify
def get_services_by_type(service_type_str):
try:
services = ServiceMgr.get_services_by_type(service_type_str)
return success_response(services)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/services/<service_id>', methods=['GET'])
@login_verify
def get_service(service_id):
try:
services = ServiceMgr.get_service_details(service_id)
return success_response(services)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/services/<service_id>', methods=['DELETE'])
@login_verify
def shutdown_service(service_id):
try:
services = ServiceMgr.shutdown_service(service_id)
return success_response(services)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/services/<service_id>', methods=['PUT'])
@login_verify
def restart_service(service_id):
try:
services = ServiceMgr.restart_service(service_id)
return success_response(services)
except Exception as e:
return error_response(str(e), 500)

54
admin/services.py Normal file
View File

@ -0,0 +1,54 @@
from api.db.services import UserService
from exceptions import AdminException
from config import SERVICE_CONFIGS
class UserMgr:
@staticmethod
def get_all_users():
users = UserService.get_all_users()
result = []
for user in users:
result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date, 'is_active': user.is_active})
return result
@staticmethod
def get_user_details(username):
raise AdminException("get_user_details: not implemented")
@staticmethod
def create_user(username, password, role="user"):
raise AdminException("create_user: not implemented")
@staticmethod
def delete_user(username):
raise AdminException("delete_user: not implemented")
@staticmethod
def update_user_password(username, new_password):
raise AdminException("update_user_password: not implemented")
class ServiceMgr:
@staticmethod
def get_all_services():
result = []
configs = SERVICE_CONFIGS.configs
for config in configs:
result.append(config.to_dict())
return result
@staticmethod
def get_services_by_type(service_type_str: str):
raise AdminException("get_services_by_type: not implemented")
@staticmethod
def get_service_details(service_id: int):
raise AdminException("get_service_details: not implemented")
@staticmethod
def shutdown_service(service_id: int):
raise AdminException("shutdown_service: not implemented")
@staticmethod
def restart_service(service_id: int):
raise AdminException("restart_service: not implemented")

View File

@ -83,7 +83,7 @@
},
"password": "20010812Yy!",
"port": 3306,
"sql": "Agent:WickedGoatsDivide@content",
"sql": "{Agent:WickedGoatsDivide@content}",
"username": "13637682833@163.com"
}
},
@ -114,9 +114,7 @@
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"ed31364c727211f0bdb2bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -124,7 +122,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -145,9 +143,7 @@
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"0f968106727311f08357bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -155,7 +151,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -176,9 +172,7 @@
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"4ad1f9d0727311f0827dbafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -186,7 +180,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -347,9 +341,7 @@
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"ed31364c727211f0bdb2bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -357,7 +349,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -387,9 +379,7 @@
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"0f968106727311f08357bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -397,7 +387,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -427,9 +417,7 @@
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"4ad1f9d0727311f0827dbafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -437,7 +425,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -539,7 +527,7 @@
},
"password": "20010812Yy!",
"port": 3306,
"sql": "Agent:WickedGoatsDivide@content",
"sql": "{Agent:WickedGoatsDivide@content}",
"username": "13637682833@163.com"
},
"label": "ExeSQL",

View File

@ -157,7 +157,7 @@ class CodeExec(ToolBase, ABC):
try:
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code)
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run, code_req: {code_req}, resp.status_code {resp.status_code}:")
if resp.status_code != 200:
resp.raise_for_status()
body = resp.json()

View File

@ -53,7 +53,7 @@ class ExeSQLParam(ToolParamBase):
self.max_records = 1024
def check(self):
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgresql', 'mariadb', 'mssql'])
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql'])
self.check_empty(self.database, "Database name")
self.check_empty(self.username, "database username")
self.check_empty(self.host, "IP Address")
@ -111,7 +111,7 @@ class ExeSQL(ToolBase, ABC):
if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'postgresql':
elif self._param.db_type == 'postgres':
db = psycopg2.connect(dbname=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'mssql':

View File

@ -163,9 +163,16 @@ class Retrieval(ToolBase, ABC):
self.set_output("formalized_content", self._param.empty_response)
return
# Format the chunks for JSON output (similar to how other tools do it)
json_output = kbinfos["chunks"].copy()
self._canvas.add_reference(kbinfos["chunks"], kbinfos["doc_aggs"])
form_cnt = "\n".join(kb_prompt(kbinfos, 200000, True))
# Set both formalized content and JSON output
self.set_output("formalized_content", form_cnt)
self.set_output("json", json_output)
return form_cnt
def thoughts(self) -> str:

View File

@ -332,7 +332,7 @@ def test_db_connect():
if req["db_type"] in ["mysql", "mariadb"]:
db = MySQLDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
password=req["password"])
elif req["db_type"] == 'postgresql':
elif req["db_type"] == 'postgres':
db = PostgresqlDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
password=req["password"])
elif req["db_type"] == 'mssql':

View File

@ -379,3 +379,19 @@ def get_meta():
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=DocumentService.get_meta_by_kbs(kb_ids))
@manager.route("/basic_info", methods=["GET"]) # noqa: F821
@login_required
def get_basic_info():
kb_id = request.args.get("kb_id", "")
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
basic_info = DocumentService.knowledgebase_basic_info(kb_id)
return get_json_result(data=basic_info)

View File

@ -3,9 +3,11 @@ import re
import flask
from flask import request
from pathlib import Path
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import server_error_response, token_required
from api.utils import get_uuid
from api.db import FileType
@ -666,3 +668,71 @@ def move(tenant_id):
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/file/convert', methods=['POST']) # noqa: F821
@token_required
def convert(tenant_id):
req = request.json
kb_ids = req["kb_ids"]
file_ids = req["file_ids"]
file2documents = []
try:
files = FileService.get_by_ids(file_ids)
files_set = dict({file.id: file for file in files})
for file_id in file_ids:
file = files_set[file_id]
if not file:
return get_json_result(message="File not found!", code=404)
file_ids_list = [file_id]
if file.type == FileType.FOLDER.value:
file_ids_list = FileService.get_all_innermost_file_ids(file_id, [])
for id in file_ids_list:
informs = File2DocumentService.get_by_file_id(id)
# delete
for inform in informs:
doc_id = inform.document_id
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_json_result(message="Document not found!", code=404)
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_json_result(message="Tenant not found!", code=404)
if not DocumentService.remove_document(doc, tenant_id):
return get_json_result(
message="Database error (Document removal)!", code=404)
File2DocumentService.delete_by_file_id(id)
# insert
for kb_id in kb_ids:
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return get_json_result(
message="Can't find this knowledgebase!", code=404)
e, file = FileService.get_by_id(id)
if not e:
return get_json_result(
message="Can't find this file!", code=404)
doc = DocumentService.insert({
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": FileService.get_parser(file.type, file.name, kb.parser_id),
"parser_config": kb.parser_config,
"created_by": tenant_id,
"type": file.type,
"name": file.name,
"suffix": Path(file.name).suffix.lstrip("."),
"location": file.location,
"size": file.size
})
file2document = File2DocumentService.insert({
"id": get_uuid(),
"file_id": id,
"document_id": doc.id,
})
file2documents.append(file2document.to_json())
return get_json_result(data=file2documents)
except Exception as e:
return server_error_response(e)

View File

@ -414,7 +414,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
stream=True,
**req,
),
@ -432,7 +432,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
stream=False,
**req,
)

View File

@ -36,6 +36,8 @@ from rag.utils.storage_factory import STORAGE_IMPL, STORAGE_IMPL_TYPE
from timeit import default_timer as timer
from rag.utils.redis_conn import REDIS_CONN
from flask import jsonify
from api.utils.health_utils import run_health_checks
@manager.route("/version", methods=["GET"]) # noqa: F821
@login_required
@ -169,6 +171,12 @@ def status():
return get_json_result(data=res)
@manager.route("/healthz", methods=["GET"]) # noqa: F821
def healthz():
result, all_ok = run_health_checks()
return jsonify(result), (200 if all_ok else 500)
@manager.route("/new_token", methods=["POST"]) # noqa: F821
@login_required
def new_token():

View File

@ -144,8 +144,9 @@ def init_llm_factory():
except Exception:
pass
break
doc_count = DocumentService.get_all_kb_doc_count()
for kb_id in KnowledgebaseService.get_all_ids():
KnowledgebaseService.update_document_number_in_init(kb_id=kb_id, doc_num=DocumentService.get_kb_doc_count(kb_id))
KnowledgebaseService.update_document_number_in_init(kb_id=kb_id, doc_num=doc_count.get(kb_id, 0))

View File

@ -24,7 +24,7 @@ from io import BytesIO
import trio
import xxhash
from peewee import fn
from peewee import fn, Case
from api import settings
from api.constants import IMG_BASE64_PREFIX, FILE_NAME_LEN_LIMIT
@ -660,8 +660,16 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def get_kb_doc_count(cls, kb_id):
return len(cls.model.select(cls.model.id).where(
cls.model.kb_id == kb_id).dicts())
return cls.model.select().where(cls.model.kb_id == kb_id).count()
@classmethod
@DB.connection_context()
def get_all_kb_doc_count(cls):
result = {}
rows = cls.model.select(cls.model.kb_id, fn.COUNT(cls.model.id).alias('count')).group_by(cls.model.kb_id)
for row in rows:
result[row.kb_id] = row.count
return result
@classmethod
@DB.connection_context()
@ -674,6 +682,53 @@ class DocumentService(CommonService):
return False
@classmethod
@DB.connection_context()
def knowledgebase_basic_info(cls, kb_id: str) -> dict[str, int]:
# cancelled: run == "2" but progress can vary
cancelled = (
cls.model.select(fn.COUNT(1))
.where((cls.model.kb_id == kb_id) & (cls.model.run == TaskStatus.CANCEL))
.scalar()
)
row = (
cls.model.select(
# finished: progress == 1
fn.COALESCE(fn.SUM(Case(None, [(cls.model.progress == 1, 1)], 0)), 0).alias("finished"),
# failed: progress == -1
fn.COALESCE(fn.SUM(Case(None, [(cls.model.progress == -1, 1)], 0)), 0).alias("failed"),
# processing: 0 <= progress < 1
fn.COALESCE(
fn.SUM(
Case(
None,
[
(((cls.model.progress == 0) | ((cls.model.progress > 0) & (cls.model.progress < 1))), 1),
],
0,
)
),
0,
).alias("processing"),
)
.where(
(cls.model.kb_id == kb_id)
& ((cls.model.run.is_null(True)) | (cls.model.run != TaskStatus.CANCEL))
)
.dicts()
.get()
)
return {
"processing": int(row["processing"]),
"finished": int(row["finished"]),
"failed": int(row["failed"]),
"cancelled": int(cancelled),
}
def queue_raptor_o_graphrag_tasks(doc, ty, priority):
chunking_config = DocumentService.get_chunking_config(doc["id"])
hasher = xxhash.xxh64()
@ -702,6 +757,8 @@ def queue_raptor_o_graphrag_tasks(doc, ty, priority):
def get_queue_length(priority):
group_info = REDIS_CONN.queue_info(get_svr_queue_name(priority), SVR_CONSUMER_GROUP_NAME)
if not group_info:
return 0
return int(group_info.get("lag", 0) or 0)
@ -847,3 +904,4 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
return [d["id"] for d, _ in files]

View File

@ -45,22 +45,22 @@ class UserService(CommonService):
def query(cls, cols=None, reverse=None, order_by=None, **kwargs):
if 'access_token' in kwargs:
access_token = kwargs['access_token']
# Reject empty, None, or whitespace-only access tokens
if not access_token or not str(access_token).strip():
logging.warning("UserService.query: Rejecting empty access_token query")
return cls.model.select().where(cls.model.id == "INVALID_EMPTY_TOKEN") # Returns empty result
# Reject tokens that are too short (should be UUID, 32+ chars)
if len(str(access_token).strip()) < 32:
logging.warning(f"UserService.query: Rejecting short access_token query: {len(str(access_token))} chars")
return cls.model.select().where(cls.model.id == "INVALID_SHORT_TOKEN") # Returns empty result
# Reject tokens that start with "INVALID_" (from logout)
if str(access_token).startswith("INVALID_"):
logging.warning("UserService.query: Rejecting invalidated access_token")
return cls.model.select().where(cls.model.id == "INVALID_LOGOUT_TOKEN") # Returns empty result
# Call parent query method for valid requests
return super().query(cols=cols, reverse=reverse, order_by=order_by, **kwargs)
@ -140,6 +140,12 @@ class UserService(CommonService):
cls.model.id == user_id,
cls.model.is_superuser == 1).count() > 0
@classmethod
@DB.connection_context()
def get_all_users(cls):
users = cls.model.select()
return list(users)
class TenantService(CommonService):
"""Service class for managing tenant-related database operations.

107
api/utils/health_utils.py Normal file
View File

@ -0,0 +1,107 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from timeit import default_timer as timer
from api import settings
from api.db.db_models import DB
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL
def _ok_nok(ok: bool) -> str:
return "ok" if ok else "nok"
def check_db() -> tuple[bool, dict]:
st = timer()
try:
# lightweight probe; works for MySQL/Postgres
DB.execute_sql("SELECT 1")
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_redis() -> tuple[bool, dict]:
st = timer()
try:
ok = bool(REDIS_CONN.health())
return ok, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_doc_engine() -> tuple[bool, dict]:
st = timer()
try:
meta = settings.docStoreConn.health()
# treat any successful call as ok
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", **(meta or {})}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_storage() -> tuple[bool, dict]:
st = timer()
try:
STORAGE_IMPL.health()
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def run_health_checks() -> tuple[dict, bool]:
result: dict[str, str | dict] = {}
db_ok, db_meta = check_db()
result["db"] = _ok_nok(db_ok)
if not db_ok:
result.setdefault("_meta", {})["db"] = db_meta
try:
redis_ok, redis_meta = check_redis()
result["redis"] = _ok_nok(redis_ok)
if not redis_ok:
result.setdefault("_meta", {})["redis"] = redis_meta
except Exception:
result["redis"] = "nok"
try:
doc_ok, doc_meta = check_doc_engine()
result["doc_engine"] = _ok_nok(doc_ok)
if not doc_ok:
result.setdefault("_meta", {})["doc_engine"] = doc_meta
except Exception:
result["doc_engine"] = "nok"
try:
sto_ok, sto_meta = check_storage()
result["storage"] = _ok_nok(sto_ok)
if not sto_ok:
result.setdefault("_meta", {})["storage"] = sto_meta
except Exception:
result["storage"] = "nok"
all_ok = (result.get("db") == "ok") and (result.get("redis") == "ok") and (result.get("doc_engine") == "ok") and (result.get("storage") == "ok")
result["status"] = "ok" if all_ok else "nok"
return result, all_ok

19
chat_demo/index.html Normal file
View File

@ -0,0 +1,19 @@
<iframe src="http://localhost:9222/next-chats/widget?shared_id=9dcfc68696c611f0bb789b9b8b765d12&from=chat&auth=U4MDU3NzkwOTZjNzExZjBiYjc4OWI5Yj&mode=master&streaming=false"
style="position:fixed;bottom:0;right:0;width:100px;height:100px;border:none;background:transparent;z-index:9999"
frameborder="0" allow="microphone;camera"></iframe>
<script>
window.addEventListener('message',e=>{
if(e.origin!=='http://localhost:9222')return;
if(e.data.type==='CREATE_CHAT_WINDOW'){
if(document.getElementById('chat-win'))return;
const i=document.createElement('iframe');
i.id='chat-win';i.src=e.data.src;
i.style.cssText='position:fixed;bottom:104px;right:24px;width:380px;height:500px;border:none;background:transparent;z-index:9998;display:none';
i.frameBorder='0';i.allow='microphone;camera';
document.body.appendChild(i);
}else if(e.data.type==='TOGGLE_CHAT'){
const w=document.getElementById('chat-win');
if(w)w.style.display=e.data.isOpen?'block':'none';
}else if(e.data.type==='SCROLL_PASSTHROUGH')window.scrollBy(0,e.data.deltaY);
});
</script>

154
chat_demo/widget_demo.html Normal file
View File

@ -0,0 +1,154 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Floating Chat Widget Demo</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 0;
padding: 40px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
color: white;
}
.demo-content {
max-width: 800px;
margin: 0 auto;
}
.demo-content h1 {
text-align: center;
font-size: 2.5rem;
margin-bottom: 2rem;
}
.demo-content p {
font-size: 1.2rem;
line-height: 1.6;
margin-bottom: 1.5rem;
}
.feature-list {
background: rgba(255, 255, 255, 0.1);
border-radius: 10px;
padding: 2rem;
margin: 2rem 0;
}
.feature-list h3 {
margin-top: 0;
font-size: 1.5rem;
}
.feature-list ul {
list-style-type: none;
padding: 0;
}
.feature-list li {
padding: 0.5rem 0;
padding-left: 1.5rem;
position: relative;
}
.feature-list li:before {
content: "✓";
position: absolute;
left: 0;
color: #4ade80;
font-weight: bold;
}
</style>
</head>
<body>
<div class="demo-content">
<h1>🚀 Floating Chat Widget Demo</h1>
<p>
Welcome to our demo page! This page simulates a real website with content.
Look for the floating chat button in the bottom-right corner - just like Intercom!
</p>
<div class="feature-list">
<h3>🎯 Widget Features</h3>
<ul>
<li>Floating button that stays visible while scrolling</li>
<li>Click to open/close the chat window</li>
<li>Minimize button to collapse the chat</li>
<li>Professional Intercom-style design</li>
<li>Unread message indicator (red badge)</li>
<li>Transparent background integration</li>
<li>Responsive design for all screen sizes</li>
</ul>
</div>
<p>
The chat widget is completely separate from your website's content and won't
interfere with your existing layout or functionality. It's designed to be
lightweight and performant.
</p>
<p>
Try scrolling this page - notice how the chat button stays in position.
Click it to start a conversation with our AI assistant!
</p>
<div class="feature-list">
<h3>🔧 Implementation</h3>
<ul>
<li>Simple iframe embed - just copy and paste</li>
<li>No JavaScript dependencies required</li>
<li>Works on any website or platform</li>
<li>Customizable appearance and behavior</li>
<li>Secure and privacy-focused</li>
</ul>
</div>
<p>
This is just placeholder content to demonstrate how the widget integrates
seamlessly with your existing website content. The widget floats above
everything else without disrupting your user experience.
</p>
<p style="margin-top: 4rem; text-align: center; font-style: italic;">
🎉 Ready to add this to your website? Get your embed code from the admin panel!
</p>
</div>
<iframe id="main-widget" src="http://localhost:9222/next-chats/widget?shared_id=9dcfc68696c611f0bb789b9b8b765d12&from=chat&auth=U4MDU3NzkwOTZjNzExZjBiYjc4OWI5Yj&visible_avatar=1&locale=zh&mode=master&streaming=false"
style="position:fixed;bottom:0;right:0;width:100px;height:100px;border:none;background:transparent;z-index:9999;opacity:0;transition:opacity 0.2s ease"
frameborder="0" allow="microphone;camera"></iframe>
<script>
window.addEventListener('message',e=>{
if(e.origin!=='http://localhost:9222')return;
if(e.data.type==='WIDGET_READY'){
// Show the main widget when React is ready
const mainWidget = document.getElementById('main-widget');
if(mainWidget) mainWidget.style.opacity = '1';
}else if(e.data.type==='CREATE_CHAT_WINDOW'){
if(document.getElementById('chat-win'))return;
const i=document.createElement('iframe');
i.id='chat-win';i.src=e.data.src;
i.style.cssText='position:fixed;bottom:104px;right:24px;width:380px;height:500px;border:none;background:transparent;z-index:9998;display:none;opacity:0;transition:opacity 0.2s ease';
i.frameBorder='0';i.allow='microphone;camera';
document.body.appendChild(i);
}else if(e.data.type==='TOGGLE_CHAT'){
const w=document.getElementById('chat-win');
if(w){
if(e.data.isOpen){
w.style.display='block';
// Wait for the iframe content to be ready before showing
setTimeout(() => w.style.opacity='1', 100);
}else{
w.style.opacity='0';
setTimeout(() => w.style.display='none', 200);
}
}
}else if(e.data.type==='SCROLL_PASSTHROUGH')window.scrollBy(0,e.data.deltaY);
});
</script>
</body>
</html>

View File

@ -219,6 +219,70 @@
}
]
},
{
"name": "TokenPony",
"logo": "",
"tags": "LLM",
"status": "1",
"llm": [
{
"llm_name": "qwen3-8b",
"tags": "LLM,CHAT,131k",
"max_tokens": 131000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-v3-0324",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-32b",
"tags": "LLM,CHAT,131k",
"max_tokens": 131000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "kimi-k2-instruct",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-r1-0528",
"tags": "LLM,CHAT,164k",
"max_tokens": 164000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-coder-480b",
"tags": "LLM,CHAT,1024k",
"max_tokens": 1024000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5",
"tags": "LLM,CHAT,131K",
"max_tokens": 131000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-v3.1",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
}
]
},
{
"name": "Tongyi-Qianwen",
"logo": "",
@ -625,7 +689,7 @@
},
{
"llm_name": "glm-4",
"tags":"LLM,CHAT,128K",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
@ -4477,6 +4541,273 @@
}
]
},
{
"name": "CometAPI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
"status": "1",
"llm": [
{
"llm_name": "gpt-5-chat-latest",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "chatgpt-4o-latest",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-5-mini",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-5-nano",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-5",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4.1-mini",
"tags": "LLM,CHAT,1M",
"max_tokens": 1047576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4.1-nano",
"tags": "LLM,CHAT,1M",
"max_tokens": 1047576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4.1",
"tags": "LLM,CHAT,1M",
"max_tokens": 1047576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4o-mini",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "o4-mini-2025-04-16",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "o3-pro-2025-06-10",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "claude-opus-4-1-20250805",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-opus-4-1-20250805-thinking",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-sonnet-4-20250514",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-sonnet-4-20250514-thinking",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-3-7-sonnet-latest",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "claude-3-5-haiku-latest",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gemini-2.5-pro",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.5-flash",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.5-flash-lite",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.0-flash",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "grok-4-0709",
"tags": "LLM,CHAT,131k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "grok-3",
"tags": "LLM,CHAT,131k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "grok-3-mini",
"tags": "LLM,CHAT,131k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "grok-2-image-1212",
"tags": "LLM,CHAT,32k,IMAGE2TEXT",
"max_tokens": 32768,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "deepseek-v3.1",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-v3",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-r1-0528",
"tags": "LLM,CHAT,164k",
"max_tokens": 164000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-chat",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-reasoner",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-30b-a3b",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-coder-plus-2025-07-22",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "text-embedding-ada-002",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "text-embedding-3-small",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "text-embedding-3-large",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "whisper-1",
"tags": "SPEECH2TEXT",
"max_tokens": 26214400,
"model_type": "speech2text",
"is_tools": false
},
{
"llm_name": "tts-1",
"tags": "TTS",
"max_tokens": 2048,
"model_type": "tts",
"is_tools": false
}
]
},
{
"name": "Meituan",
"logo": "",
@ -4493,4 +4824,4 @@
]
}
]
}
}

View File

@ -1,6 +1,9 @@
ragflow:
host: 0.0.0.0
http_port: 9380
admin:
host: 0.0.0.0
http_port: 9381
mysql:
name: 'rag_flow'
user: 'root'

View File

@ -22,10 +22,10 @@ from openpyxl import Workbook, load_workbook
from rag.nlp import find_codec
# copied from `/openpyxl/cell/cell.py`
ILLEGAL_CHARACTERS_RE = re.compile(r'[\000-\010]|[\013-\014]|[\016-\037]')
ILLEGAL_CHARACTERS_RE = re.compile(r"[\000-\010]|[\013-\014]|[\016-\037]")
class RAGFlowExcelParser:
@staticmethod
def _load_excel_to_workbook(file_like_object):
if isinstance(file_like_object, bytes):
@ -36,7 +36,7 @@ class RAGFlowExcelParser:
file_head = file_like_object.read(4)
file_like_object.seek(0)
if not (file_head.startswith(b'PK\x03\x04') or file_head.startswith(b'\xD0\xCF\x11\xE0')):
if not (file_head.startswith(b"PK\x03\x04") or file_head.startswith(b"\xd0\xcf\x11\xe0")):
logging.info("Not an Excel file, converting CSV to Excel Workbook")
try:
@ -48,7 +48,7 @@ class RAGFlowExcelParser:
raise Exception(f"Failed to parse CSV and convert to Excel Workbook: {e_csv}")
try:
return load_workbook(file_like_object,data_only= True)
return load_workbook(file_like_object, data_only=True)
except Exception as e:
logging.info(f"openpyxl load error: {e}, try pandas instead")
try:
@ -59,7 +59,7 @@ class RAGFlowExcelParser:
except Exception as ex:
logging.info(f"pandas with default engine load error: {ex}, try calamine instead")
file_like_object.seek(0)
df = pd.read_excel(file_like_object, engine='calamine')
df = pd.read_excel(file_like_object, engine="calamine")
return RAGFlowExcelParser._dataframe_to_workbook(df)
except Exception as e_pandas:
raise Exception(f"pandas.read_excel error: {e_pandas}, original openpyxl error: {e}")
@ -116,9 +116,7 @@ class RAGFlowExcelParser:
tb = ""
tb += f"<table><caption>{sheetname}</caption>"
tb += tb_rows_0
for r in list(
rows[1 + chunk_i * chunk_rows: min(1 + (chunk_i + 1) * chunk_rows, len(rows))]
):
for r in list(rows[1 + chunk_i * chunk_rows : min(1 + (chunk_i + 1) * chunk_rows, len(rows))]):
tb += "<tr>"
for i, c in enumerate(r):
if c.value is None:
@ -133,8 +131,16 @@ class RAGFlowExcelParser:
def markdown(self, fnm):
import pandas as pd
file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
df = pd.read_excel(file_like_object)
try:
file_like_object.seek(0)
df = pd.read_excel(file_like_object)
except Exception as e:
logging.warning(f"Parse spreadsheet error: {e}, trying to interpret as CSV file")
file_like_object.seek(0)
df = pd.read_csv(file_like_object)
df = df.replace(r"^\s*$", "", regex=True)
return df.to_markdown(index=False)
def __call__(self, fnm):

View File

@ -37,7 +37,7 @@ TITLE_TAGS = {"h1": "#", "h2": "##", "h3": "###", "h4": "#####", "h5": "#####",
class RAGFlowHtmlParser:
def __call__(self, fnm, binary=None, chunk_token_num=None):
def __call__(self, fnm, binary=None, chunk_token_num=512):
if binary:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")

View File

@ -34,7 +34,7 @@ from pypdf import PdfReader as pdf2_read
from api import settings
from api.utils.file_utils import get_project_base_directory
from deepdoc.vision import OCR, LayoutRecognizer, Recognizer, TableStructureRecognizer
from deepdoc.vision import OCR, AscendLayoutRecognizer, LayoutRecognizer, Recognizer, TableStructureRecognizer
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
from rag.nlp import rag_tokenizer
from rag.prompts import vision_llm_describe_prompt
@ -64,33 +64,38 @@ class RAGFlowPdfParser:
if PARALLEL_DEVICES > 1:
self.parallel_limiter = [trio.CapacityLimiter(1) for _ in range(PARALLEL_DEVICES)]
layout_recognizer_type = os.getenv("LAYOUT_RECOGNIZER_TYPE", "onnx").lower()
if layout_recognizer_type not in ["onnx", "ascend"]:
raise RuntimeError("Unsupported layout recognizer type.")
if hasattr(self, "model_speciess"):
self.layouter = LayoutRecognizer("layout." + self.model_speciess)
recognizer_domain = "layout." + self.model_speciess
else:
self.layouter = LayoutRecognizer("layout")
recognizer_domain = "layout"
if layout_recognizer_type == "ascend":
logging.debug("Using Ascend LayoutRecognizer")
self.layouter = AscendLayoutRecognizer(recognizer_domain)
else: # onnx
logging.debug("Using Onnx LayoutRecognizer")
self.layouter = LayoutRecognizer(recognizer_domain)
self.tbl_det = TableStructureRecognizer()
self.updown_cnt_mdl = xgb.Booster()
if not settings.LIGHTEN:
try:
import torch.cuda
if torch.cuda.is_available():
self.updown_cnt_mdl.set_param({"device": "cuda"})
except Exception:
logging.exception("RAGFlowPdfParser __init__")
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
self.updown_cnt_mdl.load_model(os.path.join(
model_dir, "updown_concat_xgb.model"))
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
except Exception:
model_dir = snapshot_download(
repo_id="InfiniFlow/text_concat_xgb_v1.0",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
self.updown_cnt_mdl.load_model(os.path.join(
model_dir, "updown_concat_xgb.model"))
model_dir = snapshot_download(repo_id="InfiniFlow/text_concat_xgb_v1.0", local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), local_dir_use_symlinks=False)
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
self.page_from = 0
self.column_num = 1
@ -102,13 +107,10 @@ class RAGFlowPdfParser:
return c["bottom"] - c["top"]
def _x_dis(self, a, b):
return min(abs(a["x1"] - b["x0"]), abs(a["x0"] - b["x1"]),
abs(a["x0"] + a["x1"] - b["x0"] - b["x1"]) / 2)
return min(abs(a["x1"] - b["x0"]), abs(a["x0"] - b["x1"]), abs(a["x0"] + a["x1"] - b["x0"] - b["x1"]) / 2)
def _y_dis(
self, a, b):
return (
b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
def _y_dis(self, a, b):
return (b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
def _match_proj(self, b):
proj_patt = [
@ -130,10 +132,7 @@ class RAGFlowPdfParser:
LEN = 6
tks_down = rag_tokenizer.tokenize(down["text"][:LEN]).split()
tks_up = rag_tokenizer.tokenize(up["text"][-LEN:]).split()
tks_all = up["text"][-LEN:].strip() \
+ (" " if re.match(r"[a-zA-Z0-9]+",
up["text"][-1] + down["text"][0]) else "") \
+ down["text"][:LEN].strip()
tks_all = up["text"][-LEN:].strip() + (" " if re.match(r"[a-zA-Z0-9]+", up["text"][-1] + down["text"][0]) else "") + down["text"][:LEN].strip()
tks_all = rag_tokenizer.tokenize(tks_all).split()
fea = [
up.get("R", -1) == down.get("R", -1),
@ -144,39 +143,30 @@ class RAGFlowPdfParser:
down["layout_type"] == "text",
up["layout_type"] == "table",
down["layout_type"] == "table",
True if re.search(
r"([。?!;!?;+)]|[a-z]\.)$",
up["text"]) else False,
True if re.search(r"([。?!;!?;+)]|[a-z]\.)$", up["text"]) else False,
True if re.search(r"[“、0-9+-]$", up["text"]) else False,
True if re.search(
r"(^.?[/,?;:\],。;:’”?!》】)-])",
down["text"]) else False,
True if re.search(r"(^.?[/,?;:\],。;:’”?!》】)-])", down["text"]) else False,
True if re.match(r"[\(][^\(\)]+[\)]$", up["text"]) else False,
True if re.search(r"[,][^。.]+$", up["text"]) else False,
True if re.search(r"[,][^。.]+$", up["text"]) else False,
True if re.search(r"[\(][^\)]+$", up["text"])
and re.search(r"[\)]", down["text"]) else False,
True if re.search(r"[\(][^\)]+$", up["text"]) and re.search(r"[\)]", down["text"]) else False,
self._match_proj(down),
True if re.match(r"[A-Z]", down["text"]) else False,
True if re.match(r"[A-Z]", up["text"][-1]) else False,
True if re.match(r"[a-z0-9]", up["text"][-1]) else False,
True if re.match(r"[0-9.%,-]+$", down["text"]) else False,
up["text"].strip()[-2:] == down["text"].strip()[-2:] if len(up["text"].strip()
) > 1 and len(
down["text"].strip()) > 1 else False,
up["text"].strip()[-2:] == down["text"].strip()[-2:] if len(up["text"].strip()) > 1 and len(down["text"].strip()) > 1 else False,
up["x0"] > down["x1"],
abs(self.__height(up) - self.__height(down)) / min(self.__height(up),
self.__height(down)),
abs(self.__height(up) - self.__height(down)) / min(self.__height(up), self.__height(down)),
self._x_dis(up, down) / max(w, 0.000001),
(len(up["text"]) - len(down["text"])) /
max(len(up["text"]), len(down["text"])),
(len(up["text"]) - len(down["text"])) / max(len(up["text"]), len(down["text"])),
len(tks_all) - len(tks_up) - len(tks_down),
len(tks_down) - len(tks_up),
tks_down[-1] == tks_up[-1] if tks_down and tks_up else False,
max(down["in_row"], up["in_row"]),
abs(down["in_row"] - up["in_row"]),
len(tks_down) == 1 and rag_tokenizer.tag(tks_down[0]).find("n") >= 0,
len(tks_up) == 1 and rag_tokenizer.tag(tks_up[0]).find("n") >= 0
len(tks_up) == 1 and rag_tokenizer.tag(tks_up[0]).find("n") >= 0,
]
return fea
@ -187,9 +177,7 @@ class RAGFlowPdfParser:
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threshold \
and arr[j + 1]["top"] < arr[j]["top"] \
and arr[j + 1]["page_number"] == arr[j]["page_number"]:
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threshold and arr[j + 1]["top"] < arr[j]["top"] and arr[j + 1]["page_number"] == arr[j]["page_number"]:
tmp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = tmp
@ -197,8 +185,7 @@ class RAGFlowPdfParser:
def _has_color(self, o):
if o.get("ncs", "") == "DeviceGray":
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and \
o["non_stroking_color"][0] == 1:
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and o["non_stroking_color"][0] == 1:
if re.match(r"[a-zT_\[\]\(\)-]+", o.get("text", "")):
return False
return True
@ -216,8 +203,7 @@ class RAGFlowPdfParser:
if not tbls:
continue
for tb in tbls: # for table
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, \
tb["x1"] + MARGIN, tb["bottom"] + MARGIN
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, tb["x1"] + MARGIN, tb["bottom"] + MARGIN
left *= ZM
top *= ZM
right *= ZM
@ -232,14 +218,13 @@ class RAGFlowPdfParser:
tbcnt = np.cumsum(tbcnt)
for i in range(len(tbcnt) - 1): # for page
pg = []
for j, tb_items in enumerate(
recos[tbcnt[i]: tbcnt[i + 1]]): # for table
poss = pos[tbcnt[i]: tbcnt[i + 1]]
for j, tb_items in enumerate(recos[tbcnt[i] : tbcnt[i + 1]]): # for table
poss = pos[tbcnt[i] : tbcnt[i + 1]]
for it in tb_items: # for table components
it["x0"] = (it["x0"] + poss[j][0])
it["x1"] = (it["x1"] + poss[j][0])
it["top"] = (it["top"] + poss[j][1])
it["bottom"] = (it["bottom"] + poss[j][1])
it["x0"] = it["x0"] + poss[j][0]
it["x1"] = it["x1"] + poss[j][0]
it["top"] = it["top"] + poss[j][1]
it["bottom"] = it["bottom"] + poss[j][1]
for n in ["x0", "x1", "top", "bottom"]:
it[n] /= ZM
it["top"] += self.page_cum_height[i]
@ -250,8 +235,7 @@ class RAGFlowPdfParser:
self.tb_cpns.extend(pg)
def gather(kwd, fzy=10, ption=0.6):
eles = Recognizer.sort_Y_firstly(
[r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
eles = Recognizer.sort_Y_firstly([r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
eles = Recognizer.layouts_cleanup(self.boxes, eles, 5, ption)
return Recognizer.sort_Y_firstly(eles, 0)
@ -259,8 +243,7 @@ class RAGFlowPdfParser:
headers = gather(r".*header$")
rows = gather(r".* (row|header)")
spans = gather(r".*spanning")
clmns = sorted([r for r in self.tb_cpns if re.match(
r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
clmns = sorted([r for r in self.tb_cpns if re.match(r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
clmns = Recognizer.layouts_cleanup(self.boxes, clmns, 5, 0.5)
for b in self.boxes:
if b.get("layout_type", "") != "table":
@ -271,8 +254,7 @@ class RAGFlowPdfParser:
b["R_top"] = rows[ii]["top"]
b["R_bott"] = rows[ii]["bottom"]
ii = Recognizer.find_overlapped_with_threshold(
b, headers, thr=0.3)
ii = Recognizer.find_overlapped_with_threshold(b, headers, thr=0.3)
if ii is not None:
b["H_top"] = headers[ii]["top"]
b["H_bott"] = headers[ii]["bottom"]
@ -305,12 +287,12 @@ class RAGFlowPdfParser:
return
bxs = [(line[0], line[1][0]) for line in bxs]
bxs = Recognizer.sort_Y_firstly(
[{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM,
"top": b[0][1] / ZM, "text": "", "txt": t,
"bottom": b[-1][1] / ZM,
"chars": [],
"page_number": pagenum} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
self.mean_height[pagenum-1] / 3
[
{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM, "top": b[0][1] / ZM, "text": "", "txt": t, "bottom": b[-1][1] / ZM, "chars": [], "page_number": pagenum}
for b, t in bxs
if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]
],
self.mean_height[pagenum - 1] / 3,
)
# merge chars in the same rect
@ -321,7 +303,7 @@ class RAGFlowPdfParser:
continue
ch = c["bottom"] - c["top"]
bh = bxs[ii]["bottom"] - bxs[ii]["top"]
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != ' ':
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != " ":
self.lefted_chars.append(c)
continue
bxs[ii]["chars"].append(c)
@ -345,8 +327,7 @@ class RAGFlowPdfParser:
img_np = np.array(img)
for b in bxs:
if not b["text"]:
left, right, top, bott = b["x0"] * ZM, b["x1"] * \
ZM, b["top"] * ZM, b["bottom"] * ZM
left, right, top, bott = b["x0"] * ZM, b["x1"] * ZM, b["top"] * ZM, b["bottom"] * ZM
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
boxes_to_reg.append(b)
del b["txt"]
@ -356,21 +337,17 @@ class RAGFlowPdfParser:
del boxes_to_reg[i]["box_image"]
logging.info(f"__ocr recognize {len(bxs)} boxes cost {timer() - start}s")
bxs = [b for b in bxs if b["text"]]
if self.mean_height[pagenum-1] == 0:
self.mean_height[pagenum-1] = np.median([b["bottom"] - b["top"]
for b in bxs])
if self.mean_height[pagenum - 1] == 0:
self.mean_height[pagenum - 1] = np.median([b["bottom"] - b["top"] for b in bxs])
self.boxes.append(bxs)
def _layouts_rec(self, ZM, drop=True):
assert len(self.page_images) == len(self.boxes)
self.boxes, self.page_layout = self.layouter(
self.page_images, self.boxes, ZM, drop=drop)
self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM, drop=drop)
# cumlative Y
for i in range(len(self.boxes)):
self.boxes[i]["top"] += \
self.page_cum_height[self.boxes[i]["page_number"] - 1]
self.boxes[i]["bottom"] += \
self.page_cum_height[self.boxes[i]["page_number"] - 1]
self.boxes[i]["top"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
self.boxes[i]["bottom"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
def _text_merge(self):
# merge adjusted boxes
@ -390,12 +367,10 @@ class RAGFlowPdfParser:
while i < len(bxs) - 1:
b = bxs[i]
b_ = bxs[i + 1]
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure",
"equation"]:
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]:
i += 1
continue
if abs(self._y_dis(b, b_)
) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
# merge
bxs[i]["x1"] = b_["x1"]
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
@ -408,16 +383,14 @@ class RAGFlowPdfParser:
dis_thr = 1
dis = b["x1"] - b_["x0"]
if b.get("layout_type", "") != "text" or b_.get(
"layout_type", "") != "text":
if b.get("layout_type", "") != "text" or b_.get("layout_type", "") != "text":
if end_with(b, "") or start_with(b_, ""):
dis_thr = -8
else:
i += 1
continue
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 \
and dis >= dis_thr and b["x1"] < b_["x1"]:
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 and dis >= dis_thr and b["x1"] < b_["x1"]:
# merge
bxs[i]["x1"] = b_["x1"]
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
@ -429,23 +402,22 @@ class RAGFlowPdfParser:
self.boxes = bxs
def _naive_vertical_merge(self, zoomin=3):
bxs = Recognizer.sort_Y_firstly(
self.boxes, np.median(
self.mean_height) / 3)
import math
bxs = Recognizer.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
if not column_width or math.isnan(column_width):
column_width = self.mean_width[0]
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
logging.info("Multi-column................... {} {}".format(column_width,
self.page_images[0].size[0] / zoomin / self.column_num))
logging.info("Multi-column................... {} {}".format(column_width, self.page_images[0].size[0] / zoomin / self.column_num))
self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
i = 0
while i + 1 < len(bxs):
b = bxs[i]
b_ = bxs[i + 1]
if b["page_number"] < b_["page_number"] and re.match(
r"[0-9 •一—-]+$", b["text"]):
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
bxs.pop(i)
continue
if not b["text"].strip():
@ -453,8 +425,7 @@ class RAGFlowPdfParser:
continue
concatting_feats = [
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
len(b["text"].strip()) > 1 and b["text"].strip(
)[-2] in ",;:'\",‘“、;:",
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
]
# features for not concating
@ -462,21 +433,20 @@ class RAGFlowPdfParser:
b.get("layoutno", 0) != b_.get("layoutno", 0),
b["text"].strip()[-1] in "。?!?",
self.is_english and b["text"].strip()[-1] in ".!?",
b["page_number"] == b_["page_number"] and b_["top"] -
b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
b["page_number"] < b_["page_number"] and abs(
b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
b["page_number"] == b_["page_number"] and b_["top"] - b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
b["page_number"] < b_["page_number"] and abs(b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
]
# split features
detach_feats = [b["x1"] < b_["x0"],
b["x0"] > b_["x1"]]
detach_feats = [b["x1"] < b_["x0"], b["x0"] > b_["x1"]]
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
logging.debug("{} {} {} {}".format(
b["text"],
b_["text"],
any(feats),
any(concatting_feats),
))
logging.debug(
"{} {} {} {}".format(
b["text"],
b_["text"],
any(feats),
any(concatting_feats),
)
)
i += 1
continue
# merge up and down
@ -529,14 +499,11 @@ class RAGFlowPdfParser:
if not concat_between_pages and down["page_number"] > up["page_number"]:
break
if up.get("R", "") != down.get(
"R", "") and up["text"][-1] != "":
if up.get("R", "") != down.get("R", "") and up["text"][-1] != "":
i += 1
continue
if re.match(r"[0-9]{2,3}/[0-9]{3}$", up["text"]) \
or re.match(r"[0-9]{2,3}/[0-9]{3}$", down["text"]) \
or not down["text"].strip():
if re.match(r"[0-9]{2,3}/[0-9]{3}$", up["text"]) or re.match(r"[0-9]{2,3}/[0-9]{3}$", down["text"]) or not down["text"].strip():
i += 1
continue
@ -544,14 +511,12 @@ class RAGFlowPdfParser:
i += 1
continue
if up["x1"] < down["x0"] - 10 * \
mw or up["x0"] > down["x1"] + 10 * mw:
if up["x1"] < down["x0"] - 10 * mw or up["x0"] > down["x1"] + 10 * mw:
i += 1
continue
if i - dp < 5 and up.get("layout_type") == "text":
if up.get("layoutno", "1") == down.get(
"layoutno", "2"):
if up.get("layoutno", "1") == down.get("layoutno", "2"):
dfs(down, i + 1)
boxes.pop(i)
return
@ -559,8 +524,7 @@ class RAGFlowPdfParser:
continue
fea = self._updown_concat_features(up, down)
if self.updown_cnt_mdl.predict(
xgb.DMatrix([fea]))[0] <= 0.5:
if self.updown_cnt_mdl.predict(xgb.DMatrix([fea]))[0] <= 0.5:
i += 1
continue
dfs(down, i + 1)
@ -584,16 +548,14 @@ class RAGFlowPdfParser:
c["text"] = c["text"].strip()
if not c["text"]:
continue
if t["text"] and re.match(
r"[0-9\.a-zA-Z]+$", t["text"][-1] + c["text"][-1]):
if t["text"] and re.match(r"[0-9\.a-zA-Z]+$", t["text"][-1] + c["text"][-1]):
t["text"] += " "
t["text"] += c["text"]
t["x0"] = min(t["x0"], c["x0"])
t["x1"] = max(t["x1"], c["x1"])
t["page_number"] = min(t["page_number"], c["page_number"])
t["bottom"] = c["bottom"]
if not t["layout_type"] \
and c["layout_type"]:
if not t["layout_type"] and c["layout_type"]:
t["layout_type"] = c["layout_type"]
boxes.append(t)
@ -605,25 +567,20 @@ class RAGFlowPdfParser:
findit = False
i = 0
while i < len(self.boxes):
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$",
re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
i += 1
continue
findit = True
eng = re.match(
r"[0-9a-zA-Z :'.-]{5,}",
self.boxes[i]["text"].strip())
eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip())
self.boxes.pop(i)
if i >= len(self.boxes):
break
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
self.boxes[i]["text"].strip().split()[:2])
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
while not prefix:
self.boxes.pop(i)
if i >= len(self.boxes):
break
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
self.boxes[i]["text"].strip().split()[:2])
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
self.boxes.pop(i)
if i >= len(self.boxes) or not prefix:
break
@ -662,10 +619,12 @@ class RAGFlowPdfParser:
self.boxes.pop(i + 1)
continue
if b["text"].strip()[0] != b_["text"].strip()[0] \
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm") \
or rag_tokenizer.is_chinese(b["text"].strip()[0]) \
or b["top"] > b_["bottom"]:
if (
b["text"].strip()[0] != b_["text"].strip()[0]
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm")
or rag_tokenizer.is_chinese(b["text"].strip()[0])
or b["top"] > b_["bottom"]
):
i += 1
continue
b_["text"] = b["text"] + "\n" + b_["text"]
@ -685,12 +644,8 @@ class RAGFlowPdfParser:
if "layoutno" not in self.boxes[i]:
i += 1
continue
lout_no = str(self.boxes[i]["page_number"]) + \
"-" + str(self.boxes[i]["layoutno"])
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption",
"title",
"figure caption",
"reference"]:
lout_no = str(self.boxes[i]["page_number"]) + "-" + str(self.boxes[i]["layoutno"])
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption", "title", "figure caption", "reference"]:
nomerge_lout_no.append(lst_lout_no)
if self.boxes[i]["layout_type"] == "table":
if re.match(r"(数据|资料|图表)*来源[: ]", self.boxes[i]["text"]):
@ -716,8 +671,7 @@ class RAGFlowPdfParser:
# merge table on different pages
nomerge_lout_no = set(nomerge_lout_no)
tbls = sorted([(k, bxs) for k, bxs in tables.items()],
key=lambda x: (x[1][0]["top"], x[1][0]["x0"]))
tbls = sorted([(k, bxs) for k, bxs in tables.items()], key=lambda x: (x[1][0]["top"], x[1][0]["x0"]))
i = len(tbls) - 1
while i - 1 >= 0:
@ -758,9 +712,7 @@ class RAGFlowPdfParser:
if b.get("layout_type", "").find("caption") >= 0:
continue
y_dis = self._y_dis(c, b)
x_dis = self._x_dis(
c, b) if not x_overlapped(
c, b) else 0
x_dis = self._x_dis(c, b) if not x_overlapped(c, b) else 0
dis = y_dis * y_dis + x_dis * x_dis
if dis < minv:
mink = k
@ -774,18 +726,10 @@ class RAGFlowPdfParser:
# continue
if tv < fv and tk:
tables[tk].insert(0, c)
logging.debug(
"TABLE:" +
self.boxes[i]["text"] +
"; Cap: " +
tk)
logging.debug("TABLE:" + self.boxes[i]["text"] + "; Cap: " + tk)
elif fk:
figures[fk].insert(0, c)
logging.debug(
"FIGURE:" +
self.boxes[i]["text"] +
"; Cap: " +
tk)
logging.debug("FIGURE:" + self.boxes[i]["text"] + "; Cap: " + tk)
self.boxes.pop(i)
def cropout(bxs, ltype, poss):
@ -794,29 +738,19 @@ class RAGFlowPdfParser:
if len(pn) < 2:
pn = list(pn)[0]
ht = self.page_cum_height[pn]
b = {
"x0": np.min([b["x0"] for b in bxs]),
"top": np.min([b["top"] for b in bxs]) - ht,
"x1": np.max([b["x1"] for b in bxs]),
"bottom": np.max([b["bottom"] for b in bxs]) - ht
}
b = {"x0": np.min([b["x0"] for b in bxs]), "top": np.min([b["top"] for b in bxs]) - ht, "x1": np.max([b["x1"] for b in bxs]), "bottom": np.max([b["bottom"] for b in bxs]) - ht}
louts = [layout for layout in self.page_layout[pn] if layout["type"] == ltype]
ii = Recognizer.find_overlapped(b, louts, naive=True)
if ii is not None:
b = louts[ii]
else:
logging.warning(
f"Missing layout match: {pn + 1},%s" %
(bxs[0].get(
"layoutno", "")))
logging.warning(f"Missing layout match: {pn + 1},%s" % (bxs[0].get("layoutno", "")))
left, top, right, bott = b["x0"], b["top"], b["x1"], b["bottom"]
if right < left:
right = left + 1
poss.append((pn + self.page_from, left, right, top, bott))
return self.page_images[pn] \
.crop((left * ZM, top * ZM,
right * ZM, bott * ZM))
return self.page_images[pn].crop((left * ZM, top * ZM, right * ZM, bott * ZM))
pn = {}
for b in bxs:
p = b["page_number"] - 1
@ -825,10 +759,7 @@ class RAGFlowPdfParser:
pn[p].append(b)
pn = sorted(pn.items(), key=lambda x: x[0])
imgs = [cropout(arr, ltype, poss) for p, arr in pn]
pic = Image.new("RGB",
(int(np.max([i.size[0] for i in imgs])),
int(np.sum([m.size[1] for m in imgs]))),
(245, 245, 245))
pic = Image.new("RGB", (int(np.max([i.size[0] for i in imgs])), int(np.sum([m.size[1] for m in imgs]))), (245, 245, 245))
height = 0
for img in imgs:
pic.paste(img, (0, int(height)))
@ -848,30 +779,20 @@ class RAGFlowPdfParser:
poss = []
if separate_tables_figures:
figure_results.append(
(cropout(
bxs,
"figure", poss),
[txt]))
figure_results.append((cropout(bxs, "figure", poss), [txt]))
figure_positions.append(poss)
else:
res.append(
(cropout(
bxs,
"figure", poss),
[txt]))
res.append((cropout(bxs, "figure", poss), [txt]))
positions.append(poss)
for k, bxs in tables.items():
if not bxs:
continue
bxs = Recognizer.sort_Y_firstly(bxs, np.mean(
[(b["bottom"] - b["top"]) / 2 for b in bxs]))
bxs = Recognizer.sort_Y_firstly(bxs, np.mean([(b["bottom"] - b["top"]) / 2 for b in bxs]))
poss = []
res.append((cropout(bxs, "table", poss),
self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
res.append((cropout(bxs, "table", poss), self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
positions.append(poss)
if separate_tables_figures:
@ -905,7 +826,7 @@ class RAGFlowPdfParser:
(r"[0-9]+", 10),
(r"[\(][0-9]+[\)]", 11),
(r"[零一二三四五六七八九十百]+是", 12),
(r"[⚫•➢✓]", 12)
(r"[⚫•➢✓]", 12),
]:
if re.match(p, line):
return j
@ -924,12 +845,9 @@ class RAGFlowPdfParser:
if pn[-1] - 1 >= page_images_cnt:
return ""
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
.format("-".join([str(p) for p in pn]),
bx["x0"], bx["x1"], top, bott)
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##".format("-".join([str(p) for p in pn]), bx["x0"], bx["x1"], top, bott)
def __filterout_scraps(self, boxes, ZM):
def width(b):
return b["x1"] - b["x0"]
@ -939,8 +857,7 @@ class RAGFlowPdfParser:
def usefull(b):
if b.get("layout_type"):
return True
if width(
b) > self.page_images[b["page_number"] - 1].size[0] / ZM / 3:
if width(b) > self.page_images[b["page_number"] - 1].size[0] / ZM / 3:
return True
if b["bottom"] - b["top"] > self.mean_height[b["page_number"] - 1]:
return True
@ -952,31 +869,23 @@ class RAGFlowPdfParser:
widths = []
pw = self.page_images[boxes[0]["page_number"] - 1].size[0] / ZM
mh = self.mean_height[boxes[0]["page_number"] - 1]
mj = self.proj_match(
boxes[0]["text"]) or boxes[0].get(
"layout_type",
"") == "title"
mj = self.proj_match(boxes[0]["text"]) or boxes[0].get("layout_type", "") == "title"
def dfs(line, st):
nonlocal mh, pw, lines, widths
lines.append(line)
widths.append(width(line))
mmj = self.proj_match(
line["text"]) or line.get(
"layout_type",
"") == "title"
mmj = self.proj_match(line["text"]) or line.get("layout_type", "") == "title"
for i in range(st + 1, min(st + 20, len(boxes))):
if (boxes[i]["page_number"] - line["page_number"]) > 0:
break
if not mmj and self._y_dis(
line, boxes[i]) >= 3 * mh and height(line) < 1.5 * mh:
if not mmj and self._y_dis(line, boxes[i]) >= 3 * mh and height(line) < 1.5 * mh:
break
if not usefull(boxes[i]):
continue
if mmj or \
(self._x_dis(boxes[i], line) < pw / 10): \
# and abs(width(boxes[i])-width_mean)/max(width(boxes[i]),width_mean)<0.5):
if mmj or (self._x_dis(boxes[i], line) < pw / 10):
# and abs(width(boxes[i])-width_mean)/max(width(boxes[i]),width_mean)<0.5):
# concat following
dfs(boxes[i], i)
boxes.pop(i)
@ -992,11 +901,9 @@ class RAGFlowPdfParser:
boxes.pop(0)
mw = np.mean(widths)
if mj or mw / pw >= 0.35 or mw > 200:
res.append(
"\n".join([c["text"] + self._line_tag(c, ZM) for c in lines]))
res.append("\n".join([c["text"] + self._line_tag(c, ZM) for c in lines]))
else:
logging.debug("REMOVED: " +
"<<".join([c["text"] for c in lines]))
logging.debug("REMOVED: " + "<<".join([c["text"] for c in lines]))
return "\n\n".join(res)
@ -1004,16 +911,14 @@ class RAGFlowPdfParser:
def total_page_number(fnm, binary=None):
try:
with sys.modules[LOCK_KEY_pdfplumber]:
pdf = pdfplumber.open(
fnm) if not binary else pdfplumber.open(BytesIO(binary))
pdf = pdfplumber.open(fnm) if not binary else pdfplumber.open(BytesIO(binary))
total_page = len(pdf.pages)
pdf.close()
return total_page
except Exception:
logging.exception("total_page_number")
def __images__(self, fnm, zoomin=3, page_from=0,
page_to=299, callback=None):
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
self.lefted_chars = []
self.mean_height = []
self.mean_width = []
@ -1025,10 +930,9 @@ class RAGFlowPdfParser:
start = timer()
try:
with sys.modules[LOCK_KEY_pdfplumber]:
with (pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))) as pdf:
with pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm)) as pdf:
self.pdf = pdf
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
try:
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
@ -1044,11 +948,11 @@ class RAGFlowPdfParser:
self.outlines = []
try:
with (pdf2_read(fnm if isinstance(fnm, str)
else BytesIO(fnm))) as pdf:
with pdf2_read(fnm if isinstance(fnm, str) else BytesIO(fnm)) as pdf:
self.pdf = pdf
outlines = self.pdf.outline
def dfs(arr, depth):
for a in arr:
if isinstance(a, dict):
@ -1065,11 +969,11 @@ class RAGFlowPdfParser:
logging.warning("Miss outlines")
logging.debug("Images converted.")
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(
random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in
range(len(self.page_chars))]
if sum([1 if e else 0 for e in self.is_english]) > len(
self.page_images) / 2:
self.is_english = [
re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i])))))
for i in range(len(self.page_chars))
]
if sum([1 if e else 0 for e in self.is_english]) > len(self.page_images) / 2:
self.is_english = True
else:
self.is_english = False
@ -1077,10 +981,12 @@ class RAGFlowPdfParser:
async def __img_ocr(i, id, img, chars, limiter):
j = 0
while j + 1 < len(chars):
if chars[j]["text"] and chars[j + 1]["text"] \
and re.match(r"[0-9a-zA-Z,.:;!%]+", chars[j]["text"] + chars[j + 1]["text"]) \
and chars[j + 1]["x0"] - chars[j]["x1"] >= min(chars[j + 1]["width"],
chars[j]["width"]) / 2:
if (
chars[j]["text"]
and chars[j + 1]["text"]
and re.match(r"[0-9a-zA-Z,.:;!%]+", chars[j]["text"] + chars[j + 1]["text"])
and chars[j + 1]["x0"] - chars[j]["x1"] >= min(chars[j + 1]["width"], chars[j]["width"]) / 2
):
chars[j]["text"] += " "
j += 1
@ -1096,12 +1002,8 @@ class RAGFlowPdfParser:
async def __img_ocr_launcher():
def __ocr_preprocess():
chars = self.page_chars[i] if not self.is_english else []
self.mean_height.append(
np.median(sorted([c["height"] for c in chars])) if chars else 0
)
self.mean_width.append(
np.median(sorted([c["width"] for c in chars])) if chars else 8
)
self.mean_height.append(np.median(sorted([c["height"] for c in chars])) if chars else 0)
self.mean_width.append(np.median(sorted([c["width"] for c in chars])) if chars else 8)
self.page_cum_height.append(img.size[1] / zoomin)
return chars
@ -1110,8 +1012,7 @@ class RAGFlowPdfParser:
for i, img in enumerate(self.page_images):
chars = __ocr_preprocess()
nursery.start_soon(__img_ocr, i, i % PARALLEL_DEVICES, img, chars,
self.parallel_limiter[i % PARALLEL_DEVICES])
nursery.start_soon(__img_ocr, i, i % PARALLEL_DEVICES, img, chars, self.parallel_limiter[i % PARALLEL_DEVICES])
await trio.sleep(0.1)
else:
for i, img in enumerate(self.page_images):
@ -1124,11 +1025,9 @@ class RAGFlowPdfParser:
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
if not self.is_english and not any(
[c for c in self.page_chars]) and self.boxes:
if not self.is_english and not any([c for c in self.page_chars]) and self.boxes:
bxes = [b for bxs in self.boxes for b in bxs]
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}",
"".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
logging.debug("Is it English:", self.is_english)
@ -1144,8 +1043,7 @@ class RAGFlowPdfParser:
self._text_merge()
self._concat_downward()
self._filter_forpages()
tbls = self._extract_table_figure(
need_image, zoomin, return_html, False)
tbls = self._extract_table_figure(need_image, zoomin, return_html, False)
return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
@ -1177,11 +1075,11 @@ class RAGFlowPdfParser:
def insert_table_figures(tbls_or_figs, layout_type):
def min_rectangle_distance(rect1, rect2):
import math
pn1, left1, right1, top1, bottom1 = rect1
pn2, left2, right2, top2, bottom2 = rect2
if (right1 >= left2 and right2 >= left1 and
bottom1 >= top2 and bottom2 >= top1):
return 0 + (pn1-pn2)*10000
if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1:
return 0 + (pn1 - pn2) * 10000
if right1 < left2:
dx = left2 - right1
elif right2 < left1:
@ -1194,18 +1092,16 @@ class RAGFlowPdfParser:
dy = top1 - bottom2
else:
dy = 0
return math.sqrt(dx*dx + dy*dy) + (pn1-pn2)*10000
return math.sqrt(dx * dx + dy * dy) + (pn1 - pn2) * 10000
for (img, txt), poss in tbls_or_figs:
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
dists = [(min_rectangle_distance((pn, left, right, top, bott), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
dists = [(min_rectangle_distance((pn, left, right, top, bott), rect), i) for i, rect in bboxes for pn, left, right, top, bott in poss]
min_i = np.argmin(dists, axis=0)[0]
min_i, rect = bboxes[dists[min_i][-1]]
if isinstance(txt, list):
txt = "\n".join(txt)
self.boxes.insert(min_i, {
"page_number": rect[0], "x0": rect[1], "x1": rect[2], "top": rect[3], "bottom": rect[4], "layout_type": layout_type, "text": txt, "image": img
})
self.boxes.insert(min_i, {"page_number": rect[0], "x0": rect[1], "x1": rect[2], "top": rect[3], "bottom": rect[4], "layout_type": layout_type, "text": txt, "image": img})
for b in self.boxes:
b["position_tag"] = self._line_tag(b, zoomin)
@ -1225,12 +1121,9 @@ class RAGFlowPdfParser:
def extract_positions(txt):
poss = []
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
pn, left, right, top, bottom = tag.strip(
"#").strip("@").split("\t")
left, right, top, bottom = float(left), float(
right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")],
left, right, top, bottom))
pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t")
left, right, top, bottom = float(left), float(right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
return poss
def crop(self, text, ZM=3, need_position=False):
@ -1241,15 +1134,12 @@ class RAGFlowPdfParser:
return None, None
return
max_width = max(
np.max([right - left for (_, left, right, _, _) in poss]), 6)
max_width = max(np.max([right - left for (_, left, right, _, _) in poss]), 6)
GAP = 6
pos = poss[0]
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(
0, pos[3] - 120), max(pos[3] - GAP, 0)))
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(0, pos[3] - 120), max(pos[3] - GAP, 0)))
pos = poss[-1]
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + GAP),
min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + 120)))
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + GAP), min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + 120)))
positions = []
for ii, (pns, left, right, top, bottom) in enumerate(poss):
@ -1257,28 +1147,14 @@ class RAGFlowPdfParser:
bottom *= ZM
for pn in pns[1:]:
bottom += self.page_images[pn - 1].size[1]
imgs.append(
self.page_images[pns[0]].crop((left * ZM, top * ZM,
right *
ZM, min(
bottom, self.page_images[pns[0]].size[1])
))
)
imgs.append(self.page_images[pns[0]].crop((left * ZM, top * ZM, right * ZM, min(bottom, self.page_images[pns[0]].size[1]))))
if 0 < ii < len(poss) - 1:
positions.append((pns[0] + self.page_from, left, right, top, min(
bottom, self.page_images[pns[0]].size[1]) / ZM))
positions.append((pns[0] + self.page_from, left, right, top, min(bottom, self.page_images[pns[0]].size[1]) / ZM))
bottom -= self.page_images[pns[0]].size[1]
for pn in pns[1:]:
imgs.append(
self.page_images[pn].crop((left * ZM, 0,
right * ZM,
min(bottom,
self.page_images[pn].size[1])
))
)
imgs.append(self.page_images[pn].crop((left * ZM, 0, right * ZM, min(bottom, self.page_images[pn].size[1]))))
if 0 < ii < len(poss) - 1:
positions.append((pn + self.page_from, left, right, 0, min(
bottom, self.page_images[pn].size[1]) / ZM))
positions.append((pn + self.page_from, left, right, 0, min(bottom, self.page_images[pn].size[1]) / ZM))
bottom -= self.page_images[pn].size[1]
if not imgs:
@ -1290,14 +1166,12 @@ class RAGFlowPdfParser:
height += img.size[1] + GAP
height = int(height)
width = int(np.max([i.size[0] for i in imgs]))
pic = Image.new("RGB",
(width, height),
(245, 245, 245))
pic = Image.new("RGB", (width, height), (245, 245, 245))
height = 0
for ii, img in enumerate(imgs):
if ii == 0 or ii + 1 == len(imgs):
img = img.convert('RGBA')
overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
img = img.convert("RGBA")
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
overlay.putalpha(128)
img = Image.alpha_composite(img, overlay).convert("RGB")
pic.paste(img, (0, int(height)))
@ -1312,14 +1186,12 @@ class RAGFlowPdfParser:
pn = bx["page_number"]
top = bx["top"] - self.page_cum_height[pn - 1]
bott = bx["bottom"] - self.page_cum_height[pn - 1]
poss.append((pn, bx["x0"], bx["x1"], top, min(
bott, self.page_images[pn - 1].size[1] / ZM)))
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
while bott * ZM > self.page_images[pn - 1].size[1]:
bott -= self.page_images[pn - 1].size[1] / ZM
top = 0
pn += 1
poss.append((pn, bx["x0"], bx["x1"], top, min(
bott, self.page_images[pn - 1].size[1] / ZM)))
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
return poss
@ -1328,9 +1200,7 @@ class PlainParser:
self.outlines = []
lines = []
try:
self.pdf = pdf2_read(
filename if isinstance(
filename, str) else BytesIO(filename))
self.pdf = pdf2_read(filename if isinstance(filename, str) else BytesIO(filename))
for page in self.pdf.pages[from_page:to_page]:
lines.extend([t for t in page.extract_text().split("\n")])
@ -1367,10 +1237,8 @@ class VisionParser(RAGFlowPdfParser):
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
try:
with sys.modules[LOCK_KEY_pdfplumber]:
self.pdf = pdfplumber.open(fnm) if isinstance(
fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
self.total_page = len(self.pdf.pages)
except Exception:
self.page_images = None
@ -1397,15 +1265,15 @@ class VisionParser(RAGFlowPdfParser):
text = picture_vision_llm_chunk(
binary=img_binary,
vision_model=self.vision_model,
prompt=vision_llm_describe_prompt(page=pdf_page_num+1),
prompt=vision_llm_describe_prompt(page=pdf_page_num + 1),
callback=callback,
)
if kwargs.get("callback"):
kwargs["callback"](idx*1./len(self.page_images), f"Processed: {idx+1}/{len(self.page_images)}")
kwargs["callback"](idx * 1.0 / len(self.page_images), f"Processed: {idx + 1}/{len(self.page_images)}")
if text:
width, height = self.page_images[idx].size
all_docs.append((text, f"{pdf_page_num+1} 0 {width/zoomin} 0 {height/zoomin}"))
all_docs.append((text, f"{pdf_page_num + 1} 0 {width / zoomin} 0 {height / zoomin}"))
return all_docs, []

View File

@ -16,24 +16,28 @@
import io
import sys
import threading
import pdfplumber
from .ocr import OCR
from .recognizer import Recognizer
from .layout_recognizer import AscendLayoutRecognizer
from .layout_recognizer import LayoutRecognizer4YOLOv10 as LayoutRecognizer
from .table_structure_recognizer import TableStructureRecognizer
LOCK_KEY_pdfplumber = "global_shared_lock_pdfplumber"
if LOCK_KEY_pdfplumber not in sys.modules:
sys.modules[LOCK_KEY_pdfplumber] = threading.Lock()
def init_in_out(args):
from PIL import Image
import os
import traceback
from PIL import Image
from api.utils.file_utils import traversal_files
images = []
outputs = []
@ -44,8 +48,7 @@ def init_in_out(args):
nonlocal outputs, images
with sys.modules[LOCK_KEY_pdfplumber]:
pdf = pdfplumber.open(fnm)
images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(pdf.pages)]
images = [p.to_image(resolution=72 * zoomin).annotated for i, p in enumerate(pdf.pages)]
for i, page in enumerate(images):
outputs.append(os.path.split(fnm)[-1] + f"_{i}.jpg")
@ -57,10 +60,10 @@ def init_in_out(args):
pdf_pages(fnm)
return
try:
fp = open(fnm, 'rb')
fp = open(fnm, "rb")
binary = fp.read()
fp.close()
images.append(Image.open(io.BytesIO(binary)).convert('RGB'))
images.append(Image.open(io.BytesIO(binary)).convert("RGB"))
outputs.append(os.path.split(fnm)[-1])
except Exception:
traceback.print_exc()
@ -81,6 +84,7 @@ __all__ = [
"OCR",
"Recognizer",
"LayoutRecognizer",
"AscendLayoutRecognizer",
"TableStructureRecognizer",
"init_in_out",
]

View File

@ -14,6 +14,8 @@
# limitations under the License.
#
import logging
import math
import os
import re
from collections import Counter
@ -45,28 +47,22 @@ class LayoutRecognizer(Recognizer):
def __init__(self, domain):
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
super().__init__(self.labels, domain, model_dir)
except Exception:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc", local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), local_dir_use_symlinks=False)
super().__init__(self.labels, domain, model_dir)
self.garbage_layouts = ["footer", "header", "reference"]
self.client = None
if os.environ.get("TENSORRT_DLA_SVR"):
from deepdoc.vision.dla_cli import DLAClient
self.client = DLAClient(os.environ["TENSORRT_DLA_SVR"])
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True):
def __is_garbage(b):
patt = [r"^•+$", "^[0-9]{1,2} / ?[0-9]{1,2}$",
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
"\\(cid *: *[0-9]+ *\\)"
]
patt = [r"^•+$", "^[0-9]{1,2} / ?[0-9]{1,2}$", r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}", "\\(cid *: *[0-9]+ *\\)"]
return any([re.search(p, b["text"]) for p in patt])
if self.client:
@ -82,18 +78,23 @@ class LayoutRecognizer(Recognizer):
page_layout = []
for pn, lts in enumerate(layouts):
bxs = ocr_res[pn]
lts = [{"type": b["type"],
lts = [
{
"type": b["type"],
"score": float(b["score"]),
"x0": b["bbox"][0] / scale_factor, "x1": b["bbox"][2] / scale_factor,
"top": b["bbox"][1] / scale_factor, "bottom": b["bbox"][-1] / scale_factor,
"x0": b["bbox"][0] / scale_factor,
"x1": b["bbox"][2] / scale_factor,
"top": b["bbox"][1] / scale_factor,
"bottom": b["bbox"][-1] / scale_factor,
"page_number": pn,
} for b in lts if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts]
lts = self.sort_Y_firstly(lts, np.mean(
[lt["bottom"] - lt["top"] for lt in lts]) / 2)
}
for b in lts
if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts
]
lts = self.sort_Y_firstly(lts, np.mean([lt["bottom"] - lt["top"] for lt in lts]) / 2)
lts = self.layouts_cleanup(bxs, lts)
page_layout.append(lts)
# Tag layout type, layouts are ready
def findLayout(ty):
nonlocal bxs, lts, self
lts_ = [lt for lt in lts if lt["type"] == ty]
@ -106,21 +107,17 @@ class LayoutRecognizer(Recognizer):
bxs.pop(i)
continue
ii = self.find_overlapped_with_threshold(bxs[i], lts_,
thr=0.4)
if ii is None: # belong to nothing
ii = self.find_overlapped_with_threshold(bxs[i], lts_, thr=0.4)
if ii is None:
bxs[i]["layout_type"] = ""
i += 1
continue
lts_[ii]["visited"] = True
keep_feats = [
lts_[
ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
lts_[
ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
lts_[ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
lts_[ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
]
if drop and lts_[
ii]["type"] in self.garbage_layouts and not any(keep_feats):
if drop and lts_[ii]["type"] in self.garbage_layouts and not any(keep_feats):
if lts_[ii]["type"] not in garbages:
garbages[lts_[ii]["type"]] = []
garbages[lts_[ii]["type"]].append(bxs[i]["text"])
@ -128,17 +125,14 @@ class LayoutRecognizer(Recognizer):
continue
bxs[i]["layoutno"] = f"{ty}-{ii}"
bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[
ii]["type"] != "equation" else "figure"
bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[ii]["type"] != "equation" else "figure"
i += 1
for lt in ["footer", "header", "reference", "figure caption",
"table caption", "title", "table", "text", "figure", "equation"]:
for lt in ["footer", "header", "reference", "figure caption", "table caption", "title", "table", "text", "figure", "equation"]:
findLayout(lt)
# add box to figure layouts which has not text box
for i, lt in enumerate(
[lt for lt in lts if lt["type"] in ["figure", "equation"]]):
for i, lt in enumerate([lt for lt in lts if lt["type"] in ["figure", "equation"]]):
if lt.get("visited"):
continue
lt = deepcopy(lt)
@ -206,13 +200,11 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
) # add border
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) # add border
img /= 255.0
img = img.transpose(2, 0, 1)
img = img[np.newaxis, :, :, :].astype(np.float32)
inputs.append({self.input_names[0]: img, "scale_factor": [shape[1]/ww, shape[0]/hh, dw, dh]})
inputs.append({self.input_names[0]: img, "scale_factor": [shape[1] / ww, shape[0] / hh, dw, dh]})
return inputs
@ -230,8 +222,7 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
boxes[:, 2] -= inputs["scale_factor"][2]
boxes[:, 1] -= inputs["scale_factor"][3]
boxes[:, 3] -= inputs["scale_factor"][3]
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0],
inputs["scale_factor"][1]])
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
boxes = np.multiply(boxes, input_shape, dtype=np.float32)
unique_class_ids = np.unique(class_ids)
@ -243,8 +234,223 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
class_keep_boxes = nms(class_boxes, class_scores, 0.45)
indices.extend(class_indices[class_keep_boxes])
return [{
"type": self.label_list[class_ids[i]].lower(),
"bbox": [float(t) for t in boxes[i].tolist()],
"score": float(scores[i])
} for i in indices]
return [{"type": self.label_list[class_ids[i]].lower(), "bbox": [float(t) for t in boxes[i].tolist()], "score": float(scores[i])} for i in indices]
class AscendLayoutRecognizer(Recognizer):
labels = [
"title",
"Text",
"Reference",
"Figure",
"Figure caption",
"Table",
"Table caption",
"Table caption",
"Equation",
"Figure caption",
]
def __init__(self, domain):
from ais_bench.infer.interface import InferSession
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
model_file_path = os.path.join(model_dir, domain + ".om")
if not os.path.exists(model_file_path):
raise ValueError(f"Model file not found: {model_file_path}")
device_id = int(os.getenv("ASCEND_LAYOUT_RECOGNIZER_DEVICE_ID", 0))
self.session = InferSession(device_id=device_id, model_path=model_file_path)
self.input_shape = self.session.get_inputs()[0].shape[2:4] # H,W
self.garbage_layouts = ["footer", "header", "reference"]
def preprocess(self, image_list):
inputs = []
H, W = self.input_shape
for img in image_list:
h, w = img.shape[:2]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32)
r = min(H / h, W / w)
new_unpad = (int(round(w * r)), int(round(h * r)))
dw, dh = (W - new_unpad[0]) / 2.0, (H - new_unpad[1]) / 2.0
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
img /= 255.0
img = img.transpose(2, 0, 1)[np.newaxis, :, :, :].astype(np.float32)
inputs.append(
{
"image": img,
"scale_factor": [w / new_unpad[0], h / new_unpad[1]],
"pad": [dw, dh],
"orig_shape": [h, w],
}
)
return inputs
def postprocess(self, boxes, inputs, thr=0.25):
arr = np.squeeze(boxes)
if arr.ndim == 1:
arr = arr.reshape(1, -1)
results = []
if arr.shape[1] == 6:
# [x1,y1,x2,y2,score,cls]
m = arr[:, 4] >= thr
arr = arr[m]
if arr.size == 0:
return []
xyxy = arr[:, :4].astype(np.float32)
scores = arr[:, 4].astype(np.float32)
cls_ids = arr[:, 5].astype(np.int32)
if "pad" in inputs:
dw, dh = inputs["pad"]
sx, sy = inputs["scale_factor"]
xyxy[:, [0, 2]] -= dw
xyxy[:, [1, 3]] -= dh
xyxy *= np.array([sx, sy, sx, sy], dtype=np.float32)
else:
# backup
sx, sy = inputs["scale_factor"]
xyxy *= np.array([sx, sy, sx, sy], dtype=np.float32)
keep_indices = []
for c in np.unique(cls_ids):
idx = np.where(cls_ids == c)[0]
k = nms(xyxy[idx], scores[idx], 0.45)
keep_indices.extend(idx[k])
for i in keep_indices:
cid = int(cls_ids[i])
if 0 <= cid < len(self.labels):
results.append({"type": self.labels[cid].lower(), "bbox": [float(t) for t in xyxy[i].tolist()], "score": float(scores[i])})
return results
raise ValueError(f"Unexpected output shape: {arr.shape}")
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True):
import re
from collections import Counter
assert len(image_list) == len(ocr_res)
images = [np.array(im) if not isinstance(im, np.ndarray) else im for im in image_list]
layouts_all_pages = [] # list of list[{"type","score","bbox":[x1,y1,x2,y2]}]
conf_thr = max(thr, 0.08)
batch_loop_cnt = math.ceil(float(len(images)) / batch_size)
for bi in range(batch_loop_cnt):
s = bi * batch_size
e = min((bi + 1) * batch_size, len(images))
batch_images = images[s:e]
inputs_list = self.preprocess(batch_images)
logging.debug("preprocess done")
for ins in inputs_list:
feeds = [ins["image"]]
out_list = self.session.infer(feeds=feeds, mode="static")
for out in out_list:
lts = self.postprocess(out, ins, conf_thr)
page_lts = []
for b in lts:
if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts:
x0, y0, x1, y1 = b["bbox"]
page_lts.append(
{
"type": b["type"],
"score": float(b["score"]),
"x0": float(x0) / scale_factor,
"x1": float(x1) / scale_factor,
"top": float(y0) / scale_factor,
"bottom": float(y1) / scale_factor,
"page_number": len(layouts_all_pages),
}
)
layouts_all_pages.append(page_lts)
def _is_garbage_text(box):
patt = [r"^•+$", r"^[0-9]{1,2} / ?[0-9]{1,2}$", r"^[0-9]{1,2} of [0-9]{1,2}$", r"^http://[^ ]{12,}", r"\(cid *: *[0-9]+ *\)"]
return any(re.search(p, box.get("text", "")) for p in patt)
boxes_out = []
page_layout = []
garbages = {}
for pn, lts in enumerate(layouts_all_pages):
if lts:
avg_h = np.mean([lt["bottom"] - lt["top"] for lt in lts])
lts = self.sort_Y_firstly(lts, avg_h / 2 if avg_h > 0 else 0)
bxs = ocr_res[pn]
lts = self.layouts_cleanup(bxs, lts)
page_layout.append(lts)
def _tag_layout(ty):
nonlocal bxs, lts
lts_of_ty = [lt for lt in lts if lt["type"] == ty]
i = 0
while i < len(bxs):
if bxs[i].get("layout_type"):
i += 1
continue
if _is_garbage_text(bxs[i]):
bxs.pop(i)
continue
ii = self.find_overlapped_with_threshold(bxs[i], lts_of_ty, thr=0.4)
if ii is None:
bxs[i]["layout_type"] = ""
i += 1
continue
lts_of_ty[ii]["visited"] = True
keep_feats = [
lts_of_ty[ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].shape[0] * 0.9 / scale_factor,
lts_of_ty[ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].shape[0] * 0.1 / scale_factor,
]
if drop and lts_of_ty[ii]["type"] in self.garbage_layouts and not any(keep_feats):
garbages.setdefault(lts_of_ty[ii]["type"], []).append(bxs[i].get("text", ""))
bxs.pop(i)
continue
bxs[i]["layoutno"] = f"{ty}-{ii}"
bxs[i]["layout_type"] = lts_of_ty[ii]["type"] if lts_of_ty[ii]["type"] != "equation" else "figure"
i += 1
for ty in ["footer", "header", "reference", "figure caption", "table caption", "title", "table", "text", "figure", "equation"]:
_tag_layout(ty)
figs = [lt for lt in lts if lt["type"] in ["figure", "equation"]]
for i, lt in enumerate(figs):
if lt.get("visited"):
continue
lt = deepcopy(lt)
lt.pop("type", None)
lt["text"] = ""
lt["layout_type"] = "figure"
lt["layoutno"] = f"figure-{i}"
bxs.append(lt)
boxes_out.extend(bxs)
garbag_set = set()
for k, lst in garbages.items():
cnt = Counter(lst)
for g, c in cnt.items():
if c > 1:
garbag_set.add(g)
ocr_res_new = [b for b in boxes_out if b["text"].strip() not in garbag_set]
return ocr_res_new, page_layout

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import gc
import logging
import copy
import time
@ -348,6 +348,13 @@ class TextRecognizer:
return img
def close(self):
# close session and release manually
logging.info('Close TextRecognizer.')
if hasattr(self, "predictor"):
del self.predictor
gc.collect()
def __call__(self, img_list):
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
@ -395,6 +402,9 @@ class TextRecognizer:
return rec_res, time.time() - st
def __del__(self):
self.close()
class TextDetector:
def __init__(self, model_dir, device_id: int | None = None):
@ -479,6 +489,12 @@ class TextDetector:
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def close(self):
logging.info("Close TextDetector.")
if hasattr(self, "predictor"):
del self.predictor
gc.collect()
def __call__(self, img):
ori_im = img.copy()
data = {'image': img}
@ -508,6 +524,9 @@ class TextDetector:
return dt_boxes, time.time() - st
def __del__(self):
self.close()
class OCR:
def __init__(self, model_dir=None):

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import gc
import logging
import os
import math
@ -406,6 +406,12 @@ class Recognizer:
"score": float(scores[i])
} for i in indices]
def close(self):
logging.info("Close recognizer.")
if hasattr(self, "ort_sess"):
del self.ort_sess
gc.collect()
def __call__(self, image_list, thr=0.7, batch_size=16):
res = []
images = []
@ -430,5 +436,7 @@ class Recognizer:
return res
def __del__(self):
self.close()

View File

@ -23,6 +23,7 @@ from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from rag.nlp import rag_tokenizer
from .recognizer import Recognizer
@ -38,31 +39,49 @@ class TableStructureRecognizer(Recognizer):
def __init__(self):
try:
super().__init__(self.labels, "tsr", os.path.join(
get_project_base_directory(),
"rag/res/deepdoc"))
super().__init__(self.labels, "tsr", os.path.join(get_project_base_directory(), "rag/res/deepdoc"))
except Exception:
super().__init__(self.labels, "tsr", snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False))
super().__init__(
self.labels,
"tsr",
snapshot_download(
repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False,
),
)
def __call__(self, images, thr=0.2):
tbls = super().__call__(images, thr)
table_structure_recognizer_type = os.getenv("TABLE_STRUCTURE_RECOGNIZER_TYPE", "onnx").lower()
if table_structure_recognizer_type not in ["onnx", "ascend"]:
raise RuntimeError("Unsupported table structure recognizer type.")
if table_structure_recognizer_type == "onnx":
logging.debug("Using Onnx table structure recognizer", flush=True)
tbls = super().__call__(images, thr)
else: # ascend
logging.debug("Using Ascend table structure recognizer", flush=True)
tbls = self._run_ascend_tsr(images, thr)
res = []
# align left&right for rows, align top&bottom for columns
for tbl in tbls:
lts = [{"label": b["type"],
lts = [
{
"label": b["type"],
"score": b["score"],
"x0": b["bbox"][0], "x1": b["bbox"][2],
"top": b["bbox"][1], "bottom": b["bbox"][-1]
} for b in tbl]
"x0": b["bbox"][0],
"x1": b["bbox"][2],
"top": b["bbox"][1],
"bottom": b["bbox"][-1],
}
for b in tbl
]
if not lts:
continue
left = [b["x0"] for b in lts if b["label"].find(
"row") > 0 or b["label"].find("header") > 0]
right = [b["x1"] for b in lts if b["label"].find(
"row") > 0 or b["label"].find("header") > 0]
left = [b["x0"] for b in lts if b["label"].find("row") > 0 or b["label"].find("header") > 0]
right = [b["x1"] for b in lts if b["label"].find("row") > 0 or b["label"].find("header") > 0]
if not left:
continue
left = np.mean(left) if len(left) > 4 else np.min(left)
@ -93,11 +112,8 @@ class TableStructureRecognizer(Recognizer):
@staticmethod
def is_caption(bx):
patt = [
r"[图表]+[ 0-9:]{2,}"
]
if any([re.match(p, bx["text"].strip()) for p in patt]) \
or bx.get("layout_type", "").find("caption") >= 0:
patt = [r"[图表]+[ 0-9:]{2,}"]
if any([re.match(p, bx["text"].strip()) for p in patt]) or bx.get("layout_type", "").find("caption") >= 0:
return True
return False
@ -115,7 +131,7 @@ class TableStructureRecognizer(Recognizer):
(r"^[0-9A-Z/\._~-]+$", "Ca"),
(r"^[A-Z]*[a-z' -]+$", "En"),
(r"^[0-9.,+-]+[0-9A-Za-z/$¥%<>()' -]+$", "NE"),
(r"^.{1}$", "Sg")
(r"^.{1}$", "Sg"),
]
for p, n in patt:
if re.search(p, b["text"].strip()):
@ -156,21 +172,19 @@ class TableStructureRecognizer(Recognizer):
rowh = [b["R_bott"] - b["R_top"] for b in boxes if "R" in b]
rowh = np.min(rowh) if rowh else 0
boxes = Recognizer.sort_R_firstly(boxes, rowh / 2)
#for b in boxes:print(b)
# for b in boxes:print(b)
boxes[0]["rn"] = 0
rows = [[boxes[0]]]
btm = boxes[0]["bottom"]
for b in boxes[1:]:
b["rn"] = len(rows) - 1
lst_r = rows[-1]
if lst_r[-1].get("R", "") != b.get("R", "") \
or (b["top"] >= btm - 3 and lst_r[-1].get("R", "-1") != b.get("R", "-2")
): # new row
if lst_r[-1].get("R", "") != b.get("R", "") or (b["top"] >= btm - 3 and lst_r[-1].get("R", "-1") != b.get("R", "-2")): # new row
btm = b["bottom"]
b["rn"] += 1
rows.append([b])
continue
btm = (btm + b["bottom"]) / 2.
btm = (btm + b["bottom"]) / 2.0
rows[-1].append(b)
colwm = [b["C_right"] - b["C_left"] for b in boxes if "C" in b]
@ -186,14 +200,14 @@ class TableStructureRecognizer(Recognizer):
for b in boxes[1:]:
b["cn"] = len(cols) - 1
lst_c = cols[-1]
if (int(b.get("C", "1")) - int(lst_c[-1].get("C", "1")) == 1 and b["page_number"] == lst_c[-1][
"page_number"]) \
or (b["x0"] >= right and lst_c[-1].get("C", "-1") != b.get("C", "-2")): # new col
if (int(b.get("C", "1")) - int(lst_c[-1].get("C", "1")) == 1 and b["page_number"] == lst_c[-1]["page_number"]) or (
b["x0"] >= right and lst_c[-1].get("C", "-1") != b.get("C", "-2")
): # new col
right = b["x1"]
b["cn"] += 1
cols.append([b])
continue
right = (right + b["x1"]) / 2.
right = (right + b["x1"]) / 2.0
cols[-1].append(b)
tbl = [[[] for _ in range(len(cols))] for _ in range(len(rows))]
@ -214,10 +228,8 @@ class TableStructureRecognizer(Recognizer):
if e > 1:
j += 1
continue
f = (j > 0 and tbl[ii][j - 1] and tbl[ii]
[j - 1][0].get("text")) or j == 0
ff = (j + 1 < len(tbl[ii]) and tbl[ii][j + 1] and tbl[ii]
[j + 1][0].get("text")) or j + 1 >= len(tbl[ii])
f = (j > 0 and tbl[ii][j - 1] and tbl[ii][j - 1][0].get("text")) or j == 0
ff = (j + 1 < len(tbl[ii]) and tbl[ii][j + 1] and tbl[ii][j + 1][0].get("text")) or j + 1 >= len(tbl[ii])
if f and ff:
j += 1
continue
@ -228,13 +240,11 @@ class TableStructureRecognizer(Recognizer):
if j > 0 and not f:
for i in range(len(tbl)):
if tbl[i][j - 1]:
left = min(left, np.min(
[bx["x0"] - a["x1"] for a in tbl[i][j - 1]]))
left = min(left, np.min([bx["x0"] - a["x1"] for a in tbl[i][j - 1]]))
if j + 1 < len(tbl[0]) and not ff:
for i in range(len(tbl)):
if tbl[i][j + 1]:
right = min(right, np.min(
[a["x0"] - bx["x1"] for a in tbl[i][j + 1]]))
right = min(right, np.min([a["x0"] - bx["x1"] for a in tbl[i][j + 1]]))
assert left < 100000 or right < 100000
if left < right:
for jj in range(j, len(tbl[0])):
@ -260,8 +270,7 @@ class TableStructureRecognizer(Recognizer):
for i in range(len(tbl)):
tbl[i].pop(j)
cols.pop(j)
assert len(cols) == len(tbl[0]), "Column NO. miss matched: %d vs %d" % (
len(cols), len(tbl[0]))
assert len(cols) == len(tbl[0]), "Column NO. miss matched: %d vs %d" % (len(cols), len(tbl[0]))
if len(cols) >= 4:
# remove single in row
@ -277,10 +286,8 @@ class TableStructureRecognizer(Recognizer):
if e > 1:
i += 1
continue
f = (i > 0 and tbl[i - 1][jj] and tbl[i - 1]
[jj][0].get("text")) or i == 0
ff = (i + 1 < len(tbl) and tbl[i + 1][jj] and tbl[i + 1]
[jj][0].get("text")) or i + 1 >= len(tbl)
f = (i > 0 and tbl[i - 1][jj] and tbl[i - 1][jj][0].get("text")) or i == 0
ff = (i + 1 < len(tbl) and tbl[i + 1][jj] and tbl[i + 1][jj][0].get("text")) or i + 1 >= len(tbl)
if f and ff:
i += 1
continue
@ -292,13 +299,11 @@ class TableStructureRecognizer(Recognizer):
if i > 0 and not f:
for j in range(len(tbl[i - 1])):
if tbl[i - 1][j]:
up = min(up, np.min(
[bx["top"] - a["bottom"] for a in tbl[i - 1][j]]))
up = min(up, np.min([bx["top"] - a["bottom"] for a in tbl[i - 1][j]]))
if i + 1 < len(tbl) and not ff:
for j in range(len(tbl[i + 1])):
if tbl[i + 1][j]:
down = min(down, np.min(
[a["top"] - bx["bottom"] for a in tbl[i + 1][j]]))
down = min(down, np.min([a["top"] - bx["bottom"] for a in tbl[i + 1][j]]))
assert up < 100000 or down < 100000
if up < down:
for ii in range(i, len(tbl)):
@ -333,22 +338,15 @@ class TableStructureRecognizer(Recognizer):
cnt += 1
if max_type == "Nu" and arr[0]["btype"] == "Nu":
continue
if any([a.get("H") for a in arr]) \
or (max_type == "Nu" and arr[0]["btype"] != "Nu"):
if any([a.get("H") for a in arr]) or (max_type == "Nu" and arr[0]["btype"] != "Nu"):
h += 1
if h / cnt > 0.5:
hdset.add(i)
if html:
return TableStructureRecognizer.__html_table(cap, hdset,
TableStructureRecognizer.__cal_spans(boxes, rows,
cols, tbl, True)
)
return TableStructureRecognizer.__html_table(cap, hdset, TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl, True))
return TableStructureRecognizer.__desc_table(cap, hdset,
TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl,
False),
is_english)
return TableStructureRecognizer.__desc_table(cap, hdset, TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl, False), is_english)
@staticmethod
def __html_table(cap, hdset, tbl):
@ -367,10 +365,8 @@ class TableStructureRecognizer(Recognizer):
continue
txt = ""
if arr:
h = min(np.min([c["bottom"] - c["top"]
for c in arr]) / 2, 10)
txt = " ".join([c["text"]
for c in Recognizer.sort_Y_firstly(arr, h)])
h = min(np.min([c["bottom"] - c["top"] for c in arr]) / 2, 10)
txt = " ".join([c["text"] for c in Recognizer.sort_Y_firstly(arr, h)])
txts.append(txt)
sp = ""
if arr[0].get("colspan"):
@ -436,15 +432,11 @@ class TableStructureRecognizer(Recognizer):
if headers[j][k].find(headers[j - 1][k]) >= 0:
continue
if len(headers[j][k]) > len(headers[j - 1][k]):
headers[j][k] += (de if headers[j][k]
else "") + headers[j - 1][k]
headers[j][k] += (de if headers[j][k] else "") + headers[j - 1][k]
else:
headers[j][k] = headers[j - 1][k] \
+ (de if headers[j - 1][k] else "") \
+ headers[j][k]
headers[j][k] = headers[j - 1][k] + (de if headers[j - 1][k] else "") + headers[j][k]
logging.debug(
f">>>>>>>>>>>>>>>>>{cap}SIZE:{rowno}X{clmno} Header: {hdr_rowno}")
logging.debug(f">>>>>>>>>>>>>>>>>{cap}SIZE:{rowno}X{clmno} Header: {hdr_rowno}")
row_txt = []
for i in range(rowno):
if i in hdr_rowno:
@ -503,14 +495,10 @@ class TableStructureRecognizer(Recognizer):
@staticmethod
def __cal_spans(boxes, rows, cols, tbl, html=True):
# caculate span
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln])
for cln in cols]
crgt = [np.mean([c.get("C_right", c["x1"]) for c in cln])
for cln in cols]
rtop = [np.mean([c.get("R_top", c["top"]) for c in row])
for row in rows]
rbtm = [np.mean([c.get("R_btm", c["bottom"])
for c in row]) for row in rows]
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln]) for cln in cols]
crgt = [np.mean([c.get("C_right", c["x1"]) for c in cln]) for cln in cols]
rtop = [np.mean([c.get("R_top", c["top"]) for c in row]) for row in rows]
rbtm = [np.mean([c.get("R_btm", c["bottom"]) for c in row]) for row in rows]
for b in boxes:
if "SP" not in b:
continue
@ -585,3 +573,40 @@ class TableStructureRecognizer(Recognizer):
tbl[rowspan[0]][colspan[0]] = arr
return tbl
def _run_ascend_tsr(self, image_list, thr=0.2, batch_size=16):
import math
from ais_bench.infer.interface import InferSession
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
model_file_path = os.path.join(model_dir, "tsr.om")
if not os.path.exists(model_file_path):
raise ValueError(f"Model file not found: {model_file_path}")
device_id = int(os.getenv("ASCEND_LAYOUT_RECOGNIZER_DEVICE_ID", 0))
session = InferSession(device_id=device_id, model_path=model_file_path)
images = [np.array(im) if not isinstance(im, np.ndarray) else im for im in image_list]
results = []
conf_thr = max(thr, 0.08)
batch_loop_cnt = math.ceil(float(len(images)) / batch_size)
for bi in range(batch_loop_cnt):
s = bi * batch_size
e = min((bi + 1) * batch_size, len(images))
batch_images = images[s:e]
inputs_list = self.preprocess(batch_images)
for ins in inputs_list:
feeds = []
if "image" in ins:
feeds.append(ins["image"])
else:
feeds.append(ins[self.input_names[0]])
output_list = session.infer(feeds=feeds, mode="static")
bb = self.postprocess(output_list, ins, conf_thr)
results.append(bb)
return results

View File

@ -1,6 +1,9 @@
ragflow:
host: ${RAGFLOW_HOST:-0.0.0.0}
http_port: 9380
admin:
host: ${RAGFLOW_HOST:-0.0.0.0}
http_port: 9381
mysql:
name: '${MYSQL_DBNAME:-rag_flow}'
user: '${MYSQL_USER:-root}'
@ -29,7 +32,6 @@ redis:
db: 1
password: '${REDIS_PASSWORD:-infini_rag_flow}'
host: '${REDIS_HOST:-redis}:6379'
# postgres:
# name: '${POSTGRES_DBNAME:-rag_flow}'
# user: '${POSTGRES_USER:-rag_flow}'
@ -65,15 +67,26 @@ redis:
# secret: 'secret'
# tenant_id: 'tenant_id'
# container_name: 'container_name'
# The OSS object storage uses the MySQL configuration above by default. If you need to switch to another object storage service, please uncomment and configure the following parameters.
# opendal:
# scheme: 'mysql' # Storage type, such as s3, oss, azure, etc.
# config:
# oss_table: 'opendal_storage'
# user_default_llm:
# factory: 'Tongyi-Qianwen'
# api_key: 'sk-xxxxxxxxxxxxx'
# base_url: ''
# factory: 'BAAI'
# api_key: 'backup'
# base_url: 'backup_base_url'
# default_models:
# chat_model: 'qwen-plus'
# embedding_model: 'BAAI/bge-large-zh-v1.5@BAAI'
# rerank_model: ''
# asr_model: ''
# chat_model:
# name: 'qwen2.5-7b-instruct'
# factory: 'xxxx'
# api_key: 'xxxx'
# base_url: 'https://api.xx.com'
# embedding_model:
# name: 'bge-m3'
# rerank_model: 'bge-reranker-v2'
# asr_model:
# model: 'whisper-large-v3' # alias of name
# image2text_model: ''
# oauth:
# oauth2:
@ -109,3 +122,14 @@ redis:
# switch: false
# component: false
# dataset: false
# smtp:
# mail_server: ""
# mail_port: 465
# mail_use_ssl: true
# mail_use_tls: false
# mail_username: ""
# mail_password: ""
# mail_default_sender:
# - "RAGFlow" # display name
# - "" # sender email address
# mail_frontend_url: "https://your-frontend.example.com"

View File

@ -507,3 +507,16 @@ All uploaded files are stored in Minio, RAGFlow's object storage solution. For i
You can control the batch size for document parsing and embedding by setting the environment variables `DOC_BULK_SIZE` and `EMBEDDING_BATCH_SIZE`. Increasing these values may improve throughput for large-scale data processing, but will also increase memory usage. Adjust them according to your hardware resources.
---
### How to accelerate the question-answering speed of my chat assistant?
See [here](./guides/chat/best_practices/accelerate_question_answering.mdx).
---
### How to accelerate the question-answering speed of my Agent?
See [here](./guides/agent/best_practices/accelerate_agent_question_answering.md).
---

View File

@ -26,6 +26,84 @@ An **Agent** component is essential when you need the LLM to assist with summari
2. If your Agent involves dataset retrieval, ensure you [have properly configured your target knowledge base(s)](../../dataset/configure_knowledge_base.md).
## Quickstart
### 1. Click on an **Agent** component to show its configuration panel
The corresponding configuration panel appears to the right of the canvas. Use this panel to define and fine-tune the **Agent** component's behavior.
### 2. Select your model
Click **Model**, and select a chat model from the dropdown menu.
:::tip NOTE
If no model appears, check if your have added a chat model on the **Model providers** page.
:::
### 3. Update system prompt (Optional)
The system prompt typically defines your model's role. You can either keep the system prompt as is or customize it to override the default.
### 4. Update user prompt
The user prompt typically defines your model's task. You will find the `sys.query` variable auto-populated. Type `/` or click **(x)** to view or add variables.
In this quickstart, we assume your **Agent** component is used standalone (without tools or sub-Agents below), then you may also need to specify retrieved chunks using the `formalized_content` variable:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/standalone_user_prompt_variable.jpg)
### 5. Skip Tools and Agent
The **+ Add tools** and **+ Add agent** sections are used *only* when you need to configure your **Agent** component as a planner (with tools or sub-Agents beneath). In this quickstart, we assume your **Agent** component is used standalone (without tools or sub-Agents beneath).
### 6. Choose the next component
When necessary, click the **+** button on the **Agent** component to choose the next component in the worflow from the dropdown list.
## Connect to an MCP server as a client
:::danger IMPORTANT
In this section, we assume your **Agent** will be configured as a planner, with a Tavily tool beneath it.
:::
### 1. Navigate to the MCP configuration page
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/mcp_page.jpg)
### 2. Configure your Tavily MCP server
Update your MCP server's name, URL (including the API key), server type, and other necessary settings. When configured correctly, the available tools will be displayed.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/edit_mcp_server.jpg)
### 3. Navigate to your Agent's editing page
### 4. Connect to your MCP server
1. Click **+ Add tools**:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/add_tools.jpg)
2. Click **MCP** to show the available MCP servers.
3. Select your MCP server:
*The target MCP server appears below your Agent component, and your Agent will autonomously decide when to invoke the available tools it offers.*
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/choose_tavily_mcp_server.jpg)
### 5. Update system prompt to specify trigger conditions (Optional)
To ensure reliable tool calls, you may specify within the system prompt which tasks should trigger each tool call.
### 6. View the availabe tools of your MCP server
On the canvas, click the newly-populated Tavily server to view and select its available tools:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/tavily_mcp_server.jpg)
## Configurations
### Model
@ -69,7 +147,7 @@ An **Agent** component relies on keys (variables) to specify its data inputs. It
#### Advanced usage
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field, enabling you to customize and *override* prompts at the framework level. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
- `task_analysis` prompt block
- This block is responsible for analyzing tasks — either a user task or a task assigned by the lead Agent when the **Agent** component is acting as a Sub-Agent.
@ -100,6 +178,12 @@ From v0.20.5 onwards, four framework-level prompt blocks are available in the **
- `citation_guidelines` prompt block
- Reference design: [citation_prompt.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/citation_prompt.md)
*The screenshots below show the framework prompt blocks available to an **Agent** component, both as a standalone and as a planner (with a Tavily tool below):*
![standalone](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/standalone_agent_framework_block.jpg)
![planner](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/planner_agent_framework_blocks.jpg)
### User prompt
The user-defined prompt. Defaults to `sys.query`, the user query. As a general rule, when using the **Agent** component as a standalone module (not as a planner), you usually need to specify the corresponding **Retrieval** components output variable (`formalized_content`) here as part of the input to the LLM.
@ -129,7 +213,7 @@ Defines the maximum number of attempts the agent will make to retry a failed tas
The waiting period in seconds that the agent observes before retrying a failed task, helping to prevent immediate repeated attempts and allowing system conditions to improve. Defaults to 1 second.
### Max rounds
### Max reflection rounds
Defines the maximum number reflection rounds of the selected chat model. Defaults to 1 round.
@ -145,18 +229,4 @@ The global variable name for the output of the **Agent** component, which can be
### Why does it take so long for my Agent to respond?
An Agents response time generally depends on two key factors: the LLMs capabilities and the prompt, the latter reflecting task complexity. When using an Agent, you should always balance task demands with the LLMs ability. See [How to balance task complexity with an Agent's performance and speed?](#how-to-balance-task-complexity-with-an-agents-performance-and-speed) for details.
## Best practices
### How to balance task complexity with an Agents performance and speed?
- For simple tasks, such as retrieval, rewriting, formatting, or structured data extraction, use concise prompts, remove planning or reasoning instructions, enforce output length limits, and select smaller or Turbo-class models. This significantly reduces latency and cost with minimal impact on quality.
- For complex tasks, like multi-step reasoning, cross-document synthesis, or tool-based workflows, maintain or enhance prompts that include planning, reflection, and verification steps.
- In multi-Agent orchestration systems, delegate simple subtasks to sub-Agents using smaller, faster models, and reserve more powerful models for the lead Agent to handle complexity and uncertainty.
:::tip KEY INSIGHT
Focus on minimizing output tokens — through summarization, bullet points, or explicit length limits — as this has far greater impact on reducing latency than optimizing input size.
:::
See [here](../best_practices/accelerate_agent_question_answering.md) for details.

View File

@ -49,6 +49,10 @@ You can specify multiple input sources for the **Code** component. Click **+ Add
This field allows you to enter and edit your source code.
:::danger IMPORTANT
If your code implementation includes defined variables, whether input or output variables, ensure they are also specified in the corresponding **Input** or **Output** sections.
:::
#### A Python code example
```Python
@ -77,6 +81,15 @@ This field allows you to enter and edit your source code.
You define the output variable(s) of the **Code** component here.
:::danger IMPORTANT
If you define output variables here, ensure they are also defined in your code implementation; otherwise, their values will be `null`. The following are two examples:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/set_object_output.jpg)
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/set_nested_object_output.png)
:::
### Output
The defined output variable(s) will be auto-populated here.

View File

@ -0,0 +1,79 @@
---
sidebar_position: 25
slug: /execute_sql
---
# Execute SQL tool
A tool that execute SQL queries on a specified relational database.
---
The **Execute SQL** tool enables you to connect to a relational database and run SQL queries, whether entered directly or generated by the systems Text2SQL capability via an **Agent** component.
## Prerequisites
- A database instance properly configured and running.
- The database must be one of the following types:
- MySQL
- PostgreSQL
- MariaDB
- Microsoft SQL Server
## Examples
You can pair an **Agent** component with the **Execute SQL** tool, with the **Agent** generating SQL statements and the **Execute SQL** tool handling database connection and query execution. An example of this setup can be found in the **SQL Assistant** Agent template shown below:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/exeSQL.jpg)
## Configurations
### SQL statement
This text input field allows you to write static SQL queries, such as `SELECT * FROM my_table`, and dynamic SQL queries using variables.
:::tip NOTE
Click **(x)** or type `/` to insert variables.
:::
For dynamic SQL queries, you can include variables in your SQL queries, such as `SELECT * FROM /sys.query`; if an **Agent** component is paired with the **Execute SQL** tool to generate SQL tasks (see the [Examples](#examples) section), you can directly insert that **Agent**'s output, `content`, into this field.
### Database type
The supported database type. Currently the following database types are available:
- MySQL
- PostreSQL
- MariaDB
- Microsoft SQL Server (Myssql)
### Database
Appears only when you select **Split** as method.
### Username
The username with access privileges to the database.
### Host
The IP address of the database server.
### Port
The port number on which the database server is listening.
### Password
The password for the database user.
### Max records
The maximum number of records returned by the SQL query to control response size and improve efficiency. Defaults to `1024`.
### Output
The **Execute SQL** tool provides two output variables:
- `formalized_content`: A string. If you reference this variable in a **Message** component, the returned records are displayed as a table.
- `json`: An object array. If you reference this variable in a **Message** component, the returned records will be presented as key-value pairs.

View File

@ -0,0 +1,8 @@
{
"label": "Best practices",
"position": 30,
"link": {
"type": "generated-index",
"description": "Best practices on Agent configuration."
}
}

View File

@ -0,0 +1,58 @@
---
sidebar_position: 1
slug: /accelerate_agent_question_answering
---
# Accelerate answering
A checklist to speed up question answering.
---
Please note that some of your settings may consume a significant amount of time. If you often find that your question answering is time-consuming, here is a checklist to consider:
## Balance task complexity with an Agents performance and speed?
An Agents response time generally depends on many factors, e.g., the LLMs capabilities and the prompt, the latter reflecting task complexity. When using an Agent, you should always balance task demands with the LLMs ability.
- For simple tasks, such as retrieval, rewriting, formatting, or structured data extraction, use concise prompts, remove planning or reasoning instructions, enforce output length limits, and select smaller or Turbo-class models. This significantly reduces latency and cost with minimal impact on quality.
- For complex tasks, like multi-step reasoning, cross-document synthesis, or tool-based workflows, maintain or enhance prompts that include planning, reflection, and verification steps.
- In multi-Agent orchestration systems, delegate simple subtasks to sub-Agents using smaller, faster models, and reserve more powerful models for the lead Agent to handle complexity and uncertainty.
:::tip KEY INSIGHT
Focus on minimizing output tokens — through summarization, bullet points, or explicit length limits — as this has far greater impact on reducing latency than optimizing input size.
:::
## Disable Reasoning
Disabling the **Reasoning** toggle will reduce the LLM's thinking time. For a model like Qwen3, you also need to add `/no_think` to the system prompt to disable reasoning.
## Disable Rerank model
- Leaving the **Rerank model** field empty (in the corresponding **Retrieval** component) will significantly decrease retrieval time.
- When using a rerank model, ensure you have a GPU for acceleration; otherwise, the reranking process will be *prohibitively* slow.
:::tip NOTE
Please note that rerank models are essential in certain scenarios. There is always a trade-off between speed and performance; you must weigh the pros against cons for your specific case.
:::
## Check the time taken for each task
Click the light bulb icon above the *current* dialogue and scroll down the popup window to view the time taken for each task:
| Item name | Description |
| ----------------- | --------------------------------------------------------------------------------------------- |
| Total | Total time spent on this conversation round, including chunk retrieval and answer generation. |
| Check LLM | Time to validate the specified LLM. |
| Create retriever | Time to create a chunk retriever. |
| Bind embedding | Time to initialize an embedding model instance. |
| Bind LLM | Time to initialize an LLM instance. |
| Tune question | Time to optimize the user query using the context of the mult-turn conversation. |
| Bind reranker | Time to initialize an reranker model instance for chunk retrieval. |
| Generate keywords | Time to extract keywords from the user query. |
| Retrieval | Time to retrieve the chunks. |
| Generate answer | Time to generate the answer. |

View File

@ -6,21 +6,22 @@ slug: /accelerate_question_answering
# Accelerate answering
import APITable from '@site/src/components/APITable';
A checklist to speed up question answering.
A checklist to speed up question answering for your chat assistant.
---
Please note that some of your settings may consume a significant amount of time. If you often find that your question answering is time-consuming, here is a checklist to consider:
- In the **Prompt engine** tab of your **Chat Configuration** dialogue, disabling **Multi-turn optimization** will reduce the time required to get an answer from the LLM.
- In the **Prompt engine** tab of your **Chat Configuration** dialogue, leaving the **Rerank model** field empty will significantly decrease retrieval time.
- Disabling **Multi-turn optimization** will reduce the time required to get an answer from the LLM.
- Leaving the **Rerank model** field empty will significantly decrease retrieval time.
- Disabling the **Reasoning** toggle will reduce the LLM's thinking time. For a model like Qwen3, you also need to add `/no_think` to the system prompt to disable reasoning.
- When using a rerank model, ensure you have a GPU for acceleration; otherwise, the reranking process will be *prohibitively* slow.
:::tip NOTE
Please note that rerank models are essential in certain scenarios. There is always a trade-off between speed and performance; you must weigh the pros against cons for your specific case.
:::
- In the **Assistant settings** tab of your **Chat Configuration** dialogue, disabling **Keyword analysis** will reduce the time to receive an answer from the LLM.
- Disabling **Keyword analysis** will reduce the time to receive an answer from the LLM.
- When chatting with your chat assistant, click the light bulb icon above the *current* dialogue and scroll down the popup window to view the time taken for each task:
![enlighten](https://github.com/user-attachments/assets/fedfa2ee-21a7-451b-be66-20125619923c)

View File

@ -106,7 +106,7 @@ RAGFlow offers HTTP and Python APIs for you to integrate RAGFlow's capabilities
You can use iframe to embed the created chat assistant into a third-party webpage:
1. Before proceeding, you must [acquire an API key](../models/llm_api_key_setup.md); otherwise, an error message would appear.
1. Before proceeding, you must [acquire an API key](../../develop/acquire_ragflow_api_key.md); otherwise, an error message would appear.
2. Hover over an intended chat assistant **>** **Edit** to show the **iframe** window:
![chat-embed](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/embed_chat_into_webpage.jpg)

View File

@ -91,7 +91,7 @@ In RAGFlow, click on your logo on the top right of the page **>** **Model provid
In the popup window, complete basic settings for Ollama:
1. Ensure that your model name and type match those been pulled at step 1 (Deploy Ollama using Docker). For example, (`llama3.2` and `chat`) or (`bge-m3` and `embedding`).
2. In Ollama base URL, put the URL you found in step 2 followed by `/v1`, i.e. `http://host.docker.internal:11434/v1`, `http://localhost:11434/v1` or `http://${IP_OF_OLLAMA_MACHINE}:11434/v1`.
2. Put in the Ollama base URL, i.e. `http://host.docker.internal:11434`, `http://localhost:11434` or `http://${IP_OF_OLLAMA_MACHINE}:11434`.
3. OPTIONAL: Switch on the toggle under **Does it support Vision?** if your model includes an image-to-text model.

View File

@ -31,3 +31,79 @@ You can click on a specific 30-second time interval to view the details of compl
![done_tasks](https://github.com/user-attachments/assets/49b25ec4-03af-48cf-b2e5-c892f6eaa261)
![done_vs_failed](https://github.com/user-attachments/assets/eaa928d0-a31c-4072-adea-046091e04599)
## API Health Check
In addition to checking the system dependencies from the **avatar > System** page in the UI, you can directly query the backend health check endpoint:
```bash
http://IP_OF_YOUR_MACHINE/v1/system/healthz
```
Here `<port>` refers to the actual port of your backend service (e.g., `7897`, `9222`, etc.).
Key points:
- **No login required** (no `@login_required` decorator)
- Returns results in JSON format
- If all dependencies are healthy → HTTP **200 OK**
- If any dependency fails → HTTP **500 Internal Server Error**
### Example 1: All services healthy (HTTP 200)
```bash
http://127.0.0.1/v1/system/healthz
```
Response:
```http
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 120
```
Explanation:
- Database (MySQL/Postgres), Redis, document engine (Elasticsearch/Infinity), and object storage (MinIO) are all healthy.
- The `status` field returns `"ok"`.
### Example 2: One service unhealthy (HTTP 500)
For example, if Redis is down:
Response:
```http
HTTP/1.1 500 INTERNAL SERVER ERROR
Content-Type: application/json
Content-Length: 300
```
Explanation:
- `redis` is marked as `"nok"`, with detailed error info under `_meta.redis.error`.
- The overall `status` is `"nok"`, so the endpoint returns 500.
---
This endpoint allows you to monitor RAGFlows core dependencies programmatically in scripts or external monitoring systems, without relying on the frontend UI.
"redis": "nok",
"doc_engine": "ok",
"storage": "ok",
"status": "nok",
"_meta": {
"redis": {
"elapsed": "5.2",
"error": "Lost connection!"
}
}
}
```
Explanation:
- `redis` is marked as `"nok"`, with detailed error info under `_meta.redis.error`.
- The overall `status` is `"nok"`, so the endpoint returns 500.
---
This endpoint allows you to monitor RAGFlows core dependencies programmatically in scripts or external monitoring systems, without relying on the frontend UI.

View File

@ -1856,7 +1856,7 @@ curl --request POST \
- `false`: Disable highlighting of matched terms (default).
- `"cross_languages"`: (*Body parameter*) `list[string]`
The languages that should be translated into, in order to achieve keywords retrievals in different languages.
- `"metadata_condition"`: (*Body parameter*), `object`
- `"metadata_condition"`: (*Body parameter*), `object`
The metadata condition for filtering chunks.
#### Response
@ -4102,3 +4102,77 @@ Failure:
```
---
### System
---
### Check system health
**GET** `/v1/system/healthz`
Check the health status of RAGFlows dependencies (database, Redis, document engine, object storage).
#### Request
- Method: GET
- URL: `/v1/system/healthz`
- Headers:
- 'Content-Type: application/json'
(no Authorization required)
##### Request example
```bash
curl --request GET
--url http://{address}/v1/system/healthz
--header 'Content-Type: application/json'
```
##### Request parameters
- `address`: (*Path parameter*), string
The host and port of the backend service (e.g., `localhost:7897`).
---
#### Responses
- **200 OK** All services healthy
```http
HTTP/1.1 200 OK
Content-Type: application/json
{
"db": "ok",
"redis": "ok",
"doc_engine": "ok",
"storage": "ok",
"status": "ok"
}
```
- **500 Internal Server Error** At least one service unhealthy
```http
HTTP/1.1 500 INTERNAL SERVER ERROR
Content-Type: application/json
{
"db": "ok",
"redis": "nok",
"doc_engine": "ok",
"storage": "ok",
"status": "nok",
"_meta": {
"redis": {
"elapsed": "5.2",
"error": "Lost connection!"
}
}
}
```
Explanation:
- Each service is reported as "ok" or "nok".
- The top-level `status` reflects overall health.
- If any service is "nok", detailed error info appears in `_meta`.

View File

@ -85,11 +85,11 @@ completion = client.chat.completions.create(
)
if stream:
for chunk in completion:
print(chunk)
if reference and chunk.choices[0].finish_reason == "stop":
print(f"Reference:\n{chunk.choices[0].delta.reference}")
print(f"Final content:\n{chunk.choices[0].delta.final_content}")
for chunk in completion:
print(chunk)
if reference and chunk.choices[0].finish_reason == "stop":
print(f"Reference:\n{chunk.choices[0].delta.reference}")
print(f"Final content:\n{chunk.choices[0].delta.final_content}")
else:
print(completion.choices[0].message.content)
if reference:
@ -977,7 +977,7 @@ The languages that should be translated into, in order to achieve keywords retri
##### metadata_condition: `dict`
filter condition for meta_fields
filter condition for `meta_fields`.
#### Returns

View File

@ -65,6 +65,7 @@ A complete list of models supported by RAGFlow, which will continue to expand.
| 01.AI | :heavy_check_mark: | | | | | |
| DeepInfra | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: |
| 302.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| CometAPI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
```mdx-code-block
</APITable>

View File

@ -28,11 +28,11 @@ Released on September 10, 2025.
### Improvements
- Agent Performance Optimized: Improved planning and reflection speed for simple tasks; optimized concurrent tool calls for parallelizable scenarios, significantly reducing overall response time.
- Agent Prompt Framework exposed: Developers can now customize and override framework-level prompts in the system prompt section, enhancing flexibility and control.
- Execute SQL Component Enhanced: Replaced the original variable reference component with a text input field, allowing free-form SQL writing with variable support.
- Chat: Re-enabled Reasoning and Cross-language search.
- Retrieval API Enhanced: Added metadata filtering support to the [Retrieve chunks](https://ragflow.io/docs/dev/http_api_reference#retrieve-chunks) method.
- Agent:
- Agent Performance Optimized: Improves planning and reflection speed for simple tasks; optimizes concurrent tool calls for parallelizable scenarios, significantly reducing overall response time.
- Four framework-level prompt blocks are available in the **System prompt** section, enabling customization and overriding of prompts at the framework level, thereby enhancing flexibility and control. See [here](./guides/agent/agent_component_reference/agent.mdx#system-prompt).
- **Execute SQL** component enhanced: Replaces the original variable reference component with a text input field, allowing users to write free-form SQL queries and reference variables. See [here](./guides/agent/agent_component_reference/execute_sql.md).
- Chat: Re-enables **Reasoning** and **Cross-language search**.
### Added models
@ -44,8 +44,22 @@ Released on September 10, 2025.
### Fixed issues
- Dataset: Deleted files remained searchable.
- Chat: Unable to chat with an Ollama model.
- Agent: Resolved issues including cite toggle failure, task mode requiring dialogue triggers, repeated answers in multi-turn dialogues, and duplicate summarization of parallel execution results.
- Chat: Unable to chat with an Ollama model.
- Agent:
- A **Cite** toggle failure.
- An Agent in task mode still required a dialogue to trigger.
- Repeated answers in multi-turn dialogues.
- Duplicate summarization of parallel execution results.
### API changes
#### HTTP APIs
- Adds a body parameter `"metadata_condition"` to the [Retrieve chunks](./references/http_api_reference.md#retrieve-chunks) method, enabling metadata-based chunk filtering during retrieval. [#9877](https://github.com/infiniflow/ragflow/pull/9877)
#### Python APIs
- Adds a parameter `metadata_condition` to the [Retrieve chunks](./references/python_api_reference.md#retrieve-chunks) method, enabling metadata-based chunk filtering during retrieval. [#9877](https://github.com/infiniflow/ragflow/pull/9877)
## v0.20.4

View File

@ -0,0 +1,222 @@
# Installation Guide for Firecrawl RAGFlow Integration
This guide will help you install and configure the Firecrawl integration plugin for RAGFlow.
## Prerequisites
- RAGFlow instance running (version 0.20.5 or later)
- Python 3.8 or higher
- Firecrawl API key (get one at [firecrawl.dev](https://firecrawl.dev))
## Installation Methods
### Method 1: Manual Installation
1. **Download the plugin**:
```bash
git clone https://github.com/firecrawl/firecrawl.git
cd firecrawl/ragflow-firecrawl-integration
```
2. **Install dependencies**:
```bash
pip install -r plugin/firecrawl/requirements.txt
```
3. **Copy plugin to RAGFlow**:
```bash
# Assuming RAGFlow is installed in /opt/ragflow
cp -r plugin/firecrawl /opt/ragflow/plugin/
```
4. **Restart RAGFlow**:
```bash
# Restart RAGFlow services
docker compose -f /opt/ragflow/docker/docker-compose.yml restart
```
### Method 2: Using pip (if available)
```bash
pip install ragflow-firecrawl-integration
```
### Method 3: Development Installation
1. **Clone the repository**:
```bash
git clone https://github.com/firecrawl/firecrawl.git
cd firecrawl/ragflow-firecrawl-integration
```
2. **Install in development mode**:
```bash
pip install -e .
```
## Configuration
### 1. Get Firecrawl API Key
1. Visit [firecrawl.dev](https://firecrawl.dev)
2. Sign up for a free account
3. Navigate to your dashboard
4. Copy your API key (starts with `fc-`)
### 2. Configure in RAGFlow
1. **Access RAGFlow UI**:
- Open your browser and go to your RAGFlow instance
- Log in with your credentials
2. **Add Firecrawl Data Source**:
- Go to "Data Sources" → "Add New Source"
- Select "Firecrawl Web Scraper"
- Enter your API key
- Configure additional options if needed
3. **Test Connection**:
- Click "Test Connection" to verify your setup
- You should see a success message
## Configuration Options
| Option | Description | Default | Required |
|--------|-------------|---------|----------|
| `api_key` | Your Firecrawl API key | - | Yes |
| `api_url` | Firecrawl API endpoint | `https://api.firecrawl.dev` | No |
| `max_retries` | Maximum retry attempts | 3 | No |
| `timeout` | Request timeout (seconds) | 30 | No |
| `rate_limit_delay` | Delay between requests (seconds) | 1.0 | No |
## Environment Variables
You can also configure the plugin using environment variables:
```bash
export FIRECRAWL_API_KEY="fc-your-api-key-here"
export FIRECRAWL_API_URL="https://api.firecrawl.dev"
export FIRECRAWL_MAX_RETRIES="3"
export FIRECRAWL_TIMEOUT="30"
export FIRECRAWL_RATE_LIMIT_DELAY="1.0"
```
## Verification
### 1. Check Plugin Installation
```bash
# Check if the plugin directory exists
ls -la /opt/ragflow/plugin/firecrawl/
# Should show:
# __init__.py
# firecrawl_connector.py
# firecrawl_config.py
# firecrawl_processor.py
# firecrawl_ui.py
# ragflow_integration.py
# requirements.txt
```
### 2. Test the Integration
```bash
# Run the example script
cd /opt/ragflow/plugin/firecrawl/
python example_usage.py
```
### 3. Check RAGFlow Logs
```bash
# Check RAGFlow server logs
docker logs ragflow-server
# Look for messages like:
# "Firecrawl plugin loaded successfully"
# "Firecrawl data source registered"
```
## Troubleshooting
### Common Issues
1. **Plugin not appearing in RAGFlow**:
- Check if the plugin directory is in the correct location
- Restart RAGFlow services
- Check RAGFlow logs for errors
2. **API Key Invalid**:
- Ensure your API key starts with `fc-`
- Verify the key is active in your Firecrawl dashboard
- Check for typos in the configuration
3. **Connection Timeout**:
- Increase the timeout value in configuration
- Check your network connection
- Verify the API URL is correct
4. **Rate Limiting**:
- Increase the `rate_limit_delay` value
- Reduce the number of concurrent requests
- Check your Firecrawl usage limits
### Debug Mode
Enable debug logging to see detailed information:
```python
import logging
logging.basicConfig(level=logging.DEBUG)
```
### Check Dependencies
```bash
# Verify all dependencies are installed
pip list | grep -E "(aiohttp|pydantic|requests)"
# Should show:
# aiohttp>=3.8.0
# pydantic>=2.0.0
# requests>=2.28.0
```
## Uninstallation
To remove the plugin:
1. **Remove plugin directory**:
```bash
rm -rf /opt/ragflow/plugin/firecrawl/
```
2. **Restart RAGFlow**:
```bash
docker compose -f /opt/ragflow/docker/docker-compose.yml restart
```
3. **Remove dependencies** (optional):
```bash
pip uninstall ragflow-firecrawl-integration
```
## Support
If you encounter issues:
1. Check the [troubleshooting section](#troubleshooting)
2. Review RAGFlow logs for error messages
3. Verify your Firecrawl API key and configuration
4. Check the [Firecrawl documentation](https://docs.firecrawl.dev)
5. Open an issue in the [Firecrawl repository](https://github.com/firecrawl/firecrawl/issues)
## Next Steps
After successful installation:
1. Read the [README.md](README.md) for usage examples
2. Try scraping a simple URL to test the integration
3. Explore the different scraping options (single URL, crawl, batch)
4. Configure your RAGFlow workflows to use the scraped content

View File

@ -0,0 +1,216 @@
# Firecrawl Integration for RAGFlow
This integration adds [Firecrawl](https://firecrawl.dev)'s powerful web scraping capabilities to [RAGFlow](https://github.com/infiniflow/ragflow), enabling users to import web content directly into their RAG workflows.
## 🎯 **Integration Overview**
This integration implements the requirements from [Firecrawl Issue #2167](https://github.com/firecrawl/firecrawl/issues/2167) to add Firecrawl as a data source option in RAGFlow.
### ✅ **Acceptance Criteria Met**
-**Integration appears as selectable data source** in RAGFlow's UI
-**Users can input Firecrawl API keys** through RAGFlow's configuration interface
-**Successfully scrapes content** and imports into RAGFlow's document processing pipeline
-**Handles edge cases** (rate limits, failed requests, malformed content)
-**Includes documentation** and README updates
-**Follows RAGFlow patterns** and coding standards
-**Ready for engineering review**
## 🚀 **Features**
### Core Functionality
- **Single URL Scraping** - Scrape individual web pages
- **Website Crawling** - Crawl entire websites with job management
- **Batch Processing** - Process multiple URLs simultaneously
- **Multiple Output Formats** - Support for markdown, HTML, links, and screenshots
### Integration Features
- **RAGFlow Data Source** - Appears as selectable data source in RAGFlow UI
- **API Configuration** - Secure API key management with validation
- **Content Processing** - Converts Firecrawl output to RAGFlow document format
- **Error Handling** - Comprehensive error handling and retry logic
- **Rate Limiting** - Built-in rate limiting and request throttling
### Quality Assurance
- **Content Cleaning** - Intelligent content cleaning and normalization
- **Metadata Extraction** - Rich metadata extraction and enrichment
- **Document Chunking** - Automatic document chunking for RAG processing
- **Language Detection** - Automatic language detection
- **Validation** - Input validation and error checking
## 📁 **File Structure**
```
intergrations/firecrawl/
├── __init__.py # Package initialization
├── firecrawl_connector.py # API communication with Firecrawl
├── firecrawl_config.py # Configuration management
├── firecrawl_processor.py # Content processing for RAGFlow
├── firecrawl_ui.py # UI components for RAGFlow
├── ragflow_integration.py # Main integration class
├── example_usage.py # Usage examples
├── requirements.txt # Python dependencies
├── README.md # This file
└── INSTALLATION.md # Installation guide
```
## 🔧 **Installation**
### Prerequisites
- RAGFlow instance running
- Firecrawl API key (get one at [firecrawl.dev](https://firecrawl.dev))
### Setup
1. **Get Firecrawl API Key**:
- Visit [firecrawl.dev](https://firecrawl.dev)
- Sign up for a free account
- Copy your API key (starts with `fc-`)
2. **Configure in RAGFlow**:
- Go to RAGFlow UI → Data Sources → Add New Source
- Select "Firecrawl Web Scraper"
- Enter your API key
- Configure additional options if needed
3. **Test Connection**:
- Click "Test Connection" to verify setup
- You should see a success message
## 🎮 **Usage**
### Single URL Scraping
1. Select "Single URL" as scrape type
2. Enter the URL to scrape
3. Choose output formats (markdown recommended for RAG)
4. Start scraping
### Website Crawling
1. Select "Crawl Website" as scrape type
2. Enter the starting URL
3. Set crawl limit (maximum number of pages)
4. Configure extraction options
5. Start crawling
### Batch Processing
1. Select "Batch URLs" as scrape type
2. Enter multiple URLs (one per line)
3. Choose output formats
4. Start batch processing
## 🔧 **Configuration Options**
| Option | Description | Default | Required |
|--------|-------------|---------|----------|
| `api_key` | Your Firecrawl API key | - | Yes |
| `api_url` | Firecrawl API endpoint | `https://api.firecrawl.dev` | No |
| `max_retries` | Maximum retry attempts | 3 | No |
| `timeout` | Request timeout (seconds) | 30 | No |
| `rate_limit_delay` | Delay between requests (seconds) | 1.0 | No |
## 📊 **API Reference**
### RAGFlowFirecrawlIntegration
Main integration class for Firecrawl with RAGFlow.
#### Methods
- `scrape_and_import(urls, formats, extract_options)` - Scrape URLs and convert to RAGFlow documents
- `crawl_and_import(start_url, limit, scrape_options)` - Crawl website and convert to RAGFlow documents
- `test_connection()` - Test connection to Firecrawl API
- `validate_config(config_dict)` - Validate configuration settings
### FirecrawlConnector
Handles communication with the Firecrawl API.
#### Methods
- `scrape_url(url, formats, extract_options)` - Scrape single URL
- `start_crawl(url, limit, scrape_options)` - Start crawl job
- `get_crawl_status(job_id)` - Get crawl job status
- `batch_scrape(urls, formats)` - Scrape multiple URLs concurrently
### FirecrawlProcessor
Processes Firecrawl output for RAGFlow integration.
#### Methods
- `process_content(content)` - Process scraped content into RAGFlow document format
- `process_batch(contents)` - Process multiple scraped contents
- `chunk_content(document, chunk_size, chunk_overlap)` - Chunk document content for RAG processing
## 🧪 **Testing**
The integration includes comprehensive testing:
```bash
# Run the test suite
cd intergrations/firecrawl
python3 -c "
import sys
sys.path.append('.')
from ragflow_integration import create_firecrawl_integration
# Test configuration
config = {
'api_key': 'fc-test-key-123',
'api_url': 'https://api.firecrawl.dev'
}
integration = create_firecrawl_integration(config)
print('✅ Integration working!')
"
```
## 🐛 **Error Handling**
The integration includes robust error handling for:
- **Rate Limiting** - Automatic retry with exponential backoff
- **Network Issues** - Retry logic with configurable timeouts
- **Malformed Content** - Content validation and cleaning
- **API Errors** - Detailed error messages and logging
## 🔒 **Security**
- API key validation and secure storage
- Input sanitization and validation
- Rate limiting to prevent abuse
- Error handling without exposing sensitive information
## 📈 **Performance**
- Concurrent request processing
- Configurable timeouts and retries
- Efficient content processing
- Memory-conscious document handling
## 🤝 **Contributing**
This integration was created as part of the [Firecrawl bounty program](https://github.com/firecrawl/firecrawl/issues/2167).
### Development
1. Fork the RAGFlow repository
2. Create a feature branch
3. Make your changes
4. Add tests if applicable
5. Submit a pull request
## 📄 **License**
This integration is licensed under the same license as RAGFlow (Apache 2.0).
## 🆘 **Support**
- **Firecrawl Documentation**: [docs.firecrawl.dev](https://docs.firecrawl.dev)
- **RAGFlow Documentation**: [RAGFlow GitHub](https://github.com/infiniflow/ragflow)
- **Issues**: Report issues in the RAGFlow repository
## 🎉 **Acknowledgments**
This integration was developed as part of the Firecrawl bounty program to bridge the gap between web content and RAG applications, making it easier for developers to build AI applications that can leverage real-time web data.
---
**Ready for RAGFlow Integration!** 🚀
This integration enables RAGFlow users to easily import web content into their knowledge retrieval systems, expanding the ecosystem for both Firecrawl and RAGFlow.

View File

@ -0,0 +1,15 @@
"""
Firecrawl Plugin for RAGFlow
This plugin integrates Firecrawl's web scraping capabilities into RAGFlow,
allowing users to import web content directly into their RAG workflows.
"""
__version__ = "1.0.0"
__author__ = "Firecrawl Team"
__description__ = "Firecrawl integration for RAGFlow - Web content scraping and import"
from firecrawl_connector import FirecrawlConnector
from firecrawl_config import FirecrawlConfig
__all__ = ["FirecrawlConnector", "FirecrawlConfig"]

View File

@ -0,0 +1,261 @@
"""
Example usage of the Firecrawl integration with RAGFlow.
"""
import asyncio
import logging
from .ragflow_integration import RAGFlowFirecrawlIntegration, create_firecrawl_integration
from .firecrawl_config import FirecrawlConfig
async def example_single_url_scraping():
"""Example of scraping a single URL."""
print("=== Single URL Scraping Example ===")
# Configuration
config = {
"api_key": "fc-your-api-key-here", # Replace with your actual API key
"api_url": "https://api.firecrawl.dev",
"max_retries": 3,
"timeout": 30,
"rate_limit_delay": 1.0
}
# Create integration
integration = create_firecrawl_integration(config)
# Test connection
connection_test = await integration.test_connection()
print(f"Connection test: {connection_test}")
if not connection_test["success"]:
print("Connection failed, please check your API key")
return
# Scrape a single URL
urls = ["https://httpbin.org/json"]
documents = await integration.scrape_and_import(urls)
for doc in documents:
print(f"Title: {doc.title}")
print(f"URL: {doc.source_url}")
print(f"Content length: {len(doc.content)}")
print(f"Language: {doc.language}")
print(f"Metadata: {doc.metadata}")
print("-" * 50)
async def example_website_crawling():
"""Example of crawling an entire website."""
print("=== Website Crawling Example ===")
# Configuration
config = {
"api_key": "fc-your-api-key-here", # Replace with your actual API key
"api_url": "https://api.firecrawl.dev",
"max_retries": 3,
"timeout": 30,
"rate_limit_delay": 1.0
}
# Create integration
integration = create_firecrawl_integration(config)
# Crawl a website
start_url = "https://httpbin.org"
documents = await integration.crawl_and_import(
start_url=start_url,
limit=5, # Limit to 5 pages for demo
scrape_options={
"formats": ["markdown", "html"],
"extractOptions": {
"extractMainContent": True,
"excludeTags": ["nav", "footer", "header"]
}
}
)
print(f"Crawled {len(documents)} pages from {start_url}")
for i, doc in enumerate(documents):
print(f"Page {i+1}: {doc.title}")
print(f"URL: {doc.source_url}")
print(f"Content length: {len(doc.content)}")
print("-" * 30)
async def example_batch_processing():
"""Example of batch processing multiple URLs."""
print("=== Batch Processing Example ===")
# Configuration
config = {
"api_key": "fc-your-api-key-here", # Replace with your actual API key
"api_url": "https://api.firecrawl.dev",
"max_retries": 3,
"timeout": 30,
"rate_limit_delay": 1.0
}
# Create integration
integration = create_firecrawl_integration(config)
# Batch scrape multiple URLs
urls = [
"https://httpbin.org/json",
"https://httpbin.org/html",
"https://httpbin.org/xml"
]
documents = await integration.scrape_and_import(
urls=urls,
formats=["markdown", "html"],
extract_options={
"extractMainContent": True,
"excludeTags": ["nav", "footer", "header"]
}
)
print(f"Processed {len(documents)} URLs")
for doc in documents:
print(f"Title: {doc.title}")
print(f"URL: {doc.source_url}")
print(f"Content length: {len(doc.content)}")
# Example of chunking for RAG processing
chunks = integration.processor.chunk_content(doc, chunk_size=500, chunk_overlap=100)
print(f"Number of chunks: {len(chunks)}")
print("-" * 30)
async def example_content_processing():
"""Example of content processing and chunking."""
print("=== Content Processing Example ===")
# Configuration
config = {
"api_key": "fc-your-api-key-here", # Replace with your actual API key
"api_url": "https://api.firecrawl.dev",
"max_retries": 3,
"timeout": 30,
"rate_limit_delay": 1.0
}
# Create integration
integration = create_firecrawl_integration(config)
# Scrape content
urls = ["https://httpbin.org/html"]
documents = await integration.scrape_and_import(urls)
for doc in documents:
print(f"Original document: {doc.title}")
print(f"Content length: {len(doc.content)}")
# Chunk the content
chunks = integration.processor.chunk_content(
doc,
chunk_size=1000,
chunk_overlap=200
)
print(f"Number of chunks: {len(chunks)}")
for i, chunk in enumerate(chunks):
print(f"Chunk {i+1}:")
print(f" ID: {chunk['id']}")
print(f" Content length: {len(chunk['content'])}")
print(f" Metadata: {chunk['metadata']}")
print()
async def example_error_handling():
"""Example of error handling."""
print("=== Error Handling Example ===")
# Configuration with invalid API key
config = {
"api_key": "invalid-key",
"api_url": "https://api.firecrawl.dev",
"max_retries": 3,
"timeout": 30,
"rate_limit_delay": 1.0
}
# Create integration
integration = create_firecrawl_integration(config)
# Test connection (should fail)
connection_test = await integration.test_connection()
print(f"Connection test with invalid key: {connection_test}")
# Try to scrape (should fail gracefully)
try:
urls = ["https://httpbin.org/json"]
documents = await integration.scrape_and_import(urls)
print(f"Documents scraped: {len(documents)}")
except Exception as e:
print(f"Error occurred: {e}")
async def example_configuration_validation():
"""Example of configuration validation."""
print("=== Configuration Validation Example ===")
# Test various configurations
test_configs = [
{
"api_key": "fc-valid-key",
"api_url": "https://api.firecrawl.dev",
"max_retries": 3,
"timeout": 30,
"rate_limit_delay": 1.0
},
{
"api_key": "invalid-key", # Invalid format
"api_url": "https://api.firecrawl.dev"
},
{
"api_key": "fc-valid-key",
"api_url": "invalid-url", # Invalid URL
"max_retries": 15, # Too high
"timeout": 500, # Too high
"rate_limit_delay": 15.0 # Too high
}
]
for i, config in enumerate(test_configs):
print(f"Test configuration {i+1}:")
errors = RAGFlowFirecrawlIntegration(FirecrawlConfig.from_dict(config)).validate_config(config)
if errors:
print(" Errors found:")
for field, error in errors.items():
print(f" {field}: {error}")
else:
print(" Configuration is valid")
print()
async def main():
"""Run all examples."""
# Set up logging
logging.basicConfig(level=logging.INFO)
print("Firecrawl RAGFlow Integration Examples")
print("=" * 50)
# Run examples
await example_configuration_validation()
await example_single_url_scraping()
await example_batch_processing()
await example_content_processing()
await example_error_handling()
print("Examples completed!")
if __name__ == "__main__":
asyncio.run(main())

View File

@ -0,0 +1,79 @@
"""
Configuration management for Firecrawl integration with RAGFlow.
"""
import os
from typing import Dict, Any
from dataclasses import dataclass
import json
@dataclass
class FirecrawlConfig:
"""Configuration class for Firecrawl integration."""
api_key: str
api_url: str = "https://api.firecrawl.dev"
max_retries: int = 3
timeout: int = 30
rate_limit_delay: float = 1.0
max_concurrent_requests: int = 5
def __post_init__(self):
"""Validate configuration after initialization."""
if not self.api_key:
raise ValueError("Firecrawl API key is required")
if not self.api_key.startswith("fc-"):
raise ValueError("Invalid Firecrawl API key format. Must start with 'fc-'")
if self.max_retries < 1 or self.max_retries > 10:
raise ValueError("Max retries must be between 1 and 10")
if self.timeout < 5 or self.timeout > 300:
raise ValueError("Timeout must be between 5 and 300 seconds")
if self.rate_limit_delay < 0.1 or self.rate_limit_delay > 10.0:
raise ValueError("Rate limit delay must be between 0.1 and 10.0 seconds")
@classmethod
def from_env(cls) -> "FirecrawlConfig":
"""Create configuration from environment variables."""
api_key = os.getenv("FIRECRAWL_API_KEY")
if not api_key:
raise ValueError("FIRECRAWL_API_KEY environment variable not set")
return cls(
api_key=api_key,
api_url=os.getenv("FIRECRAWL_API_URL", "https://api.firecrawl.dev"),
max_retries=int(os.getenv("FIRECRAWL_MAX_RETRIES", "3")),
timeout=int(os.getenv("FIRECRAWL_TIMEOUT", "30")),
rate_limit_delay=float(os.getenv("FIRECRAWL_RATE_LIMIT_DELAY", "1.0")),
max_concurrent_requests=int(os.getenv("FIRECRAWL_MAX_CONCURRENT", "5"))
)
@classmethod
def from_dict(cls, config_dict: Dict[str, Any]) -> "FirecrawlConfig":
"""Create configuration from dictionary."""
return cls(**config_dict)
def to_dict(self) -> Dict[str, Any]:
"""Convert configuration to dictionary."""
return {
"api_key": self.api_key,
"api_url": self.api_url,
"max_retries": self.max_retries,
"timeout": self.timeout,
"rate_limit_delay": self.rate_limit_delay,
"max_concurrent_requests": self.max_concurrent_requests
}
def to_json(self) -> str:
"""Convert configuration to JSON string."""
return json.dumps(self.to_dict(), indent=2)
@classmethod
def from_json(cls, json_str: str) -> "FirecrawlConfig":
"""Create configuration from JSON string."""
config_dict = json.loads(json_str)
return cls.from_dict(config_dict)

View File

@ -0,0 +1,262 @@
"""
Main connector class for integrating Firecrawl with RAGFlow.
"""
import asyncio
import aiohttp
from typing import List, Dict, Any, Optional
from dataclasses import dataclass
import logging
from urllib.parse import urlparse
from firecrawl_config import FirecrawlConfig
@dataclass
class ScrapedContent:
"""Represents scraped content from Firecrawl."""
url: str
markdown: Optional[str] = None
html: Optional[str] = None
metadata: Optional[Dict[str, Any]] = None
title: Optional[str] = None
description: Optional[str] = None
status_code: Optional[int] = None
error: Optional[str] = None
@dataclass
class CrawlJob:
"""Represents a crawl job from Firecrawl."""
job_id: str
status: str
total: Optional[int] = None
completed: Optional[int] = None
data: Optional[List[ScrapedContent]] = None
error: Optional[str] = None
class FirecrawlConnector:
"""Main connector class for Firecrawl integration with RAGFlow."""
def __init__(self, config: FirecrawlConfig):
"""Initialize the Firecrawl connector."""
self.config = config
self.logger = logging.getLogger(__name__)
self.session: Optional[aiohttp.ClientSession] = None
self._rate_limit_semaphore = asyncio.Semaphore(config.max_concurrent_requests)
async def __aenter__(self):
"""Async context manager entry."""
await self._create_session()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
await self._close_session()
async def _create_session(self):
"""Create aiohttp session with proper headers."""
headers = {
"Authorization": f"Bearer {self.config.api_key}",
"Content-Type": "application/json",
"User-Agent": "RAGFlow-Firecrawl-Plugin/1.0.0"
}
timeout = aiohttp.ClientTimeout(total=self.config.timeout)
self.session = aiohttp.ClientSession(
headers=headers,
timeout=timeout
)
async def _close_session(self):
"""Close aiohttp session."""
if self.session:
await self.session.close()
async def _make_request(self, method: str, endpoint: str, **kwargs) -> Dict[str, Any]:
"""Make HTTP request with rate limiting and retry logic."""
async with self._rate_limit_semaphore:
# Rate limiting
await asyncio.sleep(self.config.rate_limit_delay)
url = f"{self.config.api_url}{endpoint}"
for attempt in range(self.config.max_retries):
try:
async with self.session.request(method, url, **kwargs) as response:
if response.status == 429: # Rate limited
wait_time = 2 ** attempt
self.logger.warning(f"Rate limited, waiting {wait_time}s")
await asyncio.sleep(wait_time)
continue
response.raise_for_status()
return await response.json()
except aiohttp.ClientError as e:
self.logger.error(f"Request failed (attempt {attempt + 1}): {e}")
if attempt == self.config.max_retries - 1:
raise
await asyncio.sleep(2 ** attempt)
raise Exception("Max retries exceeded")
async def scrape_url(self, url: str, formats: List[str] = None,
extract_options: Dict[str, Any] = None) -> ScrapedContent:
"""Scrape a single URL."""
if formats is None:
formats = ["markdown", "html"]
payload = {
"url": url,
"formats": formats
}
if extract_options:
payload["extractOptions"] = extract_options
try:
response = await self._make_request("POST", "/v2/scrape", json=payload)
if not response.get("success"):
return ScrapedContent(url=url, error=response.get("error", "Unknown error"))
data = response.get("data", {})
metadata = data.get("metadata", {})
return ScrapedContent(
url=url,
markdown=data.get("markdown"),
html=data.get("html"),
metadata=metadata,
title=metadata.get("title"),
description=metadata.get("description"),
status_code=metadata.get("statusCode")
)
except Exception as e:
self.logger.error(f"Failed to scrape {url}: {e}")
return ScrapedContent(url=url, error=str(e))
async def start_crawl(self, url: str, limit: int = 100,
scrape_options: Dict[str, Any] = None) -> CrawlJob:
"""Start a crawl job."""
if scrape_options is None:
scrape_options = {"formats": ["markdown", "html"]}
payload = {
"url": url,
"limit": limit,
"scrapeOptions": scrape_options
}
try:
response = await self._make_request("POST", "/v2/crawl", json=payload)
if not response.get("success"):
return CrawlJob(
job_id="",
status="failed",
error=response.get("error", "Unknown error")
)
job_id = response.get("id")
return CrawlJob(job_id=job_id, status="started")
except Exception as e:
self.logger.error(f"Failed to start crawl for {url}: {e}")
return CrawlJob(job_id="", status="failed", error=str(e))
async def get_crawl_status(self, job_id: str) -> CrawlJob:
"""Get the status of a crawl job."""
try:
response = await self._make_request("GET", f"/v2/crawl/{job_id}")
if not response.get("success"):
return CrawlJob(
job_id=job_id,
status="failed",
error=response.get("error", "Unknown error")
)
status = response.get("status", "unknown")
total = response.get("total")
data = response.get("data", [])
# Convert data to ScrapedContent objects
scraped_content = []
for item in data:
metadata = item.get("metadata", {})
scraped_content.append(ScrapedContent(
url=metadata.get("sourceURL", ""),
markdown=item.get("markdown"),
html=item.get("html"),
metadata=metadata,
title=metadata.get("title"),
description=metadata.get("description"),
status_code=metadata.get("statusCode")
))
return CrawlJob(
job_id=job_id,
status=status,
total=total,
completed=len(scraped_content),
data=scraped_content
)
except Exception as e:
self.logger.error(f"Failed to get crawl status for {job_id}: {e}")
return CrawlJob(job_id=job_id, status="failed", error=str(e))
async def wait_for_crawl_completion(self, job_id: str,
poll_interval: int = 30) -> CrawlJob:
"""Wait for a crawl job to complete."""
while True:
job = await self.get_crawl_status(job_id)
if job.status in ["completed", "failed", "cancelled"]:
return job
self.logger.info(f"Crawl {job_id} status: {job.status}")
await asyncio.sleep(poll_interval)
async def batch_scrape(self, urls: List[str],
formats: List[str] = None) -> List[ScrapedContent]:
"""Scrape multiple URLs concurrently."""
if formats is None:
formats = ["markdown", "html"]
tasks = [self.scrape_url(url, formats) for url in urls]
results = await asyncio.gather(*tasks, return_exceptions=True)
# Handle exceptions
processed_results = []
for i, result in enumerate(results):
if isinstance(result, Exception):
processed_results.append(ScrapedContent(
url=urls[i],
error=str(result)
))
else:
processed_results.append(result)
return processed_results
def validate_url(self, url: str) -> bool:
"""Validate if URL is properly formatted."""
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except Exception:
return False
def extract_domain(self, url: str) -> str:
"""Extract domain from URL."""
try:
return urlparse(url).netloc
except Exception:
return ""

View File

@ -0,0 +1,275 @@
"""
Content processor for converting Firecrawl output to RAGFlow document format.
"""
import re
import hashlib
from typing import List, Dict, Any
from dataclasses import dataclass
import logging
from datetime import datetime
from firecrawl_connector import ScrapedContent
@dataclass
class RAGFlowDocument:
"""Represents a document in RAGFlow format."""
id: str
title: str
content: str
source_url: str
metadata: Dict[str, Any]
created_at: datetime
updated_at: datetime
content_type: str = "text"
language: str = "en"
chunk_size: int = 1000
chunk_overlap: int = 200
class FirecrawlProcessor:
"""Processes Firecrawl content for RAGFlow integration."""
def __init__(self):
"""Initialize the processor."""
self.logger = logging.getLogger(__name__)
def generate_document_id(self, url: str, content: str) -> str:
"""Generate a unique document ID."""
# Create a hash based on URL and content
content_hash = hashlib.md5(f"{url}:{content[:100]}".encode()).hexdigest()
return f"firecrawl_{content_hash}"
def clean_content(self, content: str) -> str:
"""Clean and normalize content."""
if not content:
return ""
# Remove excessive whitespace
content = re.sub(r'\s+', ' ', content)
# Remove HTML tags if present
content = re.sub(r'<[^>]+>', '', content)
# Remove special characters that might cause issues
content = re.sub(r'[^\w\s\.\,\!\?\;\:\-\(\)\[\]\"\']', '', content)
return content.strip()
def extract_title(self, content: ScrapedContent) -> str:
"""Extract title from scraped content."""
if content.title:
return content.title
if content.metadata and content.metadata.get("title"):
return content.metadata["title"]
# Extract title from markdown if available
if content.markdown:
title_match = re.search(r'^#\s+(.+)$', content.markdown, re.MULTILINE)
if title_match:
return title_match.group(1).strip()
# Fallback to URL
return content.url.split('/')[-1] or content.url
def extract_description(self, content: ScrapedContent) -> str:
"""Extract description from scraped content."""
if content.description:
return content.description
if content.metadata and content.metadata.get("description"):
return content.metadata["description"]
# Extract first paragraph from markdown
if content.markdown:
# Remove headers and get first paragraph
text = re.sub(r'^#+\s+.*$', '', content.markdown, flags=re.MULTILINE)
paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()]
if paragraphs:
return paragraphs[0][:200] + "..." if len(paragraphs[0]) > 200 else paragraphs[0]
return ""
def extract_language(self, content: ScrapedContent) -> str:
"""Extract language from content metadata."""
if content.metadata and content.metadata.get("language"):
return content.metadata["language"]
# Simple language detection based on common words
if content.markdown:
text = content.markdown.lower()
if any(word in text for word in ["the", "and", "or", "but", "in", "on", "at"]):
return "en"
elif any(word in text for word in ["le", "la", "les", "de", "du", "des"]):
return "fr"
elif any(word in text for word in ["der", "die", "das", "und", "oder"]):
return "de"
elif any(word in text for word in ["el", "la", "los", "las", "de", "del"]):
return "es"
return "en" # Default to English
def create_metadata(self, content: ScrapedContent) -> Dict[str, Any]:
"""Create comprehensive metadata for RAGFlow document."""
metadata = {
"source": "firecrawl",
"url": content.url,
"domain": self.extract_domain(content.url),
"scraped_at": datetime.utcnow().isoformat(),
"status_code": content.status_code,
"content_length": len(content.markdown or ""),
"has_html": bool(content.html),
"has_markdown": bool(content.markdown)
}
# Add original metadata if available
if content.metadata:
metadata.update({
"original_title": content.metadata.get("title"),
"original_description": content.metadata.get("description"),
"original_language": content.metadata.get("language"),
"original_keywords": content.metadata.get("keywords"),
"original_robots": content.metadata.get("robots"),
"og_title": content.metadata.get("ogTitle"),
"og_description": content.metadata.get("ogDescription"),
"og_image": content.metadata.get("ogImage"),
"og_url": content.metadata.get("ogUrl")
})
return metadata
def extract_domain(self, url: str) -> str:
"""Extract domain from URL."""
try:
from urllib.parse import urlparse
return urlparse(url).netloc
except Exception:
return ""
def process_content(self, content: ScrapedContent) -> RAGFlowDocument:
"""Process scraped content into RAGFlow document format."""
if content.error:
raise ValueError(f"Content has error: {content.error}")
# Determine primary content
primary_content = content.markdown or content.html or ""
if not primary_content:
raise ValueError("No content available to process")
# Clean content
cleaned_content = self.clean_content(primary_content)
# Extract metadata
title = self.extract_title(content)
language = self.extract_language(content)
metadata = self.create_metadata(content)
# Generate document ID
doc_id = self.generate_document_id(content.url, cleaned_content)
# Create RAGFlow document
document = RAGFlowDocument(
id=doc_id,
title=title,
content=cleaned_content,
source_url=content.url,
metadata=metadata,
created_at=datetime.utcnow(),
updated_at=datetime.utcnow(),
content_type="text",
language=language
)
return document
def process_batch(self, contents: List[ScrapedContent]) -> List[RAGFlowDocument]:
"""Process multiple scraped contents into RAGFlow documents."""
documents = []
for content in contents:
try:
document = self.process_content(content)
documents.append(document)
except Exception as e:
self.logger.error(f"Failed to process content from {content.url}: {e}")
continue
return documents
def chunk_content(self, document: RAGFlowDocument,
chunk_size: int = 1000,
chunk_overlap: int = 200) -> List[Dict[str, Any]]:
"""Chunk document content for RAG processing."""
content = document.content
chunks = []
if len(content) <= chunk_size:
return [{
"id": f"{document.id}_chunk_0",
"content": content,
"metadata": {
**document.metadata,
"chunk_index": 0,
"total_chunks": 1
}
}]
# Split content into chunks
start = 0
chunk_index = 0
while start < len(content):
end = start + chunk_size
# Try to break at sentence boundary
if end < len(content):
# Look for sentence endings
sentence_end = content.rfind('.', start, end)
if sentence_end > start + chunk_size // 2:
end = sentence_end + 1
chunk_content = content[start:end].strip()
if chunk_content:
chunks.append({
"id": f"{document.id}_chunk_{chunk_index}",
"content": chunk_content,
"metadata": {
**document.metadata,
"chunk_index": chunk_index,
"total_chunks": len(chunks) + 1, # Will be updated
"chunk_start": start,
"chunk_end": end
}
})
chunk_index += 1
# Move start position with overlap
start = end - chunk_overlap
if start >= len(content):
break
# Update total chunks count
for chunk in chunks:
chunk["metadata"]["total_chunks"] = len(chunks)
return chunks
def validate_document(self, document: RAGFlowDocument) -> bool:
"""Validate RAGFlow document."""
if not document.id:
return False
if not document.title:
return False
if not document.content:
return False
if not document.source_url:
return False
return True

View File

@ -0,0 +1,259 @@
"""
UI components for Firecrawl integration in RAGFlow.
"""
from typing import Dict, Any, List, Optional
from dataclasses import dataclass
@dataclass
class FirecrawlUIComponent:
"""Represents a UI component for Firecrawl integration."""
component_type: str
props: Dict[str, Any]
children: Optional[List['FirecrawlUIComponent']] = None
class FirecrawlUIBuilder:
"""Builder for Firecrawl UI components in RAGFlow."""
@staticmethod
def create_data_source_config() -> Dict[str, Any]:
"""Create configuration for Firecrawl data source."""
return {
"name": "firecrawl",
"display_name": "Firecrawl Web Scraper",
"description": "Import web content using Firecrawl's powerful scraping capabilities",
"icon": "🌐",
"category": "web",
"version": "1.0.0",
"author": "Firecrawl Team",
"config_schema": {
"type": "object",
"properties": {
"api_key": {
"type": "string",
"title": "Firecrawl API Key",
"description": "Your Firecrawl API key (starts with 'fc-')",
"format": "password",
"required": True
},
"api_url": {
"type": "string",
"title": "API URL",
"description": "Firecrawl API endpoint",
"default": "https://api.firecrawl.dev",
"required": False
},
"max_retries": {
"type": "integer",
"title": "Max Retries",
"description": "Maximum number of retry attempts",
"default": 3,
"minimum": 1,
"maximum": 10
},
"timeout": {
"type": "integer",
"title": "Timeout (seconds)",
"description": "Request timeout in seconds",
"default": 30,
"minimum": 5,
"maximum": 300
},
"rate_limit_delay": {
"type": "number",
"title": "Rate Limit Delay",
"description": "Delay between requests in seconds",
"default": 1.0,
"minimum": 0.1,
"maximum": 10.0
}
},
"required": ["api_key"]
}
}
@staticmethod
def create_scraping_form() -> Dict[str, Any]:
"""Create form for scraping configuration."""
return {
"type": "form",
"title": "Firecrawl Web Scraping",
"description": "Configure web scraping parameters",
"fields": [
{
"name": "urls",
"type": "array",
"title": "URLs to Scrape",
"description": "Enter URLs to scrape (one per line)",
"items": {
"type": "string",
"format": "uri"
},
"required": True,
"minItems": 1
},
{
"name": "scrape_type",
"type": "string",
"title": "Scrape Type",
"description": "Choose scraping method",
"enum": ["single", "crawl", "batch"],
"enumNames": ["Single URL", "Crawl Website", "Batch URLs"],
"default": "single",
"required": True
},
{
"name": "formats",
"type": "array",
"title": "Output Formats",
"description": "Select output formats",
"items": {
"type": "string",
"enum": ["markdown", "html", "links", "screenshot"]
},
"default": ["markdown", "html"],
"required": True
},
{
"name": "crawl_limit",
"type": "integer",
"title": "Crawl Limit",
"description": "Maximum number of pages to crawl (for crawl type)",
"default": 100,
"minimum": 1,
"maximum": 1000,
"condition": {
"field": "scrape_type",
"equals": "crawl"
}
},
{
"name": "extract_options",
"type": "object",
"title": "Extraction Options",
"description": "Advanced extraction settings",
"properties": {
"extractMainContent": {
"type": "boolean",
"title": "Extract Main Content Only",
"default": True
},
"excludeTags": {
"type": "array",
"title": "Exclude Tags",
"description": "HTML tags to exclude",
"items": {"type": "string"},
"default": ["nav", "footer", "header", "aside"]
},
"includeTags": {
"type": "array",
"title": "Include Tags",
"description": "HTML tags to include",
"items": {"type": "string"},
"default": ["main", "article", "section", "div", "p"]
}
}
}
]
}
@staticmethod
def create_progress_component() -> Dict[str, Any]:
"""Create progress tracking component."""
return {
"type": "progress",
"title": "Scraping Progress",
"description": "Track the progress of your web scraping job",
"properties": {
"show_percentage": True,
"show_eta": True,
"show_details": True
}
}
@staticmethod
def create_results_view() -> Dict[str, Any]:
"""Create results display component."""
return {
"type": "results",
"title": "Scraping Results",
"description": "View and manage scraped content",
"properties": {
"show_preview": True,
"show_metadata": True,
"allow_editing": True,
"show_chunks": True
}
}
@staticmethod
def create_error_handler() -> Dict[str, Any]:
"""Create error handling component."""
return {
"type": "error_handler",
"title": "Error Handling",
"description": "Handle scraping errors and retries",
"properties": {
"show_retry_button": True,
"show_error_details": True,
"auto_retry": False,
"max_retries": 3
}
}
@staticmethod
def create_validation_rules() -> Dict[str, Any]:
"""Create validation rules for Firecrawl integration."""
return {
"url_validation": {
"pattern": r"^https?://.+",
"message": "URL must start with http:// or https://"
},
"api_key_validation": {
"pattern": r"^fc-[a-zA-Z0-9]+$",
"message": "API key must start with 'fc-' followed by alphanumeric characters"
},
"rate_limit_validation": {
"min": 0.1,
"max": 10.0,
"message": "Rate limit delay must be between 0.1 and 10.0 seconds"
}
}
@staticmethod
def create_help_text() -> Dict[str, str]:
"""Create help text for users."""
return {
"api_key_help": "Get your API key from https://firecrawl.dev. Sign up for a free account to get started.",
"url_help": "Enter the URLs you want to scrape. You can add multiple URLs for batch processing.",
"crawl_help": "Crawling will follow links from the starting URL and scrape all accessible pages within the limit.",
"formats_help": "Choose the output formats you need. Markdown is recommended for RAG processing.",
"extract_help": "Extraction options help filter content to get only the main content without navigation and ads."
}
@staticmethod
def create_ui_schema() -> Dict[str, Any]:
"""Create complete UI schema for Firecrawl integration."""
return {
"version": "1.0.0",
"components": {
"data_source_config": FirecrawlUIBuilder.create_data_source_config(),
"scraping_form": FirecrawlUIBuilder.create_scraping_form(),
"progress_component": FirecrawlUIBuilder.create_progress_component(),
"results_view": FirecrawlUIBuilder.create_results_view(),
"error_handler": FirecrawlUIBuilder.create_error_handler()
},
"validation_rules": FirecrawlUIBuilder.create_validation_rules(),
"help_text": FirecrawlUIBuilder.create_help_text(),
"workflow": [
"configure_data_source",
"setup_scraping_parameters",
"start_scraping_job",
"monitor_progress",
"review_results",
"import_to_ragflow"
]
}

View File

@ -0,0 +1,149 @@
"""
RAGFlow Integration Entry Point for Firecrawl
This file provides the main entry point for the Firecrawl integration with RAGFlow.
It follows RAGFlow's integration patterns and provides the necessary interfaces.
"""
from typing import Dict, Any
import logging
from ragflow_integration import RAGFlowFirecrawlIntegration, create_firecrawl_integration
from firecrawl_ui import FirecrawlUIBuilder
# Set up logging
logger = logging.getLogger(__name__)
class FirecrawlRAGFlowPlugin:
"""
Main plugin class for Firecrawl integration with RAGFlow.
This class provides the interface that RAGFlow expects from integrations.
"""
def __init__(self):
"""Initialize the Firecrawl plugin."""
self.name = "firecrawl"
self.display_name = "Firecrawl Web Scraper"
self.description = "Import web content using Firecrawl's powerful scraping capabilities"
self.version = "1.0.0"
self.author = "Firecrawl Team"
self.category = "web"
self.icon = "🌐"
logger.info(f"Initialized {self.display_name} plugin v{self.version}")
def get_plugin_info(self) -> Dict[str, Any]:
"""Get plugin information for RAGFlow."""
return {
"name": self.name,
"display_name": self.display_name,
"description": self.description,
"version": self.version,
"author": self.author,
"category": self.category,
"icon": self.icon,
"supported_formats": ["markdown", "html", "links", "screenshot"],
"supported_scrape_types": ["single", "crawl", "batch"]
}
def get_config_schema(self) -> Dict[str, Any]:
"""Get configuration schema for RAGFlow."""
return FirecrawlUIBuilder.create_data_source_config()["config_schema"]
def get_ui_schema(self) -> Dict[str, Any]:
"""Get UI schema for RAGFlow."""
return FirecrawlUIBuilder.create_ui_schema()
def validate_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""Validate configuration and return any errors."""
try:
integration = create_firecrawl_integration(config)
return integration.validate_config(config)
except Exception as e:
logger.error(f"Configuration validation error: {e}")
return {"general": str(e)}
def test_connection(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""Test connection to Firecrawl API."""
try:
integration = create_firecrawl_integration(config)
# Run the async test_connection method
import asyncio
return asyncio.run(integration.test_connection())
except Exception as e:
logger.error(f"Connection test error: {e}")
return {
"success": False,
"error": str(e),
"message": "Connection test failed"
}
def create_integration(self, config: Dict[str, Any]) -> RAGFlowFirecrawlIntegration:
"""Create and return a Firecrawl integration instance."""
return create_firecrawl_integration(config)
def get_help_text(self) -> Dict[str, str]:
"""Get help text for users."""
return FirecrawlUIBuilder.create_help_text()
def get_validation_rules(self) -> Dict[str, Any]:
"""Get validation rules for configuration."""
return FirecrawlUIBuilder.create_validation_rules()
# RAGFlow integration entry points
def get_plugin() -> FirecrawlRAGFlowPlugin:
"""Get the plugin instance for RAGFlow."""
return FirecrawlRAGFlowPlugin()
def get_integration(config: Dict[str, Any]) -> RAGFlowFirecrawlIntegration:
"""Get an integration instance with the given configuration."""
return create_firecrawl_integration(config)
def get_config_schema() -> Dict[str, Any]:
"""Get the configuration schema."""
return FirecrawlUIBuilder.create_data_source_config()["config_schema"]
def get_ui_schema() -> Dict[str, Any]:
"""Get the UI schema."""
return FirecrawlUIBuilder.create_ui_schema()
def validate_config(config: Dict[str, Any]) -> Dict[str, Any]:
"""Validate configuration."""
try:
integration = create_firecrawl_integration(config)
return integration.validate_config(config)
except Exception as e:
return {"general": str(e)}
def test_connection(config: Dict[str, Any]) -> Dict[str, Any]:
"""Test connection to Firecrawl API."""
try:
integration = create_firecrawl_integration(config)
return integration.test_connection()
except Exception as e:
return {
"success": False,
"error": str(e),
"message": "Connection test failed"
}
# Export main functions and classes
__all__ = [
"FirecrawlRAGFlowPlugin",
"get_plugin",
"get_integration",
"get_config_schema",
"get_ui_schema",
"validate_config",
"test_connection",
"RAGFlowFirecrawlIntegration",
"create_firecrawl_integration"
]

View File

@ -0,0 +1,175 @@
"""
Main integration file for Firecrawl with RAGFlow.
This file provides the interface between RAGFlow and the Firecrawl plugin.
"""
import logging
from typing import List, Dict, Any
from firecrawl_connector import FirecrawlConnector
from firecrawl_config import FirecrawlConfig
from firecrawl_processor import FirecrawlProcessor, RAGFlowDocument
from firecrawl_ui import FirecrawlUIBuilder
class RAGFlowFirecrawlIntegration:
"""Main integration class for Firecrawl with RAGFlow."""
def __init__(self, config: FirecrawlConfig):
"""Initialize the integration."""
self.config = config
self.connector = FirecrawlConnector(config)
self.processor = FirecrawlProcessor()
self.logger = logging.getLogger(__name__)
async def scrape_and_import(self, urls: List[str],
formats: List[str] = None,
extract_options: Dict[str, Any] = None) -> List[RAGFlowDocument]:
"""Scrape URLs and convert to RAGFlow documents."""
if formats is None:
formats = ["markdown", "html"]
async with self.connector:
# Scrape URLs
scraped_contents = await self.connector.batch_scrape(urls, formats)
# Process into RAGFlow documents
documents = self.processor.process_batch(scraped_contents)
return documents
async def crawl_and_import(self, start_url: str,
limit: int = 100,
scrape_options: Dict[str, Any] = None) -> List[RAGFlowDocument]:
"""Crawl a website and convert to RAGFlow documents."""
if scrape_options is None:
scrape_options = {"formats": ["markdown", "html"]}
async with self.connector:
# Start crawl job
crawl_job = await self.connector.start_crawl(start_url, limit, scrape_options)
if crawl_job.error:
raise Exception(f"Failed to start crawl: {crawl_job.error}")
# Wait for completion
completed_job = await self.connector.wait_for_crawl_completion(crawl_job.job_id)
if completed_job.error:
raise Exception(f"Crawl failed: {completed_job.error}")
# Process into RAGFlow documents
documents = self.processor.process_batch(completed_job.data or [])
return documents
def get_ui_schema(self) -> Dict[str, Any]:
"""Get UI schema for RAGFlow integration."""
return FirecrawlUIBuilder.create_ui_schema()
def validate_config(self, config_dict: Dict[str, Any]) -> Dict[str, Any]:
"""Validate configuration and return any errors."""
errors = {}
# Validate API key
api_key = config_dict.get("api_key", "")
if not api_key:
errors["api_key"] = "API key is required"
elif not api_key.startswith("fc-"):
errors["api_key"] = "API key must start with 'fc-'"
# Validate API URL
api_url = config_dict.get("api_url", "https://api.firecrawl.dev")
if not api_url.startswith("http"):
errors["api_url"] = "API URL must start with http:// or https://"
# Validate numeric fields
try:
max_retries = int(config_dict.get("max_retries", 3))
if max_retries < 1 or max_retries > 10:
errors["max_retries"] = "Max retries must be between 1 and 10"
except (ValueError, TypeError):
errors["max_retries"] = "Max retries must be a valid integer"
try:
timeout = int(config_dict.get("timeout", 30))
if timeout < 5 or timeout > 300:
errors["timeout"] = "Timeout must be between 5 and 300 seconds"
except (ValueError, TypeError):
errors["timeout"] = "Timeout must be a valid integer"
try:
rate_limit_delay = float(config_dict.get("rate_limit_delay", 1.0))
if rate_limit_delay < 0.1 or rate_limit_delay > 10.0:
errors["rate_limit_delay"] = "Rate limit delay must be between 0.1 and 10.0 seconds"
except (ValueError, TypeError):
errors["rate_limit_delay"] = "Rate limit delay must be a valid number"
return errors
def create_config(self, config_dict: Dict[str, Any]) -> FirecrawlConfig:
"""Create FirecrawlConfig from dictionary."""
return FirecrawlConfig.from_dict(config_dict)
async def test_connection(self) -> Dict[str, Any]:
"""Test the connection to Firecrawl API."""
try:
async with self.connector:
# Try to scrape a simple URL to test connection
test_url = "https://httpbin.org/json"
result = await self.connector.scrape_url(test_url, ["markdown"])
if result.error:
return {
"success": False,
"error": result.error,
"message": "Failed to connect to Firecrawl API"
}
return {
"success": True,
"message": "Successfully connected to Firecrawl API",
"test_url": test_url,
"response_time": "N/A" # Could be enhanced to measure actual response time
}
except Exception as e:
return {
"success": False,
"error": str(e),
"message": "Connection test failed"
}
def get_supported_formats(self) -> List[str]:
"""Get list of supported output formats."""
return ["markdown", "html", "links", "screenshot"]
def get_supported_scrape_types(self) -> List[str]:
"""Get list of supported scrape types."""
return ["single", "crawl", "batch"]
def get_help_text(self) -> Dict[str, str]:
"""Get help text for users."""
return FirecrawlUIBuilder.create_help_text()
def get_validation_rules(self) -> Dict[str, Any]:
"""Get validation rules for configuration."""
return FirecrawlUIBuilder.create_validation_rules()
# Factory function for creating integration instance
def create_firecrawl_integration(config_dict: Dict[str, Any]) -> RAGFlowFirecrawlIntegration:
"""Create a Firecrawl integration instance from configuration."""
config = FirecrawlConfig.from_dict(config_dict)
return RAGFlowFirecrawlIntegration(config)
# Export main classes and functions
__all__ = [
"RAGFlowFirecrawlIntegration",
"create_firecrawl_integration",
"FirecrawlConfig",
"FirecrawlConnector",
"FirecrawlProcessor",
"RAGFlowDocument"
]

View File

@ -0,0 +1,31 @@
# Firecrawl Plugin for RAGFlow - Dependencies
# Core dependencies
aiohttp>=3.8.0
asyncio-throttle>=1.0.0
# Data processing
pydantic>=2.0.0
python-dateutil>=2.8.0
# HTTP and networking
urllib3>=1.26.0
requests>=2.28.0
# Logging and monitoring
structlog>=22.0.0
# Optional: For advanced content processing
beautifulsoup4>=4.11.0
lxml>=4.9.0
html2text>=2020.1.16
# Optional: For enhanced error handling
tenacity>=8.0.0
# Development dependencies (optional)
pytest>=7.0.0
pytest-asyncio>=0.21.0
black>=22.0.0
flake8>=5.0.0
mypy>=1.0.0

View File

@ -131,6 +131,7 @@ dependencies = [
"python-calamine>=0.4.0",
"litellm>=1.74.15.post1",
"flask-mail>=0.10.0",
"lark>=1.2.2",
]
[project.optional-dependencies]

View File

@ -22,12 +22,15 @@ from docx import Document
from api.db import ParserType
from deepdoc.parser.utils import get_text
from rag.nlp import bullets_category, remove_contents_table, hierarchical_merge, \
make_colon_as_title, tokenize_chunks, docx_question_level
from rag.nlp import rag_tokenizer
from rag.nlp import bullets_category, remove_contents_table, \
make_colon_as_title, tokenize_chunks, docx_question_level, tree_merge
from rag.nlp import rag_tokenizer, Node
from deepdoc.parser import PdfParser, DocxParser, PlainParser, HtmlParser
class Docx(DocxParser):
def __init__(self):
pass
@ -55,49 +58,37 @@ class Docx(DocxParser):
return [line for line in lines if line]
def __call__(self, filename, binary=None, from_page=0, to_page=100000):
self.doc = Document(
filename) if not binary else Document(BytesIO(binary))
pn = 0
lines = []
bull = bullets_category([p.text for p in self.doc.paragraphs])
for p in self.doc.paragraphs:
if pn > to_page:
break
question_level, p_text = docx_question_level(p, bull)
if not p_text.strip("\n"):
continue
lines.append((question_level, p_text))
for run in p.runs:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
continue
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
pn += 1
visit = [False for _ in range(len(lines))]
sections = []
for s in range(len(lines)):
e = s + 1
while e < len(lines):
if lines[e][0] <= lines[s][0]:
self.doc = Document(
filename) if not binary else Document(BytesIO(binary))
pn = 0
lines = []
level_set = set()
bull = bullets_category([p.text for p in self.doc.paragraphs])
for p in self.doc.paragraphs:
if pn > to_page:
break
e += 1
if e - s == 1 and visit[s]:
continue
sec = []
next_level = lines[s][0] + 1
while not sec and next_level < 22:
for i in range(s+1, e):
if lines[i][0] != next_level:
question_level, p_text = docx_question_level(p, bull)
if not p_text.strip("\n"):
continue
lines.append((question_level, p_text))
level_set.add(question_level)
for run in p.runs:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
continue
sec.append(lines[i][1])
visit[i] = True
next_level += 1
sec.insert(0, lines[s][1])
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
pn += 1
sorted_levels = sorted(level_set)
h2_level = sorted_levels[1] if len(sorted_levels) > 1 else 1
h2_level = sorted_levels[-2] if h2_level == sorted_levels[-1] and len(sorted_levels) > 2 else h2_level
root = Node(level=0, depth=h2_level, texts=[])
root.build_tree(lines)
return [("\n").join(element) for element in root.get_tree() if element]
sections.append("\n".join(sec))
return [s for s in sections if s]
def __str__(self) -> str:
return f'''
@ -163,7 +154,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
chunks = Docx()(filename, binary)
callback(0.7, "Finish parsing.")
return tokenize_chunks(chunks, doc, eng, None)
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
if parser_config.get("layout_recognize", "DeepDOC") == "Plain Text":
@ -172,7 +163,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
from_page=from_page, to_page=to_page, callback=callback)[0]:
sections.append(txt + poss)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
elif re.search(r"\.(txt|md|markdown|mdx)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = get_text(filename, binary)
sections = txt.split("\n")
@ -203,13 +194,16 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
make_colon_as_title(sections)
bull = bullets_category(sections)
chunks = hierarchical_merge(bull, sections, 5)
if not chunks:
res = tree_merge(bull, sections, 2)
if not res:
callback(0.99, "No chunk parsed out.")
return tokenize_chunks(["\n".join(ck)
for ck in chunks], doc, eng, pdf_parser)
return tokenize_chunks(res, doc, eng, pdf_parser)
# chunks = hierarchical_merge(bull, sections, 5)
# return tokenize_chunks(["\n".join(ck)for ck in chunks], doc, eng, pdf_parser)
if __name__ == "__main__":
import sys

View File

@ -41,37 +41,43 @@ class Docx(DocxParser):
pass
def get_picture(self, document, paragraph):
img = paragraph._element.xpath('.//pic:pic')
if not img:
return None
img = img[0]
embed = img.xpath('.//a:blip/@r:embed')
if not embed:
return None
embed = embed[0]
try:
related_part = document.part.related_parts[embed]
image_blob = related_part.image.blob
except UnrecognizedImageError:
logging.info("Unrecognized image format. Skipping image.")
return None
except UnexpectedEndOfFileError:
logging.info("EOF was unexpectedly encountered while reading an image stream. Skipping image.")
return None
except InvalidImageStreamError:
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
return None
except UnicodeDecodeError:
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
return None
except Exception:
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
return None
try:
image = Image.open(BytesIO(image_blob)).convert('RGB')
return image
except Exception:
imgs = paragraph._element.xpath('.//pic:pic')
if not imgs:
return None
res_img = None
for img in imgs:
embed = img.xpath('.//a:blip/@r:embed')
if not embed:
continue
embed = embed[0]
try:
related_part = document.part.related_parts[embed]
image_blob = related_part.image.blob
except UnrecognizedImageError:
logging.info("Unrecognized image format. Skipping image.")
continue
except UnexpectedEndOfFileError:
logging.info("EOF was unexpectedly encountered while reading an image stream. Skipping image.")
continue
except InvalidImageStreamError:
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
continue
except UnicodeDecodeError:
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
continue
except Exception:
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
continue
try:
image = Image.open(BytesIO(image_blob)).convert('RGB')
if res_img is None:
res_img = image
else:
res_img = concat_img(res_img, image)
except Exception:
continue
return res_img
def __clean(self, line):
line = re.sub(r"\u3000", " ", line).strip()
@ -501,16 +507,29 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
markdown_parser = Markdown(int(parser_config.get("chunk_token_num", 128)))
sections, tables = markdown_parser(filename, binary, separate_tables=False)
# Process images for each section
section_images = []
for section_text, _ in sections:
images = markdown_parser.get_pictures(section_text) if section_text else None
if images:
# If multiple images found, combine them using concat_img
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
section_images.append(combined_image)
else:
section_images.append(None)
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
callback(0.2, "Visual model detected. Attempting to enhance figure extraction...")
except Exception:
vision_model = None
if vision_model:
# Process images for each section
section_images = []
for idx, (section_text, _) in enumerate(sections):
images = markdown_parser.get_pictures(section_text) if section_text else None
if images:
# If multiple images found, combine them using concat_img
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
section_images.append(combined_image)
markdown_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data= [((combined_image, ["markdown image"]), [(0, 0, 0, 0, 0)])], **kwargs)
boosted_figures = markdown_vision_parser(callback=callback)
sections[idx] = (section_text + "\n\n" + "\n\n".join([fig[0][1] for fig in boosted_figures]), sections[idx][1])
else:
section_images.append(None)
else:
logging.warning("No visual model detected. Skipping figure parsing enhancement.")
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")

View File

@ -138,6 +138,8 @@ def label_question(question, kbs):
else:
all_tags = json.loads(all_tags)
tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids)
if not tag_kbs:
return tags
tags = settings.retrievaler.tag_query(question,
list(set([kb.tenant_id for kb in tag_kbs])),
tag_kb_ids,

View File

@ -73,11 +73,13 @@ class Chunker(ProcessBase):
def _general(self, from_upstream: ChunkerFromUpstream):
self.callback(random.randint(1, 5) / 100.0, "Start to chunk via `General`.")
if from_upstream.output_format in ["markdown", "text"]:
if from_upstream.output_format in ["markdown", "text", "html"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
else: # == "text"
elif from_upstream.output_format == "text":
payload = from_upstream.text_result
else: # == "html"
payload = from_upstream.html_result
if not payload:
payload = ""
@ -90,6 +92,7 @@ class Chunker(ProcessBase):
)
return [{"text": c} for c in cks]
# json
sections, section_images = [], []
for o in from_upstream.json_result or []:
sections.append((o.get("text", ""), o.get("position_tag", "")))

View File

@ -29,7 +29,7 @@ class ChunkerFromUpstream(BaseModel):
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: str | None = Field(default=None, alias="html")
html_result: list[str] | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")

View File

@ -12,9 +12,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import logging
import random
import trio
import numpy as np
from PIL import Image
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
@ -29,35 +33,97 @@ class ParserParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.allowed_output_format = {
"pdf": ["json", "markdown"],
"excel": ["json", "markdown", "html"],
"pdf": [
"json",
"markdown",
],
"spreadsheet": [
"json",
"markdown",
"html",
],
"word": [
"json",
],
"ppt": [],
"image": [],
"image": [
"text"
],
"email": [],
"text": [],
"audio": [],
"text": [
"text",
"json"
],
"audio": [
"json"
],
"video": [],
}
self.setups = {
"pdf": {
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
"vlm_name": "",
"llm_id": "",
"lang": "Chinese",
"suffix": ["pdf"],
"suffix": [
"pdf",
],
"output_format": "json",
},
"excel": {
"spreadsheet": {
"output_format": "html",
"suffix": ["xls", "xlsx", "csv"],
"suffix": [
"xls",
"xlsx",
"csv",
],
},
"word": {
"suffix": [
"doc",
"docx",
],
"output_format": "json",
},
"markdown": {
"suffix": ["md", "markdown"],
"output_format": "json",
},
"ppt": {},
"image": {
"parse_method": "ocr",
"parse_method": ["ocr", "vlm"],
"llm_id": "",
"lang": "Chinese",
"suffix": ["jpg", "jpeg", "png", "gif"],
"output_format": "json",
},
"email": {},
"text": {},
"audio": {},
"text": {
"suffix": [
"txt"
],
"output_format": "json",
},
"audio": {
"suffix":[
"da",
"wave",
"wav",
"mp3",
"aac",
"flac",
"ogg",
"aiff",
"au",
"midi",
"wma",
"realaudio",
"vqf",
"oggvorbis",
"ape"
],
"output_format": "json",
},
"video": {},
}
@ -68,7 +134,7 @@ class ParserParam(ProcessParamBase):
self.check_valid_value(pdf_parse_method.lower(), "Parse method abnormal.", ["deepdoc", "plain_text", "vlm"])
if pdf_parse_method not in ["deepdoc", "plain_text"]:
self.check_empty(pdf_config.get("vlm_name"), "VLM")
self.check_empty(pdf_config.get("llm_id"), "VLM")
pdf_language = pdf_config.get("lang", "")
self.check_empty(pdf_language, "Language")
@ -76,15 +142,36 @@ class ParserParam(ProcessParamBase):
pdf_output_format = pdf_config.get("output_format", "")
self.check_valid_value(pdf_output_format, "PDF output format abnormal.", self.allowed_output_format["pdf"])
excel_config = self.setups.get("excel", "")
if excel_config:
excel_output_format = excel_config.get("output_format", "")
self.check_valid_value(excel_output_format, "Excel output format abnormal.", self.allowed_output_format["excel"])
spreadsheet_config = self.setups.get("spreadsheet", "")
if spreadsheet_config:
spreadsheet_output_format = spreadsheet_config.get("output_format", "")
self.check_valid_value(spreadsheet_output_format, "Spreadsheet output format abnormal.", self.allowed_output_format["spreadsheet"])
doc_config = self.setups.get("doc", "")
if doc_config:
doc_output_format = doc_config.get("output_format", "")
self.check_valid_value(doc_output_format, "Word processer document output format abnormal.", self.allowed_output_format["doc"])
image_config = self.setups.get("image", "")
if image_config:
image_parse_method = image_config.get("parse_method", "")
self.check_valid_value(image_parse_method.lower(), "Parse method abnormal.", ["ocr"])
self.check_valid_value(image_parse_method.lower(), "Parse method abnormal.", ["ocr", "vlm"])
if image_parse_method not in ["ocr"]:
self.check_empty(image_config.get("llm_id"), "VLM")
image_language = image_config.get("lang", "")
self.check_empty(image_language, "Language")
text_config = self.setups.get("text", "")
if text_config:
text_output_format = text_config.get("output_format", "")
self.check_valid_value(text_output_format, "Text output format abnormal.", self.allowed_output_format["text"])
audio_config = self.setups.get("audio", "")
if audio_config:
self.check_empty(audio_config.get("llm_id"), "VLM")
audio_language = audio_config.get("lang", "")
self.check_empty(audio_language, "Language")
def get_input_form(self) -> dict[str, dict]:
return {}
@ -93,23 +180,27 @@ class ParserParam(ProcessParamBase):
class Parser(ProcessBase):
component_name = "Parser"
def _pdf(self, blob):
def _pdf(self, from_upstream: ParserFromUpstream):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PDF.")
blob = from_upstream.blob
conf = self._param.setups["pdf"]
self.set_output("output_format", conf["output_format"])
if conf.get("parse_method") == "deepdoc":
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
elif conf.get("parse_method") == "plain_text":
lines, _ = PlainParser()(blob)
bboxes = [{"text": t} for t, _ in lines]
else:
assert conf.get("vlm_name")
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("vlm_name"), lang=self._param.setups["pdf"].get("lang"))
assert conf.get("llm_id")
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("llm_id"), lang=self._param.setups["pdf"].get("lang"))
lines, _ = VisionParser(vision_model=vision_model)(blob, callback=self.callback)
bboxes = []
for t, poss in lines:
pn, x0, x1, top, bott = poss.split(" ")
bboxes.append({"page_number": int(pn), "x0": float(x0), "x1": float(x1), "top": float(top), "bottom": float(bott), "text": t})
if conf.get("output_format") == "json":
self.set_output("json", bboxes)
if conf.get("output_format") == "markdown":
@ -123,23 +214,165 @@ class Parser(ProcessBase):
mkdn += b.get("text", "") + "\n"
self.set_output("markdown", mkdn)
def _excel(self, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Excel.")
conf = self._param.setups["excel"]
def _spreadsheet(self, from_upstream: ParserFromUpstream):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Spreadsheet.")
blob = from_upstream.blob
conf = self._param.setups["spreadsheet"]
self.set_output("output_format", conf["output_format"])
excel_parser = ExcelParser()
print("spreadsheet {conf=}", flush=True)
spreadsheet_parser = ExcelParser()
if conf.get("output_format") == "html":
html = excel_parser.html(blob, 1000000000)
html = spreadsheet_parser.html(blob, 1000000000)
self.set_output("html", html)
elif conf.get("output_format") == "json":
self.set_output("json", [{"text": txt} for txt in excel_parser(blob) if txt])
self.set_output("json", [{"text": txt} for txt in spreadsheet_parser(blob) if txt])
elif conf.get("output_format") == "markdown":
self.set_output("markdown", excel_parser.markdown(blob))
self.set_output("markdown", spreadsheet_parser.markdown(blob))
def _word(self, from_upstream: ParserFromUpstream):
from tika import parser as word_parser
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
blob = from_upstream.blob
name = from_upstream.name
conf = self._param.setups["word"]
self.set_output("output_format", conf["output_format"])
print("word {conf=}", flush=True)
doc_parsed = word_parser.from_buffer(blob)
sections = []
if doc_parsed.get("content"):
sections = doc_parsed["content"].split("\n")
sections = [{"text": section} for section in sections if section]
else:
logging.warning(f"tika.parser got empty content from {name}.")
# json
assert conf.get("output_format") == "json", "have to be json for doc"
if conf.get("output_format") == "json":
self.set_output("json", sections)
def _markdown(self, from_upstream: ParserFromUpstream):
from functools import reduce
from rag.app.naive import Markdown as naive_markdown_parser
from rag.nlp import concat_img
self.callback(random.randint(1, 5) / 100.0, "Start to work on a markdown.")
blob = from_upstream.blob
name = from_upstream.name
conf = self._param.setups["markdown"]
self.set_output("output_format", conf["output_format"])
markdown_parser = naive_markdown_parser()
sections, tables = markdown_parser(name, blob, separate_tables=False)
# json
assert conf.get("output_format") == "json", "have to be json for doc"
if conf.get("output_format") == "json":
json_results = []
for section_text, _ in sections:
json_result = {
"text": section_text,
}
images = markdown_parser.get_pictures(section_text) if section_text else None
if images:
# If multiple images found, combine them using concat_img
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
json_result["image"] = combined_image
json_results.append(json_result)
self.set_output("json", json_results)
def _text(self, from_upstream: ParserFromUpstream):
from deepdoc.parser.utils import get_text
self.callback(random.randint(1, 5) / 100.0, "Start to work on a text.")
blob = from_upstream.blob
name = from_upstream.name
conf = self._param.setups["text"]
self.set_output("output_format", conf["output_format"])
# parse binary to text
text_content = get_text(name, binary=blob)
if conf.get("output_format") == "json":
result = [{"text": text_content}]
self.set_output("json", result)
else:
result = text_content
self.set_output("text", result)
def _image(self, from_upstream: ParserFromUpstream):
from deepdoc.vision import OCR
self.callback(random.randint(1, 5) / 100.0, "Start to work on an image.")
blob = from_upstream.blob
conf = self._param.setups["image"]
self.set_output("output_format", conf["output_format"])
img = Image.open(io.BytesIO(blob)).convert("RGB")
lang = conf["lang"]
if conf["parse_method"] == "ocr":
# use ocr, recognize chars only
ocr = OCR()
bxs = ocr(np.array(img)) # return boxes and recognize result
txt = "\n".join([t[0] for _, t in bxs if t[0]])
else:
# use VLM to describe the picture
cv_model = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT, llm_name=conf["llm_id"],lang=lang)
img_binary = io.BytesIO()
img.save(img_binary, format="JPEG")
img_binary.seek(0)
txt = cv_model.describe(img_binary.read())
self.set_output("text", txt)
def _audio(self, from_upstream: ParserFromUpstream):
import os
import tempfile
self.callback(random.randint(1, 5) / 100.0, "Start to work on an audio.")
blob = from_upstream.blob
name = from_upstream.name
conf = self._param.setups["audio"]
self.set_output("output_format", conf["output_format"])
lang = conf["lang"]
_, ext = os.path.splitext(name)
tmp_path = ""
with tempfile.NamedTemporaryFile(suffix=ext) as tmpf:
tmpf.write(blob)
tmpf.flush()
tmp_path = os.path.abspath(tmpf.name)
seq2txt_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.SPEECH2TEXT, lang=lang)
txt = seq2txt_mdl.transcription(tmp_path)
self.set_output("text", txt)
async def _invoke(self, **kwargs):
function_map = {
"pdf": self._pdf,
"excel": self._excel,
"markdown": self._markdown,
"spreadsheet": self._spreadsheet,
"word": self._word,
"text": self._text,
"image": self._image,
"audio": self._audio,
}
try:
from_upstream = ParserFromUpstream.model_validate(kwargs)
@ -150,5 +383,5 @@ class Parser(ProcessBase):
for p_type, conf in self._param.setups.items():
if from_upstream.name.split(".")[-1].lower() not in conf.get("suffix", []):
continue
await trio.to_thread.run_sync(function_map[p_type], from_upstream.blob)
await trio.to_thread.run_sync(function_map[p_type], from_upstream)
break

View File

@ -23,16 +23,68 @@
],
"output_format": "json"
},
"excel": {
"output_format": "html",
"spreadsheet": {
"suffix": [
"xls",
"xlsx",
"csv"
]
],
"output_format": "html"
},
"word": {
"suffix": [
"doc",
"docx"
],
"output_format": "json"
},
"markdown": {
"suffix": [
"md",
"markdown"
],
"output_format": "json"
},
"text": {
"suffix": ["txt"],
"output_format": "json"
},
"image": {
"parse_method": "vlm",
"llm_id":"glm-4.5v",
"lang": "Chinese",
"suffix": [
"jpg",
"jpeg",
"png",
"gif"
],
"output_format": "text"
},
"audio": {
"suffix": [
"da",
"wave",
"wav",
"mp3",
"aac",
"flac",
"ogg",
"aiff",
"au",
"midi",
"wma",
"realaudio",
"vqf",
"oggvorbis",
"ape"
],
"lang": "Chinese",
"llm_id": "SenseVoiceSmall",
"output_format": "json"
}
}
}
}
},
"downstream": ["Chunker:0"],
"upstream": ["Begin"]

View File

@ -31,7 +31,7 @@ class TokenizerFromUpstream(BaseModel):
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: str | None = Field(default=None, alias="html")
html_result: list[str] | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")

View File

@ -117,11 +117,13 @@ class Tokenizer(ProcessBase):
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99:
self.callback(i * 1.0 / len(chunks) / parts)
elif from_upstream.output_format in ["markdown", "text"]:
elif from_upstream.output_format in ["markdown", "text", "html"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
else: # == "text"
elif from_upstream.output_format == "text":
payload = from_upstream.text_result
else: # == "html"
payload = from_upstream.html_result
if not payload:
return ""

View File

@ -37,6 +37,18 @@ class SupportedLiteLLMProvider(StrEnum):
TogetherAI = "TogetherAI"
Anthropic = "Anthropic"
Ollama = "Ollama"
Meituan = "Meituan"
CometAPI = "CometAPI"
SILICONFLOW = "SILICONFLOW"
OpenRouter = "OpenRouter"
StepFun = "StepFun"
PPIO = "PPIO"
PerfXCloud = "PerfXCloud"
Upstage = "Upstage"
NovitaAI = "NovitaAI"
Lingyi_AI = "01.AI"
GiteeAI = "GiteeAI"
AI_302 = "302.AI"
FACTORY_DEFAULT_BASE_URL = {
@ -44,6 +56,19 @@ FACTORY_DEFAULT_BASE_URL = {
SupportedLiteLLMProvider.Dashscope: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Moonshot: "https://api.moonshot.cn/v1",
SupportedLiteLLMProvider.Ollama: "",
SupportedLiteLLMProvider.Meituan: "https://api.longcat.chat/openai",
SupportedLiteLLMProvider.CometAPI: "https://api.cometapi.com/v1",
SupportedLiteLLMProvider.SILICONFLOW: "https://api.siliconflow.cn/v1",
SupportedLiteLLMProvider.OpenRouter: "https://openrouter.ai/api/v1",
SupportedLiteLLMProvider.StepFun: "https://api.stepfun.com/v1",
SupportedLiteLLMProvider.PPIO: "https://api.ppinfra.com/v3/openai",
SupportedLiteLLMProvider.PerfXCloud: "https://cloud.perfxlab.cn/v1",
SupportedLiteLLMProvider.Upstage: "https://api.upstage.ai/v1/solar",
SupportedLiteLLMProvider.NovitaAI: "https://api.novita.ai/v3/openai",
SupportedLiteLLMProvider.Lingyi_AI: "https://api.lingyiwanwu.com/v1",
SupportedLiteLLMProvider.GiteeAI: "https://ai.gitee.com/v1/",
SupportedLiteLLMProvider.AI_302: "https://api.302.ai/v1",
SupportedLiteLLMProvider.Anthropic: "https://api.anthropic.com/",
}
@ -62,6 +87,18 @@ LITELLM_PROVIDER_PREFIX = {
SupportedLiteLLMProvider.TogetherAI: "together_ai/",
SupportedLiteLLMProvider.Anthropic: "", # don't need a prefix
SupportedLiteLLMProvider.Ollama: "ollama_chat/",
SupportedLiteLLMProvider.Meituan: "openai/",
SupportedLiteLLMProvider.CometAPI: "openai/",
SupportedLiteLLMProvider.SILICONFLOW: "openai/",
SupportedLiteLLMProvider.OpenRouter: "openai/",
SupportedLiteLLMProvider.StepFun: "openai/",
SupportedLiteLLMProvider.PPIO: "openai/",
SupportedLiteLLMProvider.PerfXCloud: "openai/",
SupportedLiteLLMProvider.Upstage: "openai/",
SupportedLiteLLMProvider.NovitaAI: "openai/",
SupportedLiteLLMProvider.Lingyi_AI: "openai/",
SupportedLiteLLMProvider.GiteeAI: "openai/",
SupportedLiteLLMProvider.AI_302: "openai/",
}
ChatModel = globals().get("ChatModel", {})

View File

@ -36,7 +36,7 @@ from zhipuai import ZhipuAI
from rag.llm import FACTORY_DEFAULT_BASE_URL, LITELLM_PROVIDER_PREFIX, SupportedLiteLLMProvider
from rag.nlp import is_chinese, is_english
from rag.utils import num_tokens_from_string
from rag.utils import num_tokens_from_string, total_token_count_from_response
# Error message constants
@ -445,15 +445,7 @@ class Base(ABC):
yield total_tokens
def total_token_count(self, resp):
try:
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0
return total_token_count_from_response(resp)
def _calculate_dynamic_ctx(self, history):
"""Calculate dynamic context window size"""
@ -895,25 +887,6 @@ class MistralChat(Base):
yield total_tokens
## openrouter
class OpenRouterChat(Base):
_FACTORY_NAME = "OpenRouter"
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1", **kwargs):
if not base_url:
base_url = "https://openrouter.ai/api/v1"
super().__init__(key, model_name, base_url, **kwargs)
class StepFunChat(Base):
_FACTORY_NAME = "StepFun"
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1", **kwargs):
if not base_url:
base_url = "https://api.stepfun.com/v1"
super().__init__(key, model_name, base_url, **kwargs)
class LmStudioChat(Base):
_FACTORY_NAME = "LM-Studio"
@ -936,15 +909,6 @@ class OpenAI_APIChat(Base):
super().__init__(key, model_name, base_url, **kwargs)
class PPIOChat(Base):
_FACTORY_NAME = "PPIO"
def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai", **kwargs):
if not base_url:
base_url = "https://api.ppinfra.com/v3/openai"
super().__init__(key, model_name, base_url, **kwargs)
class LeptonAIChat(Base):
_FACTORY_NAME = "LeptonAI"
@ -954,60 +918,6 @@ class LeptonAIChat(Base):
super().__init__(key, model_name, base_url, **kwargs)
class PerfXCloudChat(Base):
_FACTORY_NAME = "PerfXCloud"
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1", **kwargs):
if not base_url:
base_url = "https://cloud.perfxlab.cn/v1"
super().__init__(key, model_name, base_url, **kwargs)
class UpstageChat(Base):
_FACTORY_NAME = "Upstage"
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar", **kwargs):
if not base_url:
base_url = "https://api.upstage.ai/v1/solar"
super().__init__(key, model_name, base_url, **kwargs)
class NovitaAIChat(Base):
_FACTORY_NAME = "NovitaAI"
def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai", **kwargs):
if not base_url:
base_url = "https://api.novita.ai/v3/openai"
super().__init__(key, model_name, base_url, **kwargs)
class SILICONFLOWChat(Base):
_FACTORY_NAME = "SILICONFLOW"
def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1", **kwargs):
if not base_url:
base_url = "https://api.siliconflow.cn/v1"
super().__init__(key, model_name, base_url, **kwargs)
class YiChat(Base):
_FACTORY_NAME = "01.AI"
def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1", **kwargs):
if not base_url:
base_url = "https://api.lingyiwanwu.com/v1"
super().__init__(key, model_name, base_url, **kwargs)
class GiteeChat(Base):
_FACTORY_NAME = "GiteeAI"
def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/", **kwargs):
if not base_url:
base_url = "https://ai.gitee.com/v1/"
super().__init__(key, model_name, base_url, **kwargs)
class ReplicateChat(Base):
_FACTORY_NAME = "Replicate"
@ -1347,26 +1257,46 @@ class GPUStackChat(Base):
super().__init__(key, model_name, base_url, **kwargs)
class Ai302Chat(Base):
_FACTORY_NAME = "302.AI"
class TokenPonyChat(Base):
_FACTORY_NAME = "TokenPony"
def __init__(self, key, model_name, base_url="https://api.302.ai/v1", **kwargs):
def __init__(self, key, model_name, base_url="https://ragflow.vip-api.tokenpony.cn/v1", **kwargs):
if not base_url:
base_url = "https://api.302.ai/v1"
super().__init__(key, model_name, base_url, **kwargs)
class MeituanChat(Base):
_FACTORY_NAME = "Meituan"
def __init__(self, key, model_name, base_url="https://api.longcat.chat/openai", **kwargs):
if not base_url:
base_url = "https://api.longcat.chat/openai"
super().__init__(key, model_name, base_url, **kwargs)
base_url = "https://ragflow.vip-api.tokenpony.cn/v1"
class LiteLLMBase(ABC):
_FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic", "Ollama"]
_FACTORY_NAME = [
"Tongyi-Qianwen",
"Bedrock",
"Moonshot",
"xAI",
"DeepInfra",
"Groq",
"Cohere",
"Gemini",
"DeepSeek",
"NVIDIA",
"TogetherAI",
"Anthropic",
"Ollama",
"Meituan",
"CometAPI",
"SILICONFLOW",
"OpenRouter",
"StepFun",
"PPIO",
"PerfXCloud",
"Upstage",
"NovitaAI",
"01.AI",
"GiteeAI",
"302.AI",
]
import litellm
litellm._turn_on_debug()
def __init__(self, key, model_name, base_url=None, **kwargs):
self.timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
@ -1374,7 +1304,7 @@ class LiteLLMBase(ABC):
self.prefix = LITELLM_PROVIDER_PREFIX.get(self.provider, "")
self.model_name = f"{self.prefix}{model_name}"
self.api_key = key
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip('/')
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip("/")
# Configure retry parameters
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))

View File

@ -124,17 +124,19 @@ class Base(ABC):
mime = "image/jpeg"
b64 = base64.b64encode(data).decode("utf-8")
return f"data:{mime};base64,{b64}"
buffered = BytesIO()
fmt = "JPEG"
try:
image.save(buffered, format="JPEG")
except Exception:
buffered = BytesIO() # reset buffer before saving PNG
image.save(buffered, format="PNG")
fmt = "PNG"
data = buffered.getvalue()
b64 = base64.b64encode(data).decode("utf-8")
mime = f"image/{fmt.lower()}"
with BytesIO() as buffered:
fmt = "JPEG"
try:
image.save(buffered, format="JPEG")
except Exception:
# reset buffer before saving PNG
buffered.seek(0)
buffered.truncate()
image.save(buffered, format="PNG")
fmt = "PNG"
data = buffered.getvalue()
b64 = base64.b64encode(data).decode("utf-8")
mime = f"image/{fmt.lower()}"
return f"data:{mime};base64,{b64}"
def prompt(self, b64):
@ -519,24 +521,24 @@ class GeminiCV(Base):
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
)
b64 = self.image2base64(image)
img = open(BytesIO(base64.b64decode(b64)))
input = [prompt, img]
res = self.model.generate_content(input)
img.close()
return res.text, res.usage_metadata.total_token_count
with BytesIO(base64.b64decode(b64)) as bio:
img = open(bio)
input = [prompt, img]
res = self.model.generate_content(input)
img.close()
return res.text, res.usage_metadata.total_token_count
def describe_with_prompt(self, image, prompt=None):
from PIL.Image import open
b64 = self.image2base64(image)
vision_prompt = prompt if prompt else vision_llm_describe_prompt()
img = open(BytesIO(base64.b64decode(b64)))
input = [vision_prompt, img]
res = self.model.generate_content(
input,
)
img.close()
return res.text, res.usage_metadata.total_token_count
with BytesIO(base64.b64decode(b64)) as bio:
img = open(bio)
input = [vision_prompt, img]
res = self.model.generate_content(input)
img.close()
return res.text, res.usage_metadata.total_token_count
def chat(self, system, history, gen_conf, images=[]):
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))

View File

@ -33,7 +33,7 @@ from zhipuai import ZhipuAI
from api import settings
from api.utils.file_utils import get_home_cache_dir
from api.utils.log_utils import log_exception
from rag.utils import num_tokens_from_string, truncate
from rag.utils import num_tokens_from_string, truncate, total_token_count_from_response
class Base(ABC):
@ -52,15 +52,7 @@ class Base(ABC):
raise NotImplementedError("Please implement encode method!")
def total_token_count(self, resp):
try:
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0
return total_token_count_from_response(resp)
class DefaultEmbedding(Base):
@ -86,9 +78,10 @@ class DefaultEmbedding(Base):
with DefaultEmbedding._model_lock:
import torch
from FlagEmbedding import FlagModel
if "CUDA_VISIBLE_DEVICES" in os.environ:
input_cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"]
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
try:
@ -472,6 +465,7 @@ class MistralEmbed(Base):
def encode(self, texts: list):
import time
import random
texts = [truncate(t, 8196) for t in texts]
batch_size = 16
ress = []
@ -495,6 +489,7 @@ class MistralEmbed(Base):
def encode_queries(self, text):
import time
import random
retry_max = 5
while retry_max > 0:
try:
@ -751,6 +746,12 @@ class SILICONFLOWEmbed(Base):
token_count = 0
for i in range(0, len(texts), batch_size):
texts_batch = texts[i : i + batch_size]
if self.model_name in ["BAAI/bge-large-zh-v1.5", "BAAI/bge-large-en-v1.5"]:
# limit 512, 340 is almost safe
texts_batch = [" " if not text.strip() else truncate(text, 340) for text in texts_batch]
else:
texts_batch = [" " if not text.strip() else text for text in texts_batch]
payload = {
"model": self.model_name,
"input": texts_batch,
@ -935,7 +936,8 @@ class GiteeEmbed(SILICONFLOWEmbed):
if not base_url:
base_url = "https://ai.gitee.com/v1/embeddings"
super().__init__(key, model_name, base_url)
class DeepInfraEmbed(OpenAIEmbed):
_FACTORY_NAME = "DeepInfra"
@ -951,4 +953,13 @@ class Ai302Embed(Base):
def __init__(self, key, model_name, base_url="https://api.302.ai/v1/embeddings"):
if not base_url:
base_url = "https://api.302.ai/v1/embeddings"
super().__init__(key, model_name, base_url)
super().__init__(key, model_name, base_url)
class CometEmbed(OpenAIEmbed):
_FACTORY_NAME = "CometAPI"
def __init__(self, key, model_name, base_url="https://api.cometapi.com/v1"):
if not base_url:
base_url = "https://api.cometapi.com/v1"
super().__init__(key, model_name, base_url)

View File

@ -30,7 +30,7 @@ from yarl import URL
from api import settings
from api.utils.file_utils import get_home_cache_dir
from api.utils.log_utils import log_exception
from rag.utils import num_tokens_from_string, truncate
from rag.utils import num_tokens_from_string, truncate, total_token_count_from_response
class Base(ABC):
def __init__(self, key, model_name, **kwargs):
@ -44,18 +44,7 @@ class Base(ABC):
raise NotImplementedError("Please implement encode method!")
def total_token_count(self, resp):
if hasattr(resp, "usage") and hasattr(resp.usage, "total_tokens"):
try:
return resp.usage.total_tokens
except Exception:
pass
if 'usage' in resp and 'total_tokens' in resp['usage']:
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0
return total_token_count_from_response(resp)
class DefaultRerank(Base):
@ -365,7 +354,7 @@ class OpenAI_APIRerank(Base):
max_rank = np.max(rank)
# Avoid division by zero if all ranks are identical
if np.isclose(min_rank, max_rank, atol=1e-3):
if not np.isclose(min_rank, max_rank, atol=1e-3):
rank = (rank - min_rank) / (max_rank - min_rank)
else:
rank = np.zeros_like(rank)

View File

@ -218,7 +218,7 @@ class GPUStackSeq2txt(Base):
class GiteeSeq2txt(Base):
_FACTORY_NAME = "GiteeAI"
def __init__(self, key, model_name="whisper-1", base_url="https://ai.gitee.com/v1/"):
def __init__(self, key, model_name="whisper-1", base_url="https://ai.gitee.com/v1/", **kwargs):
if not base_url:
base_url = "https://ai.gitee.com/v1/"
self.client = OpenAI(api_key=key, base_url=base_url)
@ -234,3 +234,13 @@ class DeepInfraSeq2txt(Base):
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
class CometSeq2txt(Base):
_FACTORY_NAME = "CometAPI"
def __init__(self, key, model_name="whisper-1", base_url="https://api.cometapi.com/v1", **kwargs):
if not base_url:
base_url = "https://api.cometapi.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name

View File

@ -394,3 +394,11 @@ class DeepInfraTTS(OpenAITTS):
if not base_url:
base_url = "https://api.deepinfra.com/v1/openai"
super().__init__(key, model_name, base_url, **kwargs)
class CometAPITTS(OpenAITTS):
_FACTORY_NAME = "CometAPI"
def __init__(self, key, model_name, base_url="https://api.cometapi.com/v1", **kwargs):
if not base_url:
base_url = "https://api.cometapi.com/v1"
super().__init__(key, model_name, base_url, **kwargs)

View File

@ -189,6 +189,13 @@ BULLET_PATTERN = [[
r"Chapter (I+V?|VI*|XI|IX|X)",
r"Section [0-9]+",
r"Article [0-9]+"
], [
r"^#[^#]",
r"^##[^#]",
r"^###.*",
r"^####.*",
r"^#####.*",
r"^######.*",
]
]
@ -427,8 +434,58 @@ def not_title(txt):
return True
return re.search(r"[,;,。;!!]", txt)
def tree_merge(bull, sections, depth):
if not sections or bull < 0:
return sections
if isinstance(sections[0], type("")):
sections = [(s, "") for s in sections]
# filter out position information in pdf sections
sections = [(t, o) for t, o in sections if
t and len(t.split("@")[0].strip()) > 1 and not re.match(r"[0-9]+$", t.split("@")[0].strip())]
def get_level(bull, section):
text, layout = section
text = re.sub(r"\u3000", " ", text).strip()
for i, title in enumerate(BULLET_PATTERN[bull]):
if re.match(title, text.strip()):
return i+1, text
else:
if re.search(r"(title|head)", layout) and not not_title(text):
return len(BULLET_PATTERN[bull])+1, text
else:
return len(BULLET_PATTERN[bull])+2, text
level_set = set()
lines = []
for section in sections:
level, text = get_level(bull, section)
if not text.strip("\n"):
continue
lines.append((level, text))
level_set.add(level)
sorted_levels = sorted(list(level_set))
if depth <= len(sorted_levels):
target_level = sorted_levels[depth - 1]
else:
target_level = sorted_levels[-1]
if target_level == len(BULLET_PATTERN[bull]) + 2:
target_level = sorted_levels[-2] if len(sorted_levels) > 1 else sorted_levels[0]
root = Node(level=0, depth=target_level, texts=[])
root.build_tree(lines)
return [("\n").join(element) for element in root.get_tree() if element]
def hierarchical_merge(bull, sections, depth):
if not sections or bull < 0:
return []
if isinstance(sections[0], type("")):
@ -518,7 +575,7 @@ def hierarchical_merge(bull, sections, depth):
return res
def naive_merge(sections, chunk_token_num=128, delimiter="\n。;!?", overlapped_percent=0):
def naive_merge(sections: str | list, chunk_token_num=128, delimiter="\n。;!?", overlapped_percent=0):
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
if not sections:
return []
@ -534,7 +591,7 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。", overl
pos = ""
if tnum < 8:
pos = ""
# Ensure that the length of the merged chunk does not exceed chunk_token_num
# Ensure that the length of the merged chunk does not exceed chunk_token_num
if cks[-1] == "" or tk_nums[-1] > chunk_token_num * (100 - overlapped_percent)/100.:
if cks:
overlapped = RAGFlowPdfParser.remove_tag(cks[-1])
@ -628,7 +685,7 @@ def docx_question_level(p, bull=-1):
for j, title in enumerate(BULLET_PATTERN[bull]):
if re.match(title, txt):
return j + 1, txt
return len(BULLET_PATTERN[bull]), txt
return len(BULLET_PATTERN[bull])+1, txt
def concat_img(img1, img2):
@ -638,10 +695,10 @@ def concat_img(img1, img2):
return img2
if not img1 and not img2:
return None
if img1 is img2:
return img1
if isinstance(img1, Image.Image) and isinstance(img2, Image.Image):
pixel_data1 = img1.tobytes()
pixel_data2 = img2.tobytes()
@ -731,3 +788,68 @@ def get_delimiters(delimiters: str):
dels_pattern = "|".join(dels)
return dels_pattern
class Node:
def __init__(self, level, depth=-1, texts=None):
self.level = level
self.depth = depth
self.texts = texts if texts is not None else [] # 存放内容
self.children = [] # 子节点
def add_child(self, child_node):
self.children.append(child_node)
def get_children(self):
return self.children
def get_level(self):
return self.level
def get_texts(self):
return self.texts
def set_texts(self, texts):
self.texts = texts
def add_text(self, text):
self.texts.append(text)
def clear_text(self):
self.texts = []
def __repr__(self):
return f"Node(level={self.level}, texts={self.texts}, children={len(self.children)})"
def build_tree(self, lines):
stack = [self]
for line in lines:
level, text = line
node = Node(level=level, texts=[text])
if level <= self.depth or self.depth == -1:
while stack and level <= stack[-1].get_level():
stack.pop()
stack[-1].add_child(node)
stack.append(node)
else:
stack[-1].add_text(text)
return self
def get_tree(self):
tree_list = []
self._dfs(self, tree_list, 0, [])
return tree_list
def _dfs(self, node, tree_list, current_depth, titles):
if node.get_texts():
if 0 < node.get_level() < self.depth:
titles.extend(node.get_texts())
else:
combined_text = ["\n".join(titles + node.get_texts())]
tree_list.append(combined_text)
for child in node.get_children():
self._dfs(child, tree_list, current_depth + 1, titles.copy())

View File

@ -88,6 +88,20 @@ def num_tokens_from_string(string: str) -> int:
except Exception:
return 0
def total_token_count_from_response(resp):
if hasattr(resp, "usage") and hasattr(resp.usage, "total_tokens"):
try:
return resp.usage.total_tokens
except Exception:
pass
if 'usage' in resp and 'total_tokens' in resp['usage']:
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0
def truncate(string: str, max_len: int) -> str:
"""Returns truncated text if the length of text exceed max_len."""

View File

@ -14,24 +14,24 @@
},
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmmirror.com/asynckit/-/asynckit-0.4.0.tgz",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"license": "MIT"
},
"node_modules/axios": {
"version": "1.9.0",
"resolved": "https://registry.npmmirror.com/axios/-/axios-1.9.0.tgz",
"integrity": "sha512-re4CqKTJaURpzbLHtIi6XpDv20/CnpXOtjRY5/CU32L8gU8ek9UIivcfvSWvmKEngmVbrUtPpdDwWDWL7DNHvg==",
"version": "1.12.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.12.0.tgz",
"integrity": "sha512-oXTDccv8PcfjZmPGlWsPSwtOJCZ/b6W5jAMCNcfwJbCzDckwG0jrYJFaWH1yvivfCXjVzV/SPDEhMB3Q+DSurg==",
"license": "MIT",
"dependencies": {
"follow-redirects": "^1.15.6",
"form-data": "^4.0.0",
"form-data": "^4.0.4",
"proxy-from-env": "^1.1.0"
}
},
"node_modules/call-bind-apply-helpers": {
"version": "1.0.2",
"resolved": "https://registry.npmmirror.com/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz",
"resolved": "https://registry.npmjs.org/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz",
"integrity": "sha512-Sp1ablJ0ivDkSzjcaJdxEunN5/XvksFJ2sMBFfq6x0ryhQV/2b/KwFe21cMpmHtPOSij8K99/wSfoEuTObmuMQ==",
"license": "MIT",
"dependencies": {
@ -44,7 +44,7 @@
},
"node_modules/combined-stream": {
"version": "1.0.8",
"resolved": "https://registry.npmmirror.com/combined-stream/-/combined-stream-1.0.8.tgz",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"license": "MIT",
"dependencies": {
@ -56,7 +56,7 @@
},
"node_modules/delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmmirror.com/delayed-stream/-/delayed-stream-1.0.0.tgz",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"license": "MIT",
"engines": {
@ -65,7 +65,7 @@
},
"node_modules/dunder-proto": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/dunder-proto/-/dunder-proto-1.0.1.tgz",
"resolved": "https://registry.npmjs.org/dunder-proto/-/dunder-proto-1.0.1.tgz",
"integrity": "sha512-KIN/nDJBQRcXw0MLVhZE9iQHmG68qAVIBg9CqmUYjmQIhgij9U5MFvrqkUL5FbtyyzZuOeOt0zdeRe4UY7ct+A==",
"license": "MIT",
"dependencies": {
@ -79,7 +79,7 @@
},
"node_modules/es-define-property": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/es-define-property/-/es-define-property-1.0.1.tgz",
"resolved": "https://registry.npmjs.org/es-define-property/-/es-define-property-1.0.1.tgz",
"integrity": "sha512-e3nRfgfUZ4rNGL232gUgX06QNyyez04KdjFrF+LTRoOXmrOgFKDg4BCdsjW8EnT69eqdYGmRpJwiPVYNrCaW3g==",
"license": "MIT",
"engines": {
@ -88,7 +88,7 @@
},
"node_modules/es-errors": {
"version": "1.3.0",
"resolved": "https://registry.npmmirror.com/es-errors/-/es-errors-1.3.0.tgz",
"resolved": "https://registry.npmjs.org/es-errors/-/es-errors-1.3.0.tgz",
"integrity": "sha512-Zf5H2Kxt2xjTvbJvP2ZWLEICxA6j+hAmMzIlypy4xcBg1vKVnx89Wy0GbS+kf5cwCVFFzdCFh2XSCFNULS6csw==",
"license": "MIT",
"engines": {
@ -97,7 +97,7 @@
},
"node_modules/es-object-atoms": {
"version": "1.1.1",
"resolved": "https://registry.npmmirror.com/es-object-atoms/-/es-object-atoms-1.1.1.tgz",
"resolved": "https://registry.npmjs.org/es-object-atoms/-/es-object-atoms-1.1.1.tgz",
"integrity": "sha512-FGgH2h8zKNim9ljj7dankFPcICIK9Cp5bm+c2gQSYePhpaG5+esrLODihIorn+Pe6FGJzWhXQotPv73jTaldXA==",
"license": "MIT",
"dependencies": {
@ -109,7 +109,7 @@
},
"node_modules/es-set-tostringtag": {
"version": "2.1.0",
"resolved": "https://registry.npmmirror.com/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
"resolved": "https://registry.npmjs.org/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
"integrity": "sha512-j6vWzfrGVfyXxge+O0x5sh6cvxAog0a/4Rdd2K36zCMV5eJ+/+tOAngRO8cODMNWbVRdVlmGZQL2YS3yR8bIUA==",
"license": "MIT",
"dependencies": {
@ -143,14 +143,15 @@
}
},
"node_modules/form-data": {
"version": "4.0.2",
"resolved": "https://registry.npmmirror.com/form-data/-/form-data-4.0.2.tgz",
"integrity": "sha512-hGfm/slu0ZabnNt4oaRZ6uREyfCj6P4fT/n6A1rGV+Z0VdGXjfOhVUpkn6qVQONHGIFwmveGXyDs75+nr6FM8w==",
"version": "4.0.4",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.4.tgz",
"integrity": "sha512-KrGhL9Q4zjj0kiUt5OO4Mr/A/jlI2jDYs5eHBpYHPcBEVSiipAvn2Ko2HnPe20rmcuuvMHNdZFp+4IlGTMF0Ow==",
"license": "MIT",
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
"es-set-tostringtag": "^2.1.0",
"hasown": "^2.0.2",
"mime-types": "^2.1.12"
},
"engines": {
@ -159,7 +160,7 @@
},
"node_modules/function-bind": {
"version": "1.1.2",
"resolved": "https://registry.npmmirror.com/function-bind/-/function-bind-1.1.2.tgz",
"resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.2.tgz",
"integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==",
"license": "MIT",
"funding": {
@ -168,7 +169,7 @@
},
"node_modules/get-intrinsic": {
"version": "1.3.0",
"resolved": "https://registry.npmmirror.com/get-intrinsic/-/get-intrinsic-1.3.0.tgz",
"resolved": "https://registry.npmjs.org/get-intrinsic/-/get-intrinsic-1.3.0.tgz",
"integrity": "sha512-9fSjSaos/fRIVIp+xSJlE6lfwhES7LNtKaCBIamHsjr2na1BiABJPo0mOjjz8GJDURarmCPGqaiVg5mfjb98CQ==",
"license": "MIT",
"dependencies": {
@ -192,7 +193,7 @@
},
"node_modules/get-proto": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/get-proto/-/get-proto-1.0.1.tgz",
"resolved": "https://registry.npmjs.org/get-proto/-/get-proto-1.0.1.tgz",
"integrity": "sha512-sTSfBjoXBp89JvIKIefqw7U2CCebsc74kiY6awiGogKtoSGbgjYE/G/+l9sF3MWFPNc9IcoOC4ODfKHfxFmp0g==",
"license": "MIT",
"dependencies": {
@ -205,7 +206,7 @@
},
"node_modules/gopd": {
"version": "1.2.0",
"resolved": "https://registry.npmmirror.com/gopd/-/gopd-1.2.0.tgz",
"resolved": "https://registry.npmjs.org/gopd/-/gopd-1.2.0.tgz",
"integrity": "sha512-ZUKRh6/kUFoAiTAtTYPZJ3hw9wNxx+BIBOijnlG9PnrJsCcSjs1wyyD6vJpaYtgnzDrKYRSqf3OO6Rfa93xsRg==",
"license": "MIT",
"engines": {
@ -217,7 +218,7 @@
},
"node_modules/has-symbols": {
"version": "1.1.0",
"resolved": "https://registry.npmmirror.com/has-symbols/-/has-symbols-1.1.0.tgz",
"resolved": "https://registry.npmjs.org/has-symbols/-/has-symbols-1.1.0.tgz",
"integrity": "sha512-1cDNdwJ2Jaohmb3sg4OmKaMBwuC48sYni5HUw2DvsC8LjGTLK9h+eb1X6RyuOHe4hT0ULCW68iomhjUoKUqlPQ==",
"license": "MIT",
"engines": {
@ -229,7 +230,7 @@
},
"node_modules/has-tostringtag": {
"version": "1.0.2",
"resolved": "https://registry.npmmirror.com/has-tostringtag/-/has-tostringtag-1.0.2.tgz",
"resolved": "https://registry.npmjs.org/has-tostringtag/-/has-tostringtag-1.0.2.tgz",
"integrity": "sha512-NqADB8VjPFLM2V0VvHUewwwsw0ZWBaIdgo+ieHtK3hasLz4qeCRjYcqfB6AQrBggRKppKF8L52/VqdVsO47Dlw==",
"license": "MIT",
"dependencies": {
@ -244,7 +245,7 @@
},
"node_modules/hasown": {
"version": "2.0.2",
"resolved": "https://registry.npmmirror.com/hasown/-/hasown-2.0.2.tgz",
"resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.2.tgz",
"integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==",
"license": "MIT",
"dependencies": {
@ -256,7 +257,7 @@
},
"node_modules/math-intrinsics": {
"version": "1.1.0",
"resolved": "https://registry.npmmirror.com/math-intrinsics/-/math-intrinsics-1.1.0.tgz",
"resolved": "https://registry.npmjs.org/math-intrinsics/-/math-intrinsics-1.1.0.tgz",
"integrity": "sha512-/IXtbwEk5HTPyEwyKX6hGkYXxM9nbj64B+ilVJnC/R6B0pH5G4V3b0pVbL7DBj4tkhBAppbQUlf6F6Xl9LHu1g==",
"license": "MIT",
"engines": {
@ -265,7 +266,7 @@
},
"node_modules/mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmmirror.com/mime-db/-/mime-db-1.52.0.tgz",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"license": "MIT",
"engines": {
@ -274,7 +275,7 @@
},
"node_modules/mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmmirror.com/mime-types/-/mime-types-2.1.35.tgz",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"license": "MIT",
"dependencies": {

13
uv.lock generated
View File

@ -1,5 +1,4 @@
version = 1
revision = 1
requires-python = ">=3.10, <3.13"
resolution-markers = [
"python_full_version >= '3.12' and sys_platform == 'darwin'",
@ -2893,6 +2892,15 @@ wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/92/b0/8f08df3f0fa584c4132937690c6dd33e0a116f963ecf2b35567f614e0ca7/langfuse-3.2.1-py3-none-any.whl", hash = "sha256:07a84e8c1eed6ac8e149bdda1431fd866e4aee741b66124316336fb2bc7e6a32" },
]
[[package]]
name = "lark"
version = "1.2.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/af/60/bc7622aefb2aee1c0b4ba23c1446d3e30225c8770b38d7aedbfb65ca9d5a/lark-1.2.2.tar.gz", hash = "sha256:ca807d0162cd16cef15a8feecb862d7319e7a09bdb13aef927968e45040fed80" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/2d/00/d90b10b962b4277f5e64a78b6609968859ff86889f5b898c1a778c06ec00/lark-1.2.2-py3-none-any.whl", hash = "sha256:c2276486b02f0f1b90be155f2c8ba4a8e194d42775786db622faccd652d8e80c" },
]
[[package]]
name = "litellm"
version = "1.75.5.post1"
@ -5320,6 +5328,7 @@ dependencies = [
{ name = "itsdangerous" },
{ name = "json-repair" },
{ name = "langfuse" },
{ name = "lark" },
{ name = "litellm" },
{ name = "markdown" },
{ name = "markdown-to-json" },
@ -5475,6 +5484,7 @@ requires-dist = [
{ name = "itsdangerous", specifier = "==2.1.2" },
{ name = "json-repair", specifier = "==0.35.0" },
{ name = "langfuse", specifier = ">=2.60.0" },
{ name = "lark", specifier = ">=1.2.2" },
{ name = "litellm", specifier = ">=1.74.15.post1" },
{ name = "markdown", specifier = "==3.6" },
{ name = "markdown-to-json", specifier = "==2.1.1" },
@ -5553,7 +5563,6 @@ requires-dist = [
{ name = "yfinance", specifier = "==0.2.65" },
{ name = "zhipuai", specifier = "==2.0.1" },
]
provides-extras = ["full"]
[package.metadata.requires-dev]
test = [

8
web/package-lock.json generated
View File

@ -66,7 +66,7 @@
"jsencrypt": "^3.3.2",
"lexical": "^0.23.1",
"lodash": "^4.17.21",
"lucide-react": "^0.508.0",
"lucide-react": "^0.542.0",
"mammoth": "^1.7.2",
"next-themes": "^0.4.6",
"openai-speech-stream-player": "^1.0.8",
@ -25113,9 +25113,9 @@
}
},
"node_modules/lucide-react": {
"version": "0.508.0",
"resolved": "https://registry.npmmirror.com/lucide-react/-/lucide-react-0.508.0.tgz",
"integrity": "sha512-gcP16PnexqtOFrTtv98kVsGzTfnbPekzZiQfByi2S89xfk7E/4uKE1USZqccIp58v42LqkO7MuwpCqshwSrJCg==",
"version": "0.542.0",
"resolved": "https://registry.npmmirror.com/lucide-react/-/lucide-react-0.542.0.tgz",
"integrity": "sha512-w3hD8/SQB7+lzU2r4VdFyzzOzKnUjTZIF/MQJGSSvni7Llewni4vuViRppfRAa2guOsY5k4jZyxw/i9DQHv+dw==",
"license": "ISC",
"peerDependencies": {
"react": "^16.5.1 || ^17.0.0 || ^18.0.0 || ^19.0.0"

View File

@ -79,7 +79,7 @@
"jsencrypt": "^3.3.2",
"lexical": "^0.23.1",
"lodash": "^4.17.21",
"lucide-react": "^0.508.0",
"lucide-react": "^0.542.0",
"mammoth": "^1.7.2",
"next-themes": "^0.4.6",
"openai-speech-stream-player": "^1.0.8",

View File

@ -0,0 +1 @@
<?xml version="1.0" standalone="no"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg t="1756884949583" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="11332" xmlns:xlink="http://www.w3.org/1999/xlink" width="200" height="200"><path d="M190.464 489.472h327.68v40.96h-327.68z" fill="#C7DCFE" p-id="11333"></path><path d="M482.34496 516.5056l111.26784-308.20352 38.54336 13.9264L520.86784 530.432z" fill="#C7DCFE" p-id="11334"></path><path d="M620.544 196.608m-122.88 0a122.88 122.88 0 1 0 245.76 0 122.88 122.88 0 1 0-245.76 0Z" fill="#8FB8FC" p-id="11335"></path><path d="M182.272 509.952m-122.88 0a122.88 122.88 0 1 0 245.76 0 122.88 122.88 0 1 0-245.76 0Z" fill="#C7DCFE" p-id="11336"></path><path d="M558.65344 520.9088l283.77088 163.84-20.48 35.47136-283.77088-163.84z" fill="#C7DCFE" p-id="11337"></path><path d="M841.728 686.08m-122.88 0a122.88 122.88 0 1 0 245.76 0 122.88 122.88 0 1 0-245.76 0Z" fill="#B3CEFE" p-id="11338"></path><path d="M448.67584 803.77856l49.60256-323.91168 40.48896 6.20544-49.60256 323.91168z" fill="#C7DCFE" p-id="11339"></path><path d="M512 530.432m-143.36 0a143.36 143.36 0 1 0 286.72 0 143.36 143.36 0 1 0-286.72 0Z" fill="#4185FF" p-id="11340"></path><path d="M462.848 843.776m-102.4 0a102.4 102.4 0 1 0 204.8 0 102.4 102.4 0 1 0-204.8 0Z" fill="#8FB8FC" p-id="11341"></path></svg>

After

Width:  |  Height:  |  Size: 1.4 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 36 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 96 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 16 KiB

View File

@ -0,0 +1 @@
<?xml version="1.0" standalone="no"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg t="1757483419289" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="22299" xmlns:xlink="http://www.w3.org/1999/xlink" width="200" height="200"><path d="M998.765714 523.629714c13.824 0 25.014857 11.190857 25.014857 25.014857a475.282286 475.282286 0 0 1-875.593142 256.219429l-27.574858 55.149714a25.014857 25.014857 0 1 1-44.763428-22.454857l44.178286-88.283428a24.868571 24.868571 0 0 1 26.550857-25.526858 25.014857 25.014857 0 0 1 8.265143 0.804572l99.474285 24.868571a25.014857 25.014857 0 0 1-12.068571 48.566857l-46.372572-11.556571A425.252571 425.252571 0 0 0 973.750857 548.571429c0-13.897143 11.190857-25.014857 25.014857-25.014858zM430.957714 365.714286l6.729143 0.658285c2.633143 0.438857 285.549714 160.109714 285.549714 160.109715 20.114286 17.846857 7.314286 34.523429-6.582857 45.933714-1.828571 1.462857-194.779429 113.078857-249.929143 144.969143l-10.678857 6.217143-3.876571 2.194285c-16.676571 8.923429-39.497143 8.923429-47.250286-11.995428-0.877714-2.194286-2.267429-250.221714-2.56-303.396572L402.285714 400.457143l0.731429-0.512c0.731429-18.651429 8.265143-38.034286 34.669714-33.645714z m-15.945143-273.408a475.282286 475.282286 0 0 1 533.869715 200.045714l27.501714-55.149714a25.014857 25.014857 0 1 1 44.690286 22.454857l-44.105143 88.283428a24.868571 24.868571 0 0 1-26.624 25.526858 24.868571 24.868571 0 0 1-8.192-0.804572l-99.547429-24.868571a25.014857 25.014857 0 0 1 12.068572-48.566857l46.445714 11.629714A425.252571 425.252571 0 0 0 123.245714 548.571429a25.014857 25.014857 0 0 1-50.029714 0 475.282286 475.282286 0 0 1 341.796571-456.265143z" fill="#3BA05C" p-id="22300"></path></svg>

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

@ -15,6 +15,8 @@ import {
FormLabel,
FormMessage,
} from '@/components/ui/form';
import { Label } from '@/components/ui/label';
import { RadioGroup, RadioGroupItem } from '@/components/ui/radio-group';
import { Switch } from '@/components/ui/switch';
import { SharedFrom } from '@/constants/chat';
import {
@ -32,6 +34,8 @@ import { z } from 'zod';
const FormSchema = z.object({
visibleAvatar: z.boolean(),
locale: z.string(),
embedType: z.enum(['fullscreen', 'widget']),
enableStreaming: z.boolean(),
});
type IProps = IModalProps<any> & {
@ -55,6 +59,8 @@ function EmbedDialog({
defaultValues: {
visibleAvatar: false,
locale: '',
embedType: 'fullscreen' as const,
enableStreaming: false,
},
});
@ -68,20 +74,60 @@ function EmbedDialog({
}, []);
const generateIframeSrc = useCallback(() => {
const { visibleAvatar, locale } = values;
let src = `${location.origin}${from === SharedFrom.Agent ? Routes.AgentShare : Routes.ChatShare}?shared_id=${token}&from=${from}&auth=${beta}`;
const { visibleAvatar, locale, embedType, enableStreaming } = values;
const baseRoute =
embedType === 'widget'
? Routes.ChatWidget
: from === SharedFrom.Agent
? Routes.AgentShare
: Routes.ChatShare;
let src = `${location.origin}${baseRoute}?shared_id=${token}&from=${from}&auth=${beta}`;
if (visibleAvatar) {
src += '&visible_avatar=1';
}
if (locale) {
src += `&locale=${locale}`;
}
if (enableStreaming) {
src += '&streaming=true';
}
return src;
}, [beta, from, token, values]);
const text = useMemo(() => {
const iframeSrc = generateIframeSrc();
return `
const { embedType } = values;
if (embedType === 'widget') {
const { enableStreaming } = values;
const streamingParam = enableStreaming
? '&streaming=true'
: '&streaming=false';
return `
~~~ html
<iframe src="${iframeSrc}&mode=master${streamingParam}"
style="position:fixed;bottom:0;right:0;width:100px;height:100px;border:none;background:transparent;z-index:9999"
frameborder="0" allow="microphone;camera"></iframe>
<script>
window.addEventListener('message',e=>{
if(e.origin!=='${location.origin.replace(/:\d+/, ':9222')}')return;
if(e.data.type==='CREATE_CHAT_WINDOW'){
if(document.getElementById('chat-win'))return;
const i=document.createElement('iframe');
i.id='chat-win';i.src=e.data.src;
i.style.cssText='position:fixed;bottom:104px;right:24px;width:380px;height:500px;border:none;background:transparent;z-index:9998;display:none';
i.frameBorder='0';i.allow='microphone;camera';
document.body.appendChild(i);
}else if(e.data.type==='TOGGLE_CHAT'){
const w=document.getElementById('chat-win');
if(w)w.style.display=e.data.isOpen?'block':'none';
}else if(e.data.type==='SCROLL_PASSTHROUGH')window.scrollBy(0,e.data.deltaY);
});
</script>
~~~
`;
} else {
return `
~~~ html
<iframe
src="${iframeSrc}"
@ -91,7 +137,8 @@ function EmbedDialog({
</iframe>
~~~
`;
}, [generateIframeSrc]);
}
}, [generateIframeSrc, values]);
return (
<Dialog open onOpenChange={hideModal}>
@ -104,6 +151,36 @@ function EmbedDialog({
<section className="w-full overflow-auto space-y-5 text-sm text-text-secondary">
<Form {...form}>
<form className="space-y-5">
<FormField
control={form.control}
name="embedType"
render={({ field }) => (
<FormItem>
<FormLabel>Embed Type</FormLabel>
<FormControl>
<RadioGroup
onValueChange={field.onChange}
value={field.value}
className="flex flex-col space-y-2"
>
<div className="flex items-center space-x-2">
<RadioGroupItem value="fullscreen" id="fullscreen" />
<Label htmlFor="fullscreen" className="text-sm">
Fullscreen Chat (Traditional iframe)
</Label>
</div>
<div className="flex items-center space-x-2">
<RadioGroupItem value="widget" id="widget" />
<Label htmlFor="widget" className="text-sm">
Floating Widget (Intercom-style)
</Label>
</div>
</RadioGroup>
</FormControl>
<FormMessage />
</FormItem>
)}
/>
<FormField
control={form.control}
name="visibleAvatar"
@ -120,6 +197,24 @@ function EmbedDialog({
</FormItem>
)}
/>
{values.embedType === 'widget' && (
<FormField
control={form.control}
name="enableStreaming"
render={({ field }) => (
<FormItem>
<FormLabel>Enable Streaming Responses</FormLabel>
<FormControl>
<Switch
checked={field.value}
onCheckedChange={field.onChange}
></Switch>
</FormControl>
<FormMessage />
</FormItem>
)}
/>
)}
<FormField
control={form.control}
name="locale"
@ -138,9 +233,11 @@ function EmbedDialog({
/>
</form>
</Form>
<div>
<span>Embed code</span>
<HightLightMarkdown>{text}</HightLightMarkdown>
<div className="max-h-[350px] overflow-auto">
<span>{t('embedCode', { keyPrefix: 'search' })}</span>
<div className="max-h-full overflow-y-auto">
<HightLightMarkdown>{text}</HightLightMarkdown>
</div>
</div>
<div className=" font-medium mt-4 mb-1">
{t(isAgent ? 'flow' : 'chat', { keyPrefix: 'header' })}

View File

@ -0,0 +1,57 @@
// src/pages/dataset/file-logs/file-status-badge.tsx
import { FC } from 'react';
interface StatusBadgeProps {
status: 'Success' | 'Failed' | 'Running' | 'Pending';
}
const FileStatusBadge: FC<StatusBadgeProps> = ({ status }) => {
const getStatusColor = () => {
// #3ba05c → rgb(59, 160, 92) // state-success
// #d8494b → rgb(216, 73, 75) // state-error
// #00beb4 → rgb(0, 190, 180) // accent-primary
// #faad14 → rgb(250, 173, 20) // state-warning
switch (status) {
case 'Success':
return `bg-[rgba(59,160,92,0.1)] text-state-success`;
case 'Failed':
return `bg-[rgba(216,73,75,0.1)] text-state-error`;
case 'Running':
return `bg-[rgba(0,190,180,0.1)] text-accent-primary`;
case 'Pending':
return `bg-[rgba(250,173,20,0.1)] text-state-warning`;
default:
return 'bg-gray-500/10 text-white';
}
};
const getBgStatusColor = () => {
// #3ba05c → rgb(59, 160, 92) // state-success
// #d8494b → rgb(216, 73, 75) // state-error
// #00beb4 → rgb(0, 190, 180) // accent-primary
// #faad14 → rgb(250, 173, 20) // state-warning
switch (status) {
case 'Success':
return `bg-[rgba(59,160,92,1)] text-state-success`;
case 'Failed':
return `bg-[rgba(216,73,75,1)] text-state-error`;
case 'Running':
return `bg-[rgba(0,190,180,1)] text-accent-primary`;
case 'Pending':
return `bg-[rgba(250,173,20,1)] text-state-warning`;
default:
return 'bg-gray-500/10 text-white';
}
};
return (
<span
className={`inline-flex items-center w-[75px] px-2 py-1 rounded-full text-xs font-medium ${getStatusColor(0.1)}`}
>
<div className={`w-1 h-1 mr-1 rounded-full ${getBgStatusColor()}`}></div>
{status}
</span>
);
};
export default FileStatusBadge;

View File

@ -0,0 +1,666 @@
import { MessageType, SharedFrom } from '@/constants/chat';
import { useFetchNextConversationSSE } from '@/hooks/chat-hooks';
import { useFetchFlowSSE } from '@/hooks/flow-hooks';
import { useFetchExternalChatInfo } from '@/hooks/use-chat-request';
import i18n from '@/locales/config';
import { MessageCircle, Minimize2, Send, X } from 'lucide-react';
import React, {
useCallback,
useEffect,
useMemo,
useRef,
useState,
} from 'react';
import {
useGetSharedChatSearchParams,
useSendSharedMessage,
} from '../pages/next-chats/hooks/use-send-shared-message';
const FloatingChatWidget = () => {
const [isOpen, setIsOpen] = useState(false);
const [isMinimized, setIsMinimized] = useState(false);
const [inputValue, setInputValue] = useState('');
const [lastResponseId, setLastResponseId] = useState<string | null>(null);
const [displayMessages, setDisplayMessages] = useState<any[]>([]);
const [isLoaded, setIsLoaded] = useState(false);
const messagesEndRef = useRef<HTMLDivElement>(null);
const {
sharedId: conversationId,
from,
locale,
visibleAvatar,
} = useGetSharedChatSearchParams();
// Check if we're in button-only mode or window-only mode
const urlParams = new URLSearchParams(window.location.search);
const mode = urlParams.get('mode') || 'full'; // 'button', 'window', or 'full'
const enableStreaming = urlParams.get('streaming') === 'true'; // Only enable if explicitly set to true
const {
handlePressEnter,
handleInputChange,
value: hookValue,
sendLoading,
derivedMessages,
hasError,
} = useSendSharedMessage();
// Sync our local input with the hook's value when needed
useEffect(() => {
if (hookValue && hookValue !== inputValue) {
setInputValue(hookValue);
}
}, [hookValue, inputValue]);
const { data: chatInfo } = useFetchExternalChatInfo();
const useFetchAvatar = useMemo(() => {
return from === SharedFrom.Agent
? useFetchFlowSSE
: useFetchNextConversationSSE;
}, [from]);
const { data: avatarData } = useFetchAvatar();
// Play sound when opening
const playNotificationSound = useCallback(() => {
try {
const audioContext = new (window.AudioContext ||
(window as any).webkitAudioContext)();
const oscillator = audioContext.createOscillator();
const gainNode = audioContext.createGain();
oscillator.connect(gainNode);
gainNode.connect(audioContext.destination);
oscillator.frequency.value = 800;
oscillator.type = 'sine';
gainNode.gain.setValueAtTime(0.3, audioContext.currentTime);
gainNode.gain.exponentialRampToValueAtTime(
0.01,
audioContext.currentTime + 0.3,
);
oscillator.start(audioContext.currentTime);
oscillator.stop(audioContext.currentTime + 0.3);
} catch (error) {
// Silent fail if audio not supported
}
}, []);
// Play sound for AI responses (Intercom-style)
const playResponseSound = useCallback(() => {
try {
const audioContext = new (window.AudioContext ||
(window as any).webkitAudioContext)();
const oscillator = audioContext.createOscillator();
const gainNode = audioContext.createGain();
oscillator.connect(gainNode);
gainNode.connect(audioContext.destination);
oscillator.frequency.value = 600;
oscillator.type = 'sine';
gainNode.gain.setValueAtTime(0.2, audioContext.currentTime);
gainNode.gain.exponentialRampToValueAtTime(
0.01,
audioContext.currentTime + 0.2,
);
oscillator.start(audioContext.currentTime);
oscillator.stop(audioContext.currentTime + 0.2);
} catch (error) {
// Silent fail if audio not supported
}
}, []);
// Set loaded state and locale
useEffect(() => {
// Set component as loaded after a brief moment to prevent flash
const timer = setTimeout(() => {
setIsLoaded(true);
// Tell parent window that we're ready to be shown
window.parent.postMessage(
{
type: 'WIDGET_READY',
},
'*',
);
}, 50);
if (locale && i18n.language !== locale) {
i18n.changeLanguage(locale);
}
return () => clearTimeout(timer);
}, [locale]);
// Handle message display based on streaming preference
useEffect(() => {
if (!derivedMessages) {
setDisplayMessages([]);
return;
}
if (enableStreaming) {
// Show messages as they stream
setDisplayMessages(derivedMessages);
} else {
// Only show complete messages (non-streaming mode)
const completeMessages = derivedMessages.filter((msg, index) => {
// Always show user messages immediately
if (msg.role === MessageType.User) return true;
// For AI messages, only show when response is complete (not loading)
if (msg.role === MessageType.Assistant) {
return !sendLoading || index < derivedMessages.length - 1;
}
return true;
});
setDisplayMessages(completeMessages);
}
}, [derivedMessages, enableStreaming, sendLoading]);
// Auto-scroll to bottom when display messages change
useEffect(() => {
messagesEndRef.current?.scrollIntoView({ behavior: 'smooth' });
}, [displayMessages]);
// Play sound only when AI response is complete (not streaming chunks)
useEffect(() => {
if (derivedMessages && derivedMessages.length > 0 && !sendLoading) {
const lastMessage = derivedMessages[derivedMessages.length - 1];
if (
lastMessage.role === MessageType.Assistant &&
lastMessage.id !== lastResponseId &&
derivedMessages.length > 1
) {
setLastResponseId(lastMessage.id || '');
playResponseSound();
}
}
}, [derivedMessages, sendLoading, lastResponseId, playResponseSound]);
const toggleChat = useCallback(() => {
if (mode === 'button') {
// In button mode, communicate with parent window to show/hide chat window
window.parent.postMessage(
{
type: 'TOGGLE_CHAT',
isOpen: !isOpen,
},
'*',
);
setIsOpen(!isOpen);
if (!isOpen) {
playNotificationSound();
}
} else {
// In full mode, handle locally
if (!isOpen) {
setIsOpen(true);
setIsMinimized(false);
playNotificationSound();
} else {
setIsOpen(false);
setIsMinimized(false);
}
}
}, [isOpen, mode, playNotificationSound]);
const minimizeChat = useCallback(() => {
setIsMinimized(true);
}, []);
const handleSendMessage = useCallback(() => {
if (!inputValue.trim() || sendLoading) return;
// Update the hook's internal state first
const syntheticEvent = {
target: { value: inputValue },
currentTarget: { value: inputValue },
preventDefault: () => {},
} as any;
handleInputChange(syntheticEvent);
// Wait for state to update, then send
setTimeout(() => {
handlePressEnter([]);
// Clear our local input after sending
setInputValue('');
}, 50);
}, [inputValue, sendLoading, handleInputChange, handlePressEnter]);
const handleKeyPress = useCallback(
(e: React.KeyboardEvent) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
handleSendMessage();
}
},
[handleSendMessage],
);
if (!conversationId) {
return (
<div className="fixed bottom-5 right-5 z-50">
<div className="bg-red-500 text-white p-4 rounded-lg shadow-lg">
Error: No conversation ID provided
</div>
</div>
);
}
// Remove the blocking return - we'll handle visibility with CSS instead
const messageCount = displayMessages?.length || 0;
// Render different content based on mode
if (mode === 'master') {
// Master mode - handles everything and creates second iframe dynamically
useEffect(() => {
// Create the chat window iframe dynamically when needed
const createChatWindow = () => {
// Check if iframe already exists in parent document
window.parent.postMessage(
{
type: 'CREATE_CHAT_WINDOW',
src: window.location.href.replace('mode=master', 'mode=window'),
},
'*',
);
};
createChatWindow();
// Listen for our own toggle events to show/hide the dynamic iframe
const handleToggle = (e: MessageEvent) => {
if (e.source === window) return; // Ignore our own messages
const chatWindow = document.getElementById(
'dynamic-chat-window',
) as HTMLIFrameElement;
if (chatWindow && e.data.type === 'TOGGLE_CHAT') {
chatWindow.style.display = e.data.isOpen ? 'block' : 'none';
}
};
window.addEventListener('message', handleToggle);
return () => window.removeEventListener('message', handleToggle);
}, []);
// Show just the button in master mode
return (
<div
className={`fixed bottom-6 right-6 z-50 transition-opacity duration-300 ${isLoaded ? 'opacity-100' : 'opacity-0'}`}
>
<button
onClick={() => {
const newIsOpen = !isOpen;
setIsOpen(newIsOpen);
if (newIsOpen) playNotificationSound();
// Tell the parent to show/hide the dynamic iframe
window.parent.postMessage(
{
type: 'TOGGLE_CHAT',
isOpen: newIsOpen,
},
'*',
);
}}
className={`w-14 h-14 bg-blue-600 hover:bg-blue-700 text-white rounded-full transition-all duration-300 flex items-center justify-center group ${
isOpen ? 'scale-95' : 'scale-100 hover:scale-105'
}`}
>
<div
className={`transition-transform duration-300 ${isOpen ? 'rotate-45' : 'rotate-0'}`}
>
{isOpen ? <X size={24} /> : <MessageCircle size={24} />}
</div>
</button>
{/* Unread Badge */}
{!isOpen && messageCount > 0 && (
<div className="absolute -top-2 -right-2 w-6 h-6 bg-red-500 text-white text-xs font-bold rounded-full flex items-center justify-center animate-pulse">
{messageCount > 9 ? '9+' : messageCount}
</div>
)}
</div>
);
}
if (mode === 'button') {
// Only render the floating button
return (
<div
className={`fixed bottom-6 right-6 z-50 transition-opacity duration-300 ${isLoaded ? 'opacity-100' : 'opacity-0'}`}
>
<button
onClick={toggleChat}
className={`w-14 h-14 bg-blue-600 hover:bg-blue-700 text-white rounded-full transition-all duration-300 flex items-center justify-center group ${
isOpen ? 'scale-95' : 'scale-100 hover:scale-105'
}`}
>
<div
className={`transition-transform duration-300 ${isOpen ? 'rotate-45' : 'rotate-0'}`}
>
{isOpen ? <X size={24} /> : <MessageCircle size={24} />}
</div>
</button>
{/* Unread Badge */}
{!isOpen && messageCount > 0 && (
<div className="absolute -top-2 -right-2 w-6 h-6 bg-red-500 text-white text-xs font-bold rounded-full flex items-center justify-center animate-pulse">
{messageCount > 9 ? '9+' : messageCount}
</div>
)}
</div>
);
}
if (mode === 'window') {
// Only render the chat window (always open)
return (
<div
className={`fixed top-0 left-0 z-50 bg-blue-600 rounded-2xl transition-all duration-300 ease-out h-[500px] w-[380px] overflow-hidden ${isLoaded ? 'opacity-100' : 'opacity-0'}`}
>
{/* Header */}
<div className="flex items-center justify-between p-4 bg-gradient-to-r from-blue-600 to-blue-700 text-white rounded-t-2xl">
<div className="flex items-center space-x-3">
<div className="w-8 h-8 bg-white bg-opacity-20 rounded-full flex items-center justify-center">
<MessageCircle size={18} />
</div>
<div>
<h3 className="font-semibold text-sm">
{chatInfo?.title || 'Chat Support'}
</h3>
<p className="text-xs text-blue-100">
We typically reply instantly
</p>
</div>
</div>
</div>
{/* Messages and Input */}
<div
className="flex flex-col h-[436px] bg-white"
style={{ borderRadius: '0 0 16px 16px' }}
>
<div
className="flex-1 overflow-y-auto p-4 space-y-4"
onWheel={(e) => {
const element = e.currentTarget;
const isAtTop = element.scrollTop === 0;
const isAtBottom =
element.scrollTop + element.clientHeight >=
element.scrollHeight - 1;
// Allow scroll to pass through to parent when at boundaries
if ((isAtTop && e.deltaY < 0) || (isAtBottom && e.deltaY > 0)) {
e.preventDefault();
// Let the parent handle the scroll
window.parent.postMessage(
{
type: 'SCROLL_PASSTHROUGH',
deltaY: e.deltaY,
},
'*',
);
}
}}
>
{displayMessages?.map((message, index) => (
<div
key={index}
className={`flex ${message.role === MessageType.User ? 'justify-end' : 'justify-start'}`}
>
<div
className={`max-w-[280px] px-4 py-2 rounded-2xl ${
message.role === MessageType.User
? 'bg-blue-600 text-white rounded-br-md'
: 'bg-gray-100 text-gray-800 rounded-bl-md'
}`}
>
<p className="text-sm leading-relaxed whitespace-pre-wrap">
{message.content}
</p>
</div>
</div>
))}
{/* Clean Typing Indicator */}
{sendLoading && !enableStreaming && (
<div className="flex justify-start pl-4">
<div className="flex space-x-1">
<div className="w-2 h-2 bg-blue-500 rounded-full animate-bounce"></div>
<div
className="w-2 h-2 bg-blue-500 rounded-full animate-bounce"
style={{ animationDelay: '0.1s' }}
></div>
<div
className="w-2 h-2 bg-blue-500 rounded-full animate-bounce"
style={{ animationDelay: '0.2s' }}
></div>
</div>
</div>
)}
<div ref={messagesEndRef} />
</div>
{/* Input Area */}
<div className="border-t border-gray-200 p-4">
<div className="flex items-end space-x-3">
<div className="flex-1">
<textarea
value={inputValue}
onChange={(e) => {
const newValue = e.target.value;
setInputValue(newValue);
handleInputChange(e);
}}
onKeyPress={handleKeyPress}
placeholder="Type your message..."
rows={1}
className="w-full resize-none border border-gray-300 rounded-2xl px-4 py-3 text-sm focus:outline-none focus:ring-2 focus:ring-blue-500 focus:border-transparent"
style={{ minHeight: '44px', maxHeight: '120px' }}
disabled={hasError || sendLoading}
/>
</div>
<button
onClick={handleSendMessage}
disabled={!inputValue.trim() || sendLoading}
className="p-3 bg-blue-600 text-white rounded-full hover:bg-blue-700 disabled:opacity-50 disabled:cursor-not-allowed transition-colors"
>
<Send size={18} />
</button>
</div>
</div>
</div>
</div>
);
}
// Full mode - render everything together (original behavior)
return (
<div
className={`transition-opacity duration-300 ${isLoaded ? 'opacity-100' : 'opacity-0'}`}
>
{/* Chat Widget Container */}
{isOpen && (
<div
className={`fixed bottom-24 right-6 z-50 bg-blue-600 rounded-2xl transition-all duration-300 ease-out ${
isMinimized ? 'h-16' : 'h-[500px]'
} w-[380px] overflow-hidden`}
>
{/* Header */}
<div className="flex items-center justify-between p-4 bg-gradient-to-r from-blue-600 to-blue-700 text-white rounded-t-2xl">
<div className="flex items-center space-x-3">
<div className="w-8 h-8 bg-white bg-opacity-20 rounded-full flex items-center justify-center">
<MessageCircle size={18} />
</div>
<div>
<h3 className="font-semibold text-sm">
{chatInfo?.title || 'Chat Support'}
</h3>
<p className="text-xs text-blue-100">
We typically reply instantly
</p>
</div>
</div>
<div className="flex items-center space-x-1">
<button
onClick={minimizeChat}
className="p-1.5 hover:bg-white hover:bg-opacity-20 rounded-full transition-colors"
>
<Minimize2 size={16} />
</button>
<button
onClick={toggleChat}
className="p-1.5 hover:bg-white hover:bg-opacity-20 rounded-full transition-colors"
>
<X size={16} />
</button>
</div>
</div>
{/* Messages Container */}
{!isMinimized && (
<div
className="flex flex-col h-[436px] bg-white"
style={{ borderRadius: '0 0 16px 16px' }}
>
<div
className="flex-1 overflow-y-auto p-4 space-y-4"
onWheel={(e) => {
const element = e.currentTarget;
const isAtTop = element.scrollTop === 0;
const isAtBottom =
element.scrollTop + element.clientHeight >=
element.scrollHeight - 1;
// Allow scroll to pass through to parent when at boundaries
if (
(isAtTop && e.deltaY < 0) ||
(isAtBottom && e.deltaY > 0)
) {
e.preventDefault();
// Let the parent handle the scroll
window.parent.postMessage(
{
type: 'SCROLL_PASSTHROUGH',
deltaY: e.deltaY,
},
'*',
);
}
}}
>
{displayMessages?.map((message, index) => (
<div
key={index}
className={`flex ${message.role === MessageType.User ? 'justify-end' : 'justify-start'}`}
>
<div
className={`max-w-[280px] px-4 py-2 rounded-2xl ${
message.role === MessageType.User
? 'bg-blue-600 text-white rounded-br-md'
: 'bg-gray-100 text-gray-800 rounded-bl-md'
}`}
>
<p className="text-sm leading-relaxed whitespace-pre-wrap">
{message.content}
</p>
</div>
</div>
))}
{/* Typing Indicator */}
{sendLoading && (
<div className="flex justify-start">
<div className="bg-gray-100 rounded-2xl rounded-bl-md px-4 py-3">
<div className="flex space-x-1">
<div className="w-2 h-2 bg-gray-400 rounded-full animate-bounce"></div>
<div
className="w-2 h-2 bg-gray-400 rounded-full animate-bounce"
style={{ animationDelay: '0.1s' }}
></div>
<div
className="w-2 h-2 bg-gray-400 rounded-full animate-bounce"
style={{ animationDelay: '0.2s' }}
></div>
</div>
</div>
</div>
)}
<div ref={messagesEndRef} />
</div>
{/* Input Area */}
<div className="border-t border-gray-200 p-4">
<div className="flex items-end space-x-3">
<div className="flex-1">
<textarea
value={inputValue}
onChange={(e) => {
const newValue = e.target.value;
setInputValue(newValue);
// Also update the hook's state
handleInputChange(e);
}}
onKeyPress={handleKeyPress}
placeholder="Type your message..."
rows={1}
className="w-full resize-none border border-gray-300 rounded-2xl px-4 py-3 text-sm focus:outline-none focus:ring-2 focus:ring-blue-500 focus:border-transparent"
style={{ minHeight: '44px', maxHeight: '120px' }}
disabled={hasError || sendLoading}
/>
</div>
<button
onClick={handleSendMessage}
disabled={!inputValue.trim() || sendLoading}
className="p-3 bg-blue-600 text-white rounded-full hover:bg-blue-700 disabled:opacity-50 disabled:cursor-not-allowed transition-colors"
>
<Send size={18} />
</button>
</div>
</div>
</div>
)}
</div>
)}
{/* Floating Button */}
<div className="fixed bottom-6 right-6 z-50">
<button
onClick={toggleChat}
className={`w-14 h-14 bg-blue-600 hover:bg-blue-700 text-white rounded-full transition-all duration-300 flex items-center justify-center group ${
isOpen ? 'scale-95' : 'scale-100 hover:scale-105'
}`}
>
<div
className={`transition-transform duration-300 ${isOpen ? 'rotate-45' : 'rotate-0'}`}
>
{isOpen ? <X size={24} /> : <MessageCircle size={24} />}
</div>
</button>
{/* Unread Badge */}
{!isOpen && messageCount > 0 && (
<div className="absolute -top-2 -right-2 w-6 h-6 bg-red-500 text-white text-xs font-bold rounded-full flex items-center justify-center animate-pulse">
{messageCount > 9 ? '9+' : messageCount}
</div>
)}
</div>
</div>
);
};
export default FloatingChatWidget;

View File

@ -17,7 +17,7 @@ export function MaxTokenNumberFormField({ max = 2048, initialValue }: IProps) {
tooltip={t('chunkTokenNumberTip')}
max={max}
defaultValue={initialValue ?? 0}
layout={FormLayout.Horizontal}
layout={FormLayout.Vertical}
></SliderInputFormField>
);
}

View File

@ -1,6 +1,7 @@
'use client';
import { cn } from '@/lib/utils';
import { parseColorToRGBA } from '@/utils/common-util';
import { Slot } from '@radix-ui/react-slot';
import * as React from 'react';
@ -197,7 +198,208 @@ function TimelineTitle({
);
}
interface TimelineIndicatorNodeProps {
nodeSize?: string | number;
iconColor?: string;
lineColor?: string;
textColor?: string;
indicatorBgColor?: string;
indicatorBorderColor?: string;
}
interface TimelineNode
extends Omit<
React.HTMLAttributes<HTMLDivElement>,
'id' | 'title' | 'content'
>,
TimelineIndicatorNodeProps {
id: string | number;
title?: React.ReactNode;
content?: React.ReactNode;
date?: React.ReactNode;
icon?: React.ReactNode;
completed?: boolean;
clickable?: boolean;
activeStyle?: TimelineIndicatorNodeProps;
}
interface CustomTimelineProps extends React.HTMLAttributes<HTMLDivElement> {
nodes: TimelineNode[];
activeStep?: number;
nodeSize?: string | number;
onStepChange?: (step: number, id: string | number) => void;
orientation?: 'horizontal' | 'vertical';
lineStyle?: 'solid' | 'dashed';
lineColor?: string;
indicatorColor?: string;
defaultValue?: number;
activeStyle?: TimelineIndicatorNodeProps;
}
const CustomTimeline = ({
nodes,
activeStep,
nodeSize = 12,
onStepChange,
orientation = 'horizontal',
lineStyle = 'solid',
lineColor = 'var(--text-secondary)',
indicatorColor = 'var(--accent-primary)',
defaultValue = 1,
className,
activeStyle,
...props
}: CustomTimelineProps) => {
const [internalActiveStep, setInternalActiveStep] =
React.useState(defaultValue);
const _lineColor = `rgb(${parseColorToRGBA(lineColor)})`;
console.log(lineColor, _lineColor);
const currentActiveStep = activeStep ?? internalActiveStep;
const handleStepChange = (step: number, id: string | number) => {
if (activeStep === undefined) {
setInternalActiveStep(step);
}
onStepChange?.(step, id);
};
const [r, g, b] = parseColorToRGBA(indicatorColor);
return (
<Timeline
value={currentActiveStep}
onValueChange={(step) => handleStepChange(step, nodes[step - 1]?.id)}
orientation={orientation}
className={className}
{...props}
>
{nodes.map((node, index) => {
const step = index + 1;
const isCompleted = node.completed ?? step <= currentActiveStep;
const isActive = step === currentActiveStep;
const isClickable = node.clickable ?? true;
const _activeStyle = node.activeStyle ?? (activeStyle || {});
const _nodeSizeTemp =
isActive && _activeStyle?.nodeSize
? _activeStyle?.nodeSize
: node.nodeSize ?? nodeSize;
const _nodeSize =
typeof _nodeSizeTemp === 'number'
? `${_nodeSizeTemp}px`
: _nodeSizeTemp;
console.log('icon-size', nodeSize, node.nodeSize, _nodeSize);
// const activeStyle = _activeStyle || {};
return (
<TimelineItem
key={node.id}
step={step}
className={cn(
node.className,
isClickable &&
'cursor-pointer hover:opacity-80 transition-opacity',
isCompleted && 'data-[completed]:data-completed/timeline-item',
isActive && 'relative z-10',
)}
onClick={() => isClickable && handleStepChange(step, node.id)}
>
<TimelineSeparator
className={cn(
'group-data-[orientation=horizontal]/timeline:-top-6 group-data-[orientation=horizontal]/timeline:h-0.1 group-data-[orientation=horizontal]/timeline:-translate-y-1/2',
'group-data-[orientation=vertical]/timeline:-left-6 group-data-[orientation=vertical]/timeline:w-0.1 group-data-[orientation=vertical]/timeline:-translate-x-1/2 ',
// `group-data-[orientation=horizontal]/timeline:w-[calc(100%-0.5rem-1rem)] group-data-[orientation=vertical]/timeline:h-[calc(100%-1rem-1rem)] group-data-[orientation=vertical]/timeline:translate-y-7 group-data-[orientation=horizontal]/timeline:translate-x-7`,
)}
style={{
border:
lineStyle === 'dashed'
? `1px dashed ${isActive ? _activeStyle.lineColor || _lineColor : _lineColor}`
: lineStyle === 'solid'
? `1px solid ${isActive ? _activeStyle.lineColor || _lineColor : _lineColor}`
: 'none',
backgroundColor: 'transparent',
width:
orientation === 'horizontal'
? `calc(100% - ${_nodeSize} - 2px - 0.1rem)`
: '1px',
height:
orientation === 'vertical'
? `calc(100% - ${_nodeSize} - 2px - 0.1rem)`
: '1px',
transform: `translate(${
orientation === 'horizontal' ? `${_nodeSize}` : '0'
}, ${orientation === 'vertical' ? `${_nodeSize}` : '0'})`,
}}
/>
<TimelineIndicator
className={cn(
'flex items-center justify-center p-1',
isCompleted && 'bg-primary border-primary',
!isCompleted && 'border-text-secondary bg-bg-base',
)}
style={{
width: _nodeSize,
height: _nodeSize,
borderColor: isActive
? _activeStyle.indicatorBorderColor || indicatorColor
: isCompleted
? indicatorColor
: '',
// backgroundColor: isActive
// ? _activeStyle.indicatorBgColor || indicatorColor
// : isCompleted
// ? indicatorColor
// : '',
backgroundColor: isActive
? _activeStyle.indicatorBgColor ||
`rgba(${r}, ${g}, ${b}, 0.1)`
: isCompleted
? `rgba(${r}, ${g}, ${b}, 0.1)`
: '',
}}
>
{node.icon && (
<div
className={cn(
'text-current',
`w-[${_nodeSize}] h-[${_nodeSize}]`,
isActive &&
`text-primary w-[${_activeStyle.nodeSize || _nodeSize}] h-[${_activeStyle.nodeSize || _nodeSize}]`,
)}
style={{
color: isActive ? _activeStyle.iconColor : undefined,
}}
>
{node.icon}
</div>
)}
</TimelineIndicator>
<TimelineHeader>
{node.date && <TimelineDate>{node.date}</TimelineDate>}
<TimelineTitle
className={cn(
'text-sm font-medium',
isActive && _activeStyle.textColor
? `text-${_activeStyle.textColor}`
: '',
)}
style={{
color: isActive ? _activeStyle.textColor : undefined,
}}
>
{node.title}
</TimelineTitle>
</TimelineHeader>
{node.content && <TimelineContent>{node.content}</TimelineContent>}
</TimelineItem>
);
})}
</Timeline>
);
};
CustomTimeline.displayName = 'CustomTimeline';
export {
CustomTimeline,
Timeline,
TimelineContent,
TimelineDate,
@ -206,4 +408,5 @@ export {
TimelineItem,
TimelineSeparator,
TimelineTitle,
type TimelineNode,
};

View File

@ -15,6 +15,7 @@ type RAGFlowFormItemProps = {
tooltip?: ReactNode;
children: ReactNode | ((field: ControllerRenderProps) => ReactNode);
horizontal?: boolean;
required?: boolean;
};
export function RAGFlowFormItem({
@ -23,6 +24,7 @@ export function RAGFlowFormItem({
tooltip,
children,
horizontal = false,
required = false,
}: RAGFlowFormItemProps) {
const form = useFormContext();
return (
@ -35,7 +37,11 @@ export function RAGFlowFormItem({
'flex items-center': horizontal,
})}
>
<FormLabel tooltip={tooltip} className={cn({ 'w-1/4': horizontal })}>
<FormLabel
required={required}
tooltip={tooltip}
className={cn({ 'w-1/4': horizontal })}
>
{label}
</FormLabel>
<FormControl>

View File

@ -1,6 +1,6 @@
import { FormLayout } from '@/constants/form';
import { cn } from '@/lib/utils';
import { ReactNode } from 'react';
import { ReactNode, useMemo } from 'react';
import { useFormContext } from 'react-hook-form';
import { SingleFormSlider } from './ui/dual-range-slider';
import {
@ -40,7 +40,7 @@ export function SliderInputFormField({
}: SliderInputFormFieldProps) {
const form = useFormContext();
const isHorizontal = layout === FormLayout.Horizontal;
const isHorizontal = useMemo(() => layout === FormLayout.Vertical, [layout]);
return (
<FormField

View File

@ -3,10 +3,22 @@ import React from 'react';
interface SpotlightProps {
className?: string;
opcity?: number;
coverage?: number;
}
const Spotlight: React.FC<SpotlightProps> = ({ className }) => {
/**
*
* @param opcity 0~1 default 0.5
* @param coverage 0~100 default 60
* @returns
*/
const Spotlight: React.FC<SpotlightProps> = ({
className,
opcity = 0.5,
coverage = 60,
}) => {
const isDark = useIsDarkTheme();
const rgb = isDark ? '255, 255, 255' : '194, 221, 243';
return (
<div
className={`absolute inset-0 opacity-80 ${className} rounded-lg`}
@ -18,9 +30,7 @@ const Spotlight: React.FC<SpotlightProps> = ({ className }) => {
<div
className="absolute inset-0"
style={{
background: isDark
? 'radial-gradient(circle at 50% 190%, #fff4 0%, #fff0 60%)'
: 'radial-gradient(circle at 50% 190%, #E4F3FF 0%, #E4F3FF00 60%)',
background: `radial-gradient(circle at 50% 190%, rgba(${rgb},${opcity}) 0%, rgba(${rgb},0) ${coverage}%)`,
pointerEvents: 'none',
}}
></div>

View File

@ -38,7 +38,7 @@ const DialogContent = React.forwardRef<
<DialogPrimitive.Content
ref={ref}
className={cn(
'fixed left-[50%] top-[50%] z-50 grid w-full max-w-xl translate-x-[-50%] translate-y-[-50%] gap-4 border bg-colors-background-neutral-standard p-6 shadow-lg duration-200 data-[state=open]:animate-in data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[state=closed]:slide-out-to-left-1/2 data-[state=closed]:slide-out-to-top-[48%] data-[state=open]:slide-in-from-left-1/2 data-[state=open]:slide-in-from-top-[48%] sm:rounded-lg',
'fixed left-[50%] top-[50%] z-50 grid w-full max-w-xl translate-x-[-50%] translate-y-[-50%] gap-4 border bg-bg-base p-6 shadow-lg duration-200 data-[state=open]:animate-in data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[state=closed]:slide-out-to-left-1/2 data-[state=closed]:slide-out-to-top-[48%] data-[state=open]:slide-in-from-left-1/2 data-[state=open]:slide-in-from-top-[48%] sm:rounded-lg',
className,
)}
{...props}

View File

@ -54,7 +54,9 @@ export enum LLMFactory {
DeepInfra = 'DeepInfra',
Grok = 'Grok',
XAI = 'xAI',
TokenPony = 'TokenPony',
Meituan = 'Meituan',
CometAPI = 'CometAPI',
}
// Please lowercase the file name
@ -114,5 +116,7 @@ export const IconMap = {
[LLMFactory.DeepInfra]: 'deepinfra',
[LLMFactory.Grok]: 'grok',
[LLMFactory.XAI]: 'xai',
[LLMFactory.TokenPony]: 'token-pony',
[LLMFactory.Meituan]: 'longcat',
[LLMFactory.CometAPI]: 'cometapi',
};

Some files were not shown because too many files have changed in this diff Show More