Compare commits

...

21 Commits

Author SHA1 Message Date
209b731541 Feat: add SearXNG search tool to Agent (frontend + backend, i18n) (#9699)
### What problem does this PR solve?

This PR integrates SearXNG as a new search tool for Agents. It adds
corresponding form/config UI on the frontend and a new tool
implementation on the backend, enabling aggregated web searches via a
self-hosted SearXNG instance within chats/workflows. It also adds
multilingual copy to support internationalized presentation and
configuration guidance.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

### What’s Changed
- Frontend: new SearXNG tool configuration, forms, and command wiring
  - Main changes under `web/src/pages/agent/`
- New components and form entries are connected to Agent tool selection
and workflow node configuration
- Backend: new tool implementation
- `agent/tools/searxng.py`: connects to a SearXNG instance and performs
search based on the provided instance URL and query parameters
- i18n updates
- Added/updated keys under `web/src/locales/`: `searXNG` and
`searXNGDescription`
- English reference in
[web/src/locales/en.ts](cci:7://file:///c:/Users/ruy_x/Work/CRSC/2025/Software_Development/2025.8/ragflow-pr/ragflow/web/src/locales/en.ts:0:0-0:0):
    - `searXNG: 'SearXNG'`
- `searXNGDescription: 'A component that searches via your provided
SearXNG instance URL. Specify TopN and the instance URL.'`
- Other languages have `searXNG` and `searXNGDescription` added as well,
but accuracy is only guaranteed for English, Simplified Chinese, and
Traditional Chinese.

---------

Co-authored-by: xurui <xurui@crscd.com.cn>
2025-08-29 14:15:40 +08:00
c47a38773c Fix: Fixed the issue that similarity threshold modification in chat and search configuration failed #3221 (#9821)
### What problem does this PR solve?

Fix: Fixed the issue that similarity threshold modification in chat and
search configuration failed #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 14:10:10 +08:00
fcd18d7d87 Fix: Ollama chat cannot access remote deployment (#9816)
### What problem does this PR solve?

Fix Ollama chat can only access localhost instance. #9806.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 13:35:41 +08:00
fe9adbf0a5 Fix: Optimized Input and MultiSelect component functionality and dataSet-chunk page styling #9779 (#9815)
### What problem does this PR solve?

Fix: Optimized Input and MultiSelect component functionality and
dataSet-chunk page styling

- Updated @js-preview/excel to version 1.7.14 #9779
- Optimized the EditTag component
- Updated the Input component to optimize numeric input processing
- Adjusted the MultiSelect component to use lodash's isEmpty method
- Optimized the CheckboxSets component to display action buttons based
on the selected state

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 10:57:29 +08:00
c7f7adf029 Feat: Extract the save buttons for dataset and chat configurations to separate files to increase permission control #3221 (#9803)
### What problem does this PR solve?

Feat: Extract the save buttons for dataset and chat configurations to
separate files to increase permission control #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-29 10:40:41 +08:00
c27172b3bc Feat: init dataflow. (#9791)
### What problem does this PR solve?

#9790

Close #9782

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 18:40:32 +08:00
a246949b77 Fix: Fixed the issue where the thinking mode on the chat page could not be turned off #9789 (#9794)
### What problem does this PR solve?

Fix: Fixed the issue where the thinking mode on the chat page could not
be turned off #9789

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 17:33:27 +08:00
0a954d720a Refa: unify reference format of agent completion and OpenAI-compatible completion API (#9792)
### What problem does this PR solve?

Unify reference format of agent completion and OpenAI-compatible
completion API.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Refactoring
2025-08-28 16:55:28 +08:00
f89e55ec42 Fix: Optimized variable node display and Agent template multi-language support #3221 (#9787)
### What problem does this PR solve?

Fix: Optimized variable node display and Agent template multi-language
support #3221

- Modified the VariableNode component to add parent label and icon
properties
- Updated the VariablePickerMenuPlugin to support displaying parent
labels and icons
- Adjusted useBuildNodeOutputOptions and useBuildBeginVariableOptions to
pass new properties
- Optimized the Agent TemplateCard component to switch the title and
description based on the language

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 15:43:25 +08:00
5fe8cf6018 Feat: Use AvatarUpload to replace the avatar settings on the dataset and search pages #3221 (#9785)
### What problem does this PR solve?

Feat: Use AvatarUpload to replace the avatar settings on the dataset and
search pages #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 14:45:20 +08:00
4720849ac0 Fix: agent template error. (#9784)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 14:40:27 +08:00
d7721833e7 Improve model tag rendering by splitting comma-separated string into styled <Tag> components (#9762)
### What problem does this PR solve?

This PR enhances the display of tags in the UI.

* Before: Model tags were shown as a single string with commas.
* After: Model tags are split by commas and displayed as individual
<Tag> components , making them visually distinct and easier to read.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 14:06:52 +08:00
7332f1d0f3 The agent directly outputs the results under the task model #9745 (#9746)
### What problem does this PR solve?

The agent directly outputs the results under the task model #9745

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:43:40 +08:00
2d101561f8 Add Russian language Update app.tsx (#9772)
Fix Add Russian language.

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:42:42 +08:00
59590e9aae Feat: Add AvatarUpload component #3221 (#9777)
### What problem does this PR solve?

Feat: Add AvatarUpload component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:42:17 +08:00
bb9b9b8357 Clarify installation of pre-commit alongside uv in README (#9749)
### What problem does this PR solve?

Updates the installation step in README.md to explicitly include
pre-commit alongside uv.

Applies the change to all localized versions: English, Chinese,
Japanese, Korean, Indonesian, and Portuguese.
#### Why this is needed:

The installation instructions previously mentioned only uv, but
pre-commit is also required for contributing.

Ensures consistency across all language versions and helps new
contributors set up the environment correctly.

### Type of change

- [x] Documentation Update
2025-08-28 09:53:16 +08:00
a4b368e53f add Russian in translation table index.tsx (#9773)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 09:47:04 +08:00
c461261f0b Refactor: Improve the try logic for upload_to_minio (#9735)
### What problem does this PR solve?

Improve the try logic for upload_to_minio

### Type of change

- [x] Refactoring
2025-08-28 09:35:29 +08:00
a1633e0a2f Fix: second round value removal. (#9756)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 09:34:47 +08:00
369add35b8 Feature/workflow en cn (#9742)
### What problem does this PR solve?
Update workflow ZH CN title and description.
### Type of change
- [x] Documentation Update
2025-08-28 09:34:30 +08:00
5abd0bbac1 Fix typo (#9766)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-08-27 18:56:40 +08:00
126 changed files with 2986 additions and 2211 deletions

View File

@ -307,7 +307,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Launch service from source for development
1. Install uv, or skip this step if it is already installed:
1. Install `uv` and `pre-commit`, or skip this step if they are already installed:
```bash
pipx install uv pre-commit

View File

@ -271,7 +271,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal uv, atau lewati langkah ini jika sudah terinstal:
1. Instal `uv` dan `pre-commit`, atau lewati langkah ini jika sudah terinstal:
```bash
pipx install uv pre-commit

View File

@ -266,7 +266,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 ソースコードからサービスを起動する方法
1. uv をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
1. `uv` と `pre-commit` をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
```bash
pipx install uv pre-commit

View File

@ -265,7 +265,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 소스 코드로 서비스를 시작합니다.
1. uv를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다:
1. `uv` 와 `pre-commit` 을 설치하거나, 이미 설치된 경우 이 단계를 건너뜁니다:
```bash
pipx install uv pre-commit

View File

@ -289,7 +289,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
1. Instale o `uv`, ou pule esta etapa se ele já estiver instalado:
1. Instale o `uv` e o `pre-commit`, ou pule esta etapa se eles já estiverem instalados:
```bash
pipx install uv pre-commit

View File

@ -301,7 +301,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
## 🔨 以原始碼啟動服務
1. 安裝 uv。如已安裝,可跳過此步驟:
1. 安裝 `uv` 和 `pre-commit`。如已安裝,可跳過此步驟:
```bash
pipx install uv pre-commit

View File

@ -301,7 +301,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
## 🔨 以源代码启动服务
1. 安装 uv。如已经安装,可跳过本步骤:
1. 安装 `uv` 和 `pre-commit`。如已经安装,可跳过本步骤:
```bash
pipx install uv pre-commit

View File

@ -29,83 +29,52 @@ from api.utils import get_uuid, hash_str2int
from rag.prompts.prompts import chunks_format
from rag.utils.redis_conn import REDIS_CONN
class Canvas:
class Graph:
"""
dsl = {
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {},
},
"downstream": ["answer_0"],
"upstream": [],
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"path": ["begin"],
"retrieval": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
}
"""
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.path = []
self.history = []
self.components = {}
self.error = ""
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
self.dsl = json.loads(dsl) if dsl else {
dsl = {
"components": {
"begin": {
"obj": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
"params": {},
},
"downstream": [],
"downstream": ["answer_0"],
"upstream": [],
"parent_id": ""
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"path": [],
"retrieval": [],
"path": ["begin"],
"retrieval": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
}
"""
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.path = []
self.components = {}
self.error = ""
self.dsl = json.loads(dsl)
self._tenant_id = tenant_id
self.task_id = task_id if task_id else get_uuid()
self.load()
@ -116,8 +85,6 @@ class Canvas:
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")()
@ -130,27 +97,10 @@ class Canvas:
cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
self.path = self.dsl["path"]
self.history = self.dsl["history"]
if "globals" in self.dsl:
self.globals = self.dsl["globals"]
else:
self.globals = {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
self.retrieval = self.dsl["retrieval"]
self.memory = self.dsl.get("memory", [])
def __str__(self):
self.dsl["path"] = self.path
self.dsl["history"] = self.history
self.dsl["globals"] = self.globals
self.dsl["task_id"] = self.task_id
self.dsl["retrieval"] = self.retrieval
self.dsl["memory"] = self.memory
dsl = {
"components": {}
}
@ -169,14 +119,79 @@ class Canvas:
dsl["components"][k][c] = deepcopy(cpn[c])
return json.dumps(dsl, ensure_ascii=False)
def reset(self, mem=False):
def reset(self):
self.path = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
try:
REDIS_CONN.delete(f"{self.task_id}-logs")
except Exception as e:
logging.exception(e)
def get_component_name(self, cid):
for n in self.dsl.get("graph", {}).get("nodes", []):
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
raise NotImplementedError()
def get_component(self, cpn_id) -> Union[None, dict[str, Any]]:
return self.components.get(cpn_id)
def get_component_obj(self, cpn_id) -> ComponentBase:
return self.components.get(cpn_id)["obj"]
def get_component_type(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].component_name
def get_component_input_form(self, cpn_id) -> dict:
return self.components.get(cpn_id)["obj"].get_input_form()
def get_tenant_id(self):
return self._tenant_id
class Canvas(Graph):
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
super().__init__(dsl, tenant_id, task_id)
def load(self):
super().load()
self.history = self.dsl["history"]
if "globals" in self.dsl:
self.globals = self.dsl["globals"]
else:
self.globals = {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
self.retrieval = self.dsl["retrieval"]
self.memory = self.dsl.get("memory", [])
def __str__(self):
self.dsl["history"] = self.history
self.dsl["retrieval"] = self.retrieval
self.dsl["memory"] = self.memory
return super().__str__()
def reset(self, mem=False):
super().reset()
if not mem:
self.history = []
self.retrieval = []
self.memory = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
for k in self.globals.keys():
if isinstance(self.globals[k], str):
@ -192,22 +207,13 @@ class Canvas:
else:
self.globals[k] = None
try:
REDIS_CONN.delete(f"{self.task_id}-logs")
except Exception as e:
logging.exception(e)
def get_component_name(self, cid):
for n in self.dsl.get("graph", {}).get("nodes", []):
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
st = time.perf_counter()
self.message_id = get_uuid()
created_at = int(time.time())
self.add_user_input(kwargs.get("query"))
for k, cpn in self.components.items():
self.components[k]["obj"].reset(True)
for k in kwargs.keys():
if k in ["query", "user_id", "files"] and kwargs[k]:
@ -386,18 +392,6 @@ class Canvas:
})
self.history.append(("assistant", self.get_component_obj(self.path[-1]).output()))
def get_component(self, cpn_id) -> Union[None, dict[str, Any]]:
return self.components.get(cpn_id)
def get_component_obj(self, cpn_id) -> ComponentBase:
return self.components.get(cpn_id)["obj"]
def get_component_type(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].component_name
def get_component_input_form(self, cpn_id) -> dict:
return self.components.get(cpn_id)["obj"].get_input_form()
def is_reff(self, exp: str) -> bool:
exp = exp.strip("{").strip("}")
if exp.find("@") < 0:
@ -419,9 +413,6 @@ class Canvas:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
def get_tenant_id(self):
return self._tenant_id
def get_history(self, window_size):
convs = []
if window_size <= 0:
@ -436,36 +427,6 @@ class Canvas:
def add_user_input(self, question):
self.history.append(("user", question))
def _find_loop(self, max_loops=6):
path = self.path[-1][::-1]
if len(path) < 2:
return False
for i in range(len(path)):
if path[i].lower().find("answer") == 0 or path[i].lower().find("iterationitem") == 0:
path = path[:i]
break
if len(path) < 2:
return False
for loc in range(2, len(path) // 2):
pat = ",".join(path[0:loc])
path_str = ",".join(path)
if len(pat) >= len(path_str):
return False
loop = max_loops
while path_str.find(pat) == 0 and loop >= 0:
loop -= 1
if len(pat)+1 >= len(path_str):
return False
path_str = path_str[len(pat)+1:]
if loop < 0:
pat = " => ".join([p.split(":")[0] for p in path[0:loc]])
return pat + " => " + pat
return False
def get_prologue(self):
return self.components["begin"]["obj"]._param.prologue

View File

@ -50,8 +50,9 @@ del _package_path, _import_submodules, _extract_classes_from_module
def component_class(class_name):
m = importlib.import_module("agent.component")
try:
return getattr(m, class_name)
except Exception:
return getattr(importlib.import_module("agent.tools"), class_name)
for mdl in ["agent.component", "agent.tools", "rag.flow"]:
try:
return getattr(importlib.import_module(mdl), class_name)
except Exception:
pass
assert False, f"Can't import {class_name}"

View File

@ -16,7 +16,7 @@
import re
import time
from abc import ABC, abstractmethod
from abc import ABC
import builtins
import json
import os
@ -410,8 +410,8 @@ class ComponentBase(ABC):
)
def __init__(self, canvas, id, param: ComponentParamBase):
from agent.canvas import Canvas # Local import to avoid cyclic dependency
assert isinstance(canvas, Canvas), "canvas must be an instance of Canvas"
from agent.canvas import Graph # Local import to avoid cyclic dependency
assert isinstance(canvas, Graph), "canvas must be an instance of Canvas"
self._canvas = canvas
self._id = id
self._param = param
@ -448,9 +448,11 @@ class ComponentBase(ABC):
def error(self):
return self._param.outputs.get("_ERROR", {}).get("value")
def reset(self):
def reset(self, only_output=False):
for k in self._param.outputs.keys():
self._param.outputs[k]["value"] = None
if only_output:
return
for k in self._param.inputs.keys():
self._param.inputs[k]["value"] = None
self._param.debug_inputs = {}
@ -526,6 +528,10 @@ class ComponentBase(ABC):
cpn_nms = self._canvas.get_component(self._id)['upstream']
return cpn_nms
def get_downstream(self) -> List[str]:
cpn_nms = self._canvas.get_component(self._id)['downstream']
return cpn_nms
@staticmethod
def string_format(content: str, kv: dict[str, str]) -> str:
for n, v in kv.items():
@ -554,6 +560,5 @@ class ComponentBase(ABC):
def set_exception_default_value(self):
self.set_output("result", self.get_exception_default_value())
@abstractmethod
def thoughts(self) -> str:
...
raise NotImplementedError()

View File

@ -1,8 +1,12 @@
{
"id": 19,
"title": "Choose Your Knowledge Base Agent",
"description": "Select your desired knowledge base from the dropdown menu. The Agent will only retrieve from the selected knowledge base and use this content to generate responses.",
"canvas_type": "Agent",
"title": {
"en": "Choose Your Knowledge Base Agent",
"zh": "选择知识库智能体"},
"description": {
"en": "Select your desired knowledge base from the dropdown menu. The Agent will only retrieve from the selected knowledge base and use this content to generate responses.",
"zh": "从下拉菜单中选择知识库,智能体将仅根据所选知识库内容生成回答。"},
"canvas_type": "Agent",
"dsl": {
"components": {
"Agent:BraveParksJoke": {

View File

@ -1,8 +1,12 @@
{
"id": 18,
"title": "Choose Your Knowledge Base Workflow",
"description": "Select your desired knowledge base from the dropdown menu. The retrieval assistant will only use data from your selected knowledge base to generate responses.",
"canvas_type": "Other",
"title": {
"en": "Choose Your Knowledge Base Workflow",
"zh": "选择知识库工作流"},
"description": {
"en": "Select your desired knowledge base from the dropdown menu. The retrieval assistant will only use data from your selected knowledge base to generate responses.",
"zh": "从下拉菜单中选择知识库,工作流将仅根据所选知识库内容生成回答。"},
"canvas_type": "Other",
"dsl": {
"components": {
"Agent:ProudDingosShout": {

View File

@ -1,9 +1,13 @@
{
"id": 11,
"title": "Customer Review Analysis",
"description": "Automatically classify customer reviews using LLM (Large Language Model) and route them via email to the relevant departments.",
"canvas_type": "Customer Support",
"title": {
"en": "Customer Review Analysis",
"zh": "客户评价分析"},
"description": {
"en": "Automatically classify customer reviews using LLM (Large Language Model) and route them via email to the relevant departments.",
"zh": "大模型将自动分类客户评价,并通过电子邮件将结果发送到相关部门。"},
"canvas_type": "Customer Support",
"dsl": {
"components": {
"Categorize:FourTeamsFold": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{
"id": 10,
"title": "Customer Support",
"description": "This is an intelligent customer service processing system workflow based on user intent classification. It uses LLM to identify user demand types and transfers them to the corresponding professional agent for processing.",
"title": {
"en":"Customer Support",
"zh": "客户支持"},
"description": {
"en": "This is an intelligent customer service processing system workflow based on user intent classification. It uses LLM to identify user demand types and transfers them to the corresponding professional agent for processing.",
"zh": "工作流系统,用于智能客服场景。基于用户意图分类。使用大模型识别用户需求类型,并将需求转移给相应的智能体进行处理。"},
"canvas_type": "Customer Support",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 15,
"title": "CV Analysis and Candidate Evaluation",
"description": "This is a workflow that helps companies evaluate resumes, HR uploads a job description first, then submits multiple resumes via the chat window for evaluation.",
"title": {
"en": "CV Analysis and Candidate Evaluation",
"zh": "简历分析和候选人评估"},
"description": {
"en": "This is a workflow that helps companies evaluate resumes, HR uploads a job description first, then submits multiple resumes via the chat window for evaluation.",
"zh": "帮助公司评估简历的工作流。HR首先上传职位描述通过聊天窗口提交多份简历进行评估。"},
"canvas_type": "Other",
"dsl": {
"components": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{
"id": 1,
"title": "Deep Research",
"description": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"title": {
"en": "Deep Research",
"zh": "深度研究"},
"description": {
"en": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"zh": "专为销售、市场、政策或咨询领域的专业人士设计,多智能体的深度研究会结合多源信息进行结构化、多步骤地回答问题,并附带有清晰的引用。"},
"canvas_type": "Recommended",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 6,
"title": "Deep Research",
"description": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"title": {
"en": "Deep Research",
"zh": "深度研究"},
"description": {
"en": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"zh": "专为销售、市场、政策或咨询领域的专业人士设计,多智能体的深度研究会结合多源信息进行结构化、多步骤地回答问题,并附带有清晰的引用。"},
"canvas_type": "Agent",
"dsl": {
"components": {

View File

@ -1,7 +1,13 @@
{
"id": 22,
"title": "Ecommerce Customer Service Workflow",
"description": "This template helps e-commerce platforms address complex customer needs, such as comparing product features, providing usage support, and coordinating home installation services.",
"title": {
"en": "Ecommerce Customer Service Workflow",
"zh": "电子商务客户服务工作流程"
},
"description": {
"en": "This template helps e-commerce platforms address complex customer needs, such as comparing product features, providing usage support, and coordinating home installation services.",
"zh": "该模板可帮助电子商务平台解决复杂的客户需求,例如比较产品功能、提供使用支持和协调家庭安装服务。"
},
"canvas_type": "Customer Support",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 8,
"title": "Generate SEO Blog",
"description": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.",
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.",
"zh": "多智能体架构可根据简单的用户输入自动生成完整的SEO博客文章。模拟小型“作家”团队其中每个智能体扮演一个专业角色——就像真正的编辑团队。"},
"canvas_type": "Agent",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 13,
"title": "ImageLingo",
"description": "ImageLingo lets you snap any photo containing text—menus, signs, or documents—and instantly recognize and translate it into your language of choice using advanced AI-powered translation technology.",
"title": {
"en": "ImageLingo",
"zh": "图片解析"},
"description": {
"en": "ImageLingo lets you snap any photo containing text—menus, signs, or documents—and instantly recognize and translate it into your language of choice using advanced AI-powered translation technology.",
"zh": "多模态大模型允许您拍摄任何包含文本的照片——菜单、标志或文档——立即识别并转换成您选择的语言。"},
"canvas_type": "Consumer App",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 20,
"title": "Report Agent Using Knowledge Base",
"description": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"title": {
"en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Agent",
"dsl": {
"components": {

View File

@ -0,0 +1,331 @@
{
"id": 21,
"title": {
"en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Recommended",
"dsl": {
"components": {
"Agent:NewPumasLick": {
"downstream": [
"Message:OrangeYearsShine"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Message:OrangeYearsShine": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:NewPumasLick@content}"
]
}
},
"upstream": [
"Agent:NewPumasLick"
]
},
"begin": {
"downstream": [
"Agent:NewPumasLick"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:NewPumasLickend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:NewPumasLick",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLickstart-Message:OrangeYearsShineend",
"markerEnd": "logo",
"source": "Agent:NewPumasLick",
"sourceHandle": "start",
"style": {
"stroke": "rgba(91, 93, 106, 1)",
"strokeWidth": 1
},
"target": "Message:OrangeYearsShine",
"targetHandle": "end",
"type": "buttonEdge",
"zIndex": 1001
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLicktool-Tool:AllBirdsNailend",
"selected": false,
"source": "Agent:NewPumasLick",
"sourceHandle": "tool",
"target": "Tool:AllBirdsNail",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
},
"label": "Begin",
"name": "begin"
},
"dragging": false,
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": -9.569875358221438,
"y": 205.84018385864917
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"content": [
"{Agent:NewPumasLick@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:OrangeYearsShine",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 734.4061285881053,
"y": 199.9706031723009
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Knowledge Base Agent"
},
"dragging": false,
"id": "Agent:NewPumasLick",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 347.00048227952215,
"y": 186.49109364794631
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_10"
},
"dragging": false,
"id": "Tool:AllBirdsNail",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 220.24819746977118,
"y": 403.31576836482583
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
}
]
},
"history": [],
"memory": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@ -1,7 +1,11 @@
{
"id": 12,
"title": "Generate SEO Blog",
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Marketing",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 4,
"title": "Generate SEO Blog",
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Recommended",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 17,
"title": "SQL Assistant",
"description": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarters top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"title": {
"en": "SQL Assistant",
"zh": "SQL助理"},
"description": {
"en": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarters top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"zh": "用户能够将简单文本问题转化为完整的SQL查询并输出结果。只需输入您的问题例如“展示上个季度前十名按收入排序的产品”SQL助理就会生成精确的SQL语句对其运行您的数据库并几秒钟内返回结果。"},
"canvas_type": "Marketing",
"dsl": {
"components": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{
"id": 9,
"title": "Technical Docs QA",
"description": "This is a document question-and-answer system based on a knowledge base. When a user asks a question, it retrieves relevant document content to provide accurate answers.",
"title": {
"en": "Technical Docs QA",
"zh": "技术文档问答"},
"description": {
"en": "This is a document question-and-answer system based on a knowledge base. When a user asks a question, it retrieves relevant document content to provide accurate answers.",
"zh": "基于知识库的文档问答系统,当用户提出问题时,会检索相关本地文档并提供准确回答。"},
"canvas_type": "Customer Support",
"dsl": {
"components": {

View File

@ -1,9 +1,13 @@
{
"id": 14,
"title": "Trip Planner",
"description": "This smart trip planner utilizes LLM technology to automatically generate customized travel itineraries, with optional tool integration for enhanced reliability.",
"canvas_type": "Consumer App",
"title": {
"en": "Trip Planner",
"zh": "旅行规划"},
"description": {
"en": "This smart trip planner utilizes LLM technology to automatically generate customized travel itineraries, with optional tool integration for enhanced reliability.",
"zh": "智能旅行规划将利用大模型自动生成定制化的旅行行程,附带可选工具集成,以增强可靠性。"},
"canvas_type": "Consumer App",
"dsl": {
"components": {
"Agent:OddGuestsPump": {

View File

@ -1,9 +1,13 @@
{
"id": 16,
"title": "WebSearch Assistant",
"description": "A chat assistant template that integrates information extracted from a knowledge base and web searches to respond to queries. Let's start by setting up your knowledge base in 'Retrieval'!",
"canvas_type": "Other",
"title": {
"en": "WebSearch Assistant",
"zh": "网页搜索助手"},
"description": {
"en": "A chat assistant template that integrates information extracted from a knowledge base and web searches to respond to queries. Let's start by setting up your knowledge base in 'Retrieval'!",
"zh": "集成了从知识库和网络搜索中提取的信息回答用户问题。让我们从设置您的知识库开始检索!"},
"canvas_type": "Other",
"dsl": {
"components": {
"Agent:SmartSchoolsCross": {

View File

@ -16,9 +16,8 @@
from abc import ABC
import asyncio
from crawl4ai import AsyncWebCrawler
from agent.tools.base import ToolParamBase, ToolBase
from api.utils.web_utils import is_valid_url
class CrawlerParam(ToolParamBase):
@ -39,6 +38,7 @@ class Crawler(ToolBase, ABC):
component_name = "Crawler"
def _run(self, history, **kwargs):
from api.utils.web_utils import is_valid_url
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not is_valid_url(ans):

156
agent/tools/searxng.py Normal file
View File

@ -0,0 +1,156 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import requests
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
class SearXNGParam(ToolParamBase):
"""
Define the SearXNG component parameters.
"""
def __init__(self):
self.meta: ToolMeta = {
"name": "searxng_search",
"description": "SearXNG is a privacy-focused metasearch engine that aggregates results from multiple search engines without tracking users. It provides comprehensive web search capabilities.",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with SearXNG. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
},
"searxng_url": {
"type": "string",
"description": "The base URL of your SearXNG instance (e.g., http://localhost:4000). This is required to connect to your SearXNG server.",
"required": False,
"default": ""
}
}
}
super().__init__()
self.top_n = 10
self.searxng_url = ""
def check(self):
# Keep validation lenient so opening try-run panel won't fail without URL.
# Coerce top_n to int if it comes as string from UI.
try:
if isinstance(self.top_n, str):
self.top_n = int(self.top_n.strip())
except Exception:
pass
self.check_positive_integer(self.top_n, "Top N")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
},
"searxng_url": {
"name": "SearXNG URL",
"type": "line",
"placeholder": "http://localhost:4000"
}
}
class SearXNG(ToolBase, ABC):
component_name = "SearXNG"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
# Gracefully handle try-run without inputs
query = kwargs.get("query")
if not query or not isinstance(query, str) or not query.strip():
self.set_output("formalized_content", "")
return ""
searxng_url = (kwargs.get("searxng_url") or getattr(self._param, "searxng_url", "") or "").strip()
# In try-run, if no URL configured, just return empty instead of raising
if not searxng_url:
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
# 构建搜索参数
search_params = {
'q': query,
'format': 'json',
'categories': 'general',
'language': 'auto',
'safesearch': 1,
'pageno': 1
}
# 发送搜索请求
response = requests.get(
f"{searxng_url}/search",
params=search_params,
timeout=10
)
response.raise_for_status()
data = response.json()
# 验证响应数据
if not data or not isinstance(data, dict):
raise ValueError("Invalid response from SearXNG")
results = data.get("results", [])
if not isinstance(results, list):
raise ValueError("Invalid results format from SearXNG")
# 限制结果数量
results = results[:self._param.top_n]
# 处理搜索结果
self._retrieve_chunks(results,
get_title=lambda r: r.get("title", ""),
get_url=lambda r: r.get("url", ""),
get_content=lambda r: r.get("content", ""))
self.set_output("json", results)
return self.output("formalized_content")
except requests.RequestException as e:
last_e = f"Network error: {e}"
logging.exception(f"SearXNG network error: {e}")
time.sleep(self._param.delay_after_error)
except Exception as e:
last_e = str(e)
logging.exception(f"SearXNG error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", last_e)
return f"SearXNG error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Searching with SearXNG for relevant results...
""".format(self.get_input().get("query", "-_-!"))

View File

@ -93,6 +93,7 @@ def list_chunk():
def get():
chunk_id = request.args["chunk_id"]
try:
chunk = None
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(message="Tenant not found!")

View File

@ -66,7 +66,7 @@ def set_dialog():
if not is_create:
if not req.get("kb_ids", []) and not prompt_config.get("tavily_api_key") and "{knowledge}" in prompt_config['system']:
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base/Tavily used here.")
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base / Tavily used here.")
for p in prompt_config["parameters"]:
if p["optional"]:

View File

@ -243,7 +243,7 @@ def add_llm():
model_name=mdl_nm,
base_url=llm["api_base"]
)
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
arr, tc = mdl.similarity("Hello~ RAGFlower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0:
raise Exception("Not known.")
except KeyError:
@ -271,7 +271,7 @@ def add_llm():
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)
try:
for resp in mdl.tts("Hello~ Ragflower!"):
for resp in mdl.tts("Hello~ RAGFlower!"):
pass
except RuntimeError as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)

View File

@ -82,7 +82,7 @@ def create() -> Response:
server_name = req.get("name", "")
if not server_name or len(server_name.encode("utf-8")) > 255:
return get_data_error_result(message=f"Invaild MCP name or length is {len(server_name)} which is large than 255.")
return get_data_error_result(message=f"Invalid MCP name or length is {len(server_name)} which is large than 255.")
e, _ = MCPServerService.get_by_name_and_tenant(name=server_name, tenant_id=current_user.id)
if e:
@ -90,7 +90,7 @@ def create() -> Response:
url = req.get("url", "")
if not url:
return get_data_error_result(message="Invaild url.")
return get_data_error_result(message="Invalid url.")
headers = safe_json_parse(req.get("headers", {}))
req["headers"] = headers
@ -141,10 +141,10 @@ def update() -> Response:
return get_data_error_result(message="Unsupported MCP server type.")
server_name = req.get("name", mcp_server.name)
if server_name and len(server_name.encode("utf-8")) > 255:
return get_data_error_result(message=f"Invaild MCP name or length is {len(server_name)} which is large than 255.")
return get_data_error_result(message=f"Invalid MCP name or length is {len(server_name)} which is large than 255.")
url = req.get("url", mcp_server.url)
if not url:
return get_data_error_result(message="Invaild url.")
return get_data_error_result(message="Invalid url.")
headers = safe_json_parse(req.get("headers", mcp_server.headers))
req["headers"] = headers
@ -218,7 +218,7 @@ def import_multiple() -> Response:
continue
if not server_name or len(server_name.encode("utf-8")) > 255:
results.append({"server": server_name, "success": False, "message": f"Invaild MCP name or length is {len(server_name)} which is large than 255."})
results.append({"server": server_name, "success": False, "message": f"Invalid MCP name or length is {len(server_name)} which is large than 255."})
continue
base_name = server_name
@ -409,7 +409,7 @@ def test_mcp() -> Response:
url = req.get("url", "")
if not url:
return get_data_error_result(message="Invaild MCP url.")
return get_data_error_result(message="Invalid MCP url.")
server_type = req.get("server_type", "")
if server_type not in VALID_MCP_SERVER_TYPES:

View File

@ -74,7 +74,6 @@ def retrieval(tenant_id):
[tenant_id],
[kb_id],
embd_mdl,
doc_ids,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)

View File

@ -414,7 +414,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
stream=True,
**req,
),
@ -432,7 +432,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
stream=False,
**req,
)
@ -445,7 +445,6 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
def agent_completions(tenant_id, agent_id):
req = request.json
ans = {}
if req.get("stream", True):
def generate():
@ -456,14 +455,13 @@ def agent_completions(tenant_id, agent_id):
except Exception:
continue
if ans.get("event") != "message" or not ans.get("data", {}).get("reference", None):
if ans.get("event") not in ["message", "message_end"]:
continue
yield answer
yield "data:[DONE]\n\n"
if req.get("stream", True):
resp = Response(generate(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
@ -472,6 +470,8 @@ def agent_completions(tenant_id, agent_id):
return resp
full_content = ""
reference = {}
final_ans = ""
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
try:
ans = json.loads(answer[5:])
@ -480,11 +480,14 @@ def agent_completions(tenant_id, agent_id):
full_content += ans["data"]["content"]
if ans.get("data", {}).get("reference", None):
ans["data"]["content"] = full_content
return get_result(data=ans)
reference.update(ans["data"]["reference"])
final_ans = ans
except Exception as e:
return get_result(data=f"**ERROR**: {str(e)}")
return get_result(data=ans)
final_ans["data"]["content"] = full_content
final_ans["data"]["reference"] = reference
return get_result(data=final_ans)
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821

View File

@ -43,7 +43,7 @@ def create():
return get_data_error_result(message=f"Search name length is {len(search_name)} which is large than 255.")
e, _ = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Authorizationd identity.")
return get_data_error_result(message="Authorized identity.")
search_name = search_name.strip()
search_name = duplicate_name(SearchService.query, name=search_name, tenant_id=current_user.id, status=StatusEnum.VALID.value)
@ -78,7 +78,7 @@ def update():
tenant_id = req["tenant_id"]
e, _ = TenantService.get_by_id(tenant_id)
if not e:
return get_data_error_result(message="Authorizationd identity.")
return get_data_error_result(message="Authorized identity.")
search_id = req["search_id"]
if not SearchService.accessible4deletion(search_id, current_user.id):

View File

@ -824,9 +824,8 @@ class UserCanvas(DataBaseModel):
class CanvasTemplate(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
avatar = TextField(null=True, help_text="avatar base64 string")
title = CharField(max_length=255, null=True, help_text="Canvas title")
description = TextField(null=True, help_text="Canvas description")
title = JSONField(null=True, default=dict, help_text="Canvas title")
description = JSONField(null=True, default=dict, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type", index=True)
dsl = JSONField(null=True, default={})
@ -1021,4 +1020,13 @@ def migrate_db():
migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={})))
except Exception:
pass
try:
migrate(migrator.alter_column_type("canvas_template", "title", JSONField(null=True, default=dict, help_text="Canvas title")))
except Exception:
pass
try:
migrate(migrator.alter_column_type("canvas_template", "description", JSONField(null=True, default=dict, help_text="Canvas description")))
except Exception:
pass
logging.disable(logging.NOTSET)

View File

@ -213,26 +213,33 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
except Exception as e:
logging.exception(f"Agent OpenAI-Compatible completionOpenAI parse answer failed: {e}")
continue
if ans.get("event") != "message" or not ans.get("data", {}).get("reference", None):
if ans.get("event") not in ["message", "message_end"]:
continue
content_piece = ans["data"]["content"]
content_piece = ""
if ans["event"] == "message":
content_piece = ans["data"]["content"]
completion_tokens += len(tiktokenenc.encode(content_piece))
yield "data: " + json.dumps(
get_data_openai(
openai_data = get_data_openai(
id=session_id or str(uuid4()),
model=agent_id,
content=content_piece,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
stream=True
),
ensure_ascii=False
) + "\n\n"
)
if ans.get("data", {}).get("reference", None):
openai_data["choices"][0]["delta"]["reference"] = ans["data"]["reference"]
yield "data: " + json.dumps(openai_data, ensure_ascii=False) + "\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logging.exception(e)
yield "data: " + json.dumps(
get_data_openai(
id=session_id or str(uuid4()),
@ -250,6 +257,7 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
else:
try:
all_content = ""
reference = {}
for ans in completion(
tenant_id=tenant_id,
agent_id=agent_id,
@ -260,13 +268,18 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
):
if isinstance(ans, str):
ans = json.loads(ans[5:])
if ans.get("event") != "message" or not ans.get("data", {}).get("reference", None):
if ans.get("event") not in ["message", "message_end"]:
continue
all_content += ans["data"]["content"]
if ans["event"] == "message":
all_content += ans["data"]["content"]
if ans.get("data", {}).get("reference", None):
reference.update(ans["data"]["reference"])
completion_tokens = len(tiktokenenc.encode(all_content))
yield get_data_openai(
openai_data = get_data_openai(
id=session_id or str(uuid4()),
model=agent_id,
prompt_tokens=prompt_tokens,
@ -276,7 +289,12 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
param=None
)
if reference:
openai_data["choices"][0]["message"]["reference"] = reference
yield openai_data
except Exception as e:
logging.exception(e)
yield get_data_openai(
id=session_id or str(uuid4()),
model=agent_id,

View File

@ -133,6 +133,13 @@ class UserService(CommonService):
cls.model.update(user_dict).where(
cls.model.id == user_id).execute()
@classmethod
@DB.connection_context()
def is_admin(cls, user_id):
return cls.model.select().where(
cls.model.id == user_id,
cls.model.is_superuser == 1).count() > 0
class TenantService(CommonService):
"""Service class for managing tenant-related database operations.

View File

@ -131,6 +131,12 @@ class RAGFlowExcelParser:
return tb_chunks
def markdown(self, fnm):
import pandas as pd
file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
df = pd.read_excel(file_like_object)
return df.to_markdown(index=False)
def __call__(self, fnm):
file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
wb = RAGFlowExcelParser._load_excel_to_workbook(file_like_object)

View File

@ -93,6 +93,7 @@ class RAGFlowPdfParser:
model_dir, "updown_concat_xgb.model"))
self.page_from = 0
self.column_num = 1
def __char_width(self, c):
return (c["x1"] - c["x0"]) // max(len(c["text"]), 1)
@ -427,10 +428,18 @@ class RAGFlowPdfParser:
i += 1
self.boxes = bxs
def _naive_vertical_merge(self):
def _naive_vertical_merge(self, zoomin=3):
bxs = Recognizer.sort_Y_firstly(
self.boxes, np.median(
self.mean_height) / 3)
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
logging.info("Multi-column................... {} {}".format(column_width,
self.page_images[0].size[0] / zoomin / self.column_num))
self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
i = 0
while i + 1 < len(bxs):
b = bxs[i]
@ -1139,20 +1148,94 @@ class RAGFlowPdfParser:
need_image, zoomin, return_html, False)
return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
start = timer()
self.__images__(fnm, zoomin)
if callback:
callback(0.40, "OCR finished ({:.2f}s)".format(timer() - start))
start = timer()
self._layouts_rec(zoomin)
if callback:
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._table_transformer_job(zoomin)
if callback:
callback(0.83, "Table analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._text_merge()
self._concat_downward()
self._naive_vertical_merge(zoomin)
if callback:
callback(0.92, "Text merged ({:.2f}s)".format(timer() - start))
start = timer()
tbls, figs = self._extract_table_figure(True, zoomin, True, True, True)
def insert_table_figures(tbls_or_figs, layout_type):
def min_rectangle_distance(rect1, rect2):
import math
pn1, left1, right1, top1, bottom1 = rect1
pn2, left2, right2, top2, bottom2 = rect2
if (right1 >= left2 and right2 >= left1 and
bottom1 >= top2 and bottom2 >= top1):
return 0 + (pn1-pn2)*10000
if right1 < left2:
dx = left2 - right1
elif right2 < left1:
dx = left1 - right2
else:
dx = 0
if bottom1 < top2:
dy = top2 - bottom1
elif bottom2 < top1:
dy = top1 - bottom2
else:
dy = 0
return math.sqrt(dx*dx + dy*dy) + (pn1-pn2)*10000
for (img, txt), poss in tbls_or_figs:
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
dists = [(min_rectangle_distance((pn, left, right, top, bott), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
min_i = np.argmin(dists, axis=0)[0]
min_i, rect = bboxes[dists[min_i][-1]]
if isinstance(txt, list):
txt = "\n".join(txt)
self.boxes.insert(min_i, {
"page_number": rect[0], "x0": rect[1], "x1": rect[2], "top": rect[3], "bottom": rect[4], "layout_type": layout_type, "text": txt, "image": img
})
for b in self.boxes:
b["position_tag"] = self._line_tag(b, zoomin)
b["image"] = self.crop(b["position_tag"], zoomin)
insert_table_figures(tbls, "table")
insert_table_figures(figs, "figure")
if callback:
callback(1, "Structured ({:.2f}s)".format(timer() - start))
return deepcopy(self.boxes)
@staticmethod
def remove_tag(txt):
return re.sub(r"@@[\t0-9.-]+?##", "", txt)
def crop(self, text, ZM=3, need_position=False):
imgs = []
@staticmethod
def extract_positions(txt):
poss = []
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", text):
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
pn, left, right, top, bottom = tag.strip(
"#").strip("@").split("\t")
left, right, top, bottom = float(left), float(
right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")],
left, right, top, bottom))
return poss
def crop(self, text, ZM=3, need_position=False):
imgs = []
poss = self.extract_positions(text)
if not poss:
if need_position:
return None, None
@ -1296,8 +1379,8 @@ class VisionParser(RAGFlowPdfParser):
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
callback = kwargs.get("callback", lambda prog, msg: None)
self.__images__(fnm=filename, zoomin=3, page_from=from_page, page_to=to_page, **kwargs)
zoomin = kwargs.get("zoomin", 3)
self.__images__(fnm=filename, zoomin=zoomin, page_from=from_page, page_to=to_page, callback=callback)
total_pdf_pages = self.total_page
@ -1311,16 +1394,19 @@ class VisionParser(RAGFlowPdfParser):
if pdf_page_num < start_page or pdf_page_num >= end_page:
continue
docs = picture_vision_llm_chunk(
text = picture_vision_llm_chunk(
binary=img_binary,
vision_model=self.vision_model,
prompt=vision_llm_describe_prompt(page=pdf_page_num+1),
callback=callback,
)
if kwargs.get("callback"):
kwargs["callback"](idx*1./len(self.page_images), f"Processed: {idx+1}/{len(self.page_images)}")
if docs:
all_docs.append(docs)
return [(doc, "") for doc in all_docs], []
if text:
width, height = self.page_images[idx].size
all_docs.append((text, f"{pdf_page_num+1} 0 {width/zoomin} 0 {height/zoomin}"))
return all_docs, []
if __name__ == "__main__":

View File

@ -31,11 +31,11 @@ def save_results(image_list, results, labels, output_dir='output/', threshold=0.
logging.debug("save result to: " + out_path)
def draw_box(im, result, lables, threshold=0.5):
def draw_box(im, result, labels, threshold=0.5):
draw_thickness = min(im.size) // 320
draw = ImageDraw.Draw(im)
color_list = get_color_map_list(len(lables))
clsid2color = {n.lower():color_list[i] for i,n in enumerate(lables)}
color_list = get_color_map_list(len(labels))
clsid2color = {n.lower():color_list[i] for i,n in enumerate(labels)}
result = [r for r in result if r["score"] >= threshold]
for dt in result:

View File

@ -143,7 +143,6 @@ Non-stream:
}
```
Failure:
```json
@ -200,19 +199,24 @@ curl --request POST \
- `stream` (*Body parameter*) `boolean`
Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
- `session_id` (*Body parameter*) `string`
Agent session id.
#### Response
Stream:
```json
...
data: {
"id": "5fa65c94-e316-4954-800a-06dfd5827052",
"id": "c39f6f9c83d911f0858253708ecb6573",
"object": "chat.completion.chunk",
"model": "99ee29d6783511f09c921a6272e682d8",
"model": "d1f79142831f11f09cc51795b9eb07c0",
"choices": [
{
"delta": {
"content": "Hello"
"content": " terminal"
},
"finish_reason": null,
"index": 0
@ -220,21 +224,83 @@ data: {
]
}
data: {"id": "518022d9-545b-4100-89ed-ecd9e46fa753", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": "!"}, "finish_reason": null, "index": 0}]}
data: {
"id": "c39f6f9c83d911f0858253708ecb6573",
"object": "chat.completion.chunk",
"model": "d1f79142831f11f09cc51795b9eb07c0",
"choices": [
{
"delta": {
"content": "."
},
"finish_reason": null,
"index": 0
}
]
}
data: {"id": "f37c4af0-8187-4c86-8186-048c3c6ffe4e", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " How"}, "finish_reason": null, "index": 0}]}
data: {"id": "3ebc0fcb-0f85-4024-b4a5-3b03234a16df", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " can"}, "finish_reason": null, "index": 0}]}
data: {"id": "efa1f3cf-7bc4-47a4-8e53-cd696f290587", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " I"}, "finish_reason": null, "index": 0}]}
data: {"id": "2eb6f741-50a3-4d3d-8418-88be27895611", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " assist"}, "finish_reason": null, "index": 0}]}
data: {"id": "f1227e4f-bf8b-462c-8632-8f5269492ce9", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " you"}, "finish_reason": null, "index": 0}]}
data: {"id": "35b669d0-b2be-4c0c-88d8-17ff98592b21", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " today"}, "finish_reason": null, "index": 0}]}
data: {"id": "f00d8a39-af60-4f32-924f-d64106a7fdf1", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": "?"}, "finish_reason": null, "index": 0}]}
data: {
"id": "c39f6f9c83d911f0858253708ecb6573",
"object": "chat.completion.chunk",
"model": "d1f79142831f11f09cc51795b9eb07c0",
"choices": [
{
"delta": {
"content": "",
"reference": {
"chunks": {
"20": {
"id": "4b8935ac0a22deb1",
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"url": null,
"similarity": 0.5697155305154673,
"vector_similarity": 0.7323851005515574,
"term_similarity": 0.5000000005,
"doc_type": ""
}
},
"doc_aggs": {
"INSTALL22.md": {
"doc_name": "INSTALL22.md",
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"count": 3
},
"INSTALL.md": {
"doc_name": "INSTALL.md",
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"count": 2
},
"INSTALL(1).md": {
"doc_name": "INSTALL(1).md",
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"count": 2
},
"INSTALL3.md": {
"doc_name": "INSTALL3.md",
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"count": 1
}
}
}
},
"finish_reason": null,
"index": 0
}
]
}
data: [DONE]
```
@ -249,30 +315,77 @@ Non-stream:
"index": 0,
"logprobs": null,
"message": {
"content": "Hello! How can I assist you today?",
"content": "\nTo install Neovim, the process varies depending on your operating system:\n\n### For Windows:\n1. **Download from GitHub**: \n - Visit the [Neovim releases page](https://github.com/neovim/neovim/releases)\n - Download the latest Windows installer (nvim-win64.msi)\n - Run the installer and follow the prompts\n\n2. **Using winget** (Windows Package Manager):\n...",
"reference": {
"chunks": {
"20": {
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"doc_type": "",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"id": "4b8935ac0a22deb1",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"similarity": 0.5697155305154673,
"term_similarity": 0.5000000005,
"url": null,
"vector_similarity": 0.7323851005515574
}
},
"doc_aggs": {
"INSTALL(1).md": {
"count": 2,
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"doc_name": "INSTALL(1).md"
},
"INSTALL.md": {
"count": 2,
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"doc_name": "INSTALL.md"
},
"INSTALL22.md": {
"count": 3,
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"doc_name": "INSTALL22.md"
},
"INSTALL3.md": {
"count": 1,
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"doc_name": "INSTALL3.md"
}
}
},
"role": "assistant"
}
}
],
"created": null,
"id": "17aa4ec5-6d36-40c6-9a96-1b069c216d59",
"model": "99ee29d6783511f09c921a6272e682d8",
"id": "c39f6f9c83d911f0858253708ecb6573",
"model": "d1f79142831f11f09cc51795b9eb07c0",
"object": "chat.completion",
"param": null,
"usage": {
"completion_tokens": 9,
"completion_tokens": 415,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0
},
"prompt_tokens": 1,
"total_tokens": 10
"prompt_tokens": 6,
"total_tokens": 421
}
}
```
Failure:
```json
@ -729,6 +842,7 @@ Failure:
"message": "The dataset doesn't exist"
}
```
---
### Get knowledge graph
@ -808,6 +922,7 @@ Failure:
"message": "The dataset doesn't exist"
}
```
---
### Delete knowledge graph
@ -855,6 +970,7 @@ Failure:
"message": "The dataset doesn't exist"
}
```
---
## FILE MANAGEMENT WITHIN DATASET
@ -3017,41 +3133,88 @@ success without `session_id` provided and with no variables specified in the **B
Stream:
```json
data:{
"event": "message",
"message_id": "eb0c0a5e783511f0b9b61a6272e682d8",
"created_at": 1755083342,
"task_id": "99ee29d6783511f09c921a6272e682d8",
"data": {
"content": "Hello"
},
"session_id": "eaf19a8e783511f0b9b61a6272e682d8"
}
data:{
"event": "message",
"message_id": "eb0c0a5e783511f0b9b61a6272e682d8",
"created_at": 1755083342,
"task_id": "99ee29d6783511f09c921a6272e682d8",
"data": {
"content": "!"
},
"session_id": "eaf19a8e783511f0b9b61a6272e682d8"
}
data:{
"event": "message",
"message_id": "eb0c0a5e783511f0b9b61a6272e682d8",
"created_at": 1755083342,
"task_id": "99ee29d6783511f09c921a6272e682d8",
"data": {
"content": " How"
},
"session_id": "eaf19a8e783511f0b9b61a6272e682d8"
}
...
data: {
"event": "message",
"message_id": "cecdcb0e83dc11f0858253708ecb6573",
"created_at": 1756364483,
"task_id": "d1f79142831f11f09cc51795b9eb07c0",
"data": {
"content": " themes"
},
"session_id": "cd097ca083dc11f0858253708ecb6573"
}
data: {
"event": "message",
"message_id": "cecdcb0e83dc11f0858253708ecb6573",
"created_at": 1756364483,
"task_id": "d1f79142831f11f09cc51795b9eb07c0",
"data": {
"content": "."
},
"session_id": "cd097ca083dc11f0858253708ecb6573"
}
data: {
"event": "message_end",
"message_id": "cecdcb0e83dc11f0858253708ecb6573",
"created_at": 1756364483,
"task_id": "d1f79142831f11f09cc51795b9eb07c0",
"data": {
"reference": {
"chunks": {
"20": {
"id": "4b8935ac0a22deb1",
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"url": null,
"similarity": 0.5705525104787287,
"vector_similarity": 0.7351750337624289,
"term_similarity": 0.5000000005,
"doc_type": ""
}
},
"doc_aggs": {
"INSTALL22.md": {
"doc_name": "INSTALL22.md",
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"count": 3
},
"INSTALL.md": {
"doc_name": "INSTALL.md",
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"count": 2
},
"INSTALL(1).md": {
"doc_name": "INSTALL(1).md",
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"count": 2
},
"INSTALL3.md": {
"doc_name": "INSTALL3.md",
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"count": 1
}
}
}
},
"session_id": "cd097ca083dc11f0858253708ecb6573"
}
data:[DONE]
```
@ -3061,21 +3224,77 @@ Non-stream:
{
"code": 0,
"data": {
"created_at": 1755083440,
"created_at": 1756363177,
"data": {
"created_at": 547061.147866385,
"elapsed_time": 2.595433341921307,
"inputs": {},
"content": "\nTo install Neovim, the process varies depending on your operating system:\n\n### For macOS:\nUsing Homebrew:\n```bash\nbrew install neovim\n```\n\n### For Linux (Debian/Ubuntu):\n```bash\nsudo apt update\nsudo apt install neovim\n```\n\nFor other Linux distributions, you can use their respective package managers or build from source.\n\n### For Windows:\n1. Download the latest Windows installer from the official Neovim GitHub releases page\n2. Run the installer and follow the prompts\n3. Add Neovim to your PATH if not done automatically\n\n### From source (Unix-like systems):\n```bash\ngit clone https://github.com/neovim/neovim.git\ncd neovim\nmake CMAKE_BUILD_TYPE=Release\nsudo make install\n```\n\nAfter installation, you can verify it by running `nvim --version` in your terminal.",
"created_at": 18129.044975627,
"elapsed_time": 10.0157331670016,
"inputs": {
"var1": {
"value": "I am var1"
},
"var2": {
"value": "I am var2"
}
},
"outputs": {
"_created_time": 547061.149137775,
"_elapsed_time": 8.720310870558023e-05,
"content": "Hello! How can I assist you today?"
"_created_time": 18129.502422278,
"_elapsed_time": 0.00013378599760471843,
"content": "\nTo install Neovim, the process varies depending on your operating system:\n\n### For macOS:\nUsing Homebrew:\n```bash\nbrew install neovim\n```\n\n### For Linux (Debian/Ubuntu):\n```bash\nsudo apt update\nsudo apt install neovim\n```\n\nFor other Linux distributions, you can use their respective package managers or build from source.\n\n### For Windows:\n1. Download the latest Windows installer from the official Neovim GitHub releases page\n2. Run the installer and follow the prompts\n3. Add Neovim to your PATH if not done automatically\n\n### From source (Unix-like systems):\n```bash\ngit clone https://github.com/neovim/neovim.git\ncd neovim\nmake CMAKE_BUILD_TYPE=Release\nsudo make install\n```\n\nAfter installation, you can verify it by running `nvim --version` in your terminal."
},
"reference": {
"chunks": {
"20": {
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"doc_type": "",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"id": "4b8935ac0a22deb1",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"similarity": 0.5705525104787287,
"term_similarity": 0.5000000005,
"url": null,
"vector_similarity": 0.7351750337624289
}
},
"doc_aggs": {
"INSTALL(1).md": {
"count": 2,
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"doc_name": "INSTALL(1).md"
},
"INSTALL.md": {
"count": 2,
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"doc_name": "INSTALL.md"
},
"INSTALL22.md": {
"count": 3,
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"doc_name": "INSTALL22.md"
},
"INSTALL3.md": {
"count": 1,
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"doc_name": "INSTALL3.md"
}
}
}
},
"event": "workflow_finished",
"message_id": "25807f94783611f095171a6272e682d8",
"session_id": "25663198783611f095171a6272e682d8",
"task_id": "99ee29d6783511f09c921a6272e682d8"
"message_id": "c4692a2683d911f0858253708ecb6573",
"session_id": "c39f6f9c83d911f0858253708ecb6573",
"task_id": "d1f79142831f11f09cc51795b9eb07c0"
}
}
```

49
rag/flow/__init__.py Normal file
View File

@ -0,0 +1,49 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import importlib
import inspect
from types import ModuleType
from typing import Dict, Type
_package_path = os.path.dirname(__file__)
__all_classes: Dict[str, Type] = {}
def _import_submodules() -> None:
for filename in os.listdir(_package_path): # noqa: F821
if filename.startswith("__") or not filename.endswith(".py") or filename.startswith("base"):
continue
module_name = filename[:-3]
try:
module = importlib.import_module(f".{module_name}", package=__name__)
_extract_classes_from_module(module) # noqa: F821
except ImportError as e:
print(f"Warning: Failed to import module {module_name}: {str(e)}")
def _extract_classes_from_module(module: ModuleType) -> None:
for name, obj in inspect.getmembers(module):
if (inspect.isclass(obj) and
obj.__module__ == module.__name__ and not name.startswith("_")):
__all_classes[name] = obj
globals()[name] = obj
_import_submodules()
__all__ = list(__all_classes.keys()) + ["__all_classes"]
del _package_path, _import_submodules, _extract_classes_from_module

59
rag/flow/base.py Normal file
View File

@ -0,0 +1,59 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
import os
import logging
from functools import partial
from typing import Any
import trio
from agent.component.base import ComponentParamBase, ComponentBase
from api.utils.api_utils import timeout
class ProcessParamBase(ComponentParamBase):
def __init__(self):
super().__init__()
self.timeout = 100000000
self.persist_logs = True
class ProcessBase(ComponentBase):
def __init__(self, pipeline, id, param: ProcessParamBase):
super().__init__(pipeline, id, param)
self.callback = partial(self._canvas.callback, self.component_name)
async def invoke(self, **kwargs) -> dict[str, Any]:
self.set_output("_created_time", time.perf_counter())
for k,v in kwargs.items():
self.set_output(k, v)
try:
with trio.fail_after(self._param.timeout):
await self._invoke(**kwargs)
self.callback(1, "Done")
except Exception as e:
if self.get_exception_default_value():
self.set_exception_default_value()
else:
self.set_output("_ERROR", str(e))
logging.exception(e)
self.callback(-1, str(e))
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
async def _invoke(self, **kwargs):
raise NotImplementedError()

47
rag/flow/begin.py Normal file
View File

@ -0,0 +1,47 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.utils.storage_factory import STORAGE_IMPL
class FileParam(ProcessParamBase):
def __init__(self):
super().__init__()
def check(self):
pass
class File(ProcessBase):
component_name = "File"
async def _invoke(self, **kwargs):
if self._canvas._doc_id:
e, doc = DocumentService.get_by_id(self._canvas._doc_id)
if not e:
self.set_output("_ERROR", f"Document({self._canvas._doc_id}) not found!")
return
b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
self.set_output("blob", STORAGE_IMPL.get(b, n))
self.set_output("name", doc.name)
else:
file = kwargs.get("file")
self.set_output("name", file["name"])
self.set_output("blob", FileService.get_blob(file["created_by"], file["id"]))

160
rag/flow/chunker.py Normal file
View File

@ -0,0 +1,160 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import trio
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from graphrag.utils import get_llm_cache, chat_limiter, set_llm_cache
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.nlp import naive_merge, naive_merge_with_images
from rag.prompts.prompts import keyword_extraction, question_proposal
class ChunkerParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.method_options = ["general", "q&a", "resume", "manual", "table", "paper", "book", "laws", "presentation", "one"]
self.method = "general"
self.chunk_token_size = 512
self.delimiter = "\n"
self.overlapped_percent = 0
self.page_rank = 0
self.auto_keywords = 0
self.auto_questions = 0
self.tag_sets = []
self.llm_setting = {
"llm_name": "",
"lang": "Chinese"
}
def check(self):
self.check_valid_value(self.method.lower(), "Chunk method abnormal.", self.method_options)
self.check_positive_integer(self.chunk_token_size, "Chunk token size.")
self.check_nonnegative_number(self.page_rank, "Page rank value: (0, 10]")
self.check_nonnegative_number(self.auto_keywords, "Auto-keyword value: (0, 10]")
self.check_nonnegative_number(self.auto_questions, "Auto-question value: (0, 10]")
self.check_decimal_float(self.overlapped_percent, "Overlapped percentage: [0, 1)")
class Chunker(ProcessBase):
component_name = "Chunker"
def _general(self, **kwargs):
self.callback(random.randint(1,5)/100., "Start to chunk via `General`.")
if kwargs.get("output_format") in ["markdown", "text"]:
cks = naive_merge(kwargs.get(kwargs["output_format"]), self._param.chunk_token_size, self._param.delimiter, self._param.overlapped_percent)
return [{"text": c} for c in cks]
sections, section_images = [], []
for o in kwargs["json"]:
sections.append((o["text"], o.get("position_tag","")))
section_images.append(o.get("image"))
chunks, images = naive_merge_with_images(sections, section_images,self._param.chunk_token_size, self._param.delimiter, self._param.overlapped_percent)
return [{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c)
} for c,img in zip(chunks,images)]
def _q_and_a(self, **kwargs):
pass
def _resume(self, **kwargs):
pass
def _manual(self, **kwargs):
pass
def _table(self, **kwargs):
pass
def _paper(self, **kwargs):
pass
def _book(self, **kwargs):
pass
def _laws(self, **kwargs):
pass
def _presentation(self, **kwargs):
pass
def _one(self, **kwargs):
pass
async def _invoke(self, **kwargs):
function_map = {
"general": self._general,
"q&a": self._q_and_a,
"resume": self._resume,
"manual": self._manual,
"table": self._table,
"paper": self._paper,
"book": self._book,
"laws": self._laws,
"presentation": self._presentation,
"one": self._one,
}
chunks = function_map[self._param.method](**kwargs)
llm_setting = self._param.llm_setting
async def auto_keywords():
nonlocal chunks, llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_name"], lang=llm_setting["lang"])
async def doc_keyword_extraction(chat_mdl, ck, topn):
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "keywords", {"topn": topn})
if not cached:
async with chat_limiter:
cached = await trio.to_thread.run_sync(lambda: keyword_extraction(chat_mdl, ck["text"], topn))
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "keywords", {"topn": topn})
if cached:
ck["keywords"] = cached.split(",")
async with trio.open_nursery() as nursery:
for ck in chunks:
nursery.start_soon(doc_keyword_extraction, chat_mdl, ck, self._param.auto_keywords)
async def auto_questions():
nonlocal chunks, llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_name"], lang=llm_setting["lang"])
async def doc_question_proposal(chat_mdl, d, topn):
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "question", {"topn": topn})
if not cached:
async with chat_limiter:
cached = await trio.to_thread.run_sync(lambda: question_proposal(chat_mdl, ck["text"], topn))
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "question", {"topn": topn})
if cached:
d["questions"] = cached.split("\n")
async with trio.open_nursery() as nursery:
for ck in chunks:
nursery.start_soon(doc_question_proposal, chat_mdl, ck, self._param.auto_questions)
async with trio.open_nursery() as nursery:
if self._param.auto_questions:
nursery.start_soon(auto_questions)
if self._param.auto_keywords:
nursery.start_soon(auto_keywords)
if self._param.page_rank:
for ck in chunks:
ck["page_rank"] = self._param.page_rank
self.set_output("chunks", chunks)

107
rag/flow/parser.py Normal file
View File

@ -0,0 +1,107 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import trio
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser.pdf_parser import RAGFlowPdfParser, PlainParser, VisionParser
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.llm.cv_model import Base as VLM
from deepdoc.parser import ExcelParser
class ParserParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.setups = {
"pdf": {
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
"vlm_name": "",
"lang": "Chinese",
"suffix": ["pdf"],
"output_format": "json"
},
"excel": {
"output_format": "html"
},
"ppt": {},
"image": {
"parse_method": "ocr"
},
"email": {},
"text": {},
"audio": {},
"video": {},
}
def check(self):
if self.setups["pdf"].get("parse_method") not in ["deepdoc", "plain_text"]:
assert self.setups["pdf"].get("vlm_name"), "No VLM specified."
assert self.setups["pdf"].get("lang"), "No language specified."
class Parser(ProcessBase):
component_name = "Parser"
def _pdf(self, blob):
self.callback(random.randint(1,5)/100., "Start to work on a PDF.")
conf = self._param.setups["pdf"]
self.set_output("output_format", conf["output_format"])
if conf.get("parse_method") == "deepdoc":
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
elif conf.get("parse_method") == "plain_text":
lines,_ = PlainParser()(blob)
bboxes = [{"text": t} for t,_ in lines]
else:
assert conf.get("vlm_name")
vision_model = LLMBundle(self._canvas.tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("vlm_name"), lang=self.setups["pdf"].get("lang"))
lines, _ = VisionParser(vision_model=vision_model)(bin, callback=self.callback)
bboxes = []
for t, poss in lines:
pn, x0, x1, top, bott = poss.split(" ")
bboxes.append({"page_number": int(pn), "x0": int(x0), "x1": int(x1), "top": int(top), "bottom": int(bott), "text": t})
self.set_output("json", bboxes)
mkdn = ""
for b in bboxes:
if b.get("layout_type", "") == "title":
mkdn += "\n## "
if b.get("layout_type", "") == "figure":
mkdn += "\n![Image]({})".format(VLM.image2base64(b["image"]))
continue
mkdn += b.get("text", "") + "\n"
self.set_output("markdown", mkdn)
def _excel(self, blob):
self.callback(random.randint(1,5)/100., "Start to work on a Excel.")
conf = self._param.setups["excel"]
excel_parser = ExcelParser()
if conf.get("output_format") == "html":
html = excel_parser.html(blob,1000000000)
self.set_output("html", html)
elif conf.get("output_format") == "json":
self.set_output("json", [{"text": txt} for txt in excel_parser(blob) if txt])
elif conf.get("output_format") == "markdown":
self.set_output("markdown", excel_parser.markdown(blob))
async def _invoke(self, **kwargs):
function_map = {
"pdf": self._pdf,
}
for p_type, conf in self._param.setups.items():
if kwargs.get("name", "").split(".")[-1].lower() not in conf.get("suffix", []):
continue
await trio.to_thread.run_sync(function_map[p_type], kwargs["blob"])
break

121
rag/flow/pipeline.py Normal file
View File

@ -0,0 +1,121 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import random
import time
import trio
from agent.canvas import Graph
from api.db.services.document_service import DocumentService
from rag.utils.redis_conn import REDIS_CONN
class Pipeline(Graph):
def __init__(self, dsl: str, tenant_id=None, doc_id=None, task_id=None, flow_id=None):
super().__init__(dsl, tenant_id, task_id)
self._doc_id = doc_id
self._flow_id = flow_id
self._kb_id = None
if doc_id:
self._kb_id = DocumentService.get_knowledgebase_id(doc_id)
assert self._kb_id, f"Can't find KB of this document: {doc_id}"
def callback(self, component_name: str, progress: float|int|None=None, message: str = "") -> None:
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
bin = REDIS_CONN.get(log_key)
obj = json.loads(bin.encode("utf-8"))
if obj:
if obj[-1]["component_name"] == component_name:
obj[-1]["trace"].append({"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")})
else:
obj.append({
"component_name": component_name,
"trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]
})
else:
obj = [{
"component_name": component_name,
"trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]
}]
REDIS_CONN.set_obj(log_key, obj, 60*10)
except Exception as e:
logging.exception(e)
def fetch_logs(self):
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
bin = REDIS_CONN.get(log_key)
if bin:
return json.loads(bin.encode("utf-8"))
except Exception as e:
logging.exception(e)
return []
def reset(self):
super().reset()
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
REDIS_CONN.set_obj(log_key, [], 60*10)
except Exception as e:
logging.exception(e)
async def run(self, **kwargs):
st = time.perf_counter()
if not self.path:
self.path.append("begin")
if self._doc_id:
DocumentService.update_by_id(self._doc_id, {
"progress": random.randint(0,5)/100.,
"progress_msg": "Start the pipeline...",
"process_begin_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
self.error = ""
idx = len(self.path) - 1
if idx == 0:
cpn_obj = self.get_component_obj(self.path[0])
await cpn_obj.invoke(**kwargs)
if cpn_obj.error():
self.error = "[ERROR]" + cpn_obj.error()
else:
idx += 1
self.path.extend(cpn_obj.get_downstream())
while idx < len(self.path) and not self.error:
last_cpn = self.get_component_obj(self.path[idx-1])
cpn_obj = self.get_component_obj(self.path[idx])
async def invoke():
nonlocal last_cpn, cpn_obj
await cpn_obj.invoke(**last_cpn.output())
async with trio.open_nursery() as nursery:
nursery.start_soon(invoke)
if cpn_obj.error():
self.error = "[ERROR]" + cpn_obj.error()
break
idx += 1
self.path.extend(cpn_obj.get_downstream())
if self._doc_id:
DocumentService.update_by_id(self._doc_id, {
"progress": 1 if not self.error else -1,
"progress_msg": "Pipeline finished...\n" + self.error,
"process_duration": time.perf_counter() - st
})

57
rag/flow/tests/client.py Normal file
View File

@ -0,0 +1,57 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor
import trio
from api import settings
from rag.flow.pipeline import Pipeline
def print_logs(pipeline):
last_logs = "[]"
while True:
time.sleep(5)
logs = pipeline.fetch_logs()
logs_str = json.dumps(logs)
if logs_str != last_logs:
print(logs_str)
last_logs = logs_str
if __name__ == '__main__':
parser = argparse.ArgumentParser()
dsl_default_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"dsl_examples",
"general_pdf_all.json",
)
parser.add_argument('-s', '--dsl', default=dsl_default_path, help="input dsl", action='store', required=True)
parser.add_argument('-d', '--doc_id', default=False, help="Document ID", action='store', required=True)
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
args = parser.parse_args()
settings.init_settings()
pipeline = Pipeline(open(args.dsl, "r").read(), tenant_id=args.tenant_id, doc_id=args.doc_id, task_id="xxxx", flow_id="xxx")
pipeline.reset()
exe = ThreadPoolExecutor(max_workers=5)
thr = exe.submit(print_logs, pipeline)
trio.run(pipeline.run)
thr.result()

View File

@ -0,0 +1,54 @@
{
"components": {
"begin": {
"obj":{
"component_name": "File",
"params": {
}
},
"downstream": ["parser:0"],
"upstream": []
},
"parser:0": {
"obj": {
"component_name": "Parser",
"params": {
"setups": {
"pdf": {
"parse_method": "deepdoc",
"vlm_name": "",
"lang": "Chinese",
"suffix": [
"pdf"
],
"output_format": "json"
}
}
}
},
"downstream": ["chunker:0"],
"upstream": ["begin"]
},
"chunker:0": {
"obj": {
"component_name": "Chunker",
"params": {
"method": "general",
"auto_keywords": 5
}
},
"downstream": ["tokenizer:0"],
"upstream": ["chunker:0"]
},
"tokenizer:0": {
"obj": {
"component_name": "Tokenizer",
"params": {
}
},
"downstream": [],
"upstream": ["chunker:0"]
}
},
"path": []
}

134
rag/flow/tokenizer.py Normal file
View File

@ -0,0 +1,134 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import re
import numpy as np
import trio
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from api.utils.api_utils import timeout
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.nlp import rag_tokenizer
from rag.settings import EMBEDDING_BATCH_SIZE
from rag.svr.task_executor import embed_limiter
from rag.utils import truncate
class TokenizerParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.search_method = ["full_text", "embedding"]
self.filename_embd_weight = 0.1
def check(self):
for v in self.search_method:
self.check_valid_value(v.lower(), "Chunk method abnormal.", ["full_text", "embedding"])
class Tokenizer(ProcessBase):
component_name = "Tokenizer"
async def _embedding(self, name, chunks):
parts = sum(["full_text" in self._param.search_method, "embedding" in self._param.search_method])
token_count = 0
if self._canvas._kb_id:
e, kb = KnowledgebaseService.get_by_id(self._canvas._kb_id)
embedding_id = kb.embd_id
else:
e, ten = TenantService.get_by_id(self._canvas._tenant_id)
embedding_id = ten.embd_id
embedding_model = LLMBundle(self._canvas._tenant_id, LLMType.EMBEDDING, llm_name=embedding_id)
texts = []
for c in chunks:
if c.get("questions"):
texts.append("\n".join(c["questions"]))
else:
texts.append(re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c["text"]))
vts, c = embedding_model.encode([name])
token_count += c
tts = np.concatenate([vts[0] for _ in range(len(texts))], axis=0)
@timeout(60)
def batch_encode(txts):
nonlocal embedding_model
return embedding_model.encode([truncate(c, embedding_model.max_length-10) for c in txts])
cnts_ = np.array([])
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
async with embed_limiter:
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i: i + EMBEDDING_BATCH_SIZE]))
if len(cnts_) == 0:
cnts_ = vts
else:
cnts_ = np.concatenate((cnts_, vts), axis=0)
token_count += c
if i % 33 == 32:
self.callback(i*1./len(texts)/parts/EMBEDDING_BATCH_SIZE + 0.5*(parts-1))
cnts = cnts_
title_w = float(self._param.filename_embd_weight)
vects = (title_w * tts + (1 - title_w) * cnts) if len(tts) == len(cnts) else cnts
assert len(vects) == len(chunks)
for i, ck in enumerate(chunks):
v = vects[i].tolist()
ck["q_%d_vec" % len(v)] = v
return chunks, token_count
async def _invoke(self, **kwargs):
parts = sum(["full_text" in self._param.search_method, "embedding" in self._param.search_method])
if "full_text" in self._param.search_method:
self.callback(random.randint(1,5)/100., "Start to tokenize.")
if kwargs.get("chunks"):
chunks = kwargs["chunks"]
for i, ck in enumerate(chunks):
if ck.get("questions"):
ck["question_tks"] = rag_tokenizer.tokenize("\n".join(ck["questions"]))
if ck.get("keywords"):
ck["important_tks"] = rag_tokenizer.tokenize("\n".join(ck["keywords"]))
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99:
self.callback(i*1./len(chunks)/parts)
elif kwargs.get("output_format") in ["markdown", "text"]:
ck = {
"text": kwargs.get(kwargs["output_format"], "")
}
if "full_text" in self._param.search_method:
ck["content_ltks"] = rag_tokenizer.tokenize(kwargs.get(kwargs["output_format"], ""))
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
chunks = [ck]
else:
chunks = kwargs["json"]
for i, ck in enumerate(chunks):
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99:
self.callback(i*1./len(chunks)/parts)
self.callback(1./parts, "Finish tokenizing.")
if "embedding" in self._param.search_method:
self.callback(random.randint(1,5)/100. + 0.5*(parts-1), "Start embedding inference.")
chunks, token_count = await self._embedding(kwargs.get("name", ""), chunks)
self.set_output("embedding_token_consumption", token_count)
self.callback(1., "Finish embedding.")
self.set_output("chunks", chunks)

View File

@ -43,6 +43,7 @@ FACTORY_DEFAULT_BASE_URL = {
SupportedLiteLLMProvider.Tongyi_Qianwen: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Dashscope: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Moonshot: "https://api.moonshot.cn/v1",
SupportedLiteLLMProvider.Ollama: "",
}

View File

@ -1362,7 +1362,7 @@ class LiteLLMBase(ABC):
self.prefix = LITELLM_PROVIDER_PREFIX.get(self.provider, "")
self.model_name = f"{self.prefix}{model_name}"
self.api_key = key
self.base_url = base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip('/')
# Configure retry parameters
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))

View File

@ -554,8 +554,8 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。", overl
if num_tokens_from_string(sec) < chunk_token_num:
add_chunk(sec, pos)
continue
splited_sec = re.split(r"(%s)" % dels, sec, flags=re.DOTALL)
for sub_sec in splited_sec:
split_sec = re.split(r"(%s)" % dels, sec, flags=re.DOTALL)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, pos)
@ -563,7 +563,8 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。", overl
return cks
def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。;!?"):
def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。;!?", overlapped_percent=0):
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
if not texts or len(texts) != len(images):
return [], []
cks = [""]
@ -578,7 +579,10 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
if tnum < 8:
pos = ""
# Ensure that the length of the merged chunk does not exceed chunk_token_num
if cks[-1] == "" or tk_nums[-1] > chunk_token_num:
if cks[-1] == "" or tk_nums[-1] > chunk_token_num * (100 - overlapped_percent)/100.:
if cks:
overlapped = RAGFlowPdfParser.remove_tag(cks[-1])
t = overlapped[int(len(overlapped)*(100-overlapped_percent)/100.):] + t
if t.find(pos) < 0:
t += pos
cks.append(t)
@ -600,14 +604,14 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
if isinstance(text, tuple):
text_str = text[0]
text_pos = text[1] if len(text) > 1 else ""
splited_sec = re.split(r"(%s)" % dels, text_str)
for sub_sec in splited_sec:
split_sec = re.split(r"(%s)" % dels, text_str)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, image, text_pos)
else:
splited_sec = re.split(r"(%s)" % dels, text)
for sub_sec in splited_sec:
split_sec = re.split(r"(%s)" % dels, text)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, image)
@ -684,8 +688,8 @@ def naive_merge_docx(sections, chunk_token_num=128, delimiter="\n。"):
dels = get_delimiters(delimiter)
for sec, image in sections:
splited_sec = re.split(r"(%s)" % dels, sec)
for sub_sec in splited_sec:
split_sec = re.split(r"(%s)" % dels, sec)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, image,"")

View File

@ -293,8 +293,7 @@ async def build_chunks(task, progress_callback):
docs.append(d)
return
output_buffer = BytesIO()
try:
with BytesIO() as output_buffer:
if isinstance(d["image"], bytes):
output_buffer.write(d["image"])
output_buffer.seek(0)
@ -317,8 +316,6 @@ async def build_chunks(task, progress_callback):
d["image"].close()
del d["image"] # Remove image reference
docs.append(d)
finally:
output_buffer.close() # Ensure BytesIO is always closed
except Exception:
logging.exception(
"Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["id"]))

View File

@ -93,7 +93,8 @@ class MCPToolCallSession(ToolCallSession):
msg = f"Timeout initializing client_session for server {self._mcp_server.id}"
logging.error(msg)
await self._process_mcp_tasks(None, msg)
except Exception:
except Exception as e:
logging.exception(e)
msg = "Connection failed (possibly due to auth error). Please check authentication settings first"
await self._process_mcp_tasks(None, msg)
@ -148,7 +149,7 @@ class MCPToolCallSession(ToolCallSession):
if result.isError:
return f"MCP server error: {result.content}"
# For now we only support text content
# For now, we only support text content
if isinstance(result.content[0], TextContent):
return result.content[0].text
else:

View File

@ -336,7 +336,7 @@ class RedisDB:
def delete_if_equal(self, key: str, expected_value: str) -> bool:
"""
Do follwing atomically:
Do following atomically:
Delete a key if its value is equals to the given one, do nothing otherwise.
"""
return bool(self.lua_delete_if_equal(keys=[key], args=[expected_value], client=self.REDIS))

9
web/package-lock.json generated
View File

@ -12,7 +12,7 @@
"@antv/g2": "^5.2.10",
"@antv/g6": "^5.0.10",
"@hookform/resolvers": "^3.9.1",
"@js-preview/excel": "^1.7.8",
"@js-preview/excel": "^1.7.14",
"@lexical/react": "^0.23.1",
"@monaco-editor/react": "^4.6.0",
"@radix-ui/react-accordion": "^1.2.3",
@ -4114,9 +4114,10 @@
}
},
"node_modules/@js-preview/excel": {
"version": "1.7.8",
"resolved": "https://registry.npmmirror.com/@js-preview/excel/-/excel-1.7.8.tgz",
"integrity": "sha512-pLJTDIhbzqaiH3kUPnbeWLsBFeCAHjnBwloMvoREdW4YUYTcsHDQ5h41QTyRJWSYRJBCcsy6Kt7KeDHOHDbVEw=="
"version": "1.7.14",
"resolved": "https://registry.npmmirror.com/@js-preview/excel/-/excel-1.7.14.tgz",
"integrity": "sha512-7QHtuRalWQzWIKARc/IRN8+kj1S5eWV4+cAQipzZngE3mVxMPL1RHXKJt/ONmpcKZ410egYkaBuOOs9+LctBkA==",
"license": "MIT"
},
"node_modules/@lexical/clipboard": {
"version": "0.23.1",

View File

@ -23,7 +23,7 @@
"@antv/g2": "^5.2.10",
"@antv/g6": "^5.0.10",
"@hookform/resolvers": "^3.9.1",
"@js-preview/excel": "^1.7.8",
"@js-preview/excel": "^1.7.14",
"@lexical/react": "^0.23.1",
"@monaco-editor/react": "^4.6.0",
"@radix-ui/react-accordion": "^1.2.3",

View File

@ -6,6 +6,7 @@ import { App, ConfigProvider, ConfigProviderProps, theme } from 'antd';
import pt_BR from 'antd/lib/locale/pt_BR';
import deDE from 'antd/locale/de_DE';
import enUS from 'antd/locale/en_US';
import ru_RU from 'antd/locale/ru_RU';
import vi_VN from 'antd/locale/vi_VN';
import zhCN from 'antd/locale/zh_CN';
import zh_HK from 'antd/locale/zh_HK';
@ -34,6 +35,7 @@ const AntLanguageMap = {
en: enUS,
zh: zhCN,
'zh-TRADITIONAL': zh_HK,
ru: ru_RU,
vi: vi_VN,
'pt-BR': pt_BR,
de: deDE,

View File

@ -0,0 +1,5 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="currentColor">
<path d="M15.5 14h-.79l-.28-.27C15.41 12.59 16 11.11 16 9.5 16 5.91 13.09 3 9.5 3S3 5.91 3 9.5 5.91 16 9.5 16c1.61 0 3.09-.59 4.23-1.57l.27.28v.79l5 4.99L20.49 19l-4.99-5zm-6 0C7.01 14 5 11.99 5 9.5S7.01 5 9.5 5 14 7.01 14 9.5 11.99 14 9.5 14z"/>
<circle cx="9.5" cy="9.5" r="2.5" fill="currentColor" opacity="0.6"/>
<path d="M12 2l1.5 3h3L15 7l1.5 3L15 8.5 12 10 9 8.5 7.5 10 9 7 7.5 5h3L12 2z" opacity="0.4"/>
</svg>

After

Width:  |  Height:  |  Size: 506 B

View File

@ -0,0 +1,80 @@
import { transformFile2Base64 } from '@/utils/file-util';
import { Pencil, Upload } from 'lucide-react';
import {
ChangeEventHandler,
forwardRef,
useCallback,
useEffect,
useState,
} from 'react';
import { useTranslation } from 'react-i18next';
import { Avatar, AvatarFallback, AvatarImage } from './ui/avatar';
import { Input } from './ui/input';
type AvatarUploadProps = { value?: string; onChange?: (value: string) => void };
export const AvatarUpload = forwardRef<HTMLInputElement, AvatarUploadProps>(
function AvatarUpload({ value, onChange }, ref) {
const { t } = useTranslation();
const [avatarBase64Str, setAvatarBase64Str] = useState(''); // Avatar Image base64
const handleChange: ChangeEventHandler<HTMLInputElement> = useCallback(
async (ev) => {
const file = ev.target?.files?.[0];
if (/\.(jpg|jpeg|png|webp|bmp)$/i.test(file?.name ?? '')) {
const str = await transformFile2Base64(file!);
setAvatarBase64Str(str);
onChange?.(str);
}
ev.target.value = '';
},
[onChange],
);
useEffect(() => {
if (value) {
setAvatarBase64Str(value);
}
}, [value]);
return (
<div className="flex justify-start items-end space-x-2">
<div className="relative group">
{!avatarBase64Str ? (
<div className="w-[64px] h-[64px] grid place-content-center border border-dashed rounded-md">
<div className="flex flex-col items-center">
<Upload />
<p>{t('common.upload')}</p>
</div>
</div>
) : (
<div className="w-[64px] h-[64px] relative grid place-content-center">
<Avatar className="w-[64px] h-[64px] rounded-md">
<AvatarImage className=" block" src={avatarBase64Str} alt="" />
<AvatarFallback></AvatarFallback>
</Avatar>
<div className="absolute inset-0 bg-[#000]/20 group-hover:bg-[#000]/60">
<Pencil
size={20}
className="absolute right-2 bottom-0 opacity-50 hidden group-hover:block"
/>
</div>
</div>
)}
<Input
placeholder=""
type="file"
title=""
accept="image/*"
className="absolute top-0 left-0 w-full h-full opacity-0 cursor-pointer"
onChange={handleChange}
ref={ref}
/>
</div>
<div className="margin-1 text-muted-foreground">
{t('knowledgeConfiguration.photoTip')}
</div>
</div>
);
},
);

View File

@ -15,123 +15,122 @@ interface EditTagsProps {
onChange?: (tags: string[]) => void;
}
const EditTag = ({ value = [], onChange }: EditTagsProps) => {
const [inputVisible, setInputVisible] = useState(false);
const [inputValue, setInputValue] = useState('');
const inputRef = useRef<HTMLInputElement>(null);
const EditTag = React.forwardRef<HTMLDivElement, EditTagsProps>(
({ value = [], onChange }: EditTagsProps, ref) => {
const [inputVisible, setInputVisible] = useState(false);
const [inputValue, setInputValue] = useState('');
const inputRef = useRef<HTMLInputElement>(null);
useEffect(() => {
if (inputVisible) {
inputRef.current?.focus();
}
}, [inputVisible]);
useEffect(() => {
if (inputVisible) {
inputRef.current?.focus();
}
}, [inputVisible]);
const handleClose = (removedTag: string) => {
const newTags = value?.filter((tag) => tag !== removedTag);
onChange?.(newTags ?? []);
};
const handleClose = (removedTag: string) => {
const newTags = value?.filter((tag) => tag !== removedTag);
onChange?.(newTags ?? []);
};
const showInput = () => {
setInputVisible(true);
};
const showInput = () => {
setInputVisible(true);
};
const handleInputChange = (e: React.ChangeEvent<HTMLInputElement>) => {
setInputValue(e.target.value);
};
const handleInputChange = (e: React.ChangeEvent<HTMLInputElement>) => {
setInputValue(e.target.value);
};
const handleInputConfirm = () => {
if (inputValue && value) {
const newTags = inputValue
.split(';')
.map((tag) => tag.trim())
.filter((tag) => tag && !value.includes(tag));
onChange?.([...value, ...newTags]);
}
setInputVisible(false);
setInputValue('');
};
const handleInputConfirm = () => {
if (inputValue && value) {
const newTags = inputValue
.split(';')
.map((tag) => tag.trim())
.filter((tag) => tag && !value.includes(tag));
onChange?.([...value, ...newTags]);
}
setInputVisible(false);
setInputValue('');
};
const forMap = (tag: string) => {
return (
<HoverCard>
<HoverCardContent side="top">{tag}</HoverCardContent>
<HoverCardTrigger>
<div
key={tag}
className="w-fit flex items-center justify-center gap-2 border-dashed border px-1 rounded-sm bg-bg-card"
>
<div className="flex gap-2 items-center">
<div className="max-w-80 overflow-hidden text-ellipsis">
{tag}
const forMap = (tag: string) => {
return (
<HoverCard key={tag}>
<HoverCardContent side="top">{tag}</HoverCardContent>
<HoverCardTrigger asChild>
<div className="w-fit flex items-center justify-center gap-2 border-dashed border px-1 rounded-sm bg-bg-card">
<div className="flex gap-2 items-center">
<div className="max-w-80 overflow-hidden text-ellipsis">
{tag}
</div>
<X
className="w-4 h-4 text-muted-foreground hover:text-primary"
onClick={(e) => {
e.preventDefault();
handleClose(tag);
}}
/>
</div>
<X
className="w-4 h-4 text-muted-foreground hover:text-primary"
onClick={(e) => {
e.preventDefault();
handleClose(tag);
}}
/>
</div>
</div>
</HoverCardTrigger>
</HoverCard>
</HoverCardTrigger>
</HoverCard>
);
};
const tagChild = value?.map(forMap);
const tagPlusStyle: React.CSSProperties = {
borderStyle: 'dashed',
};
return (
<div>
{inputVisible ? (
<Input
ref={inputRef}
type="text"
className="h-8 bg-bg-card"
value={inputValue}
onChange={handleInputChange}
onBlur={handleInputConfirm}
onKeyDown={(e) => {
if (e?.key === 'Enter') {
handleInputConfirm();
}
}}
/>
) : (
<Button
variant="dashed"
className="w-fit flex items-center justify-center gap-2 bg-bg-card"
onClick={showInput}
style={tagPlusStyle}
>
<PlusOutlined />
</Button>
)}
{Array.isArray(tagChild) && tagChild.length > 0 && (
<TweenOneGroup
className="flex gap-2 flex-wrap mt-2"
enter={{
scale: 0.8,
opacity: 0,
type: 'from',
duration: 100,
}}
onEnd={(e) => {
if (e.type === 'appear' || e.type === 'enter') {
(e.target as any).style = 'display: inline-block';
}
}}
leave={{ opacity: 0, width: 0, scale: 0, duration: 200 }}
appear={false}
>
{tagChild}
</TweenOneGroup>
)}
</div>
);
};
const tagChild = value?.map(forMap);
const tagPlusStyle: React.CSSProperties = {
borderStyle: 'dashed',
};
return (
<div>
{inputVisible ? (
<Input
ref={inputRef}
type="text"
className="h-8 bg-bg-card"
value={inputValue}
onChange={handleInputChange}
onBlur={handleInputConfirm}
onKeyDown={(e) => {
if (e?.key === 'Enter') {
handleInputConfirm();
}
}}
/>
) : (
<Button
variant="dashed"
className="w-fit flex items-center justify-center gap-2 bg-bg-card"
onClick={showInput}
style={tagPlusStyle}
>
<PlusOutlined />
</Button>
)}
{Array.isArray(tagChild) && tagChild.length > 0 && (
<TweenOneGroup
className="flex gap-2 flex-wrap mt-2"
enter={{
scale: 0.8,
opacity: 0,
type: 'from',
duration: 100,
}}
onEnd={(e) => {
if (e.type === 'appear' || e.type === 'enter') {
(e.target as any).style = 'display: inline-block';
}
}}
leave={{ opacity: 0, width: 0, scale: 0, duration: 200 }}
appear={false}
>
{tagChild}
</TweenOneGroup>
)}
</div>
);
};
},
);
export default EditTag;

View File

@ -102,8 +102,8 @@ export function LlmSettingFieldItems({
control={form.control}
name={'parameter'}
render={({ field }) => (
<FormItem>
<FormLabel>{t('freedom')}</FormLabel>
<FormItem className="flex justify-between items-center">
<FormLabel className="flex-1">{t('freedom')}</FormLabel>
<FormControl>
<Select
{...field}
@ -112,7 +112,7 @@ export function LlmSettingFieldItems({
field.onChange(val);
}}
>
<SelectTrigger>
<SelectTrigger className="flex-1 !m-0">
<SelectValue />
</SelectTrigger>
<SelectContent>

View File

@ -30,7 +30,6 @@
.messageTextDark {
.chunkText();
.messageTextBase();
background-color: #1668dc;
word-break: break-word;
:global(section.think) {
color: rgb(166, 166, 166);

View File

@ -235,7 +235,7 @@ function MarkdownContent({
<HoverCardTrigger>
<CircleAlert className="size-4 inline-block" />
</HoverCardTrigger>
<HoverCardContent>
<HoverCardContent className="max-w-3xl">
{renderPopoverContent(chunkIndex)}
</HoverCardContent>
</HoverCard>

View File

@ -183,13 +183,13 @@ const RaptorFormFields = () => {
render={({ field }) => (
<FormItem className=" items-center space-y-0 ">
<div className="flex items-center">
<FormLabel className="text-sm text-muted-foreground whitespace-nowrap w-1/4">
<FormLabel className="text-sm text-muted-foreground whitespace-wrap w-1/4">
{t('randomSeed')}
</FormLabel>
<div className="w-3/4">
<FormControl defaultValue={0}>
<div className="flex gap-4">
<Input {...field} defaultValue={0} />
<div className="flex gap-4 items-center">
<Input {...field} defaultValue={0} type="number" />
<Button
size={'sm'}
onClick={handleGenerate}

View File

@ -9,7 +9,24 @@ export interface InputProps
}
const Input = React.forwardRef<HTMLInputElement, InputProps>(
({ className, type, value, ...props }, ref) => {
({ className, type, value, onChange, ...props }, ref) => {
const isControlled = value !== undefined;
const { defaultValue, ...restProps } = props;
const inputValue = isControlled ? value : defaultValue;
const handleChange: React.ChangeEventHandler<HTMLInputElement> = (e) => {
if (type === 'number') {
const numValue = e.target.value === '' ? '' : Number(e.target.value);
onChange?.({
...e,
target: {
...e.target,
value: numValue,
},
} as React.ChangeEvent<HTMLInputElement>);
} else {
onChange?.(e);
}
};
return (
<input
type={type}
@ -18,8 +35,9 @@ const Input = React.forwardRef<HTMLInputElement, InputProps>(
className,
)}
ref={ref}
value={value ?? ''}
{...props}
value={inputValue ?? ''}
onChange={handleChange}
{...restProps}
/>
);
},

View File

@ -29,6 +29,7 @@ import {
} from '@/components/ui/popover';
import { Separator } from '@/components/ui/separator';
import { cn } from '@/lib/utils';
import { isEmpty } from 'lodash';
export type MultiSelectOptionType = {
label: React.ReactNode;
@ -209,13 +210,17 @@ export const MultiSelect = React.forwardRef<
const [isAnimating, setIsAnimating] = React.useState(false);
React.useEffect(() => {
if (!selectedValues?.length && props.value) {
if (isEmpty(selectedValues) && !isEmpty(props.value)) {
setSelectedValues(props.value as string[]);
}
}, [props.value, selectedValues]);
React.useEffect(() => {
if (!selectedValues?.length && !props.value && defaultValue) {
if (
isEmpty(selectedValues) &&
isEmpty(props.value) &&
!isEmpty(defaultValue)
) {
setSelectedValues(defaultValue);
}
}, [defaultValue, props.value, selectedValues]);

View File

@ -1,4 +1,5 @@
import { useHandleFilterSubmit } from '@/components/list-filter-bar/use-handle-filter-submit';
import message from '@/components/ui/message';
import {
IKnowledge,
IKnowledgeGraph,
@ -13,7 +14,6 @@ import kbService, {
} from '@/services/knowledge-service';
import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
import { useDebounce } from 'ahooks';
import { message } from 'antd';
import { useCallback, useEffect, useMemo, useRef, useState } from 'react';
import { useParams, useSearchParams } from 'umi';
import {

View File

@ -10,6 +10,8 @@ export interface PromptConfig {
keyword: boolean;
refine_multiturn: boolean;
use_kg: boolean;
reasoning?: boolean;
cross_languages?: Array<string>;
}
export interface Parameter {

View File

@ -48,10 +48,16 @@ export interface IFlowTemplate {
canvas_type: string;
create_date: string;
create_time: number;
description: string;
description: {
en: string;
zh: string;
};
dsl: DSL;
id: string;
title: string;
title: {
en: string;
zh: string;
};
update_date: string;
update_time: number;
}

View File

@ -868,6 +868,9 @@ export default {
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'Eine Komponente, die auf duckduckgo.com sucht und Ihnen ermöglicht, die Anzahl der Suchergebnisse mit TopN anzugeben. Sie ergänzt die vorhandenen Wissensdatenbanken.',
searXNG: 'SearXNG',
searXNGDescription:
'Eine Komponente, die auf https://searxng.org/ sucht und Ihnen ermöglicht, die Anzahl der Suchergebnisse mit TopN anzugeben. Sie ergänzt die vorhandenen Wissensdatenbanken.',
channel: 'Kanal',
channelTip:
'Führt eine Textsuche oder Nachrichtensuche für die Eingabe der Komponente durch',

View File

@ -1005,6 +1005,9 @@ This auto-tagging feature enhances retrieval by adding another layer of domain-s
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'A component that searches from duckduckgo.com, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases.',
searXNG: 'SearXNG',
searXNGDescription:
'A component that searches via your provided SearXNG instance URL. Specify TopN and the instance URL.',
channel: 'Channel',
channelTip: `Perform text search or news search on the component's input`,
text: 'Text',

View File

@ -571,6 +571,9 @@ export default {
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'Un componente que recupera resultados de búsqueda de duckduckgo.com, con TopN especificando el número de resultados de búsqueda. Complementa las bases de conocimiento existentes.',
searXNG: 'SearXNG',
searXNGDescription:
'Un componente que realiza búsquedas mediante la URL de la instancia de SearXNG que usted proporcione. Especifique TopN y la URL de la instancia.',
channel: 'Canal',
channelTip:
'Realizar búsqueda de texto o búsqueda de noticias en la entrada del componente.',

View File

@ -781,6 +781,9 @@ export default {
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'Un composant qui recherche sur duckduckgo.com, vous permettant de spécifier le nombre de résultats avec TopN. Il complète les bases de connaissances existantes.',
searXNG: 'SearXNG',
searXNGDescription:
'Un composant qui effectue des recherches via la URL de l\'instance de SearXNG que vous fournissez. Spécifiez TopN et l\'URL de l\'instance.',
channel: 'Canal',
channelTip:
"Effectuer une recherche de texte ou d'actualités sur l'entrée du composant",

View File

@ -759,6 +759,9 @@ export default {
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'Komponen yang mengambil hasil pencarian dari duckduckgo.com, dengan TopN menentukan jumlah hasil pencarian. Ini melengkapi basis pengetahuan yang ada.',
searXNG: 'SearXNG',
searXNGDescription:
'Komponen yang melakukan pencarian menggunakan URL instance SearXNG yang Anda berikan. Spesifikasikan TopN dan URL instance.',
channel: 'Saluran',
channelTip: `Lakukan pencarian teks atau pencarian berita pada input komponen`,
text: 'Teks',

View File

@ -739,6 +739,9 @@ export default {
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'duckduckgo.comから検索を行うコンポーネントで、TopNを使用して検索結果の数を指定します。既存のナレッジベースを補完します。',
searXNG: 'SearXNG',
searXNGDescription:
'SearXNGのインスタンスURLを提供して検索を行うコンポーネント。TopNとインスタンスURLを指定してください。',
channel: 'チャンネル',
channelTip: `コンポーネントの入力に対してテキスト検索またはニュース検索を実行します`,
text: 'テキスト',

View File

@ -726,6 +726,9 @@ export default {
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'Um componente que realiza buscas no duckduckgo.com, permitindo especificar o número de resultados de pesquisa usando TopN. Ele complementa as bases de conhecimento existentes.',
searXNG: 'SearXNG',
searXNGDescription:
'Um componente que realiza buscas via URL da instância SearXNG que você fornece. Especifique TopN e URL da instância.',
channel: 'Canal',
channelTip: `Realize uma busca por texto ou por notícias na entrada do componente`,
text: 'Texto',

View File

@ -859,6 +859,9 @@ export default {
baiduDescription: `Ищет на baidu.com.`,
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription: 'Ищет на duckduckgo.com.',
searXNG: 'SearXNG',
searXNGDescription:
'Компонент, который выполняет поиск по указанному вами URL-адресу экземпляра SearXNG. Укажите TopN и URL-адрес экземпляра.',
channel: 'Канал',
channelTip: `Текстовый или новостной поиск`,
text: 'Текст',

View File

@ -818,6 +818,9 @@ export default {
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'Một thành phần truy xuất kết quả tìm kiếm từ duckduckgo.com, với TopN xác định số lượng kết quả tìm kiếm. Nó bổ sung cho các cơ sở kiến thức hiện có.',
searXNG: 'SearXNG',
searXNGDescription:
'Một thành phần truy xuất kết quả tìm kiếm từ searxng.com, với TopN xác định số lượng kết quả tìm kiếm. Nó bổ sung cho các cơ sở kiến thức hiện có.',
channel: 'Kênh',
channelTip: `Thực hiện tìm kiếm văn bản hoặc tìm kiếm tin tức trên đầu vào của thành phần`,
text: 'Văn bản',

View File

@ -845,6 +845,9 @@ export default {
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'此元件用於從 www.duckduckgo.com 取得搜尋結果。通常,它作為知識庫的補充。 Top N 指定您需要採用的搜尋結果數。',
searXNG: 'SearXNG',
searXNGDescription:
'該組件通過您提供的 SearXNG 實例地址進行搜索。請設置 Top N 和實例 URL。',
channel: '頻道',
channelTip: '針對該組件的輸入進行文字搜尋或新聞搜索',
text: '文字',

View File

@ -971,6 +971,9 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'此元件用於從 www.duckduckgo.com 取得搜尋結果。通常,它作為知識庫的補充。 Top N 指定您需要調整的搜尋結果數。',
searXNG: 'SearXNG',
searXNGDescription:
'该组件通过您提供的 SearXNG 实例地址进行搜索。请设置 Top N 和实例 URL。',
channel: '频道',
channelTip: '针对该组件的输入进行文本搜索或新闻搜索',
text: '文本',

View File

@ -201,6 +201,7 @@ function AccordionOperators({
Operator.GitHub,
Operator.Invoke,
Operator.WenCai,
Operator.SearXNG,
]}
isCustomDropdown={isCustomDropdown}
mousePosition={mousePosition}

View File

@ -18,6 +18,7 @@ import { memo, useCallback } from 'react';
import { useParams } from 'umi';
import DebugContent from '../debug-content';
import { useAwaitCompentData } from '../hooks/use-chat-logic';
import { useIsTaskMode } from '../hooks/use-get-begin-query';
function AgentChatBox() {
const {
@ -48,6 +49,8 @@ function AgentChatBox() {
canvasId: canvasId as string,
});
const isTaskMode = useIsTaskMode();
const handleUploadFile: NonNullable<FileUploadProps['onUpload']> =
useCallback(
async (files, options) => {
@ -109,18 +112,20 @@ function AgentChatBox() {
</div>
<div ref={scrollRef} />
</div>
<NextMessageInput
value={value}
sendLoading={sendLoading}
disabled={isWaitting}
sendDisabled={sendLoading || isWaitting}
isUploading={loading || isWaitting}
onPressEnter={handlePressEnter}
onInputChange={handleInputChange}
stopOutputMessage={stopOutputMessage}
onUpload={handleUploadFile}
conversationId=""
/>
{isTaskMode || (
<NextMessageInput
value={value}
sendLoading={sendLoading}
disabled={isWaitting}
sendDisabled={sendLoading || isWaitting}
isUploading={loading || isWaitting}
onPressEnter={handlePressEnter}
onInputChange={handleInputChange}
stopOutputMessage={stopOutputMessage}
onUpload={handleUploadFile}
conversationId=""
/>
)}
</section>
<PdfDrawer
visible={visible}

View File

@ -18,13 +18,23 @@ import i18n from '@/locales/config';
import api from '@/utils/api';
import { get } from 'lodash';
import trim from 'lodash/trim';
import { useCallback, useContext, useEffect, useMemo, useState } from 'react';
import {
useCallback,
useContext,
useEffect,
useMemo,
useRef,
useState,
} from 'react';
import { useParams } from 'umi';
import { v4 as uuid } from 'uuid';
import { BeginId } from '../constant';
import { AgentChatLogContext } from '../context';
import { transferInputsArrayToObject } from '../form/begin-form/use-watch-change';
import { useSelectBeginNodeDataInputs } from '../hooks/use-get-begin-query';
import {
useIsTaskMode,
useSelectBeginNodeDataInputs,
} from '../hooks/use-get-begin-query';
import { BeginQuery } from '../interface';
import useGraphStore from '../store';
import { receiveMessageError } from '../utils';
@ -173,10 +183,22 @@ export function useSetUploadResponseData() {
};
}
export const buildRequestBody = (value: string = '') => {
const id = uuid();
const msgBody = {
id,
content: value.trim(),
role: MessageType.User,
};
return msgBody;
};
export const useSendAgentMessage = (
url?: string,
addEventList?: (data: IEventList, messageId: string) => void,
beginParams?: any[],
isShared?: boolean,
) => {
const { id: agentId } = useParams();
const { handleInputChange, value, setValue } = useHandleMessageInputChange();
@ -188,7 +210,9 @@ export const useSendAgentMessage = (
return answerList[0]?.message_id;
}, [answerList]);
// const { refetch } = useFetchAgent();
const isTaskMode = useIsTaskMode();
// const { refetch } = useFetchAgent(); // This will cause the shared page to also send a request
const { findReferenceByMessageId } = useFindMessageReference(answerList);
const prologue = useGetBeginNodePrologue();
@ -212,7 +236,14 @@ export const useSendAgentMessage = (
} = useSetUploadResponseData();
const sendMessage = useCallback(
async ({ message }: { message: Message; messages?: Message[] }) => {
async ({
message,
beginInputs,
}: {
message: Message;
messages?: Message[];
beginInputs?: BeginQuery[];
}) => {
const params: Record<string, unknown> = {
id: agentId,
};
@ -220,13 +251,13 @@ export const useSendAgentMessage = (
params.running_hint_text = i18n.t('flow.runningHintText', {
defaultValue: 'is running...🕞',
});
if (message.content) {
if (typeof message.content === 'string') {
const query = inputs;
params.query = message.content;
// params.message_id = message.id;
params.inputs = transferInputsArrayToObject(
beginParams ? beginParams : query,
beginInputs || beginParams || query,
); // begin operator inputs
params.files = uploadResponseList;
@ -289,12 +320,7 @@ export const useSendAgentMessage = (
const handlePressEnter = useCallback(() => {
if (trim(value) === '') return;
const id = uuid();
const msgBody = {
id,
content: value.trim(),
role: MessageType.User,
};
const msgBody = buildRequestBody(value);
if (done) {
setValue('');
sendMessage({
@ -315,6 +341,24 @@ export const useSendAgentMessage = (
scrollToBottom,
]);
const sendedTaskMessage = useRef<boolean>(false);
const sendMessageInTaskMode = useCallback(() => {
if (isShared || !isTaskMode || sendedTaskMessage.current) {
return;
}
const msgBody = buildRequestBody('');
sendMessage({
message: msgBody,
});
sendedTaskMessage.current = true;
}, [isShared, isTaskMode, sendMessage]);
useEffect(() => {
sendMessageInTaskMode();
}, [sendMessageInTaskMode]);
useEffect(() => {
const { content, id } = findMessageFromList(answerList);
const inputAnswer = findInputFromList(answerList);
@ -328,12 +372,22 @@ export const useSendAgentMessage = (
}, [answerList, addNewestOneAnswer]);
useEffect(() => {
if (isTaskMode) {
return;
}
if (prologue) {
addNewestOneAnswer({
answer: prologue,
});
}
}, [addNewestOneAnswer, agentId, prologue, send, sendFormMessage]);
}, [
addNewestOneAnswer,
agentId,
isTaskMode,
prologue,
send,
sendFormMessage,
]);
useEffect(() => {
if (typeof addEventList === 'function') {
@ -365,5 +419,6 @@ export const useSendAgentMessage = (
findReferenceByMessageId,
appendUploadResponseList,
addNewestOneAnswer,
sendMessage,
};
};

View File

@ -88,6 +88,7 @@ export enum Operator {
TavilyExtract = 'TavilyExtract',
UserFillUp = 'UserFillUp',
StringTransform = 'StringTransform',
SearXNG = 'SearXNG',
}
export const SwitchLogicOperatorOptions = ['and', 'or'];
@ -211,6 +212,9 @@ export const componentMenuList = [
{
name: Operator.Email,
},
{
name: Operator.SearXNG,
},
];
export const SwitchOperatorOptions = [
@ -340,6 +344,22 @@ export const initialDuckValues = {
},
};
export const initialSearXNGValues = {
top_n: '10',
searxng_url: '',
query: AgentGlobals.SysQuery,
outputs: {
formalized_content: {
value: '',
type: 'string',
},
json: {
value: [],
type: 'Array<Object>',
},
},
};
export const initialBaiduValues = {
top_n: 10,
...initialQueryBaseValues,
@ -807,6 +827,7 @@ export const RestrictedUpstreamMap = {
[Operator.GitHub]: [Operator.Begin, Operator.Retrieval],
[Operator.BaiduFanyi]: [Operator.Begin, Operator.Retrieval],
[Operator.QWeather]: [Operator.Begin, Operator.Retrieval],
[Operator.SearXNG]: [Operator.Begin, Operator.Retrieval],
[Operator.ExeSQL]: [Operator.Begin],
[Operator.Switch]: [Operator.Begin],
[Operator.WenCai]: [Operator.Begin],
@ -851,6 +872,7 @@ export const NodeMap = {
[Operator.GitHub]: 'ragNode',
[Operator.BaiduFanyi]: 'ragNode',
[Operator.QWeather]: 'ragNode',
[Operator.SearXNG]: 'ragNode',
[Operator.ExeSQL]: 'ragNode',
[Operator.Switch]: 'switchNode',
[Operator.Concentrator]: 'logicNode',

View File

@ -27,6 +27,7 @@ import QWeatherForm from '../form/qweather-form';
import RelevantForm from '../form/relevant-form';
import RetrievalForm from '../form/retrieval-form/next';
import RewriteQuestionForm from '../form/rewrite-question-form';
import SearXNGForm from '../form/searxng-form';
import StringTransformForm from '../form/string-transform-form';
import SwitchForm from '../form/switch-form';
import TavilyExtractForm from '../form/tavily-extract-form';
@ -132,6 +133,9 @@ export const FormConfigMap = {
[Operator.Invoke]: {
component: InvokeForm,
},
[Operator.SearXNG]: {
component: SearXNGForm,
},
[Operator.Concentrator]: {
component: () => <></>,
},

View File

@ -27,6 +27,7 @@ const Menus = [
// Operator.Bing,
Operator.DuckDuckGo,
Operator.Wikipedia,
Operator.SearXNG,
Operator.YahooFinance,
Operator.PubMed,
Operator.GoogleScholar,

View File

@ -10,7 +10,6 @@ import { HeadingNode, QuoteNode } from '@lexical/rich-text';
import {
$getRoot,
$getSelection,
$nodesOfType,
EditorState,
Klass,
LexicalNode,
@ -135,9 +134,8 @@ export function PromptEditor({
const onValueChange = useCallback(
(editorState: EditorState) => {
editorState?.read(() => {
const listNodes = $nodesOfType(VariableNode); // to be removed
// const listNodes = $nodesOfType(VariableNode); // to be removed
// const allNodes = $dfs();
console.log('🚀 ~ onChange ~ allNodes:', listNodes);
const text = $getRoot().getTextContent();

View File

@ -1,4 +1,3 @@
import i18n from '@/locales/config';
import { BeginId } from '@/pages/flow/constant';
import { DecoratorNode, LexicalNode, NodeKey } from 'lexical';
import { ReactNode } from 'react';
@ -7,19 +6,36 @@ const prefix = BeginId + '@';
export class VariableNode extends DecoratorNode<ReactNode> {
__value: string;
__label: string;
key?: NodeKey;
__parentLabel?: string | ReactNode;
__icon?: ReactNode;
static getType(): string {
return 'variable';
}
static clone(node: VariableNode): VariableNode {
return new VariableNode(node.__value, node.__label, node.__key);
return new VariableNode(
node.__value,
node.__label,
node.__key,
node.__parentLabel,
node.__icon,
);
}
constructor(value: string, label: string, key?: NodeKey) {
constructor(
value: string,
label: string,
key?: NodeKey,
parent?: string | ReactNode,
icon?: ReactNode,
) {
super(key);
this.__value = value;
this.__label = label;
this.__parentLabel = parent;
this.__icon = icon;
}
createDOM(): HTMLElement {
@ -35,17 +51,20 @@ export class VariableNode extends DecoratorNode<ReactNode> {
decorate(): ReactNode {
let content: ReactNode = (
<span className="text-blue-600">{this.__label}</span>
<div className="text-blue-600">{this.__label}</div>
);
if (this.__value?.startsWith(prefix)) {
if (this.__parentLabel) {
content = (
<div>
<span>{i18n.t(`flow.begin`)}</span> / {content}
<div className="flex items-center gap-1 text-text-primary ">
<div>{this.__icon}</div>
<div>{this.__parentLabel}</div>
<div className="text-text-disabled mr-1">/</div>
{content}
</div>
);
}
return (
<div className="bg-gray-200 dark:bg-gray-400 text-primary inline-flex items-center rounded-md px-2 py-0">
<div className="bg-gray-200 dark:bg-gray-400 text-sm inline-flex items-center rounded-md px-2 py-1">
{content}
</div>
);
@ -59,8 +78,10 @@ export class VariableNode extends DecoratorNode<ReactNode> {
export function $createVariableNode(
value: string,
label: string,
parentLabel: string | ReactNode,
icon?: ReactNode,
): VariableNode {
return new VariableNode(value, label);
return new VariableNode(value, label, undefined, parentLabel, icon);
}
export function $isVariableNode(

View File

@ -20,7 +20,13 @@ import {
$isRangeSelection,
TextNode,
} from 'lexical';
import React, { ReactElement, useCallback, useEffect, useRef } from 'react';
import React, {
ReactElement,
ReactNode,
useCallback,
useEffect,
useRef,
} from 'react';
import * as ReactDOM from 'react-dom';
import { $createVariableNode } from './variable-node';
@ -31,11 +37,20 @@ import './index.css';
class VariableInnerOption extends MenuOption {
label: string;
value: string;
parentLabel: string | JSX.Element;
icon?: ReactNode;
constructor(label: string, value: string) {
constructor(
label: string,
value: string,
parentLabel: string | JSX.Element,
icon?: ReactNode,
) {
super(value);
this.label = label;
this.value = value;
this.parentLabel = parentLabel;
this.icon = icon;
}
}
@ -111,7 +126,6 @@ export default function VariablePickerMenuPlugin({
const buildNextOptions = useCallback(() => {
let filteredOptions = options;
if (queryString) {
const lowerQuery = queryString.toLowerCase();
filteredOptions = options
@ -131,23 +145,28 @@ export default function VariablePickerMenuPlugin({
new VariableOption(
x.label,
x.title,
x.options.map((y) => new VariableInnerOption(y.label, y.value)),
x.options.map((y) => {
return new VariableInnerOption(y.label, y.value, x.label, y.icon);
}),
),
);
return nextOptions;
}, [options, queryString]);
const findLabelByValue = useCallback(
const findItemByValue = useCallback(
(value: string) => {
const children = options.reduce<Array<{ label: string; value: string }>>(
(pre, cur) => {
return pre.concat(cur.options);
},
[],
);
const children = options.reduce<
Array<{
label: string;
value: string;
parentLabel?: string | ReactNode;
icon?: ReactNode;
}>
>((pre, cur) => {
return pre.concat(cur.options);
}, []);
return children.find((x) => x.value === value)?.label;
return children.find((x) => x.value === value);
},
[options],
);
@ -168,13 +187,13 @@ export default function VariablePickerMenuPlugin({
if (nodeToRemove) {
nodeToRemove.remove();
}
selection.insertNodes([
$createVariableNode(
(selectedOption as VariableInnerOption).value,
selectedOption.label as string,
),
]);
const variableNode = $createVariableNode(
(selectedOption as VariableInnerOption).value,
selectedOption.label as string,
selectedOption.parentLabel as string | ReactNode,
selectedOption.icon as ReactNode,
);
selection.insertNodes([variableNode]);
closeMenu();
});
@ -190,7 +209,6 @@ export default function VariablePickerMenuPlugin({
const regex = /{([^}]*)}/g;
let match;
let lastIndex = 0;
while ((match = regex.exec(text)) !== null) {
const { 1: content, index, 0: template } = match;
@ -202,9 +220,17 @@ export default function VariablePickerMenuPlugin({
}
// Add variable node or text node
const label = findLabelByValue(content);
if (label) {
paragraph.append($createVariableNode(content, label));
const nodeItem = findItemByValue(content);
if (nodeItem) {
paragraph.append(
$createVariableNode(
content,
nodeItem.label,
nodeItem.parentLabel,
nodeItem.icon,
),
);
} else {
paragraph.append($createTextNode(template));
}
@ -225,7 +251,7 @@ export default function VariablePickerMenuPlugin({
$getRoot().selectEnd();
}
},
[findLabelByValue],
[findItemByValue],
);
useEffect(() => {

View File

@ -0,0 +1,73 @@
import { FormContainer } from '@/components/form-container';
import { TopNFormField } from '@/components/top-n-item';
import {
Form,
FormControl,
FormField,
FormItem,
FormLabel,
FormMessage,
} from '@/components/ui/form';
import { Input } from '@/components/ui/input';
import { useTranslate } from '@/hooks/common-hooks';
import { zodResolver } from '@hookform/resolvers/zod';
import { memo } from 'react';
import { useForm } from 'react-hook-form';
import { z } from 'zod';
import { initialSearXNGValues } from '../../constant';
import { useFormValues } from '../../hooks/use-form-values';
import { useWatchFormChange } from '../../hooks/use-watch-form-change';
import { INextOperatorForm } from '../../interface';
import { buildOutputList } from '../../utils/build-output-list';
import { FormWrapper } from '../components/form-wrapper';
import { Output } from '../components/output';
import { QueryVariable } from '../components/query-variable';
const FormSchema = z.object({
query: z.string(),
searxng_url: z.string().min(1),
top_n: z.string(),
});
const outputList = buildOutputList(initialSearXNGValues.outputs);
function SearXNGForm({ node }: INextOperatorForm) {
const { t } = useTranslate('flow');
const defaultValues = useFormValues(initialSearXNGValues, node);
const form = useForm<z.infer<typeof FormSchema>>({
defaultValues,
resolver: zodResolver(FormSchema),
});
useWatchFormChange(node?.id, form);
return (
<Form {...form}>
<FormWrapper>
<FormContainer>
<QueryVariable></QueryVariable>
<TopNFormField></TopNFormField>
<FormField
control={form.control}
name="searxng_url"
render={({ field }) => (
<FormItem>
<FormLabel>SearXNG URL</FormLabel>
<FormControl>
<Input {...field} placeholder="http://localhost:4000" />
</FormControl>
<FormMessage />
</FormItem>
)}
/>
</FormContainer>
</FormWrapper>
<div className="p-5">
<Output list={outputList}></Output>
</div>
</Form>
);
}
export default memo(SearXNGForm);

View File

@ -12,6 +12,7 @@ import GoogleForm from './google-form';
import GoogleScholarForm from './google-scholar-form';
import PubMedForm from './pubmed-form';
import RetrievalForm from './retrieval-form';
import SearXNGForm from './searxng-form';
import TavilyForm from './tavily-form';
import WenCaiForm from './wencai-form';
import WikipediaForm from './wikipedia-form';
@ -37,4 +38,5 @@ export const ToolFormConfigMap = {
[Operator.TavilySearch]: TavilyForm,
[Operator.TavilyExtract]: TavilyForm,
[Operator.WenCai]: WenCaiForm,
[Operator.SearXNG]: SearXNGForm,
};

View File

@ -0,0 +1,58 @@
import { FormContainer } from '@/components/form-container';
import { TopNFormField } from '@/components/top-n-item';
import {
Form,
FormControl,
FormField,
FormItem,
FormLabel,
FormMessage,
} from '@/components/ui/form';
import { Input } from '@/components/ui/input';
import { useTranslate } from '@/hooks/common-hooks';
import { zodResolver } from '@hookform/resolvers/zod';
import { memo } from 'react';
import { useForm } from 'react-hook-form';
import { z } from 'zod';
import { useValues } from '../use-values';
import { useWatchFormChange } from '../use-watch-change';
const FormSchema = z.object({
searxng_url: z.string().min(1),
top_n: z.string(),
});
function SearXNGForm() {
const { t } = useTranslate('flow');
const values = useValues();
const form = useForm<z.infer<typeof FormSchema>>({
defaultValues: values as any,
resolver: zodResolver(FormSchema),
});
useWatchFormChange(form);
return (
<Form {...form}>
<FormContainer>
<TopNFormField></TopNFormField>
<FormField
control={form.control}
name="searxng_url"
render={({ field }) => (
<FormItem>
<FormLabel>SearXNG URL</FormLabel>
<FormControl>
<Input {...field} placeholder="http://localhost:4000" />
</FormControl>
<FormMessage />
</FormItem>
)}
/>
</FormContainer>
</Form>
);
}
export default memo(SearXNGForm);

Some files were not shown because too many files have changed in this diff Show More