Compare commits

..

107 Commits

Author SHA1 Message Date
d55f44601a Docs: Updated v0.20.3 release notes (#9583)
### What problem does this PR solve?
### Type of change

- [x] Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-20 10:52:50 +08:00
abb6359547 Docs: Update version references to v0.20.3 in READMEs and docs (#9581)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.20.2 to v0.20.3
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-08-20 10:45:44 +08:00
f55ff590d7 Fix: Fixed the issue where the model configuration page could not be scrolled #9572 (#9579)
### What problem does this PR solve?

Fix: Fixed the issue where the model configuration page could not be
scrolled #9572

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 10:30:08 +08:00
7d3bb3a2f9 Fix dataset card not responding to click events (#9574)
### What problem does this PR solve?

Fix home card not responding to click events

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-20 10:06:14 +08:00
e6cb74b27f Fix (next search): Optimize the search problem interface and related functions #3221 (#9569)
### What problem does this PR solve?

Fix (next search): Optimize the search problem interface and related
functions #3221

-Add search_id to the retrievval_test interface
-Optimize handleSearchStrChange and handleSearch callbacks to determine
whether to enable AI search based on search configuration

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-19 19:22:07 +08:00
00f54c207e Fix: Reset all data except the first one on the chat page shared with others #3221 (#9567)
### What problem does this PR solve?

Fix: Reset all data except the first one on the chat page shared with
others #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-19 19:04:40 +08:00
d0dc56166c Fix: no effect on retrieval_test in term of metadata filter. (#9566)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-19 18:57:35 +08:00
e15e39f183 Fix: Fixed an issue where renaming a chat would create a new chat #3221 (#9563)
### What problem does this PR solve?

Fix: Fixed an issue where renaming a chat would create a new chat #3221
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-19 18:33:55 +08:00
33f3e05b75 Refa: create new name for duplicated dialog name (#9558)
### What problem does this PR solve?

 Create new name for duplicated dialog name.

### Type of change

- [x] Refactoring
2025-08-19 18:14:04 +08:00
b8bfbac2e5 Feat: Switch the root route to the new page #3221 (#9560)
### What problem does this PR solve?

Feat: Switch the root route to the new page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-19 17:41:03 +08:00
d5729e598f Docs: Updated workarounds for uploading file to an agent (#9561)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-08-19 17:40:39 +08:00
f2c5ad170d Fix(search): Search application list supports renaming function #3221 (#9555)
### What problem does this PR solve?

Fix (search): Search application list supports renaming function #3221

-Update the search application list page and add a renaming operation
entry
-Modify the search application details interface to support obtaining
detailed information
-Optimize search settings page layout and style

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-19 17:35:32 +08:00
0aa3c4cdae Docs: Update version references to v0.20.2 in READMEs and docs (#9559)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.20.1 to v0.20.2
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-08-19 17:26:49 +08:00
f123587538 Feat: add meta filter to search app. (#9554)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-19 17:25:44 +08:00
a41a646909 Fix: Fixed the issue where clicking the SQL tool test button did not request the interface #9541 (#9542)
### What problem does this PR solve?

Fix: Fixed the issue where clicking the SQL tool test button did not
request the interface #9541
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-19 16:41:32 +08:00
787e0c6786 Refa: OpenAI whisper-1 (#9552)
### What problem does this PR solve?

Refactor OpenAI to enable audio parsing.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
2025-08-19 16:41:18 +08:00
05ee1be1e9 Docs: Updated v0.20.2 release notes (#9553)
### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2025-08-19 16:03:42 +08:00
a0d630365c Refactor:Improve VoyageRerank not texts handling (#9539)
### What problem does this PR solve?

Improve VoyageRerank not texts handling

### Type of change

- [x] Refactoring
2025-08-19 10:31:04 +08:00
b5b8032a56 Feat: Support metadata auto filer for Search. (#9524)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-19 10:27:24 +08:00
ccb9f0b0d7 Feature (agent): Allow Retrieval kb_ids param use kb_id,and allow list kb_name or kb_id (#9531)
### What problem does this PR solve?

Allow Retrieval kb_ids param use kb_id,and allow list kb_name or kb_id。
- Add judgment on whether the knowledge base name is a list and support
batch queries
-When the knowledge base name does not exist, try using the ID for
querying
-If both query methods fail, throw an exception

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-08-19 09:42:39 +08:00
a0ab619aeb Fix: ensure update_progress loop always waits between iterations (#9528)
Move stop_event.wait(6) into finally block so that even when an
exception occurs, the loop still sleeps before retrying. This prevents
busy looping and excessive error logs when Redis connection fails.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-19 09:42:15 +08:00
32349481ef Feat: Allow agent operators to select speech-to-text models #3221 (#9534)
### What problem does this PR solve?

Feat: Allow agent operators to select speech-to-text models #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-19 09:40:01 +08:00
2b9ed935f3 feat(search): Optimized search functionality and user interface #3221 (#9535)
### What problem does this PR solve?

feat(search): Optimized search functionality and user interface #3221
### Type of change
- Added similarity threshold adjustment function
- Optimized mind map display logic
- Adjusted search settings interface layout
- Fixed related search and document viewing functions
- Optimized time display and node selection logic

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-19 09:39:48 +08:00
188c0f614b Refa: refine search app (#9536)
### What problem does this PR solve?

Refine search app.

### Type of change

- [x] Refactoring
2025-08-19 09:33:33 +08:00
dad97869b6 Fix: search service reference (#9533)
### What problem does this PR solve?

- Update search_app.py to use SearchService instead of
KnowledgebaseService for duplicate

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-18 19:02:10 +08:00
57c8a37285 Feat: add dialog chatbots info (#9530)
### What problem does this PR solve?

Add dialog chatbots info.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-18 19:01:45 +08:00
9d0fed601d Feat: Displays the embedded page of the chat module #3221 (#9532)
### What problem does this PR solve?

Feat: Displays the embedded page of the chat module #3221
Feat: Let the agen operator support the selection of tts model #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-18 18:02:13 +08:00
fe32952825 Fix: Gemini parameters error (#9520)
### What problem does this PR solve?

Fix Gemini parameters error.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-18 14:51:10 +08:00
5808aef28c Fix (search): Optimize the search page functionality and UI #3221 (#9525)
### What problem does this PR solve?

Fix (search): Optimize the search page functionality and UI #3221 

- Add a search list component
- Implement search settings
- Optimize search result display
- Add related search functionality
- Adjust the search input box style
- Unify internationalized text

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-18 14:50:29 +08:00
ca720bd811 Fix: save team's canvas issue. (#9518)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-18 13:05:29 +08:00
ba11312766 Feat: embedded search (#9501)
### What problem does this PR solve?

Add embedded search functionality.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-18 12:05:11 +08:00
c8bbf7452d Env: Update dependencies for proxy support (#9519)
### What problem does this PR solve?

- Update httpx dependency to include socks support in pyproject.toml
- Update lockfile with new socksio dependency

### Type of change

- [x] Update dependencies for proxy support
2025-08-18 12:04:16 +08:00
b08650bc4c Feat: Fixed the chat model setting echo issue (#9521)
### What problem does this PR solve?

Feat: Fixed the chat model setting echo issue

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-18 12:03:33 +08:00
fb77f9917b Refactor: Use Input Length In DefaultRerank (#9516)
### What problem does this PR solve?

1. Use input length to prepare res
2. Adjust torch_empty_cache code location

### Type of change

- [x] Refactoring
- [x] Performance Improvement
2025-08-18 10:00:27 +08:00
d874683ae4 Fix the bug in enablePrologue under agent task mode (#9487)
### What problem does this PR solve?

There is a problem with the implementation of the Agent begin-form:
although the enablePrologue switch and the prologue input box are hidden
in Task mode, these values are still saved in the form data. If the user
first enables the opening and sets the content in Conversational mode,
and then switches to Task mode, these values will still be saved and may
be used in some scenarios.
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-15 20:29:02 +08:00
f9e5caa8ed feat(search): Added app embedding functionality and optimized search page #3221 (#9499)
### What problem does this PR solve?
feat(search): Added app embedding functionality and optimized search
page #3221

- Added an Embed App button and related functionality
- Optimized the layout and interaction of the search settings interface
- Adjusted the search result display method
- Refactored some code to support new features
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-15 18:25:00 +08:00
99df0766fe Feat: add SMTP support for user invitation emails (#9479)
### What problem does this PR solve?

Add SMTP support for user invitation emails

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-15 18:12:20 +08:00
3b50688228 Docs: Miscellaneous updates. (#9506)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-08-15 18:10:11 +08:00
ffc095bd50 Feat: conversation completion can specify different model (#9485)
### What problem does this PR solve?

Conversation completion can specify different model

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-15 17:44:58 +08:00
799c57287c Feat: Add metadata configuration for new chats #3221 (#9502)
### What problem does this PR solve?

Feat: Add metadata configuration for new chats #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-15 17:40:16 +08:00
eef43fa25c Fix: unexpected truncated Excel files (#9500)
### What problem does this PR solve?

Handle unexpected truncated Excel files.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-15 17:00:34 +08:00
5a4dfecfbe Refactor:Standardize image conf and add private registry support (#9496)
- Unified configuration format: All services now use the same image
configuration structure for consistency.

- Private registry support: Added imagePullSecrets to enable pulling
images from private registries.

- Per-service flexibility: Each service can override image-related
parameters independently.

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-15 16:05:33 +08:00
7f237fee16 Fix:HTTPs component re.error: bad escape \u (#9480)
### What problem does this PR solve?

When calling HTTP to request data, if the JSON string returned by the
interface contains an unasked back slash like '\u', Python's RE module
will escape 'u' as Unicode, but there is no valid 4-digit hexadecimal
number at the end, so it will directly report an error. Error: re.
error: bad escape \ u at position 26
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-15 15:48:10 +08:00
30ae78755b Feat: Delete or filter conversations #3221 (#9491)
### What problem does this PR solve?

Feat: Delete or filter conversations #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-15 12:05:27 +08:00
2114e966d8 Feat: add citation option to agent and enlarge the timeouts. (#9484)
### What problem does this PR solve?

#9422

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-15 10:05:01 +08:00
562349eb02 Feat: Upload files in the chat box #3221 (#9483)
### What problem does this PR solve?
Feat: Upload files in the chat box #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-15 10:04:37 +08:00
618d6bc924 Feat:Can directly generate an agent node by dragging and dropping the connecting line (#9226) (#9357)
…e connecting line (#9226)

### What problem does this PR solve?

Can directly generate an agent node by dragging and dropping the
connecting line (#9226)

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-14 17:48:02 +08:00
762aa4b8c4 fix: preserve correct MIME & unify data URL handling for vision inputs (relates #9248) (#9474)
fix: preserve correct MIME & unify data URL handling for vision inputs
(relates #9248)

- Updated image2base64() to return a full data URL
(data:image/<fmt>;base64,...) with accurate MIME
- Removed hardcoded image/jpeg in Base._image_prompt(); pass through
data URLs and default raw base64 to image/png
- Set AnthropicCV._image_prompt() raw base64 media_type default to
image/png
- Ensures MIME type matches actual image content, fixing “cannot process
base64 image” errors on vLLM/OpenAI-compatible backends

### What problem does this PR solve?

This PR fixes a compatibility issue where base64-encoded images sent to
vision models (e.g., vLLM/OpenAI-compatible backends) were rejected due
to mismatched MIME type or incorrect decoding.
Previously, the backend:
- Always converted raw base64 into data:image/jpeg;base64,... even if
the actual content was PNG.
- In some cases, base64 decoding was attempted on the full data URL
string instead of the pure base64 part.
This caused errors like:
```
cannot process base64 image
failed to decode base64 string: illegal base64 data at input byte 0
```
by strict validators such as vLLM.
With this fix, the MIME type in the request now matches the actual image
content, and data URLs are correctly handled or passed through, ensuring
vision models can decode and process images reliably.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-14 17:00:56 +08:00
9cd09488ca Feat: Send data to compare the performance of different models' answers #3221 (#9477)
### What problem does this PR solve?

Feat: Send data to compare the performance of different models' answers
#3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-14 16:57:35 +08:00
f2806a8332 Update cv_model.py (#9472)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/9452

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-14 13:45:38 +08:00
b6e34e3aa7 Fix: PyPDF's Manipulated FlateDecode streams can exhaust RAM (#9469)
### What problem does this PR solve?

#3951
#8463 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-14 13:45:19 +08:00
3ee9653170 Agent template: report agent using knowledge base (#9427)
### What problem does this PR solve?

Agent template: report agent using knowledge base
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-14 12:17:57 +08:00
6d1078b538 fix 'KeyError: "There is no item named 'word/NULL' in the archive"' (#9455)
### What problem does this PR solve?

Issue referring to:
https://github.com/python-openxml/python-docx/issues/797
Fix referring to:
https://github.com/python-openxml/python-docx/issues/1105#issuecomment-1298075246

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-14 12:14:03 +08:00
6e862553cb Docs: Deprecated 'Create session with agent' (#9464)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-08-14 12:13:11 +08:00
b1baa91ff0 feat(next-search): Implements document preview functionality #3221 (#9465)
### What problem does this PR solve?

feat(next-search): Implements document preview functionality

- Adds a new document preview modal component
- Implements document preview page logic
- Adds document preview-related hooks
- Optimizes document preview rendering logic
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-14 12:11:53 +08:00
b55c3d07dc Test: Update error message assertions for chunk update tests (#9468)
### What problem does this PR solve?

Modify test cases to accept additional error message format when
updating chunks.
fix actions:
https://github.com/infiniflow/ragflow/actions/runs/16942741621/job/48015850297

### Type of change

- [x] Update test cases
2025-08-14 12:11:20 +08:00
2b3318cd3d Fix: KB folder may not there while creating virtual file (#9431)
### What problem does this PR solve?

KB folder may not there while creating virtual file. #9423 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-14 09:40:30 +08:00
434b55be70 Feat: Display a separate chat multi-model comparison page #3221 (#9461)
### What problem does this PR solve?
Feat: Display a separate chat multi-model comparison page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-14 09:39:20 +08:00
98b4c67292 Trival. (#9460)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-14 09:39:00 +08:00
3d645ff31a Docs: Update HTTP API reference with simplified response format and parameters (#9454)
### What problem does this PR solve?

- Make `session_id` optional and add `inputs` parameter
- Remove deprecated `sync_dsl` parameter
- Update request/response examples to match current API behavior

### Type of change

- [x] Documentation Update
2025-08-13 21:02:54 +08:00
5e8cd693a5 Refa: split services about llm. (#9450)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-08-13 16:41:01 +08:00
29f297b850 Fix: update broken create agent session due to v0.20.0 changes (#9445)
### What problem does this PR solve?

 Update broken create agent session due to v0.20.0 changes. #9383


**NOTE: A session ID is no longer required to interact with the agent.**

See: #9241, #9309.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-13 16:01:54 +08:00
7235638607 Feat: Show multiple chat boxes #3221 (#9443)
### What problem does this PR solve?

Feat: Show multiple chat boxes #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-13 15:59:51 +08:00
00919fd599 Fix typo in issue template (#9444) 2025-08-13 14:27:15 +08:00
43c0792ffd Add issue template for agent scenario feature request (#9437) 2025-08-13 12:50:06 +08:00
4b1b68c5fc Fix: no doc hits after meta data filter. (#9435)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-13 12:43:31 +08:00
3492f54c7a Docs: Update HTTP API reference with new response fields (#9434)
### What problem does this PR solve?

Add `url`, `doc_type`, and `created_at` fields to the API response
example in the documentation.

### Type of change

- [x] Documentation Update
2025-08-13 12:18:39 +08:00
da5cef0686 Refactor:Improve the float compare for LocalAIRerank (#9428)
### What problem does this PR solve?
Improve the float compare for LocalAIRerank

### Type of change

- [x] Refactoring
2025-08-13 10:26:42 +08:00
9098efb8aa Feat: Fixed the issue where some fields in the chat configuration could not be displayed #3221 (#9430)
### What problem does this PR solve?

Feat: Fixed the issue where some fields in the chat configuration could
not be displayed #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-13 10:26:26 +08:00
421657f64b Feat: allows setting multiple types of default models in service config (#9404)
### What problem does this PR solve?

Allows set multiple types of default models in service config.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-13 09:46:05 +08:00
7ee5e0d152 Fix KeyError in session listing endpoint when accessing conversation reference (#9419)
- Add type and boundary checks for conv["reference"] access
- Prevent KeyError: 0 when reference list is empty or malformed
- Ensure reference is list type before indexing
- Handle cases where reference items are None or missing chunks
- Maintains backward compatibility with existing data structures

This resolves crashes in /api/v1/agents/<agent_id>/sessions endpoint
when conversation reference data is not properly structured.

### What problem does this PR solve?

This PR fixes a critical `KeyError: 0` that occurs in the
`/api/v1/agents/<agent_id>/sessions` endpoint when the system attempts
to access conversation reference data that is not properly structured.

**Background Context:**
The `list_agent_session` method in `api/apps/sdk/session.py` assumes
that `conv["reference"]` is always a properly indexed list with valid
dictionary structures. However, in real-world scenarios, this data can
be:
- Not a list type (could be None, string, or other types)
- An empty list when `chunk_num` tries to access index 0
- Contains None values or malformed dictionary structures
- Missing expected "chunks" keys in reference items

**Impact Before Fix:**
When malformed reference data is encountered, the API crashes with:
```json
{
    "code": 100,
    "data": null,
    "message": "KeyError(0)"
}
```
**Solution:**
Added comprehensive safety checks including type validation, boundary
checking, null safety, and structure validation to ensure the API
gracefully handles all reference data formats while maintaining backward
compatibility.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-13 09:23:52 +08:00
22915223d4 Fix: citation issue. (#9424)
### What problem does this PR solve?

#8474

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 18:53:34 +08:00
d7b4e84cda Refa: Update LLM stream response type to Generator (#9420)
### What problem does this PR solve?

Change return type of _generate_streamly from str to Generator[str,
None, None] to properly type hint streaming responses.

### Type of change

- [x] Refactoring
2025-08-12 18:05:52 +08:00
e845d5f9f8 Fix:valueERROR when file is optional but not exist value (#9414)
### What problem does this PR solve?

when begin component has optional file but not exist , it rase error

### Type of change

- [x] Bug Fix

Co-authored-by: Popmio <zhengyihao036@gamil.com>
2025-08-12 17:39:03 +08:00
3d18284dd6 Feat: Added meta data to the chat configuration page #8531 (#9417)
### What problem does this PR solve?

Feat: Added meta data to the chat configuration page #8531

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 16:19:23 +08:00
96783aa82c Fix: remove doc error. (#9413)
### What problem does this PR solve?

Close #9407

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 15:55:04 +08:00
a0c2da1219 Fix: Patch LiteLLM (#9416)
### What problem does this PR solve?

Patch LiteLLM refactor. #9408

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 15:54:30 +08:00
79e2edc835 Fix "File contains no valid workbook part" (#9360)
### What problem does this PR solve?

fix "File contains no valid workbook part"

stacktrace:
```
Traceback (most recent call last):
  File "/ragflow/deepdoc/parser/excel_parser.py", line 54, in _load_excel_to_workbook
    return RAGFlowExcelParser._dataframe_to_workbook(df)
  File "/ragflow/deepdoc/parser/excel_parser.py", line 69, in _dataframe_to_workbook
    ws.cell(row=row_num, column=col_num, value=value)
  File "/ragflow/.venv/lib/python3.10/site-packages/openpyxl/worksheet/worksheet.py", line 246, in cell
    cell.value = value
  File "/ragflow/.venv/lib/python3.10/site-packages/openpyxl/cell/cell.py", line 218, in value
    self._bind_value(value)
  File "/ragflow/.venv/lib/python3.10/site-packages/openpyxl/cell/cell.py", line 197, in _bind_value
    value = self.check_string(value)
  File "/ragflow/.venv/lib/python3.10/site-packages/openpyxl/cell/cell.py", line 165, in check_string
    raise IllegalCharacterError(f"{value} cannot be used in worksheets.")
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-12 14:58:36 +08:00
57b87fa9d9 Fix:TypeError: OllamaCV.chat() got an unexpected keyword argument 'stop' (#9363)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/9351
Support filter argument before invoking
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-12 14:55:27 +08:00
153e430b00 Feat: add meta data filter. (#9405)
### What problem does this PR solve?

#8531 
#7417 
#6761 
#6573
#6477

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 14:12:56 +08:00
3ccaa06031 Fix: Before executing the SQL, remove tags in the format [ID: number] to avoid execution errors. (#9326)
### What problem does this PR solve?

Before executing the SQL, remove tags in the format [ID: number] to
avoid execution errors.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wangyazhou <wangyazhou@sdibd.cn>
2025-08-12 12:42:28 +08:00
569ab011c4 Add fallback to use 'calamine' parse engine in excel_parser.py (#9374)
### What problem does this PR solve?

add fallback to `calamine` engine when parse error raised using the
default `openpyxl` / `xlrd` engine.
e.g. the following error can be fixed:
```
Traceback (most recent call last):
  File "/ragflow/deepdoc/parser/excel_parser.py", line 53, in _load_excel_to_workbook
    df = pd.read_excel(file_like_object)
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 495, in read_excel
    io = ExcelFile(
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 1567, in __init__
    self._reader = self._engines[engine](
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py", line 46, in __init__
    super().__init__(
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 573, in __init__
    self.book = self.load_workbook(self.handles.handle, engine_kwargs)
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py", line 63, in load_workbook
    return open_workbook(file_contents=data, **engine_kwargs)
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/__init__.py", line 172, in open_workbook
    bk = open_workbook_xls(
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/book.py", line 68, in open_workbook_xls
    bk.biff2_8_load(
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/book.py", line 641, in biff2_8_load
    cd.locate_named_stream(UNICODE_LITERAL(qname))
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/compdoc.py", line 398, in locate_named_stream
    result = self._locate_stream(
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/compdoc.py", line 429, in _locate_stream
    raise CompDocError("%s corruption: seen[%d] == %d" % (qname, s, self.seen[s]))
xlrd.compdoc.CompDocError: Workbook corruption: seen[2] == 4
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 12:41:33 +08:00
96b1538b3e Fix:HTTP request component failed to retrieve the corresponding value (#9399)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/9385
Based on my understanding, I think checking empty string is fine

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-12 12:27:22 +08:00
735570486f feat(next-search): Added AI summary functionality #3221 (#9402)
### What problem does this PR solve?

feat(next-search): Added AI summary functionality #3221

- Added the LlmSettingFieldItems component for AI summary settings
- Updated the SearchSetting component to integrate AI summary
functionality
- Added the updateSearch hook and related service methods
- Modified the ISearchAppDetailProps interface to add the llm_setting
field

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 12:27:00 +08:00
da68f541b6 Feat: add full list of supported AWS Bedrock regions (#9395)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 11:01:16 +08:00
83771e500c Refa: migrate chat models to LiteLLM (#9394)
### What problem does this PR solve?

All models pass the mock response tests, which means that if a model can
return the correct response, everything should work as expected.
However, not all models have been fully tested in a real environment,
the real API_KEY. I suggest actively monitoring the refactored models
over the coming period to ensure they work correctly and fixing them
step by step, or waiting to merge until most have been tested in
practical environment.

### Type of change

- [x] Refactoring
2025-08-12 10:59:20 +08:00
a6d2119498 Refa: list canvas (#9341)
### What problem does this PR solve?

Refactor list canvas.

### Type of change

- [x] Refactoring
2025-08-12 10:58:06 +08:00
57b9f8cf52 Fix: Update test assertions and simplify test cases (#9400)
### What problem does this PR solve?

- Fix error message assertion in test_update_chunk.py to match new
ownership validation
- Simplify dataset listing test cases by removing lambda assertions for
sorting
- Fix actions:
https://github.com/infiniflow/ragflow/actions/runs/16885465524/job/47831942553

### Type of change

- [x] Fix test cases
2025-08-12 10:57:30 +08:00
5c3577c4c9 Python SDK: add meta_fields to Document class (#9387)
### What problem does this PR solve?

Python class Document was missing "meta_fields", e.g. when querying, the
document instances came without meta_fields

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 10:16:12 +08:00
76118000c1 Feat: Allow chat to use meta data #3221 (#9393)
### What problem does this PR solve?

Feat:  Allow chat to use meta data #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 10:15:10 +08:00
9433f64fe2 Feat: added functionality to choose all datasets if no id is provided (#9184)
### What problem does this PR solve?

Using the mcp server in n8n sometimes (with smaller models) results in
errors because the llm misses a char or adds one to the list of
dataset_ids provided. It first asks for the list of datasets and if you
got a larger list of them it makes a error recalling the list
completely. So adding the feature to just search through all available
datasets solves this and makes the retrieval of data more stable. The
functionality to just call special datasets by id is not changed, the
dataset_ids are now not required anymore (only the "question" is). You
can provide (like before) a list of datasets, a empty list or no list at
all.

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
<img width="1897" height="880" alt="mcp error dataset id"
src="https://github.com/user-attachments/assets/71076d24-f875-4663-a69a-60839fc7a545"
/>
2025-08-11 17:20:35 +08:00
d7c9611d45 docs(sandbox): update /etc/hosts entry to include required services (#9144)
Fixes an issue where running the sandbox (code component) fails due to
unresolved hostnames. Added missing service names (es01, infinity,
mysql, minio, redis) to 127.0.0.1 in the /etc/hosts example.

Reference: https://github.com/infiniflow/ragflow/issues/8226

## What this PR does

Updates the sandbox quickstart documentation to fix a known issue where
the sandbox fails to resolve required service hostnames.

## Why

Following the original instruction leads to a `Failed to resolve 'none'`
error, as discussed in issue #8226. Adding the missing service names to
`127.0.0.1` resolves the problem.

## Related issue

https://github.com/infiniflow/ragflow/issues/8226

## Note

It might be better to add `127.0.0.1 es01 infinity mysql minio redis` to
docs/quickstart.mdx, but since no issues appeared at the time without
adding this line—and the problem occurred while working with the code
component—I added it here.

### Type of change

- [X] Documentation Update
2025-08-11 17:18:56 +08:00
79399f7f25 Support the case of one cell split by multiple columns. (#9225)
### What problem does this PR solve?
Support the case of one cell split by multiple columns. Besides, the
codes are compatible with the common cell case.
#8606 can be fixed.
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

I provide a case of one cell split by multiple columns:

[test.xlsx](https://github.com/user-attachments/files/21578693/test.xlsx)

The chunk res:
<img width="236" height="57" alt="2025-06-17 16-04-07 的屏幕截图"
src="https://github.com/user-attachments/assets/b0a499ac-349d-4c3d-8c6e-0931c8fc26de"
/>
2025-08-11 17:17:56 +08:00
23522f1ea8 Fix: handle missing dataset_ids when creating chat assistant (#9324)
- Root cause: accessing req.get("dataset_ids") returns None when the key
is absent, causing KeyError.
- Fix: use req.get("dataset_ids", []) to default to empty list.
2025-08-11 17:17:20 +08:00
46dc3f1c48 Fix: Update test assertions and add GraphRAG config in dataset tests (#9386)
### What problem does this PR solve?

- Modify error message assertion in chunk update test to check for
document ownership
- Add GraphRAG configuration with `use_graphrag: False` in dataset
update tests
- Fix actions:
https://github.com/infiniflow/ragflow/actions/runs/16863637898/job/47767511582
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 17:15:48 +08:00
c9b156fa6d Fix: Remove default dataset_ids from Chat class initialization (#9381)
### What problem does this PR solve?

- The default dataset_ids "kb1" was removed from the Chat class. 
- The HTTP API response does not include the dataset_ids field.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 17:15:30 +08:00
83939b1a63 Feat: add full list of supported AWS Bedrock regions (#9378)
### What problem does this PR solve?

Add full list of supported AWS Bedrock regions.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 17:15:07 +08:00
7f08ba47d7 Fix "no tc element at grid_offset" (#9375)
### What problem does this PR solve?

fix "no `tc` element at grid_offset", just log warning and ignore.
stacktrace:
```
Traceback (most recent call last):
  File "/ragflow/rag/svr/task_executor.py", line 620, in handle_task
    await do_handle_task(task)
  File "/ragflow/rag/svr/task_executor.py", line 553, in do_handle_task
    chunks = await build_chunks(task, progress_callback)
  File "/ragflow/rag/svr/task_executor.py", line 257, in build_chunks
    cks = await trio.to_thread.run_sync(lambda: chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
  File "/ragflow/.venv/lib/python3.10/site-packages/trio/_threads.py", line 447, in to_thread_run_sync
    return msg_from_thread.unwrap()
  File "/ragflow/.venv/lib/python3.10/site-packages/outcome/_impl.py", line 213, in unwrap
    raise captured_error
  File "/ragflow/.venv/lib/python3.10/site-packages/trio/_threads.py", line 373, in do_release_then_return_result
    return result.unwrap()
  File "/ragflow/.venv/lib/python3.10/site-packages/outcome/_impl.py", line 213, in unwrap
    raise captured_error
  File "/ragflow/.venv/lib/python3.10/site-packages/trio/_threads.py", line 392, in worker_fn
    ret = context.run(sync_fn, *args)
  File "/ragflow/rag/svr/task_executor.py", line 257, in <lambda>
    cks = await trio.to_thread.run_sync(lambda: chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
  File "/ragflow/rag/app/naive.py", line 384, in chunk
    sections, tables = Docx()(filename, binary)
  File "/ragflow/rag/app/naive.py", line 230, in __call__
    while i < len(r.cells):
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/table.py", line 438, in cells
    return tuple(_iter_row_cells())
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/table.py", line 436, in _iter_row_cells
    yield from iter_tc_cells(tc)
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/table.py", line 424, in iter_tc_cells
    yield from iter_tc_cells(tc._tc_above)  # pyright: ignore[reportPrivateUsage]
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/oxml/table.py", line 741, in _tc_above
    return self._tr_above.tc_at_grid_offset(self.grid_offset)
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/oxml/table.py", line 98, in tc_at_grid_offset
    raise ValueError(f"no `tc` element at grid_offset={grid_offset}")
ValueError: no `tc` element at grid_offset=10
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 17:13:10 +08:00
ce3dd019c3 Fix broken data stream when writing image file (#9354)
### What problem does this PR solve?

fix "broken data stream when writing image file", just log warning and
ignore

Close #8379 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 17:07:49 +08:00
476c56868d Agent plans tasks by referring to its own prompt. (#9315)
### What problem does this PR solve?

Fixes the issue in the analyze_task execution flow where the Lead Agent
was not utilizing its own sys_prompt during task analysis, resulting in
incorrect or incomplete task planning.
https://github.com/infiniflow/ragflow/issues/9294
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 17:05:06 +08:00
b9c4954c2f Fix: Replace StrEnum with strenum in code_exec.py (#9376)
### What problem does this PR solve?

- The enum import was changed from Python's built-in StrEnum to the
strenum package.
- Fix error `Warning: Failed to import module code_exec: cannot import
name 'StrEnum' from 'enum' (/usr/lib/python3.10/enum.py)`

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 15:32:04 +08:00
a060672b31 Feat: Run eslint when the project is running to standardize everyone's code #9377 (#9379)
### What problem does this PR solve?

Feat: Run eslint when the project is running to standardize everyone's
code #9377

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 15:31:38 +08:00
f022504ef9 Support Russian in UI Update config.ts (#9361)
add ru

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-08-11 15:30:35 +08:00
1a78b8b295 Support Russian in UI (#9362)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 14:06:18 +08:00
017dd85ccf Feat: Modify the agent list return field name #3221 (#9373)
### What problem does this PR solve?

Feat: Modify the agent list return field name #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 14:03:52 +08:00
4c7b2ef46e Feat: New search page components and features (#9344)
### What problem does this PR solve?

Feat: New search page components and features #3221

- Added search homepage, search settings, and ongoing search components
- Implemented features such as search app list, creating search apps,
and deleting search apps
- Optimized the multi-select component, adding disabled state and suffix
display
- Adjusted navigation hooks to support search page navigation

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 10:34:22 +08:00
597d88bf9a Doc: updated supported model name (#9343)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-08-11 10:05:39 +08:00
327 changed files with 13442 additions and 3234 deletions

View File

@ -0,0 +1,46 @@
name: "❤️‍🔥ᴬᴳᴱᴺᵀ Agent scenario request"
description: Propose a agent scenario request for RAGFlow.
title: "[Agent Scenario Request]: "
labels: ["❤️‍🔥ᴬᴳᴱᴺᵀ agent scenario"]
body:
- type: checkboxes
attributes:
label: Self Checks
description: "Please check the following in order to be responded in time :)"
options:
- label: I have searched for existing issues [search for existing issues](https://github.com/infiniflow/ragflow/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report ([Language Policy](https://github.com/infiniflow/ragflow/issues/5910)).
required: true
- label: Non-english title submitions will be closed directly ( 非英文标题的提交将会被直接关闭 ) ([Language Policy](https://github.com/infiniflow/ragflow/issues/5910)).
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
- type: textarea
attributes:
label: Is your feature request related to a scenario?
description: |
A clear and concise description of what the scenario is. Ex. I'm always frustrated when [...]
render: Markdown
validations:
required: false
- type: textarea
attributes:
label: Describe the feature you'd like
description: A clear and concise description of what you want to happen.
validations:
required: true
- type: textarea
attributes:
label: Documentation, adoption, use case
description: If you can, explain some scenarios how users might use this, situations it would be helpful in. Any API designs, mockups, or diagrams are also helpful.
render: Markdown
validations:
required: false
- type: textarea
attributes:
label: Additional information
description: |
Add any other context or screenshots about the feature request here.
validations:
required: false

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -190,7 +190,7 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.20.1-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` for the full edition `v0.20.1`.
> The command below downloads the `v0.20.3-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.3-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` for the full edition `v0.20.3`.
```bash
$ cd ragflow/docker
@ -203,8 +203,8 @@ releases! 🌟
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.20.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.1-slim | &approx;2 | ❌ | Stable release |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -181,7 +181,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.20.1-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.1-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1 untuk edisi lengkap v0.20.1.
> Perintah di bawah ini mengunduh edisi v0.20.3-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.3-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3 untuk edisi lengkap v0.20.3.
```bash
$ cd ragflow/docker
@ -194,8 +194,8 @@ $ docker compose -f docker-compose.yml up -d
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.1-slim | &approx;2 | ❌ | Stable release |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -160,7 +160,7 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.1-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.1-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.1 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.3-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.3-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.3 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3 と設定します。
```bash
$ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.1-slim | &approx;2 | ❌ | Stable release |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -160,7 +160,7 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.1-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.1-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.1을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.3-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.3-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.3을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3로 설정합니다.
```bash
$ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.1-slim | &approx;2 | ❌ | Stable release |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -180,7 +180,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.20.1-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.1-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` para a edição completa `v0.20.1`.
> O comando abaixo baixa a edição `v0.20.3-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.3-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` para a edição completa `v0.20.3`.
```bash
$ cd ragflow/docker
@ -193,8 +193,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.20.1 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.20.1-slim | ~2 | ❌ | Lançamento estável |
| v0.20.3 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.20.3-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -183,7 +183,7 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.1-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.1-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` 來下載 RAGFlow 鏡像的 `v0.20.1` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.3-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.3-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` 來下載 RAGFlow 鏡像的 `v0.20.3` 完整發行版。
```bash
$ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.1-slim | &approx;2 | ❌ | Stable release |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -183,7 +183,7 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.1-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.1-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` 来下载 RAGFlow 镜像的 `v0.20.1` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.3-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.3-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` 来下载 RAGFlow 镜像的 `v0.20.3` 完整发行版。
```bash
$ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.1-slim | &approx;2 | ❌ | Stable release |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -484,7 +484,7 @@ class Canvas:
threads.append(exe.submit(FileService.parse, file["name"], FileService.get_blob(file["created_by"], file["id"]), True, file["created_by"]))
return [th.result() for th in threads]
def tool_use_callback(self, agent_id: str, func_name: str, params: dict, result: Any):
def tool_use_callback(self, agent_id: str, func_name: str, params: dict, result: Any, elapsed_time=None):
agent_ids = agent_id.split("-->")
agent_name = self.get_component_name(agent_ids[0])
path = agent_name if len(agent_ids) < 2 else agent_name+"-->"+"-->".join(agent_ids[1:])
@ -493,16 +493,16 @@ class Canvas:
if bin:
obj = json.loads(bin.encode("utf-8"))
if obj[-1]["component_id"] == agent_ids[0]:
obj[-1]["trace"].append({"path": path, "tool_name": func_name, "arguments": params, "result": result})
obj[-1]["trace"].append({"path": path, "tool_name": func_name, "arguments": params, "result": result, "elapsed_time": elapsed_time})
else:
obj.append({
"component_id": agent_ids[0],
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result}]
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result, "elapsed_time": elapsed_time}]
})
else:
obj = [{
"component_id": agent_ids[0],
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result}]
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result, "elapsed_time": elapsed_time}]
}]
REDIS_CONN.set_obj(f"{self.task_id}-{self.message_id}-logs", obj, 60*10)
except Exception as e:

View File

@ -22,9 +22,10 @@ from functools import partial
from typing import Any
import json_repair
from timeit import default_timer as timer
from agent.tools.base import LLMToolPluginCallSession, ToolParamBase, ToolBase, ToolMeta
from api.db.services.llm_service import LLMBundle, TenantLLMService
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.mcp_server_service import MCPServerService
from api.utils.api_utils import timeout
from rag.prompts import message_fit_in
@ -165,7 +166,7 @@ class Agent(LLM, ToolBase):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
use_tools = []
ans = ""
for delta_ans, tk in self._react_with_tools_streamly(msg, use_tools):
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools):
ans += delta_ans
if ans.find("**ERROR**") >= 0:
@ -185,7 +186,7 @@ class Agent(LLM, ToolBase):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer_without_toolcall = ""
use_tools = []
for delta_ans,_ in self._react_with_tools_streamly(msg, use_tools):
for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools):
if delta_ans.find("**ERROR**") >= 0:
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
@ -208,20 +209,21 @@ class Agent(LLM, ToolBase):
]):
yield delta_ans
def _react_with_tools_streamly(self, history: list[dict], use_tools):
def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools):
token_count = 0
tool_metas = self.tool_meta
hist = deepcopy(history)
last_calling = ""
if len(hist) > 3:
st = timer()
user_request = full_question(messages=history, chat_mdl=self.chat_mdl)
self.callback("Multi-turn conversation optimization", {}, user_request)
self.callback("Multi-turn conversation optimization", {}, user_request, elapsed_time=timer()-st)
else:
user_request = history[-1]["content"]
def use_tool(name, args):
nonlocal hist, use_tools, token_count,last_calling,user_request
print(f"{last_calling=} == {name=}", )
logging.info(f"{last_calling=} == {name=}")
# Summarize of function calling
#if all([
# isinstance(self.toolcall_session.get_tool_obj(name), Agent),
@ -243,7 +245,7 @@ class Agent(LLM, ToolBase):
def complete():
nonlocal hist
need2cite = self._canvas.get_reference()["chunks"] and self._id.find("-->") < 0
need2cite = self._param.cite and self._canvas.get_reference()["chunks"] and self._id.find("-->") < 0
cited = False
if hist[0]["role"] == "system" and need2cite:
if len(hist) < 7:
@ -262,12 +264,13 @@ class Agent(LLM, ToolBase):
if not need2cite or cited:
return
st = timer()
txt = ""
for delta_ans in self._gen_citations(entire_txt):
yield delta_ans, 0
txt += delta_ans
self.callback("gen_citations", {}, txt)
self.callback("gen_citations", {}, txt, elapsed_time=timer()-st)
def append_user_content(hist, content):
if hist[-1]["role"] == "user":
@ -275,8 +278,9 @@ class Agent(LLM, ToolBase):
else:
hist.append({"role": "user", "content": content})
task_desc = analyze_task(self.chat_mdl, user_request, tool_metas)
self.callback("analyze_task", {}, task_desc)
st = timer()
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas)
self.callback("analyze_task", {}, task_desc, elapsed_time=timer()-st)
for _ in range(self._param.max_rounds + 1):
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc)
# self.callback("next_step", {}, str(response)[:256]+"...")
@ -302,9 +306,10 @@ class Agent(LLM, ToolBase):
thr.append(executor.submit(use_tool, name, args))
st = timer()
reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr])
append_user_content(hist, reflection)
self.callback("reflection", {}, str(reflection))
self.callback("reflection", {}, str(reflection), elapsed_time=timer()-st)
except Exception as e:
logging.exception(msg=f"Wrong JSON argument format in LLM ReAct response: {e}")

View File

@ -479,7 +479,7 @@ class ComponentBase(ABC):
def get_input_elements_from_text(self, txt: str) -> dict[str, dict[str, str]]:
res = {}
for r in re.finditer(self.variable_ref_patt, txt, flags=re.IGNORECASE):
for r in re.finditer(self.variable_ref_patt, txt, flags=re.IGNORECASE|re.DOTALL):
exp = r.group(1)
cpn_id, var_nm = exp.split("@") if exp.find("@")>0 else ("", exp)
res[exp] = {
@ -529,8 +529,12 @@ class ComponentBase(ABC):
@staticmethod
def string_format(content: str, kv: dict[str, str]) -> str:
for n, v in kv.items():
def repl(_match, val=v):
return str(val) if val is not None else ""
content = re.sub(
r"\{%s\}" % re.escape(n), v, content
r"\{%s\}" % re.escape(n),
repl,
content
)
return content

View File

@ -39,7 +39,10 @@ class Begin(UserFillUp):
def _invoke(self, **kwargs):
for k, v in kwargs.get("inputs", {}).items():
if isinstance(v, dict) and v.get("type", "").lower().find("file") >=0:
v = self._canvas.get_files([v["value"]])
if v.get("optional") and v.get("value", None) is None:
v = None
else:
v = self._canvas.get_files([v["value"]])
else:
v = v.get("value")
self.set_output(k, v)

View File

@ -57,7 +57,7 @@ class Invoke(ComponentBase, ABC):
def _invoke(self, **kwargs):
args = {}
for para in self._param.variables:
if para.get("value") is not None:
if para.get("value"):
args[para["key"]] = para["value"]
else:
args[para["key"]] = self._canvas.get_variable_value(para["ref"])
@ -139,4 +139,4 @@ class Invoke(ComponentBase, ABC):
assert False, self.output()
def thoughts(self) -> str:
return "Waiting for the server respond..."
return "Waiting for the server respond..."

View File

@ -17,14 +17,15 @@ import json
import logging
import os
import re
from typing import Any
from typing import Any, Generator
import json_repair
from copy import deepcopy
from functools import partial
from api.db import LLMType
from api.db.services.llm_service import LLMBundle, TenantLLMService
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
from rag.prompts import message_fit_in, citation_prompt
@ -144,7 +145,7 @@ class LLM(ComponentBase):
prompt = self.string_format(prompt, args)
for m in msg:
m["content"] = self.string_format(m["content"], args)
if self._canvas.get_reference()["chunks"]:
if self._param.cite and self._canvas.get_reference()["chunks"]:
prompt += citation_prompt()
return prompt, msg
@ -154,7 +155,7 @@ class LLM(ComponentBase):
return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), **kwargs)
return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs)
def _generate_streamly(self, msg:list[dict], **kwargs) -> str:
def _generate_streamly(self, msg:list[dict], **kwargs) -> Generator[str, None, None]:
ans = ""
last_idx = 0
endswith_think = False

View File

@ -54,6 +54,8 @@ class Message(ComponentBase):
if k in kwargs:
continue
v = v["value"]
if not v:
v = ""
ans = ""
if isinstance(v, partial):
for t in v():
@ -94,6 +96,8 @@ class Message(ComponentBase):
continue
v = self._canvas.get_variable_value(exp)
if not v:
v = ""
if isinstance(v, partial):
cnt = ""
for t in v():

View File

@ -0,0 +1,327 @@
{
"id": 20,
"title": "Report Agent Using Knowledge Base",
"description": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"canvas_type": "Agent",
"dsl": {
"components": {
"Agent:NewPumasLick": {
"downstream": [
"Message:OrangeYearsShine"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Message:OrangeYearsShine": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:NewPumasLick@content}"
]
}
},
"upstream": [
"Agent:NewPumasLick"
]
},
"begin": {
"downstream": [
"Agent:NewPumasLick"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:NewPumasLickend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:NewPumasLick",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLickstart-Message:OrangeYearsShineend",
"markerEnd": "logo",
"source": "Agent:NewPumasLick",
"sourceHandle": "start",
"style": {
"stroke": "rgba(91, 93, 106, 1)",
"strokeWidth": 1
},
"target": "Message:OrangeYearsShine",
"targetHandle": "end",
"type": "buttonEdge",
"zIndex": 1001
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLicktool-Tool:AllBirdsNailend",
"selected": false,
"source": "Agent:NewPumasLick",
"sourceHandle": "tool",
"target": "Tool:AllBirdsNail",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
},
"label": "Begin",
"name": "begin"
},
"dragging": false,
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": -9.569875358221438,
"y": 205.84018385864917
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"content": [
"{Agent:NewPumasLick@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:OrangeYearsShine",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 734.4061285881053,
"y": 199.9706031723009
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Knowledge Base Agent"
},
"dragging": false,
"id": "Agent:NewPumasLick",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 347.00048227952215,
"y": 186.49109364794631
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_10"
},
"dragging": false,
"id": "Tool:AllBirdsNail",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 220.24819746977118,
"y": 403.31576836482583
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
}
]
},
"history": [],
"memory": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@ -206,7 +206,7 @@
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SQL assistant, what can I do for you?"
"prologue": "Hi! I'm your SQL assistant. What can I do for you?"
}
},
"upstream": []
@ -319,7 +319,7 @@
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SQL assistant, what can I do for you?"
"prologue": "Hi! I'm your SQL assistant. What can I do for you?"
},
"label": "Begin",
"name": "begin"

View File

@ -24,6 +24,7 @@ from api.utils import hash_str2int
from rag.llm.chat_model import ToolCallSession
from rag.prompts.prompts import kb_prompt
from rag.utils.mcp_tool_call_conn import MCPToolCallSession
from timeit import default_timer as timer
class ToolParameter(TypedDict):
@ -49,12 +50,13 @@ class LLMToolPluginCallSession(ToolCallSession):
def tool_call(self, name: str, arguments: dict[str, Any]) -> Any:
assert name in self.tools_map, f"LLM tool {name} does not exist"
st = timer()
if isinstance(self.tools_map[name], MCPToolCallSession):
resp = self.tools_map[name].tool_call(name, arguments, 60)
else:
resp = self.tools_map[name].invoke(**arguments)
self.callback(name, arguments, resp)
self.callback(name, arguments, resp, elapsed_time=timer()-st)
return resp
def get_tool_obj(self, name):

View File

@ -17,7 +17,7 @@ import base64
import logging
import os
from abc import ABC
from enum import StrEnum
from strenum import StrEnum
from typing import Optional
from pydantic import BaseModel, Field, field_validator
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
@ -67,9 +67,17 @@ class CodeExecParam(ToolParamBase):
"description": """
This tool has a sandbox that can execute code written in 'Python'/'Javascript'. It recieves a piece of code and return a Json string.
Here's a code example for Python(`main` function MUST be included):
def main(arg1: str, arg2: str) -> dict:
def main() -> dict:
\"\"\"
Generate Fibonacci numbers within 100.
\"\"\"
def fibonacci_recursive(n):
if n <= 1:
return n
else:
return fibonacci_recursive(n-1) + fibonacci_recursive(n-2)
return {
"result": arg1 + arg2,
"result": fibonacci_recursive(100),
}
Here's a code example for Javascript(`main` function MUST be included and exported):

View File

@ -14,6 +14,7 @@
# limitations under the License.
#
import os
import re
from abc import ABC
import pandas as pd
import pymysql
@ -78,6 +79,17 @@ class ExeSQL(ToolBase, ABC):
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
def _invoke(self, **kwargs):
def convert_decimals(obj):
from decimal import Decimal
if isinstance(obj, Decimal):
return float(obj) # 或 str(obj)
elif isinstance(obj, dict):
return {k: convert_decimals(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_decimals(item) for item in obj]
return obj
sql = kwargs.get("sql")
if not sql:
raise Exception("SQL for `ExeSQL` MUST not be empty.")
@ -109,7 +121,7 @@ class ExeSQL(ToolBase, ABC):
single_sql = single_sql.replace('```','')
if not single_sql:
continue
single_sql = re.sub(r"\[ID:[0-9]+\]", "", single_sql)
cursor.execute(single_sql)
if cursor.rowcount == 0:
sql_res.append({"content": "No record in the database!"})
@ -121,7 +133,11 @@ class ExeSQL(ToolBase, ABC):
single_res = pd.DataFrame([i for i in cursor.fetchmany(self._param.max_records)])
single_res.columns = [i[0] for i in cursor.description]
sql_res.append(single_res.to_dict(orient='records'))
for col in single_res.columns:
if pd.api.types.is_datetime64_any_dtype(single_res[col]):
single_res[col] = single_res[col].dt.strftime('%Y-%m-%d')
sql_res.append(convert_decimals(single_res.to_dict(orient='records')))
formalized_content.append(single_res.to_markdown(index=False, floatfmt=".6f"))
self.set_output("json", sql_res)
@ -129,4 +145,4 @@ class ExeSQL(ToolBase, ABC):
return self.output("formalized_content")
def thoughts(self) -> str:
return "Query sent—waiting for the data."
return "Query sent—waiting for the data."

View File

@ -86,10 +86,16 @@ class Retrieval(ToolBase, ABC):
kb_ids.append(id)
continue
kb_nm = self._canvas.get_variable_value(id)
e, kb = KnowledgebaseService.get_by_name(kb_nm, self._canvas._tenant_id)
if not e:
raise Exception(f"Dataset({kb_nm}) does not exist.")
kb_ids.append(kb.id)
# if kb_nm is a list
kb_nm_list = kb_nm if isinstance(kb_nm, list) else [kb_nm]
for nm_or_id in kb_nm_list:
e, kb = KnowledgebaseService.get_by_name(nm_or_id,
self._canvas._tenant_id)
if not e:
e, kb = KnowledgebaseService.get_by_id(nm_or_id)
if not e:
raise Exception(f"Dataset({nm_or_id}) does not exist.")
kb_ids.append(kb.id)
filtered_kb_ids: list[str] = list(set([kb_id for kb_id in kb_ids if kb_id]))
@ -108,7 +114,9 @@ class Retrieval(ToolBase, ABC):
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
query = kwargs["query"]
vars = self.get_input_elements_from_text(kwargs["query"])
vars = {k:o["value"] for k,o in vars.items()}
query = self.string_format(kwargs["query"], vars)
if self._param.cross_languages:
query = cross_languages(kbs[0].tenant_id, None, query, self._param.cross_languages)

View File

@ -29,6 +29,7 @@ from api.db.db_models import close_connection
from api.db.services import UserService
from api.utils import CustomJSONEncoder, commands
from flask_mail import Mail
from flask_session import Session
from flask_login import LoginManager
from api import settings
@ -40,6 +41,7 @@ __all__ = ["app"]
Request.json = property(lambda self: self.get_json(force=True, silent=True))
app = Flask(__name__)
smtp_mail_server = Mail()
# Add this at the beginning of your file to configure Swagger UI
swagger_config = {
@ -146,16 +148,16 @@ def load_user(web_request):
if authorization:
try:
access_token = str(jwt.loads(authorization))
if not access_token or not access_token.strip():
logging.warning("Authentication attempt with empty access token")
return None
# Access tokens should be UUIDs (32 hex characters)
if len(access_token.strip()) < 32:
logging.warning(f"Authentication attempt with invalid token format: {len(access_token)} chars")
return None
user = UserService.query(
access_token=access_token, status=StatusEnum.VALID.value
)

View File

@ -74,11 +74,11 @@ def rm():
@login_required
def save():
req = request.json
req["user_id"] = current_user.id
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
if "id" not in req:
req["user_id"] = current_user.id
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip()):
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
@ -90,7 +90,7 @@ def save():
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
# save version
# save version
UserCanvasVersionService.insert( user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.delete_all_versions(req["id"])
return get_json_result(data=req)
@ -115,6 +115,12 @@ def getsse(canvas_id):
if not objs:
return get_data_error_result(message='Authentication error: API key is invalid!"')
tenant_id = objs[0].tenant_id
if not UserCanvasService.query(user_id=tenant_id, id=canvas_id):
return get_json_result(
data=False,
message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR
)
e, c = UserCanvasService.get_by_id(canvas_id)
if not e or c.user_id != tenant_id:
return get_data_error_result(message="canvas not found.")
@ -347,7 +353,7 @@ def test_db_connect():
if req["db_type"] != 'mssql':
db.connect()
db.close()
return get_json_result(data="Database Connection Successful!")
except Exception as e:
return server_error_response(e)
@ -369,7 +375,7 @@ def getlistversion(canvas_id):
@login_required
def getversion( version_id):
try:
e, version = UserCanvasVersionService.get_by_id(version_id)
if version:
return get_json_result(data=version.to_dict())
@ -379,7 +385,7 @@ def getversion( version_id):
@manager.route('/listteam', methods=['GET']) # noqa: F821
@login_required
def list_kbs():
def list_canvas():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
@ -387,10 +393,10 @@ def list_kbs():
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
kbs, total = UserCanvasService.get_by_tenant_ids(
canvas, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords)
return get_json_result(data={"kbs": kbs, "total": total})
return get_json_result(data={"canvas": canvas, "total": total})
except Exception as e:
return server_error_response(e)

View File

@ -23,15 +23,18 @@ from flask_login import current_user, login_required
from api import settings
from api.db import LLMType, ParserType
from api.db.services.dialog_service import meta_filter
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question
from rag.nlp import rag_tokenizer, search
from rag.prompts import cross_languages, keyword_extraction
from rag.prompts.prompts import gen_meta_filter
from rag.settings import PAGERANK_FLD
from rag.utils import rmSpace
@ -288,13 +291,26 @@ def retrieval_test():
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
langs = req.get("cross_languages", [])
tenant_ids = []
if req.get("search_id", ""):
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
meta_data_filter = search_config.get("meta_data_filter", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
try:
tenants = UserTenantService.query(user_id=current_user.id)
for kb_id in kb_ids:
@ -327,7 +343,9 @@ def retrieval_test():
labels = label_question(question, [kb])
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
float(req.get("similarity_threshold", 0.0)),
float(req.get("vector_similarity_weight", 0.3)),
top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
rank_feature=labels
)

View File

@ -17,22 +17,19 @@ import json
import re
import traceback
from copy import deepcopy
import trio
from flask import Response, request
from flask_login import current_user, login_required
from api import settings
from api.db import LLMType
from api.db.db_models import APIToken
from api.db.services.conversation_service import ConversationService, structure_answer
from api.db.services.dialog_service import DialogService, ask, chat
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle, TenantService
from api.db.services.user_service import UserTenantService
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.tag import label_question
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import chunks_format
@ -66,8 +63,14 @@ def set_conversation():
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(message="Dialog not found")
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": name, "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}],"user_id": current_user.id,
"reference":[{}],}
conv = {
"id": conv_id,
"dialog_id": req["dialog_id"],
"name": name,
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}],
"user_id": current_user.id,
"reference": [],
}
ConversationService.save(**conv)
return get_json_result(data=conv)
except Exception as e:
@ -174,6 +177,21 @@ def completion():
continue
msg.append(m)
message_id = msg[-1].get("id")
chat_model_id = req.get("llm_id", "")
req.pop("llm_id", None)
chat_model_config = {}
for model_config in [
"temperature",
"top_p",
"frequency_penalty",
"presence_penalty",
"max_tokens",
]:
config = req.get(model_config)
if config:
chat_model_config[model_config] = config
try:
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
@ -187,23 +205,26 @@ def completion():
if not conv.reference:
conv.reference = []
else:
for ref in conv.reference:
if isinstance(ref, list):
continue
ref["chunks"] = chunks_format(ref)
if not conv.reference:
conv.reference = []
conv.reference = [r for r in conv.reference if r]
conv.reference.append({"chunks": [], "doc_aggs": []})
if chat_model_id:
if not TenantLLMService.get_api_key(tenant_id=dia.tenant_id, model_name=chat_model_id):
req.pop("chat_model_id", None)
req.pop("chat_model_config", None)
return get_data_error_result(message=f"Cannot use specified model {chat_model_id}.")
dia.llm_id = chat_model_id
dia.llm_setting = chat_model_config
is_embedded = bool(chat_model_id)
def stream():
nonlocal dia, msg, req, conv
try:
for ans in chat(dia, msg, True, **req):
ans = structure_answer(conv, ans, message_id, conv.id)
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
ConversationService.update_by_id(conv.id, conv.to_dict())
if not is_embedded:
ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e:
traceback.print_exc()
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
@ -221,7 +242,8 @@ def completion():
answer = None
for ans in chat(dia, msg, **req):
answer = structure_answer(conv, ans, message_id, conv.id)
ConversationService.update_by_id(conv.id, conv.to_dict())
if not is_embedded:
ConversationService.update_by_id(conv.id, conv.to_dict())
break
return get_json_result(data=answer)
except Exception as e:
@ -317,10 +339,18 @@ def ask_about():
req = request.json
uid = current_user.id
search_id = req.get("search_id", "")
search_app = None
search_config = {}
if search_id:
search_app = SearchService.get_detail(search_id)
if search_app:
search_config = search_app.get("search_config", {})
def stream():
nonlocal req, uid
try:
for ans in ask(req["question"], req["kb_ids"], uid):
for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
@ -339,18 +369,14 @@ def ask_about():
@validate_request("question", "kb_ids")
def mindmap():
req = request.json
kb_ids = req["kb_ids"]
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_data_error_result(message="Knowledgebase not found!")
search_id = req.get("search_id", "")
search_app = SearchService.get_detail(search_id) if search_id else {}
search_config = search_app.get("search_config", {}) if search_app else {}
kb_ids = search_config.get("kb_ids", [])
kb_ids.extend(req["kb_ids"])
kb_ids = list(set(kb_ids))
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
question = req["question"]
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12, 0.3, 0.3, aggs=False, rank_feature=label_question(question, [kb]))
mindmap = MindMapExtractor(chat_mdl)
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
mind_map = mind_map.output
mind_map = gen_mindmap(req["question"], kb_ids, search_app.get("tenant_id", current_user.id), search_config)
if "error" in mind_map:
return server_error_response(Exception(mind_map["error"]))
return get_json_result(data=mind_map)
@ -361,41 +387,20 @@ def mindmap():
@validate_request("question")
def related_questions():
req = request.json
search_id = req.get("search_id", "")
search_config = {}
if search_id:
if search_app := SearchService.get_detail(search_id):
search_config = search_app.get("search_config", {})
question = req["question"]
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
prompt = """
Role: You are an AI language model assistant tasked with generating 5-10 related questions based on a users original query. These questions should help expand the search query scope and improve search relevance.
Instructions:
Input: You are provided with a users question.
Output: Generate 5-10 alternative questions that are related to the original user question. These alternatives should help retrieve a broader range of relevant documents from a vector database.
Context: Focus on rephrasing the original question in different ways, making sure the alternative questions are diverse but still connected to the topic of the original query. Do not create overly obscure, irrelevant, or unrelated questions.
Fallback: If you cannot generate any relevant alternatives, do not return any questions.
Guidance:
1. Each alternative should be unique but still relevant to the original query.
2. Keep the phrasing clear, concise, and easy to understand.
3. Avoid overly technical jargon or specialized terms unless directly relevant.
4. Ensure that each question contributes towards improving search results by broadening the search angle, not narrowing it.
chat_id = search_config.get("chat_id", "")
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, chat_id)
Example:
Original Question: What are the benefits of electric vehicles?
Alternative Questions:
1. How do electric vehicles impact the environment?
2. What are the advantages of owning an electric car?
3. What is the cost-effectiveness of electric vehicles?
4. How do electric vehicles compare to traditional cars in terms of fuel efficiency?
5. What are the environmental benefits of switching to electric cars?
6. How do electric vehicles help reduce carbon emissions?
7. Why are electric vehicles becoming more popular?
8. What are the long-term savings of using electric vehicles?
9. How do electric vehicles contribute to sustainability?
10. What are the key benefits of electric vehicles for consumers?
Reason:
Rephrasing the original query into multiple alternative questions helps the user explore different aspects of their search topic, improving the quality of search results.
These questions guide the search engine to provide a more comprehensive set of relevant documents.
"""
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
prompt = load_prompt("related_question")
ans = chat_mdl.chat(
prompt,
[
@ -407,6 +412,6 @@ Related search terms:
""",
}
],
{"temperature": 0.9},
gen_conf,
)
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])

View File

@ -16,9 +16,10 @@
from flask import request
from flask_login import login_required, current_user
from api.db.services import duplicate_name
from api.db.services.dialog_service import DialogService
from api.db import StatusEnum
from api.db.services.llm_service import TenantLLMService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService, UserTenantService
from api import settings
@ -41,6 +42,15 @@ def set_dialog():
return get_data_error_result(message="Dialog name can't be empty.")
if len(name.encode("utf-8")) > 255:
return get_data_error_result(message=f"Dialog name length is {len(name)} which is larger than 255")
if is_create and DialogService.query(tenant_id=current_user.id, name=name.strip()):
name = name.strip()
name = duplicate_name(
DialogService.query,
name=name,
tenant_id=current_user.id,
status=StatusEnum.VALID.value)
description = req.get("description", "A helpful dialog")
icon = req.get("icon", "")
top_n = req.get("top_n", 6)
@ -51,6 +61,7 @@ def set_dialog():
similarity_threshold = req.get("similarity_threshold", 0.1)
vector_similarity_weight = req.get("vector_similarity_weight", 0.3)
llm_setting = req.get("llm_setting", {})
meta_data_filter = req.get("meta_data_filter", {})
prompt_config = req["prompt_config"]
if not is_create:
@ -85,6 +96,7 @@ def set_dialog():
"llm_id": llm_id,
"llm_setting": llm_setting,
"prompt_config": prompt_config,
"meta_data_filter": meta_data_filter,
"top_n": top_n,
"top_k": top_k,
"rerank_id": rerank_id,

View File

@ -681,6 +681,11 @@ def set_meta():
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
meta = json.loads(req["meta"])
if not isinstance(meta, dict):
return get_json_result(data=False, message="Only dictionary type supported.", code=settings.RetCode.ARGUMENT_ERROR)
for k,v in meta.items():
if not isinstance(v, str) and not isinstance(v, int) and not isinstance(v, float):
return get_json_result(data=False, message=f"The type is not supported: {v}", code=settings.RetCode.ARGUMENT_ERROR)
except Exception as e:
return get_json_result(data=False, message=f"Json syntax error: {e}", code=settings.RetCode.ARGUMENT_ERROR)
if not isinstance(meta, dict):

View File

@ -351,6 +351,7 @@ def knowledge_graph(kb_id):
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
return get_json_result(data=obj)
@manager.route('/<kb_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
@login_required
def delete_knowledge_graph(kb_id):
@ -364,3 +365,17 @@ def delete_knowledge_graph(kb_id):
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
return get_json_result(data=True)
@manager.route("/get_meta", methods=["GET"]) # noqa: F821
@login_required
def get_meta():
kb_ids = request.args.get("kb_ids", "").split(",")
for kb_id in kb_ids:
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=DocumentService.get_meta_by_kbs(kb_ids))

View File

@ -17,7 +17,8 @@ import logging
import json
from flask import request
from flask_login import login_required, current_user
from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
from api.db.services.tenant_llm_service import LLMFactoriesService, TenantLLMService
from api.db.services.llm_service import LLMService
from api import settings
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db import StatusEnum, LLMType
@ -57,6 +58,7 @@ def set_api_key():
# test if api key works
chat_passed, embd_passed, rerank_passed = False, False, False
factory = req["llm_factory"]
extra = {"provider": factory}
msg = ""
for llm in LLMService.query(fid=factory):
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
@ -73,7 +75,7 @@ def set_api_key():
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
req["api_key"], llm.llm_name, base_url=req.get("base_url"), **extra)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
{"temperature": 0.9, 'max_tokens': 50})
@ -204,6 +206,7 @@ def add_llm():
msg = ""
mdl_nm = llm["llm_name"].split("___")[0]
extra = {"provider": factory}
if llm["model_type"] == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
@ -221,7 +224,8 @@ def add_llm():
mdl = ChatModel[factory](
key=llm['api_key'],
model_name=mdl_nm,
base_url=llm["api_base"]
base_url=llm["api_base"],
**extra,
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
@ -312,12 +316,12 @@ def delete_factory():
def my_llms():
try:
include_details = request.args.get('include_details', 'false').lower() == 'true'
if include_details:
res = {}
objs = TenantLLMService.query(tenant_id=current_user.id)
factories = LLMFactoriesService.query(status=StatusEnum.VALID.value)
for o in objs:
o_dict = o.to_dict()
factory_tags = None
@ -325,13 +329,13 @@ def my_llms():
if f.name == o_dict["llm_factory"]:
factory_tags = f.tags
break
if o_dict["llm_factory"] not in res:
res[o_dict["llm_factory"]] = {
"tags": factory_tags,
"llm": []
}
res[o_dict["llm_factory"]]["llm"].append({
"type": o_dict["model_type"],
"name": o_dict["llm_name"],
@ -352,7 +356,7 @@ def my_llms():
"name": o["llm_name"],
"used_token": o["used_tokens"]
})
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)

View File

@ -21,7 +21,7 @@ from api import settings
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_service import TenantService
from api.utils import get_uuid
from api.utils.api_utils import check_duplicate_ids, get_error_data_result, get_result, token_required
@ -99,7 +99,7 @@ def create(tenant_id):
Here is the knowledge base:
{knowledge}
The above is the knowledge base.""",
"prologue": "Hi! I'm your assistant, what can I do for you?",
"prologue": "Hi! I'm your assistant. What can I do for you?",
"parameters": [{"key": "knowledge", "optional": False}],
"empty_response": "Sorry! No relevant content was found in the knowledge base!",
"quote": True,
@ -139,7 +139,7 @@ def create(tenant_id):
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
del res["kb_ids"]
res["dataset_ids"] = req["dataset_ids"]
res["dataset_ids"] = req.get("dataset_ids", [])
res["avatar"] = res.pop("icon")
return get_result(data=res)

View File

@ -32,7 +32,8 @@ from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle, TenantLLMService
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.task_service import TaskService, queue_tasks
from api.utils.api_utils import check_duplicate_ids, construct_json_result, get_error_data_result, get_parser_config, get_result, server_error_response, token_required
from rag.app.qa import beAdoc, rmPrefix

View File

@ -16,11 +16,10 @@
import json
import re
import time
import tiktoken
from flask import Response, jsonify, request
from agent.canvas import Canvas
from api import settings
from api.db import LLMType, StatusEnum
from api.db.db_models import APIToken
from api.db.services.api_service import API4ConversationService
@ -28,13 +27,17 @@ from api.db.services.canvas_service import UserCanvasService, completionOpenAI
from api.db.services.canvas_service import completion as agent_completion
from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion
from api.db.services.dialog_service import DialogService, ask, chat
from api.db.services.file_service import FileService
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_result, token_required, validate_request
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
from rag.app.tag import label_question
from rag.prompts import chunks_format
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import cross_languages, keyword_extraction
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
@ -69,11 +72,7 @@ def create(tenant_id, chat_id):
@manager.route("/agents/<agent_id>/sessions", methods=["POST"]) # noqa: F821
@token_required
def create_agent_session(tenant_id, agent_id):
req = request.json
if not request.is_json:
req = request.form
files = request.files
user_id = request.args.get("user_id", "")
user_id = request.args.get("user_id", tenant_id)
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
return get_error_data_result("Agent not found.")
@ -82,46 +81,21 @@ def create_agent_session(tenant_id, agent_id):
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
canvas = Canvas(cvs.dsl, tenant_id)
session_id=get_uuid()
canvas = Canvas(cvs.dsl, tenant_id, agent_id)
canvas.reset()
query = canvas.get_preset_param()
if query:
for ele in query:
if not ele["optional"]:
if ele["type"] == "file":
if files is None or not files.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if req is None or not req.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
ele["value"] = req[ele["key"]]
else:
if ele["type"] == "file":
if files is not None and files.get(ele["key"]):
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if "value" in ele:
ele.pop("value")
else:
if req is not None and req.get(ele["key"]):
ele["value"] = req[ele["key"]]
else:
if "value" in ele:
ele.pop("value")
for ans in canvas.run(stream=False):
pass
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": user_id,
"message": [],
"source": "agent",
"dsl": cvs.dsl
}
API4ConversationService.save(**conv)
cvs.dsl = json.loads(str(canvas))
conv = {"id": get_uuid(), "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
API4ConversationService.save(**conv)
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
conv["agent_id"] = conv.pop("dialog_id")
return get_result(data=conv)
@ -589,14 +563,22 @@ def list_agent_session(tenant_id, agent_id):
if "prompt" in info:
info.pop("prompt")
conv["agent_id"] = conv.pop("dialog_id")
# Fix for session listing endpoint
if conv["reference"]:
messages = conv["messages"]
message_num = 0
chunk_num = 0
# Ensure reference is a list type to prevent KeyError
if not isinstance(conv["reference"], list):
conv["reference"] = []
while message_num < len(messages):
if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = []
if "chunks" in conv["reference"][chunk_num]:
# Add boundary and type checks to prevent KeyError
if (chunk_num < len(conv["reference"]) and
conv["reference"][chunk_num] is not None and
isinstance(conv["reference"][chunk_num], dict) and
"chunks" in conv["reference"][chunk_num]):
chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks:
new_chunk = {
@ -832,6 +814,29 @@ def chatbot_completions(dialog_id):
return get_result(data=answer)
@manager.route("/chatbots/<dialog_id>/info", methods=["GET"]) # noqa: F821
def chatbots_inputs(dialog_id):
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
e, dialog = DialogService.get_by_id(dialog_id)
if not e:
return get_error_data_result(f"Can't find dialog by ID: {dialog_id}")
return get_result(
data={
"title": dialog.name,
"avatar": dialog.icon,
"prologue": dialog.prompt_config.get("prologue", ""),
}
)
@manager.route("/agentbots/<agent_id>/completions", methods=["POST"]) # noqa: F821
def agent_bot_completions(agent_id):
req = request.json
@ -879,3 +884,225 @@ def begin_inputs(agent_id):
"prologue": canvas.get_prologue()
}
)
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
@validate_request("question", "kb_ids")
def ask_about_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
req = request.json
uid = objs[0].tenant_id
search_id = req.get("search_id", "")
search_config = {}
if search_id:
if search_app := SearchService.get_detail(search_id):
search_config = search_app.get("search_config", {})
def stream():
nonlocal req, uid
try:
for ans in ask(req["question"], req["kb_ids"], uid, search_config):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
@manager.route("/searchbots/retrieval_test", methods=['POST']) # noqa: F821
@validate_request("kb_id", "question")
def retrieval_test_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
req = request.json
page = int(req.get("page", 1))
size = int(req.get("size", 30))
question = req["question"]
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
langs = req.get("cross_languages", [])
tenant_ids = []
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
try:
tenants = UserTenantService.query(user_id=tenant_id)
for kb_id in kb_ids:
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kb_id):
tenant_ids.append(tenant.tenant_id)
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Knowledgebase not found!")
if langs:
question = cross_languages(kb.tenant_id, None, question, langs)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
labels = label_question(question, [kb])
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
rank_feature=labels
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
tenant_ids,
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
for c in ranks["chunks"]:
c.pop("vector", None)
ranks["labels"] = labels
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
return server_error_response(e)
@manager.route("/searchbots/related_questions", methods=["POST"]) # noqa: F821
@validate_request("question")
def related_questions_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
req = request.json
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
search_id = req.get("search_id", "")
search_config = {}
if search_id:
if search_app := SearchService.get_detail(search_id):
search_config = search_app.get("search_config", {})
question = req["question"]
chat_id = search_config.get("chat_id", "")
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_id)
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
prompt = load_prompt("related_question")
ans = chat_mdl.chat(
prompt,
[
{
"role": "user",
"content": f"""
Keywords: {question}
Related search terms:
""",
}
],
gen_conf,
)
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
@manager.route("/searchbots/detail", methods=["GET"]) # noqa: F821
def detail_share_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
search_id = request.args["search_id"]
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
try:
tenants = UserTenantService.query(user_id=tenant_id)
for tenant in tenants:
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
break
else:
return get_json_result(data=False, message="Has no permission for this operation.", code=settings.RetCode.OPERATING_ERROR)
search = SearchService.get_detail(search_id)
if not search:
return get_error_data_result(message="Can't find this Search App!")
return get_json_result(data=search)
except Exception as e:
return server_error_response(e)
@manager.route("/searchbots/mindmap", methods=["POST"]) # noqa: F821
@validate_request("question", "kb_ids")
def mindmap():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
tenant_id = objs[0].tenant_id
req = request.json
search_id = req.get("search_id", "")
search_app = SearchService.get_detail(search_id) if search_id else {}
mind_map = gen_mindmap(req["question"], req["kb_ids"], tenant_id, search_app.get("search_config", {}))
if "error" in mind_map:
return server_error_response(Exception(mind_map["error"]))
return get_json_result(data=mind_map)

View File

@ -22,7 +22,6 @@ from api.constants import DATASET_NAME_LIMIT
from api.db import StatusEnum
from api.db.db_models import DB
from api.db.services import duplicate_name
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.search_service import SearchService
from api.db.services.user_service import TenantService, UserTenantService
from api.utils import get_uuid
@ -47,7 +46,7 @@ def create():
return get_data_error_result(message="Authorizationd identity.")
search_name = search_name.strip()
search_name = duplicate_name(KnowledgebaseService.query, name=search_name, tenant_id=current_user.id, status=StatusEnum.VALID.value)
search_name = duplicate_name(SearchService.query, name=search_name, tenant_id=current_user.id, status=StatusEnum.VALID.value)
req["id"] = get_uuid()
req["name"] = search_name

View File

@ -18,12 +18,14 @@ from flask import request
from flask_login import login_required, current_user
from api import settings
from api.apps import smtp_mail_server
from api.db import UserTenantRole, StatusEnum
from api.db.db_models import UserTenant
from api.db.services.user_service import UserTenantService, UserService
from api.utils import get_uuid, delta_seconds
from api.utils.api_utils import get_json_result, validate_request, server_error_response, get_data_error_result
from api.utils.web_utils import send_invite_email
@manager.route("/<tenant_id>/user/list", methods=["GET"]) # noqa: F821
@ -78,6 +80,20 @@ def create(tenant_id):
role=UserTenantRole.INVITE,
status=StatusEnum.VALID.value)
if smtp_mail_server and settings.SMTP_CONF:
from threading import Thread
user_name = ""
_, user = UserService.get_by_id(current_user.id)
if user:
user_name = user.nickname
Thread(
target=send_invite_email,
args=(invite_user_email, settings.MAIL_FRONTEND_URL, tenant_id, user_name or current_user.email),
daemon=True
).start()
usr = invite_users[0].to_dict()
usr = {k: v for k, v in usr.items() if k in ["id", "avatar", "email", "nickname"]}

View File

@ -28,7 +28,8 @@ from api.apps.auth import get_auth_client
from api.db import FileType, UserTenantRole
from api.db.db_models import TenantLLM
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMService, TenantLLMService
from api.db.services.llm_service import get_init_tenant_llm
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_service import TenantService, UserService, UserTenantService
from api.utils import (
current_timestamp,
@ -619,33 +620,8 @@ def user_register(user_id, user):
"size": 0,
"location": "",
}
tenant_llm = []
for llm in LLMService.query(fid=settings.LLM_FACTORY):
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": settings.LLM_FACTORY,
"llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": settings.API_KEY,
"api_base": settings.LLM_BASE_URL,
"max_tokens": llm.max_tokens if llm.max_tokens else 8192,
}
)
if settings.LIGHTEN != 1:
for buildin_embedding_model in settings.BUILTIN_EMBEDDING_MODELS:
mdlnm, fid = TenantLLMService.split_model_name_and_factory(buildin_embedding_model)
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": fid,
"llm_name": mdlnm,
"model_type": "embedding",
"api_key": "",
"api_base": "",
"max_tokens": 1024 if buildin_embedding_model == "BAAI/bge-large-zh-v1.5@BAAI" else 512,
}
)
tenant_llm = get_init_tenant_llm(user_id)
if not UserService.save(**user):
return

View File

@ -742,8 +742,9 @@ class Dialog(DataBaseModel):
prompt_type = CharField(max_length=16, null=False, default="simple", help_text="simple|advanced", index=True)
prompt_config = JSONField(
null=False,
default={"system": "", "prologue": "Hi! I'm your assistant, what can I do for you?", "parameters": [], "empty_response": "Sorry! No relevant content was found in the knowledge base!"},
default={"system": "", "prologue": "Hi! I'm your assistant. What can I do for you?", "parameters": [], "empty_response": "Sorry! No relevant content was found in the knowledge base!"},
)
meta_data_filter = JSONField(null=True, default={})
similarity_threshold = FloatField(default=0.2)
vector_similarity_weight = FloatField(default=0.3)
@ -871,7 +872,7 @@ class Search(DataBaseModel):
default={
"kb_ids": [],
"doc_ids": [],
"similarity_threshold": 0.0,
"similarity_threshold": 0.2,
"vector_similarity_weight": 0.3,
"use_kg": False,
# rerank settings
@ -880,11 +881,12 @@ class Search(DataBaseModel):
# chat settings
"summary": False,
"chat_id": "",
# Leave it here for reference, don't need to set default values
"llm_setting": {
"temperature": 0.1,
"top_p": 0.3,
"frequency_penalty": 0.7,
"presence_penalty": 0.4,
# "temperature": 0.1,
# "top_p": 0.3,
# "frequency_penalty": 0.7,
# "presence_penalty": 0.4,
},
"chat_settingcross_languages": [],
"highlight": False,
@ -1015,4 +1017,8 @@ def migrate_db():
migrate(migrator.add_column("api_4_conversation", "errors", TextField(null=True, help_text="errors")))
except Exception:
pass
logging.disable(logging.NOTSET)
try:
migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={})))
except Exception:
pass
logging.disable(logging.NOTSET)

View File

@ -27,7 +27,8 @@ from api.db.services import UserService
from api.db.services.canvas_service import CanvasTemplateService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
from api.db.services.tenant_llm_service import LLMFactoriesService, TenantLLMService
from api.db.services.llm_service import LLMService, LLMBundle, get_init_tenant_llm
from api.db.services.user_service import TenantService, UserTenantService
from api import settings
from api.utils.file_utils import get_project_base_directory
@ -63,12 +64,8 @@ def init_superuser():
"invited_by": user_info["id"],
"role": UserTenantRole.OWNER
}
tenant_llm = []
for llm in LLMService.query(fid=settings.LLM_FACTORY):
tenant_llm.append(
{"tenant_id": user_info["id"], "llm_factory": settings.LLM_FACTORY, "llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": settings.API_KEY, "api_base": settings.LLM_BASE_URL})
tenant_llm = get_init_tenant_llm(user_info["id"])
if not UserService.save(**user_info):
logging.error("can't init admin.")
@ -103,7 +100,7 @@ def init_llm_factory():
except Exception:
pass
factory_llm_infos = settings.FACTORY_LLM_INFOS
factory_llm_infos = settings.FACTORY_LLM_INFOS
for factory_llm_info in factory_llm_infos:
info = deepcopy(factory_llm_info)
llm_infos = info.pop("llm")

View File

@ -22,6 +22,7 @@ from datetime import datetime
from functools import partial
from timeit import default_timer as timer
import trio
from langfuse import Langfuse
from peewee import fn
@ -30,14 +31,18 @@ from api import settings
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import DB, Dialog
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.llm_service import LLMBundle, TenantLLMService
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.utils import current_timestamp, datetime_format
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in
from rag.prompts.prompts import gen_meta_filter, PROMPT_JINJA_ENV, ASK_SUMMARY
from rag.utils import num_tokens_from_string, rmSpace
from rag.utils.tavily_conn import Tavily
@ -96,7 +101,6 @@ class DialogService(CommonService):
return list(chats.dicts())
@classmethod
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id, page_number, items_per_page, orderby, desc, keywords, parser_id=None):
@ -119,6 +123,7 @@ class DialogService(CommonService):
cls.model.do_refer,
cls.model.rerank_id,
cls.model.kb_ids,
cls.model.icon,
cls.model.status,
User.nickname,
User.avatar.alias("tenant_avatar"),
@ -250,6 +255,47 @@ def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
return answer, idx
def meta_filter(metas: dict, filters: list[dict]):
doc_ids = []
def filter_out(v2docs, operator, value):
nonlocal doc_ids
for input, docids in v2docs.items():
try:
input = float(input)
value = float(value)
except Exception:
input = str(input)
value = str(value)
for conds in [
(operator == "contains", str(value).lower() in str(input).lower()),
(operator == "not contains", str(value).lower() not in str(input).lower()),
(operator == "start with", str(input).lower().startswith(str(value).lower())),
(operator == "end with", str(input).lower().endswith(str(value).lower())),
(operator == "empty", not input),
(operator == "not empty", input),
(operator == "=", input == value),
(operator == "", input != value),
(operator == ">", input > value),
(operator == "<", input < value),
(operator == "", input >= value),
(operator == "", input <= value),
]:
try:
if all(conds):
doc_ids.extend(docids)
except Exception:
pass
for k, v2docs in metas.items():
for f in filters:
if k != f["key"]:
continue
filter_out(v2docs, f["op"], f["value"])
return doc_ids
def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
if not dialog.kb_ids and not dialog.prompt_config.get("tavily_api_key"):
@ -287,9 +333,10 @@ def chat(dialog, messages, stream=True, **kwargs):
retriever = settings.retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else []
if "doc_ids" in messages[-1]:
attachments = messages[-1]["doc_ids"]
prompt_config = dialog.prompt_config
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
# try to use sql if field mapping is good to go
@ -316,6 +363,18 @@ def chat(dialog, messages, stream=True, **kwargs):
if prompt_config.get("cross_languages"):
questions = [cross_languages(dialog.tenant_id, dialog.llm_id, questions[0], prompt_config["cross_languages"])]
if dialog.meta_data_filter:
metas = DocumentService.get_meta_by_kbs(dialog.kb_ids)
if dialog.meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, questions[-1])
attachments.extend(meta_filter(metas, filters))
if not attachments:
attachments = None
elif dialog.meta_data_filter.get("method") == "manual":
attachments.extend(meta_filter(metas, dialog.meta_data_filter["manual"]))
if not attachments:
attachments = None
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
@ -323,17 +382,26 @@ def chat(dialog, messages, stream=True, **kwargs):
thought = ""
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
knowledges = []
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
knowledges = []
else:
if attachments is not None and "knowledge" in [p["key"] for p in prompt_config["parameters"]]:
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
knowledges = []
if prompt_config.get("reasoning", False):
reasoner = DeepResearcher(
chat_mdl,
prompt_config,
partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3),
partial(
retriever.retrieval,
embd_mdl=embd_mdl,
tenant_ids=tenant_ids,
kb_ids=dialog.kb_ids,
page=1,
page_size=dialog.top_n,
similarity_threshold=0.2,
vector_similarity_weight=0.3,
doc_ids=attachments,
),
)
for think in reasoner.thinking(kbinfos, " ".join(questions)):
@ -621,7 +689,14 @@ def tts(tts_mdl, text):
return binascii.hexlify(bin).decode("utf-8")
def ask(question, kb_ids, tenant_id, chat_llm_name=None):
def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
doc_ids = search_config.get("doc_ids", [])
rerank_mdl = None
kb_ids = search_config.get("kb_ids", kb_ids)
chat_llm_name = search_config.get("chat_id", chat_llm_name)
rerank_id = search_config.get("rerank_id", "")
meta_data_filter = search_config.get("meta_data_filter")
kbs = KnowledgebaseService.get_by_ids(kb_ids)
embedding_list = list(set([kb.embd_id for kb in kbs]))
@ -630,30 +705,46 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None):
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_llm_name)
if rerank_id:
rerank_mdl = LLMBundle(tenant_id, LLMType.RERANK, rerank_id)
max_tokens = chat_mdl.max_length
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False, rank_feature=label_question(question, kbs))
if meta_data_filter:
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
kbinfos = retriever.retrieval(
question = question,
embd_mdl=embd_mdl,
tenant_ids=tenant_ids,
kb_ids=kb_ids,
page=1,
page_size=12,
similarity_threshold=search_config.get("similarity_threshold", 0.1),
vector_similarity_weight=search_config.get("vector_similarity_weight", 0.3),
top=search_config.get("top_k", 1024),
doc_ids=doc_ids,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(question, kbs)
)
knowledges = kb_prompt(kbinfos, max_tokens)
prompt = """
Role: You're a smart assistant. Your name is Miss R.
Task: Summarize the information from knowledge bases and answer user's question.
Requirements and restriction:
- DO NOT make things up, especially for numbers.
- If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
- Answer with markdown format text.
- Answer in language of user's question.
- DO NOT make things up, especially for numbers.
sys_prompt = PROMPT_JINJA_ENV.from_string(ASK_SUMMARY).render(knowledge="\n".join(knowledges))
### Information from knowledge bases
%s
The above is information from knowledge bases.
""" % "\n".join(knowledges)
msg = [{"role": "user", "content": question}]
def decorate_answer(answer):
nonlocal knowledges, kbinfos, prompt
nonlocal knowledges, kbinfos, sys_prompt
answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
@ -671,7 +762,55 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None):
return {"answer": answer, "reference": refs}
answer = ""
for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
for ans in chat_mdl.chat_streamly(sys_prompt, msg, {"temperature": 0.1}):
answer = ans
yield {"answer": answer, "reference": {}}
yield decorate_answer(answer)
def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
meta_data_filter = search_config.get("meta_data_filter", {})
doc_ids = search_config.get("doc_ids", [])
rerank_id = search_config.get("rerank_id", "")
rerank_mdl = None
kbs = KnowledgebaseService.get_by_ids(kb_ids)
if not kbs:
return {"error": "No KB selected"}
embedding_list = list(set([kb.embd_id for kb in kbs]))
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, llm_name=embedding_list[0])
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
if rerank_id:
rerank_mdl = LLMBundle(tenant_id, LLMType.RERANK, rerank_id)
if meta_data_filter:
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
ranks = settings.retrievaler.retrieval(
question=question,
embd_mdl=embd_mdl,
tenant_ids=tenant_ids,
kb_ids=kb_ids,
page=1,
page_size=12,
similarity_threshold=search_config.get("similarity_threshold", 0.2),
vector_similarity_weight=search_config.get("vector_similarity_weight", 0.3),
top=search_config.get("top_k", 1024),
doc_ids=doc_ids,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(question, kbs),
)
mindmap = MindMapExtractor(chat_mdl)
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
return mind_map.output

View File

@ -243,7 +243,7 @@ class DocumentService(CommonService):
from api.db.services.task_service import TaskService
cls.clear_chunk_num(doc.id)
try:
TaskService.filter_delete(Task.doc_id == doc.id)
TaskService.filter_delete([Task.doc_id == doc.id])
page = 0
page_size = 1000
all_chunk_ids = []
@ -574,6 +574,25 @@ class DocumentService(CommonService):
def update_meta_fields(cls, doc_id, meta_fields):
return cls.update_by_id(doc_id, {"meta_fields": meta_fields})
@classmethod
@DB.connection_context()
def get_meta_by_kbs(cls, kb_ids):
fields = [
cls.model.id,
cls.model.meta_fields,
]
meta = {}
for r in cls.model.select(*fields).where(cls.model.kb_id.in_(kb_ids)):
doc_id = r.id
for k,v in r.meta_fields.items():
if k not in meta:
meta[k] = {}
v = str(v)
if v not in meta[k]:
meta[k][v] = []
meta[k][v].append(doc_id)
return meta
@classmethod
@DB.connection_context()
def update_progress(cls):

View File

@ -227,10 +227,13 @@ class FileService(CommonService):
# tenant_id: Tenant ID
# Returns:
# Knowledge base folder dictionary
for root in cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
for folder in cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == root.id), (cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)):
return folder.to_dict()
assert False, "Can't find the KB folder. Database init error."
root_folder = cls.get_root_folder(tenant_id)
root_id = root_folder["id"]
kb_folder = cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == root_id), (cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)).first()
if not kb_folder:
kb_folder = cls.new_a_file_from_kb(tenant_id, KNOWLEDGEBASE_FOLDER_NAME, root_id)
return kb_folder
return kb_folder.to_dict()
@classmethod
@DB.connection_context()
@ -499,10 +502,9 @@ class FileService(CommonService):
@staticmethod
def get_blob(user_id, location):
bname = f"{user_id}-downloads"
return STORAGE_IMPL.get(bname, location)
return STORAGE_IMPL.get(bname, location)
@staticmethod
def put_blob(user_id, location, blob):
bname = f"{user_id}-downloads"
return STORAGE_IMPL.put(bname, location, blob)
return STORAGE_IMPL.put(bname, location, blob)

View File

@ -13,249 +13,78 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import inspect
import logging
import re
from functools import partial
from typing import Generator
from langfuse import Langfuse
from api import settings
from api.db import LLMType
from api.db.db_models import DB, LLM, LLMFactories, TenantLLM
from api.db.db_models import LLM
from api.db.services.common_service import CommonService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.user_service import TenantService
from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
class LLMFactoriesService(CommonService):
model = LLMFactories
from api.db.services.tenant_llm_service import LLM4Tenant, TenantLLMService
class LLMService(CommonService):
model = LLM
class TenantLLMService(CommonService):
model = TenantLLM
def get_init_tenant_llm(user_id):
from api import settings
tenant_llm = []
@classmethod
@DB.connection_context()
def get_api_key(cls, tenant_id, model_name):
mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
if not fid:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
else:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
seen = set()
factory_configs = []
for factory_config in [
settings.CHAT_CFG,
settings.EMBEDDING_CFG,
settings.ASR_CFG,
settings.IMAGE2TEXT_CFG,
settings.RERANK_CFG,
]:
factory_name = factory_config["factory"]
if factory_name not in seen:
seen.add(factory_name)
factory_configs.append(factory_config)
if (not objs) and fid:
if fid == "LocalAI":
mdlnm += "___LocalAI"
elif fid == "HuggingFace":
mdlnm += "___HuggingFace"
elif fid == "OpenAI-API-Compatible":
mdlnm += "___OpenAI-API"
elif fid == "VLLM":
mdlnm += "___VLLM"
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
if not objs:
return
return objs[0]
@classmethod
@DB.connection_context()
def get_my_llms(cls, tenant_id):
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
return list(objs)
@staticmethod
def split_model_name_and_factory(model_name):
arr = model_name.split("@")
if len(arr) < 2:
return model_name, None
if len(arr) > 2:
return "@".join(arr[0:-1]), arr[-1]
# model name must be xxx@yyy
try:
model_factories = settings.FACTORY_LLM_INFOS
model_providers = set([f["name"] for f in model_factories])
if arr[-1] not in model_providers:
return model_name, None
return arr[0], arr[-1]
except Exception as e:
logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
return model_name, None
@classmethod
@DB.connection_context()
def get_model_config(cls, tenant_id, llm_type, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
if llm_type == LLMType.EMBEDDING.value:
mdlnm = tenant.embd_id if not llm_name else llm_name
elif llm_type == LLMType.SPEECH2TEXT.value:
mdlnm = tenant.asr_id
elif llm_type == LLMType.IMAGE2TEXT.value:
mdlnm = tenant.img2txt_id if not llm_name else llm_name
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.rerank_id if not llm_name else llm_name
elif llm_type == LLMType.TTS:
mdlnm = tenant.tts_id if not llm_name else llm_name
else:
assert False, "LLM type error"
model_config = cls.get_api_key(tenant_id, mdlnm)
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
if not model_config: # for some cases seems fid mismatch
model_config = cls.get_api_key(tenant_id, mdlnm)
if model_config:
model_config = model_config.to_dict()
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if not llm and fid: # for some cases seems fid mismatch
llm = LLMService.query(llm_name=mdlnm)
if llm:
model_config["is_tools"] = llm[0].is_tools
if not model_config:
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
if not model_config:
if mdlnm == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
else:
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
raise LookupError("Model({}) not authorized".format(mdlnm))
return model_config
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel:
return
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.RERANK:
if model_config["llm_factory"] not in RerankModel:
return
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.IMAGE2TEXT.value:
if model_config["llm_factory"] not in CvModel:
return
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
if llm_type == LLMType.CHAT.value:
if model_config["llm_factory"] not in ChatModel:
return
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
if llm_type == LLMType.SPEECH2TEXT:
if model_config["llm_factory"] not in Seq2txtModel:
return
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
if llm_type == LLMType.TTS:
if model_config["llm_factory"] not in TTSModel:
return
return TTSModel[model_config["llm_factory"]](
model_config["api_key"],
model_config["llm_name"],
base_url=model_config["api_base"],
for factory_config in factory_configs:
for llm in LLMService.query(fid=factory_config["factory"]):
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": factory_config["factory"],
"llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": factory_config["api_key"],
"api_base": factory_config["base_url"],
"max_tokens": llm.max_tokens if llm.max_tokens else 8192,
}
)
@classmethod
@DB.connection_context()
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
logging.error(f"Tenant not found: {tenant_id}")
return 0
llm_map = {
LLMType.EMBEDDING.value: tenant.embd_id if not llm_name else llm_name,
LLMType.SPEECH2TEXT.value: tenant.asr_id,
LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
}
mdlnm = llm_map.get(llm_type)
if mdlnm is None:
logging.error(f"LLM type error: {llm_type}")
return 0
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
try:
num = (
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
.execute()
if settings.LIGHTEN != 1:
for buildin_embedding_model in settings.BUILTIN_EMBEDDING_MODELS:
mdlnm, fid = TenantLLMService.split_model_name_and_factory(buildin_embedding_model)
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": fid,
"llm_name": mdlnm,
"model_type": "embedding",
"api_key": "",
"api_base": "",
"max_tokens": 1024 if buildin_embedding_model == "BAAI/bge-large-zh-v1.5@BAAI" else 512,
}
)
except Exception:
logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
return 0
return num
@classmethod
@DB.connection_context()
def get_openai_models(cls):
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
return list(objs)
@staticmethod
def llm_id2llm_type(llm_id: str) -> str | None:
llm_id, *_ = TenantLLMService.split_model_name_and_factory(llm_id)
llm_factories = settings.FACTORY_LLM_INFOS
for llm_factory in llm_factories:
for llm in llm_factory["llm"]:
if llm_id == llm["llm_name"]:
return llm["model_type"].split(",")[-1]
for llm in LLMService.query(llm_name=llm_id):
return llm.model_type
llm = TenantLLMService.get_or_none(llm_name=llm_id)
if llm:
return llm.model_type
for llm in TenantLLMService.query(llm_name=llm_id):
return llm.model_type
unique = {}
for item in tenant_llm:
key = (item["tenant_id"], item["llm_factory"], item["llm_name"])
if key not in unique:
unique[key] = item
return list(unique.values())
class LLMBundle:
class LLMBundle(LLM4Tenant):
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
self.tenant_id = tenant_id
self.llm_type = llm_type
self.llm_name = llm_name
self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang, **kwargs)
assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
self.max_length = model_config.get("max_tokens", 8192)
self.is_tools = model_config.get("is_tools", False)
self.verbose_tool_use = kwargs.get("verbose_tool_use")
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
self.langfuse = None
if langfuse_keys:
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
if langfuse.auth_check():
self.langfuse = langfuse
trace_id = self.langfuse.create_trace_id()
self.trace_context = {"trace_id": trace_id}
super().__init__(tenant_id, llm_type, llm_name, lang, **kwargs)
def bind_tools(self, toolcall_session, tools):
if not self.is_tools:
@ -376,7 +205,24 @@ class LLMBundle:
return txt
return txt[last_think_end + len("</think>") :]
@staticmethod
def _clean_param(chat_partial, **kwargs):
func = chat_partial.func
sig = inspect.signature(func)
keyword_args = []
support_var_args = False
for param in sig.parameters.values():
if param.kind == inspect.Parameter.VAR_KEYWORD or param.kind == inspect.Parameter.VAR_POSITIONAL:
support_var_args = True
elif param.kind == inspect.Parameter.KEYWORD_ONLY:
keyword_args.append(param.name)
use_kwargs = kwargs
if not support_var_args:
use_kwargs = {k: v for k, v in kwargs.items() if k in keyword_args}
return use_kwargs
def chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs) -> str:
if self.langfuse:
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat", model=self.llm_name, input={"system": system, "history": history})
@ -384,8 +230,9 @@ class LLMBundle:
chat_partial = partial(self.mdl.chat, system, history, gen_conf)
if self.is_tools and self.mdl.is_tools:
chat_partial = partial(self.mdl.chat_with_tools, system, history, gen_conf)
txt, used_tokens = chat_partial(**kwargs)
use_kwargs = self._clean_param(chat_partial, **kwargs)
txt, used_tokens = chat_partial(**use_kwargs)
txt = self._remove_reasoning_content(txt)
if not self.verbose_tool_use:
@ -409,8 +256,8 @@ class LLMBundle:
total_tokens = 0
if self.is_tools and self.mdl.is_tools:
chat_partial = partial(self.mdl.chat_streamly_with_tools, system, history, gen_conf)
for txt in chat_partial(**kwargs):
use_kwargs = self._clean_param(chat_partial, **kwargs)
for txt in chat_partial(**use_kwargs):
if isinstance(txt, int):
total_tokens = txt
if self.langfuse:

View File

@ -71,6 +71,8 @@ class SearchService(CommonService):
.first()
.to_dict()
)
if not search:
return {}
return search
@classmethod

View File

@ -0,0 +1,252 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from langfuse import Langfuse
from api import settings
from api.db import LLMType
from api.db.db_models import DB, LLMFactories, TenantLLM
from api.db.services.common_service import CommonService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.user_service import TenantService
from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
class LLMFactoriesService(CommonService):
model = LLMFactories
class TenantLLMService(CommonService):
model = TenantLLM
@classmethod
@DB.connection_context()
def get_api_key(cls, tenant_id, model_name):
mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
if not fid:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
else:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
if (not objs) and fid:
if fid == "LocalAI":
mdlnm += "___LocalAI"
elif fid == "HuggingFace":
mdlnm += "___HuggingFace"
elif fid == "OpenAI-API-Compatible":
mdlnm += "___OpenAI-API"
elif fid == "VLLM":
mdlnm += "___VLLM"
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
if not objs:
return
return objs[0]
@classmethod
@DB.connection_context()
def get_my_llms(cls, tenant_id):
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
return list(objs)
@staticmethod
def split_model_name_and_factory(model_name):
arr = model_name.split("@")
if len(arr) < 2:
return model_name, None
if len(arr) > 2:
return "@".join(arr[0:-1]), arr[-1]
# model name must be xxx@yyy
try:
model_factories = settings.FACTORY_LLM_INFOS
model_providers = set([f["name"] for f in model_factories])
if arr[-1] not in model_providers:
return model_name, None
return arr[0], arr[-1]
except Exception as e:
logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
return model_name, None
@classmethod
@DB.connection_context()
def get_model_config(cls, tenant_id, llm_type, llm_name=None):
from api.db.services.llm_service import LLMService
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
if llm_type == LLMType.EMBEDDING.value:
mdlnm = tenant.embd_id if not llm_name else llm_name
elif llm_type == LLMType.SPEECH2TEXT.value:
mdlnm = tenant.asr_id
elif llm_type == LLMType.IMAGE2TEXT.value:
mdlnm = tenant.img2txt_id if not llm_name else llm_name
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.rerank_id if not llm_name else llm_name
elif llm_type == LLMType.TTS:
mdlnm = tenant.tts_id if not llm_name else llm_name
else:
assert False, "LLM type error"
model_config = cls.get_api_key(tenant_id, mdlnm)
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
if not model_config: # for some cases seems fid mismatch
model_config = cls.get_api_key(tenant_id, mdlnm)
if model_config:
model_config = model_config.to_dict()
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if not llm and fid: # for some cases seems fid mismatch
llm = LLMService.query(llm_name=mdlnm)
if llm:
model_config["is_tools"] = llm[0].is_tools
if not model_config:
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
if not model_config:
if mdlnm == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
else:
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
raise LookupError("Model({}) not authorized".format(mdlnm))
return model_config
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
kwargs.update({"provider": model_config["llm_factory"]})
if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel:
return
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.RERANK:
if model_config["llm_factory"] not in RerankModel:
return
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.IMAGE2TEXT.value:
if model_config["llm_factory"] not in CvModel:
return
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
if llm_type == LLMType.CHAT.value:
if model_config["llm_factory"] not in ChatModel:
return
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
if llm_type == LLMType.SPEECH2TEXT:
if model_config["llm_factory"] not in Seq2txtModel:
return
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
if llm_type == LLMType.TTS:
if model_config["llm_factory"] not in TTSModel:
return
return TTSModel[model_config["llm_factory"]](
model_config["api_key"],
model_config["llm_name"],
base_url=model_config["api_base"],
)
@classmethod
@DB.connection_context()
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
logging.error(f"Tenant not found: {tenant_id}")
return 0
llm_map = {
LLMType.EMBEDDING.value: tenant.embd_id if not llm_name else llm_name,
LLMType.SPEECH2TEXT.value: tenant.asr_id,
LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
}
mdlnm = llm_map.get(llm_type)
if mdlnm is None:
logging.error(f"LLM type error: {llm_type}")
return 0
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
try:
num = (
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
.execute()
)
except Exception:
logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
return 0
return num
@classmethod
@DB.connection_context()
def get_openai_models(cls):
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
return list(objs)
@staticmethod
def llm_id2llm_type(llm_id: str) -> str | None:
from api.db.services.llm_service import LLMService
llm_id, *_ = TenantLLMService.split_model_name_and_factory(llm_id)
llm_factories = settings.FACTORY_LLM_INFOS
for llm_factory in llm_factories:
for llm in llm_factory["llm"]:
if llm_id == llm["llm_name"]:
return llm["model_type"].split(",")[-1]
for llm in LLMService.query(llm_name=llm_id):
return llm.model_type
llm = TenantLLMService.get_or_none(llm_name=llm_id)
if llm:
return llm.model_type
for llm in TenantLLMService.query(llm_name=llm_id):
return llm.model_type
class LLM4Tenant:
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
self.tenant_id = tenant_id
self.llm_type = llm_type
self.llm_name = llm_name
self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang, **kwargs)
assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
self.max_length = model_config.get("max_tokens", 8192)
self.is_tools = model_config.get("is_tools", False)
self.verbose_tool_use = kwargs.get("verbose_tool_use")
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
self.langfuse = None
if langfuse_keys:
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
if langfuse.auth_check():
self.langfuse = langfuse
trace_id = self.langfuse.create_trace_id()
self.trace_context = {"trace_id": trace_id}

View File

@ -33,7 +33,7 @@ import uuid
from werkzeug.serving import run_simple
from api import settings
from api.apps import app
from api.apps import app, smtp_mail_server
from api.db.runtime_config import RuntimeConfig
from api.db.services.document_service import DocumentService
from api import utils
@ -59,11 +59,14 @@ def update_progress():
if redis_lock.acquire():
DocumentService.update_progress()
redis_lock.release()
stop_event.wait(6)
except Exception:
logging.exception("update_progress exception")
finally:
redis_lock.release()
try:
redis_lock.release()
except Exception:
logging.exception("update_progress exception")
stop_event.wait(6)
def signal_handler(sig, frame):
logging.info("Received interrupt signal, shutting down...")
@ -74,11 +77,11 @@ def signal_handler(sig, frame):
if __name__ == '__main__':
logging.info(r"""
____ ___ ______ ______ __
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
""")
logging.info(
@ -137,6 +140,18 @@ if __name__ == '__main__':
else:
threading.Timer(1.0, delayed_start_update_progress).start()
# init smtp server
if settings.SMTP_CONF:
app.config["MAIL_SERVER"] = settings.MAIL_SERVER
app.config["MAIL_PORT"] = settings.MAIL_PORT
app.config["MAIL_USE_SSL"] = settings.MAIL_USE_SSL
app.config["MAIL_USE_TLS"] = settings.MAIL_USE_TLS
app.config["MAIL_USERNAME"] = settings.MAIL_USERNAME
app.config["MAIL_PASSWORD"] = settings.MAIL_PASSWORD
app.config["MAIL_DEFAULT_SENDER"] = settings.MAIL_DEFAULT_SENDER
smtp_mail_server.init_app(app)
# start http server
try:
logging.info("RAGFlow HTTP server start...")

View File

@ -38,6 +38,11 @@ EMBEDDING_MDL = ""
RERANK_MDL = ""
ASR_MDL = ""
IMAGE2TEXT_MDL = ""
CHAT_CFG = ""
EMBEDDING_CFG = ""
RERANK_CFG = ""
ASR_CFG = ""
IMAGE2TEXT_CFG = ""
API_KEY = None
PARSERS = None
HOST_IP = None
@ -74,23 +79,32 @@ STRONG_TEST_COUNT = int(os.environ.get("STRONG_TEST_COUNT", "8"))
BUILTIN_EMBEDDING_MODELS = ["BAAI/bge-large-zh-v1.5@BAAI", "maidalun1020/bce-embedding-base_v1@Youdao"]
SMTP_CONF = None
MAIL_SERVER = ""
MAIL_PORT = 000
MAIL_USE_SSL= True
MAIL_USE_TLS = False
MAIL_USERNAME = ""
MAIL_PASSWORD = ""
MAIL_DEFAULT_SENDER = ()
MAIL_FRONTEND_URL = ""
def get_or_create_secret_key():
secret_key = os.environ.get("RAGFLOW_SECRET_KEY")
if secret_key and len(secret_key) >= 32:
return secret_key
# Check if there's a configured secret key
configured_key = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("secret_key")
if configured_key and configured_key != str(date.today()) and len(configured_key) >= 32:
return configured_key
# Generate a new secure key and warn about it
import logging
new_key = secrets.token_hex(32)
logging.warning(
"SECURITY WARNING: Using auto-generated SECRET_KEY. "
f"Generated key: {new_key}"
)
logging.warning(f"SECURITY WARNING: Using auto-generated SECRET_KEY. Generated key: {new_key}")
return new_key
@ -99,10 +113,10 @@ def init_settings():
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
DATABASE_TYPE = os.getenv("DB_TYPE", "mysql")
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
LLM = get_base_config("user_default_llm", {})
LLM_DEFAULT_MODELS = LLM.get("default_models", {})
LLM_FACTORY = LLM.get("factory")
LLM_BASE_URL = LLM.get("base_url")
LLM = get_base_config("user_default_llm", {}) or {}
LLM_DEFAULT_MODELS = LLM.get("default_models", {}) or {}
LLM_FACTORY = LLM.get("factory", "") or ""
LLM_BASE_URL = LLM.get("base_url", "") or ""
try:
REGISTER_ENABLED = int(os.environ.get("REGISTER_ENABLED", "1"))
except Exception:
@ -115,29 +129,34 @@ def init_settings():
FACTORY_LLM_INFOS = []
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
global CHAT_CFG, EMBEDDING_CFG, RERANK_CFG, ASR_CFG, IMAGE2TEXT_CFG
if not LIGHTEN:
EMBEDDING_MDL = BUILTIN_EMBEDDING_MODELS[0]
if LLM_DEFAULT_MODELS:
CHAT_MDL = LLM_DEFAULT_MODELS.get("chat_model", CHAT_MDL)
EMBEDDING_MDL = LLM_DEFAULT_MODELS.get("embedding_model", EMBEDDING_MDL)
RERANK_MDL = LLM_DEFAULT_MODELS.get("rerank_model", RERANK_MDL)
ASR_MDL = LLM_DEFAULT_MODELS.get("asr_model", ASR_MDL)
IMAGE2TEXT_MDL = LLM_DEFAULT_MODELS.get("image2text_model", IMAGE2TEXT_MDL)
# factory can be specified in the config name with "@". LLM_FACTORY will be used if not specified
CHAT_MDL = CHAT_MDL + (f"@{LLM_FACTORY}" if "@" not in CHAT_MDL and CHAT_MDL != "" else "")
EMBEDDING_MDL = EMBEDDING_MDL + (f"@{LLM_FACTORY}" if "@" not in EMBEDDING_MDL and EMBEDDING_MDL != "" else "")
RERANK_MDL = RERANK_MDL + (f"@{LLM_FACTORY}" if "@" not in RERANK_MDL and RERANK_MDL != "" else "")
ASR_MDL = ASR_MDL + (f"@{LLM_FACTORY}" if "@" not in ASR_MDL and ASR_MDL != "" else "")
IMAGE2TEXT_MDL = IMAGE2TEXT_MDL + (f"@{LLM_FACTORY}" if "@" not in IMAGE2TEXT_MDL and IMAGE2TEXT_MDL != "" else "")
global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
API_KEY = LLM.get("api_key")
PARSERS = LLM.get(
"parsers", "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"
)
chat_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("chat_model", CHAT_MDL))
embedding_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("embedding_model", EMBEDDING_MDL))
rerank_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("rerank_model", RERANK_MDL))
asr_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("asr_model", ASR_MDL))
image2text_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("image2text_model", IMAGE2TEXT_MDL))
CHAT_CFG = _resolve_per_model_config(chat_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
EMBEDDING_CFG = _resolve_per_model_config(embedding_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
RERANK_CFG = _resolve_per_model_config(rerank_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
ASR_CFG = _resolve_per_model_config(asr_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
IMAGE2TEXT_CFG = _resolve_per_model_config(image2text_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
CHAT_MDL = CHAT_CFG.get("model", "") or ""
EMBEDDING_MDL = EMBEDDING_CFG.get("model", "") or ""
RERANK_MDL = RERANK_CFG.get("model", "") or ""
ASR_MDL = ASR_CFG.get("model", "") or ""
IMAGE2TEXT_MDL = IMAGE2TEXT_CFG.get("model", "") or ""
HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")
@ -170,12 +189,28 @@ def init_settings():
retrievaler = search.Dealer(docStoreConn)
from graphrag import search as kg_search
kg_retrievaler = kg_search.KGSearch(docStoreConn)
if int(os.environ.get("SANDBOX_ENABLED", "0")):
global SANDBOX_HOST
SANDBOX_HOST = os.environ.get("SANDBOX_HOST", "sandbox-executor-manager")
global SMTP_CONF, MAIL_SERVER, MAIL_PORT, MAIL_USE_SSL, MAIL_USE_TLS
global MAIL_USERNAME, MAIL_PASSWORD, MAIL_DEFAULT_SENDER, MAIL_FRONTEND_URL
SMTP_CONF = get_base_config("smtp", {})
MAIL_SERVER = SMTP_CONF.get("mail_server", "")
MAIL_PORT = SMTP_CONF.get("mail_port", 000)
MAIL_USE_SSL = SMTP_CONF.get("mail_use_ssl", True)
MAIL_USE_TLS = SMTP_CONF.get("mail_use_tls", False)
MAIL_USERNAME = SMTP_CONF.get("mail_username", "")
MAIL_PASSWORD = SMTP_CONF.get("mail_password", "")
mail_default_sender = SMTP_CONF.get("mail_default_sender", [])
if mail_default_sender and len(mail_default_sender) >= 2:
MAIL_DEFAULT_SENDER = (mail_default_sender[0], mail_default_sender[1])
MAIL_FRONTEND_URL = SMTP_CONF.get("mail_frontend_url", "")
class CustomEnum(Enum):
@classmethod
@ -210,3 +245,34 @@ class RetCode(IntEnum, CustomEnum):
SERVER_ERROR = 500
FORBIDDEN = 403
NOT_FOUND = 404
def _parse_model_entry(entry):
if isinstance(entry, str):
return {"name": entry, "factory": None, "api_key": None, "base_url": None}
if isinstance(entry, dict):
name = entry.get("name") or entry.get("model") or ""
return {
"name": name,
"factory": entry.get("factory"),
"api_key": entry.get("api_key"),
"base_url": entry.get("base_url"),
}
return {"name": "", "factory": None, "api_key": None, "base_url": None}
def _resolve_per_model_config(entry_dict, backup_factory, backup_api_key, backup_base_url):
name = (entry_dict.get("name") or "").strip()
m_factory = entry_dict.get("factory") or backup_factory or ""
m_api_key = entry_dict.get("api_key") or backup_api_key or ""
m_base_url = entry_dict.get("base_url") or backup_base_url or ""
if name and "@" not in name and m_factory:
name = f"{name}@{m_factory}"
return {
"model": name,
"factory": m_factory,
"api_key": m_api_key,
"base_url": m_base_url,
}

View File

@ -48,7 +48,8 @@ from werkzeug.http import HTTP_STATUS_CODES
from api import settings
from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC
from api.db.db_models import APIToken
from api.db.services.llm_service import LLMService, TenantLLMService
from api.db.services.llm_service import LLMService
from api.db.services.tenant_llm_service import TenantLLMService
from api.utils import CustomJSONEncoder, get_uuid, json_dumps
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, close_multiple_mcp_toolcall_sessions

View File

@ -21,6 +21,9 @@ import re
import socket
from urllib.parse import urlparse
from api.apps import smtp_mail_server
from flask_mail import Message
from flask import render_template_string
from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.chrome.options import Options
@ -31,6 +34,7 @@ from selenium.webdriver.support.ui import WebDriverWait
from webdriver_manager.chrome import ChromeDriverManager
CONTENT_TYPE_MAP = {
# Office
"docx": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
@ -172,3 +176,26 @@ def get_float(req: dict, key: str, default: float | int = 10.0) -> float:
return parsed if parsed > 0 else default
except (TypeError, ValueError):
return default
INVITE_EMAIL_TMPL = """
<p>Hi {{email}},</p>
<p>{{inviter}} has invited you to join their team (ID: {{tenant_id}}).</p>
<p>Click the link below to complete your registration:<br>
<a href="{{invite_url}}">{{invite_url}}</a></p>
<p>If you did not request this, please ignore this email.</p>
"""
def send_invite_email(to_email, invite_url, tenant_id, inviter):
from api.apps import app
with app.app_context():
msg = Message(subject="RAGFlow Invitation",
recipients=[to_email])
msg.html = render_template_string(
INVITE_EMAIL_TMPL,
email=to_email,
invite_url=invite_url,
tenant_id=tenant_id,
inviter=inviter,
)
smtp_mail_server.send(msg)

View File

@ -505,6 +505,24 @@
"tags": "RE-RANK,4k",
"max_tokens": 4000,
"model_type": "rerank"
},
{
"llm_name": "qwen-audio-asr",
"tags": "SPEECH2TEXT,8k",
"max_tokens": 8000,
"model_type": "speech2text"
},
{
"llm_name": "qwen-audio-asr-latest",
"tags": "SPEECH2TEXT,8k",
"max_tokens": 8000,
"model_type": "speech2text"
},
{
"llm_name": "qwen-audio-asr-1204",
"tags": "SPEECH2TEXT,8k",
"max_tokens": 8000,
"model_type": "speech2text"
}
]
},
@ -1146,60 +1164,35 @@
"llm_name": "gemini-2.5-flash",
"tags": "LLM,CHAT,1024K,IMAGE2TEXT",
"max_tokens": 1048576,
"model_type": "image2text",
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gemini-2.5-pro",
"tags": "LLM,CHAT,IMAGE2TEXT,1024K",
"max_tokens": 1048576,
"model_type": "image2text",
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gemini-2.5-flash-preview-05-20",
"llm_name": "gemini-2.5-flash-lite",
"tags": "LLM,CHAT,1024K,IMAGE2TEXT",
"max_tokens": 1048576,
"model_type": "image2text",
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gemini-2.0-flash-001",
"tags": "LLM,CHAT,1024K",
"max_tokens": 1048576,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.0-flash-thinking-exp-01-21",
"llm_name": "gemini-2.0-flash",
"tags": "LLM,CHAT,1024K",
"max_tokens": 1048576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gemini-1.5-flash",
"tags": "LLM,IMAGE2TEXT,1024K",
"llm_name": "gemini-2.0-flash-lite",
"tags": "LLM,CHAT,1024K",
"max_tokens": 1048576,
"model_type": "image2text"
},
{
"llm_name": "gemini-2.5-pro-preview-05-06",
"tags": "LLM,IMAGE2TEXT,1024K",
"max_tokens": 1048576,
"model_type": "image2text"
},
{
"llm_name": "gemini-1.5-pro",
"tags": "LLM,IMAGE2TEXT,2048K",
"max_tokens": 2097152,
"model_type": "image2text"
},
{
"llm_name": "gemini-1.5-flash-8b",
"tags": "LLM,IMAGE2TEXT,1024K",
"max_tokens": 1048576,
"model_type": "image2text",
"model_type": "chat",
"is_tools": true
},
{

View File

@ -64,9 +64,21 @@ redis:
# config:
# oss_table: 'opendal_storage'
# user_default_llm:
# factory: 'Tongyi-Qianwen'
# api_key: 'sk-xxxxxxxxxxxxx'
# base_url: ''
# factory: 'BAAI'
# api_key: 'backup'
# base_url: 'backup_base_url'
# default_models:
# chat_model:
# name: 'qwen2.5-7b-instruct'
# factory: 'xxxx'
# api_key: 'xxxx'
# base_url: 'https://api.xx.com'
# embedding_model:
# name: 'bge-m3'
# rerank_model: 'bge-reranker-v2'
# asr_model:
# model: 'whisper-large-v3' # alias of name
# image2text_model: ''
# oauth:
# oauth2:
# display_name: "OAuth2"
@ -101,3 +113,14 @@ redis:
# switch: false
# component: false
# dataset: false
# smtp:
# mail_server: ""
# mail_port: 465
# mail_use_ssl: true
# mail_use_tls: false
# mail_username: ""
# mail_password: ""
# mail_default_sender:
# - "RAGFlow" # display name
# - "" # sender email address
# mail_frontend_url: "https://your-frontend.example.com"

View File

@ -12,6 +12,7 @@
#
import logging
import re
import sys
from io import BytesIO
@ -20,6 +21,8 @@ from openpyxl import Workbook, load_workbook
from rag.nlp import find_codec
# copied from `/openpyxl/cell/cell.py`
ILLEGAL_CHARACTERS_RE = re.compile(r'[\000-\010]|[\013-\014]|[\016-\037]')
class RAGFlowExcelParser:
@ -50,13 +53,29 @@ class RAGFlowExcelParser:
logging.info(f"openpyxl load error: {e}, try pandas instead")
try:
file_like_object.seek(0)
df = pd.read_excel(file_like_object)
return RAGFlowExcelParser._dataframe_to_workbook(df)
try:
df = pd.read_excel(file_like_object)
return RAGFlowExcelParser._dataframe_to_workbook(df)
except Exception as ex:
logging.info(f"pandas with default engine load error: {ex}, try calamine instead")
file_like_object.seek(0)
df = pd.read_excel(file_like_object, engine='calamine')
return RAGFlowExcelParser._dataframe_to_workbook(df)
except Exception as e_pandas:
raise Exception(f"pandas.read_excel error: {e_pandas}, original openpyxl error: {e}")
@staticmethod
def _clean_dataframe(df: pd.DataFrame):
def clean_string(s):
if isinstance(s, str):
return ILLEGAL_CHARACTERS_RE.sub(" ", s)
return s
return df.apply(lambda col: col.map(clean_string))
@staticmethod
def _dataframe_to_workbook(df):
df = RAGFlowExcelParser._clean_dataframe(df)
wb = Workbook()
ws = wb.active
ws.title = "Data"
@ -71,9 +90,17 @@ class RAGFlowExcelParser:
return wb
def html(self, fnm, chunk_rows=256):
from html import escape
file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
wb = RAGFlowExcelParser._load_excel_to_workbook(file_like_object)
tb_chunks = []
def _fmt(v):
if v is None:
return ""
return str(v).strip()
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
@ -82,7 +109,7 @@ class RAGFlowExcelParser:
tb_rows_0 = "<tr>"
for t in list(rows[0]):
tb_rows_0 += f"<th>{t.value}</th>"
tb_rows_0 += f"<th>{escape(_fmt(t.value))}</th>"
tb_rows_0 += "</tr>"
for chunk_i in range((len(rows) - 1) // chunk_rows + 1):
@ -90,7 +117,7 @@ class RAGFlowExcelParser:
tb += f"<table><caption>{sheetname}</caption>"
tb += tb_rows_0
for r in list(
rows[1 + chunk_i * chunk_rows: 1 + (chunk_i + 1) * chunk_rows]
rows[1 + chunk_i * chunk_rows: min(1 + (chunk_i + 1) * chunk_rows, len(rows))]
):
tb += "<tr>"
for i, c in enumerate(r):

View File

@ -94,7 +94,7 @@ SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download.
# Defaults to the v0.20.1-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1-slim
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1

View File

@ -79,8 +79,8 @@ The [.env](./.env) file contains important environment variables for Docker.
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.20.1-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.1`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.20.3-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.3`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -6,3 +6,7 @@ proxy_set_header Connection "";
proxy_buffering off;
proxy_read_timeout 3600s;
proxy_send_timeout 3600s;
proxy_buffer_size 1024k;
proxy_buffers 16 1024k;
proxy_busy_buffers_size 2048k;
proxy_temp_file_write_size 2048k;

View File

@ -99,8 +99,8 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.20.1-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.1`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.20.3-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.3`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -77,7 +77,7 @@ After building the infiniflow/ragflow:nightly-slim image, you are ready to launc
1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.1-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.3-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
2. Launch the Service

View File

@ -30,17 +30,17 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1`
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.3-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.3`
---
### Which embedding models can be deployed locally?
RAGFlow offers two Docker image editions, `v0.20.1-slim` and `v0.20.1`:
RAGFlow offers two Docker image editions, `v0.20.3-slim` and `v0.20.3`:
- `infiniflow/ragflow:v0.20.1-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.1`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.20.3-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.3`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -9,7 +9,7 @@ The component equipped with reasoning, tool usage, and multi-agent collaboration
---
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.1 onwards, an **Agent** component is able to work independently and with the following capabilities:
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.3 onwards, an **Agent** component is able to work independently and with the following capabilities:
- Autonomous reasoning with reflection and adjustment based on environmental feedback.
- Use of tools or subagents to complete tasks.

View File

@ -9,7 +9,7 @@ A component that retrieves information from specified datasets.
## Scenarios
A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated knowledge bases before being sent to the LLM for content generation. As of v0.20.1, a **Retrieval** component can operate either as a workflow component or as a tool of an **Agent**, enabling the Agent to control its invocation and search queries.
A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated knowledge bases before being sent to the LLM for content generation. As of v0.20.3, a **Retrieval** component can operate either as a workflow component or as a tool of an **Agent**, enabling the Agent to control its invocation and search queries.
## Configurations

View File

@ -63,7 +63,7 @@ docker build -t sandbox-executor-manager:latest ./executor_manager
3. Add the following entry to your /etc/hosts file to resolve the executor manager service:
```bash
127.0.0.1 sandbox-executor-manager
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. Start the RAGFlow service as usual.

View File

@ -48,7 +48,7 @@ You start an AI conversation by creating an assistant.
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
- If you are uncertain about the logic behind **Variable**, leave it *as-is*.
- As of v0.20.1, if you add custom variables here, the only way you can pass in their values is to call:
- As of v0.20.3, if you add custom variables here, the only way you can pass in their values is to call:
- HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or
- Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant).

View File

@ -128,7 +128,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
## Search for knowledge base
As of RAGFlow v0.20.1, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
As of RAGFlow v0.20.3, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)

View File

@ -87,4 +87,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.20.1, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.20.3, bulk download is not supported, nor can you download an entire folder.

View File

@ -18,7 +18,7 @@ RAGFlow ships with a built-in [Langfuse](https://langfuse.com) integration so th
Langfuse stores traces, spans and prompt payloads in a purpose-built observability backend and offers filtering and visualisations on top.
:::info NOTE
• RAGFlow **≥ 0.20.1** (contains the Langfuse connector)
• RAGFlow **≥ 0.20.3** (contains the Langfuse connector)
• A Langfuse workspace (cloud or self-hosted) with a _Project Public Key_ and _Secret Key_
:::

View File

@ -66,10 +66,10 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
git clone https://github.com/infiniflow/ragflow.git
```
2. Switch to the latest, officially published release, e.g., `v0.20.1`:
2. Switch to the latest, officially published release, e.g., `v0.20.3`:
```bash
git checkout -f v0.20.1
git checkout -f v0.20.3
```
3. Update **ragflow/docker/.env**:
@ -83,14 +83,14 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
<TabItem value="slim">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1-slim
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3-slim
```
</TabItem>
<TabItem value="full">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3
```
</TabItem>
@ -114,10 +114,10 @@ No, you do not need to. Upgrading RAGFlow in itself will *not* remove your uploa
1. From an environment with Internet access, pull the required Docker image.
2. Save the Docker image to a **.tar** file.
```bash
docker save -o ragflow.v0.20.1.tar infiniflow/ragflow:v0.20.1
docker save -o ragflow.v0.20.3.tar infiniflow/ragflow:v0.20.3
```
3. Copy the **.tar** file to the target server.
4. Load the **.tar** file into Docker:
```bash
docker load -i ragflow.v0.20.1.tar
docker load -i ragflow.v0.20.3.tar
```

View File

@ -44,7 +44,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.20.1 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
RAGFlow v0.20.3 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs
defaultValue="linux"
@ -184,13 +184,13 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/docker
$ git checkout -f v0.20.1
$ git checkout -f v0.20.3
```
3. Use the pre-built Docker images and start up the server:
:::tip NOTE
The command below downloads the `v0.20.1-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` for the full edition `v0.20.1`.
The command below downloads the `v0.20.3-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.3-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` for the full edition `v0.20.3`.
:::
```bash
@ -207,8 +207,8 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
| RAGFlow image tag | Image size (GB) | Has embedding models and Python packages? | Stable? |
| ------------------- | --------------- | ----------------------------------------- | ------------------------ |
| `v0.20.1` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.20.1-slim` | &approx;2 | ❌ | Stable release |
| `v0.20.3` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.20.3-slim` | &approx;2 | ❌ | Stable release |
| `nightly` | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| `nightly-slim` | &approx;2 | ❌ | *Unstable* nightly build |
@ -217,7 +217,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```
:::danger IMPORTANT
The embedding models included in `v0.20.1` and `nightly` are:
The embedding models included in `v0.20.3` and `nightly` are:
- BAAI/bge-large-zh-v1.5
- maidalun1020/bce-embedding-base_v1

View File

@ -19,7 +19,7 @@ import TOCInline from '@theme/TOCInline';
### Cross-language search
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.1. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the systems default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.3. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the systems default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
By enabling cross-language search, users can effortlessly access a broader range of information regardless of language barriers, significantly enhancing the systems usability and inclusiveness.

File diff suppressed because it is too large Load Diff

View File

@ -5,7 +5,7 @@ slug: /python_api_reference
# Python API
A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](../guides/models/llm_api_key_setup.md).
A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](../develop/acquire_ragflow_api_key.md).
:::tip NOTE
Run the following command to download the Python SDK:

View File

@ -9,8 +9,8 @@ Key features, improvements and bug fixes in the latest releases.
:::info
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.19.1-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.19.1`
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1`
:::
:::danger IMPORTANT
@ -22,6 +22,38 @@ The embedding models included in a full edition are:
These two embedding models are optimized specifically for English and Chinese, so performance may be compromised if you use them to embed documents in other languages.
:::
## v0.20.3
Released on August 20, 2025.
### Improvements
- Revamps the user interface for the **Datasets**, **Chat**, and **Search** pages.
- Search and Chat: Introduces document-level metadata filtering, allowing automatic or manual filtering during chats or searches.
- Search: Supports creating search apps tailored to various business scenarios
- Chat: Supports comparing answer performance of up to three chat model settings on a single **Chat** page.
- Agent:
- Implements a toggle in the **Agent** component to enable or disable citation.
- Introduces a drag-and-drop method for creating components.
- Documentation: Corrects inaccuracies in the API reference.
### New Agent templates
- Report Agent: A template for generating summary reports in internal question-answering scenarios, supporting the display of tables and formulae. [#9427](https://github.com/infiniflow/ragflow/pull/9427)
### Fixed issues
- The timeout mechanism introduced in v0.20.0 caused tasks like GraphRAG to halt.
- Predefined opening greeting in the **Agent** component was missing during conversations.
- An automatic line break issue in the prompt editor.
- A memory leak issue caused by PyPDF. [#9469](https://github.com/infiniflow/ragflow/pull/9469)
### API changes
#### Deprecated
[Create session with agent](./references/http_api_reference.md#create-session-with-agent)
## v0.20.1
Released on August 8, 2025.
@ -33,10 +65,10 @@ Released on August 8, 2025.
### Added Models
- ChatGPT 5
- GPT-5
- Claude 4.1
### New agent Templates (both workflow and agentic)
### New agent templates (both workflow and agentic)
- SQL Assistant Workflow: Empowers non-technical teams (e.g., operations, product) to independently query business data.
- Choose Your Knowledge Base Workflow: Lets users select a knowledge base to query during conversations. [#9325](https://github.com/infiniflow/ragflow/pull/9325)
@ -182,7 +214,7 @@ From this release onwards, if you still see RAGFlow's responses being cut short
- Unable to add models via Ollama/Xinference, an issue introduced in v0.17.1.
### Related APIs
### API changes
#### HTTP APIs
@ -243,7 +275,7 @@ The following is a screenshot of a conversation that integrates Deep Research:
![Image](https://github.com/user-attachments/assets/165b88ff-1f5d-4fb8-90e2-c836b25e32e9)
### Related APIs
### API changes
#### HTTP APIs
@ -318,7 +350,7 @@ This release fixes the following issues:
- Using the **Table** parsing method results in information loss.
- Miscellaneous API issues.
### Related APIs
### API changes
#### HTTP APIs
@ -354,7 +386,7 @@ Released on December 18, 2024.
- Upgrades the Document Layout Analysis model in DeepDoc.
- Significantly enhances the retrieval performance when using [Infinity](https://github.com/infiniflow/infinity) as document engine.
### Related APIs
### API changes
#### HTTP APIs
@ -411,7 +443,7 @@ This approach eliminates the need to manually update **service_config.yaml** aft
Ensure that you [upgrade **both** your code **and** Docker image to this release](https://ragflow.io/docs/dev/upgrade_ragflow#upgrade-ragflow-to-the-most-recent-officially-published-release) before trying this new approach.
:::
### Related APIs
### API changes
#### HTTP APIs
@ -570,7 +602,7 @@ While we also test RAGFlow on ARM64 platforms, we do not maintain RAGFlow Docker
If you are on an ARM platform, follow [this guide](./develop/build_docker_image.mdx) to build a RAGFlow Docker image.
:::
### Related APIs
### API changes
#### HTTP API
@ -591,7 +623,7 @@ Released on May 21, 2024.
- Supports monitoring of system components, including Elasticsearch, MySQL, Redis, and MinIO.
- Supports disabling **Layout Recognition** in the GENERAL chunking method to reduce file chunking time.
### Related APIs
### API changes
#### HTTP API

View File

@ -106,7 +106,7 @@ class EntityResolution(Extractor):
nonlocal remain_candidates_to_resolve, callback
async with semaphore:
try:
with trio.move_on_after(180) as cancel_scope:
with trio.move_on_after(280) as cancel_scope:
await self._resolve_candidate(candidate_batch, result_set, result_lock)
remain_candidates_to_resolve = remain_candidates_to_resolve - len(candidate_batch[1])
callback(msg=f"Resolved {len(candidate_batch[1])} pairs, {remain_candidates_to_resolve} are remained to resolve. ")
@ -169,7 +169,7 @@ class EntityResolution(Extractor):
logging.info(f"Created resolution prompt {len(text)} bytes for {len(candidate_resolution_i[1])} entity pairs of type {candidate_resolution_i[0]}")
async with chat_limiter:
try:
with trio.move_on_after(120) as cancel_scope:
with trio.move_on_after(240) as cancel_scope:
response = await trio.to_thread.run_sync(self._chat, text, [{"role": "user", "content": "Output:"}], {})
if cancel_scope.cancelled_caught:
logging.warning("_resolve_candidate._chat timeout, skipping...")

View File

@ -92,7 +92,7 @@ class CommunityReportsExtractor(Extractor):
text = perform_variable_replacements(self._extraction_prompt, variables=prompt_variables)
async with chat_limiter:
try:
with trio.move_on_after(80) as cancel_scope:
with trio.move_on_after(180) as cancel_scope:
response = await trio.to_thread.run_sync( self._chat, text, [{"role": "user", "content": "Output:"}], {})
if cancel_scope.cancelled_caught:
logging.warning("extract_community_report._chat timeout, skipping...")

View File

@ -57,20 +57,22 @@ async def run_graphrag(
):
chunks.append(d["content_with_weight"])
subgraph = await generate_subgraph(
LightKGExt
if "method" not in row["kb_parser_config"].get("graphrag", {}) or row["kb_parser_config"]["graphrag"]["method"] != "general"
else GeneralKGExt,
tenant_id,
kb_id,
doc_id,
chunks,
language,
row["kb_parser_config"]["graphrag"].get("entity_types", []),
chat_model,
embedding_model,
callback,
)
with trio.fail_after(max(120, len(chunks)*120)):
subgraph = await generate_subgraph(
LightKGExt
if "method" not in row["kb_parser_config"].get("graphrag", {}) or row["kb_parser_config"]["graphrag"]["method"] != "general"
else GeneralKGExt,
tenant_id,
kb_id,
doc_id,
chunks,
language,
row["kb_parser_config"]["graphrag"].get("entity_types", []),
chat_model,
embedding_model,
callback,
)
if not subgraph:
return
@ -125,7 +127,6 @@ async def run_graphrag(
return
@timeout(60*60, 1)
async def generate_subgraph(
extractor: Extractor,
tenant_id: str,

View File

@ -44,9 +44,21 @@ spec:
checksum/config-es: {{ include (print $.Template.BasePath "/elasticsearch-config.yaml") . | sha256sum }}
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.elasticsearch.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.elasticsearch.image.pullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- end }}
initContainers:
- name: fix-data-volume-permissions
image: alpine
image: {{ .Values.elasticsearch.initContainers.alpine.repository }}:{{ .Values.elasticsearch.initContainers.alpine.tag }}
{{- with .Values.elasticsearch.initContainers.alpine.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
command:
- sh
- -c
@ -55,14 +67,20 @@ spec:
- mountPath: /usr/share/elasticsearch/data
name: es-data
- name: sysctl
image: busybox
image: {{ .Values.elasticsearch.initContainers.busybox.repository }}:{{ .Values.elasticsearch.initContainers.busybox.tag }}
{{- with .Values.elasticsearch.initContainers.busybox.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
securityContext:
privileged: true
runAsUser: 0
command: ["sysctl", "-w", "vm.max_map_count=262144"]
containers:
- name: elasticsearch
image: elasticsearch:{{ .Values.env.STACK_VERSION }}
image: {{ .Values.elasticsearch.image.repository }}:{{ .Values.elasticsearch.image.tag }}
{{- with .Values.elasticsearch.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
envFrom:
- secretRef:
name: {{ include "ragflow.fullname" . }}-env-config

View File

@ -43,9 +43,21 @@ spec:
annotations:
checksum/config: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.infinity.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.infinity.image.pullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- end }}
containers:
- name: infinity
image: {{ .Values.infinity.image.repository }}:{{ .Values.infinity.image.tag }}
{{- with .Values.infinity.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
envFrom:
- secretRef:
name: {{ include "ragflow.fullname" . }}-env-config

View File

@ -43,9 +43,21 @@ spec:
{{- include "ragflow.labels" . | nindent 8 }}
app.kubernetes.io/component: minio
spec:
{{- if or .Values.imagePullSecrets .Values.minio.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.minio.image.pullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- end }}
containers:
- name: minio
image: {{ .Values.minio.image.repository }}:{{ .Values.minio.image.tag }}
{{- with .Values.minio.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
envFrom:
- secretRef:
name: {{ include "ragflow.fullname" . }}-env-config

View File

@ -44,9 +44,21 @@ spec:
checksum/config-mysql: {{ include (print $.Template.BasePath "/mysql-config.yaml") . | sha256sum }}
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.mysql.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.mysql.image.pullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- end }}
containers:
- name: mysql
image: {{ .Values.mysql.image.repository }}:{{ .Values.mysql.image.tag }}
{{- with .Values.mysql.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
envFrom:
- secretRef:
name: {{ include "ragflow.fullname" . }}-env-config

View File

@ -44,9 +44,21 @@ spec:
checksum/config-opensearch: {{ include (print $.Template.BasePath "/opensearch-config.yaml") . | sha256sum }}
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.opensearch.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.opensearch.image.pullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- end }}
initContainers:
- name: fix-data-volume-permissions
image: alpine
image: {{ .Values.opensearch.initContainers.alpine.repository }}:{{ .Values.opensearch.initContainers.alpine.tag }}
{{- with .Values.opensearch.initContainers.alpine.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
command:
- sh
- -c
@ -55,7 +67,10 @@ spec:
- mountPath: /usr/share/opensearch/data
name: opensearch-data
- name: sysctl
image: busybox
image: {{ .Values.opensearch.initContainers.busybox.repository }}:{{ .Values.opensearch.initContainers.busybox.tag }}
{{- with .Values.opensearch.initContainers.busybox.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
securityContext:
privileged: true
runAsUser: 0
@ -63,6 +78,9 @@ spec:
containers:
- name: opensearch
image: {{ .Values.opensearch.image.repository }}:{{ .Values.opensearch.image.tag }}
{{- with .Values.opensearch.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
envFrom:
- secretRef:
name: {{ include "ragflow.fullname" . }}-env-config

View File

@ -25,9 +25,21 @@ spec:
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
checksum/config-ragflow: {{ include (print $.Template.BasePath "/ragflow_config.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.ragflow.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.ragflow.image.pullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- end }}
containers:
- name: ragflow
image: {{ .Values.env.RAGFLOW_IMAGE }}
image: {{ .Values.ragflow.image.repository }}:{{ .Values.ragflow.image.tag }}
{{- with .Values.ragflow.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
ports:
- containerPort: 80
name: http

View File

@ -40,10 +40,22 @@ spec:
annotations:
checksum/config-env: {{ include (print $.Template.BasePath "/env.yaml") . | sha256sum }}
spec:
{{- if or .Values.imagePullSecrets .Values.redis.image.pullSecrets }}
imagePullSecrets:
{{- with .Values.imagePullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.redis.image.pullSecrets }}
{{- toYaml . | nindent 8 }}
{{- end }}
{{- end }}
terminationGracePeriodSeconds: 60
containers:
- name: redis
image: {{ .Values.redis.image.repository }}:{{ .Values.redis.image.tag }}
{{- with .Values.redis.image.pullPolicy }}
imagePullPolicy: {{ . }}
{{- end }}
command:
- "sh"
- "-c"

View File

@ -1,4 +1,8 @@
# Based on docker compose .env file
# Global image pull secrets configuration
imagePullSecrets: []
env:
# The type of doc engine to use.
# Available options:
@ -32,31 +36,6 @@ env:
# The password for Redis
REDIS_PASSWORD: infini_rag_flow_helm
# The RAGFlow Docker image to download.
# Defaults to the v0.20.1-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE: infiniflow/ragflow:v0.20.1-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE: infiniflow/ragflow:v0.20.1
#
# The Docker image of the v0.20.1 edition includes:
# - Built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - BAAI/bge-reranker-v2-m3
# - maidalun1020/bce-embedding-base_v1
# - maidalun1020/bce-reranker-base_v1
# - Embedding models that will be downloaded once you select them in the RAGFlow UI:
# - BAAI/bge-base-en-v1.5
# - BAAI/bge-large-en-v1.5
# - BAAI/bge-small-en-v1.5
# - BAAI/bge-small-zh-v1.5
# - jinaai/jina-embeddings-v2-base-en
# - jinaai/jina-embeddings-v2-small-en
# - nomic-ai/nomic-embed-text-v1.5
# - sentence-transformers/all-MiniLM-L6-v2
#
#
# The local time zone.
TIMEZONE: "Asia/Shanghai"
@ -75,7 +54,11 @@ env:
EMBEDDING_BATCH_SIZE: 16
ragflow:
image:
repository: infiniflow/ragflow
tag: v0.20.3-slim
pullPolicy: IfNotPresent
pullSecrets: []
# Optional service configuration overrides
# to be written to local.service_conf.yaml
# inside the RAGFlow container
@ -114,6 +97,8 @@ infinity:
image:
repository: infiniflow/infinity
tag: v0.6.0-dev5
pullPolicy: IfNotPresent
pullSecrets: []
storage:
className:
capacity: 5Gi
@ -124,6 +109,20 @@ infinity:
type: ClusterIP
elasticsearch:
image:
repository: elasticsearch
tag: "8.11.3"
pullPolicy: IfNotPresent
pullSecrets: []
initContainers:
alpine:
repository: alpine
tag: latest
pullPolicy: IfNotPresent
busybox:
repository: busybox
tag: latest
pullPolicy: IfNotPresent
storage:
className:
capacity: 20Gi
@ -140,6 +139,17 @@ opensearch:
image:
repository: opensearchproject/opensearch
tag: 2.19.1
pullPolicy: IfNotPresent
pullSecrets: []
initContainers:
alpine:
repository: alpine
tag: latest
pullPolicy: IfNotPresent
busybox:
repository: busybox
tag: latest
pullPolicy: IfNotPresent
storage:
className:
capacity: 20Gi
@ -156,6 +166,8 @@ minio:
image:
repository: quay.io/minio/minio
tag: RELEASE.2023-12-20T01-00-02Z
pullPolicy: IfNotPresent
pullSecrets: []
storage:
className:
capacity: 5Gi
@ -169,6 +181,8 @@ mysql:
image:
repository: mysql
tag: 8.0.39
pullPolicy: IfNotPresent
pullSecrets: []
storage:
className:
capacity: 5Gi
@ -182,6 +196,8 @@ redis:
image:
repository: valkey/valkey
tag: 8
pullPolicy: IfNotPresent
pullSecrets: []
storage:
className:
capacity: 5Gi

View File

@ -180,7 +180,7 @@ async def list_tools(*, connector) -> list[types.Tool]:
return [
types.Tool(
name="ragflow_retrieval",
description="Retrieve relevant chunks from the RAGFlow retrieve interface based on the question, using the specified dataset_ids and optionally document_ids. Below is the list of all available datasets, including their descriptions and IDs. If you're unsure which datasets are relevant to the question, simply pass all dataset IDs to the function."
description="Retrieve relevant chunks from the RAGFlow retrieve interface based on the question. You can optionally specify dataset_ids to search only specific datasets, or omit dataset_ids entirely to search across ALL available datasets. You can also optionally specify document_ids to search within specific documents. When dataset_ids is not provided or is empty, the system will automatically search across all available datasets. Below is the list of all available datasets, including their descriptions and IDs:"
+ dataset_description,
inputSchema={
"type": "object",
@ -188,14 +188,16 @@ async def list_tools(*, connector) -> list[types.Tool]:
"dataset_ids": {
"type": "array",
"items": {"type": "string"},
"description": "Optional array of dataset IDs to search. If not provided or empty, all datasets will be searched."
},
"document_ids": {
"type": "array",
"items": {"type": "string"},
"description": "Optional array of document IDs to search within."
},
"question": {"type": "string"},
"question": {"type": "string", "description": "The question or query to search for."},
},
"required": ["dataset_ids", "question"],
"required": ["question"],
},
),
]
@ -206,8 +208,26 @@ async def list_tools(*, connector) -> list[types.Tool]:
async def call_tool(name: str, arguments: dict, *, connector) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
if name == "ragflow_retrieval":
document_ids = arguments.get("document_ids", [])
dataset_ids = arguments.get("dataset_ids", [])
# If no dataset_ids provided or empty list, get all available dataset IDs
if not dataset_ids:
dataset_list_str = connector.list_datasets()
dataset_ids = []
# Parse the dataset list to extract IDs
if dataset_list_str:
for line in dataset_list_str.strip().split('\n'):
if line.strip():
try:
dataset_info = json.loads(line.strip())
dataset_ids.append(dataset_info["id"])
except (json.JSONDecodeError, KeyError):
# Skip malformed lines
continue
return connector.retrieval(
dataset_ids=arguments["dataset_ids"],
dataset_ids=dataset_ids,
document_ids=document_ids,
question=arguments["question"],
)

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow"
version = "0.20.1"
version = "0.20.3"
description = "[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data."
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
license-files = ["LICENSE"]
@ -24,7 +24,7 @@ dependencies = [
"chardet==5.2.0",
"cn2an==0.5.22",
"cohere==5.6.2",
"Crawl4AI==0.3.8",
"Crawl4AI>=0.3.8",
"dashscope==1.20.11",
"deepl==1.18.0",
"demjson3==3.0.6",
@ -43,7 +43,7 @@ dependencies = [
"groq==0.9.0",
"hanziconv==0.3.2",
"html-text==0.6.2",
"httpx==0.27.0",
"httpx[socks]==0.27.2",
"huggingface-hub>=0.25.0,<0.26.0",
"infinity-sdk==0.6.0-dev4",
"infinity-emb>=0.0.66,<0.0.67",
@ -58,7 +58,7 @@ dependencies = [
"ollama==0.2.1",
"onnxruntime==1.19.2; sys_platform == 'darwin' or platform_machine != 'x86_64'",
"onnxruntime-gpu==1.19.2; sys_platform != 'darwin' and platform_machine == 'x86_64'",
"openai==1.45.0",
"openai>=1.45.0",
"opencv-python==4.10.0.84",
"opencv-python-headless==4.10.0.84",
"openpyxl>=3.1.0,<4.0.0",
@ -73,7 +73,7 @@ dependencies = [
"pyclipper==1.3.0.post5",
"pycryptodomex==3.20.0",
"pymysql>=1.1.1,<2.0.0",
"pypdf>=5.0.0,<6.0.0",
"pypdf==6.0.0",
"python-dotenv==1.0.1",
"python-dateutil==2.8.2",
"python-pptx>=1.0.2,<2.0.0",
@ -128,6 +128,9 @@ dependencies = [
"opensearch-py==2.7.1",
"pluginlib==0.9.4",
"click>=8.1.8",
"python-calamine>=0.4.0",
"litellm>=1.74.15.post1",
"flask-mail>=0.10.0",
]
[project.optional-dependencies]

View File

@ -14,31 +14,48 @@
# limitations under the License.
#
import os
import re
import tempfile
from api.db import LLMType
from rag.nlp import rag_tokenizer
from api.db.services.llm_service import LLMBundle
from rag.nlp import tokenize
from rag.nlp import rag_tokenizer, tokenize
def chunk(filename, binary, tenant_id, lang, callback=None, **kwargs):
doc = {
"docnm_kwd": filename,
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
}
doc = {"docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))}
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
# is it English
eng = lang.lower() == "english" # is_english(sections)
try:
_, ext = os.path.splitext(filename)
if not ext:
raise RuntimeError("No extension detected.")
if ext not in [".da", ".wave", ".wav", ".mp3", ".wav", ".aac", ".flac", ".ogg", ".aiff", ".au", ".midi", ".wma", ".realaudio", ".vqf", ".oggvorbis", ".aac", ".ape"]:
raise RuntimeError(f"Extension {ext} is not supported yet.")
tmp_path = ""
with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmpf:
tmpf.write(binary)
tmpf.flush()
tmp_path = os.path.abspath(tmpf.name)
callback(0.1, "USE Sequence2Txt LLM to transcription the audio")
seq2txt_mdl = LLMBundle(tenant_id, LLMType.SPEECH2TEXT, lang=lang)
ans = seq2txt_mdl.transcription(binary)
ans = seq2txt_mdl.transcription(tmp_path)
callback(0.8, "Sequence2Txt LLM respond: %s ..." % ans[:32])
tokenize(doc, ans, eng)
return [doc]
except Exception as e:
callback(prog=-1, msg=str(e))
finally:
if tmp_path and os.path.exists(tmp_path):
try:
os.unlink(tmp_path)
except Exception:
pass
return []

View File

@ -22,6 +22,8 @@ from timeit import default_timer as timer
from docx import Document
from docx.image.exceptions import InvalidImageStreamError, UnexpectedEndOfFileError, UnrecognizedImageError
from docx.opc.pkgreader import _SerializedRelationships, _SerializedRelationship
from docx.opc.oxml import parse_xml
from markdown import markdown
from PIL import Image
from tika import parser
@ -47,8 +49,8 @@ class Docx(DocxParser):
if not embed:
return None
embed = embed[0]
related_part = document.part.related_parts[embed]
try:
related_part = document.part.related_parts[embed]
image_blob = related_part.image.blob
except UnrecognizedImageError:
logging.info("Unrecognized image format. Skipping image.")
@ -62,6 +64,9 @@ class Docx(DocxParser):
except UnicodeDecodeError:
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
return None
except Exception:
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
return None
try:
image = Image.open(BytesIO(image_blob)).convert('RGB')
return image
@ -226,17 +231,20 @@ class Docx(DocxParser):
for r in tb.rows:
html += "<tr>"
i = 0
while i < len(r.cells):
span = 1
c = r.cells[i]
for j in range(i + 1, len(r.cells)):
if c.text == r.cells[j].text:
span += 1
i = j
else:
break
i += 1
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
try:
while i < len(r.cells):
span = 1
c = r.cells[i]
for j in range(i + 1, len(r.cells)):
if c.text == r.cells[j].text:
span += 1
i = j
else:
break
i += 1
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
except Exception as e:
logging.warning(f"Error parsing table, ignore: {e}")
html += "</tr>"
html += "</table>"
tbls.append(((None, html), ""))
@ -357,6 +365,20 @@ class Markdown(MarkdownParser):
tbls.append(((None, markdown(table, extensions=['markdown.extensions.tables'])), ""))
return sections, tbls
def load_from_xml_v2(baseURI, rels_item_xml):
"""
Return |_SerializedRelationships| instance loaded with the
relationships contained in *rels_item_xml*. Returns an empty
collection if *rels_item_xml* is |None|.
"""
srels = _SerializedRelationships()
if rels_item_xml is not None:
rels_elm = parse_xml(rels_item_xml)
for rel_elm in rels_elm.Relationship_lst:
if rel_elm.target_ref in ('../NULL', 'NULL'):
continue
srels._srels.append(_SerializedRelationship(baseURI, rel_elm))
return srels
def chunk(filename, binary=None, from_page=0, to_page=100000,
lang="Chinese", callback=None, **kwargs):
@ -388,6 +410,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
except Exception:
vision_model = None
# fix "There is no item named 'word/NULL' in the archive", referring to https://github.com/python-openxml/python-docx/issues/1105#issuecomment-1298075246
_SerializedRelationships.load_from_xml = load_from_xml_v2
sections, tables = Docx()(filename, binary)
if vision_model:
@ -466,6 +490,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
sections = [(_, "") for _ in excel_parser.html(binary, 12) if _]
else:
sections = [(_, "") for _ in excel_parser(binary) if _]
parser_config["chunk_token_num"] = 12800
elif re.search(r"\.(txt|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|sql)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")

View File

@ -40,7 +40,6 @@ class Excel(ExcelParser):
total = 0
for sheetname in wb.sheetnames:
total += len(list(wb[sheetname].rows))
res, fails, done = [], [], 0
rn = 0
for sheetname in wb.sheetnames:
@ -48,31 +47,204 @@ class Excel(ExcelParser):
rows = list(ws.rows)
if not rows:
continue
headers = [cell.value for cell in rows[0]]
missed = set([i for i, h in enumerate(headers) if h is None])
headers = [cell.value for i, cell in enumerate(rows[0]) if i not in missed]
headers, header_rows = self._parse_headers(ws, rows)
if not headers:
continue
data = []
for i, r in enumerate(rows[1:]):
for i, r in enumerate(rows[header_rows:]):
rn += 1
if rn - 1 < from_page:
continue
if rn - 1 >= to_page:
break
row = [cell.value for ii, cell in enumerate(r) if ii not in missed]
if len(row) != len(headers):
row_data = self._extract_row_data(ws, r, header_rows + i, len(headers))
if row_data is None:
fails.append(str(i))
continue
data.append(row)
if self._is_empty_row(row_data):
continue
data.append(row_data)
done += 1
if np.array(data).size == 0:
if len(data) == 0:
continue
res.append(pd.DataFrame(np.array(data), columns=headers))
df = pd.DataFrame(data, columns=headers)
res.append(df)
callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
def _parse_headers(self, ws, rows):
if len(rows) == 0:
return [], 0
has_complex_structure = self._has_complex_header_structure(ws, rows)
if has_complex_structure:
return self._parse_multi_level_headers(ws, rows)
else:
return self._parse_simple_headers(rows)
def _has_complex_header_structure(self, ws, rows):
if len(rows) < 1:
return False
merged_ranges = list(ws.merged_cells.ranges)
# 检查前两行是否涉及合并单元格
for rng in merged_ranges:
if rng.min_row <= 2: # 只要合并区域涉及第1或第2行
return True
return False
def _row_looks_like_header(self, row):
header_like_cells = 0
data_like_cells = 0
non_empty_cells = 0
for cell in row:
if cell.value is not None:
non_empty_cells += 1
val = str(cell.value).strip()
if self._looks_like_header(val):
header_like_cells += 1
elif self._looks_like_data(val):
data_like_cells += 1
if non_empty_cells == 0:
return False
return header_like_cells >= data_like_cells
def _parse_simple_headers(self, rows):
if not rows:
return [], 0
header_row = rows[0]
headers = []
for cell in header_row:
if cell.value is not None:
header_value = str(cell.value).strip()
if header_value:
headers.append(header_value)
else:
pass
final_headers = []
for i, cell in enumerate(header_row):
if cell.value is not None:
header_value = str(cell.value).strip()
if header_value:
final_headers.append(header_value)
else:
final_headers.append(f"Column_{i + 1}")
else:
final_headers.append(f"Column_{i + 1}")
return final_headers, 1
def _parse_multi_level_headers(self, ws, rows):
if len(rows) < 2:
return [], 0
header_rows = self._detect_header_rows(rows)
if header_rows == 1:
return self._parse_simple_headers(rows)
else:
return self._build_hierarchical_headers(ws, rows, header_rows), header_rows
def _detect_header_rows(self, rows):
if len(rows) < 2:
return 1
header_rows = 1
max_check_rows = min(5, len(rows))
for i in range(1, max_check_rows):
row = rows[i]
if self._row_looks_like_header(row):
header_rows = i + 1
else:
break
return header_rows
def _looks_like_header(self, value):
if len(value) < 1:
return False
if any(ord(c) > 127 for c in value):
return True
if len([c for c in value if c.isalpha()]) >= 2:
return True
if any(c in value for c in ["(", ")", "", ":", "", "", "_", "-"]):
return True
return False
def _looks_like_data(self, value):
if len(value) == 1 and value.upper() in ["Y", "N", "M", "X", "/", "-"]:
return True
if value.replace(".", "").replace("-", "").replace(",", "").isdigit():
return True
if value.startswith("0x") and len(value) <= 10:
return True
return False
def _build_hierarchical_headers(self, ws, rows, header_rows):
headers = []
max_col = max(len(row) for row in rows[:header_rows]) if header_rows > 0 else 0
merged_ranges = list(ws.merged_cells.ranges)
for col_idx in range(max_col):
header_parts = []
for row_idx in range(header_rows):
if col_idx < len(rows[row_idx]):
cell_value = rows[row_idx][col_idx].value
merged_value = self._get_merged_cell_value(ws, row_idx + 1, col_idx + 1, merged_ranges)
if merged_value is not None:
cell_value = merged_value
if cell_value is not None:
cell_value = str(cell_value).strip()
if cell_value and cell_value not in header_parts and self._is_valid_header_part(cell_value):
header_parts.append(cell_value)
if header_parts:
header = "-".join(header_parts)
headers.append(header)
else:
headers.append(f"Column_{col_idx + 1}")
final_headers = [h for h in headers if h and h != "-"]
return final_headers
def _is_valid_header_part(self, value):
if len(value) == 1 and value.upper() in ["Y", "N", "M", "X"]:
return False
if value.replace(".", "").replace("-", "").replace(",", "").isdigit():
return False
if value in ["/", "-", "+", "*", "="]:
return False
return True
def _get_merged_cell_value(self, ws, row, col, merged_ranges):
for merged_range in merged_ranges:
if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col:
return ws.cell(merged_range.min_row, merged_range.min_col).value
return None
def _extract_row_data(self, ws, row, absolute_row_idx, expected_cols):
row_data = []
merged_ranges = list(ws.merged_cells.ranges)
actual_row_num = absolute_row_idx + 1
for col_idx in range(expected_cols):
cell_value = None
actual_col_num = col_idx + 1
try:
cell_value = ws.cell(row=actual_row_num, column=actual_col_num).value
except ValueError:
if col_idx < len(row):
cell_value = row[col_idx].value
if cell_value is None:
merged_value = self._get_merged_cell_value(ws, actual_row_num, actual_col_num, merged_ranges)
if merged_value is not None:
cell_value = merged_value
else:
cell_value = self._get_inherited_value(ws, actual_row_num, actual_col_num, merged_ranges)
row_data.append(cell_value)
return row_data
def _get_inherited_value(self, ws, row, col, merged_ranges):
for merged_range in merged_ranges:
if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col:
return ws.cell(merged_range.min_row, merged_range.min_col).value
return None
def _is_empty_row(self, row_data):
for val in row_data:
if val is not None and str(val).strip() != "":
return False
return True
def trans_datatime(s):
try:

View File

@ -19,6 +19,48 @@
import importlib
import inspect
from strenum import StrEnum
class SupportedLiteLLMProvider(StrEnum):
Tongyi_Qianwen = "Tongyi-Qianwen"
Dashscope = "Dashscope"
Bedrock = "Bedrock"
Moonshot = "Moonshot"
xAI = "xAI"
DeepInfra = "DeepInfra"
Groq = "Groq"
Cohere = "Cohere"
Gemini = "Gemini"
DeepSeek = "DeepSeek"
Nvidia = "NVIDIA"
TogetherAI = "TogetherAI"
Anthropic = "Anthropic"
FACTORY_DEFAULT_BASE_URL = {
SupportedLiteLLMProvider.Tongyi_Qianwen: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Dashscope: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Moonshot: "https://api.moonshot.cn/v1",
}
LITELLM_PROVIDER_PREFIX = {
SupportedLiteLLMProvider.Tongyi_Qianwen: "dashscope/",
SupportedLiteLLMProvider.Dashscope: "dashscope/",
SupportedLiteLLMProvider.Bedrock: "bedrock/",
SupportedLiteLLMProvider.Moonshot: "moonshot/",
SupportedLiteLLMProvider.xAI: "xai/",
SupportedLiteLLMProvider.DeepInfra: "deepinfra/",
SupportedLiteLLMProvider.Groq: "groq/",
SupportedLiteLLMProvider.Cohere: "", # don't need a prefix
SupportedLiteLLMProvider.Gemini: "gemini/",
SupportedLiteLLMProvider.DeepSeek: "deepseek/",
SupportedLiteLLMProvider.Nvidia: "nvidia_nim/",
SupportedLiteLLMProvider.TogetherAI: "together_ai/",
SupportedLiteLLMProvider.Anthropic: "", # don't need a prefix
}
ChatModel = globals().get("ChatModel", {})
CvModel = globals().get("CvModel", {})
EmbeddingModel = globals().get("EmbeddingModel", {})
@ -26,6 +68,7 @@ RerankModel = globals().get("RerankModel", {})
Seq2txtModel = globals().get("Seq2txtModel", {})
TTSModel = globals().get("TTSModel", {})
MODULE_MAPPING = {
"chat_model": ChatModel,
"cv_model": CvModel,
@ -42,20 +85,30 @@ for module_name, mapping_dict in MODULE_MAPPING.items():
module = importlib.import_module(full_module_name)
base_class = None
lite_llm_base_class = None
for name, obj in inspect.getmembers(module):
if inspect.isclass(obj) and name == "Base":
base_class = obj
break
if base_class is None:
continue
if inspect.isclass(obj):
if name == "Base":
base_class = obj
elif name == "LiteLLMBase":
lite_llm_base_class = obj
assert hasattr(obj, "_FACTORY_NAME"), "LiteLLMbase should have _FACTORY_NAME field."
if hasattr(obj, "_FACTORY_NAME"):
if isinstance(obj._FACTORY_NAME, list):
for factory_name in obj._FACTORY_NAME:
mapping_dict[factory_name] = obj
else:
mapping_dict[obj._FACTORY_NAME] = obj
if base_class is not None:
for _, obj in inspect.getmembers(module):
if inspect.isclass(obj) and issubclass(obj, base_class) and obj is not base_class and hasattr(obj, "_FACTORY_NAME"):
if isinstance(obj._FACTORY_NAME, list):
for factory_name in obj._FACTORY_NAME:
mapping_dict[factory_name] = obj
else:
mapping_dict[obj._FACTORY_NAME] = obj
for _, obj in inspect.getmembers(module):
if inspect.isclass(obj) and issubclass(obj, base_class) and obj is not base_class and hasattr(obj, "_FACTORY_NAME"):
if isinstance(obj._FACTORY_NAME, list):
for factory_name in obj._FACTORY_NAME:
mapping_dict[factory_name] = obj
else:
mapping_dict[obj._FACTORY_NAME] = obj
__all__ = [
"ChatModel",

File diff suppressed because it is too large Load Diff

View File

@ -68,7 +68,7 @@ class Base(ABC):
pmpt.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img}" if img[:4] != "data" else img
"url": img if isinstance(img, str) and img.startswith("data:") else f"data:image/png;base64,{img}"
}
})
return pmpt
@ -109,16 +109,33 @@ class Base(ABC):
@staticmethod
def image2base64(image):
# Return a data URL with the correct MIME to avoid provider mismatches
if isinstance(image, bytes):
return base64.b64encode(image).decode("utf-8")
# Best-effort magic number sniffing
mime = "image/png"
if len(image) >= 2 and image[0] == 0xFF and image[1] == 0xD8:
mime = "image/jpeg"
b64 = base64.b64encode(image).decode("utf-8")
return f"data:{mime};base64,{b64}"
if isinstance(image, BytesIO):
return base64.b64encode(image.getvalue()).decode("utf-8")
data = image.getvalue()
mime = "image/png"
if len(data) >= 2 and data[0] == 0xFF and data[1] == 0xD8:
mime = "image/jpeg"
b64 = base64.b64encode(data).decode("utf-8")
return f"data:{mime};base64,{b64}"
buffered = BytesIO()
fmt = "JPEG"
try:
image.save(buffered, format="JPEG")
except Exception:
buffered = BytesIO() # reset buffer before saving PNG
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
fmt = "PNG"
data = buffered.getvalue()
b64 = base64.b64encode(data).decode("utf-8")
mime = f"image/{fmt.lower()}"
return f"data:{mime};base64,{b64}"
def prompt(self, b64):
return [
@ -372,6 +389,16 @@ class OllamaCV(Base):
self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
Base.__init__(self, **kwargs)
def _clean_img(self, img):
if not isinstance(img, str):
return img
#remove the header like "data/*;base64,"
if img.startswith("data:") and ";base64," in img:
img = img.split(";base64,")[1]
return img
def _clean_conf(self, gen_conf):
options = {}
if "temperature" in gen_conf:
@ -390,9 +417,12 @@ class OllamaCV(Base):
hist.insert(0, {"role": "system", "content": system})
if not images:
return hist
temp_images = []
for img in images:
temp_images.append(self._clean_img(img))
for his in hist:
if his["role"] == "user":
his["images"] = images
his["images"] = temp_images
break
return hist
@ -509,24 +539,24 @@ class GeminiCV(Base):
return res.text, res.usage_metadata.total_token_count
def chat(self, system, history, gen_conf, images=[]):
from transformers import GenerationConfig
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
try:
response = self.model.generate_content(
self._form_history(system, history, images),
generation_config=GenerationConfig(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)))
generation_config=generation_config)
ans = response.text
return ans, response.usage_metadata.total_token_count
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf, images=[]):
from transformers import GenerationConfig
ans = ""
response = None
try:
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
response = self.model.generate_content(
self._form_history(system, history, images),
generation_config=GenerationConfig(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)),
generation_config=generation_config,
stream=True,
)
@ -542,7 +572,7 @@ class GeminiCV(Base):
yield response.usage_metadata.total_token_count
else:
yield 0
class NvidiaCV(Base):
_FACTORY_NAME = "NVIDIA"
@ -661,8 +691,8 @@ class AnthropicCV(Base):
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg" if img[:4] != "data" else img.split(":")[1].split(";")[0],
"data": img if img[:4] != "data" else img.split(",")[1]
"media_type": (img.split(":")[1].split(";")[0] if isinstance(img, str) and img[:4] == "data" else "image/png"),
"data": (img.split(",")[1] if isinstance(img, str) and img[:4] == "data" else img)
},
}
)

View File

@ -100,7 +100,7 @@ class DefaultRerank(Base):
old_dynamic_batch_size = self._dynamic_batch_size
if max_batch_size is not None:
self._dynamic_batch_size = max_batch_size
res = np.array([], dtype=float)
res = np.array(len(pairs), dtype=float)
i = 0
while i < len(pairs):
cur_i = i
@ -111,7 +111,7 @@ class DefaultRerank(Base):
try:
# call subclass implemented batch processing calculation
batch_scores = self._compute_batch_scores(pairs[i : i + current_batch])
res = np.append(res, batch_scores)
res[i : i + current_batch] = batch_scores
i += current_batch
self._dynamic_batch_size = min(self._dynamic_batch_size * 2, 8)
break
@ -125,8 +125,8 @@ class DefaultRerank(Base):
raise
if retry_count >= max_retries:
raise RuntimeError("max retry times, still cannot process batch, please check your GPU memory")
self.torch_empty_cache()
self.torch_empty_cache()
self._dynamic_batch_size = old_dynamic_batch_size
return np.array(res)
@ -268,7 +268,7 @@ class LocalAIRerank(Base):
max_rank = np.max(rank)
# Avoid division by zero if all ranks are identical
if max_rank - min_rank != 0:
if not np.isclose(min_rank, max_rank, atol=1e-3):
rank = (rank - min_rank) / (max_rank - min_rank)
else:
rank = np.zeros_like(rank)
@ -482,9 +482,10 @@ class VoyageRerank(Base):
self.model_name = model_name
def similarity(self, query: str, texts: list):
rank = np.zeros(len(texts), dtype=float)
if not texts:
return rank, 0
return np.array([]), 0
rank = np.zeros(len(texts), dtype=float)
res = self.client.rerank(query=query, documents=texts, model=self.model_name, top_k=len(texts))
try:
for r in res.results:

View File

@ -35,8 +35,9 @@ class Base(ABC):
"""
pass
def transcription(self, audio, **kwargs):
transcription = self.client.audio.transcriptions.create(model=self.model_name, file=audio, response_format="text")
def transcription(self, audio_path, **kwargs):
audio_file = open(audio_path, "rb")
transcription = self.client.audio.transcriptions.create(model=self.model_name, file=audio_file)
return transcription.text.strip(), num_tokens_from_string(transcription.text.strip())
def audio2base64(self, audio):
@ -50,7 +51,7 @@ class Base(ABC):
class GPTSeq2txt(Base):
_FACTORY_NAME = "OpenAI"
def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1"):
def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1", **kwargs):
if not base_url:
base_url = "https://api.openai.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
@ -60,27 +61,38 @@ class GPTSeq2txt(Base):
class QWenSeq2txt(Base):
_FACTORY_NAME = "Tongyi-Qianwen"
def __init__(self, key, model_name="paraformer-realtime-8k-v1", **kwargs):
def __init__(self, key, model_name="qwen-audio-asr", **kwargs):
import dashscope
dashscope.api_key = key
self.model_name = model_name
def transcription(self, audio, format):
from http import HTTPStatus
def transcription(self, audio_path):
if "paraformer" in self.model_name or "sensevoice" in self.model_name:
return f"**ERROR**: model {self.model_name} is not suppported yet.", 0
from dashscope.audio.asr import Recognition
from dashscope import MultiModalConversation
recognition = Recognition(model=self.model_name, format=format, sample_rate=16000, callback=None)
result = recognition.call(audio)
audio_path = f"file://{audio_path}"
messages = [
{
"role": "user",
"content": [{"audio": audio_path}],
}
]
ans = ""
if result.status_code == HTTPStatus.OK:
for sentence in result.get_sentence():
ans += sentence.text.decode("utf-8") + "\n"
return ans, num_tokens_from_string(ans)
return "**ERROR**: " + result.message, 0
response = None
full_content = ""
try:
response = MultiModalConversation.call(model="qwen-audio-asr", messages=messages, result_format="message", stream=True)
for response in response:
try:
full_content += response["output"]["choices"][0]["message"].content[0]["text"]
except Exception:
pass
return full_content, num_tokens_from_string(full_content)
except Exception as e:
return "**ERROR**: " + str(e), 0
class AzureSeq2txt(Base):
@ -212,6 +224,7 @@ class GiteeSeq2txt(Base):
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
class DeepInfraSeq2txt(Base):
_FACTORY_NAME = "DeepInfra"

View File

@ -611,10 +611,6 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, image)
for img in images:
if isinstance(img, Image.Image):
img.close()
return cks, result_images

View File

@ -383,8 +383,6 @@ class Dealer:
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
sim_np = np.array(sim)
if doc_ids:
similarity_threshold = 0
filtered_count = (sim_np >= similarity_threshold).sum()
ranks["total"] = int(filtered_count) # Convert from np.int64 to Python int otherwise JSON serializable error
for i in idx:

View File

@ -4,6 +4,9 @@ Task: {{ task }}
Context: {{ context }}
**Agent Prompt**
{{ agent_prompt }}
**Analysis Requirements:**
1. Is it just a small talk? (If yes, no further plan or analysis is needed)
2. What is the core objective of the task?

View File

@ -0,0 +1,14 @@
Role: You're a smart assistant. Your name is Miss R.
Task: Summarize the information from knowledge bases and answer user's question.
Requirements and restriction:
- DO NOT make things up, especially for numbers.
- If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
- Answer with markdown format text.
- Answer in language of user's question.
- DO NOT make things up, especially for numbers.
### Information from knowledge bases
{{ knowledge }}
The above is information from knowledge bases.

View File

@ -105,4 +105,5 @@ REMEMBER:
- Cite FACTS, not opinions or transitions
- Each citation supports the ENTIRE sentence
- When in doubt, ask: "Would a fact-checker need to verify this?"
- Place citations at sentence end, before punctuation
- Place citations at sentence end, before punctuation
- Format likes this is FORBIDDEN: [ID:0, ID:5, ID:...]. It MUST be seperated like, [ID:0][ID:5]...

View File

@ -0,0 +1,53 @@
You are a metadata filtering condition generator. Analyze the user's question and available document metadata to output a JSON array of filter objects. Follow these rules:
1. **Metadata Structure**:
- Metadata is provided as JSON where keys are attribute names (e.g., "color"), and values are objects mapping attribute values to document IDs.
- Example:
{
"color": {"red": ["doc1"], "blue": ["doc2"]},
"listing_date": {"2025-07-11": ["doc1"], "2025-08-01": ["doc2"]}
}
2. **Output Requirements**:
- Always output a JSON array of filter objects
- Each object must have:
"key": (metadata attribute name),
"value": (string value to compare),
"op": (operator from allowed list)
3. **Operator Guide**:
- Use these operators only: ["contains", "not contains", "start with", "end with", "empty", "not empty", "=", "≠", ">", "<", "≥", "≤"]
- Date ranges: Break into two conditions (≥ start_date AND < next_month_start)
- Negations: Always use "≠" for exclusion terms ("not", "except", "exclude", "≠")
- Implicit logic: Derive unstated filters (e.g., "July" [≥ YYYY-07-01, < YYYY-08-01])
4. **Processing Steps**:
a) Identify ALL filterable attributes in the query (both explicit and implicit)
b) For dates:
- Infer missing year from current date if needed
- Always format dates as "YYYY-MM-DD"
- Convert ranges: [≥ start, < end]
c) For values: Match EXACTLY to metadata's value keys
d) Skip conditions if:
- Attribute doesn't exist in metadata
- Value has no match in metadata
5. **Example**:
- User query: "上市日期七月份的有哪些商品不要蓝色的"
- Metadata: { "color": {...}, "listing_date": {...} }
- Output:
[
{"key": "listing_date", "value": "2025-07-01", "op": "≥"},
{"key": "listing_date", "value": "2025-08-01", "op": "<"},
{"key": "color", "value": "blue", "op": "≠"}
]
6. **Final Output**:
- ONLY output valid JSON array
- NO additional text/explanations
**Current Task**:
- Today's date: {{current_date}}
- Available metadata keys: {{metadata_keys}}
- User query: "{{user_question}}"

View File

@ -149,6 +149,8 @@ NEXT_STEP = load_prompt("next_step")
REFLECT = load_prompt("reflect")
SUMMARY4MEMORY = load_prompt("summary4memory")
RANK_MEMORY = load_prompt("rank_memory")
META_FILTER = load_prompt("meta_filter")
ASK_SUMMARY = load_prompt("ask_summary")
PROMPT_JINJA_ENV = jinja2.Environment(autoescape=False, trim_blocks=True, lstrip_blocks=True)
@ -196,7 +198,7 @@ def question_proposal(chat_mdl, content, topn=3):
def full_question(tenant_id=None, llm_id=None, messages=[], language=None, chat_mdl=None):
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.llm_service import TenantLLMService
from api.db.services.tenant_llm_service import TenantLLMService
if not chat_mdl:
if TenantLLMService.llm_id2llm_type(llm_id) == "image2text":
@ -230,7 +232,7 @@ def full_question(tenant_id=None, llm_id=None, messages=[], language=None, chat_
def cross_languages(tenant_id, llm_id, query, languages=[]):
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.llm_service import TenantLLMService
from api.db.services.tenant_llm_service import TenantLLMService
if llm_id and TenantLLMService.llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
@ -335,13 +337,13 @@ def form_history(history, limit=-6):
return context
def analyze_task(chat_mdl, task_name, tools_description: list[dict]):
def analyze_task(chat_mdl, prompt, task_name, tools_description: list[dict]):
tools_desc = tool_schema(tools_description)
context = ""
template = PROMPT_JINJA_ENV.from_string(ANALYZE_TASK_USER)
kwd = chat_mdl.chat(ANALYZE_TASK_SYSTEM,[{"role": "user", "content": template.render(task=task_name, context=context, tools_desc=tools_desc)}], {})
context = template.render(task=task_name, context=context, agent_prompt=prompt, tools_desc=tools_desc)
kwd = chat_mdl.chat(ANALYZE_TASK_SYSTEM,[{"role": "user", "content": context}], {})
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
@ -413,3 +415,20 @@ def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[st
ans = chat_mdl.chat(msg[0]["content"], msg[1:], stop="<|stop|>")
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
sys_prompt = PROMPT_JINJA_ENV.from_string(META_FILTER).render(
current_date=datetime.datetime.today().strftime('%Y-%m-%d'),
metadata_keys=json.dumps(meta_data),
user_question=query
)
user_prompt = "Generate filters:"
ans = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}])
ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL)
try:
ans = json_repair.loads(ans)
assert isinstance(ans, list), ans
return ans
except Exception:
logging.exception(f"Loading json failure: {ans}")
return []

View File

@ -0,0 +1,55 @@
# Role
You are an AI language model assistant tasked with generating **5-10 related questions** based on a users original query.
These questions should help **expand the search query scope** and **improve search relevance**.
---
## Instructions
**Input:**
You are provided with a **users question**.
**Output:**
Generate **5-10 alternative questions** that are **related** to the original user question.
These alternatives should help retrieve a **broader range of relevant documents** from a vector database.
**Context:**
Focus on **rephrasing** the original question in different ways, ensuring the alternative questions are **diverse but still connected** to the topic of the original query.
Do **not** create overly obscure, irrelevant, or unrelated questions.
**Fallback:**
If you cannot generate any relevant alternatives, do **not** return any questions.
---
## Guidance
1. Each alternative should be **unique** but still **relevant** to the original query.
2. Keep the phrasing **clear, concise, and easy to understand**.
3. Avoid overly technical jargon or specialized terms **unless directly relevant**.
4. Ensure that each question **broadens** the search angle, **not narrows** it.
---
## Example
**Original Question:**
> What are the benefits of electric vehicles?
**Alternative Questions:**
1. How do electric vehicles impact the environment?
2. What are the advantages of owning an electric car?
3. What is the cost-effectiveness of electric vehicles?
4. How do electric vehicles compare to traditional cars in terms of fuel efficiency?
5. What are the environmental benefits of switching to electric cars?
6. How do electric vehicles help reduce carbon emissions?
7. Why are electric vehicles becoming more popular?
8. What are the long-term savings of using electric vehicles?
9. How do electric vehicles contribute to sustainability?
10. What are the key benefits of electric vehicles for consumers?
---
## Reason
Rephrasing the original query into multiple alternative questions helps the user explore **different aspects** of their search topic, improving the **quality of search results**.
These questions guide the search engine to provide a **more comprehensive set** of relevant documents.

View File

@ -302,9 +302,13 @@ async def build_chunks(task, progress_callback):
# If the image is in RGBA mode, convert it to RGB mode before saving it in JPEG format.
if d["image"].mode in ("RGBA", "P"):
converted_image = d["image"].convert("RGB")
d["image"].close() # Close original image
#d["image"].close() # Close original image
d["image"] = converted_image
d["image"].save(output_buffer, format='JPEG')
try:
d["image"].save(output_buffer, format='JPEG')
except OSError as e:
logging.warning(
"Saving image of chunk {}/{}/{} got exception, ignore: {}".format(task["location"], task["name"], d["id"], str(e)))
async with minio_limiter:
await trio.to_thread.run_sync(lambda: STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue()))
@ -440,7 +444,7 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
tk_count += c
@timeout(5)
@timeout(60)
def batch_encode(txts):
nonlocal mdl
return mdl.encode([truncate(c, mdl.max_length-10) for c in txts])
@ -516,7 +520,7 @@ async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
return res, tk_count
@timeout(60*60, 1)
@timeout(60*60*2, 1)
async def do_handle_task(task):
task_id = task["id"]
task_from_page = task["from_page"]

View File

@ -190,3 +190,16 @@ class RAGFlowS3:
self.__open__()
time.sleep(1)
return
@use_default_bucket
def rm_bucket(self, bucket, *args, **kwargs):
for conn in self.conn:
try:
if not conn.bucket_exists(bucket):
continue
for o in conn.list_objects_v2(Bucket=bucket):
conn.delete_object(bucket, o.object_name)
conn.delete_bucket(Bucket=bucket)
return
except Exception as e:
logging.error(f"Fail rm {bucket}: " + str(e))

Some files were not shown because too many files have changed in this diff Show More