Compare commits

...

40 Commits

Author SHA1 Message Date
da5cef0686 Refactor:Improve the float compare for LocalAIRerank (#9428)
### What problem does this PR solve?
Improve the float compare for LocalAIRerank

### Type of change

- [x] Refactoring
2025-08-13 10:26:42 +08:00
9098efb8aa Feat: Fixed the issue where some fields in the chat configuration could not be displayed #3221 (#9430)
### What problem does this PR solve?

Feat: Fixed the issue where some fields in the chat configuration could
not be displayed #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-13 10:26:26 +08:00
421657f64b Feat: allows setting multiple types of default models in service config (#9404)
### What problem does this PR solve?

Allows set multiple types of default models in service config.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-13 09:46:05 +08:00
7ee5e0d152 Fix KeyError in session listing endpoint when accessing conversation reference (#9419)
- Add type and boundary checks for conv["reference"] access
- Prevent KeyError: 0 when reference list is empty or malformed
- Ensure reference is list type before indexing
- Handle cases where reference items are None or missing chunks
- Maintains backward compatibility with existing data structures

This resolves crashes in /api/v1/agents/<agent_id>/sessions endpoint
when conversation reference data is not properly structured.

### What problem does this PR solve?

This PR fixes a critical `KeyError: 0` that occurs in the
`/api/v1/agents/<agent_id>/sessions` endpoint when the system attempts
to access conversation reference data that is not properly structured.

**Background Context:**
The `list_agent_session` method in `api/apps/sdk/session.py` assumes
that `conv["reference"]` is always a properly indexed list with valid
dictionary structures. However, in real-world scenarios, this data can
be:
- Not a list type (could be None, string, or other types)
- An empty list when `chunk_num` tries to access index 0
- Contains None values or malformed dictionary structures
- Missing expected "chunks" keys in reference items

**Impact Before Fix:**
When malformed reference data is encountered, the API crashes with:
```json
{
    "code": 100,
    "data": null,
    "message": "KeyError(0)"
}
```
**Solution:**
Added comprehensive safety checks including type validation, boundary
checking, null safety, and structure validation to ensure the API
gracefully handles all reference data formats while maintaining backward
compatibility.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-13 09:23:52 +08:00
22915223d4 Fix: citation issue. (#9424)
### What problem does this PR solve?

#8474

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 18:53:34 +08:00
d7b4e84cda Refa: Update LLM stream response type to Generator (#9420)
### What problem does this PR solve?

Change return type of _generate_streamly from str to Generator[str,
None, None] to properly type hint streaming responses.

### Type of change

- [x] Refactoring
2025-08-12 18:05:52 +08:00
e845d5f9f8 Fix:valueERROR when file is optional but not exist value (#9414)
### What problem does this PR solve?

when begin component has optional file but not exist , it rase error

### Type of change

- [x] Bug Fix

Co-authored-by: Popmio <zhengyihao036@gamil.com>
2025-08-12 17:39:03 +08:00
3d18284dd6 Feat: Added meta data to the chat configuration page #8531 (#9417)
### What problem does this PR solve?

Feat: Added meta data to the chat configuration page #8531

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 16:19:23 +08:00
96783aa82c Fix: remove doc error. (#9413)
### What problem does this PR solve?

Close #9407

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 15:55:04 +08:00
a0c2da1219 Fix: Patch LiteLLM (#9416)
### What problem does this PR solve?

Patch LiteLLM refactor. #9408

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 15:54:30 +08:00
79e2edc835 Fix "File contains no valid workbook part" (#9360)
### What problem does this PR solve?

fix "File contains no valid workbook part"

stacktrace:
```
Traceback (most recent call last):
  File "/ragflow/deepdoc/parser/excel_parser.py", line 54, in _load_excel_to_workbook
    return RAGFlowExcelParser._dataframe_to_workbook(df)
  File "/ragflow/deepdoc/parser/excel_parser.py", line 69, in _dataframe_to_workbook
    ws.cell(row=row_num, column=col_num, value=value)
  File "/ragflow/.venv/lib/python3.10/site-packages/openpyxl/worksheet/worksheet.py", line 246, in cell
    cell.value = value
  File "/ragflow/.venv/lib/python3.10/site-packages/openpyxl/cell/cell.py", line 218, in value
    self._bind_value(value)
  File "/ragflow/.venv/lib/python3.10/site-packages/openpyxl/cell/cell.py", line 197, in _bind_value
    value = self.check_string(value)
  File "/ragflow/.venv/lib/python3.10/site-packages/openpyxl/cell/cell.py", line 165, in check_string
    raise IllegalCharacterError(f"{value} cannot be used in worksheets.")
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-12 14:58:36 +08:00
57b87fa9d9 Fix:TypeError: OllamaCV.chat() got an unexpected keyword argument 'stop' (#9363)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/9351
Support filter argument before invoking
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-12 14:55:27 +08:00
153e430b00 Feat: add meta data filter. (#9405)
### What problem does this PR solve?

#8531 
#7417 
#6761 
#6573
#6477

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 14:12:56 +08:00
3ccaa06031 Fix: Before executing the SQL, remove tags in the format [ID: number] to avoid execution errors. (#9326)
### What problem does this PR solve?

Before executing the SQL, remove tags in the format [ID: number] to
avoid execution errors.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wangyazhou <wangyazhou@sdibd.cn>
2025-08-12 12:42:28 +08:00
569ab011c4 Add fallback to use 'calamine' parse engine in excel_parser.py (#9374)
### What problem does this PR solve?

add fallback to `calamine` engine when parse error raised using the
default `openpyxl` / `xlrd` engine.
e.g. the following error can be fixed:
```
Traceback (most recent call last):
  File "/ragflow/deepdoc/parser/excel_parser.py", line 53, in _load_excel_to_workbook
    df = pd.read_excel(file_like_object)
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 495, in read_excel
    io = ExcelFile(
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 1567, in __init__
    self._reader = self._engines[engine](
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py", line 46, in __init__
    super().__init__(
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 573, in __init__
    self.book = self.load_workbook(self.handles.handle, engine_kwargs)
  File "/ragflow/.venv/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py", line 63, in load_workbook
    return open_workbook(file_contents=data, **engine_kwargs)
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/__init__.py", line 172, in open_workbook
    bk = open_workbook_xls(
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/book.py", line 68, in open_workbook_xls
    bk.biff2_8_load(
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/book.py", line 641, in biff2_8_load
    cd.locate_named_stream(UNICODE_LITERAL(qname))
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/compdoc.py", line 398, in locate_named_stream
    result = self._locate_stream(
  File "/ragflow/.venv/lib/python3.10/site-packages/xlrd/compdoc.py", line 429, in _locate_stream
    raise CompDocError("%s corruption: seen[%d] == %d" % (qname, s, self.seen[s]))
xlrd.compdoc.CompDocError: Workbook corruption: seen[2] == 4
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 12:41:33 +08:00
96b1538b3e Fix:HTTP request component failed to retrieve the corresponding value (#9399)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/9385
Based on my understanding, I think checking empty string is fine

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-12 12:27:22 +08:00
735570486f feat(next-search): Added AI summary functionality #3221 (#9402)
### What problem does this PR solve?

feat(next-search): Added AI summary functionality #3221

- Added the LlmSettingFieldItems component for AI summary settings
- Updated the SearchSetting component to integrate AI summary
functionality
- Added the updateSearch hook and related service methods
- Modified the ISearchAppDetailProps interface to add the llm_setting
field

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 12:27:00 +08:00
da68f541b6 Feat: add full list of supported AWS Bedrock regions (#9395)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 11:01:16 +08:00
83771e500c Refa: migrate chat models to LiteLLM (#9394)
### What problem does this PR solve?

All models pass the mock response tests, which means that if a model can
return the correct response, everything should work as expected.
However, not all models have been fully tested in a real environment,
the real API_KEY. I suggest actively monitoring the refactored models
over the coming period to ensure they work correctly and fixing them
step by step, or waiting to merge until most have been tested in
practical environment.

### Type of change

- [x] Refactoring
2025-08-12 10:59:20 +08:00
a6d2119498 Refa: list canvas (#9341)
### What problem does this PR solve?

Refactor list canvas.

### Type of change

- [x] Refactoring
2025-08-12 10:58:06 +08:00
57b9f8cf52 Fix: Update test assertions and simplify test cases (#9400)
### What problem does this PR solve?

- Fix error message assertion in test_update_chunk.py to match new
ownership validation
- Simplify dataset listing test cases by removing lambda assertions for
sorting
- Fix actions:
https://github.com/infiniflow/ragflow/actions/runs/16885465524/job/47831942553

### Type of change

- [x] Fix test cases
2025-08-12 10:57:30 +08:00
5c3577c4c9 Python SDK: add meta_fields to Document class (#9387)
### What problem does this PR solve?

Python class Document was missing "meta_fields", e.g. when querying, the
document instances came without meta_fields

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-12 10:16:12 +08:00
76118000c1 Feat: Allow chat to use meta data #3221 (#9393)
### What problem does this PR solve?

Feat:  Allow chat to use meta data #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-12 10:15:10 +08:00
9433f64fe2 Feat: added functionality to choose all datasets if no id is provided (#9184)
### What problem does this PR solve?

Using the mcp server in n8n sometimes (with smaller models) results in
errors because the llm misses a char or adds one to the list of
dataset_ids provided. It first asks for the list of datasets and if you
got a larger list of them it makes a error recalling the list
completely. So adding the feature to just search through all available
datasets solves this and makes the retrieval of data more stable. The
functionality to just call special datasets by id is not changed, the
dataset_ids are now not required anymore (only the "question" is). You
can provide (like before) a list of datasets, a empty list or no list at
all.

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
<img width="1897" height="880" alt="mcp error dataset id"
src="https://github.com/user-attachments/assets/71076d24-f875-4663-a69a-60839fc7a545"
/>
2025-08-11 17:20:35 +08:00
d7c9611d45 docs(sandbox): update /etc/hosts entry to include required services (#9144)
Fixes an issue where running the sandbox (code component) fails due to
unresolved hostnames. Added missing service names (es01, infinity,
mysql, minio, redis) to 127.0.0.1 in the /etc/hosts example.

Reference: https://github.com/infiniflow/ragflow/issues/8226

## What this PR does

Updates the sandbox quickstart documentation to fix a known issue where
the sandbox fails to resolve required service hostnames.

## Why

Following the original instruction leads to a `Failed to resolve 'none'`
error, as discussed in issue #8226. Adding the missing service names to
`127.0.0.1` resolves the problem.

## Related issue

https://github.com/infiniflow/ragflow/issues/8226

## Note

It might be better to add `127.0.0.1 es01 infinity mysql minio redis` to
docs/quickstart.mdx, but since no issues appeared at the time without
adding this line—and the problem occurred while working with the code
component—I added it here.

### Type of change

- [X] Documentation Update
2025-08-11 17:18:56 +08:00
79399f7f25 Support the case of one cell split by multiple columns. (#9225)
### What problem does this PR solve?
Support the case of one cell split by multiple columns. Besides, the
codes are compatible with the common cell case.
#8606 can be fixed.
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

I provide a case of one cell split by multiple columns:

[test.xlsx](https://github.com/user-attachments/files/21578693/test.xlsx)

The chunk res:
<img width="236" height="57" alt="2025-06-17 16-04-07 的屏幕截图"
src="https://github.com/user-attachments/assets/b0a499ac-349d-4c3d-8c6e-0931c8fc26de"
/>
2025-08-11 17:17:56 +08:00
23522f1ea8 Fix: handle missing dataset_ids when creating chat assistant (#9324)
- Root cause: accessing req.get("dataset_ids") returns None when the key
is absent, causing KeyError.
- Fix: use req.get("dataset_ids", []) to default to empty list.
2025-08-11 17:17:20 +08:00
46dc3f1c48 Fix: Update test assertions and add GraphRAG config in dataset tests (#9386)
### What problem does this PR solve?

- Modify error message assertion in chunk update test to check for
document ownership
- Add GraphRAG configuration with `use_graphrag: False` in dataset
update tests
- Fix actions:
https://github.com/infiniflow/ragflow/actions/runs/16863637898/job/47767511582
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 17:15:48 +08:00
c9b156fa6d Fix: Remove default dataset_ids from Chat class initialization (#9381)
### What problem does this PR solve?

- The default dataset_ids "kb1" was removed from the Chat class. 
- The HTTP API response does not include the dataset_ids field.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 17:15:30 +08:00
83939b1a63 Feat: add full list of supported AWS Bedrock regions (#9378)
### What problem does this PR solve?

Add full list of supported AWS Bedrock regions.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 17:15:07 +08:00
7f08ba47d7 Fix "no tc element at grid_offset" (#9375)
### What problem does this PR solve?

fix "no `tc` element at grid_offset", just log warning and ignore.
stacktrace:
```
Traceback (most recent call last):
  File "/ragflow/rag/svr/task_executor.py", line 620, in handle_task
    await do_handle_task(task)
  File "/ragflow/rag/svr/task_executor.py", line 553, in do_handle_task
    chunks = await build_chunks(task, progress_callback)
  File "/ragflow/rag/svr/task_executor.py", line 257, in build_chunks
    cks = await trio.to_thread.run_sync(lambda: chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
  File "/ragflow/.venv/lib/python3.10/site-packages/trio/_threads.py", line 447, in to_thread_run_sync
    return msg_from_thread.unwrap()
  File "/ragflow/.venv/lib/python3.10/site-packages/outcome/_impl.py", line 213, in unwrap
    raise captured_error
  File "/ragflow/.venv/lib/python3.10/site-packages/trio/_threads.py", line 373, in do_release_then_return_result
    return result.unwrap()
  File "/ragflow/.venv/lib/python3.10/site-packages/outcome/_impl.py", line 213, in unwrap
    raise captured_error
  File "/ragflow/.venv/lib/python3.10/site-packages/trio/_threads.py", line 392, in worker_fn
    ret = context.run(sync_fn, *args)
  File "/ragflow/rag/svr/task_executor.py", line 257, in <lambda>
    cks = await trio.to_thread.run_sync(lambda: chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
  File "/ragflow/rag/app/naive.py", line 384, in chunk
    sections, tables = Docx()(filename, binary)
  File "/ragflow/rag/app/naive.py", line 230, in __call__
    while i < len(r.cells):
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/table.py", line 438, in cells
    return tuple(_iter_row_cells())
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/table.py", line 436, in _iter_row_cells
    yield from iter_tc_cells(tc)
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/table.py", line 424, in iter_tc_cells
    yield from iter_tc_cells(tc._tc_above)  # pyright: ignore[reportPrivateUsage]
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/oxml/table.py", line 741, in _tc_above
    return self._tr_above.tc_at_grid_offset(self.grid_offset)
  File "/ragflow/.venv/lib/python3.10/site-packages/docx/oxml/table.py", line 98, in tc_at_grid_offset
    raise ValueError(f"no `tc` element at grid_offset={grid_offset}")
ValueError: no `tc` element at grid_offset=10
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 17:13:10 +08:00
ce3dd019c3 Fix broken data stream when writing image file (#9354)
### What problem does this PR solve?

fix "broken data stream when writing image file", just log warning and
ignore

Close #8379 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 17:07:49 +08:00
476c56868d Agent plans tasks by referring to its own prompt. (#9315)
### What problem does this PR solve?

Fixes the issue in the analyze_task execution flow where the Lead Agent
was not utilizing its own sys_prompt during task analysis, resulting in
incorrect or incomplete task planning.
https://github.com/infiniflow/ragflow/issues/9294
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 17:05:06 +08:00
b9c4954c2f Fix: Replace StrEnum with strenum in code_exec.py (#9376)
### What problem does this PR solve?

- The enum import was changed from Python's built-in StrEnum to the
strenum package.
- Fix error `Warning: Failed to import module code_exec: cannot import
name 'StrEnum' from 'enum' (/usr/lib/python3.10/enum.py)`

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-11 15:32:04 +08:00
a060672b31 Feat: Run eslint when the project is running to standardize everyone's code #9377 (#9379)
### What problem does this PR solve?

Feat: Run eslint when the project is running to standardize everyone's
code #9377

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 15:31:38 +08:00
f022504ef9 Support Russian in UI Update config.ts (#9361)
add ru

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-08-11 15:30:35 +08:00
1a78b8b295 Support Russian in UI (#9362)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 14:06:18 +08:00
017dd85ccf Feat: Modify the agent list return field name #3221 (#9373)
### What problem does this PR solve?

Feat: Modify the agent list return field name #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 14:03:52 +08:00
4c7b2ef46e Feat: New search page components and features (#9344)
### What problem does this PR solve?

Feat: New search page components and features #3221

- Added search homepage, search settings, and ongoing search components
- Implemented features such as search app list, creating search apps,
and deleting search apps
- Optimized the multi-select component, adding disabled state and suffix
display
- Adjusted navigation hooks to support search page navigation

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-11 10:34:22 +08:00
597d88bf9a Doc: updated supported model name (#9343)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-08-11 10:05:39 +08:00
158 changed files with 5576 additions and 1193 deletions

View File

@ -165,7 +165,7 @@ class Agent(LLM, ToolBase):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
use_tools = []
ans = ""
for delta_ans, tk in self._react_with_tools_streamly(msg, use_tools):
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools):
ans += delta_ans
if ans.find("**ERROR**") >= 0:
@ -185,7 +185,7 @@ class Agent(LLM, ToolBase):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer_without_toolcall = ""
use_tools = []
for delta_ans,_ in self._react_with_tools_streamly(msg, use_tools):
for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools):
if delta_ans.find("**ERROR**") >= 0:
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
@ -208,7 +208,7 @@ class Agent(LLM, ToolBase):
]):
yield delta_ans
def _react_with_tools_streamly(self, history: list[dict], use_tools):
def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools):
token_count = 0
tool_metas = self.tool_meta
hist = deepcopy(history)
@ -221,7 +221,7 @@ class Agent(LLM, ToolBase):
def use_tool(name, args):
nonlocal hist, use_tools, token_count,last_calling,user_request
print(f"{last_calling=} == {name=}", )
logging.info(f"{last_calling=} == {name=}")
# Summarize of function calling
#if all([
# isinstance(self.toolcall_session.get_tool_obj(name), Agent),
@ -275,7 +275,7 @@ class Agent(LLM, ToolBase):
else:
hist.append({"role": "user", "content": content})
task_desc = analyze_task(self.chat_mdl, user_request, tool_metas)
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas)
self.callback("analyze_task", {}, task_desc)
for _ in range(self._param.max_rounds + 1):
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc)

View File

@ -39,7 +39,10 @@ class Begin(UserFillUp):
def _invoke(self, **kwargs):
for k, v in kwargs.get("inputs", {}).items():
if isinstance(v, dict) and v.get("type", "").lower().find("file") >=0:
v = self._canvas.get_files([v["value"]])
if v.get("optional") and v.get("value", None) is None:
v = None
else:
v = self._canvas.get_files([v["value"]])
else:
v = v.get("value")
self.set_output(k, v)

View File

@ -57,7 +57,7 @@ class Invoke(ComponentBase, ABC):
def _invoke(self, **kwargs):
args = {}
for para in self._param.variables:
if para.get("value") is not None:
if para.get("value"):
args[para["key"]] = para["value"]
else:
args[para["key"]] = self._canvas.get_variable_value(para["ref"])
@ -139,4 +139,4 @@ class Invoke(ComponentBase, ABC):
assert False, self.output()
def thoughts(self) -> str:
return "Waiting for the server respond..."
return "Waiting for the server respond..."

View File

@ -17,7 +17,7 @@ import json
import logging
import os
import re
from typing import Any
from typing import Any, Generator
import json_repair
from copy import deepcopy
@ -154,7 +154,7 @@ class LLM(ComponentBase):
return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), **kwargs)
return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs)
def _generate_streamly(self, msg:list[dict], **kwargs) -> str:
def _generate_streamly(self, msg:list[dict], **kwargs) -> Generator[str, None, None]:
ans = ""
last_idx = 0
endswith_think = False

View File

@ -17,7 +17,7 @@ import base64
import logging
import os
from abc import ABC
from enum import StrEnum
from strenum import StrEnum
from typing import Optional
from pydantic import BaseModel, Field, field_validator
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta

View File

@ -14,6 +14,7 @@
# limitations under the License.
#
import os
import re
from abc import ABC
import pandas as pd
import pymysql
@ -109,7 +110,7 @@ class ExeSQL(ToolBase, ABC):
single_sql = single_sql.replace('```','')
if not single_sql:
continue
single_sql = re.sub(r"\[ID:[0-9]+\]", "", single_sql)
cursor.execute(single_sql)
if cursor.rowcount == 0:
sql_res.append({"content": "No record in the database!"})

View File

@ -90,7 +90,7 @@ def save():
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
# save version
# save version
UserCanvasVersionService.insert( user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.delete_all_versions(req["id"])
return get_json_result(data=req)
@ -347,7 +347,7 @@ def test_db_connect():
if req["db_type"] != 'mssql':
db.connect()
db.close()
return get_json_result(data="Database Connection Successful!")
except Exception as e:
return server_error_response(e)
@ -369,7 +369,7 @@ def getlistversion(canvas_id):
@login_required
def getversion( version_id):
try:
e, version = UserCanvasVersionService.get_by_id(version_id)
if version:
return get_json_result(data=version.to_dict())
@ -379,7 +379,7 @@ def getversion( version_id):
@manager.route('/listteam', methods=['GET']) # noqa: F821
@login_required
def list_kbs():
def list_canvas():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
@ -387,10 +387,10 @@ def list_kbs():
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
kbs, total = UserCanvasService.get_by_tenant_ids(
canvas, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords)
return get_json_result(data={"kbs": kbs, "total": total})
return get_json_result(data={"canvas": canvas, "total": total})
except Exception as e:
return server_error_response(e)

View File

@ -67,7 +67,7 @@ def set_conversation():
if not e:
return get_data_error_result(message="Dialog not found")
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": name, "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}],"user_id": current_user.id,
"reference":[{}],}
"reference":[],}
ConversationService.save(**conv)
return get_json_result(data=conv)
except Exception as e:
@ -187,14 +187,7 @@ def completion():
if not conv.reference:
conv.reference = []
else:
for ref in conv.reference:
if isinstance(ref, list):
continue
ref["chunks"] = chunks_format(ref)
if not conv.reference:
conv.reference = []
conv.reference = [r for r in conv.reference if r]
conv.reference.append({"chunks": [], "doc_aggs": []})
def stream():

View File

@ -51,6 +51,7 @@ def set_dialog():
similarity_threshold = req.get("similarity_threshold", 0.1)
vector_similarity_weight = req.get("vector_similarity_weight", 0.3)
llm_setting = req.get("llm_setting", {})
meta_data_filter = req.get("meta_data_filter", {})
prompt_config = req["prompt_config"]
if not is_create:
@ -85,6 +86,7 @@ def set_dialog():
"llm_id": llm_id,
"llm_setting": llm_setting,
"prompt_config": prompt_config,
"meta_data_filter": meta_data_filter,
"top_n": top_n,
"top_k": top_k,
"rerank_id": rerank_id,

View File

@ -681,6 +681,11 @@ def set_meta():
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
meta = json.loads(req["meta"])
if not isinstance(meta, dict):
return get_json_result(data=False, message="Only dictionary type supported.", code=settings.RetCode.ARGUMENT_ERROR)
for k,v in meta.items():
if not isinstance(v, str) and not isinstance(v, int) and not isinstance(v, float):
return get_json_result(data=False, message=f"The type is not supported: {v}", code=settings.RetCode.ARGUMENT_ERROR)
except Exception as e:
return get_json_result(data=False, message=f"Json syntax error: {e}", code=settings.RetCode.ARGUMENT_ERROR)
if not isinstance(meta, dict):

View File

@ -351,6 +351,7 @@ def knowledge_graph(kb_id):
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
return get_json_result(data=obj)
@manager.route('/<kb_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
@login_required
def delete_knowledge_graph(kb_id):
@ -364,3 +365,17 @@ def delete_knowledge_graph(kb_id):
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
return get_json_result(data=True)
@manager.route("/get_meta", methods=["GET"]) # noqa: F821
@login_required
def get_meta():
kb_ids = request.args.get("kb_ids", "").split(",")
for kb_id in kb_ids:
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=DocumentService.get_meta_by_kbs(kb_ids))

View File

@ -57,6 +57,7 @@ def set_api_key():
# test if api key works
chat_passed, embd_passed, rerank_passed = False, False, False
factory = req["llm_factory"]
extra = {"provider": factory}
msg = ""
for llm in LLMService.query(fid=factory):
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
@ -73,7 +74,7 @@ def set_api_key():
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
req["api_key"], llm.llm_name, base_url=req.get("base_url"), **extra)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
{"temperature": 0.9, 'max_tokens': 50})
@ -204,6 +205,7 @@ def add_llm():
msg = ""
mdl_nm = llm["llm_name"].split("___")[0]
extra = {"provider": factory}
if llm["model_type"] == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
@ -221,7 +223,8 @@ def add_llm():
mdl = ChatModel[factory](
key=llm['api_key'],
model_name=mdl_nm,
base_url=llm["api_base"]
base_url=llm["api_base"],
**extra,
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
@ -312,12 +315,12 @@ def delete_factory():
def my_llms():
try:
include_details = request.args.get('include_details', 'false').lower() == 'true'
if include_details:
res = {}
objs = TenantLLMService.query(tenant_id=current_user.id)
factories = LLMFactoriesService.query(status=StatusEnum.VALID.value)
for o in objs:
o_dict = o.to_dict()
factory_tags = None
@ -325,13 +328,13 @@ def my_llms():
if f.name == o_dict["llm_factory"]:
factory_tags = f.tags
break
if o_dict["llm_factory"] not in res:
res[o_dict["llm_factory"]] = {
"tags": factory_tags,
"llm": []
}
res[o_dict["llm_factory"]]["llm"].append({
"type": o_dict["model_type"],
"name": o_dict["llm_name"],
@ -352,7 +355,7 @@ def my_llms():
"name": o["llm_name"],
"used_token": o["used_tokens"]
})
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)

View File

@ -139,7 +139,7 @@ def create(tenant_id):
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
del res["kb_ids"]
res["dataset_ids"] = req["dataset_ids"]
res["dataset_ids"] = req.get("dataset_ids", [])
res["avatar"] = res.pop("icon")
return get_result(data=res)

View File

@ -589,14 +589,22 @@ def list_agent_session(tenant_id, agent_id):
if "prompt" in info:
info.pop("prompt")
conv["agent_id"] = conv.pop("dialog_id")
# Fix for session listing endpoint
if conv["reference"]:
messages = conv["messages"]
message_num = 0
chunk_num = 0
# Ensure reference is a list type to prevent KeyError
if not isinstance(conv["reference"], list):
conv["reference"] = []
while message_num < len(messages):
if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = []
if "chunks" in conv["reference"][chunk_num]:
# Add boundary and type checks to prevent KeyError
if (chunk_num < len(conv["reference"]) and
conv["reference"][chunk_num] is not None and
isinstance(conv["reference"][chunk_num], dict) and
"chunks" in conv["reference"][chunk_num]):
chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks:
new_chunk = {

View File

@ -620,18 +620,35 @@ def user_register(user_id, user):
"location": "",
}
tenant_llm = []
for llm in LLMService.query(fid=settings.LLM_FACTORY):
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": settings.LLM_FACTORY,
"llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": settings.API_KEY,
"api_base": settings.LLM_BASE_URL,
"max_tokens": llm.max_tokens if llm.max_tokens else 8192,
}
)
seen = set()
factory_configs = []
for factory_config in [
settings.CHAT_CFG,
settings.EMBEDDING_CFG,
settings.ASR_CFG,
settings.IMAGE2TEXT_CFG,
settings.RERANK_CFG,
]:
factory_name = factory_config["factory"]
if factory_name not in seen:
seen.add(factory_name)
factory_configs.append(factory_config)
for factory_config in factory_configs:
for llm in LLMService.query(fid=factory_config["factory"]):
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": factory_config["factory"],
"llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": factory_config["api_key"],
"api_base": factory_config["base_url"],
"max_tokens": llm.max_tokens if llm.max_tokens else 8192,
}
)
if settings.LIGHTEN != 1:
for buildin_embedding_model in settings.BUILTIN_EMBEDDING_MODELS:
mdlnm, fid = TenantLLMService.split_model_name_and_factory(buildin_embedding_model)
@ -647,6 +664,13 @@ def user_register(user_id, user):
}
)
unique = {}
for item in tenant_llm:
key = (item["tenant_id"], item["llm_factory"], item["llm_name"])
if key not in unique:
unique[key] = item
tenant_llm = list(unique.values())
if not UserService.save(**user):
return
TenantService.insert(**tenant)

View File

@ -744,6 +744,7 @@ class Dialog(DataBaseModel):
null=False,
default={"system": "", "prologue": "Hi! I'm your assistant, what can I do for you?", "parameters": [], "empty_response": "Sorry! No relevant content was found in the knowledge base!"},
)
meta_data_filter = JSONField(null=True, default={})
similarity_threshold = FloatField(default=0.2)
vector_similarity_weight = FloatField(default=0.3)
@ -1015,4 +1016,8 @@ def migrate_db():
migrate(migrator.add_column("api_4_conversation", "errors", TextField(null=True, help_text="errors")))
except Exception:
pass
try:
migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={})))
except Exception:
pass
logging.disable(logging.NOTSET)

View File

@ -63,12 +63,44 @@ def init_superuser():
"invited_by": user_info["id"],
"role": UserTenantRole.OWNER
}
user_id = user_info
tenant_llm = []
for llm in LLMService.query(fid=settings.LLM_FACTORY):
tenant_llm.append(
{"tenant_id": user_info["id"], "llm_factory": settings.LLM_FACTORY, "llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": settings.API_KEY, "api_base": settings.LLM_BASE_URL})
seen = set()
factory_configs = []
for factory_config in [
settings.CHAT_CFG["factory"],
settings.EMBEDDING_CFG["factory"],
settings.ASR_CFG["factory"],
settings.IMAGE2TEXT_CFG["factory"],
settings.RERANK_CFG["factory"],
]:
factory_name = factory_config["factory"]
if factory_name not in seen:
seen.add(factory_name)
factory_configs.append(factory_config)
for factory_config in factory_configs:
for llm in LLMService.query(fid=factory_config["factory"]):
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": factory_config["factory"],
"llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": factory_config["api_key"],
"api_base": factory_config["base_url"],
"max_tokens": llm.max_tokens if llm.max_tokens else 8192,
}
)
unique = {}
for item in tenant_llm:
key = (item["tenant_id"], item["llm_factory"], item["llm_name"])
if key not in unique:
unique[key] = item
tenant_llm = list(unique.values())
if not UserService.save(**user_info):
logging.error("can't init admin.")
@ -103,7 +135,7 @@ def init_llm_factory():
except Exception:
pass
factory_llm_infos = settings.FACTORY_LLM_INFOS
factory_llm_infos = settings.FACTORY_LLM_INFOS
for factory_llm_info in factory_llm_infos:
info = deepcopy(factory_llm_info)
llm_infos = info.pop("llm")

View File

@ -30,6 +30,7 @@ from api import settings
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import DB, Dialog
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.llm_service import LLMBundle, TenantLLMService
@ -38,6 +39,7 @@ from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in
from rag.prompts.prompts import gen_meta_filter
from rag.utils import num_tokens_from_string, rmSpace
from rag.utils.tavily_conn import Tavily
@ -119,6 +121,7 @@ class DialogService(CommonService):
cls.model.do_refer,
cls.model.rerank_id,
cls.model.kb_ids,
cls.model.icon,
cls.model.status,
User.nickname,
User.avatar.alias("tenant_avatar"),
@ -250,6 +253,46 @@ def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
return answer, idx
def meta_filter(metas: dict, filters: list[dict]):
doc_ids = []
def filter_out(v2docs, operator, value):
nonlocal doc_ids
for input,docids in v2docs.items():
try:
input = float(input)
value = float(value)
except Exception:
input = str(input)
value = str(value)
for conds in [
(operator == "contains", str(value).lower() in str(input).lower()),
(operator == "not contains", str(value).lower() not in str(input).lower()),
(operator == "start with", str(input).lower().startswith(str(value).lower())),
(operator == "end with", str(input).lower().endswith(str(value).lower())),
(operator == "empty", not input),
(operator == "not empty", input),
(operator == "=", input == value),
(operator == "", input != value),
(operator == ">", input > value),
(operator == "<", input < value),
(operator == "", input >= value),
(operator == "", input <= value),
]:
try:
if all(conds):
doc_ids.extend(docids)
except Exception:
pass
for k, v2docs in metas.items():
for f in filters:
if k != f["key"]:
continue
filter_out(v2docs, f["op"], f["value"])
return doc_ids
def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
if not dialog.kb_ids and not dialog.prompt_config.get("tavily_api_key"):
@ -287,9 +330,10 @@ def chat(dialog, messages, stream=True, **kwargs):
retriever = settings.retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else []
if "doc_ids" in messages[-1]:
attachments = messages[-1]["doc_ids"]
prompt_config = dialog.prompt_config
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
# try to use sql if field mapping is good to go
@ -316,6 +360,14 @@ def chat(dialog, messages, stream=True, **kwargs):
if prompt_config.get("cross_languages"):
questions = [cross_languages(dialog.tenant_id, dialog.llm_id, questions[0], prompt_config["cross_languages"])]
if dialog.meta_data_filter:
metas = DocumentService.get_meta_by_kbs(dialog.kb_ids)
if dialog.meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, questions[-1])
attachments.extend(meta_filter(metas, filters))
elif dialog.meta_data_filter.get("method") == "manual":
attachments.extend(meta_filter(metas, dialog.meta_data_filter["manual"]))
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])

View File

@ -243,7 +243,7 @@ class DocumentService(CommonService):
from api.db.services.task_service import TaskService
cls.clear_chunk_num(doc.id)
try:
TaskService.filter_delete(Task.doc_id == doc.id)
TaskService.filter_delete([Task.doc_id == doc.id])
page = 0
page_size = 1000
all_chunk_ids = []
@ -574,6 +574,25 @@ class DocumentService(CommonService):
def update_meta_fields(cls, doc_id, meta_fields):
return cls.update_by_id(doc_id, {"meta_fields": meta_fields})
@classmethod
@DB.connection_context()
def get_meta_by_kbs(cls, kb_ids):
fields = [
cls.model.id,
cls.model.meta_fields,
]
meta = {}
for r in cls.model.select(*fields).where(cls.model.kb_id.in_(kb_ids)):
doc_id = r.id
for k,v in r.meta_fields.items():
if k not in meta:
meta[k] = {}
v = str(v)
if v not in meta[k]:
meta[k][v] = []
meta[k][v].append(doc_id)
return meta
@classmethod
@DB.connection_context()
def update_progress(cls):

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import inspect
import logging
import re
from functools import partial
@ -141,6 +142,7 @@ class TenantLLMService(CommonService):
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
kwargs.update({"provider": model_config["llm_factory"]})
if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel:
return
@ -376,7 +378,24 @@ class LLMBundle:
return txt
return txt[last_think_end + len("</think>") :]
@staticmethod
def _clean_param(chat_partial, **kwargs):
func = chat_partial.func
sig = inspect.signature(func)
keyword_args = []
support_var_args = False
for param in sig.parameters.values():
if param.kind == inspect.Parameter.VAR_KEYWORD or param.kind == inspect.Parameter.VAR_POSITIONAL:
support_var_args = True
elif param.kind == inspect.Parameter.KEYWORD_ONLY:
keyword_args.append(param.name)
use_kwargs = kwargs
if not support_var_args:
use_kwargs = {k: v for k, v in kwargs.items() if k in keyword_args}
return use_kwargs
def chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs) -> str:
if self.langfuse:
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat", model=self.llm_name, input={"system": system, "history": history})
@ -384,8 +403,9 @@ class LLMBundle:
chat_partial = partial(self.mdl.chat, system, history, gen_conf)
if self.is_tools and self.mdl.is_tools:
chat_partial = partial(self.mdl.chat_with_tools, system, history, gen_conf)
txt, used_tokens = chat_partial(**kwargs)
use_kwargs = self._clean_param(chat_partial, **kwargs)
txt, used_tokens = chat_partial(**use_kwargs)
txt = self._remove_reasoning_content(txt)
if not self.verbose_tool_use:
@ -409,8 +429,8 @@ class LLMBundle:
total_tokens = 0
if self.is_tools and self.mdl.is_tools:
chat_partial = partial(self.mdl.chat_streamly_with_tools, system, history, gen_conf)
for txt in chat_partial(**kwargs):
use_kwargs = self._clean_param(chat_partial, **kwargs)
for txt in chat_partial(**use_kwargs):
if isinstance(txt, int):
total_tokens = txt
if self.langfuse:

View File

@ -38,6 +38,11 @@ EMBEDDING_MDL = ""
RERANK_MDL = ""
ASR_MDL = ""
IMAGE2TEXT_MDL = ""
CHAT_CFG = ""
EMBEDDING_CFG = ""
RERANK_CFG = ""
ASR_CFG = ""
IMAGE2TEXT_CFG = ""
API_KEY = None
PARSERS = None
HOST_IP = None
@ -74,23 +79,22 @@ STRONG_TEST_COUNT = int(os.environ.get("STRONG_TEST_COUNT", "8"))
BUILTIN_EMBEDDING_MODELS = ["BAAI/bge-large-zh-v1.5@BAAI", "maidalun1020/bce-embedding-base_v1@Youdao"]
def get_or_create_secret_key():
secret_key = os.environ.get("RAGFLOW_SECRET_KEY")
if secret_key and len(secret_key) >= 32:
return secret_key
# Check if there's a configured secret key
configured_key = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("secret_key")
if configured_key and configured_key != str(date.today()) and len(configured_key) >= 32:
return configured_key
# Generate a new secure key and warn about it
import logging
new_key = secrets.token_hex(32)
logging.warning(
"SECURITY WARNING: Using auto-generated SECRET_KEY. "
f"Generated key: {new_key}"
)
logging.warning(f"SECURITY WARNING: Using auto-generated SECRET_KEY. Generated key: {new_key}")
return new_key
@ -99,10 +103,10 @@ def init_settings():
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
DATABASE_TYPE = os.getenv("DB_TYPE", "mysql")
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
LLM = get_base_config("user_default_llm", {})
LLM_DEFAULT_MODELS = LLM.get("default_models", {})
LLM_FACTORY = LLM.get("factory")
LLM_BASE_URL = LLM.get("base_url")
LLM = get_base_config("user_default_llm", {}) or {}
LLM_DEFAULT_MODELS = LLM.get("default_models", {}) or {}
LLM_FACTORY = LLM.get("factory", "") or ""
LLM_BASE_URL = LLM.get("base_url", "") or ""
try:
REGISTER_ENABLED = int(os.environ.get("REGISTER_ENABLED", "1"))
except Exception:
@ -115,29 +119,34 @@ def init_settings():
FACTORY_LLM_INFOS = []
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
global CHAT_CFG, EMBEDDING_CFG, RERANK_CFG, ASR_CFG, IMAGE2TEXT_CFG
if not LIGHTEN:
EMBEDDING_MDL = BUILTIN_EMBEDDING_MODELS[0]
if LLM_DEFAULT_MODELS:
CHAT_MDL = LLM_DEFAULT_MODELS.get("chat_model", CHAT_MDL)
EMBEDDING_MDL = LLM_DEFAULT_MODELS.get("embedding_model", EMBEDDING_MDL)
RERANK_MDL = LLM_DEFAULT_MODELS.get("rerank_model", RERANK_MDL)
ASR_MDL = LLM_DEFAULT_MODELS.get("asr_model", ASR_MDL)
IMAGE2TEXT_MDL = LLM_DEFAULT_MODELS.get("image2text_model", IMAGE2TEXT_MDL)
# factory can be specified in the config name with "@". LLM_FACTORY will be used if not specified
CHAT_MDL = CHAT_MDL + (f"@{LLM_FACTORY}" if "@" not in CHAT_MDL and CHAT_MDL != "" else "")
EMBEDDING_MDL = EMBEDDING_MDL + (f"@{LLM_FACTORY}" if "@" not in EMBEDDING_MDL and EMBEDDING_MDL != "" else "")
RERANK_MDL = RERANK_MDL + (f"@{LLM_FACTORY}" if "@" not in RERANK_MDL and RERANK_MDL != "" else "")
ASR_MDL = ASR_MDL + (f"@{LLM_FACTORY}" if "@" not in ASR_MDL and ASR_MDL != "" else "")
IMAGE2TEXT_MDL = IMAGE2TEXT_MDL + (f"@{LLM_FACTORY}" if "@" not in IMAGE2TEXT_MDL and IMAGE2TEXT_MDL != "" else "")
global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
API_KEY = LLM.get("api_key")
PARSERS = LLM.get(
"parsers", "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"
)
chat_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("chat_model", CHAT_MDL))
embedding_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("embedding_model", EMBEDDING_MDL))
rerank_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("rerank_model", RERANK_MDL))
asr_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("asr_model", ASR_MDL))
image2text_entry = _parse_model_entry(LLM_DEFAULT_MODELS.get("image2text_model", IMAGE2TEXT_MDL))
CHAT_CFG = _resolve_per_model_config(chat_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
EMBEDDING_CFG = _resolve_per_model_config(embedding_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
RERANK_CFG = _resolve_per_model_config(rerank_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
ASR_CFG = _resolve_per_model_config(asr_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
IMAGE2TEXT_CFG = _resolve_per_model_config(image2text_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
CHAT_MDL = CHAT_CFG.get("model", "") or ""
EMBEDDING_MDL = EMBEDDING_CFG.get("model", "") or ""
RERANK_MDL = RERANK_CFG.get("model", "") or ""
ASR_MDL = ASR_CFG.get("model", "") or ""
IMAGE2TEXT_MDL = IMAGE2TEXT_CFG.get("model", "") or ""
HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")
@ -170,6 +179,7 @@ def init_settings():
retrievaler = search.Dealer(docStoreConn)
from graphrag import search as kg_search
kg_retrievaler = kg_search.KGSearch(docStoreConn)
if int(os.environ.get("SANDBOX_ENABLED", "0")):
@ -210,3 +220,34 @@ class RetCode(IntEnum, CustomEnum):
SERVER_ERROR = 500
FORBIDDEN = 403
NOT_FOUND = 404
def _parse_model_entry(entry):
if isinstance(entry, str):
return {"name": entry, "factory": None, "api_key": None, "base_url": None}
if isinstance(entry, dict):
name = entry.get("name") or entry.get("model") or ""
return {
"name": name,
"factory": entry.get("factory"),
"api_key": entry.get("api_key"),
"base_url": entry.get("base_url"),
}
return {"name": "", "factory": None, "api_key": None, "base_url": None}
def _resolve_per_model_config(entry_dict, backup_factory, backup_api_key, backup_base_url):
name = (entry_dict.get("name") or "").strip()
m_factory = entry_dict.get("factory") or backup_factory or ""
m_api_key = entry_dict.get("api_key") or backup_api_key or ""
m_base_url = entry_dict.get("base_url") or backup_base_url or ""
if name and "@" not in name and m_factory:
name = f"{name}@{m_factory}"
return {
"model": name,
"factory": m_factory,
"api_key": m_api_key,
"base_url": m_base_url,
}

View File

@ -64,9 +64,21 @@ redis:
# config:
# oss_table: 'opendal_storage'
# user_default_llm:
# factory: 'Tongyi-Qianwen'
# api_key: 'sk-xxxxxxxxxxxxx'
# base_url: ''
# factory: 'BAAI'
# api_key: 'backup'
# base_url: 'backup_base_url'
# default_models:
# chat_model:
# name: 'qwen2.5-7b-instruct'
# factory: 'xxxx'
# api_key: 'xxxx'
# base_url: 'https://api.xx.com'
# embedding_model:
# name: 'bge-m3'
# rerank_model: 'bge-reranker-v2'
# asr_model:
# model: 'whisper-large-v3' # alias of name
# image2text_model: ''
# oauth:
# oauth2:
# display_name: "OAuth2"

View File

@ -12,6 +12,7 @@
#
import logging
import re
import sys
from io import BytesIO
@ -20,6 +21,8 @@ from openpyxl import Workbook, load_workbook
from rag.nlp import find_codec
# copied from `/openpyxl/cell/cell.py`
ILLEGAL_CHARACTERS_RE = re.compile(r'[\000-\010]|[\013-\014]|[\016-\037]')
class RAGFlowExcelParser:
@ -50,13 +53,29 @@ class RAGFlowExcelParser:
logging.info(f"openpyxl load error: {e}, try pandas instead")
try:
file_like_object.seek(0)
df = pd.read_excel(file_like_object)
return RAGFlowExcelParser._dataframe_to_workbook(df)
try:
df = pd.read_excel(file_like_object)
return RAGFlowExcelParser._dataframe_to_workbook(df)
except Exception as ex:
logging.info(f"pandas with default engine load error: {ex}, try calamine instead")
file_like_object.seek(0)
df = pd.read_excel(file_like_object, engine='calamine')
return RAGFlowExcelParser._dataframe_to_workbook(df)
except Exception as e_pandas:
raise Exception(f"pandas.read_excel error: {e_pandas}, original openpyxl error: {e}")
@staticmethod
def _clean_dataframe(df: pd.DataFrame):
def clean_string(s):
if isinstance(s, str):
return ILLEGAL_CHARACTERS_RE.sub(" ", s)
return s
return df.apply(lambda col: col.map(clean_string))
@staticmethod
def _dataframe_to_workbook(df):
df = RAGFlowExcelParser._clean_dataframe(df)
wb = Workbook()
ws = wb.active
ws.title = "Data"

View File

@ -63,7 +63,7 @@ docker build -t sandbox-executor-manager:latest ./executor_manager
3. Add the following entry to your /etc/hosts file to resolve the executor manager service:
```bash
127.0.0.1 sandbox-executor-manager
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. Start the RAGFlow service as usual.

View File

@ -9,8 +9,8 @@ Key features, improvements and bug fixes in the latest releases.
:::info
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.19.1-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.19.1`
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1`
:::
:::danger IMPORTANT
@ -33,10 +33,10 @@ Released on August 8, 2025.
### Added Models
- ChatGPT 5
- GPT-5
- Claude 4.1
### New agent Templates (both workflow and agentic)
### New agent templates (both workflow and agentic)
- SQL Assistant Workflow: Empowers non-technical teams (e.g., operations, product) to independently query business data.
- Choose Your Knowledge Base Workflow: Lets users select a knowledge base to query during conversations. [#9325](https://github.com/infiniflow/ragflow/pull/9325)

View File

@ -180,7 +180,7 @@ async def list_tools(*, connector) -> list[types.Tool]:
return [
types.Tool(
name="ragflow_retrieval",
description="Retrieve relevant chunks from the RAGFlow retrieve interface based on the question, using the specified dataset_ids and optionally document_ids. Below is the list of all available datasets, including their descriptions and IDs. If you're unsure which datasets are relevant to the question, simply pass all dataset IDs to the function."
description="Retrieve relevant chunks from the RAGFlow retrieve interface based on the question. You can optionally specify dataset_ids to search only specific datasets, or omit dataset_ids entirely to search across ALL available datasets. You can also optionally specify document_ids to search within specific documents. When dataset_ids is not provided or is empty, the system will automatically search across all available datasets. Below is the list of all available datasets, including their descriptions and IDs:"
+ dataset_description,
inputSchema={
"type": "object",
@ -188,14 +188,16 @@ async def list_tools(*, connector) -> list[types.Tool]:
"dataset_ids": {
"type": "array",
"items": {"type": "string"},
"description": "Optional array of dataset IDs to search. If not provided or empty, all datasets will be searched."
},
"document_ids": {
"type": "array",
"items": {"type": "string"},
"description": "Optional array of document IDs to search within."
},
"question": {"type": "string"},
"question": {"type": "string", "description": "The question or query to search for."},
},
"required": ["dataset_ids", "question"],
"required": ["question"],
},
),
]
@ -206,8 +208,26 @@ async def list_tools(*, connector) -> list[types.Tool]:
async def call_tool(name: str, arguments: dict, *, connector) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
if name == "ragflow_retrieval":
document_ids = arguments.get("document_ids", [])
dataset_ids = arguments.get("dataset_ids", [])
# If no dataset_ids provided or empty list, get all available dataset IDs
if not dataset_ids:
dataset_list_str = connector.list_datasets()
dataset_ids = []
# Parse the dataset list to extract IDs
if dataset_list_str:
for line in dataset_list_str.strip().split('\n'):
if line.strip():
try:
dataset_info = json.loads(line.strip())
dataset_ids.append(dataset_info["id"])
except (json.JSONDecodeError, KeyError):
# Skip malformed lines
continue
return connector.retrieval(
dataset_ids=arguments["dataset_ids"],
dataset_ids=dataset_ids,
document_ids=document_ids,
question=arguments["question"],
)

View File

@ -24,7 +24,7 @@ dependencies = [
"chardet==5.2.0",
"cn2an==0.5.22",
"cohere==5.6.2",
"Crawl4AI==0.3.8",
"Crawl4AI>=0.3.8",
"dashscope==1.20.11",
"deepl==1.18.0",
"demjson3==3.0.6",
@ -43,7 +43,7 @@ dependencies = [
"groq==0.9.0",
"hanziconv==0.3.2",
"html-text==0.6.2",
"httpx==0.27.0",
"httpx==0.27.2",
"huggingface-hub>=0.25.0,<0.26.0",
"infinity-sdk==0.6.0-dev4",
"infinity-emb>=0.0.66,<0.0.67",
@ -58,7 +58,7 @@ dependencies = [
"ollama==0.2.1",
"onnxruntime==1.19.2; sys_platform == 'darwin' or platform_machine != 'x86_64'",
"onnxruntime-gpu==1.19.2; sys_platform != 'darwin' and platform_machine == 'x86_64'",
"openai==1.45.0",
"openai>=1.45.0",
"opencv-python==4.10.0.84",
"opencv-python-headless==4.10.0.84",
"openpyxl>=3.1.0,<4.0.0",
@ -128,6 +128,8 @@ dependencies = [
"opensearch-py==2.7.1",
"pluginlib==0.9.4",
"click>=8.1.8",
"python-calamine>=0.4.0",
"litellm>=1.74.15.post1",
]
[project.optional-dependencies]

View File

@ -226,17 +226,20 @@ class Docx(DocxParser):
for r in tb.rows:
html += "<tr>"
i = 0
while i < len(r.cells):
span = 1
c = r.cells[i]
for j in range(i + 1, len(r.cells)):
if c.text == r.cells[j].text:
span += 1
i = j
else:
break
i += 1
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
try:
while i < len(r.cells):
span = 1
c = r.cells[i]
for j in range(i + 1, len(r.cells)):
if c.text == r.cells[j].text:
span += 1
i = j
else:
break
i += 1
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
except Exception as e:
logging.warning(f"Error parsing table, ignore: {e}")
html += "</tr>"
html += "</table>"
tbls.append(((None, html), ""))

View File

@ -40,7 +40,6 @@ class Excel(ExcelParser):
total = 0
for sheetname in wb.sheetnames:
total += len(list(wb[sheetname].rows))
res, fails, done = [], [], 0
rn = 0
for sheetname in wb.sheetnames:
@ -48,31 +47,204 @@ class Excel(ExcelParser):
rows = list(ws.rows)
if not rows:
continue
headers = [cell.value for cell in rows[0]]
missed = set([i for i, h in enumerate(headers) if h is None])
headers = [cell.value for i, cell in enumerate(rows[0]) if i not in missed]
headers, header_rows = self._parse_headers(ws, rows)
if not headers:
continue
data = []
for i, r in enumerate(rows[1:]):
for i, r in enumerate(rows[header_rows:]):
rn += 1
if rn - 1 < from_page:
continue
if rn - 1 >= to_page:
break
row = [cell.value for ii, cell in enumerate(r) if ii not in missed]
if len(row) != len(headers):
row_data = self._extract_row_data(ws, r, header_rows + i, len(headers))
if row_data is None:
fails.append(str(i))
continue
data.append(row)
if self._is_empty_row(row_data):
continue
data.append(row_data)
done += 1
if np.array(data).size == 0:
if len(data) == 0:
continue
res.append(pd.DataFrame(np.array(data), columns=headers))
df = pd.DataFrame(data, columns=headers)
res.append(df)
callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
def _parse_headers(self, ws, rows):
if len(rows) == 0:
return [], 0
has_complex_structure = self._has_complex_header_structure(ws, rows)
if has_complex_structure:
return self._parse_multi_level_headers(ws, rows)
else:
return self._parse_simple_headers(rows)
def _has_complex_header_structure(self, ws, rows):
if len(rows) < 1:
return False
merged_ranges = list(ws.merged_cells.ranges)
# 检查前两行是否涉及合并单元格
for rng in merged_ranges:
if rng.min_row <= 2: # 只要合并区域涉及第1或第2行
return True
return False
def _row_looks_like_header(self, row):
header_like_cells = 0
data_like_cells = 0
non_empty_cells = 0
for cell in row:
if cell.value is not None:
non_empty_cells += 1
val = str(cell.value).strip()
if self._looks_like_header(val):
header_like_cells += 1
elif self._looks_like_data(val):
data_like_cells += 1
if non_empty_cells == 0:
return False
return header_like_cells >= data_like_cells
def _parse_simple_headers(self, rows):
if not rows:
return [], 0
header_row = rows[0]
headers = []
for cell in header_row:
if cell.value is not None:
header_value = str(cell.value).strip()
if header_value:
headers.append(header_value)
else:
pass
final_headers = []
for i, cell in enumerate(header_row):
if cell.value is not None:
header_value = str(cell.value).strip()
if header_value:
final_headers.append(header_value)
else:
final_headers.append(f"Column_{i + 1}")
else:
final_headers.append(f"Column_{i + 1}")
return final_headers, 1
def _parse_multi_level_headers(self, ws, rows):
if len(rows) < 2:
return [], 0
header_rows = self._detect_header_rows(rows)
if header_rows == 1:
return self._parse_simple_headers(rows)
else:
return self._build_hierarchical_headers(ws, rows, header_rows), header_rows
def _detect_header_rows(self, rows):
if len(rows) < 2:
return 1
header_rows = 1
max_check_rows = min(5, len(rows))
for i in range(1, max_check_rows):
row = rows[i]
if self._row_looks_like_header(row):
header_rows = i + 1
else:
break
return header_rows
def _looks_like_header(self, value):
if len(value) < 1:
return False
if any(ord(c) > 127 for c in value):
return True
if len([c for c in value if c.isalpha()]) >= 2:
return True
if any(c in value for c in ["(", ")", "", ":", "", "", "_", "-"]):
return True
return False
def _looks_like_data(self, value):
if len(value) == 1 and value.upper() in ["Y", "N", "M", "X", "/", "-"]:
return True
if value.replace(".", "").replace("-", "").replace(",", "").isdigit():
return True
if value.startswith("0x") and len(value) <= 10:
return True
return False
def _build_hierarchical_headers(self, ws, rows, header_rows):
headers = []
max_col = max(len(row) for row in rows[:header_rows]) if header_rows > 0 else 0
merged_ranges = list(ws.merged_cells.ranges)
for col_idx in range(max_col):
header_parts = []
for row_idx in range(header_rows):
if col_idx < len(rows[row_idx]):
cell_value = rows[row_idx][col_idx].value
merged_value = self._get_merged_cell_value(ws, row_idx + 1, col_idx + 1, merged_ranges)
if merged_value is not None:
cell_value = merged_value
if cell_value is not None:
cell_value = str(cell_value).strip()
if cell_value and cell_value not in header_parts and self._is_valid_header_part(cell_value):
header_parts.append(cell_value)
if header_parts:
header = "-".join(header_parts)
headers.append(header)
else:
headers.append(f"Column_{col_idx + 1}")
final_headers = [h for h in headers if h and h != "-"]
return final_headers
def _is_valid_header_part(self, value):
if len(value) == 1 and value.upper() in ["Y", "N", "M", "X"]:
return False
if value.replace(".", "").replace("-", "").replace(",", "").isdigit():
return False
if value in ["/", "-", "+", "*", "="]:
return False
return True
def _get_merged_cell_value(self, ws, row, col, merged_ranges):
for merged_range in merged_ranges:
if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col:
return ws.cell(merged_range.min_row, merged_range.min_col).value
return None
def _extract_row_data(self, ws, row, absolute_row_idx, expected_cols):
row_data = []
merged_ranges = list(ws.merged_cells.ranges)
actual_row_num = absolute_row_idx + 1
for col_idx in range(expected_cols):
cell_value = None
actual_col_num = col_idx + 1
try:
cell_value = ws.cell(row=actual_row_num, column=actual_col_num).value
except ValueError:
if col_idx < len(row):
cell_value = row[col_idx].value
if cell_value is None:
merged_value = self._get_merged_cell_value(ws, actual_row_num, actual_col_num, merged_ranges)
if merged_value is not None:
cell_value = merged_value
else:
cell_value = self._get_inherited_value(ws, actual_row_num, actual_col_num, merged_ranges)
row_data.append(cell_value)
return row_data
def _get_inherited_value(self, ws, row, col, merged_ranges):
for merged_range in merged_ranges:
if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col:
return ws.cell(merged_range.min_row, merged_range.min_col).value
return None
def _is_empty_row(self, row_data):
for val in row_data:
if val is not None and str(val).strip() != "":
return False
return True
def trans_datatime(s):
try:

View File

@ -19,6 +19,48 @@
import importlib
import inspect
from strenum import StrEnum
class SupportedLiteLLMProvider(StrEnum):
Tongyi_Qianwen = "Tongyi-Qianwen"
Dashscope = "Dashscope"
Bedrock = "Bedrock"
Moonshot = "Moonshot"
xAI = "xAI"
DeepInfra = "DeepInfra"
Groq = "Groq"
Cohere = "Cohere"
Gemini = "Gemini"
DeepSeek = "DeepSeek"
Nvidia = "NVIDIA"
TogetherAI = "TogetherAI"
Anthropic = "Anthropic"
FACTORY_DEFAULT_BASE_URL = {
SupportedLiteLLMProvider.Tongyi_Qianwen: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Dashscope: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Moonshot: "https://api.moonshot.cn/v1",
}
LITELLM_PROVIDER_PREFIX = {
SupportedLiteLLMProvider.Tongyi_Qianwen: "dashscope/",
SupportedLiteLLMProvider.Dashscope: "dashscope/",
SupportedLiteLLMProvider.Bedrock: "bedrock/",
SupportedLiteLLMProvider.Moonshot: "moonshot/",
SupportedLiteLLMProvider.xAI: "xai/",
SupportedLiteLLMProvider.DeepInfra: "deepinfra/",
SupportedLiteLLMProvider.Groq: "groq/",
SupportedLiteLLMProvider.Cohere: "", # don't need a prefix
SupportedLiteLLMProvider.Gemini: "gemini/",
SupportedLiteLLMProvider.DeepSeek: "deepseek/",
SupportedLiteLLMProvider.Nvidia: "nvidia_nim/",
SupportedLiteLLMProvider.TogetherAI: "together_ai/",
SupportedLiteLLMProvider.Anthropic: "", # don't need a prefix
}
ChatModel = globals().get("ChatModel", {})
CvModel = globals().get("CvModel", {})
EmbeddingModel = globals().get("EmbeddingModel", {})
@ -26,6 +68,7 @@ RerankModel = globals().get("RerankModel", {})
Seq2txtModel = globals().get("Seq2txtModel", {})
TTSModel = globals().get("TTSModel", {})
MODULE_MAPPING = {
"chat_model": ChatModel,
"cv_model": CvModel,
@ -42,20 +85,30 @@ for module_name, mapping_dict in MODULE_MAPPING.items():
module = importlib.import_module(full_module_name)
base_class = None
lite_llm_base_class = None
for name, obj in inspect.getmembers(module):
if inspect.isclass(obj) and name == "Base":
base_class = obj
break
if base_class is None:
continue
if inspect.isclass(obj):
if name == "Base":
base_class = obj
elif name == "LiteLLMBase":
lite_llm_base_class = obj
assert hasattr(obj, "_FACTORY_NAME"), "LiteLLMbase should have _FACTORY_NAME field."
if hasattr(obj, "_FACTORY_NAME"):
if isinstance(obj._FACTORY_NAME, list):
for factory_name in obj._FACTORY_NAME:
mapping_dict[factory_name] = obj
else:
mapping_dict[obj._FACTORY_NAME] = obj
if base_class is not None:
for _, obj in inspect.getmembers(module):
if inspect.isclass(obj) and issubclass(obj, base_class) and obj is not base_class and hasattr(obj, "_FACTORY_NAME"):
if isinstance(obj._FACTORY_NAME, list):
for factory_name in obj._FACTORY_NAME:
mapping_dict[factory_name] = obj
else:
mapping_dict[obj._FACTORY_NAME] = obj
for _, obj in inspect.getmembers(module):
if inspect.isclass(obj) and issubclass(obj, base_class) and obj is not base_class and hasattr(obj, "_FACTORY_NAME"):
if isinstance(obj._FACTORY_NAME, list):
for factory_name in obj._FACTORY_NAME:
mapping_dict[factory_name] = obj
else:
mapping_dict[obj._FACTORY_NAME] = obj
__all__ = [
"ChatModel",

File diff suppressed because it is too large Load Diff

View File

@ -268,7 +268,7 @@ class LocalAIRerank(Base):
max_rank = np.max(rank)
# Avoid division by zero if all ranks are identical
if max_rank - min_rank != 0:
if not np.isclose(min_rank, max_rank, atol=1e-3):
rank = (rank - min_rank) / (max_rank - min_rank)
else:
rank = np.zeros_like(rank)

View File

@ -383,8 +383,6 @@ class Dealer:
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
sim_np = np.array(sim)
if doc_ids:
similarity_threshold = 0
filtered_count = (sim_np >= similarity_threshold).sum()
ranks["total"] = int(filtered_count) # Convert from np.int64 to Python int otherwise JSON serializable error
for i in idx:

View File

@ -4,6 +4,9 @@ Task: {{ task }}
Context: {{ context }}
**Agent Prompt**
{{ agent_prompt }}
**Analysis Requirements:**
1. Is it just a small talk? (If yes, no further plan or analysis is needed)
2. What is the core objective of the task?

View File

@ -0,0 +1,53 @@
You are a metadata filtering condition generator. Analyze the user's question and available document metadata to output a JSON array of filter objects. Follow these rules:
1. **Metadata Structure**:
- Metadata is provided as JSON where keys are attribute names (e.g., "color"), and values are objects mapping attribute values to document IDs.
- Example:
{
"color": {"red": ["doc1"], "blue": ["doc2"]},
"listing_date": {"2025-07-11": ["doc1"], "2025-08-01": ["doc2"]}
}
2. **Output Requirements**:
- Always output a JSON array of filter objects
- Each object must have:
"key": (metadata attribute name),
"value": (string value to compare),
"op": (operator from allowed list)
3. **Operator Guide**:
- Use these operators only: ["contains", "not contains", "start with", "end with", "empty", "not empty", "=", "≠", ">", "<", "≥", "≤"]
- Date ranges: Break into two conditions (≥ start_date AND < next_month_start)
- Negations: Always use "≠" for exclusion terms ("not", "except", "exclude", "≠")
- Implicit logic: Derive unstated filters (e.g., "July" [≥ YYYY-07-01, < YYYY-08-01])
4. **Processing Steps**:
a) Identify ALL filterable attributes in the query (both explicit and implicit)
b) For dates:
- Infer missing year from current date if needed
- Always format dates as "YYYY-MM-DD"
- Convert ranges: [≥ start, < end]
c) For values: Match EXACTLY to metadata's value keys
d) Skip conditions if:
- Attribute doesn't exist in metadata
- Value has no match in metadata
5. **Example**:
- User query: "上市日期七月份的有哪些商品不要蓝色的"
- Metadata: { "color": {...}, "listing_date": {...} }
- Output:
[
{"key": "listing_date", "value": "2025-07-01", "op": "≥"},
{"key": "listing_date", "value": "2025-08-01", "op": "<"},
{"key": "color", "value": "blue", "op": "≠"}
]
6. **Final Output**:
- ONLY output valid JSON array
- NO additional text/explanations
**Current Task**:
- Today's date: {{current_date}}
- Available metadata keys: {{metadata_keys}}
- User query: "{{user_question}}"

View File

@ -149,6 +149,7 @@ NEXT_STEP = load_prompt("next_step")
REFLECT = load_prompt("reflect")
SUMMARY4MEMORY = load_prompt("summary4memory")
RANK_MEMORY = load_prompt("rank_memory")
META_FILTER = load_prompt("meta_filter")
PROMPT_JINJA_ENV = jinja2.Environment(autoescape=False, trim_blocks=True, lstrip_blocks=True)
@ -335,13 +336,13 @@ def form_history(history, limit=-6):
return context
def analyze_task(chat_mdl, task_name, tools_description: list[dict]):
def analyze_task(chat_mdl, prompt, task_name, tools_description: list[dict]):
tools_desc = tool_schema(tools_description)
context = ""
template = PROMPT_JINJA_ENV.from_string(ANALYZE_TASK_USER)
kwd = chat_mdl.chat(ANALYZE_TASK_SYSTEM,[{"role": "user", "content": template.render(task=task_name, context=context, tools_desc=tools_desc)}], {})
context = template.render(task=task_name, context=context, agent_prompt=prompt, tools_desc=tools_desc)
kwd = chat_mdl.chat(ANALYZE_TASK_SYSTEM,[{"role": "user", "content": context}], {})
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
@ -413,3 +414,20 @@ def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[st
ans = chat_mdl.chat(msg[0]["content"], msg[1:], stop="<|stop|>")
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
sys_prompt = PROMPT_JINJA_ENV.from_string(META_FILTER).render(
current_date=datetime.datetime.today().strftime('%Y-%m-%d'),
metadata_keys=json.dumps(meta_data),
user_question=query
)
user_prompt = "Generate filters:"
ans = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}])
ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL)
try:
ans = json_repair.loads(ans)
assert isinstance(ans, list), ans
return ans
except Exception:
logging.exception(f"Loading json failure: {ans}")
return []

View File

@ -304,7 +304,11 @@ async def build_chunks(task, progress_callback):
converted_image = d["image"].convert("RGB")
d["image"].close() # Close original image
d["image"] = converted_image
d["image"].save(output_buffer, format='JPEG')
try:
d["image"].save(output_buffer, format='JPEG')
except OSError as e:
logging.warning(
"Saving image of chunk {}/{}/{} got exception, ignore: {}".format(task["location"], task["name"], d["id"], str(e)))
async with minio_limiter:
await trio.to_thread.run_sync(lambda: STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue()))
@ -440,7 +444,7 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
tk_count += c
@timeout(5)
@timeout(60)
def batch_encode(txts):
nonlocal mdl
return mdl.encode([truncate(c, mdl.max_length-10) for c in txts])

View File

@ -190,3 +190,17 @@ class RAGFlowS3:
self.__open__()
time.sleep(1)
return
@use_prefix_path
@use_default_bucket
def rm_bucket(self, bucket, *args, **kwargs):
for conn in self.conn:
try:
if not conn.bucket_exists(bucket):
continue
for o in conn.list_objects_v2(Bucket=bucket):
conn.delete_object(bucket, o.object_name)
conn.delete_bucket(Bucket=bucket)
return
except Exception as e:
logging.error(f"Fail rm {bucket}: " + str(e))

View File

@ -24,7 +24,6 @@ class Chat(Base):
self.id = ""
self.name = "assistant"
self.avatar = "path/to/avatar"
self.dataset_ids = ["kb1"]
self.llm = Chat.LLM(rag, {})
self.prompt = Chat.Prompt(rag, {})
super().__init__(rag, res_dict)

View File

@ -44,6 +44,7 @@ class Document(Base):
self.process_duration = 0.0
self.run = "0"
self.status = "1"
self.meta_fields = {}
for k in list(res_dict.keys()):
if k not in self.__dict__:
res_dict.pop(k)

View File

@ -245,4 +245,4 @@ class TestUpdatedChunk:
delete_documents(HttpApiAuth, dataset_id, {"ids": [document_id]})
res = update_chunk(HttpApiAuth, dataset_id, document_id, chunk_ids[0])
assert res["code"] == 102
assert res["message"] == f"Can't find this chunk {chunk_ids[0]}"
assert res["message"] == f"You don't own the document {document_id}."

View File

@ -163,9 +163,9 @@ class TestDatasetsList:
[
{"orderby": ""},
{"orderby": "unknown"},
({"orderby": "CREATE_TIME"}, lambda r: (is_sorted(r["data"], "create_time", True))),
({"orderby": "UPDATE_TIME"}, lambda r: (is_sorted(r["data"], "update_time", True))),
({"orderby": " create_time "}, lambda r: (is_sorted(r["data"], "update_time", True))),
{"orderby": "CREATE_TIME"},
{"orderby": "UPDATE_TIME"},
{"orderby": " create_time "},
],
ids=["empty", "unknown", "orderby_create_time_upper", "orderby_update_time_upper", "whitespace"],
)

View File

@ -151,4 +151,4 @@ class TestUpdatedChunk:
with pytest.raises(Exception) as excinfo:
chunks[0].update({})
assert f"Can't find this chunk {chunks[0].id}" in str(excinfo.value), str(excinfo.value)
assert f"You don't own the document {chunks[0].document_id}" in str(excinfo.value), str(excinfo.value)

View File

@ -693,6 +693,7 @@ class TestDatasetUpdate:
client,
{
"raptor": {"use_raptor": False},
"graphrag": {"use_graphrag": False},
},
)
dataset.update({"chunk_method": "qa"})
@ -708,6 +709,7 @@ class TestDatasetUpdate:
client,
{
"raptor": {"use_raptor": False},
"graphrag": {"use_graphrag": False},
},
)
dataset.update({"chunk_method": "qa", "parser_config": None})

278
uv.lock generated
View File

@ -1,4 +1,5 @@
version = 1
revision = 1
requires-python = ">=3.10, <3.13"
resolution-markers = [
"python_full_version >= '3.12' and sys_platform == 'darwin'",
@ -30,6 +31,15 @@ wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/9f/1c/a17fb513aeb684fb83bef5f395910f53103ab30308bbdd77fd66d6698c46/accelerate-1.9.0-py3-none-any.whl", hash = "sha256:c24739a97ade1d54af4549a65f8b6b046adc87e2b3e4d6c66516e32c53d5a8f1" },
]
[[package]]
name = "aiofiles"
version = "24.1.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/0b/03/a88171e277e8caa88a4c77808c20ebb04ba74cc4681bf1e9416c862de237/aiofiles-24.1.0.tar.gz", hash = "sha256:22a075c9e5a3810f0c2e48f3008c94d68c65d763b9b03857924c99e57355166c" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/a5/45/30bb92d442636f570cb5651bc661f52b610e2eec3f891a5dc3a4c3667db0/aiofiles-24.1.0-py3-none-any.whl", hash = "sha256:b4ec55f4195e3eb5d7abd1bf7e061763e864dd4954231fb8539a0ef8bb8260e5" },
]
[[package]]
name = "aiohappyeyeballs"
version = "2.6.1"
@ -1028,24 +1038,29 @@ wheels = [
[[package]]
name = "crawl4ai"
version = "0.3.8"
version = "0.3.745"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "aiofiles" },
{ name = "aiosqlite" },
{ name = "beautifulsoup4" },
{ name = "colorama" },
{ name = "html2text" },
{ name = "litellm" },
{ name = "lxml" },
{ name = "numpy" },
{ name = "pillow" },
{ name = "playwright" },
{ name = "playwright-stealth" },
{ name = "python-dotenv" },
{ name = "rank-bm25" },
{ name = "requests" },
{ name = "snowballstemmer" },
{ name = "tf-playwright-stealth" },
{ name = "xxhash" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/1c/31/327598a0c2cc3cd13dcb786ab41e9638c4c100db1940c9345b1e4d953f39/crawl4ai-0.3.8.tar.gz", hash = "sha256:bacc97509ddbfa5e328e299538a27a4c7fc2317e3fd5ad707b04677e4fc23fc6" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/02/5a/919e64ff2977d7aa1b2cda4d45f16ff8996cd2c2dc1f55936fb6cd214222/crawl4ai-0.3.745.tar.gz", hash = "sha256:990396d57e10ae7ccabf35c34a317dbd8c59a3ceca475eac75320a8808334438" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/af/03/4d69b8d64b39096a721808a349199ca5d7989acf2177e270d15e6f82c356/Crawl4AI-0.3.8-py3-none-any.whl", hash = "sha256:aa19165440c32b667b7325c166d68b00a99375b09e3a7db929d3873064d5ef4f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ed/7e/ebe351a457140330b20b6d8289b8f243b21de6e6bce505cd15b230a83bcb/Crawl4AI-0.3.745-py3-none-any.whl", hash = "sha256:763e6aba80959e60e1fe70cb9d954a4cf257eb230af30f51fcd99ff641a7a88d" },
]
[[package]]
@ -1175,9 +1190,6 @@ name = "datrie"
version = "0.8.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/9d/fe/db74bd405d515f06657f11ad529878fd389576dca4812bea6f98d9b31574/datrie-0.8.2.tar.gz", hash = "sha256:525b08f638d5cf6115df6ccd818e5a01298cd230b2dac91c8ff2e6499d18765d" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/44/02/53f0cf0bf0cd629ba6c2cc13f2f9db24323459e9c19463783d890a540a96/datrie-0.8.2-pp273-pypy_73-win32.whl", hash = "sha256:b07bd5fdfc3399a6dab86d6e35c72b1dbd598e80c97509c7c7518ab8774d3fda" },
]
[[package]]
name = "debugpy"
@ -1423,6 +1435,14 @@ wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/36/f4/c6e662dade71f56cd2f3735141b265c3c79293c109549c1e6933b0651ffc/exceptiongroup-1.3.0-py3-none-any.whl", hash = "sha256:4d111e6e0c13d0644cad6ddaa7ed0261a0b36971f6d23e7ec9b4b9097da78a10" },
]
[[package]]
name = "fake-http-header"
version = "0.3.5"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/e3/0b/2849c87d9f13766e29c0a2f4d31681aa72e035016b251ab19d99bde7b592/fake_http_header-0.3.5-py3-none-any.whl", hash = "sha256:cd05f4bebf1b7e38b5f5c03d7fb820c0c17e87d9614fbee0afa39c32c7a2ad3c" },
]
[[package]]
name = "fake-useragent"
version = "1.5.1"
@ -1486,17 +1506,17 @@ name = "fastembed-gpu"
version = "0.3.6"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "huggingface-hub" },
{ name = "loguru" },
{ name = "mmh3" },
{ name = "numpy" },
{ name = "onnxruntime-gpu" },
{ name = "pillow" },
{ name = "pystemmer" },
{ name = "requests" },
{ name = "snowballstemmer" },
{ name = "tokenizers" },
{ name = "tqdm" },
{ name = "huggingface-hub", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "loguru", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "mmh3", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "numpy", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "onnxruntime-gpu", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "pillow", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "pystemmer", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "requests", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "snowballstemmer", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "tokenizers", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "tqdm", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/da/07/7336c7f3d7ee47f33b407eeb50f5eeb152889de538a52a8f1cc637192816/fastembed_gpu-0.3.6.tar.gz", hash = "sha256:ee2de8918b142adbbf48caaffec0c492f864d73c073eea5a3dcd0e8c1041c50d" }
wheels = [
@ -2142,37 +2162,37 @@ wheels = [
[[package]]
name = "greenlet"
version = "3.0.3"
version = "3.2.3"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/17/14/3bddb1298b9a6786539ac609ba4b7c9c0842e12aa73aaa4d8d73ec8f8185/greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/c9/92/bb85bd6e80148a4d2e0c59f7c0c2891029f8fd510183afc7d8d2feeed9b6/greenlet-3.2.3.tar.gz", hash = "sha256:8b0dd8ae4c0d6f5e54ee55ba935eeb3d735a9b58a8a1e5b5cbab64e01a39f365" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/a6/64/bea53c592e3e45799f7c8039a8ee7d6883c518eafef1fcae60beb776070f/greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a6/d6/408ad9603339db28ce334021b1403dfcfbcb7501a435d49698408d928de7/greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881" },
{ url = "https://mirrors.aliyun.com/pypi/packages/6c/90/5b14670653f7363fb3e1665f8da6d64bd4c31d53a796d09ef69f48be7273/greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ef/17/e8e72cabfb5a906c0d976d7fbcc88310df292beea0f816efbefdaf694284/greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a" },
{ url = "https://mirrors.aliyun.com/pypi/packages/1c/2f/64628f6ae48e05f585e0eb3fb7399b52e240ef99f602107b445bf6be23ef/greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83" },
{ url = "https://mirrors.aliyun.com/pypi/packages/24/35/945d5b10648fec9b20bcc6df8952d20bb3bba76413cd71c1fdbee98f5616/greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405" },
{ url = "https://mirrors.aliyun.com/pypi/packages/74/00/27e2da76b926e9b5a2c97d3f4c0baf1b7d8181209d3026c0171f621ae6c0/greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e1/65/506e0a80931170b0dac1a03d36b7fc299f3fa3576235b916718602fff2c3/greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a6/76/e1ee9f290bb0d46b09704c2fb0e609cae329eb308ad404c0ee6fa1ecb8a5/greenlet-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9" },
{ url = "https://mirrors.aliyun.com/pypi/packages/6e/20/68a278a6f93fa36e21cfc3d7599399a8a831225644eb3b6b18755cd3d6fc/greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61" },
{ url = "https://mirrors.aliyun.com/pypi/packages/21/b4/90e06e07c78513ab03855768200bdb35c8e764e805b3f14fb488e56f82dc/greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f6/a2/0ed21078039072f9dc738bbf3af12b103a84106b1385ac4723841f846ce7/greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/42/11/42ad6b1104c357826bbee7d7b9e4f24dbd9fde94899a03efb004aab62963/greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33" },
{ url = "https://mirrors.aliyun.com/pypi/packages/bb/6b/384dee7e0121cbd1757bdc1824a5ee28e43d8d4e3f99aa59521f629442fe/greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c6/1f/12d5a6cc26e8b483c2e7975f9c22e088ac735c0d8dcb8a8f72d31a4e5f04/greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c7/ec/85b647e59e0f137c7792a809156f413e38379cf7f3f2e1353c37f4be4026/greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3" },
{ url = "https://mirrors.aliyun.com/pypi/packages/94/ed/1e5f4bca691a81700e5a88e86d6f0e538acb10188cd2cc17140e523255ef/greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/47/79/26d54d7d700ef65b689fc2665a40846d13e834da0486674a8d4f0f371a47/greenlet-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a2/2f/461615adc53ba81e99471303b15ac6b2a6daa8d2a0f7f77fd15605e16d5b/greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e9/55/2c3cfa3cdbb940cf7321fbcf544f0e9c74898eed43bf678abf416812d132/greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/38/77/efb21ab402651896c74f24a172eb4d7479f9f53898bd5e56b9e20bb24ffd/greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676" },
{ url = "https://mirrors.aliyun.com/pypi/packages/74/3a/92f188ace0190f0066dca3636cf1b09481d0854c46e92ec5e29c7cefe5b1/greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc" },
{ url = "https://mirrors.aliyun.com/pypi/packages/63/0f/847ed02cdfce10f0e6e3425cd054296bddb11a17ef1b34681fa01a055187/greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230" },
{ url = "https://mirrors.aliyun.com/pypi/packages/bd/37/56b0da468a85e7704f3b2bc045015301bdf4be2184a44868c71f6dca6fe2/greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7c/68/b5f4084c0a252d7e9c0d95fc1cfc845d08622037adb74e05be3a49831186/greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a4/fa/31e22345518adcd69d1d6ab5087a12c178aa7f3c51103f6d5d702199d243/greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6" },
{ url = "https://mirrors.aliyun.com/pypi/packages/53/80/3d94d5999b4179d91bcc93745d1b0815b073d61be79dd546b840d17adb18/greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2" },
{ url = "https://mirrors.aliyun.com/pypi/packages/92/db/b4c12cff13ebac2786f4f217f06588bccd8b53d260453404ef22b121fc3a/greenlet-3.2.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:1afd685acd5597349ee6d7a88a8bec83ce13c106ac78c196ee9dde7c04fe87be" },
{ url = "https://mirrors.aliyun.com/pypi/packages/52/61/75b4abd8147f13f70986df2801bf93735c1bd87ea780d70e3b3ecda8c165/greenlet-3.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:761917cac215c61e9dc7324b2606107b3b292a8349bdebb31503ab4de3f559ac" },
{ url = "https://mirrors.aliyun.com/pypi/packages/35/aa/6894ae299d059d26254779a5088632874b80ee8cf89a88bca00b0709d22f/greenlet-3.2.3-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:a433dbc54e4a37e4fff90ef34f25a8c00aed99b06856f0119dcf09fbafa16392" },
{ url = "https://mirrors.aliyun.com/pypi/packages/30/64/e01a8261d13c47f3c082519a5e9dbf9e143cc0498ed20c911d04e54d526c/greenlet-3.2.3-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:72e77ed69312bab0434d7292316d5afd6896192ac4327d44f3d613ecb85b037c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/47/48/ff9ca8ba9772d083a4f5221f7b4f0ebe8978131a9ae0909cf202f94cd879/greenlet-3.2.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:68671180e3849b963649254a882cd544a3c75bfcd2c527346ad8bb53494444db" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e9/45/626e974948713bc15775b696adb3eb0bd708bec267d6d2d5c47bb47a6119/greenlet-3.2.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:49c8cfb18fb419b3d08e011228ef8a25882397f3a859b9fe1436946140b6756b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b1/8e/8b6f42c67d5df7db35b8c55c9a850ea045219741bb14416255616808c690/greenlet-3.2.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:efc6dc8a792243c31f2f5674b670b3a95d46fa1c6a912b8e310d6f542e7b0712" },
{ url = "https://mirrors.aliyun.com/pypi/packages/05/46/ab58828217349500a7ebb81159d52ca357da747ff1797c29c6023d79d798/greenlet-3.2.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:731e154aba8e757aedd0781d4b240f1225b075b4409f1bb83b05ff410582cf00" },
{ url = "https://mirrors.aliyun.com/pypi/packages/68/7f/d1b537be5080721c0f0089a8447d4ef72839039cdb743bdd8ffd23046e9a/greenlet-3.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:96c20252c2f792defe9a115d3287e14811036d51e78b3aaddbee23b69b216302" },
{ url = "https://mirrors.aliyun.com/pypi/packages/fc/2e/d4fcb2978f826358b673f779f78fa8a32ee37df11920dc2bb5589cbeecef/greenlet-3.2.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:784ae58bba89fa1fa5733d170d42486580cab9decda3484779f4759345b29822" },
{ url = "https://mirrors.aliyun.com/pypi/packages/16/24/929f853e0202130e4fe163bc1d05a671ce8dcd604f790e14896adac43a52/greenlet-3.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0921ac4ea42a5315d3446120ad48f90c3a6b9bb93dd9b3cf4e4d84a66e42de83" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d1/b2/0320715eb61ae70c25ceca2f1d5ae620477d246692d9cc284c13242ec31c/greenlet-3.2.3-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:d2971d93bb99e05f8c2c0c2f4aa9484a18d98c4c3bd3c62b65b7e6ae33dfcfaf" },
{ url = "https://mirrors.aliyun.com/pypi/packages/bd/49/445fd1a210f4747fedf77615d941444349c6a3a4a1135bba9701337cd966/greenlet-3.2.3-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:c667c0bf9d406b77a15c924ef3285e1e05250948001220368e039b6aa5b5034b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7e/c8/ca19760cf6eae75fa8dc32b487e963d863b3ee04a7637da77b616703bc37/greenlet-3.2.3-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:592c12fb1165be74592f5de0d70f82bc5ba552ac44800d632214b76089945147" },
{ url = "https://mirrors.aliyun.com/pypi/packages/65/89/77acf9e3da38e9bcfca881e43b02ed467c1dedc387021fc4d9bd9928afb8/greenlet-3.2.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:29e184536ba333003540790ba29829ac14bb645514fbd7e32af331e8202a62a5" },
{ url = "https://mirrors.aliyun.com/pypi/packages/97/c6/ae244d7c95b23b7130136e07a9cc5aadd60d59b5951180dc7dc7e8edaba7/greenlet-3.2.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:93c0bb79844a367782ec4f429d07589417052e621aa39a5ac1fb99c5aa308edc" },
{ url = "https://mirrors.aliyun.com/pypi/packages/89/5f/b16dec0cbfd3070658e0d744487919740c6d45eb90946f6787689a7efbce/greenlet-3.2.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:751261fc5ad7b6705f5f76726567375bb2104a059454e0226e1eef6c756748ba" },
{ url = "https://mirrors.aliyun.com/pypi/packages/66/77/d48fb441b5a71125bcac042fc5b1494c806ccb9a1432ecaa421e72157f77/greenlet-3.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:83a8761c75312361aa2b5b903b79da97f13f556164a7dd2d5448655425bd4c34" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f3/94/ad0d435f7c48debe960c53b8f60fb41c2026b1d0fa4a99a1cb17c3461e09/greenlet-3.2.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:25ad29caed5783d4bd7a85c9251c651696164622494c00802a139c00d639242d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/93/5d/7c27cf4d003d6e77749d299c7c8f5fd50b4f251647b5c2e97e1f20da0ab5/greenlet-3.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:88cd97bf37fe24a6710ec6a3a7799f3f81d9cd33317dcf565ff9950c83f55e0b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c6/7e/807e1e9be07a125bb4c169144937910bf59b9d2f6d931578e57f0bce0ae2/greenlet-3.2.3-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:baeedccca94880d2f5666b4fa16fc20ef50ba1ee353ee2d7092b383a243b0b0d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9d/ab/158c1a4ea1068bdbc78dba5a3de57e4c7aeb4e7fa034320ea94c688bfb61/greenlet-3.2.3-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:be52af4b6292baecfa0f397f3edb3c6092ce071b499dd6fe292c9ac9f2c8f264" },
{ url = "https://mirrors.aliyun.com/pypi/packages/cc/0d/93729068259b550d6a0288da4ff72b86ed05626eaf1eb7c0d3466a2571de/greenlet-3.2.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0cc73378150b8b78b0c9fe2ce56e166695e67478550769536a6742dca3651688" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f6/f6/c82ac1851c60851302d8581680573245c8fc300253fc1ff741ae74a6c24d/greenlet-3.2.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:706d016a03e78df129f68c4c9b4c4f963f7d73534e48a24f5f5a7101ed13dbbb" },
{ url = "https://mirrors.aliyun.com/pypi/packages/98/82/d022cf25ca39cf1200650fc58c52af32c90f80479c25d1cbf57980ec3065/greenlet-3.2.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:419e60f80709510c343c57b4bb5a339d8767bf9aef9b8ce43f4f143240f88b7c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f5/e1/25297f70717abe8104c20ecf7af0a5b82d2f5a980eb1ac79f65654799f9f/greenlet-3.2.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:93d48533fade144203816783373f27a97e4193177ebaaf0fc396db19e5d61163" },
{ url = "https://mirrors.aliyun.com/pypi/packages/1f/8f/8f9e56c5e82eb2c26e8cde787962e66494312dc8cb261c460e1f3a9c88bc/greenlet-3.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:7454d37c740bb27bdeddfc3f358f26956a07d5220818ceb467a483197d84f849" },
]
[[package]]
@ -2375,7 +2395,7 @@ wheels = [
[[package]]
name = "httpx"
version = "0.27.0"
version = "0.27.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "anyio" },
@ -2384,9 +2404,9 @@ dependencies = [
{ name = "idna" },
{ name = "sniffio" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/5c/2d/3da5bdf4408b8b2800061c339f240c1802f2e82d55e50bd39c5a881f47f0/httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/78/82/08f8c936781f67d9e6b9eeb8a0c8b4e406136ea4c3d1f89a5db71d42e0e6/httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/41/7b/ddacf6dcebb42466abd03f368782142baa82e08fc0c1f8eaa05b4bae87d5/httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5" },
{ url = "https://mirrors.aliyun.com/pypi/packages/56/95/9377bcb415797e44274b51d46e3249eba641711cf3348050f76ee7b15ffc/httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0" },
]
[[package]]
@ -2857,24 +2877,24 @@ wheels = [
[[package]]
name = "litellm"
version = "1.48.0"
version = "1.75.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "aiohttp" },
{ name = "click" },
{ name = "httpx" },
{ name = "importlib-metadata" },
{ name = "jinja2" },
{ name = "jsonschema" },
{ name = "openai" },
{ name = "pydantic" },
{ name = "python-dotenv" },
{ name = "requests" },
{ name = "tiktoken" },
{ name = "tokenizers" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/85/cf/ec69c348c6f16148a55657f3bd63215e965028441c0f322ae8edf9c1210a/litellm-1.48.0.tar.gz", hash = "sha256:31a9b8a25a9daf44c24ddc08bf74298da920f2c5cea44135e5061278d0aa6fc9" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/1b/28/50837cb0246c42a8caac45610572883de7f478543cf4d143e84f099c0234/litellm-1.75.0.tar.gz", hash = "sha256:ec7fbfe79e1b9cd4a2b36ca9e71e71959d8fc43305b222e5f257aced1a0d1d63" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/37/2b/6a42747557dc557e71d1e0664c4d5a814b08cda0589213921bb51c64c5e4/litellm-1.48.0-py3-none-any.whl", hash = "sha256:7765e8a92069778f5fc66aacfabd0e2f8ec8d74fb117f5e475567d89b0d376b9" },
{ url = "https://mirrors.aliyun.com/pypi/packages/db/43/e10905870d42e927de3b095a9248f2764156c7eb45ec172d72be35cd2bb4/litellm-1.75.0-py3-none-any.whl", hash = "sha256:1657472f37d291b366050dd2035e3640eebd96142d6fa0f935ceb290a0e1d5ad" },
]
[[package]]
@ -3765,12 +3785,12 @@ name = "onnxruntime-gpu"
version = "1.19.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "coloredlogs" },
{ name = "flatbuffers" },
{ name = "numpy" },
{ name = "packaging" },
{ name = "protobuf" },
{ name = "sympy" },
{ name = "coloredlogs", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "flatbuffers", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "numpy", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "packaging", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "protobuf", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "sympy", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/d0/9c/3fa310e0730643051eb88e884f19813a6c8b67d0fbafcda610d960e589db/onnxruntime_gpu-1.19.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a49740e079e7c5215830d30cde3df792e903df007aa0b0fd7aa797937061b27a" },
@ -3783,7 +3803,7 @@ wheels = [
[[package]]
name = "openai"
version = "1.45.0"
version = "1.99.1"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "anyio" },
@ -3795,9 +3815,9 @@ dependencies = [
{ name = "tqdm" },
{ name = "typing-extensions" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/70/cd/5ec65b9a56999370c032af7933433143f78239d44a8c03a5ba34159af945/openai-1.45.0.tar.gz", hash = "sha256:731207d10637335413aa3c0955f8f8df30d7636a4a0f9c381f2209d32cf8de97" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/03/30/f0fb7907a77e733bb801c7bdcde903500b31215141cdb261f04421e6fbec/openai-1.99.1.tar.gz", hash = "sha256:2c9d8e498c298f51bb94bcac724257a3a6cac6139ccdfc1186c6708f7a93120f" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/d4/2a/97e80a4551346efc9cd937e11adb640207acc5045fdf4e06786eac55bfb1/openai-1.45.0-py3-none-any.whl", hash = "sha256:2f1f7b7cf90f038a9f1c24f0d26c0f1790c102ec5acd07ffd70a9b7feac1ff4e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/54/15/9c85154ffd283abfc43309ff3aaa63c3fd02f7767ee684e73670f6c5ade2/openai-1.99.1-py3-none-any.whl", hash = "sha256:8eeccc69e0ece1357b51ca0d9fb21324afee09b20c3e5b547d02445ca18a4e03" },
]
[[package]]
@ -4242,32 +4262,21 @@ wheels = [
[[package]]
name = "playwright"
version = "1.47.0"
version = "1.54.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "greenlet" },
{ name = "pyee" },
]
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/f8/70/01cad1d41861cd939fe66bff725771dd03f2de39b7c25b4479de2f583ce0/playwright-1.47.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:f205df24edb925db1a4ab62f1ab0da06f14bb69e382efecfb0deedc4c7f4b8cd" },
{ url = "https://mirrors.aliyun.com/pypi/packages/42/17/2300e578b434b56ebfc3d56a5e0fe6dc5e99d6ff43a88fa492b881f3b7e3/playwright-1.47.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:7fc820faf6885f69a52ba4ec94124e575d3c4a4003bf29200029b4a4f2b2d0ab" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5a/6a/3cff2abfa4b4c52e1fa34fa8b71bf09cc2a89b03b7417733e5138f1be61d/playwright-1.47.0-py3-none-macosx_11_0_universal2.whl", hash = "sha256:8e212dc472ff19c7d46ed7e900191c7a786ce697556ac3f1615986ec3aa00341" },
{ url = "https://mirrors.aliyun.com/pypi/packages/80/a6/c5152c817db664d75c439c2bd99d51f906a31c1df4a04e673ef51008b12f/playwright-1.47.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:a1935672531963e4b2a321de5aa59b982fb92463ee6e1032dd7326378e462955" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d6/50/b573c13d3748a1ab94ed45f2faeb868c63263df0055f57028c4cc775419f/playwright-1.47.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0a1b61473d6f7f39c5d77d4800b3cbefecb03344c90b98f3fbcae63294ad249" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7d/6c/34225ee5707db5e34bffa77f05d152c797c0e0b9bf3d3a5b426d99160f8f/playwright-1.47.0-py3-none-win32.whl", hash = "sha256:1b977ed81f6bba5582617684a21adab9bad5676d90a357ebf892db7bdf4a9974" },
{ url = "https://mirrors.aliyun.com/pypi/packages/cb/88/9a3c77025702e506fe04275e677676246ff0b2e6964de5d2527dfdab3416/playwright-1.47.0-py3-none-win_amd64.whl", hash = "sha256:0ec1056042d2e86088795a503347407570bffa32cbe20748e5d4c93dba085280" },
]
[[package]]
name = "playwright-stealth"
version = "1.0.6"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "playwright" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/e5/dc/4e88b517e4c9cfb63f1b0b67d59adddcef2dc2fe0883b90e07119d15895a/playwright-stealth-1.0.6.tar.gz", hash = "sha256:b504d951d00fac755c7d13665a29611d415180510bd7d23f14ebc89439ba2043" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/34/10/60981cb8d8e22487061b98a0803313c4fb519cc95ab1421516304a0cfcd0/playwright_stealth-1.0.6-py3-none-any.whl", hash = "sha256:b1b2bcf58eb6859aa53d42c49b91c4e27b74a6d13fc3d0c85eea513dd55efda3" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f3/09/33d5bfe393a582d8dac72165a9e88b274143c9df411b65ece1cc13f42988/playwright-1.54.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:bf3b845af744370f1bd2286c2a9536f474cc8a88dc995b72ea9a5be714c9a77d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e1/7b/51882dc584f7aa59f446f2bb34e33c0e5f015de4e31949e5b7c2c10e54f0/playwright-1.54.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:780928b3ca2077aea90414b37e54edd0c4bbb57d1aafc42f7aa0b3fd2c2fac02" },
{ url = "https://mirrors.aliyun.com/pypi/packages/73/a1/7aa8ae175b240c0ec8849fcf000e078f3c693f9aa2ffd992da6550ea0dff/playwright-1.54.0-py3-none-macosx_11_0_universal2.whl", hash = "sha256:81d0b6f28843b27f288cfe438af0a12a4851de57998009a519ea84cee6fbbfb9" },
{ url = "https://mirrors.aliyun.com/pypi/packages/34/a9/45084fd23b6206f954198296ce39b0acf50debfdf3ec83a593e4d73c9c8a/playwright-1.54.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:09919f45cc74c64afb5432646d7fef0d19fff50990c862cb8d9b0577093f40cc" },
{ url = "https://mirrors.aliyun.com/pypi/packages/02/d4/6a692f4c6db223adc50a6e53af405b45308db39270957a6afebddaa80ea2/playwright-1.54.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:13ae206c55737e8e3eae51fb385d61c0312eeef31535643bb6232741b41b6fdc" },
{ url = "https://mirrors.aliyun.com/pypi/packages/72/7a/4ee60a1c3714321db187bebbc40d52cea5b41a856925156325058b5fca5a/playwright-1.54.0-py3-none-win32.whl", hash = "sha256:0b108622ffb6906e28566f3f31721cd57dda637d7e41c430287804ac01911f56" },
{ url = "https://mirrors.aliyun.com/pypi/packages/aa/77/8f8fae05a242ef639de963d7ae70a69d0da61d6d72f1207b8bbf74ffd3e7/playwright-1.54.0-py3-none-win_amd64.whl", hash = "sha256:9e5aee9ae5ab1fdd44cd64153313a2045b136fcbcfb2541cc0a3d909132671a2" },
{ url = "https://mirrors.aliyun.com/pypi/packages/33/ff/99a6f4292a90504f2927d34032a4baf6adb498dc3f7cf0f3e0e22899e310/playwright-1.54.0-py3-none-win_arm64.whl", hash = "sha256:a975815971f7b8dca505c441a4c56de1aeb56a211290f8cc214eeef5524e8d75" },
]
[[package]]
@ -4653,8 +4662,6 @@ wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/59/fe/aae679b64363eb78326c7fdc9d06ec3de18bac68be4b612fc1fe8902693c/pycryptodome-3.23.0-cp37-abi3-win32.whl", hash = "sha256:507dbead45474b62b2bbe318eb1c4c8ee641077532067fec9c1aa82c31f84886" },
{ url = "https://mirrors.aliyun.com/pypi/packages/54/2f/e97a1b8294db0daaa87012c24a7bb714147c7ade7656973fd6c736b484ff/pycryptodome-3.23.0-cp37-abi3-win_amd64.whl", hash = "sha256:c75b52aacc6c0c260f204cbdd834f76edc9fb0d8e0da9fbf8352ef58202564e2" },
{ url = "https://mirrors.aliyun.com/pypi/packages/18/3d/f9441a0d798bf2b1e645adc3265e55706aead1255ccdad3856dbdcffec14/pycryptodome-3.23.0-cp37-abi3-win_arm64.whl", hash = "sha256:11eeeb6917903876f134b56ba11abe95c0b0fd5e3330def218083c7d98bbcb3c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9f/7c/f5b0556590e7b4e710509105e668adb55aa9470a9f0e4dea9c40a4a11ce1/pycryptodome-3.23.0-pp27-pypy_73-manylinux2010_x86_64.whl", hash = "sha256:350ebc1eba1da729b35ab7627a833a1a355ee4e852d8ba0447fafe7b14504d56" },
{ url = "https://mirrors.aliyun.com/pypi/packages/33/38/dcc795578d610ea1aaffef4b148b8cafcfcf4d126b1e58231ddc4e475c70/pycryptodome-3.23.0-pp27-pypy_73-win32.whl", hash = "sha256:93837e379a3e5fd2bb00302a47aee9fdf7940d83595be3915752c74033d17ca7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d9/12/e33935a0709c07de084d7d58d330ec3f4daf7910a18e77937affdb728452/pycryptodome-3.23.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:ddb95b49df036ddd264a0ad246d1be5b672000f12d6961ea2c267083a5e19379" },
{ url = "https://mirrors.aliyun.com/pypi/packages/22/0b/aa8f9419f25870889bebf0b26b223c6986652bdf071f000623df11212c90/pycryptodome-3.23.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e95564beb8782abfd9e431c974e14563a794a4944c29d6d3b7b5ea042110b4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d4/5e/63f5cbde2342b7f70a39e591dbe75d9809d6338ce0b07c10406f1a140cdc/pycryptodome-3.23.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14e15c081e912c4b0d75632acd8382dfce45b258667aa3c67caf7a4d4c13f630" },
@ -4678,8 +4685,6 @@ wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/48/7d/0f2b09490b98cc6a902ac15dda8760c568b9c18cfe70e0ef7a16de64d53a/pycryptodomex-3.20.0-cp35-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:7a7a8f33a1f1fb762ede6cc9cbab8f2a9ba13b196bfaf7bc6f0b39d2ba315a43" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b0/1c/375adb14b71ee1c8d8232904e928b3e7af5bbbca7c04e4bec94fe8e90c3d/pycryptodomex-3.20.0-cp35-abi3-win32.whl", hash = "sha256:c39778fd0548d78917b61f03c1fa8bfda6cfcf98c767decf360945fe6f97461e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b2/e8/1b92184ab7e5595bf38000587e6f8cf9556ebd1bf0a583619bee2057afbd/pycryptodomex-3.20.0-cp35-abi3-win_amd64.whl", hash = "sha256:2a47bcc478741b71273b917232f521fd5704ab4b25d301669879e7273d3586cc" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e7/c5/9140bb867141d948c8e242013ec8a8011172233c898dfdba0a2417c3169a/pycryptodomex-3.20.0-pp27-pypy_73-manylinux2010_x86_64.whl", hash = "sha256:1be97461c439a6af4fe1cf8bf6ca5936d3db252737d2f379cc6b2e394e12a458" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5e/6a/04acb4978ce08ab16890c70611ebc6efd251681341617bbb9e53356dee70/pycryptodomex-3.20.0-pp27-pypy_73-win32.whl", hash = "sha256:19764605feea0df966445d46533729b645033f134baeb3ea26ad518c9fdf212c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/eb/df/3f1ea084e43b91e6d2b6b3493cc948864c17ea5d93ff1261a03812fbfd1a/pycryptodomex-3.20.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f2e497413560e03421484189a6b65e33fe800d3bd75590e6d78d4dfdb7accf3b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c9/f3/83ffbdfa0c8f9154bcd8866895f6cae5a3ec749da8b0840603cf936c4412/pycryptodomex-3.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e48217c7901edd95f9f097feaa0388da215ed14ce2ece803d3f300b4e694abea" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c9/9d/c113e640aaf02af5631ae2686b742aac5cd0e1402b9d6512b1c7ec5ef05d/pycryptodomex-3.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d00fe8596e1cc46b44bf3907354e9377aa030ec4cd04afbbf6e899fc1e2a7781" },
@ -4792,14 +4797,14 @@ wheels = [
[[package]]
name = "pyee"
version = "12.0.0"
version = "13.0.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "typing-extensions" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/d2/a7/8faaa62a488a2a1e0d56969757f087cbd2729e9bcfa508c230299f366b4c/pyee-12.0.0.tar.gz", hash = "sha256:c480603f4aa2927d4766eb41fa82793fe60a82cbfdb8d688e0d08c55a534e145" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/95/03/1fd98d5841cd7964a27d729ccf2199602fe05eb7a405c1462eb7277945ed/pyee-13.0.0.tar.gz", hash = "sha256:b391e3c5a434d1f5118a25615001dbc8f669cf410ab67d04c4d4e07c55481c37" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/1d/0d/95993c08c721ec68892547f2117e8f9dfbcef2ca71e098533541b4a54d5f/pyee-12.0.0-py3-none-any.whl", hash = "sha256:7b14b74320600049ccc7d0e0b1becd3b4bd0a03c745758225e31a59f4095c990" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9b/4d/b9add7c84060d4c1906abe9a7e5359f2a60f7a9a4f67268b2766673427d8/pyee-13.0.0-py3-none-any.whl", hash = "sha256:48195a3cddb3b1515ce0695ed76036b5ccc2ef3a9f963ff9f77aec0139845498" },
]
[[package]]
@ -5026,6 +5031,63 @@ wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/30/3d/64ad57c803f1fa1e963a7946b6e0fea4a70df53c1a7fed304586539c2bac/pytest-8.3.5-py3-none-any.whl", hash = "sha256:c69214aa47deac29fad6c2a4f590b9c4a9fdb16a403176fe154b79c0b4d4d820" },
]
[[package]]
name = "python-calamine"
version = "0.4.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "packaging" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/cc/03/269f96535705b2f18c8977fa58e76763b4e4727a9b3ae277a9468c8ffe05/python_calamine-0.4.0.tar.gz", hash = "sha256:94afcbae3fec36d2d7475095a59d4dc6fae45829968c743cb799ebae269d7bbf" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/8e/06/885c73fd472cb76af4c4650174a7c11b77a8bc40585044bc445ac694e5e6/python_calamine-0.4.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:06011f11fd8d2dbfe0bc9bd8bd135c191aafe66f2d0c9eecf0ae3cb38f42f888" },
{ url = "https://mirrors.aliyun.com/pypi/packages/2d/76/28c704d875046cc1ca92d8c6e680f6bc38d83735397fee821929691fd57f/python_calamine-0.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:12e350e5967bf3206a8b472d9b6c348ff37ae791dba1a1715e076b2c39328557" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ff/71/dc00e6d9187044d15c85cd0875d8aba2b3e0d3051ceabd47d859f40f69c8/python_calamine-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35be298f69006e86b0311a538c1c9694ce3012237c33572d3dfe2bea6b5b9820" },
{ url = "https://mirrors.aliyun.com/pypi/packages/4b/f6/be5e35263ceec21e77810d7900235124a9a83fd3c0afbbbb79da658d535c/python_calamine-0.4.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7abb10367aea435ca473b9b698636db912f2ab164f19a6c9675710ed926f33ac" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9c/61/0068297ec0000b2c0755a608c8068a1070b8193675d2ff603d390291aa45/python_calamine-0.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:58c2c4440982ec6db64c826136661f84f84bc0d8ee0cdd64a38128cd217797eb" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d1/1d/8a9c7d491d31db1def335f4d90b85ea29940d84c59a27a88a442b840fda7/python_calamine-0.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e58cd89154fd1b5ef77c609f63dce108d390ece5a5f3225ca3ebedc8d343e9d5" },
{ url = "https://mirrors.aliyun.com/pypi/packages/40/87/a104c11b320d3fb7f1997d97207addce0fe5e1d41e5fd2e8adb0fb8b1325/python_calamine-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f90f85e04c281d96c6dc5551176fc4e32c95257c3a2d384a947b3e68275c7d6" },
{ url = "https://mirrors.aliyun.com/pypi/packages/8c/a5/9580de7758950b39c5048787909b639771c92ad6ea7f909a48dca1dbc6fe/python_calamine-0.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d5f8408b01d8097b2e662d0205ca09695788fb5f3492ade27de4ad4160cb6bd4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/25/a1/2b8282ec4acdf1879f9d46d84a6907843d2a331639719a2cfc90356345b5/python_calamine-0.4.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3d61957c10d37e6bf508fafdf52e6bb3112db8196e30bca8bc4b4560db2cc5f5" },
{ url = "https://mirrors.aliyun.com/pypi/packages/95/03/ae56667a2a2eb273eea5f754212454c7073f8abe8e0fdca0edfbe5c0cf37/python_calamine-0.4.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a5a58bbfcad9c1192dada189e367ed46e72037fcaec585e970fa919b92e07a57" },
{ url = "https://mirrors.aliyun.com/pypi/packages/52/60/d7aaa39977ab401de33ae975dd704805ec9c76117f0fe3a53e45b718822c/python_calamine-0.4.0-cp310-cp310-win32.whl", hash = "sha256:f06415096bcd9218b6c15d39ee2006ec0f32282e3d08605391d2a8a52187f9ca" },
{ url = "https://mirrors.aliyun.com/pypi/packages/6a/f5/fdfeccd7d66e5c9c834288df6a657858a046d94a6e4cd624418cb5bb96dd/python_calamine-0.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:e457d1e07acb2798b72e70bd4e88f07cd486ca5129a19fadc6aa19a2cd4e76e8" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d4/a5/bcd82326d0ff1ab5889e7a5e13c868b483fc56398e143aae8e93149ba43b/python_calamine-0.4.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d1687f8c4d7852920c7b4e398072f183f88dd273baf5153391edc88b7454b8c0" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f6/1a/a681f1d2f28164552e91ef47bcde6708098aa64a5f5fe3952f22362d340a/python_calamine-0.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:258d04230bebbbafa370a15838049d912d6a0a2c4da128943d8160ca4b6db58e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/3d/92/2fc911431733739d4e7a633cefa903fa49a6b7a61e8765bad29a4a7c47b1/python_calamine-0.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c686e491634934f059553d55f77ac67ca4c235452d5b444f98fe79b3579f1ea5" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f4/f0/48bfae6802eb360028ca6c15e9edf42243aadd0006b6ac3e9edb41a57119/python_calamine-0.4.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4480af7babcc2f919c638a554b06b7b145d9ab3da47fd696d68c2fc6f67f9541" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a4/dc/f8c956e15bac9d5d1e05cd1b907ae780e40522d2fd103c8c6e2f21dff4ed/python_calamine-0.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e405b87a8cd1e90a994e570705898634f105442029f25bab7da658ee9cbaa771" },
{ url = "https://mirrors.aliyun.com/pypi/packages/54/3f/e69ab97c7734fb850fba2f506b775912fd59f04e17488582c8fbf52dbc72/python_calamine-0.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a831345ee42615f0dfcb0ed60a3b1601d2f946d4166edae64fd9a6f9bbd57fc1" },
{ url = "https://mirrors.aliyun.com/pypi/packages/79/03/b4c056b468908d87a3de94389166e0f4dba725a70bc39e03bc039ba96f6b/python_calamine-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9951b8e4cafb3e1623bb5dfc31a18d38ef43589275f9657e99dfcbe4c8c4b33e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/86/4f/b9092f7c970894054083656953184e44cb2dadff8852425e950d4ca419af/python_calamine-0.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a6619fe3b5c9633ed8b178684605f8076c9d8d85b29ade15f7a7713fcfdee2d0" },
{ url = "https://mirrors.aliyun.com/pypi/packages/64/da/137239027bf253aabe7063450950085ec9abd827d0cbc5170f585f38f464/python_calamine-0.4.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2cc45b8e76ee331f6ea88ca23677be0b7a05b502cd4423ba2c2bc8dad53af1be" },
{ url = "https://mirrors.aliyun.com/pypi/packages/80/96/74c38bcf6b6825d5180c0e147b85be8c52dbfba11848b1e98ba358e32a64/python_calamine-0.4.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1b2cfb7ced1a7c80befa0cfddfe4aae65663eb4d63c4ae484b9b7a80ebe1b528" },
{ url = "https://mirrors.aliyun.com/pypi/packages/33/95/9d7b8fe8b32d99a6c79534df3132cfe40e9df4a0f5204048bf5e66ddbd93/python_calamine-0.4.0-cp311-cp311-win32.whl", hash = "sha256:04f4e32ee16814fc1fafc49300be8eeb280d94878461634768b51497e1444bd6" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7c/e3/1c6cd9fd499083bea6ff1c30033ee8215b9f64e862babf5be170cacae190/python_calamine-0.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:a8543f69afac2213c0257bb56215b03dadd11763064a9d6b19786f27d1bef586" },
{ url = "https://mirrors.aliyun.com/pypi/packages/94/1c/3105d19fbab6b66874ce8831652caedd73b23b72e88ce18addf8ceca8c12/python_calamine-0.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:54622e35ec7c3b6f07d119da49aa821731c185e951918f152c2dbf3bec1e15d6" },
{ url = "https://mirrors.aliyun.com/pypi/packages/63/60/f951513aaaa470b3a38a87d65eca45e0a02bc329b47864f5a17db563f746/python_calamine-0.4.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:74bca5d44a73acf3dcfa5370820797fcfd225c8c71abcddea987c5b4f5077e98" },
{ url = "https://mirrors.aliyun.com/pypi/packages/76/3f/789955bbc77831c639890758f945eb2b25d6358065edf00da6751226cf31/python_calamine-0.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cf80178f5d1b0ee2ccfffb8549c50855f6249e930664adc5807f4d0d6c2b269c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/00/4c/f87d17d996f647030a40bfd124fe45fe893c002bee35ae6aca9910a923ae/python_calamine-0.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65cfef345386ae86f7720f1be93495a40fd7e7feabb8caa1df5025d7fbc58a1f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/47/d2/3269367303f6c0488cf1bfebded3f9fe968d118a988222e04c9b2636bf2e/python_calamine-0.4.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f23e6214dbf9b29065a5dcfd6a6c674dd0e251407298c9138611c907d53423ff" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f9/6d/c7ac35f5c7125e8bd07eb36773f300fda20dd2da635eae78a8cebb0b6ab7/python_calamine-0.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d792d304ee232ab01598e1d3ab22e074a32c2511476b5fb4f16f4222d9c2a265" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f0/81/5ea8792a2e9ab5e2a05872db3a4d3ed3538ad5af1861282c789e2f13a8cf/python_calamine-0.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf813425918fd68f3e991ef7c4b5015be0a1a95fc4a8ab7e73c016ef1b881bb4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/cc/6e/989e56e6f073fc0981a74ba7a393881eb351bb143e5486aa629b5e5d6a8b/python_calamine-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbe2a0ccb4d003635888eea83a995ff56b0748c8c76fc71923544f5a4a7d4cd7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5d/92/2c9bd64277c6fe4be695d7d5a803b38d953ec8565037486be7506642c27c/python_calamine-0.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a7b3bb5f0d910b9b03c240987560f843256626fd443279759df4e91b717826d2" },
{ url = "https://mirrors.aliyun.com/pypi/packages/64/fa/fc758ca37701d354a6bc7d63118699f1c73788a1f2e1b44d720824992764/python_calamine-0.4.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bd2c0fc2b5eabd08ceac8a2935bffa88dbc6116db971aa8c3f244bad3fd0f644" },
{ url = "https://mirrors.aliyun.com/pypi/packages/65/52/40d7e08ae0ddba331cdc9f7fb3e92972f8f38d7afbd00228158ff6d1fceb/python_calamine-0.4.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:85b547cb1c5b692a0c2406678d666dbc1cec65a714046104683fe4f504a1721d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/16/de/e8a071c0adfda73285d891898a24f6e99338328c404f497ff5b0e6bc3d45/python_calamine-0.4.0-cp312-cp312-win32.whl", hash = "sha256:4c2a1e3a0db4d6de4587999a21cc35845648c84fba81c03dd6f3072c690888e4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5e/f2/7fdfada13f80db12356853cf08697ff4e38800a1809c2bdd26ee60962e7a/python_calamine-0.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b193c89ffcc146019475cd121c552b23348411e19c04dedf5c766a20db64399a" },
{ url = "https://mirrors.aliyun.com/pypi/packages/20/66/d37412ad854480ce32f50d9f74f2a2f88b1b8a6fbc32f70aabf3211ae89e/python_calamine-0.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:43a0f15e0b60c75a71b21a012b911d5d6f5fa052afad2a8edbc728af43af0fcf" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a1/8c/120a1128ff422dba43d6f2d1d19520bca95abf1e5135bbe3b84a782d3927/python_calamine-0.4.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:4f9a44015de9e19a876babf707dc55708881930024220c8ae926ea0255f705fe" },
{ url = "https://mirrors.aliyun.com/pypi/packages/db/62/6062945b8d5fc73d0a0c44b25ee5f4037cc32d62b57688a0d0ca6763006d/python_calamine-0.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:2c10bb42e0d0810368e78ee9359902f999a1f09bcc2391b060f91f981f75ae21" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9f/7b/597470e5349056a1dd7b0e3a7e838da53cba9186771ca5501a264446f4ad/python_calamine-0.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:494c5dd1dcee25935ff9d7a9eef6b0f629266d1670aef3ee5e0d38370dcb3352" },
{ url = "https://mirrors.aliyun.com/pypi/packages/4b/e9/fabdd376713409e6ae6a8fee41293304798d794a64c9d407ba90f765f3d4/python_calamine-0.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f04fb24e70ab4403fc367b9b779eaa3bf61c140908d9115ddfe1e221372d5d4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/80/8e/cc09cc14276662cea1f161a20bdce46d8bfd409e84027a0a0515a00b63f5/python_calamine-0.4.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:49dce56dbd1efc024b63b913595f1a9bef6f66a6467aefad7dcd548654fedb5b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7b/b4/44f560b0ab4dcb49845f5c5361641885f8dc2b7e9b35fbf59242191c2eeb/python_calamine-0.4.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:7dc1755cd0b10ce5e2d80e77e9f19c13ed405b354178c3547ba5a11d34fce6ea" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9b/4b/ee4ac45d500bd2ae189f84adf3338dbd32579fa2198a05ad180666578575/python_calamine-0.4.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:9d981efa53ddfd8733555ad4c9368c8c1254bd8d1e162c93b8d341ead6acc5a9" },
{ url = "https://mirrors.aliyun.com/pypi/packages/74/99/835a9cd3ed503cb51fd15039b6404c536d201a6f3d16a6e069ce1079c5e4/python_calamine-0.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:b370998567de0cd7a36a8ac73acabefea8397ad2d9aad3cf245b5d35f74cb990" },
]
[[package]]
name = "python-dateutil"
version = "2.8.2"
@ -5239,6 +5301,7 @@ dependencies = [
{ name = "itsdangerous" },
{ name = "json-repair" },
{ name = "langfuse" },
{ name = "litellm" },
{ name = "markdown" },
{ name = "markdown-to-json" },
{ name = "mcp" },
@ -5271,6 +5334,7 @@ dependencies = [
{ name = "pyodbc" },
{ name = "pypdf" },
{ name = "pypdf2" },
{ name = "python-calamine" },
{ name = "python-dateutil" },
{ name = "python-docx" },
{ name = "python-dotenv" },
@ -5357,7 +5421,7 @@ requires-dist = [
{ name = "click", specifier = ">=8.1.8" },
{ name = "cn2an", specifier = "==0.5.22" },
{ name = "cohere", specifier = "==5.6.2" },
{ name = "crawl4ai", specifier = "==0.3.8" },
{ name = "crawl4ai", specifier = ">=0.3.8" },
{ name = "dashscope", specifier = "==1.20.11" },
{ name = "datrie", specifier = "==0.8.2" },
{ name = "debugpy", specifier = ">=1.8.13" },
@ -5384,13 +5448,14 @@ requires-dist = [
{ name = "groq", specifier = "==0.9.0" },
{ name = "hanziconv", specifier = "==0.3.2" },
{ name = "html-text", specifier = "==0.6.2" },
{ name = "httpx", specifier = "==0.27.0" },
{ name = "httpx", specifier = "==0.27.2" },
{ name = "huggingface-hub", specifier = ">=0.25.0,<0.26.0" },
{ name = "infinity-emb", specifier = ">=0.0.66,<0.0.67" },
{ name = "infinity-sdk", specifier = "==0.6.0.dev4" },
{ name = "itsdangerous", specifier = "==2.1.2" },
{ name = "json-repair", specifier = "==0.35.0" },
{ name = "langfuse", specifier = ">=2.60.0" },
{ name = "litellm", specifier = ">=1.74.15.post1" },
{ name = "markdown", specifier = "==3.6" },
{ name = "markdown-to-json", specifier = "==2.1.1" },
{ name = "mcp", specifier = ">=1.9.4" },
@ -5402,7 +5467,7 @@ requires-dist = [
{ name = "ollama", specifier = "==0.2.1" },
{ name = "onnxruntime", marker = "platform_machine != 'x86_64' or sys_platform == 'darwin'", specifier = "==1.19.2" },
{ name = "onnxruntime-gpu", marker = "platform_machine == 'x86_64' and sys_platform != 'darwin'", specifier = "==1.19.2" },
{ name = "openai", specifier = "==1.45.0" },
{ name = "openai", specifier = ">=1.45.0" },
{ name = "opencv-python", specifier = "==4.10.0.84" },
{ name = "opencv-python-headless", specifier = "==4.10.0.84" },
{ name = "opendal", specifier = ">=0.45.0,<0.46.0" },
@ -5423,6 +5488,7 @@ requires-dist = [
{ name = "pyodbc", specifier = ">=5.2.0,<6.0.0" },
{ name = "pypdf", specifier = ">=5.0.0,<6.0.0" },
{ name = "pypdf2", specifier = ">=3.0.1,<4.0.0" },
{ name = "python-calamine", specifier = ">=0.4.0" },
{ name = "python-dateutil", specifier = "==2.8.2" },
{ name = "python-docx", specifier = ">=1.1.2,<2.0.0" },
{ name = "python-dotenv", specifier = "==1.0.1" },
@ -5467,6 +5533,7 @@ requires-dist = [
{ name = "yfinance", specifier = "==0.2.65" },
{ name = "zhipuai", specifier = "==2.0.1" },
]
provides-extras = ["full"]
[package.metadata.requires-dev]
test = [
@ -5481,6 +5548,18 @@ test = [
{ name = "requests-toolbelt", specifier = ">=1.0.0" },
]
[[package]]
name = "rank-bm25"
version = "0.2.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "numpy" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/fc/0a/f9579384aa017d8b4c15613f86954b92a95a93d641cc849182467cf0bb3b/rank_bm25-0.2.2.tar.gz", hash = "sha256:096ccef76f8188563419aaf384a02f0ea459503fdf77901378d4fd9d87e5e51d" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/2a/21/f691fb2613100a62b3fa91e9988c991e9ca5b89ea31c0d3152a3210344f9/rank_bm25-0.2.2-py3-none-any.whl", hash = "sha256:7bd4a95571adadfc271746fa146a4bcfd89c0cf731e49c3d1ad863290adbe8ae" },
]
[[package]]
name = "ranx"
version = "0.3.20"
@ -6423,6 +6502,19 @@ wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/55/08/98090d1a139e8995053ed22e099b43aa4dea8cffe056f8f0bc5178aeecbd/tencentcloud_sdk_python-3.0.1215-py2.py3-none-any.whl", hash = "sha256:899ced749baf74846f1eabf452f74aa0e48d1965f0ca7828a8b73b446f76f5f2" },
]
[[package]]
name = "tf-playwright-stealth"
version = "1.2.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "fake-http-header" },
{ name = "playwright" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/d6/6b/32bb58c65991f91aeaaf7473b650175d9d4af5dd383983d177d49ccba08d/tf_playwright_stealth-1.2.0.tar.gz", hash = "sha256:7bb8d32d3e60324fbf6b9eeae540b8cd9f3b9e07baeb33b025dbc98ad47658ba" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/11/3d/2653f4cf49660bb44eeac8270617cc4c0287d61716f249f55053f0af0724/tf_playwright_stealth-1.2.0-py3-none-any.whl", hash = "sha256:26ee47ee89fa0f43c606fe37c188ea3ccd36f96ea90c01d167b768df457e7886" },
]
[[package]]
name = "threadpoolctl"
version = "3.6.0"

View File

@ -1,5 +1,43 @@
// .eslintrc.js
module.exports = {
// Umi 项目
extends: [require.resolve('umi/eslint'), 'plugin:react-hooks/recommended'],
plugins: ['check-file'],
rules: {
'@typescript-eslint/no-use-before-define': [
'warn',
{
functions: false,
variables: true,
},
],
'check-file/filename-naming-convention': [
'error',
{
'**/*.{jsx,tsx}': 'KEBAB_CASE',
'**/*.{js,ts}': 'KEBAB_CASE',
},
],
'check-file/folder-naming-convention': [
'error',
{
'src/**/': 'KEBAB_CASE',
'mocks/*/': 'KEBAB_CASE',
},
],
'react/no-unescaped-entities': [
'warn',
{
forbid: [
{
char: "'",
alternatives: ['&apos;', '&#39;'],
},
{
char: '"',
alternatives: ['&quot;', '&#34;'],
},
],
},
],
},
};

View File

@ -3,6 +3,7 @@ import TerserPlugin from 'terser-webpack-plugin';
import { defineConfig } from 'umi';
import { appName } from './src/conf.json';
import routes from './src/routes';
const ESLintPlugin = require('eslint-webpack-plugin');
export default defineConfig({
title: appName,
@ -52,6 +53,15 @@ export default defineConfig({
memo.optimization.minimizer('terser').use(TerserPlugin); // Fixed the issue that the page displayed an error after packaging lexical with terser
// memo.plugin('eslint').use(ESLintPlugin, [
// {
// extensions: ['js', 'ts', 'tsx'],
// failOnError: true,
// exclude: ['**/node_modules/**', '**/mfsu**', '**/mfsu-virtual-entry**'],
// files: ['src/**/*.{js,ts,tsx}'],
// },
// ]);
return memo;
},
tailwindcss: {},

179
web/package-lock.json generated
View File

@ -121,6 +121,8 @@
"@umijs/plugins": "^4.1.0",
"@welldone-software/why-did-you-render": "^8.0.3",
"cross-env": "^7.0.3",
"eslint-plugin-check-file": "^2.8.0",
"eslint-webpack-plugin": "^4.1.0",
"html-loader": "^5.1.0",
"husky": "^9.0.11",
"jest": "^29.7.0",
@ -9147,9 +9149,10 @@
}
},
"node_modules/@types/eslint": {
"version": "8.56.1",
"resolved": "https://registry.npmmirror.com/@types/eslint/-/eslint-8.56.1.tgz",
"integrity": "sha512-18PLWRzhy9glDQp3+wOgfLYRWlhgX0azxgJ63rdpoUHyrC9z0f5CkFburjQx4uD7ZCruw85ZtMt6K+L+R8fLJQ==",
"version": "9.6.1",
"resolved": "https://registry.npmmirror.com/@types/eslint/-/eslint-9.6.1.tgz",
"integrity": "sha512-FXx2pKgId/WyYo2jXw63kk7/+TY7u7AziEJxJAnSFzHlqTAS3Ync6SvgYAN/k4/PQpnnVuzoMuVnByKK2qp0ag==",
"license": "MIT",
"peer": true,
"dependencies": {
"@types/estree": "*",
@ -16334,6 +16337,27 @@
"node": "^12.22.0 || ^14.17.0 || >=16.0.0"
}
},
"node_modules/eslint-plugin-check-file": {
"version": "2.8.0",
"resolved": "https://registry.npmmirror.com/eslint-plugin-check-file/-/eslint-plugin-check-file-2.8.0.tgz",
"integrity": "sha512-FvvafMTam2WJYH9uj+FuMxQ1y+7jY3Z6P9T4j2214cH0FBxNzTcmeCiGTj1Lxp3mI6kbbgsXvmgewvf+llKYyw==",
"dev": true,
"license": "Apache-2.0",
"dependencies": {
"is-glob": "^4.0.3",
"micromatch": "^4.0.5"
},
"engines": {
"node": ">=18"
},
"funding": {
"type": "ko_fi",
"url": "https://ko-fi.com/huanluo"
},
"peerDependencies": {
"eslint": ">=7.28.0"
}
},
"node_modules/eslint-plugin-jest": {
"version": "27.2.3",
"resolved": "https://registry.npmmirror.com/eslint-plugin-jest/-/eslint-plugin-jest-27.2.3.tgz",
@ -16437,6 +16461,141 @@
"node": ">=10"
}
},
"node_modules/eslint-webpack-plugin": {
"version": "4.1.0",
"resolved": "https://registry.npmmirror.com/eslint-webpack-plugin/-/eslint-webpack-plugin-4.1.0.tgz",
"integrity": "sha512-C3wAG2jyockIhN0YRLuKieKj2nx/gnE/VHmoHemD5ifnAtY6ZU+jNPfzPoX4Zd6RIbUyWTiZUh/ofUlBhoAX7w==",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/eslint": "^8.56.5",
"jest-worker": "^29.7.0",
"micromatch": "^4.0.5",
"normalize-path": "^3.0.0",
"schema-utils": "^4.2.0"
},
"engines": {
"node": ">= 14.15.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/webpack"
},
"peerDependencies": {
"eslint": "^8.0.0",
"webpack": "^5.0.0"
}
},
"node_modules/eslint-webpack-plugin/node_modules/@types/eslint": {
"version": "8.56.12",
"resolved": "https://registry.npmmirror.com/@types/eslint/-/eslint-8.56.12.tgz",
"integrity": "sha512-03ruubjWyOHlmljCVoxSuNDdmfZDzsrrz0P2LeJsOXr+ZwFQ+0yQIwNCwt/GYhV7Z31fgtXJTAEs+FYlEL851g==",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/estree": "*",
"@types/json-schema": "*"
}
},
"node_modules/eslint-webpack-plugin/node_modules/ajv": {
"version": "8.17.1",
"resolved": "https://registry.npmmirror.com/ajv/-/ajv-8.17.1.tgz",
"integrity": "sha512-B/gBuNg5SiMTrPkC+A2+cW0RszwxYmn6VYxB/inlBStS5nx6xHIt/ehKRhIMhqusl7a8LjQoZnjCs5vhwxOQ1g==",
"dev": true,
"license": "MIT",
"dependencies": {
"fast-deep-equal": "^3.1.3",
"fast-uri": "^3.0.1",
"json-schema-traverse": "^1.0.0",
"require-from-string": "^2.0.2"
},
"funding": {
"type": "github",
"url": "https://github.com/sponsors/epoberezkin"
}
},
"node_modules/eslint-webpack-plugin/node_modules/ajv-keywords": {
"version": "5.1.0",
"resolved": "https://registry.npmmirror.com/ajv-keywords/-/ajv-keywords-5.1.0.tgz",
"integrity": "sha512-YCS/JNFAUyr5vAuhk1DWm1CBxRHW9LbJ2ozWeemrIqpbsqKjHVxYPyi5GC0rjZIT5JxJ3virVTS8wk4i/Z+krw==",
"dev": true,
"license": "MIT",
"dependencies": {
"fast-deep-equal": "^3.1.3"
},
"peerDependencies": {
"ajv": "^8.8.2"
}
},
"node_modules/eslint-webpack-plugin/node_modules/has-flag": {
"version": "4.0.0",
"resolved": "https://registry.npmmirror.com/has-flag/-/has-flag-4.0.0.tgz",
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
"dev": true,
"license": "MIT",
"engines": {
"node": ">=8"
}
},
"node_modules/eslint-webpack-plugin/node_modules/jest-worker": {
"version": "29.7.0",
"resolved": "https://registry.npmmirror.com/jest-worker/-/jest-worker-29.7.0.tgz",
"integrity": "sha512-eIz2msL/EzL9UFTFFx7jBTkeZfku0yUAyZZZmJ93H2TYEiroIx2PQjEXcwYtYl8zXCxb+PAmA2hLIt/6ZEkPHw==",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/node": "*",
"jest-util": "^29.7.0",
"merge-stream": "^2.0.0",
"supports-color": "^8.0.0"
},
"engines": {
"node": "^14.15.0 || ^16.10.0 || >=18.0.0"
}
},
"node_modules/eslint-webpack-plugin/node_modules/json-schema-traverse": {
"version": "1.0.0",
"resolved": "https://registry.npmmirror.com/json-schema-traverse/-/json-schema-traverse-1.0.0.tgz",
"integrity": "sha512-NM8/P9n3XjXhIZn1lLhkFaACTOURQXjWhV4BA/RnOv8xvgqtqpAX9IO4mRQxSx1Rlo4tqzeqb0sOlruaOy3dug==",
"dev": true,
"license": "MIT"
},
"node_modules/eslint-webpack-plugin/node_modules/schema-utils": {
"version": "4.3.2",
"resolved": "https://registry.npmmirror.com/schema-utils/-/schema-utils-4.3.2.tgz",
"integrity": "sha512-Gn/JaSk/Mt9gYubxTtSn/QCV4em9mpAPiR1rqy/Ocu19u/G9J5WWdNoUT4SiV6mFC3y6cxyFcFwdzPM3FgxGAQ==",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/json-schema": "^7.0.9",
"ajv": "^8.9.0",
"ajv-formats": "^2.1.1",
"ajv-keywords": "^5.1.0"
},
"engines": {
"node": ">= 10.13.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/webpack"
}
},
"node_modules/eslint-webpack-plugin/node_modules/supports-color": {
"version": "8.1.1",
"resolved": "https://registry.npmmirror.com/supports-color/-/supports-color-8.1.1.tgz",
"integrity": "sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q==",
"dev": true,
"license": "MIT",
"dependencies": {
"has-flag": "^4.0.0"
},
"engines": {
"node": ">=10"
},
"funding": {
"url": "https://github.com/chalk/supports-color?sponsor=1"
}
},
"node_modules/eslint/node_modules/ansi-styles": {
"version": "4.3.0",
"resolved": "https://registry.npmmirror.com/ansi-styles/-/ansi-styles-4.3.0.tgz",
@ -17222,9 +17381,10 @@
}
},
"node_modules/flatted": {
"version": "3.2.9",
"resolved": "https://registry.npmmirror.com/flatted/-/flatted-3.2.9.tgz",
"integrity": "sha512-36yxDn5H7OFZQla0/jFJmbIKTdZAQHngCedGxiMmpNfEZM0sdEeT+WczLQrjK6D7o2aiyLYDnkw0R3JK0Qv1RQ==",
"version": "3.3.3",
"resolved": "https://registry.npmmirror.com/flatted/-/flatted-3.3.3.tgz",
"integrity": "sha512-GX+ysw4PBCz0PzosHDepZGANEuFCMLrnRTiEy9McGjmkCQYwRq4A/X786G/fjM/+OjsWSU1ZrY5qyARZmO/uwg==",
"license": "ISC",
"peer": true
},
"node_modules/flatten": {
@ -24121,9 +24281,10 @@
"integrity": "sha512-oNh6S2WMHWRZrmutsRmDDfkzKtxF+bc2VxLC9dvtrDIRFln627VsFP6fLMgTryGDljgLPjkrzQSDcPrjPyDJ5w=="
},
"node_modules/micromatch": {
"version": "4.0.7",
"resolved": "https://registry.npmmirror.com/micromatch/-/micromatch-4.0.7.tgz",
"integrity": "sha512-LPP/3KorzCwBxfeUuZmaR6bG2kdeHSbe0P2tY3FLRU4vYrjYz5hI4QZwV0njUx3jeuKe67YukQ1LSPZBKDqO/Q==",
"version": "4.0.8",
"resolved": "https://registry.npmmirror.com/micromatch/-/micromatch-4.0.8.tgz",
"integrity": "sha512-PXwfBhYu0hBCPw8Dn0E+WDYb7af3dSLVWKi3HGv84IdF4TyFoC0ysxFd0Goxw7nSv4T/PzEJQxsYsEiFCKo2BA==",
"license": "MIT",
"dependencies": {
"braces": "^3.0.3",
"picomatch": "^2.3.1"

View File

@ -132,6 +132,8 @@
"@umijs/plugins": "^4.1.0",
"@welldone-software/why-did-you-render": "^8.0.3",
"cross-env": "^7.0.3",
"eslint-plugin-check-file": "^2.8.0",
"eslint-webpack-plugin": "^4.1.0",
"html-loader": "^5.1.0",
"husky": "^9.0.11",
"jest": "^29.7.0",

View File

@ -80,7 +80,6 @@ export function ChunkMethodDialog({
hideModal,
onOk,
parserId,
documentId,
documentExtension,
visible,
parserConfig,

View File

@ -1,4 +1,5 @@
import { Form, FormInstance, Input, InputRef, Typography } from 'antd';
import { omit } from 'lodash';
import React, { useContext, useEffect, useRef, useState } from 'react';
const EditableContext = React.createContext<FormInstance<any> | null>(null);
@ -15,15 +16,12 @@ interface Item {
address: string;
}
export const EditableRow: React.FC<EditableRowProps> = ({
index,
...props
}) => {
export const EditableRow: React.FC<EditableRowProps> = ({ ...props }) => {
const [form] = Form.useForm();
return (
<Form form={form} component={false}>
<EditableContext.Provider value={form}>
<tr {...props} />
<tr {...omit(props, 'index')} />
</EditableContext.Provider>
</Form>
);

View File

@ -31,7 +31,7 @@ const HightLightMarkdown = ({
components={
{
code(props: any) {
const { children, className, node, ...rest } = props;
const { children, className, ...rest } = props;
const match = /language-(\w+)/.exec(className || '');
return match ? (
<SyntaxHighlighter

View File

@ -30,15 +30,16 @@ interface LlmSettingFieldItemsProps {
export const LlmSettingSchema = {
llm_id: z.string(),
temperature: z.coerce.number(),
top_p: z.string(),
presence_penalty: z.coerce.number(),
frequency_penalty: z.coerce.number(),
temperatureEnabled: z.boolean(),
topPEnabled: z.boolean(),
presencePenaltyEnabled: z.boolean(),
frequencyPenaltyEnabled: z.boolean(),
maxTokensEnabled: z.boolean(),
temperature: z.coerce.number().optional(),
top_p: z.number().optional(),
presence_penalty: z.coerce.number().optional(),
frequency_penalty: z.coerce.number().optional(),
temperatureEnabled: z.boolean().optional(),
topPEnabled: z.boolean().optional(),
presencePenaltyEnabled: z.boolean().optional(),
frequencyPenaltyEnabled: z.boolean().optional(),
maxTokensEnabled: z.boolean().optional(),
max_tokens: z.number().optional(),
};
export function LlmSettingFieldItems({
@ -53,13 +54,6 @@ export function LlmSettingFieldItems({
LlmModelType.Image2text,
]);
const handleChange = useHandleFreedomChange();
const parameterOptions = Object.values(ModelVariableType).map((x) => ({
label: t(camelCase(x)),
value: x,
}));
const getFieldWithPrefix = useCallback(
(name: string) => {
return prefix ? `${prefix}.${name}` : name;
@ -67,6 +61,13 @@ export function LlmSettingFieldItems({
[prefix],
);
const handleChange = useHandleFreedomChange(getFieldWithPrefix);
const parameterOptions = Object.values(ModelVariableType).map((x) => ({
label: t(camelCase(x)),
value: x,
}));
return (
<div className="space-y-5">
<FormField
@ -77,6 +78,7 @@ export function LlmSettingFieldItems({
<FormLabel>{t('model')}</FormLabel>
<FormControl>
<SelectWithSearch
allowClear
options={options || modelOptions}
{...field}
></SelectWithSearch>

View File

@ -9,7 +9,7 @@ import {
FormLabel,
FormMessage,
} from '../ui/form';
import { Input } from '../ui/input';
import { NumberInput } from '../ui/input';
import { Switch } from '../ui/switch';
type SliderInputSwitchFormFieldProps = {
@ -73,15 +73,14 @@ export function SliderInputSwitchFormField({
></SingleFormSlider>
</FormControl>
<FormControl>
<Input
<NumberInput
disabled={disabled}
type={'number'}
className="h-7 w-20"
max={max}
min={min}
step={step}
{...field}
></Input>
></NumberInput>
</FormControl>
</div>
<FormMessage />

View File

@ -4,7 +4,9 @@ import useGraphStore from '@/pages/agent/store';
import { useCallback, useContext } from 'react';
import { useFormContext } from 'react-hook-form';
export function useHandleFreedomChange() {
export function useHandleFreedomChange(
getFieldWithPrefix: (name: string) => string,
) {
const form = useFormContext();
const node = useContext(AgentFormContext);
const updateNodeForm = useGraphStore((state) => state.updateNodeForm);
@ -25,13 +27,14 @@ export function useHandleFreedomChange() {
for (const key in values) {
if (Object.prototype.hasOwnProperty.call(values, key)) {
const element = values[key];
const realKey = getFieldWithPrefix(key);
const element = values[key as keyof typeof values];
form.setValue(key, element);
form.setValue(realKey, element);
}
}
},
[form, node, updateNodeForm],
[form, getFieldWithPrefix, node?.id, updateNodeForm],
);
return handleChange;

View File

@ -1,4 +1,4 @@
import { PromptIcon } from '@/assets/icon/Icon';
import { PromptIcon } from '@/assets/icon/next-icon';
import CopyToClipboard from '@/components/copy-to-clipboard';
import { useSetModalState } from '@/hooks/common-hooks';
import { IRemoveMessageById } from '@/hooks/logic-hooks';

View File

@ -27,6 +27,7 @@ import {
import { cn } from '@/lib/utils';
import { currentReg, replaceTextByOldReg } from '@/pages/chat/utils';
import classNames from 'classnames';
import { omit } from 'lodash';
import { pipe } from 'lodash/fp';
import { CircleAlert } from 'lucide-react';
import { Button } from '../ui/button';
@ -256,11 +257,12 @@ function MarkdownContent({
'custom-typography': ({ children }: { children: string }) =>
renderReference(children),
code(props: any) {
const { children, className, node, ...rest } = props;
const { children, className, ...rest } = props;
const restProps = omit(rest, 'node');
const match = /language-(\w+)/.exec(className || '');
return match ? (
<SyntaxHighlighter
{...rest}
{...restProps}
PreTag="div"
language={match[1]}
wrapLongLines
@ -268,7 +270,10 @@ function MarkdownContent({
{String(children).replace(/\n$/, '')}
</SyntaxHighlighter>
) : (
<code {...rest} className={classNames(className, 'text-wrap')}>
<code
{...restProps}
className={classNames(className, 'text-wrap')}
>
{children}
</code>
);

View File

@ -1,4 +1,4 @@
import { PromptIcon } from '@/assets/icon/Icon';
import { PromptIcon } from '@/assets/icon/next-icon';
import CopyToClipboard from '@/components/copy-to-clipboard';
import { useSetModalState } from '@/hooks/common-hooks';
import { IRemoveMessageById } from '@/hooks/logic-hooks';

View File

@ -17,7 +17,7 @@ import { IRegenerateMessage, IRemoveMessageById } from '@/hooks/logic-hooks';
import { INodeEvent, MessageEventType } from '@/hooks/use-send-message';
import { cn } from '@/lib/utils';
import { AgentChatContext } from '@/pages/agent/context';
import { WorkFlowTimeline } from '@/pages/agent/log-sheet/workFlowTimeline';
import { WorkFlowTimeline } from '@/pages/agent/log-sheet/workflow-timeline';
import { IMessage } from '@/pages/chat/interface';
import { isEmpty } from 'lodash';
import { Atom, ChevronDown, ChevronUp } from 'lucide-react';

View File

@ -124,7 +124,7 @@ interface TimelineIndicatorProps extends React.HTMLAttributes<HTMLDivElement> {
}
function TimelineIndicator({
asChild = false,
// asChild = false,
className,
children,
...props

View File

@ -1,7 +1,6 @@
import { Input } from '@/components/originui/input';
import { useTranslate } from '@/hooks/common-hooks';
import { EyeIcon, EyeOffIcon } from 'lucide-react';
import { ChangeEvent, LegacyRef, forwardRef, useId, useState } from 'react';
import { ChangeEvent, forwardRef, useId, useState } from 'react';
type PropType = {
name: string;
@ -10,17 +9,12 @@ type PropType = {
onChange: (event: ChangeEvent<HTMLInputElement>) => void;
};
function PasswordInput(
props: PropType,
ref: LegacyRef<HTMLInputElement> | undefined,
) {
function PasswordInput(props: PropType) {
const id = useId();
const [isVisible, setIsVisible] = useState<boolean>(false);
const toggleVisibility = () => setIsVisible((prevState) => !prevState);
const { t } = useTranslate('setting');
return (
<div className="*:not-first:mt-2 w-full">
{/* <Label htmlFor={id}>Show/hide password input</Label> */}

View File

@ -23,8 +23,8 @@ const getColorForName = (name: string): { from: string; to: string } => {
const hue = hash % 360;
return {
from: `hsl(${hue}, 70%, 80%)`,
to: `hsl(${hue}, 60%, 30%)`,
to: `hsl(${hue}, 70%, 80%)`,
from: `hsl(${hue}, 60%, 30%)`,
};
};
export const RAGFlowAvatar = memo(

View File

@ -5,6 +5,7 @@ import { Select as AntSelect, Form, message, Slider } from 'antd';
import { useCallback } from 'react';
import { useFormContext } from 'react-hook-form';
import { z } from 'zod';
import { SelectWithSearch } from './originui/select-with-search';
import { SliderInputFormField } from './slider-input-form-field';
import {
FormControl,
@ -13,7 +14,6 @@ import {
FormLabel,
FormMessage,
} from './ui/form';
import { RAGFlowSelect } from './ui/select';
type FieldType = {
rerank_id?: string;
@ -109,11 +109,11 @@ function RerankFormField() {
<FormItem>
<FormLabel tooltip={t('rerankTip')}>{t('rerankModel')}</FormLabel>
<FormControl>
<RAGFlowSelect
<SelectWithSearch
allowClear
{...field}
options={options}
></RAGFlowSelect>
></SelectWithSearch>
</FormControl>
<FormMessage />
</FormItem>
@ -122,6 +122,11 @@ function RerankFormField() {
);
}
export const rerankFormSchema = {
[RerankId]: z.string().optional(),
top_k: z.coerce.number().optional(),
};
export function RerankFormFields() {
const { watch } = useFormContext();
const { t } = useTranslate('knowledgeDetails');

View File

@ -61,11 +61,20 @@ export const keywordsSimilarityWeightSchema = {
keywords_similarity_weight: z.number(),
};
export const vectorSimilarityWeightSchema = {
vector_similarity_weight: z.number(),
};
export const initialVectorSimilarityWeightValue = {
vector_similarity_weight: 0.3,
};
export function SimilaritySliderFormField({
vectorSimilarityWeightName = 'vector_similarity_weight',
isTooltipShown,
}: SimilaritySliderFormFieldProps) {
const { t } = useTranslate('knowledgeDetails');
const isVector = vectorSimilarityWeightName === 'vector_similarity_weight';
return (
<>
@ -78,10 +87,19 @@ export function SimilaritySliderFormField({
></SliderInputFormField>
<SliderInputFormField
name={vectorSimilarityWeightName}
label={t('vectorSimilarityWeight')}
label={t(
isVector ? 'vectorSimilarityWeight' : 'keywordSimilarityWeight',
)}
max={1}
step={0.01}
tooltip={isTooltipShown && t('vectorSimilarityWeightTip')}
tooltip={
isTooltipShown &&
t(
isVector
? 'vectorSimilarityWeightTip'
: 'keywordSimilarityWeightTip',
)
}
></SliderInputFormField>
</>
);

View File

@ -10,7 +10,7 @@ import {
FormLabel,
FormMessage,
} from './ui/form';
import { Input } from './ui/input';
import { NumberInput } from './ui/input';
export type FormLayoutType = {
layout?: FormLayout;
@ -79,19 +79,14 @@ export function SliderInputFormField({
></SingleFormSlider>
</FormControl>
<FormControl>
<Input
type={'number'}
<NumberInput
className="h-7 w-20"
max={max}
min={min}
step={step}
{...field}
onChange={(ev) => {
const value = ev.target.value;
field.onChange(value === '' ? 0 : Number(value)); // convert to number
}}
// defaultValue={defaultValue}
></Input>
></NumberInput>
</FormControl>
</div>
<FormMessage />

View File

@ -1,5 +1,6 @@
import { useTranslate } from '@/hooks/common-hooks';
import { Form, Slider } from 'antd';
import { z } from 'zod';
import { SliderInputFormField } from './slider-input-form-field';
type FieldType = {
@ -32,6 +33,10 @@ interface SimilaritySliderFormFieldProps {
max?: number;
}
export const topnSchema = {
top_n: z.number().optional(),
};
export function TopNFormField({ max = 30 }: SimilaritySliderFormFieldProps) {
const { t } = useTranslate('chat');

View File

@ -39,7 +39,7 @@ const CommandInput = React.forwardRef<
React.ElementRef<typeof CommandPrimitive.Input>,
React.ComponentPropsWithoutRef<typeof CommandPrimitive.Input>
>(({ className, ...props }, ref) => (
<div className="flex items-center border-b px-3" cmdk-input-wrapper="">
<div className="flex items-center border-b px-3" data-cmdk-input-wrapper="">
<Search className="mr-2 h-4 w-4 shrink-0 opacity-50" />
<CommandPrimitive.Input
ref={ref}

View File

@ -34,6 +34,7 @@ export type MultiSelectOptionType = {
label: React.ReactNode;
value: string;
disabled?: boolean;
suffix?: React.ReactNode;
icon?: React.ComponentType<{ className?: string }>;
};
@ -54,23 +55,41 @@ function MultiCommandItem({
return (
<CommandItem
key={option.value}
onSelect={() => toggleOption(option.value)}
className="cursor-pointer"
onSelect={() => {
if (option.disabled) return false;
toggleOption(option.value);
}}
className={cn('cursor-pointer', {
'cursor-not-allowed text-text-disabled': option.disabled,
})}
>
<div
className={cn(
'mr-2 flex h-4 w-4 items-center justify-center rounded-sm border border-primary',
isSelected
? 'bg-primary text-primary-foreground'
: 'opacity-50 [&_svg]:invisible',
isSelected ? 'bg-primary ' : 'opacity-50 [&_svg]:invisible',
{ 'text-primary-foreground': !option.disabled },
{ 'text-text-disabled': option.disabled },
)}
>
<CheckIcon className="h-4 w-4" />
</div>
{option.icon && (
<option.icon className="mr-2 h-4 w-4 text-muted-foreground" />
<option.icon
className={cn('mr-2 h-4 w-4 ', {
'text-text-disabled': option.disabled,
'text-muted-foreground': !option.disabled,
})}
/>
)}
<span className={cn({ 'text-text-disabled': option.disabled })}>
{option.label}
</span>
{option.suffix && (
<span className={cn({ 'text-text-disabled': option.disabled })}>
{option.suffix}
</span>
)}
<span>{option.label}</span>
</CommandItem>
);
}
@ -156,6 +175,11 @@ interface MultiSelectProps
* Optional, can be used to add custom styles.
*/
className?: string;
/**
* If true, renders the multi-select component with a select all option.
*/
showSelectAll?: boolean;
}
export const MultiSelect = React.forwardRef<
@ -172,8 +196,9 @@ export const MultiSelect = React.forwardRef<
animation = 0,
maxCount = 3,
modalPopover = false,
asChild = false,
// asChild = false,
className,
showSelectAll = true,
...props
},
ref,
@ -183,6 +208,10 @@ export const MultiSelect = React.forwardRef<
const [isPopoverOpen, setIsPopoverOpen] = React.useState(false);
const [isAnimating, setIsAnimating] = React.useState(false);
React.useEffect(() => {
setSelectedValues(defaultValue);
}, [defaultValue]);
const flatOptions = React.useMemo(() => {
return options.flatMap((option) =>
'options' in option ? option.options : [option],
@ -340,23 +369,25 @@ export const MultiSelect = React.forwardRef<
<CommandList>
<CommandEmpty>No results found.</CommandEmpty>
<CommandGroup>
<CommandItem
key="all"
onSelect={toggleAll}
className="cursor-pointer"
>
<div
className={cn(
'mr-2 flex h-4 w-4 items-center justify-center rounded-sm border border-primary',
selectedValues.length === flatOptions.length
? 'bg-primary text-primary-foreground'
: 'opacity-50 [&_svg]:invisible',
)}
{showSelectAll && (
<CommandItem
key="all"
onSelect={toggleAll}
className="cursor-pointer"
>
<CheckIcon className="h-4 w-4" />
</div>
<span>(Select All)</span>
</CommandItem>
<div
className={cn(
'mr-2 flex h-4 w-4 items-center justify-center rounded-sm border border-primary',
selectedValues.length === flatOptions.length
? 'bg-primary text-primary-foreground'
: 'opacity-50 [&_svg]:invisible',
)}
>
<CheckIcon className="h-4 w-4" />
</div>
<span>(Select All)</span>
</CommandItem>
)}
{!options.some((x) => 'options' in x) &&
(options as unknown as MultiSelectOptionType[]).map(
(option) => {

View File

@ -26,7 +26,7 @@ const SIDEBAR_WIDTH_MOBILE = '18rem';
const SIDEBAR_WIDTH_ICON = '3rem';
const SIDEBAR_KEYBOARD_SHORTCUT = 'b';
type SidebarContext = {
type SidebarContextType = {
state: 'expanded' | 'collapsed';
open: boolean;
setOpen: (open: boolean) => void;
@ -36,7 +36,7 @@ type SidebarContext = {
toggleSidebar: () => void;
};
const SidebarContext = React.createContext<SidebarContext | null>(null);
const SidebarContext = React.createContext<SidebarContextType | null>(null);
function useSidebar() {
const context = React.useContext(SidebarContext);
@ -116,7 +116,7 @@ const SidebarProvider = React.forwardRef<
// This makes it easier to style the sidebar with Tailwind classes.
const state = open ? 'expanded' : 'collapsed';
const contextValue = React.useMemo<SidebarContext>(
const contextValue = React.useMemo<SidebarContextType>(
() => ({
state,
open,
@ -580,11 +580,8 @@ const SidebarMenuButton = React.forwardRef<
return button;
}
if (typeof tooltip === 'string') {
tooltip = {
children: tooltip,
};
}
const tooltipContent =
typeof tooltip === 'string' ? { children: tooltip } : tooltip;
return (
<Tooltip>
@ -593,7 +590,7 @@ const SidebarMenuButton = React.forwardRef<
side="right"
align="center"
hidden={state !== 'collapsed' || isMobile}
{...tooltip}
{...tooltipContent}
/>
</Tooltip>
);

View File

@ -4,8 +4,8 @@ import isEqual from 'lodash/isEqual';
import { ReactNode, useCallback, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
export const useSetModalState = () => {
const [visible, setVisible] = useState(false);
export const useSetModalState = (initialVisible = false) => {
const [visible, setVisible] = useState(initialVisible);
const showModal = useCallback(() => {
setVisible(true);

View File

@ -27,7 +27,7 @@ import { useTranslate } from './common-hooks';
import { useSetPaginationParams } from './route-hook';
import { useFetchTenantInfo, useSaveSetting } from './user-setting-hooks';
function usePrevious<T>(value: T) {
export function usePrevious<T>(value: T) {
const ref = useRef<T>();
useEffect(() => {
ref.current = value;

View File

@ -72,9 +72,12 @@ export const useNavigatePage = () => {
navigate(Routes.Searches);
}, [navigate]);
const navigateToSearch = useCallback(() => {
navigate(Routes.Search);
}, [navigate]);
const navigateToSearch = useCallback(
(id: string) => {
navigate(`${Routes.Search}/${id}`);
},
[navigate],
);
const navigateToChunkParsedResult = useCallback(
(id: string, knowledgeId?: string) => () => {

View File

@ -2,11 +2,13 @@ import { FileUploadProps } from '@/components/file-upload';
import message from '@/components/ui/message';
import { AgentGlobals } from '@/constants/agent';
import {
DSL,
IAgentLogsRequest,
IAgentLogsResponse,
IFlow,
IFlowTemplate,
ITraceData,
} from '@/interfaces/database/agent';
import { DSL, IFlow, IFlowTemplate } from '@/interfaces/database/flow';
import { IDebugSingleRequestBody } from '@/interfaces/request/agent';
import i18n from '@/locales/config';
import { BeginId } from '@/pages/agent/constant';
@ -122,7 +124,7 @@ export const useFetchAgentListByPage = () => {
const debouncedSearchString = useDebounce(searchString, { wait: 500 });
const { data, isFetching: loading } = useQuery<{
kbs: IFlow[];
canvas: IFlow[];
total: number;
}>({
queryKey: [
@ -132,7 +134,7 @@ export const useFetchAgentListByPage = () => {
...pagination,
},
],
initialData: { kbs: [], total: 0 },
initialData: { canvas: [], total: 0 },
gcTime: 0,
queryFn: async () => {
const { data } = await agentService.listCanvasTeam(
@ -146,7 +148,7 @@ export const useFetchAgentListByPage = () => {
true,
);
return data?.data ?? [];
return data?.data;
},
});
@ -159,7 +161,7 @@ export const useFetchAgentListByPage = () => {
);
return {
data: data.kbs,
data: data.canvas,
loading,
searchString,
handleInputChange: onInputChange,
@ -366,16 +368,7 @@ export const useUploadCanvasFileWithProgress = (
{
url: api.uploadAgentFile(identifier || id),
data: formData,
onUploadProgress: ({
loaded,
total,
progress,
bytes,
estimated,
rate,
upload,
lengthComputable,
}) => {
onUploadProgress: ({ progress }) => {
files.forEach((file) => {
onProgress(file, (progress || 0) * 100);
});

View File

@ -5,7 +5,7 @@ import { IAskRequestBody } from '@/interfaces/request/chat';
import { IClientConversation } from '@/pages/next-chats/chat/interface';
import { useGetSharedChatSearchParams } from '@/pages/next-chats/hooks/use-send-shared-message';
import { isConversationIdExist } from '@/pages/next-chats/utils';
import chatService from '@/services/next-chat-service ';
import chatService from '@/services/next-chat-service';
import { buildMessageListWithUuid, getConversationId } from '@/utils/chat';
import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
import { useDebounce } from 'ahooks';

View File

@ -28,6 +28,8 @@ export const enum KnowledgeApiAction {
DeleteKnowledge = 'deleteKnowledge',
SaveKnowledge = 'saveKnowledge',
FetchKnowledgeDetail = 'fetchKnowledgeDetail',
FetchKnowledgeGraph = 'fetchKnowledgeGraph',
FetchMetadata = 'fetchMetadata',
}
export const useKnowledgeBaseId = (): string => {
@ -263,7 +265,7 @@ export function useFetchKnowledgeGraph() {
const knowledgeBaseId = useKnowledgeBaseId();
const { data, isFetching: loading } = useQuery<IKnowledgeGraph>({
queryKey: ['fetchKnowledgeGraph', knowledgeBaseId],
queryKey: [KnowledgeApiAction.FetchKnowledgeGraph, knowledgeBaseId],
initialData: { graph: {}, mind_map: {} } as IKnowledgeGraph,
enabled: !!knowledgeBaseId,
gcTime: 0,
@ -275,3 +277,20 @@ export function useFetchKnowledgeGraph() {
return { data, loading };
}
export function useFetchKnowledgeMetadata(kbIds: string[] = []) {
const { data, isFetching: loading } = useQuery<
Record<string, Record<string, string[]>>
>({
queryKey: [KnowledgeApiAction.FetchMetadata, kbIds],
initialData: {},
enabled: kbIds.length > 0,
gcTime: 0,
queryFn: async () => {
const { data } = await kbService.getMeta({ kb_ids: kbIds.join(',') });
return data?.data ?? {};
},
});
return { data, loading };
}

View File

@ -73,6 +73,7 @@ export declare interface IFlow {
user_id: string;
permission: string;
nickname: string;
operator_permission: number;
}
export interface IFlowTemplate {

View File

@ -6,6 +6,10 @@ export interface PromptConfig {
prologue: string;
system: string;
tts?: boolean;
quote: boolean;
keyword: boolean;
refine_multiturn: boolean;
use_kg: boolean;
}
export interface Parameter {
@ -26,6 +30,7 @@ export interface Variable {
presence_penalty?: number;
temperature?: number;
top_p?: number;
llm_id?: string;
}
export interface IDialog {
@ -50,6 +55,8 @@ export interface IDialog {
update_time: number;
vector_similarity_weight: number;
similarity_threshold: number;
top_k: number;
top_n: number;
}
export interface IConversation {

View File

@ -13,8 +13,7 @@ import { LanguageList, LanguageMap, ThemeEnum } from '@/constants/common';
import { useChangeLanguage } from '@/hooks/logic-hooks';
import { useNavigatePage } from '@/hooks/logic-hooks/navigate-hooks';
import { useNavigateWithFromState } from '@/hooks/route-hook';
import { useFetchUserInfo, useListTenant } from '@/hooks/user-setting-hooks';
import { TenantRole } from '@/pages/user-setting/constants';
import { useFetchUserInfo } from '@/hooks/user-setting-hooks';
import { Routes } from '@/routes';
import { camelCase } from 'lodash';
import {
@ -55,11 +54,11 @@ export function Header() {
changeLanguage(key);
};
const { data } = useListTenant();
// const { data } = useListTenant();
const showBell = useMemo(() => {
return data.some((x) => x.role === TenantRole.Invite);
}, [data]);
// const showBell = useMemo(() => {
// return data.some((x) => x.role === TenantRole.Invite);
// }, [data]);
const items = LanguageList.map((x) => ({
key: x,
@ -70,9 +69,9 @@ export function Header() {
setTheme(theme === ThemeEnum.Dark ? ThemeEnum.Light : ThemeEnum.Dark);
}, [setTheme, theme]);
const handleBellClick = useCallback(() => {
navigate('/user-setting/team');
}, [navigate]);
// const handleBellClick = useCallback(() => {
// navigate('/user-setting/team');
// }, [navigate]);
const tagsData = useMemo(
() => [

View File

@ -10,6 +10,7 @@ import translation_fr from './fr';
import translation_id from './id';
import translation_ja from './ja';
import translation_pt_br from './pt-br';
import translation_ru from './ru';
import { createTranslationTable, flattenObject } from './until';
import translation_vi from './vi';
import translation_zh from './zh';
@ -23,12 +24,14 @@ const resources = {
[LanguageAbbreviation.Ja]: translation_ja,
[LanguageAbbreviation.Es]: translation_es,
[LanguageAbbreviation.Vi]: translation_vi,
[LanguageAbbreviation.Ru]: translation_ru,
[LanguageAbbreviation.PtBr]: translation_pt_br,
[LanguageAbbreviation.De]: translation_de,
[LanguageAbbreviation.Fr]: translation_fr,
};
const enFlattened = flattenObject(translation_en);
const viFlattened = flattenObject(translation_vi);
const ruFlattened = flattenObject(translation_ru);
const esFlattened = flattenObject(translation_es);
const zhFlattened = flattenObject(translation_zh);
const jaFlattened = flattenObject(translation_ja);
@ -40,6 +43,7 @@ export const translationTable = createTranslationTable(
[
enFlattened,
viFlattened,
ruFlattened,
esFlattened,
zhFlattened,
zh_traditionalFlattened,
@ -51,6 +55,7 @@ export const translationTable = createTranslationTable(
[
'English',
'Vietnamese',
'Rus',
'Spanish',
'zh',
'zh-TRADITIONAL',

View File

@ -124,9 +124,11 @@ export default {
similarityThreshold: 'Similarity threshold',
similarityThresholdTip:
'RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. This parameter sets the threshold for similarities between the user query and chunks. Any chunk with a similarity score below this threshold will be excluded from the results. By default, the threshold is set to 0.2. This means that only chunks with hybrid similarity score of 20 or higher will be retrieved.',
vectorSimilarityWeight: 'Keyword similarity weight',
vectorSimilarityWeight: 'Vector similarity weight',
vectorSimilarityWeightTip:
'This sets the weight of keyword similarity in the combined similarity score, either used with vector cosine similarity or with reranking score. The total of the two weights must equal 1.0.',
keywordSimilarityWeight: 'Keyword similarity weight',
keywordSimilarityWeightTip: '',
testText: 'Test text',
testTextPlaceholder: 'Input your question here!',
testingLabel: 'Testing',
@ -252,7 +254,7 @@ export default {
book: `<p>Supported file formats are <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.</p><p>
For each book in PDF, please set the <i>page ranges</i> to remove unwanted information and reduce analysis time.</p>`,
laws: `<p>Supported file formats are <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.</p><p>
Legal documents typically follow a rigorous writing format. We use text feature to identify split point.
Legal documents typically follow a rigorous writing format. We use text feature to identify split point.
</p><p>
The chunk has a granularity consistent with 'ARTICLE', ensuring all upper level text is included in the chunk.
</p>`,
@ -266,7 +268,7 @@ export default {
<li>Then, combine adjacent segments until the token count exceeds the threshold specified by 'Chunk token number for text', at which point a chunk is created.</li></p>`,
paper: `<p>Only <b>PDF</b> file is supported.</p><p>
Papers will be split by section, such as <i>abstract, 1.1, 1.2</i>. </p><p>
This approach enables the LLM to summarize the paper more effectively and to provide more comprehensive, understandable responses.
This approach enables the LLM to summarize the paper more effectively and to provide more comprehensive, understandable responses.
However, it also increases the context for AI conversations and adds to the computational cost for the LLM. So during a conversation, consider reducing the value of <b>topN</b>.</p>`,
presentation: `<p>Supported file formats are <b>PDF</b>, <b>PPTX</b>.</p><p>
Every page in the slides is treated as a chunk, with its thumbnail image stored.</p><p>
@ -471,7 +473,7 @@ This auto-tagging feature enhances retrieval by adding another layer of domain-s
modelEnabledTools: 'Enabled tools',
modelEnabledToolsTip:
'Please select one or more tools for the chat model to use. It takes no effect for models not supporting tool call.',
freedom: 'Freedom',
freedom: 'Creativity',
improvise: 'Improvise',
precise: 'Precise',
balance: 'Balance',
@ -563,6 +565,16 @@ This auto-tagging feature enhances retrieval by adding another layer of domain-s
crossLanguage: 'Cross-language search',
crossLanguageTip: `Select one or more languages for crosslanguage search. If no language is selected, the system searches with the original query.`,
createChat: 'Create chat',
metadata: 'Meta Data',
metadataTip:
'Metadata filtering is the process of using metadata attributes (such as tags, categories, or access permissions) to refine and control the retrieval of relevant information within a system.',
conditions: 'Conditions',
addCondition: 'Add Condition',
meta: {
disabled: 'Disabled',
automatic: 'Automatic',
manual: 'Manual',
},
},
setting: {
profile: 'Profile',
@ -670,13 +682,41 @@ This auto-tagging feature enhances retrieval by adding another layer of domain-s
bedrockSKMessage: 'Please input your SECRET KEY',
bedrockRegion: 'AWS Region',
bedrockRegionMessage: 'Please select!',
'us-east-2': 'US East (Ohio)',
'us-east-1': 'US East (N. Virginia)',
'us-west-1': 'US West (N. California)',
'us-west-2': 'US West (Oregon)',
'af-south-1': 'Africa (Cape Town)',
'ap-east-1': 'Asia Pacific (Hong Kong)',
'ap-south-2': 'Asia Pacific (Hyderabad)',
'ap-southeast-3': 'Asia Pacific (Jakarta)',
'ap-southeast-5': 'Asia Pacific (Malaysia)',
'ap-southeast-4': 'Asia Pacific (Melbourne)',
'ap-south-1': 'Asia Pacific (Mumbai)',
'ap-northeast-3': 'Asia Pacific (Osaka)',
'ap-northeast-2': 'Asia Pacific (Seoul)',
'ap-southeast-1': 'Asia Pacific (Singapore)',
'ap-northeast-1': 'Asia Pacific (Tokyo)',
'eu-central-1': 'Europe (Frankfurt)',
'us-gov-west-1': 'AWS GovCloud (US-West)',
'ap-southeast-2': 'Asia Pacific (Sydney)',
'ap-east-2': 'Asia Pacific (Taipei)',
'ap-southeast-7': 'Asia Pacific (Thailand)',
'ap-northeast-1': 'Asia Pacific (Tokyo)',
'ca-central-1': 'Canada (Central)',
'ca-west-1': 'Canada West (Calgary)',
'eu-central-1': 'Europe (Frankfurt)',
'eu-west-1': 'Europe (Ireland)',
'eu-west-2': 'Europe (London)',
'eu-south-1': 'Europe (Milan)',
'eu-west-3': 'Europe (Paris)',
'eu-south-2': 'Europe (Spain)',
'eu-north-1': 'Europe (Stockholm)',
'eu-central-2': 'Europe (Zurich)',
'il-central-1': 'Israel (Tel Aviv)',
'mx-central-1': 'Mexico (Central)',
'me-south-1': 'Middle East (Bahrain)',
'me-central-1': 'Middle East (UAE)',
'sa-east-1': 'South America (São Paulo)',
'us-gov-east-1': 'AWS GovCloud (US-East)',
'us-gov-west-1': 'AWS GovCloud (US-West)',
addHunyuanSID: 'Hunyuan Secret ID',
HunyuanSIDMessage: 'Please input your Secret ID',
addHunyuanSK: 'Hunyuan Secret Key',

View File

@ -203,7 +203,7 @@ export default {
Karena buku panjang dan tidak semua bagian berguna, jika itu adalah PDF,
silakan atur <i>rentang halaman</i> untuk setiap buku untuk menghilangkan efek negatif dan menghemat waktu komputasi untuk analisis.</p>`,
laws: `<p>Format file yang didukung adalah <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.</p><p>
Dokumen hukum memiliki format penulisan yang sangat ketat. Kami menggunakan fitur teks untuk mendeteksi titik pemisah.
Dokumen hukum memiliki format penulisan yang sangat ketat. Kami menggunakan fitur teks untuk mendeteksi titik pemisah.
</p><p>
Granularitas potongan konsisten dengan 'ARTIKEL', dan semua teks tingkat atas akan disertakan dalam potongan.
</p>`,
@ -218,9 +218,9 @@ export default {
<li>Selanjutnya, potongan berturut-turut ini digabungkan menjadi potongan yang jumlah tokennya tidak lebih dari 'Jumlah token'.</li></p>`,
paper: `<p>Hanya file <b>PDF</b> yang didukung.</p><p>
Jika model kami bekerja dengan baik, makalah akan dipotong berdasarkan bagiannya, seperti <i>abstrak, 1.1, 1.2</i>, dll. </p><p>
Manfaat dari melakukan ini adalah LLM dapat lebih baik merangkum konten bagian yang relevan dalam makalah,
menghasilkan jawaban yang lebih komprehensif yang membantu pembaca lebih memahami makalah.
Kelemahannya adalah meningkatkan konteks percakapan LLM dan menambah biaya komputasi,
Manfaat dari melakukan ini adalah LLM dapat lebih baik merangkum konten bagian yang relevan dalam makalah,
menghasilkan jawaban yang lebih komprehensif yang membantu pembaca lebih memahami makalah.
Kelemahannya adalah meningkatkan konteks percakapan LLM dan menambah biaya komputasi,
jadi selama percakapan, Anda dapat mempertimbangkan untuk mengurangi pengaturan <b>topN</b>.</p>`,
presentation: `<p>Format file yang didukung adalah <b>PDF</b>, <b>PPTX</b>.</p><p>
Setiap halaman akan diperlakukan sebagai potongan. Dan thumbnail setiap halaman akan disimpan.</p><p>
@ -249,7 +249,7 @@ export default {
</p><p>
Resume datang dalam berbagai format, seperti kepribadian seseorang, tetapi kita sering harus mengaturnya menjadi data terstruktur yang memudahkan pencarian.
</p><p>
Alih-alih memotong resume, kami memparsing resume menjadi data terstruktur. Sebagai HR, Anda dapat membuang semua resume yang Anda miliki,
Alih-alih memotong resume, kami memparsing resume menjadi data terstruktur. Sebagai HR, Anda dapat membuang semua resume yang Anda miliki,
maka Anda dapat mencantumkan semua kandidat yang memenuhi kualifikasi hanya dengan berbicara dengan <i>'assistxsuite'</i>.
</p>
`,
@ -283,11 +283,11 @@ export default {
Jika Anda ingin merangkum sesuatu yang membutuhkan semua konteks dari sebuah artikel dan panjang konteks LLM yang dipilih mencakup panjang dokumen, Anda dapat mencoba metode ini.
</p>`,
knowledgeGraph: `<p>Format file yang didukung adalah <b>DOCX, EXCEL, PPT, IMAGE, PDF, TXT, MD, JSON, EML</b>
<p>Setelah file dipotong, digunakan potongan untuk mengekstrak grafik pengetahuan dan peta pikiran dari seluruh dokumen. Metode ini menerapkan cara naif untuk memotong file:
Teks berturut-turut akan dipotong menjadi potongan masing-masing yang berjumlah sekitar 512 token.</p>
<p>Selanjutnya, potongan akan dikirim ke LLM untuk mengekstrak node dan hubungan dari grafik pengetahuan, dan peta pikiran.</p>
Perhatikan jenis entitas yang perlu Anda tentukan.</p>`,
useRaptor: 'Gunakan RAPTOR untuk meningkatkan pengambilan',
useRaptorTip:
@ -558,13 +558,41 @@ export default {
bedrockSKMessage: 'Silakan masukkan SECRET KEY Anda',
bedrockRegion: 'Wilayah AWS',
bedrockRegionMessage: 'Silakan pilih!',
'us-east-2': 'US East (Ohio)',
'us-east-1': 'US East (N. Virginia)',
'us-west-1': 'US West (N. California)',
'us-west-2': 'US West (Oregon)',
'af-south-1': 'Africa (Cape Town)',
'ap-east-1': 'Asia Pacific (Hong Kong)',
'ap-south-2': 'Asia Pacific (Hyderabad)',
'ap-southeast-3': 'Asia Pacific (Jakarta)',
'ap-southeast-5': 'Asia Pacific (Malaysia)',
'ap-southeast-4': 'Asia Pacific (Melbourne)',
'ap-south-1': 'Asia Pacific (Mumbai)',
'ap-northeast-3': 'Asia Pacific (Osaka)',
'ap-northeast-2': 'Asia Pacific (Seoul)',
'ap-southeast-1': 'Asia Pacific (Singapore)',
'ap-northeast-1': 'Asia Pacific (Tokyo)',
'eu-central-1': 'Europe (Frankfurt)',
'us-gov-west-1': 'AWS GovCloud (US-West)',
'ap-southeast-2': 'Asia Pacific (Sydney)',
'ap-east-2': 'Asia Pacific (Taipei)',
'ap-southeast-7': 'Asia Pacific (Thailand)',
'ap-northeast-1': 'Asia Pacific (Tokyo)',
'ca-central-1': 'Canada (Central)',
'ca-west-1': 'Canada West (Calgary)',
'eu-central-1': 'Europe (Frankfurt)',
'eu-west-1': 'Europe (Ireland)',
'eu-west-2': 'Europe (London)',
'eu-south-1': 'Europe (Milan)',
'eu-west-3': 'Europe (Paris)',
'eu-south-2': 'Europe (Spain)',
'eu-north-1': 'Europe (Stockholm)',
'eu-central-2': 'Europe (Zurich)',
'il-central-1': 'Israel (Tel Aviv)',
'mx-central-1': 'Mexico (Central)',
'me-south-1': 'Middle East (Bahrain)',
'me-central-1': 'Middle East (UAE)',
'sa-east-1': 'South America (São Paulo)',
'us-gov-east-1': 'AWS GovCloud (US-East)',
'us-gov-west-1': 'AWS GovCloud (US-West)',
addHunyuanSID: 'Hunyuan Secret ID',
HunyuanSIDMessage: 'Silakan masukkan Secret ID Anda',
addHunyuanSK: 'Hunyuan Secret Key',

1365
web/src/locales/ru.ts Normal file

File diff suppressed because it is too large Load Diff

View File

@ -220,7 +220,7 @@ export default {
book: `<p>Các định dạng tệp được hỗ trợ là <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.</p><p>
Đối với mỗi sách trong PDF, vui lòng đặt <i>phạm vi trang</i> để loại bỏ thông tin không mong muốn và giảm thời gian phân tích.</p>`,
laws: `<p>Các định dạng tệp được hỗ trợ là <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.</p><p>
Các tài liệu pháp lý thường tuân theo định dạng viết nghiêm ngặt. Chúng tôi sử dụng tính năng văn bản để xác định điểm phân chia.
Các tài liệu pháp lý thường tuân theo định dạng viết nghiêm ngặt. Chúng tôi sử dụng tính năng văn bản để xác định điểm phân chia.
</p><p>
Khối có độ chi tiết nhất quán với 'ARTICLE', đảm bảo tất cả văn bản cấp trên được bao gồm trong khối.
</p>`,
@ -234,7 +234,7 @@ export default {
<p>Các định dạng tệp được hỗ trợ là <b>MD, MDX, DOCX, XLSX, XLS (Excel 97-2003), PPT, PDF, TXT, JPEG, JPG, PNG, TIF, GIF, CSV, JSON, EML, HTML</b>.</p>`,
paper: `<p>Chỉ hỗ trợ tệp <b>PDF</b>.</p><p>
Bài báo sẽ được chia theo các phần, chẳng hạn như <i>tóm tắt, 1.1, 1.2</i>. </p><p>
Cách tiếp cận này cho phép LLM tóm tắt bài báo hiệu quả hơn và cung cấp các phản hồi toàn diện, dễ hiểu hơn.
Cách tiếp cận này cho phép LLM tóm tắt bài báo hiệu quả hơn và cung cấp các phản hồi toàn diện, dễ hiểu hơn.
Tuy nhiên, nó cũng làm tăng ngữ cảnh cho các cuộc hội thoại AI và tăng thêm chi phí tính toán cho LLM. Vì vậy, trong quá trình trò chuyện, hãy cân nhắc giảm giá trị của '<b>topN</b>'.</p>`,
presentation: `<p>Các định dạng tệp được hỗ trợ là <b>PDF</b>, <b>PPTX</b>.</p><p>
Mỗi trang trong slide được coi là một khối, với hình thu nhỏ của nó được lưu trữ.</p><p>
@ -290,7 +290,7 @@ export default {
Áp dụng khi bạn yêu cầu LLM tóm tắt toàn bộ tài liệu, với điều kiện nó có thể xử lý được lượng ngữ cảnh đó.
</p>`,
knowledgeGraph: `<p>Các định dạng tệp được hỗ trợ là <b>DOCX, EXCEL, PPT, IMAGE, PDF, TXT, MD, JSON, EML</b>
<p>Cách tiếp cận này phân đoạn tệp bằng phương pháp 'ngây thơ'/'Tổng hợp'. Nó chia tài liệu thành các phân đoạn và sau đó kết hợp các phân đoạn liền kề cho đến khi số lượng token vượt quá ngưỡng được chỉ định bởi 'Số token khối', tại thời điểm đó, một khối được tạo.</p>
<p>Các khối sau đó được đưa vào LLM để trích xuất các thực thể và mối quan hệ cho biểu đồ tri thức và sơ đồ tư duy.</p>
<p>Đảm bảo bạn đã đặt <b>Loại thực thể</b>.</p>`,
@ -603,13 +603,41 @@ export default {
bedrockSKMessage: 'Vui lòng nhập KHÓA BÍ MẬT của bạn',
bedrockRegion: 'Vùng AWS',
bedrockRegionMessage: 'Vui lòng chọn!',
'us-east-2': 'US East (Ohio)',
'us-east-1': 'US East (N. Virginia)',
'us-west-1': 'US West (N. California)',
'us-west-2': 'US West (Oregon)',
'af-south-1': 'Africa (Cape Town)',
'ap-east-1': 'Asia Pacific (Hong Kong)',
'ap-south-2': 'Asia Pacific (Hyderabad)',
'ap-southeast-3': 'Asia Pacific (Jakarta)',
'ap-southeast-5': 'Asia Pacific (Malaysia)',
'ap-southeast-4': 'Asia Pacific (Melbourne)',
'ap-south-1': 'Asia Pacific (Mumbai)',
'ap-northeast-3': 'Asia Pacific (Osaka)',
'ap-northeast-2': 'Asia Pacific (Seoul)',
'ap-southeast-1': 'Asia Pacific (Singapore)',
'ap-northeast-1': 'Asia Pacific (Tokyo)',
'eu-central-1': 'Europe (Frankfurt)',
'us-gov-west-1': 'AWS GovCloud (US-West)',
'ap-southeast-2': 'Asia Pacific (Sydney)',
'ap-east-2': 'Asia Pacific (Taipei)',
'ap-southeast-7': 'Asia Pacific (Thailand)',
'ap-northeast-1': 'Asia Pacific (Tokyo)',
'ca-central-1': 'Canada (Central)',
'ca-west-1': 'Canada West (Calgary)',
'eu-central-1': 'Europe (Frankfurt)',
'eu-west-1': 'Europe (Ireland)',
'eu-west-2': 'Europe (London)',
'eu-south-1': 'Europe (Milan)',
'eu-west-3': 'Europe (Paris)',
'eu-south-2': 'Europe (Spain)',
'eu-north-1': 'Europe (Stockholm)',
'eu-central-2': 'Europe (Zurich)',
'il-central-1': 'Israel (Tel Aviv)',
'mx-central-1': 'Mexico (Central)',
'me-south-1': 'Middle East (Bahrain)',
'me-central-1': 'Middle East (UAE)',
'sa-east-1': 'South America (São Paulo)',
'us-gov-east-1': 'AWS GovCloud (US-East)',
'us-gov-west-1': 'AWS GovCloud (US-West)',
addHunyuanSID: 'Hunyuan Secret ID',
HunyuanSIDMessage: 'Vui lòng nhập ID bí mật của bạn',
addHunyuanSK: 'Hunyuan Secret Key',

View File

@ -115,7 +115,7 @@ export default {
similarityThreshold: '相似度阈值',
similarityThresholdTip:
'我们使用混合相似度得分来评估两行文本之间的距离。 它是加权关键词相似度和向量余弦相似度。 如果查询和块之间的相似度小于此阈值,则该块将被过滤掉。默认设置为 0.2,也就是说文本块的混合相似度得分至少 20 才会被召回。',
vectorSimilarityWeight: '关键字相似度权重',
vectorSimilarityWeight: '相似度相似度权重',
vectorSimilarityWeightTip:
'我们使用混合相似性评分来评估两行文本之间的距离。它是加权关键字相似性和矢量余弦相似性或rerank得分0〜1。两个权重的总和为1.0。',
testText: '测试文本',
@ -558,6 +558,16 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
tavilyApiKeyHelp: '如何获取?',
crossLanguage: '跨语言搜索',
crossLanguageTip: `选择一种或多种语言进行跨语言搜索。如果未选择任何语言,系统将使用原始查询进行搜索。`,
metadata: '元数据',
metadataTip:
'元数据过滤是使用元数据属性(例如标签、类别或访问权限)来优化和控制系统内相关信息检索的过程。',
conditions: '条件',
addCondition: '增加条件',
meta: {
disabled: '禁用',
automatic: '自动',
manual: '手动',
},
},
setting: {
profile: '概要',

View File

@ -147,7 +147,7 @@ export const useHandleUploadDocument = () => {
const [fileList, setFileList] = useState<UploadFile[]>([]);
const [uploadProgress, setUploadProgress] = useState<number>(0);
const { uploadDocument, loading } = useUploadNextDocument();
const { runDocumentByIds, loading: _ } = useRunNextDocument();
const { runDocumentByIds } = useRunNextDocument();
const onDocumentUploadOk = useCallback(
async ({

View File

@ -168,7 +168,7 @@ const KnowledgeFile = () => {
),
dataIndex: 'run',
key: 'run',
filters: Object.entries(RunningStatus).map(([key, value]) => ({
filters: Object.values(RunningStatus).map((value) => ({
text: t(`runningStatus${value}`),
value: value,
})),

View File

@ -27,7 +27,6 @@ const KnowledgeSidebar = () => {
const { knowledgeId } = useGetKnowledgeSearchParams();
const [windowWidth, setWindowWidth] = useState(getWidth());
const [collapsed, setCollapsed] = useState(false);
const { t } = useTranslation();
const { data: knowledgeDetails } = useFetchKnowledgeBaseConfiguration();
@ -92,14 +91,6 @@ const KnowledgeSidebar = () => {
return list;
}, [data, getItem]);
useEffect(() => {
if (windowWidth.width > 957) {
setCollapsed(false);
} else {
setCollapsed(true);
}
}, [windowWidth.width]);
useEffect(() => {
const widthSize = () => {
const width = getWidth();

View File

@ -4,7 +4,7 @@ import { IRetrievalNode } from '@/interfaces/database/flow';
import { NodeProps, Position } from '@xyflow/react';
import classNames from 'classnames';
import { get } from 'lodash';
import { memo, useMemo } from 'react';
import { memo } from 'react';
import { NodeHandleId } from '../../constant';
import { useGetVariableLabelByValue } from '../../hooks/use-get-begin-query';
import { CommonHandle } from './handle';
@ -21,18 +21,7 @@ function InnerRetrievalNode({
selected,
}: NodeProps<IRetrievalNode>) {
const knowledgeBaseIds: string[] = get(data, 'form.kb_ids', []);
console.log('🚀 ~ InnerRetrievalNode ~ knowledgeBaseIds:', knowledgeBaseIds);
const { list: knowledgeList } = useFetchKnowledgeList(true);
const knowledgeBases = useMemo(() => {
return knowledgeBaseIds.map((x) => {
const item = knowledgeList.find((y) => x === y.id);
return {
name: item?.name,
avatar: item?.avatar,
id: x,
};
});
}, [knowledgeList, knowledgeBaseIds]);
const getLabel = useGetVariableLabelByValue(id);

View File

@ -1,8 +1,7 @@
import { ModelVariableType } from '@/constants/knowledge';
import { RAGFlowNodeType } from '@/interfaces/database/flow';
import { get, isEmpty, isPlainObject } from 'lodash';
import { isEmpty, isPlainObject } from 'lodash';
import { useMemo } from 'react';
import { buildCategorizeListFromObject } from '../../utils';
const defaultValues = {
parameter: ModelVariableType.Precise,
@ -21,9 +20,6 @@ export function useValues(node?: RAGFlowNodeType) {
if (isEmpty(formData)) {
return defaultValues;
}
const items = buildCategorizeListFromObject(
get(node, 'data.form.category_description', {}),
);
if (isPlainObject(formData)) {
// const nextValues = {
// ...omit(formData, 'category_description'),

View File

@ -1,6 +1,6 @@
'use client';
import { SideDown } from '@/assets/icon/Icon';
import { SideDown } from '@/assets/icon/next-icon';
import { Button } from '@/components/ui/button';
import {
Collapsible,

View File

@ -1,4 +1,3 @@
import { Edge } from '@xyflow/react';
import pick from 'lodash/pick';
import { useCallback, useEffect } from 'react';
import { IOperatorForm } from '../../interface';
@ -21,16 +20,12 @@ export const useBuildRelevantOptions = () => {
return buildRelevantOptions;
};
const getTargetOfEdge = (edges: Edge[], sourceHandle: string) =>
edges.find((x) => x.sourceHandle === sourceHandle)?.target;
/**
* monitor changes in the connection and synchronize the target to the yes and no fields of the form
* similar to the categorize-form's useHandleFormValuesChange method
* @param param0
*/
export const useWatchConnectionChanges = ({ nodeId, form }: IOperatorForm) => {
const edges = useGraphStore((state) => state.edges);
const getNode = useGraphStore((state) => state.getNode);
const node = getNode(nodeId);
@ -40,13 +35,6 @@ export const useWatchConnectionChanges = ({ nodeId, form }: IOperatorForm) => {
}
}, [node, form]);
const watchConnectionChanges = useCallback(() => {
const edgeList = edges.filter((x) => x.source === nodeId);
const yes = getTargetOfEdge(edgeList, 'yes');
const no = getTargetOfEdge(edgeList, 'no');
form?.setFieldsValue({ yes, no });
}, [edges, nodeId, form]);
useEffect(() => {
watchFormChanges();
}, [watchFormChanges]);

View File

@ -59,7 +59,7 @@ export const LogicalOperatorIcon = function OperatorIcon({
return icon;
};
function useBuildSwitchOperatorOptions() {
export function useBuildSwitchOperatorOptions() {
const { t } = useTranslation();
const switchOperatorOptions = useMemo(() => {

View File

@ -8,7 +8,7 @@ import { IModalProps } from '@/interfaces/common';
import { NotebookText } from 'lucide-react';
import 'react18-json-view/src/style.css';
import { useCacheChatLog } from '../hooks/use-cache-chat-log';
import { WorkFlowTimeline } from './workFlowTimeline';
import { WorkFlowTimeline } from './workflow-timeline';
type LogSheetProps = IModalProps<any> &
Pick<

View File

@ -19,7 +19,7 @@ import {
JsonViewer,
toLowerCaseStringAndDeleteChar,
typeMap,
} from './workFlowTimeline';
} from './workflow-timeline';
type IToolIcon =
| Operator.ArXiv
| Operator.GitHub

View File

@ -28,7 +28,7 @@ import JsonView from 'react18-json-view';
import { Operator } from '../constant';
import { useCacheChatLog } from '../hooks/use-cache-chat-log';
import OperatorIcon from '../operator-icon';
import ToolTimelineItem from './toolTimelineItem';
import ToolTimelineItem from './tool-timeline-item';
type LogFlowTimelineProps = Pick<
ReturnType<typeof useCacheChatLog>,
'currentEventListWithoutMessage' | 'currentMessageId'

View File

@ -3,7 +3,7 @@ import { RAGFlowAvatar } from '@/components/ragflow-avatar';
import { SharedBadge } from '@/components/shared-badge';
import { Card, CardContent } from '@/components/ui/card';
import { useNavigatePage } from '@/hooks/logic-hooks/navigate-hooks';
import { IFlow } from '@/interfaces/database/flow';
import { IFlow } from '@/interfaces/database/agent';
import { formatDate } from '@/utils/date';
import { AgentDropdown } from './agent-dropdown';
import { useRenameAgent } from './use-rename-agent';

View File

@ -7,7 +7,7 @@ import {
DropdownMenuTrigger,
} from '@/components/ui/dropdown-menu';
import { useDeleteAgent } from '@/hooks/use-agent-request';
import { IFlow } from '@/interfaces/database/flow';
import { IFlow } from '@/interfaces/database/agent';
import { PenLine, Trash2 } from 'lucide-react';
import { MouseEventHandler, PropsWithChildren, useCallback } from 'react';
import { useTranslation } from 'react-i18next';

View File

@ -1,6 +1,6 @@
import { useSetModalState } from '@/hooks/common-hooks';
import { useUpdateAgentSetting } from '@/hooks/use-agent-request';
import { IFlow } from '@/interfaces/database/flow';
import { IFlow } from '@/interfaces/database/agent';
import { pick } from 'lodash';
import { useCallback, useState } from 'react';

View File

@ -8,7 +8,9 @@ import classNames from 'classnames';
import { useCallback } from 'react';
import { ISegmentedContentProps } from '../interface';
import { DatasetMetadata } from '../constants';
import styles from './index.less';
import { MetadataFilterConditions } from './metadata-filter-conditions';
const emptyResponseField = ['prompt_config', 'empty_response'];
@ -20,6 +22,18 @@ const AssistantSetting = ({
const { t } = useTranslate('chat');
const { data } = useFetchTenantInfo(true);
const MetadataOptions = Object.values(DatasetMetadata).map((x) => {
return {
value: x,
label: t(`meta.${x}`),
};
});
const metadata = Form.useWatch(['meta_data_filter', 'method'], form);
const kbIds = Form.useWatch(['kb_ids'], form);
const hasKnowledge = Array.isArray(kbIds) && kbIds.length > 0;
const handleChange = useCallback(() => {
const kbIds = form.getFieldValue('kb_ids');
const emptyResponse = form.getFieldValue(emptyResponseField);
@ -153,6 +167,25 @@ const AssistantSetting = ({
required={false}
onChange={handleChange}
></KnowledgeBaseItem>
{hasKnowledge && (
<Form.Item
label={t('metadata')}
name={['meta_data_filter', 'method']}
tooltip={t('metadataTip')}
initialValue={DatasetMetadata.Disabled}
>
<Select options={MetadataOptions} />
</Form.Item>
)}
{hasKnowledge && metadata === DatasetMetadata.Manual && (
<Form.Item
label={t('conditions')}
tooltip={t('ttsTip')}
initialValue={false}
>
<MetadataFilterConditions kbIds={kbIds}></MetadataFilterConditions>
</Form.Item>
)}
</section>
);
};

Some files were not shown because too many files have changed in this diff Show More