mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-30 07:06:39 +08:00
Compare commits
65 Commits
v0.20.0
...
86fb710e52
| Author | SHA1 | Date | |
|---|---|---|---|
| 86fb710e52 | |||
| 7713e14d6a | |||
| 392f5f4ce9 | |||
| 79481becea | |||
| 58a64000ea | |||
| 1bd64dafcb | |||
| 07354f4a1a | |||
| d628234942 | |||
| 5749aa30b0 | |||
| a2e1f5618d | |||
| dc48c3863d | |||
| 23062cb27a | |||
| 63c2f5b821 | |||
| 0a0bfc02a0 | |||
| f0c34d4454 | |||
| 7c719f8365 | |||
| 4fc9e42e74 | |||
| 35539092d0 | |||
| 581a54fbbb | |||
| 9ca86d801e | |||
| fb0426419e | |||
| 1409bb30df | |||
| 7efeaf6548 | |||
| 46a35f44da | |||
| a7eba61067 | |||
| 465f7e036a | |||
| 7a27d5e463 | |||
| 6a0d6d2565 | |||
| f359f2c44e | |||
| 9295c23170 | |||
| 023b090fa4 | |||
| 2124329e95 | |||
| ed9757b0c7 | |||
| f235a38225 | |||
| 550e65bb22 | |||
| a264c629b5 | |||
| e6bad45c6d | |||
| 0a303d9ae1 | |||
| 98a83543e8 | |||
| afd3a508e5 | |||
| 1deb0a2d42 | |||
| dd055deee9 | |||
| a249803961 | |||
| 6ec3f18e22 | |||
| 7724acbadb | |||
| a36ba95c1c | |||
| 30ccc4a66c | |||
| dda5a0080a | |||
| 9db999ccae | |||
| 5f5c6a7990 | |||
| 53618d13bb | |||
| 60d652d2e1 | |||
| 448bdda73d | |||
| 26b85a10d1 | |||
| cae11201ef | |||
| 6ad8b54754 | |||
| 83aca2d07b | |||
| 34f829e1b1 | |||
| 52a349349d | |||
| 45bf294117 | |||
| 667c5812d0 | |||
| 30e9212db9 | |||
| e9cbf4611d | |||
| d4b1d163dd | |||
| fca94509e8 |
2
.gitignore
vendored
2
.gitignore
vendored
@ -193,3 +193,5 @@ dist
|
||||
# SvelteKit build / generate output
|
||||
.svelte-kit
|
||||
|
||||
# Default backup dir
|
||||
backup
|
||||
|
||||
15
.trivyignore
Normal file
15
.trivyignore
Normal file
@ -0,0 +1,15 @@
|
||||
**/*.md
|
||||
**/*.min.js
|
||||
**/*.min.css
|
||||
**/*.svg
|
||||
**/*.png
|
||||
**/*.jpg
|
||||
**/*.jpeg
|
||||
**/*.gif
|
||||
**/*.woff
|
||||
**/*.woff2
|
||||
**/*.map
|
||||
**/*.webp
|
||||
**/*.ico
|
||||
**/*.ttf
|
||||
**/*.eot
|
||||
@ -87,7 +87,9 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Latest Updates
|
||||
|
||||
- 2025-08-01 Supports agentic workflow.
|
||||
- 2025-08-08 Supports OpenAI's latest GPT-5 series models.
|
||||
- 2025-08-04 Supports new models, including Kimi K2 and Grok 4.
|
||||
- 2025-08-01 Supports agentic workflow and MCP.
|
||||
- 2025-05-23 Adds a Python/JavaScript code executor component to Agent.
|
||||
- 2025-05-05 Supports cross-language query.
|
||||
- 2025-03-19 Supports using a multi-modal model to make sense of images within PDF or DOCX files.
|
||||
|
||||
@ -80,7 +80,9 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Pembaruan Terbaru
|
||||
|
||||
- 2025-08-01 Mendukung Alur Kerja agen.
|
||||
- 2025-08-08 Mendukung model seri GPT-5 terbaru dari OpenAI.
|
||||
- 2025-08-04 Mendukung model baru, termasuk Kimi K2 dan Grok 4.
|
||||
- 2025-08-01 Mendukung alur kerja agen dan MCP.
|
||||
- 2025-05-23 Menambahkan komponen pelaksana kode Python/JS ke Agen.
|
||||
- 2025-05-05 Mendukung kueri lintas bahasa.
|
||||
- 2025-03-19 Mendukung penggunaan model multi-modal untuk memahami gambar di dalam file PDF atau DOCX.
|
||||
|
||||
@ -60,7 +60,9 @@
|
||||
|
||||
## 🔥 最新情報
|
||||
|
||||
- 2025-08-01 エージェントワークフローをサポートします。
|
||||
- 2025-08-08 OpenAI の最新 GPT-5 シリーズモデルをサポートします。
|
||||
- 2025-08-04 新モデル、キミK2およびGrok 4をサポート。
|
||||
- 2025-08-01 エージェントワークフローとMCPをサポート。
|
||||
- 2025-05-23 エージェントに Python/JS コードエグゼキュータコンポーネントを追加しました。
|
||||
- 2025-05-05 言語間クエリをサポートしました。
|
||||
- 2025-03-19 PDFまたはDOCXファイル内の画像を理解するために、多モーダルモデルを使用することをサポートします。
|
||||
|
||||
@ -60,7 +60,9 @@
|
||||
|
||||
## 🔥 업데이트
|
||||
|
||||
- 2025-08-01 에이전트 워크플로를 지원합니다.
|
||||
- 2025-08-08 OpenAI의 최신 GPT-5 시리즈 모델을 지원합니다.
|
||||
- 2025-08-04 새로운 모델인 Kimi K2와 Grok 4를 포함하여 지원합니다.
|
||||
- 2025-08-01 에이전트 워크플로우와 MCP를 지원합니다.
|
||||
- 2025-05-23 Agent에 Python/JS 코드 실행기 구성 요소를 추가합니다.
|
||||
- 2025-05-05 언어 간 쿼리를 지원합니다.
|
||||
- 2025-03-19 PDF 또는 DOCX 파일 내의 이미지를 이해하기 위해 다중 모드 모델을 사용하는 것을 지원합니다.
|
||||
|
||||
@ -80,7 +80,9 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Últimas Atualizações
|
||||
|
||||
- 01-08-2025 Suporta o fluxo de trabalho agêntico.
|
||||
- 08-08-2025 Suporta a mais recente série GPT-5 da OpenAI.
|
||||
- 04-08-2025 Suporta novos modelos, incluindo Kimi K2 e Grok 4.
|
||||
- 01-08-2025 Suporta fluxo de trabalho agente e MCP.
|
||||
- 23-05-2025 Adicione o componente executor de código Python/JS ao Agente.
|
||||
- 05-05-2025 Suporte a consultas entre idiomas.
|
||||
- 19-03-2025 Suporta o uso de um modelo multi-modal para entender imagens dentro de arquivos PDF ou DOCX.
|
||||
|
||||
@ -83,7 +83,9 @@
|
||||
|
||||
## 🔥 近期更新
|
||||
|
||||
- 2025-08-01 支援 agentic workflow
|
||||
- 2025-08-08 支援 OpenAI 最新的 GPT-5 系列模型。
|
||||
- 2025-08-04 支援 Kimi K2 和 Grok 4 等模型.
|
||||
- 2025-08-01 支援 agentic workflow 和 MCP
|
||||
- 2025-05-23 為 Agent 新增 Python/JS 程式碼執行器元件。
|
||||
- 2025-05-05 支援跨語言查詢。
|
||||
- 2025-03-19 PDF和DOCX中的圖支持用多模態大模型去解析得到描述.
|
||||
|
||||
@ -83,7 +83,9 @@
|
||||
|
||||
## 🔥 近期更新
|
||||
|
||||
- 2025-08-01 支持 agentic workflow。
|
||||
- 2025-08-08 支持 OpenAI 最新的 GPT-5 系列模型.
|
||||
- 2025-08-04 新增对 Kimi K2 和 Grok 4 等模型的支持.
|
||||
- 2025-08-01 支持 agentic workflow 和 MCP。
|
||||
- 2025-05-23 Agent 新增 Python/JS 代码执行器组件。
|
||||
- 2025-05-05 支持跨语言查询。
|
||||
- 2025-03-19 PDF 和 DOCX 中的图支持用多模态大模型去解析得到描述.
|
||||
|
||||
721
agent/templates/SQL Assistant.json
Normal file
721
agent/templates/SQL Assistant.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -89,11 +89,11 @@
|
||||
"presence_penalty": 0.4,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "{sys.query}",
|
||||
"content": "The user query is {sys.query}\n\nThe relevant document are {Retrieval:ShyPumasJoke@formalized_content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
"sys_prompt": "You are a highly professional product information advisor. \n\nYour only mission is to provide accurate, factual, and structured answers to all product-related queries.\n\nAbsolutely no assumptions, guesses, or fabricated content are allowed. \n\n**Key Principles:**\n\n1. **Strict Database Reliance:** \n\n - Every answer must be based solely on the verified product information stored in the database accessed through the Retrieval tool. \n\n - You are NOT allowed to invent, speculate, or infer details beyond what is retrieved. \n\n - If you cannot find relevant data, respond with: *\"I cannot find this information in our official product database. Please check back later or provide more details for further search.\"*\n\n2. **Information Accuracy and Structure:** \n\n - Provide information in a clear, concise, and professional way. \n\n - Use bullet points or numbered lists if there are multiple key points (e.g., features, price, warranty, technical specifications). \n\n - Always specify the version or model number when applicable to avoid confusion.\n\n3. **Tone and Style:** \n\n - Maintain a polite, professional, and helpful tone at all times. \n\n - Avoid marketing exaggeration or promotional language; stay strictly factual. \n\n - Do not express personal opinions; only cite official product data.\n\n4. **User Guidance:** \n\n - If the user\u2019s query is unclear or too broad, politely request clarification or guide them to provide more specific product details (e.g., product name, model, version). \n\n - Example: *\"Could you please specify the product model or category so I can retrieve the most relevant information for you?\"*\n\n5. **Response Length and Formatting:** \n\n - Keep each answer within 100\u2013150 words for general queries. \n\n - For complex or multi-step explanations, you may extend to 200\u2013250 words, but always remain clear and well-structured.\n\n6. **Critical Reminder:** \n\nYour authority and reliability depend entirely on database-driven responses. Any fabricated, speculative, or unverified content will be considered a critical failure of your role.\n\nAlways begin processing a query by accessing the Retrieval tool, confirming the data source, and then structuring your response according to the above principles.\n\n",
|
||||
"sys_prompt": "You are a highly professional product information advisor. \n\nYour only mission is to provide accurate, factual, and structured answers to all product-related queries.\n\nAbsolutely no assumptions, guesses, or fabricated content are allowed. \n\n**Key Principles:**\n\n1. **Strict Database Reliance:** \n\n - Every answer must be based solely on the verified product information stored in the relevant documen.\n\n - You are NOT allowed to invent, speculate, or infer details beyond what is retrieved. \n\n - If you cannot find relevant data, respond with: *\"I cannot find this information in our official product database. Please check back later or provide more details for further search.\"*\n\n2. **Information Accuracy and Structure:** \n\n - Provide information in a clear, concise, and professional way. \n\n - Use bullet points or numbered lists if there are multiple key points (e.g., features, price, warranty, technical specifications). \n\n - Always specify the version or model number when applicable to avoid confusion.\n\n3. **Tone and Style:** \n\n - Maintain a polite, professional, and helpful tone at all times. \n\n - Avoid marketing exaggeration or promotional language; stay strictly factual. \n\n - Do not express personal opinions; only cite official product data.\n\n4. **User Guidance:** \n\n - If the user\u2019s query is unclear or too broad, politely request clarification or guide them to provide more specific product details (e.g., product name, model, version). \n\n - Example: *\"Could you please specify the product model or category so I can retrieve the most relevant information for you?\"*\n\n5. **Response Length and Formatting:** \n\n - Keep each answer within 100\u2013150 words for general queries. \n\n - For complex or multi-step explanations, you may extend to 200\u2013250 words, but always remain clear and well-structured.\n\n6. **Critical Reminder:** \n\nYour authority and reliability depend entirely on the relevant document responses. Any fabricated, speculative, or unverified content will be considered a critical failure of your role.\n\n\n",
|
||||
"temperature": 0.1,
|
||||
"temperatureEnabled": true,
|
||||
"tools": [],
|
||||
@ -699,7 +699,7 @@
|
||||
"width": 200
|
||||
},
|
||||
"position": {
|
||||
"x": 644.5771854408022,
|
||||
"x": 645.6873721057459,
|
||||
"y": 516.6923702571407
|
||||
},
|
||||
"selected": false,
|
||||
@ -735,11 +735,11 @@
|
||||
"presence_penalty": 0.4,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "{sys.query}",
|
||||
"content": "The user query is {sys.query}\n\nThe relevant document are {Retrieval:ShyPumasJoke@formalized_content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
"sys_prompt": "You are a highly professional product information advisor. \n\nYour only mission is to provide accurate, factual, and structured answers to all product-related queries.\n\nAbsolutely no assumptions, guesses, or fabricated content are allowed. \n\n**Key Principles:**\n\n1. **Strict Database Reliance:** \n\n - Every answer must be based solely on the verified product information stored in the database accessed through the Retrieval tool. \n\n - You are NOT allowed to invent, speculate, or infer details beyond what is retrieved. \n\n - If you cannot find relevant data, respond with: *\"I cannot find this information in our official product database. Please check back later or provide more details for further search.\"*\n\n2. **Information Accuracy and Structure:** \n\n - Provide information in a clear, concise, and professional way. \n\n - Use bullet points or numbered lists if there are multiple key points (e.g., features, price, warranty, technical specifications). \n\n - Always specify the version or model number when applicable to avoid confusion.\n\n3. **Tone and Style:** \n\n - Maintain a polite, professional, and helpful tone at all times. \n\n - Avoid marketing exaggeration or promotional language; stay strictly factual. \n\n - Do not express personal opinions; only cite official product data.\n\n4. **User Guidance:** \n\n - If the user\u2019s query is unclear or too broad, politely request clarification or guide them to provide more specific product details (e.g., product name, model, version). \n\n - Example: *\"Could you please specify the product model or category so I can retrieve the most relevant information for you?\"*\n\n5. **Response Length and Formatting:** \n\n - Keep each answer within 100\u2013150 words for general queries. \n\n - For complex or multi-step explanations, you may extend to 200\u2013250 words, but always remain clear and well-structured.\n\n6. **Critical Reminder:** \n\nYour authority and reliability depend entirely on database-driven responses. Any fabricated, speculative, or unverified content will be considered a critical failure of your role.\n\nAlways begin processing a query by accessing the Retrieval tool, confirming the data source, and then structuring your response according to the above principles.\n\n",
|
||||
"sys_prompt": "You are a highly professional product information advisor. \n\nYour only mission is to provide accurate, factual, and structured answers to all product-related queries.\n\nAbsolutely no assumptions, guesses, or fabricated content are allowed. \n\n**Key Principles:**\n\n1. **Strict Database Reliance:** \n\n - Every answer must be based solely on the verified product information stored in the relevant documen.\n\n - You are NOT allowed to invent, speculate, or infer details beyond what is retrieved. \n\n - If you cannot find relevant data, respond with: *\"I cannot find this information in our official product database. Please check back later or provide more details for further search.\"*\n\n2. **Information Accuracy and Structure:** \n\n - Provide information in a clear, concise, and professional way. \n\n - Use bullet points or numbered lists if there are multiple key points (e.g., features, price, warranty, technical specifications). \n\n - Always specify the version or model number when applicable to avoid confusion.\n\n3. **Tone and Style:** \n\n - Maintain a polite, professional, and helpful tone at all times. \n\n - Avoid marketing exaggeration or promotional language; stay strictly factual. \n\n - Do not express personal opinions; only cite official product data.\n\n4. **User Guidance:** \n\n - If the user\u2019s query is unclear or too broad, politely request clarification or guide them to provide more specific product details (e.g., product name, model, version). \n\n - Example: *\"Could you please specify the product model or category so I can retrieve the most relevant information for you?\"*\n\n5. **Response Length and Formatting:** \n\n - Keep each answer within 100\u2013150 words for general queries. \n\n - For complex or multi-step explanations, you may extend to 200\u2013250 words, but always remain clear and well-structured.\n\n6. **Critical Reminder:** \n\nYour authority and reliability depend entirely on the relevant document responses. Any fabricated, speculative, or unverified content will be considered a critical failure of your role.\n\n\n",
|
||||
"temperature": 0.1,
|
||||
"temperatureEnabled": true,
|
||||
"tools": [],
|
||||
|
||||
@ -170,7 +170,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -250,7 +250,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -602,7 +602,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -715,7 +715,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
|
||||
@ -169,7 +169,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -249,7 +249,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -601,7 +601,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -714,7 +714,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -912,4 +912,4 @@
|
||||
"retrieval": []
|
||||
},
|
||||
"avatar": ""
|
||||
}
|
||||
}
|
||||
|
||||
@ -169,7 +169,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -249,7 +249,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -601,7 +601,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -714,7 +714,7 @@
|
||||
"presence_penalty": 0.5,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
@ -912,4 +912,4 @@
|
||||
"retrieval": []
|
||||
},
|
||||
"avatar": ""
|
||||
}
|
||||
}
|
||||
|
||||
@ -86,7 +86,7 @@ class Retrieval(ToolBase, ABC):
|
||||
kb_ids.append(id)
|
||||
continue
|
||||
kb_nm = self._canvas.get_variable_value(id)
|
||||
e, kb = KnowledgebaseService.get_by_name(kb_nm)
|
||||
e, kb = KnowledgebaseService.get_by_name(kb_nm, self._canvas._tenant_id)
|
||||
if not e:
|
||||
raise Exception(f"Dataset({kb_nm}) does not exist.")
|
||||
kb_ids.append(kb.id)
|
||||
|
||||
@ -20,94 +20,128 @@ BEGIN_SEARCH_RESULT = "<|begin_search_result|>"
|
||||
END_SEARCH_RESULT = "<|end_search_result|>"
|
||||
MAX_SEARCH_LIMIT = 6
|
||||
|
||||
REASON_PROMPT = (
|
||||
"You are a reasoning assistant with the ability to perform dataset searches to help "
|
||||
"you answer the user's question accurately. You have special tools:\n\n"
|
||||
f"- To perform a search: write {BEGIN_SEARCH_QUERY} your query here {END_SEARCH_QUERY}.\n"
|
||||
f"Then, the system will search and analyze relevant content, then provide you with helpful information in the format {BEGIN_SEARCH_RESULT} ...search results... {END_SEARCH_RESULT}.\n\n"
|
||||
f"You can repeat the search process multiple times if necessary. The maximum number of search attempts is limited to {MAX_SEARCH_LIMIT}.\n\n"
|
||||
"Once you have all the information you need, continue your reasoning.\n\n"
|
||||
"-- Example 1 --\n" ########################################
|
||||
"Question: \"Are both the directors of Jaws and Casino Royale from the same country?\"\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Who is the director of Jaws?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nThe director of Jaws is Steven Spielberg...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information.\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Where is Steven Spielberg from?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nSteven Allan Spielberg is an American filmmaker...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information...\n\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Who is the director of Casino Royale?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nCasino Royale is a 2006 spy film directed by Martin Campbell...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information...\n\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Where is Martin Campbell from?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nMartin Campbell (born 24 October 1943) is a New Zealand film and television director...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information...\n\n"
|
||||
"Assistant:\nIt's enough to answer the question\n"
|
||||
REASON_PROMPT = f"""You are an advanced reasoning agent. Your goal is to answer the user's question by breaking it down into a series of verifiable steps.
|
||||
|
||||
"-- Example 2 --\n" #########################################
|
||||
"Question: \"When was the founder of craigslist born?\"\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Who was the founder of craigslist?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nCraigslist was founded by Craig Newmark...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information.\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY} When was Craig Newmark born?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nCraig Newmark was born on December 6, 1952...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information...\n\n"
|
||||
"Assistant:\nIt's enough to answer the question\n"
|
||||
"**Remember**:\n"
|
||||
f"- You have a dataset to search, so you just provide a proper search query.\n"
|
||||
f"- Use {BEGIN_SEARCH_QUERY} to request a dataset search and end with {END_SEARCH_QUERY}.\n"
|
||||
"- The language of query MUST be as the same as 'Question' or 'search result'.\n"
|
||||
"- If no helpful information can be found, rewrite the search query to be less and precise keywords.\n"
|
||||
"- When done searching, continue your reasoning.\n\n"
|
||||
'Please answer the following question. You should think step by step to solve it.\n\n'
|
||||
)
|
||||
You have access to a powerful search tool to find information.
|
||||
|
||||
RELEVANT_EXTRACTION_PROMPT = """**Task Instruction:**
|
||||
**Your Task:**
|
||||
1. Analyze the user's question.
|
||||
2. If you need information, issue a search query to find a specific fact.
|
||||
3. Review the search results.
|
||||
4. Repeat the search process until you have all the facts needed to answer the question.
|
||||
5. Once you have gathered sufficient information, synthesize the facts and provide the final answer directly.
|
||||
|
||||
You are tasked with reading and analyzing web pages based on the following inputs: **Previous Reasoning Steps**, **Current Search Query**, and **Searched Web Pages**. Your objective is to extract relevant and helpful information for **Current Search Query** from the **Searched Web Pages** and seamlessly integrate this information into the **Previous Reasoning Steps** to continue reasoning for the original question.
|
||||
**Tool Usage:**
|
||||
- To search, you MUST write your query between the special tokens: {BEGIN_SEARCH_QUERY}your query{END_SEARCH_QUERY}.
|
||||
- The system will provide results between {BEGIN_SEARCH_RESULT}search results{END_SEARCH_RESULT}.
|
||||
- You have a maximum of {MAX_SEARCH_LIMIT} search attempts.
|
||||
|
||||
**Guidelines:**
|
||||
---
|
||||
**Example 1: Multi-hop Question**
|
||||
|
||||
1. **Analyze the Searched Web Pages:**
|
||||
- Carefully review the content of each searched web page.
|
||||
- Identify factual information that is relevant to the **Current Search Query** and can aid in the reasoning process for the original question.
|
||||
**Question:** "Are both the directors of Jaws and Casino Royale from the same country?"
|
||||
|
||||
2. **Extract Relevant Information:**
|
||||
- Select the information from the Searched Web Pages that directly contributes to advancing the **Previous Reasoning Steps**.
|
||||
- Ensure that the extracted information is accurate and relevant.
|
||||
**Your Thought Process & Actions:**
|
||||
First, I need to identify the director of Jaws.
|
||||
{BEGIN_SEARCH_QUERY}who is the director of Jaws?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Jaws is a 1975 American thriller film directed by Steven Spielberg.
|
||||
{END_SEARCH_RESULT}
|
||||
Okay, the director of Jaws is Steven Spielberg. Now I need to find out his nationality.
|
||||
{BEGIN_SEARCH_QUERY}where is Steven Spielberg from?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Steven Allan Spielberg is an American filmmaker. Born in Cincinnati, Ohio...
|
||||
{END_SEARCH_RESULT}
|
||||
So, Steven Spielberg is from the USA. Next, I need to find the director of Casino Royale.
|
||||
{BEGIN_SEARCH_QUERY}who is the director of Casino Royale 2006?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Casino Royale is a 2006 spy film directed by Martin Campbell.
|
||||
{END_SEARCH_RESULT}
|
||||
The director of Casino Royale is Martin Campbell. Now I need his nationality.
|
||||
{BEGIN_SEARCH_QUERY}where is Martin Campbell from?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Martin Campbell (born 24 October 1943) is a New Zealand film and television director.
|
||||
{END_SEARCH_RESULT}
|
||||
I have all the information. Steven Spielberg is from the USA, and Martin Campbell is from New Zealand. They are not from the same country.
|
||||
|
||||
3. **Output Format:**
|
||||
- **If the web pages provide helpful information for current search query:** Present the information beginning with `**Final Information**` as shown below.
|
||||
- The language of query **MUST BE** as the same as 'Search Query' or 'Web Pages'.\n"
|
||||
**Final Information**
|
||||
Final Answer: No, the directors of Jaws and Casino Royale are not from the same country. Steven Spielberg is from the USA, and Martin Campbell is from New Zealand.
|
||||
|
||||
[Helpful information]
|
||||
---
|
||||
**Example 2: Simple Fact Retrieval**
|
||||
|
||||
- **If the web pages do not provide any helpful information for current search query:** Output the following text.
|
||||
**Question:** "When was the founder of craigslist born?"
|
||||
|
||||
**Final Information**
|
||||
**Your Thought Process & Actions:**
|
||||
First, I need to know who founded craigslist.
|
||||
{BEGIN_SEARCH_QUERY}who founded craigslist?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Craigslist was founded in 1995 by Craig Newmark.
|
||||
{END_SEARCH_RESULT}
|
||||
The founder is Craig Newmark. Now I need his birth date.
|
||||
{BEGIN_SEARCH_QUERY}when was Craig Newmark born?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Craig Newmark was born on December 6, 1952.
|
||||
{END_SEARCH_RESULT}
|
||||
I have found the answer.
|
||||
|
||||
No helpful information found.
|
||||
Final Answer: The founder of craigslist, Craig Newmark, was born on December 6, 1952.
|
||||
|
||||
**Inputs:**
|
||||
- **Previous Reasoning Steps:**
|
||||
{prev_reasoning}
|
||||
---
|
||||
**Important Rules:**
|
||||
- **One Fact at a Time:** Decompose the problem and issue one search query at a time to find a single, specific piece of information.
|
||||
- **Be Precise:** Formulate clear and precise search queries. If a search fails, rephrase it.
|
||||
- **Synthesize at the End:** Do not provide the final answer until you have completed all necessary searches.
|
||||
- **Language Consistency:** Your search queries should be in the same language as the user's question.
|
||||
|
||||
- **Current Search Query:**
|
||||
{search_query}
|
||||
Now, begin your work. Please answer the following question by thinking step-by-step.
|
||||
"""
|
||||
|
||||
- **Searched Web Pages:**
|
||||
{document}
|
||||
RELEVANT_EXTRACTION_PROMPT = """You are a highly efficient information extraction module. Your sole purpose is to extract the single most relevant piece of information from the provided `Searched Web Pages` that directly answers the `Current Search Query`.
|
||||
|
||||
"""
|
||||
**Your Task:**
|
||||
1. Read the `Current Search Query` to understand what specific information is needed.
|
||||
2. Scan the `Searched Web Pages` to find the answer to that query.
|
||||
3. Extract only the essential, factual information that answers the query. Be concise.
|
||||
|
||||
**Context (For Your Information Only):**
|
||||
The `Previous Reasoning Steps` are provided to give you context on the overall goal, but your primary focus MUST be on answering the `Current Search Query`. Do not use information from the previous steps in your output.
|
||||
|
||||
**Output Format:**
|
||||
Your response must follow one of two formats precisely.
|
||||
|
||||
1. **If a direct and relevant answer is found:**
|
||||
- Start your response immediately with `Final Information`.
|
||||
- Provide only the extracted fact(s). Do not add any extra conversational text.
|
||||
|
||||
*Example:*
|
||||
`Current Search Query`: Where is Martin Campbell from?
|
||||
`Searched Web Pages`: [Long article snippet about Martin Campbell's career, which includes the sentence "Martin Campbell (born 24 October 1943) is a New Zealand film and television director..."]
|
||||
|
||||
*Your Output:*
|
||||
Final Information
|
||||
Martin Campbell is a New Zealand film and television director.
|
||||
|
||||
2. **If no relevant answer that directly addresses the query is found in the web pages:**
|
||||
- Start your response immediately with `Final Information`.
|
||||
- Write the exact phrase: `No helpful information found.`
|
||||
|
||||
---
|
||||
**BEGIN TASK**
|
||||
|
||||
**Inputs:**
|
||||
|
||||
- **Previous Reasoning Steps:**
|
||||
{prev_reasoning}
|
||||
|
||||
- **Current Search Query:**
|
||||
{search_query}
|
||||
|
||||
- **Searched Web Pages:**
|
||||
{document}
|
||||
"""
|
||||
@ -66,7 +66,8 @@ def set_conversation():
|
||||
e, dia = DialogService.get_by_id(req["dialog_id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="Dialog not found")
|
||||
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": name, "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}],"user_id": current_user.id}
|
||||
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": name, "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}],"user_id": current_user.id,
|
||||
"reference":[{}],}
|
||||
ConversationService.save(**conv)
|
||||
return get_json_result(data=conv)
|
||||
except Exception as e:
|
||||
|
||||
@ -32,7 +32,8 @@ from api.utils.api_utils import get_json_result
|
||||
@login_required
|
||||
def set_dialog():
|
||||
req = request.json
|
||||
dialog_id = req.get("dialog_id")
|
||||
dialog_id = req.get("dialog_id", "")
|
||||
is_create = not dialog_id
|
||||
name = req.get("name", "New Dialog")
|
||||
if not isinstance(name, str):
|
||||
return get_data_error_result(message="Dialog name must be string.")
|
||||
@ -52,15 +53,16 @@ def set_dialog():
|
||||
llm_setting = req.get("llm_setting", {})
|
||||
prompt_config = req["prompt_config"]
|
||||
|
||||
if not req.get("kb_ids", []) and not prompt_config.get("tavily_api_key") and "{knowledge}" in prompt_config['system']:
|
||||
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base/Tavily used here.")
|
||||
if not is_create:
|
||||
if not req.get("kb_ids", []) and not prompt_config.get("tavily_api_key") and "{knowledge}" in prompt_config['system']:
|
||||
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base/Tavily used here.")
|
||||
|
||||
for p in prompt_config["parameters"]:
|
||||
if p["optional"]:
|
||||
continue
|
||||
if prompt_config["system"].find("{%s}" % p["key"]) < 0:
|
||||
return get_data_error_result(
|
||||
message="Parameter '{}' is not used".format(p["key"]))
|
||||
for p in prompt_config["parameters"]:
|
||||
if p["optional"]:
|
||||
continue
|
||||
if prompt_config["system"].find("{%s}" % p["key"]) < 0:
|
||||
return get_data_error_result(
|
||||
message="Parameter '{}' is not used".format(p["key"]))
|
||||
|
||||
try:
|
||||
e, tenant = TenantService.get_by_id(current_user.id)
|
||||
@ -153,6 +155,43 @@ def list_dialogs():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/next', methods=['POST']) # noqa: F821
|
||||
@login_required
|
||||
def list_dialogs_next():
|
||||
keywords = request.args.get("keywords", "")
|
||||
page_number = int(request.args.get("page", 0))
|
||||
items_per_page = int(request.args.get("page_size", 0))
|
||||
parser_id = request.args.get("parser_id")
|
||||
orderby = request.args.get("orderby", "create_time")
|
||||
if request.args.get("desc", "true").lower() == "false":
|
||||
desc = False
|
||||
else:
|
||||
desc = True
|
||||
|
||||
req = request.get_json()
|
||||
owner_ids = req.get("owner_ids", [])
|
||||
try:
|
||||
if not owner_ids:
|
||||
# tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
|
||||
# tenants = [tenant["tenant_id"] for tenant in tenants]
|
||||
tenants = [] # keep it here
|
||||
dialogs, total = DialogService.get_by_tenant_ids(
|
||||
tenants, current_user.id, page_number,
|
||||
items_per_page, orderby, desc, keywords, parser_id)
|
||||
else:
|
||||
tenants = owner_ids
|
||||
dialogs, total = DialogService.get_by_tenant_ids(
|
||||
tenants, current_user.id, 0,
|
||||
0, orderby, desc, keywords, parser_id)
|
||||
dialogs = [dialog for dialog in dialogs if dialog["tenant_id"] in tenants]
|
||||
total = len(dialogs)
|
||||
if page_number and items_per_page:
|
||||
dialogs = dialogs[(page_number-1)*items_per_page:page_number*items_per_page]
|
||||
return get_json_result(data={"dialogs": dialogs, "total": total})
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/rm', methods=['POST']) # noqa: F821
|
||||
@login_required
|
||||
@validate_request("dialog_ids")
|
||||
|
||||
@ -166,6 +166,17 @@ def create():
|
||||
if DocumentService.query(name=req["name"], kb_id=kb_id):
|
||||
return get_data_error_result(message="Duplicated document name in the same knowledgebase.")
|
||||
|
||||
kb_root_folder = FileService.get_kb_folder(kb.tenant_id)
|
||||
if not kb_root_folder:
|
||||
return get_data_error_result(message="Cannot find the root folder.")
|
||||
kb_folder = FileService.new_a_file_from_kb(
|
||||
kb.tenant_id,
|
||||
kb.name,
|
||||
kb_root_folder["id"],
|
||||
)
|
||||
if not kb_folder:
|
||||
return get_data_error_result(message="Cannot find the kb folder for this file.")
|
||||
|
||||
doc = DocumentService.insert(
|
||||
{
|
||||
"id": get_uuid(),
|
||||
@ -180,6 +191,9 @@ def create():
|
||||
"size": 0,
|
||||
}
|
||||
)
|
||||
|
||||
FileService.add_file_from_kb(doc.to_dict(), kb_folder["id"], kb.tenant_id)
|
||||
|
||||
return get_json_result(data=doc.to_json())
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
@ -206,6 +220,8 @@ def list_docs():
|
||||
desc = False
|
||||
else:
|
||||
desc = True
|
||||
create_time_from = int(request.args.get("create_time_from", 0))
|
||||
create_time_to = int(request.args.get("create_time_to", 0))
|
||||
|
||||
req = request.get_json()
|
||||
|
||||
@ -226,6 +242,14 @@ def list_docs():
|
||||
try:
|
||||
docs, tol = DocumentService.get_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, keywords, run_status, types, suffix)
|
||||
|
||||
if create_time_from or create_time_to:
|
||||
filtered_docs = []
|
||||
for doc in docs:
|
||||
doc_create_time = doc.get("create_time", 0)
|
||||
if (create_time_from == 0 or doc_create_time >= create_time_from) and (create_time_to == 0 or doc_create_time <= create_time_to):
|
||||
filtered_docs.append(doc)
|
||||
docs = filtered_docs
|
||||
|
||||
for doc_item in docs:
|
||||
if doc_item["thumbnail"] and not doc_item["thumbnail"].startswith(IMG_BASE64_PREFIX):
|
||||
doc_item["thumbnail"] = f"/v1/document/image/{kb_id}-{doc_item['thumbnail']}"
|
||||
|
||||
@ -247,7 +247,10 @@ def list_tags(kb_id):
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
|
||||
tags = settings.retrievaler.all_tags(current_user.id, [kb_id])
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retrievaler.all_tags(tenant["tenant_id"], [kb_id])
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
@ -263,7 +266,10 @@ def list_tags_from_kbs():
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
|
||||
tags = settings.retrievaler.all_tags(current_user.id, kb_ids)
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retrievaler.all_tags(tenant["tenant_id"], kb_ids)
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
|
||||
@ -15,7 +15,6 @@
|
||||
#
|
||||
import logging
|
||||
import json
|
||||
import base64
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
|
||||
@ -24,7 +23,7 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
|
||||
from api.db import StatusEnum, LLMType
|
||||
from api.db.db_models import TenantLLM
|
||||
from api.utils.api_utils import get_json_result
|
||||
from api.utils.base64_image import test_image_base64
|
||||
from api.utils.base64_image import test_image
|
||||
from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
|
||||
|
||||
|
||||
@ -82,7 +81,7 @@ def set_api_key():
|
||||
raise Exception(m)
|
||||
chat_passed = True
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
|
||||
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
|
||||
e)
|
||||
elif not rerank_passed and llm.model_type == LLMType.RERANK:
|
||||
assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
|
||||
@ -95,7 +94,7 @@ def set_api_key():
|
||||
rerank_passed = True
|
||||
logging.debug(f'passed model rerank {llm.llm_name}')
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
|
||||
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
|
||||
e)
|
||||
if any([embd_passed, chat_passed, rerank_passed]):
|
||||
msg = ''
|
||||
@ -230,7 +229,7 @@ def add_llm():
|
||||
if not tc and m.find("**ERROR**:") >= 0:
|
||||
raise Exception(m)
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({mdl_nm})." + str(
|
||||
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
|
||||
e)
|
||||
elif llm["model_type"] == LLMType.RERANK:
|
||||
assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
|
||||
@ -244,9 +243,9 @@ def add_llm():
|
||||
if len(arr) == 0:
|
||||
raise Exception("Not known.")
|
||||
except KeyError:
|
||||
msg += f"{factory} dose not support this model({mdl_nm})"
|
||||
msg += f"{factory} dose not support this model({factory}/{mdl_nm})"
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({mdl_nm})." + str(
|
||||
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
|
||||
e)
|
||||
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
|
||||
assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
|
||||
@ -256,12 +255,12 @@ def add_llm():
|
||||
base_url=llm["api_base"]
|
||||
)
|
||||
try:
|
||||
image_data = base64.b64decode(test_image_base64)
|
||||
image_data = test_image
|
||||
m, tc = mdl.describe(image_data)
|
||||
if not m and not tc:
|
||||
raise Exception(m)
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({mdl_nm})." + str(e)
|
||||
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
||||
elif llm["model_type"] == LLMType.TTS:
|
||||
assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
|
||||
mdl = TTSModel[factory](
|
||||
@ -271,7 +270,7 @@ def add_llm():
|
||||
for resp in mdl.tts("Hello~ Ragflower!"):
|
||||
pass
|
||||
except RuntimeError as e:
|
||||
msg += f"\nFail to access model({mdl_nm})." + str(e)
|
||||
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
||||
else:
|
||||
# TODO: check other type of models
|
||||
pass
|
||||
@ -359,8 +358,6 @@ def my_llms():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
|
||||
|
||||
@manager.route('/list', methods=['GET']) # noqa: F821
|
||||
@login_required
|
||||
def list_app():
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
#
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -13,6 +13,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import logging
|
||||
|
||||
from flask import request, jsonify
|
||||
|
||||
from api.db import LLMType
|
||||
@ -73,11 +75,13 @@ def retrieval(tenant_id):
|
||||
for c in ranks["chunks"]:
|
||||
e, doc = DocumentService.get_by_id( c["doc_id"])
|
||||
c.pop("vector", None)
|
||||
meta = getattr(doc, 'meta_fields', {})
|
||||
meta["doc_id"] = c["doc_id"]
|
||||
records.append({
|
||||
"content": c["content_with_weight"],
|
||||
"score": c["similarity"],
|
||||
"title": c["docnm_kwd"],
|
||||
"metadata": doc.meta_fields
|
||||
"metadata": meta
|
||||
})
|
||||
|
||||
return jsonify({"records": records})
|
||||
@ -87,4 +91,5 @@ def retrieval(tenant_id):
|
||||
message='No chunk found! Check the chunk status please!',
|
||||
code=settings.RetCode.NOT_FOUND
|
||||
)
|
||||
logging.exception(e)
|
||||
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)
|
||||
|
||||
@ -38,7 +38,7 @@ from api.utils.api_utils import check_duplicate_ids, construct_json_result, get_
|
||||
from rag.app.qa import beAdoc, rmPrefix
|
||||
from rag.app.tag import label_question
|
||||
from rag.nlp import rag_tokenizer, search
|
||||
from rag.prompts import keyword_extraction, cross_languages
|
||||
from rag.prompts import cross_languages, keyword_extraction
|
||||
from rag.utils import rmSpace
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
@ -456,6 +456,18 @@ def list_docs(dataset_id, tenant_id):
|
||||
required: false
|
||||
default: true
|
||||
description: Order in descending.
|
||||
- in: query
|
||||
name: create_time_from
|
||||
type: integer
|
||||
required: false
|
||||
default: 0
|
||||
description: Unix timestamp for filtering documents created after this time. 0 means no filter.
|
||||
- in: query
|
||||
name: create_time_to
|
||||
type: integer
|
||||
required: false
|
||||
default: 0
|
||||
description: Unix timestamp for filtering documents created before this time. 0 means no filter.
|
||||
- in: header
|
||||
name: Authorization
|
||||
type: string
|
||||
@ -517,6 +529,17 @@ def list_docs(dataset_id, tenant_id):
|
||||
desc = True
|
||||
docs, tol = DocumentService.get_list(dataset_id, page, page_size, orderby, desc, keywords, id, name)
|
||||
|
||||
create_time_from = int(request.args.get("create_time_from", 0))
|
||||
create_time_to = int(request.args.get("create_time_to", 0))
|
||||
|
||||
if create_time_from or create_time_to:
|
||||
filtered_docs = []
|
||||
for doc in docs:
|
||||
doc_create_time = doc.get("create_time", 0)
|
||||
if (create_time_from == 0 or doc_create_time >= create_time_from) and (create_time_to == 0 or doc_create_time <= create_time_to):
|
||||
filtered_docs.append(doc)
|
||||
docs = filtered_docs
|
||||
|
||||
# rename key's name
|
||||
renamed_doc_list = []
|
||||
key_mapping = {
|
||||
|
||||
@ -51,6 +51,7 @@ def create(tenant_id, chat_id):
|
||||
"name": req.get("name", "New session"),
|
||||
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
|
||||
"user_id": req.get("user_id", ""),
|
||||
"reference": [{}],
|
||||
}
|
||||
if not conv.get("name"):
|
||||
return get_error_data_result(message="`name` can not be empty.")
|
||||
@ -435,14 +436,38 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
|
||||
)
|
||||
)
|
||||
|
||||
# Get the last user message as the question
|
||||
question = next((m["content"] for m in reversed(messages) if m["role"] == "user"), "")
|
||||
|
||||
if req.get("stream", True):
|
||||
return Response(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", req.get("metadata", {}).get("id", "")), stream=True), mimetype="text/event-stream")
|
||||
stream = req.pop("stream", False)
|
||||
if stream:
|
||||
resp = Response(
|
||||
completionOpenAI(
|
||||
tenant_id,
|
||||
agent_id,
|
||||
question,
|
||||
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
|
||||
stream=True,
|
||||
**req,
|
||||
),
|
||||
mimetype="text/event-stream",
|
||||
)
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
resp.headers.add_header("Connection", "keep-alive")
|
||||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||||
return resp
|
||||
else:
|
||||
# For non-streaming, just return the response directly
|
||||
response = next(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", req.get("metadata", {}).get("id", "")), stream=False))
|
||||
response = next(
|
||||
completionOpenAI(
|
||||
tenant_id,
|
||||
agent_id,
|
||||
question,
|
||||
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
|
||||
stream=False,
|
||||
**req,
|
||||
)
|
||||
)
|
||||
return jsonify(response)
|
||||
|
||||
|
||||
@ -450,41 +475,38 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
|
||||
@token_required
|
||||
def agent_completions(tenant_id, agent_id):
|
||||
req = request.json
|
||||
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
|
||||
if not cvs:
|
||||
return get_error_data_result(f"You don't own the agent {agent_id}")
|
||||
if req.get("session_id"):
|
||||
dsl = cvs[0].dsl
|
||||
if not isinstance(dsl, str):
|
||||
dsl = json.dumps(dsl)
|
||||
|
||||
conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
|
||||
if not conv:
|
||||
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
||||
# If an update to UserCanvas is detected, update the API4Conversation.dsl
|
||||
sync_dsl = req.get("sync_dsl", False)
|
||||
if sync_dsl is True and cvs[0].update_time > conv[0].update_time:
|
||||
current_dsl = conv[0].dsl
|
||||
new_dsl = json.loads(dsl)
|
||||
state_fields = ["history", "messages", "path", "reference"]
|
||||
states = {field: current_dsl.get(field, []) for field in state_fields}
|
||||
current_dsl.update(new_dsl)
|
||||
current_dsl.update(states)
|
||||
API4ConversationService.update_by_id(req["session_id"], {"dsl": current_dsl})
|
||||
else:
|
||||
req["question"] = ""
|
||||
ans = {}
|
||||
if req.get("stream", True):
|
||||
resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
|
||||
|
||||
def generate():
|
||||
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
||||
if isinstance(answer, str):
|
||||
try:
|
||||
ans = json.loads(answer[5:]) # remove "data:"
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
if ans.get("event") != "message":
|
||||
continue
|
||||
|
||||
yield answer
|
||||
|
||||
yield "data:[DONE]\n\n"
|
||||
|
||||
resp = Response(generate(), mimetype="text/event-stream")
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
resp.headers.add_header("Connection", "keep-alive")
|
||||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||||
return resp
|
||||
try:
|
||||
for answer in agent_completion(tenant_id, agent_id, **req):
|
||||
return get_result(data=answer)
|
||||
except Exception as e:
|
||||
return get_error_data_result(str(e))
|
||||
|
||||
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
||||
try:
|
||||
ans = json.loads(answer[5:]) # remove "data:"
|
||||
except Exception as e:
|
||||
return get_result(data=f"**ERROR**: {str(e)}")
|
||||
return get_result(data=ans)
|
||||
|
||||
|
||||
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
|
||||
@ -512,16 +534,16 @@ def list_session(tenant_id, chat_id):
|
||||
if "prompt" in info:
|
||||
info.pop("prompt")
|
||||
conv["chat_id"] = conv.pop("dialog_id")
|
||||
if conv["reference"]:
|
||||
ref_messages = conv["reference"]
|
||||
if ref_messages:
|
||||
messages = conv["messages"]
|
||||
message_num = 0
|
||||
while message_num < len(messages) and message_num < len(conv["reference"]):
|
||||
if message_num != 0 and messages[message_num]["role"] != "user":
|
||||
if message_num >= len(conv["reference"]):
|
||||
break
|
||||
ref_num = 0
|
||||
while message_num < len(messages) and ref_num < len(ref_messages):
|
||||
if messages[message_num]["role"] != "user":
|
||||
chunk_list = []
|
||||
if "chunks" in conv["reference"][message_num]:
|
||||
chunks = conv["reference"][message_num]["chunks"]
|
||||
if "chunks" in ref_messages[ref_num]:
|
||||
chunks = ref_messages[ref_num]["chunks"]
|
||||
for chunk in chunks:
|
||||
new_chunk = {
|
||||
"id": chunk.get("chunk_id", chunk.get("id")),
|
||||
@ -535,6 +557,7 @@ def list_session(tenant_id, chat_id):
|
||||
|
||||
chunk_list.append(new_chunk)
|
||||
messages[message_num]["reference"] = chunk_list
|
||||
ref_num += 1
|
||||
message_num += 1
|
||||
del conv["reference"]
|
||||
return get_result(data=convs)
|
||||
@ -810,48 +833,34 @@ def chatbot_completions(dialog_id):
|
||||
|
||||
|
||||
@manager.route("/agentbots/<agent_id>/completions", methods=["POST"]) # noqa: F821
|
||||
def agent_bot_completions(agent_id):
|
||||
@token_required
|
||||
def agent_bot_completions(tenant_id, agent_id):
|
||||
req = request.json
|
||||
|
||||
token = request.headers.get("Authorization").split()
|
||||
if len(token) != 2:
|
||||
return get_error_data_result(message='Authorization is not valid!"')
|
||||
token = token[1]
|
||||
objs = APIToken.query(beta=token)
|
||||
if not objs:
|
||||
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
||||
|
||||
if req.get("stream", True):
|
||||
resp = Response(agent_completion(objs[0].tenant_id, agent_id, **req), mimetype="text/event-stream")
|
||||
resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
resp.headers.add_header("Connection", "keep-alive")
|
||||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||||
return resp
|
||||
|
||||
for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
|
||||
for answer in agent_completion(tenant_id, agent_id, **req):
|
||||
return get_result(data=answer)
|
||||
|
||||
|
||||
@manager.route("/agentbots/<agent_id>/inputs", methods=["GET"]) # noqa: F821
|
||||
def begin_inputs(agent_id):
|
||||
token = request.headers.get("Authorization").split()
|
||||
if len(token) != 2:
|
||||
return get_error_data_result(message='Authorization is not valid!"')
|
||||
token = token[1]
|
||||
objs = APIToken.query(beta=token)
|
||||
if not objs:
|
||||
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
||||
|
||||
@token_required
|
||||
def begin_inputs(tenant_id, agent_id):
|
||||
e, cvs = UserCanvasService.get_by_id(agent_id)
|
||||
if not e:
|
||||
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
|
||||
|
||||
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
|
||||
return get_result(data={
|
||||
"title": cvs.title,
|
||||
"avatar": cvs.avatar,
|
||||
"inputs": canvas.get_component_input_form("begin")
|
||||
})
|
||||
|
||||
|
||||
canvas = Canvas(json.dumps(cvs.dsl), tenant_id)
|
||||
return get_result(
|
||||
data={
|
||||
"title": cvs.title,
|
||||
"avatar": cvs.avatar,
|
||||
"inputs": canvas.get_component_input_form("begin"),
|
||||
}
|
||||
)
|
||||
|
||||
@ -16,7 +16,6 @@
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
import traceback
|
||||
from uuid import uuid4
|
||||
from agent.canvas import Canvas
|
||||
from api.db import TenantPermission
|
||||
@ -54,12 +53,12 @@ class UserCanvasService(CommonService):
|
||||
agents = agents.paginate(page_number, items_per_page)
|
||||
|
||||
return list(agents.dicts())
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_by_tenant_id(cls, pid):
|
||||
try:
|
||||
|
||||
|
||||
fields = [
|
||||
cls.model.id,
|
||||
cls.model.avatar,
|
||||
@ -83,7 +82,7 @@ class UserCanvasService(CommonService):
|
||||
except Exception as e:
|
||||
logging.exception(e)
|
||||
return False, None
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
|
||||
@ -103,14 +102,14 @@ class UserCanvasService(CommonService):
|
||||
]
|
||||
if keywords:
|
||||
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
||||
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
||||
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
||||
TenantPermission.TEAM.value)) | (
|
||||
cls.model.user_id == user_id)),
|
||||
(fn.LOWER(cls.model.title).contains(keywords.lower()))
|
||||
)
|
||||
else:
|
||||
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
||||
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
||||
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
||||
TenantPermission.TEAM.value)) | (
|
||||
cls.model.user_id == user_id))
|
||||
)
|
||||
@ -124,7 +123,7 @@ class UserCanvasService(CommonService):
|
||||
|
||||
|
||||
def completion(tenant_id, agent_id, session_id=None, **kwargs):
|
||||
query = kwargs.get("query", "")
|
||||
query = kwargs.get("query", "") or kwargs.get("question", "")
|
||||
files = kwargs.get("files", [])
|
||||
inputs = kwargs.get("inputs", {})
|
||||
user_id = kwargs.get("user_id", "")
|
||||
@ -173,223 +172,104 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
|
||||
conv.message.append({"role": "assistant", "content": txt, "created_at": time.time(), "id": message_id})
|
||||
conv.reference = canvas.get_reference()
|
||||
conv.errors = canvas.error
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
conv = conv.to_dict()
|
||||
API4ConversationService.append_message(conv["id"], conv)
|
||||
|
||||
|
||||
def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
|
||||
"""Main function for OpenAI-compatible completions, structured similarly to the completion function."""
|
||||
tiktokenenc = tiktoken.get_encoding("cl100k_base")
|
||||
e, cvs = UserCanvasService.get_by_id(agent_id)
|
||||
|
||||
if not e:
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content="**ERROR**: Agent not found."
|
||||
)
|
||||
return
|
||||
|
||||
if cvs.user_id != tenant_id:
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content="**ERROR**: You do not own the agent"
|
||||
)
|
||||
return
|
||||
|
||||
if not isinstance(cvs.dsl, str):
|
||||
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
||||
|
||||
canvas = Canvas(cvs.dsl, tenant_id)
|
||||
canvas.reset()
|
||||
message_id = str(uuid4())
|
||||
|
||||
# Handle new session creation
|
||||
if not session_id:
|
||||
query = canvas.get_preset_param()
|
||||
if query:
|
||||
for ele in query:
|
||||
if not ele["optional"]:
|
||||
if not kwargs.get(ele["key"]):
|
||||
yield get_data_openai(
|
||||
id=None,
|
||||
model=agent_id,
|
||||
content=f"`{ele['key']}` is required",
|
||||
completion_tokens=len(tiktokenenc.encode(f"`{ele['key']}` is required")),
|
||||
prompt_tokens=len(tiktokenenc.encode(question if question else ""))
|
||||
)
|
||||
return
|
||||
ele["value"] = kwargs[ele["key"]]
|
||||
if ele["optional"]:
|
||||
if kwargs.get(ele["key"]):
|
||||
ele["value"] = kwargs[ele['key']]
|
||||
else:
|
||||
if "value" in ele:
|
||||
ele.pop("value")
|
||||
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
session_id = get_uuid()
|
||||
conv = {
|
||||
"id": session_id,
|
||||
"dialog_id": cvs.id,
|
||||
"user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
|
||||
"message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
|
||||
"source": "agent",
|
||||
"dsl": cvs.dsl
|
||||
}
|
||||
canvas.messages.append({"role": "user", "content": question, "id": message_id})
|
||||
canvas.add_user_input(question)
|
||||
|
||||
API4ConversationService.save(**conv)
|
||||
conv = API4Conversation(**conv)
|
||||
if not conv.message:
|
||||
conv.message = []
|
||||
conv.message.append({
|
||||
"role": "user",
|
||||
"content": question,
|
||||
"id": message_id
|
||||
})
|
||||
|
||||
if not conv.reference:
|
||||
conv.reference = []
|
||||
conv.reference.append({"chunks": [], "doc_aggs": []})
|
||||
|
||||
# Handle existing session
|
||||
else:
|
||||
e, conv = API4ConversationService.get_by_id(session_id)
|
||||
if not e:
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content="**ERROR**: Session not found!"
|
||||
)
|
||||
return
|
||||
|
||||
canvas = Canvas(json.dumps(conv.dsl), tenant_id)
|
||||
canvas.messages.append({"role": "user", "content": question, "id": message_id})
|
||||
canvas.add_user_input(question)
|
||||
|
||||
if not conv.message:
|
||||
conv.message = []
|
||||
conv.message.append({
|
||||
"role": "user",
|
||||
"content": question,
|
||||
"id": message_id
|
||||
})
|
||||
|
||||
if not conv.reference:
|
||||
conv.reference = []
|
||||
conv.reference.append({"chunks": [], "doc_aggs": []})
|
||||
|
||||
# Process request based on stream mode
|
||||
final_ans = {"reference": [], "content": ""}
|
||||
prompt_tokens = len(tiktokenenc.encode(str(question)))
|
||||
|
||||
user_id = kwargs.get("user_id", "")
|
||||
|
||||
if stream:
|
||||
completion_tokens = 0
|
||||
try:
|
||||
completion_tokens = 0
|
||||
for ans in canvas.run(stream=True, bypass_begin=True):
|
||||
if ans.get("running_status"):
|
||||
completion_tokens += len(tiktokenenc.encode(ans.get("content", "")))
|
||||
yield "data: " + json.dumps(
|
||||
get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content=ans["content"],
|
||||
object="chat.completion.chunk",
|
||||
completion_tokens=completion_tokens,
|
||||
prompt_tokens=prompt_tokens
|
||||
),
|
||||
ensure_ascii=False
|
||||
) + "\n\n"
|
||||
for ans in completion(
|
||||
tenant_id=tenant_id,
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
query=question,
|
||||
user_id=user_id,
|
||||
**kwargs
|
||||
):
|
||||
if isinstance(ans, str):
|
||||
try:
|
||||
ans = json.loads(ans[5:]) # remove "data:"
|
||||
except Exception as e:
|
||||
logging.exception(f"Agent OpenAI-Compatible completionOpenAI parse answer failed: {e}")
|
||||
continue
|
||||
|
||||
if ans.get("event") != "message":
|
||||
continue
|
||||
|
||||
for k in ans.keys():
|
||||
final_ans[k] = ans[k]
|
||||
|
||||
completion_tokens += len(tiktokenenc.encode(final_ans.get("content", "")))
|
||||
|
||||
content_piece = ans["data"]["content"]
|
||||
completion_tokens += len(tiktokenenc.encode(content_piece))
|
||||
|
||||
yield "data: " + json.dumps(
|
||||
get_data_openai(
|
||||
id=session_id,
|
||||
id=session_id or str(uuid4()),
|
||||
model=agent_id,
|
||||
content=final_ans["content"],
|
||||
object="chat.completion.chunk",
|
||||
finish_reason="stop",
|
||||
content=content_piece,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
prompt_tokens=prompt_tokens
|
||||
stream=True
|
||||
),
|
||||
ensure_ascii=False
|
||||
) + "\n\n"
|
||||
|
||||
# Update conversation
|
||||
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
|
||||
canvas.history.append(("assistant", final_ans["content"]))
|
||||
if final_ans.get("reference"):
|
||||
canvas.reference.append(final_ans["reference"])
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
|
||||
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
yield "data: " + json.dumps(
|
||||
get_data_openai(
|
||||
id=session_id,
|
||||
id=session_id or str(uuid4()),
|
||||
model=agent_id,
|
||||
content="**ERROR**: " + str(e),
|
||||
content=f"**ERROR**: {str(e)}",
|
||||
finish_reason="stop",
|
||||
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
|
||||
prompt_tokens=prompt_tokens
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=len(tiktokenenc.encode(f"**ERROR**: {str(e)}")),
|
||||
stream=True
|
||||
),
|
||||
ensure_ascii=False
|
||||
) + "\n\n"
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
else: # Non-streaming mode
|
||||
|
||||
else:
|
||||
try:
|
||||
all_answer_content = ""
|
||||
for answer in canvas.run(stream=False, bypass_begin=True):
|
||||
if answer.get("running_status"):
|
||||
all_content = ""
|
||||
for ans in completion(
|
||||
tenant_id=tenant_id,
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
query=question,
|
||||
user_id=user_id,
|
||||
**kwargs
|
||||
):
|
||||
if isinstance(ans, str):
|
||||
ans = json.loads(ans[5:])
|
||||
if ans.get("event") != "message":
|
||||
continue
|
||||
|
||||
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
|
||||
final_ans["reference"] = answer.get("reference", [])
|
||||
all_answer_content += final_ans["content"]
|
||||
|
||||
final_ans["content"] = all_answer_content
|
||||
|
||||
# Update conversation
|
||||
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
|
||||
canvas.history.append(("assistant", final_ans["content"]))
|
||||
if final_ans.get("reference"):
|
||||
canvas.reference.append(final_ans["reference"])
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
|
||||
# Return the response in OpenAI format
|
||||
all_content += ans["data"]["content"]
|
||||
|
||||
completion_tokens = len(tiktokenenc.encode(all_content))
|
||||
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
id=session_id or str(uuid4()),
|
||||
model=agent_id,
|
||||
content=final_ans["content"],
|
||||
finish_reason="stop",
|
||||
completion_tokens=len(tiktokenenc.encode(final_ans["content"])),
|
||||
prompt_tokens=prompt_tokens,
|
||||
param=canvas.get_preset_param() # Added param info like in completion
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content="**ERROR**: " + str(e),
|
||||
completion_tokens=completion_tokens,
|
||||
content=all_content,
|
||||
finish_reason="stop",
|
||||
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
|
||||
prompt_tokens=prompt_tokens
|
||||
param=None
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
yield get_data_openai(
|
||||
id=session_id or str(uuid4()),
|
||||
model=agent_id,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=len(tiktokenenc.encode(f"**ERROR**: {str(e)}")),
|
||||
content=f"**ERROR**: {str(e)}",
|
||||
finish_reason="stop",
|
||||
param=None
|
||||
)
|
||||
|
||||
@ -23,6 +23,7 @@ from functools import partial
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from langfuse import Langfuse
|
||||
from peewee import fn
|
||||
|
||||
from agentic_reasoning import DeepResearcher
|
||||
from api import settings
|
||||
@ -96,6 +97,66 @@ class DialogService(CommonService):
|
||||
return list(chats.dicts())
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_by_tenant_ids(cls, joined_tenant_ids, user_id, page_number, items_per_page, orderby, desc, keywords, parser_id=None):
|
||||
from api.db.db_models import User
|
||||
|
||||
fields = [
|
||||
cls.model.id,
|
||||
cls.model.tenant_id,
|
||||
cls.model.name,
|
||||
cls.model.description,
|
||||
cls.model.language,
|
||||
cls.model.llm_id,
|
||||
cls.model.llm_setting,
|
||||
cls.model.prompt_type,
|
||||
cls.model.prompt_config,
|
||||
cls.model.similarity_threshold,
|
||||
cls.model.vector_similarity_weight,
|
||||
cls.model.top_n,
|
||||
cls.model.top_k,
|
||||
cls.model.do_refer,
|
||||
cls.model.rerank_id,
|
||||
cls.model.kb_ids,
|
||||
cls.model.status,
|
||||
User.nickname,
|
||||
User.avatar.alias("tenant_avatar"),
|
||||
cls.model.update_time,
|
||||
cls.model.create_time,
|
||||
]
|
||||
if keywords:
|
||||
dialogs = (
|
||||
cls.model.select(*fields)
|
||||
.join(User, on=(cls.model.tenant_id == User.id))
|
||||
.where(
|
||||
(cls.model.tenant_id.in_(joined_tenant_ids) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value),
|
||||
(fn.LOWER(cls.model.name).contains(keywords.lower())),
|
||||
)
|
||||
)
|
||||
else:
|
||||
dialogs = (
|
||||
cls.model.select(*fields)
|
||||
.join(User, on=(cls.model.tenant_id == User.id))
|
||||
.where(
|
||||
(cls.model.tenant_id.in_(joined_tenant_ids) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value),
|
||||
)
|
||||
)
|
||||
if parser_id:
|
||||
dialogs = dialogs.where(cls.model.parser_id == parser_id)
|
||||
if desc:
|
||||
dialogs = dialogs.order_by(cls.model.getter_by(orderby).desc())
|
||||
else:
|
||||
dialogs = dialogs.order_by(cls.model.getter_by(orderby).asc())
|
||||
|
||||
count = dialogs.count()
|
||||
|
||||
if page_number and items_per_page:
|
||||
dialogs = dialogs.paginate(page_number, items_per_page)
|
||||
|
||||
return list(dialogs.dicts()), count
|
||||
|
||||
|
||||
def chat_solo(dialog, messages, stream=True):
|
||||
if TenantLLMService.llm_id2llm_type(dialog.llm_id) == "image2text":
|
||||
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
|
||||
@ -208,12 +269,14 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
check_llm_ts = timer()
|
||||
|
||||
langfuse_tracer = None
|
||||
trace_context = {}
|
||||
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=dialog.tenant_id)
|
||||
if langfuse_keys:
|
||||
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
|
||||
if langfuse.auth_check():
|
||||
langfuse_tracer = langfuse
|
||||
langfuse.trace = langfuse_tracer.trace(name=f"{dialog.name}-{llm_model_config['llm_name']}")
|
||||
trace_id = langfuse_tracer.create_trace_id()
|
||||
trace_context = {"trace_id": trace_id}
|
||||
|
||||
check_langfuse_tracer_ts = timer()
|
||||
kbs, embd_mdl, rerank_mdl, chat_mdl, tts_mdl = get_models(dialog)
|
||||
@ -400,17 +463,19 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
f" - Token speed: {int(tk_num / (generate_result_time_cost / 1000.0))}/s"
|
||||
)
|
||||
|
||||
langfuse_output = "\n" + re.sub(r"^.*?(### Query:.*)", r"\1", prompt, flags=re.DOTALL)
|
||||
langfuse_output = {"time_elapsed:": re.sub(r"\n", " \n", langfuse_output), "created_at": time.time()}
|
||||
|
||||
# Add a condition check to call the end method only if langfuse_tracer exists
|
||||
if langfuse_tracer and "langfuse_generation" in locals():
|
||||
langfuse_generation.end(output=langfuse_output)
|
||||
langfuse_output = "\n" + re.sub(r"^.*?(### Query:.*)", r"\1", prompt, flags=re.DOTALL)
|
||||
langfuse_output = {"time_elapsed:": re.sub(r"\n", " \n", langfuse_output), "created_at": time.time()}
|
||||
langfuse_generation.update(output=langfuse_output)
|
||||
langfuse_generation.end()
|
||||
|
||||
return {"answer": think + answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
|
||||
|
||||
if langfuse_tracer:
|
||||
langfuse_generation = langfuse_tracer.trace.generation(name="chat", model=llm_model_config["llm_name"], input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg})
|
||||
langfuse_generation = langfuse_tracer.start_generation(
|
||||
trace_context=trace_context, name="chat", model=llm_model_config["llm_name"], input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg}
|
||||
)
|
||||
|
||||
if stream:
|
||||
last_ans = ""
|
||||
|
||||
@ -217,7 +217,7 @@ class TenantLLMService(CommonService):
|
||||
return list(objs)
|
||||
|
||||
@staticmethod
|
||||
def llm_id2llm_type(llm_id: str) ->str|None:
|
||||
def llm_id2llm_type(llm_id: str) -> str | None:
|
||||
llm_id, *_ = TenantLLMService.split_model_name_and_factory(llm_id)
|
||||
llm_factories = settings.FACTORY_LLM_INFOS
|
||||
for llm_factory in llm_factories:
|
||||
@ -225,6 +225,14 @@ class TenantLLMService(CommonService):
|
||||
if llm_id == llm["llm_name"]:
|
||||
return llm["model_type"].split(",")[-1]
|
||||
|
||||
for llm in TenantLLMService.query(llm_name=llm_id):
|
||||
return llm.model_type
|
||||
|
||||
for llm in LLMService.query(llm_name=llm_id):
|
||||
return llm.model_type
|
||||
for llm in TenantLLMService.query(llm_name=llm_id):
|
||||
return llm.model_type
|
||||
|
||||
|
||||
class LLMBundle:
|
||||
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
|
||||
@ -240,13 +248,13 @@ class LLMBundle:
|
||||
self.verbose_tool_use = kwargs.get("verbose_tool_use")
|
||||
|
||||
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
|
||||
self.langfuse = None
|
||||
if langfuse_keys:
|
||||
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
|
||||
if langfuse.auth_check():
|
||||
self.langfuse = langfuse
|
||||
self.trace = self.langfuse.trace(name=f"{self.llm_type}-{self.llm_name}")
|
||||
else:
|
||||
self.langfuse = None
|
||||
trace_id = self.langfuse.create_trace_id()
|
||||
self.trace_context = {"trace_id": trace_id}
|
||||
|
||||
def bind_tools(self, toolcall_session, tools):
|
||||
if not self.is_tools:
|
||||
@ -256,7 +264,7 @@ class LLMBundle:
|
||||
|
||||
def encode(self, texts: list):
|
||||
if self.langfuse:
|
||||
generation = self.trace.generation(name="encode", model=self.llm_name, input={"texts": texts})
|
||||
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode", model=self.llm_name, input={"texts": texts})
|
||||
|
||||
embeddings, used_tokens = self.mdl.encode(texts)
|
||||
llm_name = getattr(self, "llm_name", None)
|
||||
@ -264,13 +272,14 @@ class LLMBundle:
|
||||
logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
|
||||
|
||||
if self.langfuse:
|
||||
generation.end(usage_details={"total_tokens": used_tokens})
|
||||
generation.update(usage_details={"total_tokens": used_tokens})
|
||||
generation.end()
|
||||
|
||||
return embeddings, used_tokens
|
||||
|
||||
def encode_queries(self, query: str):
|
||||
if self.langfuse:
|
||||
generation = self.trace.generation(name="encode_queries", model=self.llm_name, input={"query": query})
|
||||
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode_queries", model=self.llm_name, input={"query": query})
|
||||
|
||||
emd, used_tokens = self.mdl.encode_queries(query)
|
||||
llm_name = getattr(self, "llm_name", None)
|
||||
@ -278,65 +287,70 @@ class LLMBundle:
|
||||
logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
|
||||
|
||||
if self.langfuse:
|
||||
generation.end(usage_details={"total_tokens": used_tokens})
|
||||
generation.update(usage_details={"total_tokens": used_tokens})
|
||||
generation.end()
|
||||
|
||||
return emd, used_tokens
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
if self.langfuse:
|
||||
generation = self.trace.generation(name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
|
||||
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
|
||||
|
||||
sim, used_tokens = self.mdl.similarity(query, texts)
|
||||
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
||||
logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
|
||||
|
||||
if self.langfuse:
|
||||
generation.end(usage_details={"total_tokens": used_tokens})
|
||||
generation.update(usage_details={"total_tokens": used_tokens})
|
||||
generation.end()
|
||||
|
||||
return sim, used_tokens
|
||||
|
||||
def describe(self, image, max_tokens=300):
|
||||
if self.langfuse:
|
||||
generation = self.trace.generation(name="describe", metadata={"model": self.llm_name})
|
||||
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe", metadata={"model": self.llm_name})
|
||||
|
||||
txt, used_tokens = self.mdl.describe(image)
|
||||
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
||||
logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
||||
|
||||
if self.langfuse:
|
||||
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
||||
generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
||||
generation.end()
|
||||
|
||||
return txt
|
||||
|
||||
def describe_with_prompt(self, image, prompt):
|
||||
if self.langfuse:
|
||||
generation = self.trace.generation(name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
|
||||
generation = self.language.start_generation(trace_context=self.trace_context, name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
|
||||
|
||||
txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
|
||||
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
||||
logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
||||
|
||||
if self.langfuse:
|
||||
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
||||
generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
||||
generation.end()
|
||||
|
||||
return txt
|
||||
|
||||
def transcription(self, audio):
|
||||
if self.langfuse:
|
||||
generation = self.trace.generation(name="transcription", metadata={"model": self.llm_name})
|
||||
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="transcription", metadata={"model": self.llm_name})
|
||||
|
||||
txt, used_tokens = self.mdl.transcription(audio)
|
||||
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
||||
logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
||||
|
||||
if self.langfuse:
|
||||
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
||||
generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
||||
generation.end()
|
||||
|
||||
return txt
|
||||
|
||||
def tts(self, text: str) -> Generator[bytes, None, None]:
|
||||
if self.langfuse:
|
||||
span = self.trace.span(name="tts", input={"text": text})
|
||||
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="tts", input={"text": text})
|
||||
|
||||
for chunk in self.mdl.tts(text):
|
||||
if isinstance(chunk, int):
|
||||
@ -346,7 +360,7 @@ class LLMBundle:
|
||||
yield chunk
|
||||
|
||||
if self.langfuse:
|
||||
span.end()
|
||||
generation.end()
|
||||
|
||||
def _remove_reasoning_content(self, txt: str) -> str:
|
||||
first_think_start = txt.find("<think>")
|
||||
@ -362,9 +376,9 @@ class LLMBundle:
|
||||
|
||||
return txt[last_think_end + len("</think>") :]
|
||||
|
||||
def chat(self, system: str, history: list, gen_conf: dict={}, **kwargs) -> str:
|
||||
def chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs) -> str:
|
||||
if self.langfuse:
|
||||
generation = self.trace.generation(name="chat", model=self.llm_name, input={"system": system, "history": history})
|
||||
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat", model=self.llm_name, input={"system": system, "history": history})
|
||||
|
||||
chat_partial = partial(self.mdl.chat, system, history, gen_conf)
|
||||
if self.is_tools and self.mdl.is_tools:
|
||||
@ -380,13 +394,14 @@ class LLMBundle:
|
||||
logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
|
||||
|
||||
if self.langfuse:
|
||||
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
||||
generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
||||
generation.end()
|
||||
|
||||
return txt
|
||||
|
||||
def chat_streamly(self, system: str, history: list, gen_conf: dict={}, **kwargs):
|
||||
def chat_streamly(self, system: str, history: list, gen_conf: dict = {}, **kwargs):
|
||||
if self.langfuse:
|
||||
generation = self.trace.generation(name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
|
||||
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
|
||||
|
||||
ans = ""
|
||||
chat_partial = partial(self.mdl.chat_streamly, system, history, gen_conf)
|
||||
@ -398,7 +413,8 @@ class LLMBundle:
|
||||
if isinstance(txt, int):
|
||||
total_tokens = txt
|
||||
if self.langfuse:
|
||||
generation.end(output={"output": ans})
|
||||
generation.update(output={"output": ans})
|
||||
generation.end()
|
||||
break
|
||||
|
||||
if txt.endswith("</think>"):
|
||||
|
||||
@ -70,6 +70,7 @@ REGISTER_ENABLED = 1
|
||||
# sandbox-executor-manager
|
||||
SANDBOX_ENABLED = 0
|
||||
SANDBOX_HOST = None
|
||||
STRONG_TEST_COUNT = int(os.environ.get("STRONG_TEST_COUNT", "8"))
|
||||
|
||||
BUILTIN_EMBEDDING_MODELS = ["BAAI/bge-large-zh-v1.5@BAAI", "maidalun1020/bce-embedding-base_v1@Youdao"]
|
||||
|
||||
|
||||
@ -402,8 +402,22 @@ def get_data_openai(
|
||||
finish_reason=None,
|
||||
object="chat.completion",
|
||||
param=None,
|
||||
stream=False
|
||||
):
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
|
||||
if stream:
|
||||
return {
|
||||
"id": f"{id}",
|
||||
"object": "chat.completion.chunk",
|
||||
"model": model,
|
||||
"choices": [{
|
||||
"delta": {"content": content},
|
||||
"finish_reason": finish_reason,
|
||||
"index": 0,
|
||||
}],
|
||||
}
|
||||
|
||||
return {
|
||||
"id": f"{id}",
|
||||
"object": object,
|
||||
@ -414,9 +428,21 @@ def get_data_openai(
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": total_tokens,
|
||||
"completion_tokens_details": {"reasoning_tokens": 0, "accepted_prediction_tokens": 0, "rejected_prediction_tokens": 0},
|
||||
"completion_tokens_details": {
|
||||
"reasoning_tokens": 0,
|
||||
"accepted_prediction_tokens": 0,
|
||||
"rejected_prediction_tokens": 0,
|
||||
},
|
||||
},
|
||||
"choices": [{"message": {"role": "assistant", "content": content}, "logprobs": None, "finish_reason": finish_reason, "index": 0}],
|
||||
"choices": [{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": content
|
||||
},
|
||||
"logprobs": None,
|
||||
"finish_reason": finish_reason,
|
||||
"index": 0,
|
||||
}],
|
||||
}
|
||||
|
||||
|
||||
@ -687,7 +713,13 @@ def timeout(seconds: float | int = None, attempts: int = 2, *, exception: Option
|
||||
|
||||
|
||||
async def is_strong_enough(chat_model, embedding_model):
|
||||
@timeout(30, 2)
|
||||
count = settings.STRONG_TEST_COUNT
|
||||
if not chat_model or not embedding_model:
|
||||
return
|
||||
if isinstance(count, int) and count <= 0:
|
||||
return
|
||||
|
||||
@timeout(60, 2)
|
||||
async def _is_strong_enough():
|
||||
nonlocal chat_model, embedding_model
|
||||
if embedding_model:
|
||||
@ -701,5 +733,5 @@ async def is_strong_enough(chat_model, embedding_model):
|
||||
|
||||
# Pressure test for GraphRAG task
|
||||
async with trio.open_nursery() as nursery:
|
||||
for _ in range(32):
|
||||
for _ in range(count):
|
||||
nursery.start_soon(_is_strong_enough)
|
||||
|
||||
@ -1 +1,3 @@
|
||||
import base64
|
||||
test_image_base64 = "iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAIAAAD/gAIDAAAA6ElEQVR4nO3QwQ3AIBDAsIP9d25XIC+EZE8QZc18w5l9O+AlZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBT+IYAHHLHkdEgAAAABJRU5ErkJggg=="
|
||||
test_image = base64.b64decode(test_image_base64)
|
||||
@ -6,6 +6,34 @@
|
||||
"tags": "LLM,TEXT EMBEDDING,TTS,TEXT RE-RANK,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "gpt-5",
|
||||
"tags": "LLM,CHAT,400k,IMAGE2TEXT",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-mini",
|
||||
"tags": "LLM,CHAT,400k,IMAGE2TEXT",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-nano",
|
||||
"tags": "LLM,CHAT,400k,IMAGE2TEXT",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-chat-latest",
|
||||
"tags": "LLM,CHAT,400k,IMAGE2TEXT",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
@ -2598,234 +2626,255 @@
|
||||
"tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,IMAGE2TEXT",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "Qwen3-Embedding-8B",
|
||||
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen3-Embedding-4B",
|
||||
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen3-Embedding-0.6B",
|
||||
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-235B-A22B",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-30B-A3B",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-32B",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-14B",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-8B",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/QVQ-72B-Preview",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-R1",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-V3",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-V3",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-V3-1226",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-V2.5",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/QwQ-32B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 32768,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-VL-72B-Instruct",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,128k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-VL-7B-Instruct",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-Z1-32B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-4-32B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-Z1-9B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-4-9B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/chatglm3-6b",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/THUDM/glm-4-9b-chat",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-Z1-Rumination-32B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/glm-4-9b-chat",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/QwQ-32B-Preview",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-Coder-32B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2-VL-72B-Instruct",
|
||||
"tags": "LLM,IMAGE2TEXT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-72B-Instruct-128Kt",
|
||||
"tags": "LLM,IMAGE2TEXT,128k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
@ -2839,98 +2888,98 @@
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-72B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-32B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-14B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-Coder-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "internlm/internlm2_5-20b-chat",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "internlm/internlm2_5-7b-chat",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2-1.5B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-Coder-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2-VL-7B-Instruct",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2-1.5B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
@ -3267,45 +3316,52 @@
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "claude-opus-4-20250514",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-7-sonnet-20250219",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-5-sonnet-20241022",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"llm_name": "claude-opus-4-1-20250805",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-opus-20240229",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"llm_name": "claude-opus-4-20250514",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-7-sonnet-20250219",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-5-sonnet-20241022",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-5-haiku-20241022",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-haiku-20240307",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "image2text",
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
}
|
||||
]
|
||||
|
||||
@ -87,7 +87,7 @@ class RAGFlowPptParser:
|
||||
break
|
||||
texts = []
|
||||
for shape in sorted(
|
||||
slide.shapes, key=lambda x: ((x.top if x.top is not None else 0) // 10, x.left)):
|
||||
slide.shapes, key=lambda x: ((x.top if x.top is not None else 0) // 10, x.left if x.left is not None else 0)):
|
||||
try:
|
||||
txt = self.__extract(shape)
|
||||
if txt:
|
||||
@ -96,4 +96,4 @@ class RAGFlowPptParser:
|
||||
logging.exception(e)
|
||||
txts.append("\n".join(texts))
|
||||
|
||||
return txts
|
||||
return txts
|
||||
|
||||
@ -62,6 +62,8 @@ MYSQL_DBNAME=rag_flow
|
||||
# The port used to expose the MySQL service to the host machine,
|
||||
# allowing EXTERNAL access to the MySQL database running inside the Docker container.
|
||||
MYSQL_PORT=5455
|
||||
# The maximum size of communication packets sent to the MySQL server
|
||||
MYSQL_MAX_PACKET=1073741824
|
||||
|
||||
# The hostname where the MinIO service is exposed
|
||||
MINIO_HOST=minio
|
||||
|
||||
298
docker/migration.sh
Normal file
298
docker/migration.sh
Normal file
@ -0,0 +1,298 @@
|
||||
#!/bin/bash
|
||||
|
||||
# RAGFlow Data Migration Script
|
||||
# Usage: ./migration.sh [backup|restore] [backup_folder]
|
||||
#
|
||||
# This script helps you backup and restore RAGFlow Docker volumes
|
||||
# including MySQL, MinIO, Redis, and Elasticsearch data.
|
||||
|
||||
set -e # Exit on any error
|
||||
# Instead, we'll handle errors manually for better debugging experience
|
||||
|
||||
# Default values
|
||||
DEFAULT_BACKUP_FOLDER="backup"
|
||||
VOLUMES=("docker_mysql_data" "docker_minio_data" "docker_redis_data" "docker_esdata01")
|
||||
BACKUP_FILES=("mysql_backup.tar.gz" "minio_backup.tar.gz" "redis_backup.tar.gz" "es_backup.tar.gz")
|
||||
|
||||
# Function to display help information
|
||||
show_help() {
|
||||
echo "RAGFlow Data Migration Tool"
|
||||
echo ""
|
||||
echo "USAGE:"
|
||||
echo " $0 <operation> [backup_folder]"
|
||||
echo ""
|
||||
echo "OPERATIONS:"
|
||||
echo " backup - Create backup of all RAGFlow data volumes"
|
||||
echo " restore - Restore RAGFlow data volumes from backup"
|
||||
echo " help - Show this help message"
|
||||
echo ""
|
||||
echo "PARAMETERS:"
|
||||
echo " backup_folder - Name of backup folder (default: '$DEFAULT_BACKUP_FOLDER')"
|
||||
echo ""
|
||||
echo "EXAMPLES:"
|
||||
echo " $0 backup # Backup to './backup' folder"
|
||||
echo " $0 backup my_backup # Backup to './my_backup' folder"
|
||||
echo " $0 restore # Restore from './backup' folder"
|
||||
echo " $0 restore my_backup # Restore from './my_backup' folder"
|
||||
echo ""
|
||||
echo "DOCKER VOLUMES:"
|
||||
echo " - docker_mysql_data (MySQL database)"
|
||||
echo " - docker_minio_data (MinIO object storage)"
|
||||
echo " - docker_redis_data (Redis cache)"
|
||||
echo " - docker_esdata01 (Elasticsearch indices)"
|
||||
}
|
||||
|
||||
# Function to check if Docker is running
|
||||
check_docker() {
|
||||
if ! docker info >/dev/null 2>&1; then
|
||||
echo "❌ Error: Docker is not running or not accessible"
|
||||
echo "Please start Docker and try again"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
# Function to check if volume exists
|
||||
volume_exists() {
|
||||
local volume_name=$1
|
||||
docker volume inspect "$volume_name" >/dev/null 2>&1
|
||||
}
|
||||
|
||||
# Function to check if any containers are using the target volumes
|
||||
check_containers_using_volumes() {
|
||||
echo "🔍 Checking for running containers that might be using target volumes..."
|
||||
|
||||
# Get all running containers
|
||||
local running_containers=$(docker ps --format "{{.Names}}")
|
||||
|
||||
if [ -z "$running_containers" ]; then
|
||||
echo "✅ No running containers found"
|
||||
return 0
|
||||
fi
|
||||
|
||||
# Check each running container for volume usage
|
||||
local containers_using_volumes=()
|
||||
local volume_usage_details=()
|
||||
|
||||
for container in $running_containers; do
|
||||
# Get container's mount information
|
||||
local mounts=$(docker inspect "$container" --format '{{range .Mounts}}{{.Source}}{{"|"}}{{end}}' 2>/dev/null || echo "")
|
||||
|
||||
# Check if any of our target volumes are used by this container
|
||||
for volume in "${VOLUMES[@]}"; do
|
||||
if echo "$mounts" | grep -q "$volume"; then
|
||||
containers_using_volumes+=("$container")
|
||||
volume_usage_details+=("$container -> $volume")
|
||||
break
|
||||
fi
|
||||
done
|
||||
done
|
||||
|
||||
# If any containers are using our volumes, show error and exit
|
||||
if [ ${#containers_using_volumes[@]} -gt 0 ]; then
|
||||
echo ""
|
||||
echo "❌ ERROR: Found running containers using target volumes!"
|
||||
echo ""
|
||||
echo "📋 Running containers status:"
|
||||
docker ps --format "table {{.Names}}\t{{.Status}}\t{{.Image}}"
|
||||
echo ""
|
||||
echo "🔗 Volume usage details:"
|
||||
for detail in "${volume_usage_details[@]}"; do
|
||||
echo " - $detail"
|
||||
done
|
||||
echo ""
|
||||
echo "🛑 SOLUTION: Stop the containers before performing backup/restore operations:"
|
||||
echo " docker-compose -f docker/<your-docker-compose-file>.yml down"
|
||||
echo ""
|
||||
echo "💡 After backup/restore, you can restart with:"
|
||||
echo " docker-compose -f docker/<your-docker-compose-file>.yml up -d"
|
||||
echo ""
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "✅ No containers are using target volumes, safe to proceed"
|
||||
return 0
|
||||
}
|
||||
|
||||
# Function to confirm user action
|
||||
confirm_action() {
|
||||
local message=$1
|
||||
echo -n "$message (y/N): "
|
||||
read -r response
|
||||
case "$response" in
|
||||
[yY]|[yY][eE][sS]) return 0 ;;
|
||||
*) return 1 ;;
|
||||
esac
|
||||
}
|
||||
|
||||
# Function to perform backup
|
||||
perform_backup() {
|
||||
local backup_folder=$1
|
||||
|
||||
echo "🚀 Starting RAGFlow data backup..."
|
||||
echo "📁 Backup folder: $backup_folder"
|
||||
echo ""
|
||||
|
||||
# Check if any containers are using the volumes
|
||||
check_containers_using_volumes
|
||||
|
||||
# Create backup folder if it doesn't exist
|
||||
mkdir -p "$backup_folder"
|
||||
|
||||
# Backup each volume
|
||||
for i in "${!VOLUMES[@]}"; do
|
||||
local volume="${VOLUMES[$i]}"
|
||||
local backup_file="${BACKUP_FILES[$i]}"
|
||||
local step=$((i + 1))
|
||||
|
||||
echo "📦 Step $step/4: Backing up $volume..."
|
||||
|
||||
if volume_exists "$volume"; then
|
||||
docker run --rm \
|
||||
-v "$volume":/source \
|
||||
-v "$(pwd)/$backup_folder":/backup \
|
||||
alpine tar czf "/backup/$backup_file" -C /source .
|
||||
echo "✅ Successfully backed up $volume to $backup_folder/$backup_file"
|
||||
else
|
||||
echo "⚠️ Warning: Volume $volume does not exist, skipping..."
|
||||
fi
|
||||
echo ""
|
||||
done
|
||||
|
||||
echo "🎉 Backup completed successfully!"
|
||||
echo "📍 Backup location: $(pwd)/$backup_folder"
|
||||
|
||||
# List backup files with sizes
|
||||
echo ""
|
||||
echo "📋 Backup files created:"
|
||||
for backup_file in "${BACKUP_FILES[@]}"; do
|
||||
if [ -f "$backup_folder/$backup_file" ]; then
|
||||
local size=$(ls -lh "$backup_folder/$backup_file" | awk '{print $5}')
|
||||
echo " - $backup_file ($size)"
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
# Function to perform restore
|
||||
perform_restore() {
|
||||
local backup_folder=$1
|
||||
|
||||
echo "🔄 Starting RAGFlow data restore..."
|
||||
echo "📁 Backup folder: $backup_folder"
|
||||
echo ""
|
||||
|
||||
# Check if any containers are using the volumes
|
||||
check_containers_using_volumes
|
||||
|
||||
# Check if backup folder exists
|
||||
if [ ! -d "$backup_folder" ]; then
|
||||
echo "❌ Error: Backup folder '$backup_folder' does not exist"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Check if all backup files exist
|
||||
local missing_files=()
|
||||
for backup_file in "${BACKUP_FILES[@]}"; do
|
||||
if [ ! -f "$backup_folder/$backup_file" ]; then
|
||||
missing_files+=("$backup_file")
|
||||
fi
|
||||
done
|
||||
|
||||
if [ ${#missing_files[@]} -gt 0 ]; then
|
||||
echo "❌ Error: Missing backup files:"
|
||||
for file in "${missing_files[@]}"; do
|
||||
echo " - $file"
|
||||
done
|
||||
echo "Please ensure all backup files are present in '$backup_folder'"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Check for existing volumes and warn user
|
||||
local existing_volumes=()
|
||||
for volume in "${VOLUMES[@]}"; do
|
||||
if volume_exists "$volume"; then
|
||||
existing_volumes+=("$volume")
|
||||
fi
|
||||
done
|
||||
|
||||
if [ ${#existing_volumes[@]} -gt 0 ]; then
|
||||
echo "⚠️ WARNING: The following Docker volumes already exist:"
|
||||
for volume in "${existing_volumes[@]}"; do
|
||||
echo " - $volume"
|
||||
done
|
||||
echo ""
|
||||
echo "🔴 IMPORTANT: Restoring will OVERWRITE existing data!"
|
||||
echo "💡 Recommendation: Create a backup of your current data first:"
|
||||
echo " $0 backup current_backup_$(date +%Y%m%d_%H%M%S)"
|
||||
echo ""
|
||||
|
||||
if ! confirm_action "Do you want to continue with the restore operation?"; then
|
||||
echo "❌ Restore operation cancelled by user"
|
||||
exit 0
|
||||
fi
|
||||
fi
|
||||
|
||||
# Create volumes and restore data
|
||||
for i in "${!VOLUMES[@]}"; do
|
||||
local volume="${VOLUMES[$i]}"
|
||||
local backup_file="${BACKUP_FILES[$i]}"
|
||||
local step=$((i + 1))
|
||||
|
||||
echo "🔧 Step $step/4: Restoring $volume..."
|
||||
|
||||
# Create volume if it doesn't exist
|
||||
if ! volume_exists "$volume"; then
|
||||
echo " 📋 Creating Docker volume: $volume"
|
||||
docker volume create "$volume"
|
||||
else
|
||||
echo " 📋 Using existing Docker volume: $volume"
|
||||
fi
|
||||
|
||||
# Restore data
|
||||
echo " 📥 Restoring data from $backup_file..."
|
||||
docker run --rm \
|
||||
-v "$volume":/target \
|
||||
-v "$(pwd)/$backup_folder":/backup \
|
||||
alpine tar xzf "/backup/$backup_file" -C /target
|
||||
|
||||
echo "✅ Successfully restored $volume"
|
||||
echo ""
|
||||
done
|
||||
|
||||
echo "🎉 Restore completed successfully!"
|
||||
echo "💡 You can now start your RAGFlow services"
|
||||
}
|
||||
|
||||
# Main script logic
|
||||
main() {
|
||||
# Check if Docker is available
|
||||
check_docker
|
||||
|
||||
# Parse command line arguments
|
||||
local operation=${1:-}
|
||||
local backup_folder=${2:-$DEFAULT_BACKUP_FOLDER}
|
||||
|
||||
# Handle help or no arguments
|
||||
if [ -z "$operation" ] || [ "$operation" = "help" ] || [ "$operation" = "-h" ] || [ "$operation" = "--help" ]; then
|
||||
show_help
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Validate operation
|
||||
case "$operation" in
|
||||
backup)
|
||||
perform_backup "$backup_folder"
|
||||
;;
|
||||
restore)
|
||||
perform_restore "$backup_folder"
|
||||
;;
|
||||
*)
|
||||
echo "❌ Error: Invalid operation '$operation'"
|
||||
echo ""
|
||||
show_help
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
}
|
||||
|
||||
# Run main function with all arguments
|
||||
main "$@"
|
||||
@ -9,6 +9,7 @@ mysql:
|
||||
port: 3306
|
||||
max_connections: 900
|
||||
stale_timeout: 300
|
||||
max_allowed_packet: ${MYSQL_MAX_PACKET:-1073741824}
|
||||
minio:
|
||||
user: '${MINIO_USER:-rag_flow}'
|
||||
password: '${MINIO_PASSWORD:-infini_rag_flow}'
|
||||
|
||||
@ -82,7 +82,7 @@ An integer specifying the number of previous dialogue rounds to input into the L
|
||||
This feature is used for multi-turn dialogue *only*.
|
||||
:::
|
||||
|
||||
### Max retrieves
|
||||
### Max retries
|
||||
|
||||
Defines the maximum number of attempts the agent will make to retry a failed task or operation before stopping or reporting failure.
|
||||
|
||||
@ -94,6 +94,10 @@ The waiting period in seconds that the agent observes before retrying a failed t
|
||||
|
||||
Defines the maximum number reflection rounds of the selected chat model. Defaults to 5 rounds.
|
||||
|
||||
:::tip NOTE
|
||||
You can set the value to 1 to shorten your agent's response time.
|
||||
:::
|
||||
|
||||
### Output
|
||||
|
||||
The global variable name for the output of the **Agent** component, which can be referenced by other components in the workflow.
|
||||
108
docs/guides/migration/migrate_from_docker_compose.md
Normal file
108
docs/guides/migration/migrate_from_docker_compose.md
Normal file
@ -0,0 +1,108 @@
|
||||
# Data Migration Guide
|
||||
|
||||
A common scenario is processing large datasets on a powerful instance (e.g., with a GPU) and then migrating the entire RAGFlow service to a different production environment (e.g., a CPU-only server). This guide explains how to safely back up and restore your data using our provided migration script.
|
||||
|
||||
## Identifying Your Data
|
||||
|
||||
By default, RAGFlow uses Docker volumes to store all persistent data, including your database, uploaded files, and search indexes. You can see these volumes by running:
|
||||
|
||||
```bash
|
||||
docker volume ls
|
||||
```
|
||||
|
||||
The output will look similar to this:
|
||||
|
||||
```text
|
||||
DRIVER VOLUME NAME
|
||||
local docker_esdata01
|
||||
local docker_minio_data
|
||||
local docker_mysql_data
|
||||
local docker_redis_data
|
||||
```
|
||||
|
||||
These volumes contain all the data you need to migrate.
|
||||
|
||||
## Step 1: Stop RAGFlow Services
|
||||
|
||||
Before starting the migration, you must stop all running RAGFlow services on the **source machine**. Navigate to the project's root directory and run:
|
||||
|
||||
```bash
|
||||
docker-compose -f docker/docker-compose.yml down
|
||||
```
|
||||
|
||||
**Important:** Do **not** use the `-v` flag (e.g., `docker-compose down -v`), as this will delete all your data volumes. The migration script includes a check and will prevent you from running it if services are active.
|
||||
|
||||
## Step 2: Back Up Your Data
|
||||
|
||||
We provide a convenient script to package all your data volumes into a single backup folder.
|
||||
|
||||
For a quick reference of the script's commands and options, you can run:
|
||||
```bash
|
||||
bash docker/migration.sh help
|
||||
```
|
||||
|
||||
To create a backup, run the following command from the project's root directory:
|
||||
|
||||
```bash
|
||||
bash docker/migration.sh backup
|
||||
```
|
||||
|
||||
This will create a `backup/` folder in your project root containing compressed archives of your data volumes.
|
||||
|
||||
You can also specify a custom name for your backup folder:
|
||||
|
||||
```bash
|
||||
bash docker/migration.sh backup my_ragflow_backup
|
||||
```
|
||||
|
||||
This will create a folder named `my_ragflow_backup/` instead.
|
||||
|
||||
## Step 3: Transfer the Backup Folder
|
||||
|
||||
Copy the entire backup folder (e.g., `backup/` or `my_ragflow_backup/`) from your source machine to the RAGFlow project directory on your **target machine**. You can use tools like `scp`, `rsync`, or a physical drive for the transfer.
|
||||
|
||||
## Step 4: Restore Your Data
|
||||
|
||||
On the **target machine**, ensure that RAGFlow services are not running. Then, use the migration script to restore your data from the backup folder.
|
||||
|
||||
If your backup folder is named `backup/`, run:
|
||||
|
||||
```bash
|
||||
bash docker/migration.sh restore
|
||||
```
|
||||
|
||||
If you used a custom name, specify it in the command:
|
||||
|
||||
```bash
|
||||
bash docker/migration.sh restore my_ragflow_backup
|
||||
```
|
||||
|
||||
The script will automatically create the necessary Docker volumes and unpack the data.
|
||||
|
||||
**Note:** If the script detects that Docker volumes with the same names already exist on the target machine, it will warn you that restoring will overwrite the existing data and ask for confirmation before proceeding.
|
||||
|
||||
## Step 5: Start RAGFlow Services
|
||||
|
||||
Once the restore process is complete, you can start the RAGFlow services on your new machine:
|
||||
|
||||
```bash
|
||||
docker-compose -f docker/docker-compose.yml up -d
|
||||
```
|
||||
|
||||
**Note:** If you already have build an service by docker-compose before, you may need to backup your data for target machine like this guide above and run like:
|
||||
|
||||
```bash
|
||||
# Please backup by `sh docker/migration.sh backup backup_dir_name` before you do the following line.
|
||||
# !!! this line -v flag will delete the original docker volume
|
||||
docker-compose -f docker/docker-compose.yml down -v
|
||||
docker-compose -f docker/docker-compose.yml up -d
|
||||
```
|
||||
|
||||
Your RAGFlow instance is now running with all the data from your original machine.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1118,14 +1118,14 @@ Failure:
|
||||
|
||||
### List documents
|
||||
|
||||
**GET** `/api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name}`
|
||||
**GET** `/api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name}&create_time_from={timestamp}&create_time_to={timestamp}`
|
||||
|
||||
Lists documents in a specified dataset.
|
||||
|
||||
#### Request
|
||||
|
||||
- Method: GET
|
||||
- URL: `/api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name}`
|
||||
- URL: `/api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name}&create_time_from={timestamp}&create_time_to={timestamp}`
|
||||
- Headers:
|
||||
- `'content-Type: application/json'`
|
||||
- `'Authorization: Bearer <YOUR_API_KEY>'`
|
||||
@ -1134,7 +1134,7 @@ Lists documents in a specified dataset.
|
||||
|
||||
```bash
|
||||
curl --request GET \
|
||||
--url http://{address}/api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name} \
|
||||
--url http://{address}/api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name}&create_time_from={timestamp}&create_time_to={timestamp} \
|
||||
--header 'Authorization: Bearer <YOUR_API_KEY>'
|
||||
```
|
||||
|
||||
@ -1156,6 +1156,10 @@ curl --request GET \
|
||||
Indicates whether the retrieved documents should be sorted in descending order. Defaults to `true`.
|
||||
- `id`: (*Filter parameter*), `string`
|
||||
The ID of the document to retrieve.
|
||||
- `create_time_from`: (*Filter parameter*), `integer`
|
||||
Unix timestamp for filtering documents created after this time. 0 means no filter. Defaults to `0`.
|
||||
- `create_time_to`: (*Filter parameter*), `integer`
|
||||
Unix timestamp for filtering documents created before this time. 0 means no filter. Defaults to `0`.
|
||||
|
||||
#### Response
|
||||
|
||||
|
||||
@ -507,7 +507,16 @@ print(doc)
|
||||
### List documents
|
||||
|
||||
```python
|
||||
Dataset.list_documents(id:str =None, keywords: str=None, page: int=1, page_size:int = 30, order_by:str = "create_time", desc: bool = True) -> list[Document]
|
||||
Dataset.list_documents(
|
||||
id: str = None,
|
||||
keywords: str = None,
|
||||
page: int = 1,
|
||||
page_size: int = 30,
|
||||
order_by: str = "create_time",
|
||||
desc: bool = True,
|
||||
create_time_from: int = 0,
|
||||
create_time_to: int = 0
|
||||
) -> list[Document]
|
||||
```
|
||||
|
||||
Lists documents in the current dataset.
|
||||
@ -541,6 +550,12 @@ The field by which documents should be sorted. Available options:
|
||||
|
||||
Indicates whether the retrieved documents should be sorted in descending order. Defaults to `True`.
|
||||
|
||||
##### create_time_from: `int`
|
||||
Unix timestamp for filtering documents created after this time. 0 means no filter. Defaults to 0.
|
||||
|
||||
##### create_time_to: `int`
|
||||
Unix timestamp for filtering documents created before this time. 0 means no filter. Defaults to 0.
|
||||
|
||||
#### Returns
|
||||
|
||||
- Success: A list of `Document` objects.
|
||||
|
||||
@ -22,6 +22,39 @@ The embedding models included in a full edition are:
|
||||
These two embedding models are optimized specifically for English and Chinese, so performance may be compromised if you use them to embed documents in other languages.
|
||||
:::
|
||||
|
||||
## v0.20.0
|
||||
|
||||
Released on August 4, 2025.
|
||||
|
||||
### Compatibility changes
|
||||
|
||||
From v0.20.0 onwards, Agents are no longer compatible with earlier versions, and all existing Agents from previous versions must be rebuilt following the upgrade.
|
||||
|
||||
### New features
|
||||
|
||||
- Unified orchestration of both Agents and Workflows.
|
||||
- A comprehensive refactor of the Agent, greatly enhancing its capabilities and usability, with support for Multi-Agent configurations, planning and reflection, and visual functionalities.
|
||||
- Fully implemented MCP functionality, allowing for MCP Server import, Agents functioning as MCP Clients, and RAGFlow itself operating as an MCP Server.
|
||||
- Access to runtime logs for Agents.
|
||||
- Chat histories with Agents available through the management panel.
|
||||
- Integration of a new, more robust version of Infinity, enabling the auto-tagging functionality with Infinity as the underlying document engine.
|
||||
- An OpenAI-compatible API that supports file reference information.
|
||||
- Support for new models, including Kimi K2, Grok 4, and Voyage embedding.
|
||||
- RAGFlow’s codebase is now mirrored on Gitee.
|
||||
- Introduction of a new model provider, Gitee AI.
|
||||
|
||||
### New agent templates introduced
|
||||
|
||||
- Multi-Agent based Deep Research: Collaborative Agent teamwork led by a Lead Agent with multiple Subagents, distinct from traditional workflow orchestration.
|
||||
- An intelligent Q&A chatbot leveraging internal knowledge bases, designed for customer service and training scenarios.
|
||||
- A resume analysis template used by the RAGFlow team to screen, analyze, and record candidate information.
|
||||
- A blog generation workflow that transforms raw ideas into SEO-friendly blog content.
|
||||
- An intelligent customer service workflow.
|
||||
- A user feedback analysis template that directs user feedback to appropriate teams through semantic analysis.
|
||||
- Trip Planner: Uses web search and map MCP servers to assist with travel planning.
|
||||
- Image Lingo: Translates content from uploaded photos.
|
||||
- An information search assistant that retrieves answers from both internal knowledge bases and the web.
|
||||
|
||||
## v0.19.1
|
||||
|
||||
Released on June 23, 2025.
|
||||
|
||||
@ -47,7 +47,7 @@ class Extractor:
|
||||
self._language = language
|
||||
self._entity_types = entity_types or DEFAULT_ENTITY_TYPES
|
||||
|
||||
@timeout(60*3)
|
||||
@timeout(60*5)
|
||||
def _chat(self, system, history, gen_conf={}):
|
||||
hist = deepcopy(history)
|
||||
conf = deepcopy(gen_conf)
|
||||
|
||||
@ -42,7 +42,7 @@ class Ppt(PptParser):
|
||||
try:
|
||||
with BytesIO() as buffered:
|
||||
slide.get_thumbnail(
|
||||
0.5, 0.5).save(
|
||||
0.1, 0.1).save(
|
||||
buffered, drawing.imaging.ImageFormat.jpeg)
|
||||
buffered.seek(0)
|
||||
imgs.append(Image.open(buffered).copy())
|
||||
@ -135,7 +135,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
sections = pdf_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
|
||||
elif layout_recognizer == "Plain Text":
|
||||
pdf_parser = PlainParser()
|
||||
sections, _ = pdf_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
|
||||
sections, _ = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page,
|
||||
callback=callback)
|
||||
else:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT, llm_name=layout_recognizer, lang=lang)
|
||||
pdf_parser = VisionParser(vision_model=vision_model, **kwargs)
|
||||
|
||||
@ -1075,6 +1075,9 @@ class GeminiChat(Base):
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_tokens"]:
|
||||
del gen_conf[k]
|
||||
# if max_tokens exists, rename it to max_output_tokens to match Gemini's API
|
||||
if k == "max_tokens":
|
||||
gen_conf["max_output_tokens"] = gen_conf.pop("max_tokens")
|
||||
return gen_conf
|
||||
|
||||
def _chat(self, history, gen_conf={}, **kwargs):
|
||||
@ -1096,9 +1099,20 @@ class GeminiChat(Base):
|
||||
|
||||
if system:
|
||||
self.model._system_instruction = content_types.to_content(system)
|
||||
response = self.model.generate_content(hist, generation_config=gen_conf)
|
||||
ans = response.text
|
||||
return ans, response.usage_metadata.total_token_count
|
||||
retry_count = 0
|
||||
max_retries = 3
|
||||
while retry_count < max_retries:
|
||||
try:
|
||||
response = self.model.generate_content(hist, generation_config=gen_conf)
|
||||
ans = response.text
|
||||
return ans, response.usage_metadata.total_token_count
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
if retry_count >= max_retries:
|
||||
raise e
|
||||
else:
|
||||
import time
|
||||
time.sleep(50)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
||||
from google.generativeai.types import content_types
|
||||
@ -1213,11 +1227,11 @@ class LmStudioChat(Base):
|
||||
class OpenAI_APIChat(Base):
|
||||
_FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
|
||||
|
||||
def __init__(self, key, model_name, base_url):
|
||||
def __init__(self, key, model_name, base_url, **kwargs):
|
||||
if not base_url:
|
||||
raise ValueError("url cannot be None")
|
||||
model_name = model_name.split("___")[0]
|
||||
super().__init__(key, model_name, base_url)
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class PPIOChat(Base):
|
||||
|
||||
@ -59,6 +59,10 @@ class Base(ABC):
|
||||
def _image_prompt(self, text, images):
|
||||
if not images:
|
||||
return text
|
||||
|
||||
if isinstance(images, str) or "bytes" in type(images).__name__:
|
||||
images = [images]
|
||||
|
||||
pmpt = [{"type": "text", "text": text}]
|
||||
for img in images:
|
||||
pmpt.append({
|
||||
@ -518,6 +522,7 @@ class GeminiCV(Base):
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
from transformers import GenerationConfig
|
||||
ans = ""
|
||||
response = None
|
||||
try:
|
||||
response = self.model.generate_content(
|
||||
self._form_history(system, history, images),
|
||||
@ -533,8 +538,11 @@ class GeminiCV(Base):
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield response._chunks[-1].usage_metadata.total_token_count
|
||||
|
||||
if response and hasattr(response, "usage_metadata") and hasattr(response.usage_metadata, "total_token_count"):
|
||||
yield response.usage_metadata.total_token_count
|
||||
else:
|
||||
yield 0
|
||||
|
||||
|
||||
class NvidiaCV(Base):
|
||||
_FACTORY_NAME = "NVIDIA"
|
||||
@ -616,15 +624,18 @@ class NvidiaCV(Base):
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
||||
total_tokens = 0
|
||||
try:
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
cnt = response["choices"][0]["message"]["content"]
|
||||
if "usage" in response and "total_tokens" in response["usage"]:
|
||||
total_tokens += response["usage"]["total_tokens"]
|
||||
for resp in cnt:
|
||||
yield resp
|
||||
except Exception as e:
|
||||
yield "\n**ERROR**: " + str(e)
|
||||
|
||||
yield response["usage"]["total_tokens"]
|
||||
yield total_tokens
|
||||
|
||||
|
||||
class AnthropicCV(Base):
|
||||
@ -795,4 +806,4 @@ class GoogleCV(AnthropicCV, GeminiCV):
|
||||
yield ans
|
||||
else:
|
||||
for ans in GeminiCV.chat_streamly(self, system, history, gen_conf, images):
|
||||
yield ans
|
||||
yield ans
|
||||
|
||||
@ -37,7 +37,12 @@ from rag.utils import num_tokens_from_string, truncate
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
"""
|
||||
Constructor for abstract base class.
|
||||
Parameters are accepted for interface consistency but are not stored.
|
||||
Subclasses should implement their own initialization as needed.
|
||||
"""
|
||||
pass
|
||||
|
||||
def encode(self, texts: list):
|
||||
@ -864,7 +869,7 @@ class VoyageEmbed(Base):
|
||||
class HuggingFaceEmbed(Base):
|
||||
_FACTORY_NAME = "HuggingFace"
|
||||
|
||||
def __init__(self, key, model_name, base_url=None):
|
||||
def __init__(self, key, model_name, base_url=None, **kwargs):
|
||||
if not model_name:
|
||||
raise ValueError("Model name cannot be None")
|
||||
self.key = key
|
||||
@ -946,4 +951,4 @@ class Ai302Embed(Base):
|
||||
def __init__(self, key, model_name, base_url="https://api.302.ai/v1/embeddings"):
|
||||
if not base_url:
|
||||
base_url = "https://api.302.ai/v1/embeddings"
|
||||
super().__init__(key, model_name, base_url)
|
||||
super().__init__(key, model_name, base_url)
|
||||
@ -33,7 +33,11 @@ from api.utils.log_utils import log_exception
|
||||
from rag.utils import num_tokens_from_string, truncate
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
"""
|
||||
Abstract base class constructor.
|
||||
Parameters are not stored; initialization is left to subclasses.
|
||||
"""
|
||||
pass
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
@ -315,7 +319,7 @@ class NvidiaRerank(Base):
|
||||
class LmStudioRerank(Base):
|
||||
_FACTORY_NAME = "LM-Studio"
|
||||
|
||||
def __init__(self, key, model_name, base_url):
|
||||
def __init__(self, key, model_name, base_url, **kwargs):
|
||||
pass
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
@ -396,7 +400,7 @@ class CoHereRerank(Base):
|
||||
class TogetherAIRerank(Base):
|
||||
_FACTORY_NAME = "TogetherAI"
|
||||
|
||||
def __init__(self, key, model_name, base_url):
|
||||
def __init__(self, key, model_name, base_url, **kwargs):
|
||||
pass
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
|
||||
@ -28,7 +28,11 @@ from rag.utils import num_tokens_from_string
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
"""
|
||||
Abstract base class constructor.
|
||||
Parameters are not stored; initialization is left to subclasses.
|
||||
"""
|
||||
pass
|
||||
|
||||
def transcription(self, audio, **kwargs):
|
||||
|
||||
@ -63,7 +63,11 @@ class ServeTTSRequest(BaseModel):
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
def __init__(self, key, model_name, base_url, **kwargs):
|
||||
"""
|
||||
Abstract base class constructor.
|
||||
Parameters are not stored; subclasses should handle their own initialization.
|
||||
"""
|
||||
pass
|
||||
|
||||
def tts(self, audio):
|
||||
|
||||
@ -611,6 +611,10 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
|
||||
if re.match(f"^{dels}$", sub_sec):
|
||||
continue
|
||||
add_chunk(sub_sec, image)
|
||||
|
||||
for img in images:
|
||||
if isinstance(img, Image.Image):
|
||||
img.close()
|
||||
|
||||
return cks, result_images
|
||||
|
||||
@ -634,6 +638,16 @@ def concat_img(img1, img2):
|
||||
return img2
|
||||
if not img1 and not img2:
|
||||
return None
|
||||
|
||||
if img1 is img2:
|
||||
return img1
|
||||
|
||||
if isinstance(img1, Image.Image) and isinstance(img2, Image.Image):
|
||||
pixel_data1 = img1.tobytes()
|
||||
pixel_data2 = img2.tobytes()
|
||||
if pixel_data1 == pixel_data2:
|
||||
return img1
|
||||
|
||||
width1, height1 = img1.size
|
||||
width2, height2 = img2.size
|
||||
|
||||
@ -643,7 +657,6 @@ def concat_img(img1, img2):
|
||||
|
||||
new_image.paste(img1, (0, 0))
|
||||
new_image.paste(img2, (0, height1))
|
||||
|
||||
return new_image
|
||||
|
||||
|
||||
|
||||
@ -231,7 +231,7 @@ async def get_storage_binary(bucket, name):
|
||||
return await trio.to_thread.run_sync(lambda: STORAGE_IMPL.get(bucket, name))
|
||||
|
||||
|
||||
@timeout(60*40, 1)
|
||||
@timeout(60*80, 1)
|
||||
async def build_chunks(task, progress_callback):
|
||||
if task["size"] > DOC_MAXIMUM_SIZE:
|
||||
set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
|
||||
@ -284,7 +284,7 @@ async def build_chunks(task, progress_callback):
|
||||
try:
|
||||
d = copy.deepcopy(document)
|
||||
d.update(chunk)
|
||||
d["id"] = xxhash.xxh64((chunk["content_with_weight"] + str(d["doc_id"])).encode("utf-8")).hexdigest()
|
||||
d["id"] = xxhash.xxh64((chunk["content_with_weight"] + str(d["doc_id"])).encode("utf-8", "surrogatepass")).hexdigest()
|
||||
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
|
||||
d["create_timestamp_flt"] = datetime.now().timestamp()
|
||||
if not d.get("image"):
|
||||
@ -420,7 +420,6 @@ def init_kb(row, vector_size: int):
|
||||
return settings.docStoreConn.createIdx(idxnm, row.get("kb_id", ""), vector_size)
|
||||
|
||||
|
||||
@timeout(60*20)
|
||||
async def embedding(docs, mdl, parser_config=None, callback=None):
|
||||
if parser_config is None:
|
||||
parser_config = {}
|
||||
@ -441,10 +440,15 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
|
||||
tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
|
||||
tk_count += c
|
||||
|
||||
@timeout(5)
|
||||
def batch_encode(txts):
|
||||
nonlocal mdl
|
||||
return mdl.encode([truncate(c, mdl.max_length-10) for c in txts])
|
||||
|
||||
cnts_ = np.array([])
|
||||
for i in range(0, len(cnts), EMBEDDING_BATCH_SIZE):
|
||||
async with embed_limiter:
|
||||
vts, c = await trio.to_thread.run_sync(lambda: mdl.encode([truncate(c, mdl.max_length-10) for c in cnts[i: i + EMBEDDING_BATCH_SIZE]]))
|
||||
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(cnts[i: i + EMBEDDING_BATCH_SIZE]))
|
||||
if len(cnts_) == 0:
|
||||
cnts_ = vts
|
||||
else:
|
||||
|
||||
@ -23,7 +23,7 @@ SET GLOBAL max_allowed_packet={}
|
||||
def get_opendal_config():
|
||||
try:
|
||||
opendal_config = get_base_config('opendal', {})
|
||||
if opendal_config.get("scheme") == 'mysql':
|
||||
if opendal_config.get("scheme", "mysql") == 'mysql':
|
||||
mysql_config = get_base_config('mysql', {})
|
||||
max_packet = mysql_config.get("max_allowed_packet", 134217728)
|
||||
kwargs = {
|
||||
@ -33,7 +33,7 @@ def get_opendal_config():
|
||||
"user": mysql_config.get("user", "root"),
|
||||
"password": mysql_config.get("password", ""),
|
||||
"database": mysql_config.get("name", "test_open_dal"),
|
||||
"table": opendal_config.get("config").get("oss_table", "opendal_storage"),
|
||||
"table": opendal_config.get("config", {}).get("oss_table", "opendal_storage"),
|
||||
"max_allowed_packet": str(max_packet)
|
||||
}
|
||||
kwargs["connection_string"] = f"mysql://{kwargs['user']}:{quote_plus(kwargs['password'])}@{kwargs['host']}:{kwargs['port']}/{kwargs['database']}?max_allowed_packet={max_packet}"
|
||||
|
||||
@ -227,9 +227,20 @@ class RedisDB:
|
||||
"""https://redis.io/docs/latest/commands/xreadgroup/"""
|
||||
for _ in range(3):
|
||||
try:
|
||||
group_info = self.REDIS.xinfo_groups(queue_name)
|
||||
if not any(gi["name"] == group_name for gi in group_info):
|
||||
self.REDIS.xgroup_create(queue_name, group_name, id="0", mkstream=True)
|
||||
|
||||
try:
|
||||
group_info = self.REDIS.xinfo_groups(queue_name)
|
||||
if not any(gi["name"] == group_name for gi in group_info):
|
||||
self.REDIS.xgroup_create(queue_name, group_name, id="0", mkstream=True)
|
||||
except redis.exceptions.ResponseError as e:
|
||||
if "no such key" in str(e).lower():
|
||||
self.REDIS.xgroup_create(queue_name, group_name, id="0", mkstream=True)
|
||||
elif "busygroup" in str(e).lower():
|
||||
logging.warning("Group already exists, continue.")
|
||||
pass
|
||||
else:
|
||||
raise
|
||||
|
||||
args = {
|
||||
"groupname": group_name,
|
||||
"consumername": consumer_name,
|
||||
@ -338,8 +349,8 @@ class RedisDB:
|
||||
logging.warning("RedisDB.delete " + str(key) + " got exception: " + str(e))
|
||||
self.__open__()
|
||||
return False
|
||||
|
||||
|
||||
|
||||
|
||||
REDIS_CONN = RedisDB()
|
||||
|
||||
|
||||
|
||||
@ -30,7 +30,8 @@ class RAGFlowS3:
|
||||
self.s3_config = settings.S3
|
||||
self.access_key = self.s3_config.get('access_key', None)
|
||||
self.secret_key = self.s3_config.get('secret_key', None)
|
||||
self.region = self.s3_config.get('region', None)
|
||||
self.session_token = self.s3_config.get('session_token', None)
|
||||
self.region_name = self.s3_config.get('region_name', None)
|
||||
self.endpoint_url = self.s3_config.get('endpoint_url', None)
|
||||
self.signature_version = self.s3_config.get('signature_version', None)
|
||||
self.addressing_style = self.s3_config.get('addressing_style', None)
|
||||
@ -73,31 +74,32 @@ class RAGFlowS3:
|
||||
s3_params = {
|
||||
'aws_access_key_id': self.access_key,
|
||||
'aws_secret_access_key': self.secret_key,
|
||||
'aws_session_token': self.session_token,
|
||||
}
|
||||
if self.region in self.s3_config:
|
||||
s3_params['region_name'] = self.region
|
||||
if 'endpoint_url' in self.s3_config:
|
||||
if self.region_name:
|
||||
s3_params['region_name'] = self.region_name
|
||||
if self.endpoint_url:
|
||||
s3_params['endpoint_url'] = self.endpoint_url
|
||||
if 'signature_version' in self.s3_config:
|
||||
config_kwargs['signature_version'] = self.signature_version
|
||||
if 'addressing_style' in self.s3_config:
|
||||
config_kwargs['addressing_style'] = self.addressing_style
|
||||
if self.signature_version:
|
||||
s3_params['signature_version'] = self.signature_version
|
||||
if self.addressing_style:
|
||||
s3_params['addressing_style'] = self.addressing_style
|
||||
if config_kwargs:
|
||||
s3_params['config'] = Config(**config_kwargs)
|
||||
|
||||
self.conn = boto3.client('s3', **s3_params)
|
||||
self.conn = [boto3.client('s3', **s3_params)]
|
||||
except Exception:
|
||||
logging.exception(f"Fail to connect at region {self.region} or endpoint {self.endpoint_url}")
|
||||
logging.exception(f"Fail to connect at region {self.region_name} or endpoint {self.endpoint_url}")
|
||||
|
||||
def __close__(self):
|
||||
del self.conn
|
||||
del self.conn[0]
|
||||
self.conn = None
|
||||
|
||||
@use_default_bucket
|
||||
def bucket_exists(self, bucket):
|
||||
def bucket_exists(self, bucket, *args, **kwargs):
|
||||
try:
|
||||
logging.debug(f"head_bucket bucketname {bucket}")
|
||||
self.conn.head_bucket(Bucket=bucket)
|
||||
self.conn[0].head_bucket(Bucket=bucket)
|
||||
exists = True
|
||||
except ClientError:
|
||||
logging.exception(f"head_bucket error {bucket}")
|
||||
@ -109,10 +111,10 @@ class RAGFlowS3:
|
||||
fnm = "txtxtxtxt1"
|
||||
fnm, binary = f"{self.prefix_path}/{fnm}" if self.prefix_path else fnm, b"_t@@@1"
|
||||
if not self.bucket_exists(bucket):
|
||||
self.conn.create_bucket(Bucket=bucket)
|
||||
self.conn[0].create_bucket(Bucket=bucket)
|
||||
logging.debug(f"create bucket {bucket} ********")
|
||||
|
||||
r = self.conn.upload_fileobj(BytesIO(binary), bucket, fnm)
|
||||
r = self.conn[0].upload_fileobj(BytesIO(binary), bucket, fnm)
|
||||
return r
|
||||
|
||||
def get_properties(self, bucket, key):
|
||||
@ -123,14 +125,14 @@ class RAGFlowS3:
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def put(self, bucket, fnm, binary):
|
||||
def put(self, bucket, fnm, binary, *args, **kwargs):
|
||||
logging.debug(f"bucket name {bucket}; filename :{fnm}:")
|
||||
for _ in range(1):
|
||||
try:
|
||||
if not self.bucket_exists(bucket):
|
||||
self.conn.create_bucket(Bucket=bucket)
|
||||
self.conn[0].create_bucket(Bucket=bucket)
|
||||
logging.info(f"create bucket {bucket} ********")
|
||||
r = self.conn.upload_fileobj(BytesIO(binary), bucket, fnm)
|
||||
r = self.conn[0].upload_fileobj(BytesIO(binary), bucket, fnm)
|
||||
|
||||
return r
|
||||
except Exception:
|
||||
@ -140,18 +142,18 @@ class RAGFlowS3:
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def rm(self, bucket, fnm):
|
||||
def rm(self, bucket, fnm, *args, **kwargs):
|
||||
try:
|
||||
self.conn.delete_object(Bucket=bucket, Key=fnm)
|
||||
self.conn[0].delete_object(Bucket=bucket, Key=fnm)
|
||||
except Exception:
|
||||
logging.exception(f"Fail rm {bucket}/{fnm}")
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def get(self, bucket, fnm):
|
||||
def get(self, bucket, fnm, *args, **kwargs):
|
||||
for _ in range(1):
|
||||
try:
|
||||
r = self.conn.get_object(Bucket=bucket, Key=fnm)
|
||||
r = self.conn[0].get_object(Bucket=bucket, Key=fnm)
|
||||
object_data = r['Body'].read()
|
||||
return object_data
|
||||
except Exception:
|
||||
@ -162,9 +164,9 @@ class RAGFlowS3:
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def obj_exist(self, bucket, fnm):
|
||||
def obj_exist(self, bucket, fnm, *args, **kwargs):
|
||||
try:
|
||||
if self.conn.head_object(Bucket=bucket, Key=fnm):
|
||||
if self.conn[0].head_object(Bucket=bucket, Key=fnm):
|
||||
return True
|
||||
except ClientError as e:
|
||||
if e.response['Error']['Code'] == '404':
|
||||
@ -174,10 +176,10 @@ class RAGFlowS3:
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def get_presigned_url(self, bucket, fnm, expires):
|
||||
def get_presigned_url(self, bucket, fnm, expires, *args, **kwargs):
|
||||
for _ in range(10):
|
||||
try:
|
||||
r = self.conn.generate_presigned_url('get_object',
|
||||
r = self.conn[0].generate_presigned_url('get_object',
|
||||
Params={'Bucket': bucket,
|
||||
'Key': fnm},
|
||||
ExpiresIn=expires)
|
||||
|
||||
@ -63,8 +63,30 @@ class DataSet(Base):
|
||||
return doc_list
|
||||
raise Exception(res.get("message"))
|
||||
|
||||
def list_documents(self, id: str | None = None, name: str | None = None, keywords: str | None = None, page: int = 1, page_size: int = 30, orderby: str = "create_time", desc: bool = True):
|
||||
res = self.get(f"/datasets/{self.id}/documents", params={"id": id, "name": name, "keywords": keywords, "page": page, "page_size": page_size, "orderby": orderby, "desc": desc})
|
||||
def list_documents(
|
||||
self,
|
||||
id: str | None = None,
|
||||
name: str | None = None,
|
||||
keywords: str | None = None,
|
||||
page: int = 1,
|
||||
page_size: int = 30,
|
||||
orderby: str = "create_time",
|
||||
desc: bool = True,
|
||||
create_time_from: int = 0,
|
||||
create_time_to: int = 0,
|
||||
):
|
||||
params = {
|
||||
"id": id,
|
||||
"name": name,
|
||||
"keywords": keywords,
|
||||
"page": page,
|
||||
"page_size": page_size,
|
||||
"orderby": orderby,
|
||||
"desc": desc,
|
||||
"create_time_from": create_time_from,
|
||||
"create_time_to": create_time_to,
|
||||
}
|
||||
res = self.get(f"/datasets/{self.id}/documents", params=params)
|
||||
res = res.json()
|
||||
documents = []
|
||||
if res.get("code") == 0:
|
||||
|
||||
1
web/src/assets/svg/llm/grok.svg
Normal file
1
web/src/assets/svg/llm/grok.svg
Normal file
@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="48px" height="48px"><path d="M18.542 30.532l15.956-11.776c.783-.576 1.902-.354 2.274.545 1.962 4.728 1.084 10.411-2.819 14.315-3.903 3.901-9.333 4.756-14.299 2.808l-5.423 2.511c7.778 5.315 17.224 4 23.125-1.903 4.682-4.679 6.131-11.058 4.775-16.812l.011.011c-1.966-8.452.482-11.829 5.501-18.735C47.759 1.332 47.88 1.166 48 1l-6.602 6.599V7.577l-22.86 22.958M15.248 33.392c-5.582-5.329-4.619-13.579.142-18.339 3.521-3.522 9.294-4.958 14.331-2.847l5.412-2.497c-.974-.704-2.224-1.46-3.659-1.994-6.478-2.666-14.238-1.34-19.505 3.922C6.904 16.701 5.31 24.488 8.045 31.133c2.044 4.965-1.307 8.48-4.682 12.023C2.164 44.411.967 45.67 0 47l15.241-13.608"/></svg>
|
||||
|
After Width: | Height: | Size: 721 B |
1
web/src/assets/svg/llm/xai.svg
Normal file
1
web/src/assets/svg/llm/xai.svg
Normal file
@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="48px" height="48px" fill-rule="evenodd" clip-rule="evenodd" baseProfile="basic"><polygon fill="#212121" fill-rule="evenodd" points="24.032,28.919 40.145,5.989 33.145,5.989 20.518,23.958" clip-rule="evenodd"/><polygon fill="#212121" fill-rule="evenodd" points="14.591,32.393 7.145,42.989 14.145,42.989 18.105,37.354" clip-rule="evenodd"/><polygon fill="#212121" fill-rule="evenodd" points="14.547,18.989 7.547,18.989 24.547,42.989 31.547,42.989" clip-rule="evenodd"/><polygon fill="#212121" fill-rule="evenodd" points="35,16.789 35,43 41,43 41,8.251" clip-rule="evenodd"/></svg>
|
||||
|
After Width: | Height: | Size: 645 B |
@ -40,7 +40,7 @@ export function BulkOperateBar({
|
||||
{list.map((x) => (
|
||||
<li
|
||||
key={x.id}
|
||||
className={cn({ ['text-text-delete-red']: isDeleteItem(x.id) })}
|
||||
className={cn({ ['text-state-error']: isDeleteItem(x.id) })}
|
||||
>
|
||||
<ConfirmDeleteDialog
|
||||
hidden={!isDeleteItem(x.id)}
|
||||
|
||||
@ -1,46 +0,0 @@
|
||||
import { useEventListener } from 'ahooks';
|
||||
import { Mic, Paperclip, Send } from 'lucide-react';
|
||||
import { useRef, useState } from 'react';
|
||||
import { Button } from './ui/button';
|
||||
import { Textarea } from './ui/textarea';
|
||||
|
||||
export function ChatInput() {
|
||||
const textareaRef = useRef<HTMLTextAreaElement>(null);
|
||||
const [textareaHeight, setTextareaHeight] = useState<number>(40);
|
||||
|
||||
useEventListener(
|
||||
'keydown',
|
||||
(ev) => {
|
||||
if (ev.shiftKey && ev.code === 'Enter') {
|
||||
setTextareaHeight((h) => {
|
||||
return h + 10;
|
||||
});
|
||||
}
|
||||
},
|
||||
{
|
||||
target: textareaRef,
|
||||
},
|
||||
);
|
||||
|
||||
return (
|
||||
<section className="flex items-end bg-colors-background-neutral-strong px-4 py-3 rounded-xl m-8">
|
||||
<Button variant={'icon'} className="w-10 h-10">
|
||||
<Mic />
|
||||
</Button>
|
||||
<Textarea
|
||||
ref={textareaRef}
|
||||
placeholder="Tell us a little bit about yourself "
|
||||
className="resize-none focus-visible:ring-0 focus-visible:ring-offset-0 bg-transparent border-none min-h-0 max-h-20"
|
||||
style={{ height: textareaHeight }}
|
||||
/>
|
||||
<div className="flex gap-2">
|
||||
<Button variant={'icon'} size={'icon'}>
|
||||
<Paperclip />
|
||||
</Button>
|
||||
<Button variant={'tertiary'} size={'icon'}>
|
||||
<Send />
|
||||
</Button>
|
||||
</div>
|
||||
</section>
|
||||
);
|
||||
}
|
||||
@ -52,7 +52,7 @@ export function ConfirmDeleteDialog({
|
||||
{t('common.cancel')}
|
||||
</AlertDialogCancel>
|
||||
<AlertDialogAction
|
||||
className="bg-text-delete-red text-text-title"
|
||||
className="bg-state-error text-text-primary"
|
||||
onClick={onOk}
|
||||
>
|
||||
{t('common.ok')}
|
||||
|
||||
@ -58,7 +58,7 @@ const EditTag = ({ value = [], onChange }: EditTagsProps) => {
|
||||
<HoverCardTrigger>
|
||||
<div
|
||||
key={tag}
|
||||
className="w-fit flex items-center justify-center gap-2 border-dashed border px-1 rounded-sm bg-background-card"
|
||||
className="w-fit flex items-center justify-center gap-2 border-dashed border px-1 rounded-sm bg-bg-card"
|
||||
>
|
||||
<div className="flex gap-2 items-center">
|
||||
<div className="max-w-80 overflow-hidden text-ellipsis">
|
||||
@ -90,7 +90,7 @@ const EditTag = ({ value = [], onChange }: EditTagsProps) => {
|
||||
<Input
|
||||
ref={inputRef}
|
||||
type="text"
|
||||
className="h-8 bg-background-card"
|
||||
className="h-8 bg-bg-card"
|
||||
value={inputValue}
|
||||
onChange={handleInputChange}
|
||||
onBlur={handleInputConfirm}
|
||||
@ -103,7 +103,7 @@ const EditTag = ({ value = [], onChange }: EditTagsProps) => {
|
||||
) : (
|
||||
<Button
|
||||
variant="dashed"
|
||||
className="w-fit flex items-center justify-center gap-2 bg-background-card"
|
||||
className="w-fit flex items-center justify-center gap-2 bg-bg-card"
|
||||
onClick={showInput}
|
||||
style={tagPlusStyle}
|
||||
>
|
||||
|
||||
@ -1,9 +1,13 @@
|
||||
import { DocumentParserType } from '@/constants/knowledge';
|
||||
import { useTranslate } from '@/hooks/common-hooks';
|
||||
import { useFetchKnowledgeList } from '@/hooks/knowledge-hooks';
|
||||
import { useBuildQueryVariableOptions } from '@/pages/agent/hooks/use-get-begin-query';
|
||||
import { UserOutlined } from '@ant-design/icons';
|
||||
import { Avatar as AntAvatar, Form, Select, Space } from 'antd';
|
||||
import { toLower } from 'lodash';
|
||||
import { useMemo } from 'react';
|
||||
import { useFormContext } from 'react-hook-form';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { RAGFlowAvatar } from './ragflow-avatar';
|
||||
import { FormControl, FormField, FormItem, FormLabel } from './ui/form';
|
||||
import { MultiSelect } from './ui/multi-select';
|
||||
@ -66,9 +70,13 @@ const KnowledgeBaseItem = ({
|
||||
|
||||
export default KnowledgeBaseItem;
|
||||
|
||||
export function KnowledgeBaseFormField() {
|
||||
export function KnowledgeBaseFormField({
|
||||
showVariable = false,
|
||||
}: {
|
||||
showVariable?: boolean;
|
||||
}) {
|
||||
const form = useFormContext();
|
||||
const { t } = useTranslate('chat');
|
||||
const { t } = useTranslation();
|
||||
|
||||
const { list: knowledgeList } = useFetchKnowledgeList(true);
|
||||
|
||||
@ -76,6 +84,8 @@ export function KnowledgeBaseFormField() {
|
||||
(x) => x.parser_id !== DocumentParserType.Tag,
|
||||
);
|
||||
|
||||
const nextOptions = useBuildQueryVariableOptions();
|
||||
|
||||
const knowledgeOptions = filteredKnowledgeList.map((x) => ({
|
||||
label: x.name,
|
||||
value: x.id,
|
||||
@ -84,18 +94,48 @@ export function KnowledgeBaseFormField() {
|
||||
),
|
||||
}));
|
||||
|
||||
const options = useMemo(() => {
|
||||
if (showVariable) {
|
||||
return [
|
||||
{
|
||||
label: t('knowledgeDetails.dataset'),
|
||||
options: knowledgeOptions,
|
||||
},
|
||||
...nextOptions.map((x) => {
|
||||
return {
|
||||
...x,
|
||||
options: x.options
|
||||
.filter((y) => toLower(y.type).includes('string'))
|
||||
.map((x) => ({
|
||||
...x,
|
||||
icon: () => (
|
||||
<RAGFlowAvatar
|
||||
className="size-4 mr-2"
|
||||
avatar={x.label}
|
||||
name={x.label}
|
||||
/>
|
||||
),
|
||||
})),
|
||||
};
|
||||
}),
|
||||
];
|
||||
}
|
||||
|
||||
return knowledgeOptions;
|
||||
}, [knowledgeOptions, nextOptions, showVariable, t]);
|
||||
|
||||
return (
|
||||
<FormField
|
||||
control={form.control}
|
||||
name="kb_ids"
|
||||
render={({ field }) => (
|
||||
<FormItem>
|
||||
<FormLabel>{t('knowledgeBases')}</FormLabel>
|
||||
<FormLabel>{t('chat.knowledgeBases')}</FormLabel>
|
||||
<FormControl>
|
||||
<MultiSelect
|
||||
options={knowledgeOptions}
|
||||
options={options}
|
||||
onValueChange={field.onChange}
|
||||
placeholder={t('knowledgeBasesMessage')}
|
||||
placeholder={t('chat.knowledgeBasesMessage')}
|
||||
variant="inverted"
|
||||
maxCount={100}
|
||||
defaultValue={field.value}
|
||||
|
||||
@ -95,7 +95,7 @@ function CheckboxFormMultiple({
|
||||
name={x.field}
|
||||
render={({ field }) => {
|
||||
return (
|
||||
<div className="flex items-center justify-between text-text-title text-xs">
|
||||
<div className="flex items-center justify-between text-text-primary text-xs">
|
||||
<FormItem
|
||||
key={item.id}
|
||||
className="flex flex-row space-x-3 space-y-0 items-center "
|
||||
|
||||
@ -27,7 +27,7 @@ export const FilterButton = React.forwardRef<
|
||||
<Button variant="secondary" {...props} ref={ref}>
|
||||
<span
|
||||
className={cn({
|
||||
'text-text-title': count > 0,
|
||||
'text-text-primary': count > 0,
|
||||
'text-text-sub-title-invert': count === 0,
|
||||
})}
|
||||
>
|
||||
|
||||
@ -226,7 +226,7 @@ function MessageItem({
|
||||
? styles.messageTextDark
|
||||
: styles.messageText]: isAssistant,
|
||||
[styles.messageUserText]: !isAssistant,
|
||||
'bg-background-card': !isAssistant,
|
||||
'bg-bg-card': !isAssistant,
|
||||
})}
|
||||
>
|
||||
{item.data ? (
|
||||
|
||||
@ -25,7 +25,7 @@ export function InnerUploadedMessageFiles({ files = [] }: IProps) {
|
||||
)}
|
||||
<div className="text-xs max-w-20">
|
||||
<div className="truncate">{file.name}</div>
|
||||
<p className="text-text-sub-title pt-1">{formatBytes(file.size)}</p>
|
||||
<p className="text-text-secondary pt-1">{formatBytes(file.size)}</p>
|
||||
</div>
|
||||
</div>
|
||||
))}
|
||||
|
||||
@ -63,7 +63,7 @@ const NumberInput: React.FC<NumberInputProps> = ({
|
||||
>
|
||||
<button
|
||||
type="button"
|
||||
className="w-10 p-2 text-white focus:outline-none border-r-[1px]"
|
||||
className="w-10 p-2 focus:outline-none border-r-[1px]"
|
||||
onClick={handleDecrement}
|
||||
style={style}
|
||||
>
|
||||
@ -74,12 +74,12 @@ const NumberInput: React.FC<NumberInputProps> = ({
|
||||
value={value}
|
||||
onInput={handleInput}
|
||||
onChange={handleChange}
|
||||
className="w-full flex-1 text-center bg-transparent text-white focus:outline-none"
|
||||
className="w-full flex-1 text-center bg-transparent focus:outline-none"
|
||||
style={style}
|
||||
/>
|
||||
<button
|
||||
type="button"
|
||||
className="w-10 p-2 text-white focus:outline-none border-l-[1px]"
|
||||
className="w-10 p-2 focus:outline-none border-l-[1px]"
|
||||
onClick={handleIncrement}
|
||||
style={style}
|
||||
>
|
||||
|
||||
@ -142,7 +142,7 @@ export function PromptEditor({
|
||||
}
|
||||
placeholder={
|
||||
<div
|
||||
className="absolute top-10 left-2 text-text-sub-title"
|
||||
className="absolute top-10 left-2 text-text-secondary"
|
||||
data-xxx
|
||||
>
|
||||
{placeholder || t('common.pleaseInput')}
|
||||
|
||||
44
web/src/components/ragflow-form.tsx
Normal file
44
web/src/components/ragflow-form.tsx
Normal file
@ -0,0 +1,44 @@
|
||||
import {
|
||||
FormControl,
|
||||
FormField,
|
||||
FormItem,
|
||||
FormLabel,
|
||||
FormMessage,
|
||||
} from '@/components/ui/form';
|
||||
import { ReactNode, cloneElement, isValidElement } from 'react';
|
||||
import { ControllerRenderProps, useFormContext } from 'react-hook-form';
|
||||
|
||||
type RAGFlowFormItemProps = {
|
||||
name: string;
|
||||
label: ReactNode;
|
||||
tooltip?: ReactNode;
|
||||
children: ReactNode | ((field: ControllerRenderProps) => ReactNode);
|
||||
};
|
||||
|
||||
export function RAGFlowFormItem({
|
||||
name,
|
||||
label,
|
||||
tooltip,
|
||||
children,
|
||||
}: RAGFlowFormItemProps) {
|
||||
const form = useFormContext();
|
||||
return (
|
||||
<FormField
|
||||
control={form.control}
|
||||
name={name}
|
||||
render={({ field }) => (
|
||||
<FormItem>
|
||||
<FormLabel tooltip={tooltip}>{label}</FormLabel>
|
||||
<FormControl>
|
||||
{typeof children === 'function'
|
||||
? children(field)
|
||||
: isValidElement(children)
|
||||
? cloneElement(children, { ...field })
|
||||
: children}
|
||||
</FormControl>
|
||||
<FormMessage />
|
||||
</FormItem>
|
||||
)}
|
||||
/>
|
||||
);
|
||||
}
|
||||
16
web/src/components/shared-badge.tsx
Normal file
16
web/src/components/shared-badge.tsx
Normal file
@ -0,0 +1,16 @@
|
||||
import { useFetchUserInfo } from '@/hooks/user-setting-hooks';
|
||||
import { PropsWithChildren } from 'react';
|
||||
|
||||
export function SharedBadge({ children }: PropsWithChildren) {
|
||||
const { data: userInfo } = useFetchUserInfo();
|
||||
|
||||
if (typeof children === 'string' && userInfo.nickname === children) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<span className="bg-text-secondary rounded-sm px-1 text-bg-base text-xs">
|
||||
{children}
|
||||
</span>
|
||||
);
|
||||
}
|
||||
@ -28,8 +28,11 @@ function AccordionItem({
|
||||
function AccordionTrigger({
|
||||
className,
|
||||
children,
|
||||
hideDownIcon = false,
|
||||
...props
|
||||
}: React.ComponentProps<typeof AccordionPrimitive.Trigger>) {
|
||||
}: React.ComponentProps<typeof AccordionPrimitive.Trigger> & {
|
||||
hideDownIcon?: boolean;
|
||||
}) {
|
||||
return (
|
||||
<AccordionPrimitive.Header className="flex">
|
||||
<AccordionPrimitive.Trigger
|
||||
@ -41,7 +44,9 @@ function AccordionTrigger({
|
||||
{...props}
|
||||
>
|
||||
{children}
|
||||
<ChevronDownIcon className="text-muted-foreground pointer-events-none size-4 shrink-0 translate-y-0.5 transition-transform duration-200" />
|
||||
{!hideDownIcon && (
|
||||
<ChevronDownIcon className="text-muted-foreground pointer-events-none size-4 shrink-0 translate-y-0.5 transition-transform duration-200" />
|
||||
)}
|
||||
</AccordionPrimitive.Trigger>
|
||||
</AccordionPrimitive.Header>
|
||||
);
|
||||
|
||||
@ -11,12 +11,10 @@ const badgeVariants = cva(
|
||||
default:
|
||||
'border-transparent bg-primary text-primary-foreground hover:bg-primary/80',
|
||||
secondary:
|
||||
'border-transparent bg-background-card text-text-sub-title-invert hover:bg-secondary/80 rounded-md',
|
||||
'border-transparent bg-bg-card text-text-sub-title-invert hover:bg-secondary/80 rounded-md',
|
||||
destructive:
|
||||
'border-transparent bg-destructive text-destructive-foreground hover:bg-destructive/80',
|
||||
outline: 'text-foreground',
|
||||
tertiary:
|
||||
'border-transparent bg-colors-background-core-strong text-colors-text-persist-light hover:bg-colors-background-core-strong/80',
|
||||
},
|
||||
},
|
||||
defaultVariants: {
|
||||
|
||||
@ -34,7 +34,7 @@ const BreadcrumbItem = React.forwardRef<
|
||||
<li
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'inline-flex items-center gap-1.5 text-text-sub-title',
|
||||
'inline-flex items-center gap-1.5 text-text-secondary',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -6,21 +6,21 @@ import { cn } from '@/lib/utils';
|
||||
import { Loader2, Plus } from 'lucide-react';
|
||||
|
||||
const buttonVariants = cva(
|
||||
'inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium ring-offset-background transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg]:size-4 [&_svg]:shrink-0',
|
||||
"inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium transition-all disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg:not([class*='size-'])]:size-4 shrink-0 [&_svg]:shrink-0 outline-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive",
|
||||
{
|
||||
variants: {
|
||||
variant: {
|
||||
default: 'bg-primary text-primary-foreground hover:bg-primary/90',
|
||||
default:
|
||||
'bg-primary text-primary-foreground shadow-xs hover:bg-primary/90',
|
||||
destructive:
|
||||
'bg-destructive text-destructive-foreground hover:bg-destructive/90',
|
||||
'bg-destructive text-white shadow-xs hover:bg-destructive/90 focus-visible:ring-destructive/20 dark:focus-visible:ring-destructive/40 dark:bg-destructive/60',
|
||||
outline:
|
||||
'border border-text-sub-title-invert bg-transparent hover:bg-accent hover:text-accent-foreground',
|
||||
'border bg-background shadow-xs hover:bg-accent hover:text-accent-foreground dark:bg-input/30 dark:border-input dark:hover:bg-input/50',
|
||||
secondary:
|
||||
'bg-background-card text-secondary-foreground hover:bg-secondary/80',
|
||||
ghost: 'hover:bg-accent hover:text-accent-foreground',
|
||||
'bg-secondary text-secondary-foreground shadow-xs hover:bg-secondary/80',
|
||||
ghost:
|
||||
'hover:bg-accent hover:text-accent-foreground dark:hover:bg-accent/50',
|
||||
link: 'text-primary underline-offset-4 hover:underline',
|
||||
tertiary:
|
||||
'bg-colors-background-sentiment-solid-primary text-colors-text-persist-light hover:bg-colors-background-sentiment-solid-primary/80',
|
||||
icon: 'bg-colors-background-inverse-standard text-foreground hover:bg-colors-background-inverse-standard/80',
|
||||
dashed: 'border border-dashed border-input hover:bg-accent',
|
||||
transparent: 'bg-transparent hover:bg-accent border',
|
||||
@ -52,7 +52,7 @@ const Button = React.forwardRef<HTMLButtonElement, ButtonProps>(
|
||||
return (
|
||||
<Comp
|
||||
className={cn(
|
||||
'bg-background-card',
|
||||
'bg-bg-card',
|
||||
buttonVariants({ variant, size, className }),
|
||||
)}
|
||||
ref={ref}
|
||||
|
||||
@ -8,10 +8,7 @@ const Card = React.forwardRef<
|
||||
>(({ className, ...props }, ref) => (
|
||||
<div
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'rounded-lg bg-background-card text-card-foreground shadow-sm',
|
||||
className,
|
||||
)}
|
||||
className={cn('rounded-lg bg-bg-card shadow-sm', className)}
|
||||
{...props}
|
||||
/>
|
||||
));
|
||||
|
||||
@ -1,19 +0,0 @@
|
||||
import { cn } from '@/lib/utils';
|
||||
|
||||
export function Container({
|
||||
children,
|
||||
className,
|
||||
...props
|
||||
}: React.PropsWithChildren<React.HTMLAttributes<HTMLDivElement>>) {
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
'px-2 py-1 bg-colors-background-inverse-standard inline-flex items-center rounded-sm gap-2',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
>
|
||||
{children}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@ -29,11 +29,11 @@ const DualRangeSlider = React.forwardRef<
|
||||
{...props}
|
||||
>
|
||||
<SliderPrimitive.Track className="relative h-2 w-full grow overflow-hidden rounded-full bg-secondary">
|
||||
<SliderPrimitive.Range className="absolute h-full bg-background-checked" />
|
||||
<SliderPrimitive.Range className="absolute h-full bg-accent-primary" />
|
||||
</SliderPrimitive.Track>
|
||||
{initialValue.map((value, index) => (
|
||||
<React.Fragment key={index}>
|
||||
<SliderPrimitive.Thumb className="relative block h-4 w-4 rounded-full border-2 border-background-checked bg-white ring-offset-background transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 cursor-pointer">
|
||||
<SliderPrimitive.Thumb className="relative block h-4 w-4 rounded-full border-2 border-accent-primary bg-white ring-offset-background transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 cursor-pointer">
|
||||
{label && (
|
||||
<span
|
||||
className={cn(
|
||||
|
||||
@ -14,7 +14,7 @@ const Input = React.forwardRef<HTMLInputElement, InputProps>(
|
||||
<input
|
||||
type={type}
|
||||
className={cn(
|
||||
'flex h-8 w-full rounded-md border border-input bg-colors-background-inverse-weak px-2 py-2 text-sm ring-offset-background file:border-0 file:bg-transparent file:text-sm file:font-medium file:text-foreground placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50',
|
||||
'flex h-8 w-full rounded-md border border-input bg-bg-card px-2 py-2 text-sm ring-offset-background file:border-0 file:bg-transparent file:text-sm file:font-medium file:text-foreground placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50',
|
||||
className,
|
||||
)}
|
||||
ref={ref}
|
||||
|
||||
@ -20,8 +20,6 @@ const buttonVariants = cva(
|
||||
'bg-secondary text-secondary-foreground hover:bg-secondary/80',
|
||||
ghost: 'hover:bg-accent hover:text-accent-foreground',
|
||||
link: 'text-primary underline-offset-4 hover:underline',
|
||||
tertiary:
|
||||
'bg-colors-background-sentiment-solid-primary text-colors-text-persist-light hover:bg-colors-background-sentiment-solid-primary/80',
|
||||
},
|
||||
size: {
|
||||
default: 'h-10 px-4 py-2',
|
||||
|
||||
102
web/src/components/ui/modal/modal-manage.tsx
Normal file
102
web/src/components/ui/modal/modal-manage.tsx
Normal file
@ -0,0 +1,102 @@
|
||||
import { ReactNode, useEffect, useState } from 'react';
|
||||
import { createPortal } from 'react-dom';
|
||||
import { createRoot } from 'react-dom/client';
|
||||
import { Modal, ModalProps } from './modal';
|
||||
|
||||
type PortalModalProps = Omit<ModalProps, 'open' | 'onOpenChange'> & {
|
||||
visible: boolean;
|
||||
onVisibleChange: (visible: boolean) => void;
|
||||
container?: HTMLElement;
|
||||
children: ReactNode;
|
||||
[key: string]: any;
|
||||
};
|
||||
|
||||
const PortalModal = ({
|
||||
visible,
|
||||
onVisibleChange,
|
||||
container,
|
||||
children,
|
||||
...restProps
|
||||
}: PortalModalProps) => {
|
||||
const [mounted, setMounted] = useState(false);
|
||||
|
||||
useEffect(() => {
|
||||
setMounted(true);
|
||||
return () => setMounted(false);
|
||||
}, []);
|
||||
|
||||
if (!mounted || !visible) return null;
|
||||
console.log('PortalModal:', visible);
|
||||
return createPortal(
|
||||
<Modal open={visible} onOpenChange={onVisibleChange} {...restProps}>
|
||||
{children}
|
||||
</Modal>,
|
||||
container || document.body,
|
||||
);
|
||||
};
|
||||
|
||||
export const createPortalModal = () => {
|
||||
let container = document.createElement('div');
|
||||
document.body.appendChild(container);
|
||||
|
||||
let currentProps: any = {};
|
||||
let isVisible = false;
|
||||
let root: ReturnType<typeof createRoot> | null = null;
|
||||
|
||||
root = createRoot(container);
|
||||
const destroy = () => {
|
||||
if (root && container) {
|
||||
root.unmount();
|
||||
if (container.parentNode) {
|
||||
container.parentNode.removeChild(container);
|
||||
}
|
||||
root = null;
|
||||
}
|
||||
isVisible = false;
|
||||
currentProps = {};
|
||||
};
|
||||
const render = () => {
|
||||
const { onVisibleChange, ...props } = currentProps;
|
||||
const modalParam = {
|
||||
visible: isVisible,
|
||||
|
||||
onVisibleChange: (visible: boolean) => {
|
||||
isVisible = visible;
|
||||
if (onVisibleChange) {
|
||||
onVisibleChange(visible);
|
||||
}
|
||||
|
||||
if (!visible) {
|
||||
render();
|
||||
}
|
||||
},
|
||||
...props,
|
||||
};
|
||||
root?.render(isVisible ? <PortalModal {...modalParam} /> : null);
|
||||
};
|
||||
|
||||
const show = (props: PortalModalProps) => {
|
||||
if (!container) {
|
||||
container = document.createElement('div');
|
||||
document.body.appendChild(container);
|
||||
}
|
||||
if (!root) {
|
||||
root = createRoot(container);
|
||||
}
|
||||
currentProps = { ...currentProps, ...props };
|
||||
isVisible = true;
|
||||
render();
|
||||
};
|
||||
|
||||
const hide = () => {
|
||||
isVisible = false;
|
||||
render();
|
||||
};
|
||||
|
||||
const update = (props = {}) => {
|
||||
currentProps = { ...currentProps, ...props };
|
||||
render();
|
||||
};
|
||||
|
||||
return { show, hide, update, destroy };
|
||||
};
|
||||
@ -1,15 +1,19 @@
|
||||
// src/components/ui/modal.tsx
|
||||
import { cn } from '@/lib/utils';
|
||||
import * as DialogPrimitive from '@radix-ui/react-dialog';
|
||||
import { Loader, X } from 'lucide-react';
|
||||
import { FC, ReactNode, useCallback, useEffect, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { createPortalModal } from './modal-manage';
|
||||
|
||||
interface ModalProps {
|
||||
export interface ModalProps {
|
||||
open: boolean;
|
||||
onOpenChange?: (open: boolean) => void;
|
||||
title?: ReactNode;
|
||||
titleClassName?: string;
|
||||
children: ReactNode;
|
||||
footer?: ReactNode;
|
||||
footerClassName?: string;
|
||||
showfooter?: boolean;
|
||||
className?: string;
|
||||
size?: 'small' | 'default' | 'large';
|
||||
@ -24,13 +28,19 @@ interface ModalProps {
|
||||
onOk?: () => void;
|
||||
onCancel?: () => void;
|
||||
}
|
||||
export interface ModalType extends FC<ModalProps> {
|
||||
show: typeof modalIns.show;
|
||||
hide: typeof modalIns.hide;
|
||||
}
|
||||
|
||||
export const Modal: FC<ModalProps> = ({
|
||||
const Modal: ModalType = ({
|
||||
open,
|
||||
onOpenChange,
|
||||
title,
|
||||
titleClassName,
|
||||
children,
|
||||
footer,
|
||||
footerClassName,
|
||||
showfooter = true,
|
||||
className = '',
|
||||
size = 'default',
|
||||
@ -74,6 +84,7 @@ export const Modal: FC<ModalProps> = ({
|
||||
}, [onOpenChange, onOk]);
|
||||
const handleChange = (open: boolean) => {
|
||||
onOpenChange?.(open);
|
||||
console.log('open', open, onOpenChange);
|
||||
if (open) {
|
||||
handleOk();
|
||||
}
|
||||
@ -113,7 +124,12 @@ export const Modal: FC<ModalProps> = ({
|
||||
);
|
||||
}
|
||||
return (
|
||||
<div className="flex items-center justify-end border-t border-border px-6 py-4">
|
||||
<div
|
||||
className={cn(
|
||||
'flex items-center justify-end px-6 py-4',
|
||||
footerClassName,
|
||||
)}
|
||||
>
|
||||
{footerTemp}
|
||||
</div>
|
||||
);
|
||||
@ -126,6 +142,7 @@ export const Modal: FC<ModalProps> = ({
|
||||
handleCancel,
|
||||
handleOk,
|
||||
showfooter,
|
||||
footerClassName,
|
||||
]);
|
||||
return (
|
||||
<DialogPrimitive.Root open={open} onOpenChange={handleChange}>
|
||||
@ -139,11 +156,23 @@ export const Modal: FC<ModalProps> = ({
|
||||
onClick={(e) => e.stopPropagation()}
|
||||
>
|
||||
{/* title */}
|
||||
{title && (
|
||||
<div className="flex items-center justify-between border-b border-border px-6 py-4">
|
||||
<DialogPrimitive.Title className="text-lg font-medium text-foreground">
|
||||
{title}
|
||||
</DialogPrimitive.Title>
|
||||
{(title || closable) && (
|
||||
<div
|
||||
className={cn(
|
||||
'flex items-center px-6 py-4',
|
||||
{
|
||||
'justify-end': closable && !title,
|
||||
'justify-between': closable && title,
|
||||
'justify-start': !closable,
|
||||
},
|
||||
titleClassName,
|
||||
)}
|
||||
>
|
||||
{title && (
|
||||
<DialogPrimitive.Title className="text-lg font-medium text-foreground">
|
||||
{title}
|
||||
</DialogPrimitive.Title>
|
||||
)}
|
||||
{closable && (
|
||||
<DialogPrimitive.Close asChild>
|
||||
<button
|
||||
@ -156,13 +185,9 @@ export const Modal: FC<ModalProps> = ({
|
||||
)}
|
||||
</div>
|
||||
)}
|
||||
{/* title */}
|
||||
{!title && (
|
||||
<DialogPrimitive.Title className="text-lg font-medium text-foreground"></DialogPrimitive.Title>
|
||||
)}
|
||||
|
||||
{/* content */}
|
||||
<div className="p-6 overflow-y-auto max-h-[80vh] focus-visible:!outline-none">
|
||||
<div className="py-2 px-6 overflow-y-auto max-h-[80vh] focus-visible:!outline-none">
|
||||
{destroyOnClose && !open ? null : children}
|
||||
</div>
|
||||
|
||||
@ -175,43 +200,13 @@ export const Modal: FC<ModalProps> = ({
|
||||
);
|
||||
};
|
||||
|
||||
// example usage
|
||||
/*
|
||||
import { Modal } from '@/components/ui/modal';
|
||||
let modalIns = createPortalModal();
|
||||
Modal.show = modalIns
|
||||
? modalIns.show
|
||||
: () => {
|
||||
modalIns = createPortalModal();
|
||||
return modalIns.show;
|
||||
};
|
||||
Modal.hide = modalIns.hide;
|
||||
|
||||
function Demo() {
|
||||
const [open, setOpen] = useState(false);
|
||||
|
||||
return (
|
||||
<div>
|
||||
<button onClick={() => setOpen(true)}>open modal</button>
|
||||
|
||||
<Modal
|
||||
open={open}
|
||||
onOpenChange={setOpen}
|
||||
title="title"
|
||||
footer={
|
||||
<div className="flex gap-2">
|
||||
<button onClick={() => setOpen(false)} className="px-4 py-2 border rounded-md">
|
||||
cancel
|
||||
</button>
|
||||
<button onClick={() => setOpen(false)} className="px-4 py-2 bg-primary text-white rounded-md">
|
||||
ok
|
||||
</button>
|
||||
</div>
|
||||
}
|
||||
>
|
||||
<div className="py-4">弹窗内容区域</div>
|
||||
</Modal>
|
||||
<Modal
|
||||
title={'modal-title'}
|
||||
onOk={handleOk}
|
||||
confirmLoading={loading}
|
||||
destroyOnClose
|
||||
>
|
||||
<div className="py-4">弹窗内容区域</div>
|
||||
</Modal>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
*/
|
||||
export { Modal };
|
||||
@ -1,3 +1,4 @@
|
||||
// https://github.com/sersavan/shadcn-multi-select-component
|
||||
// src/components/multi-select.tsx
|
||||
|
||||
import { cva, type VariantProps } from 'class-variance-authority';
|
||||
@ -29,6 +30,51 @@ import {
|
||||
import { Separator } from '@/components/ui/separator';
|
||||
import { cn } from '@/lib/utils';
|
||||
|
||||
export type MultiSelectOptionType = {
|
||||
label: React.ReactNode;
|
||||
value: string;
|
||||
disabled?: boolean;
|
||||
icon?: React.ComponentType<{ className?: string }>;
|
||||
};
|
||||
|
||||
export type MultiSelectGroupOptionType = {
|
||||
label: React.ReactNode;
|
||||
options: MultiSelectOptionType[];
|
||||
};
|
||||
|
||||
function MultiCommandItem({
|
||||
option,
|
||||
isSelected,
|
||||
toggleOption,
|
||||
}: {
|
||||
option: MultiSelectOptionType;
|
||||
isSelected: boolean;
|
||||
toggleOption(value: string): void;
|
||||
}) {
|
||||
return (
|
||||
<CommandItem
|
||||
key={option.value}
|
||||
onSelect={() => toggleOption(option.value)}
|
||||
className="cursor-pointer"
|
||||
>
|
||||
<div
|
||||
className={cn(
|
||||
'mr-2 flex h-4 w-4 items-center justify-center rounded-sm border border-primary',
|
||||
isSelected
|
||||
? 'bg-primary text-primary-foreground'
|
||||
: 'opacity-50 [&_svg]:invisible',
|
||||
)}
|
||||
>
|
||||
<CheckIcon className="h-4 w-4" />
|
||||
</div>
|
||||
{option.icon && (
|
||||
<option.icon className="mr-2 h-4 w-4 text-muted-foreground" />
|
||||
)}
|
||||
<span>{option.label}</span>
|
||||
</CommandItem>
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* Variants for the multi-select component to handle different styles.
|
||||
* Uses class-variance-authority (cva) to define different styles based on "variant" prop.
|
||||
@ -63,14 +109,7 @@ interface MultiSelectProps
|
||||
* An array of option objects to be displayed in the multi-select component.
|
||||
* Each option object has a label, value, and an optional icon.
|
||||
*/
|
||||
options: {
|
||||
/** The text to display for the option. */
|
||||
label: string;
|
||||
/** The unique value associated with the option. */
|
||||
value: string;
|
||||
/** Optional icon component to display alongside the option. */
|
||||
icon?: React.ComponentType<{ className?: string }>;
|
||||
}[];
|
||||
options: (MultiSelectGroupOptionType | MultiSelectOptionType)[];
|
||||
|
||||
/**
|
||||
* Callback function triggered when the selected values change.
|
||||
@ -144,6 +183,11 @@ export const MultiSelect = React.forwardRef<
|
||||
const [isPopoverOpen, setIsPopoverOpen] = React.useState(false);
|
||||
const [isAnimating, setIsAnimating] = React.useState(false);
|
||||
|
||||
const flatOptions = React.useMemo(() => {
|
||||
return options.flatMap((option) =>
|
||||
'options' in option ? option.options : [option],
|
||||
);
|
||||
}, [options]);
|
||||
const handleInputKeyDown = (
|
||||
event: React.KeyboardEvent<HTMLInputElement>,
|
||||
) => {
|
||||
@ -181,10 +225,10 @@ export const MultiSelect = React.forwardRef<
|
||||
};
|
||||
|
||||
const toggleAll = () => {
|
||||
if (selectedValues.length === options.length) {
|
||||
if (selectedValues.length === flatOptions.length) {
|
||||
handleClear();
|
||||
} else {
|
||||
const allValues = options.map((option) => option.value);
|
||||
const allValues = flatOptions.map((option) => option.value);
|
||||
setSelectedValues(allValues);
|
||||
onValueChange(allValues);
|
||||
}
|
||||
@ -210,7 +254,7 @@ export const MultiSelect = React.forwardRef<
|
||||
<div className="flex justify-between items-center w-full">
|
||||
<div className="flex flex-wrap items-center">
|
||||
{selectedValues?.slice(0, maxCount)?.map((value) => {
|
||||
const option = options.find((o) => o.value === value);
|
||||
const option = flatOptions.find((o) => o.value === value);
|
||||
const IconComponent = option?.icon;
|
||||
return (
|
||||
<Badge
|
||||
@ -304,7 +348,7 @@ export const MultiSelect = React.forwardRef<
|
||||
<div
|
||||
className={cn(
|
||||
'mr-2 flex h-4 w-4 items-center justify-center rounded-sm border border-primary',
|
||||
selectedValues.length === options.length
|
||||
selectedValues.length === flatOptions.length
|
||||
? 'bg-primary text-primary-foreground'
|
||||
: 'opacity-50 [&_svg]:invisible',
|
||||
)}
|
||||
@ -313,32 +357,38 @@ export const MultiSelect = React.forwardRef<
|
||||
</div>
|
||||
<span>(Select All)</span>
|
||||
</CommandItem>
|
||||
{options.map((option) => {
|
||||
const isSelected = selectedValues.includes(option.value);
|
||||
return (
|
||||
<CommandItem
|
||||
key={option.value}
|
||||
onSelect={() => toggleOption(option.value)}
|
||||
className="cursor-pointer"
|
||||
>
|
||||
<div
|
||||
className={cn(
|
||||
'mr-2 flex h-4 w-4 items-center justify-center rounded-sm border border-primary',
|
||||
isSelected
|
||||
? 'bg-primary text-primary-foreground'
|
||||
: 'opacity-50 [&_svg]:invisible',
|
||||
)}
|
||||
>
|
||||
<CheckIcon className="h-4 w-4" />
|
||||
</div>
|
||||
{option.icon && (
|
||||
<option.icon className="mr-2 h-4 w-4 text-muted-foreground" />
|
||||
)}
|
||||
<span>{option.label}</span>
|
||||
</CommandItem>
|
||||
);
|
||||
})}
|
||||
{!options.some((x) => 'options' in x) &&
|
||||
(options as unknown as MultiSelectOptionType[]).map(
|
||||
(option) => {
|
||||
const isSelected = selectedValues.includes(option.value);
|
||||
return (
|
||||
<MultiCommandItem
|
||||
option={option}
|
||||
key={option.value}
|
||||
isSelected={isSelected}
|
||||
toggleOption={toggleOption}
|
||||
></MultiCommandItem>
|
||||
);
|
||||
},
|
||||
)}
|
||||
</CommandGroup>
|
||||
{options.every((x) => 'options' in x) &&
|
||||
options.map((x, idx) => (
|
||||
<CommandGroup heading={x.label} key={idx}>
|
||||
{x.options.map((option) => {
|
||||
const isSelected = selectedValues.includes(option.value);
|
||||
|
||||
return (
|
||||
<MultiCommandItem
|
||||
option={option}
|
||||
key={option.value}
|
||||
isSelected={isSelected}
|
||||
toggleOption={toggleOption}
|
||||
></MultiCommandItem>
|
||||
);
|
||||
})}
|
||||
</CommandGroup>
|
||||
))}
|
||||
<CommandSeparator />
|
||||
<CommandGroup>
|
||||
<div className="flex items-center justify-between">
|
||||
|
||||
@ -1,44 +1,45 @@
|
||||
'use client';
|
||||
|
||||
import * as RadioGroupPrimitive from '@radix-ui/react-radio-group';
|
||||
import { Circle } from 'lucide-react';
|
||||
import { CircleIcon } from 'lucide-react';
|
||||
import * as React from 'react';
|
||||
|
||||
import { cn } from '@/lib/utils';
|
||||
|
||||
const RadioGroup = React.forwardRef<
|
||||
React.ElementRef<typeof RadioGroupPrimitive.Root>,
|
||||
React.ComponentPropsWithoutRef<typeof RadioGroupPrimitive.Root>
|
||||
>(({ className, ...props }, ref) => {
|
||||
function RadioGroup({
|
||||
className,
|
||||
...props
|
||||
}: React.ComponentProps<typeof RadioGroupPrimitive.Root>) {
|
||||
return (
|
||||
<RadioGroupPrimitive.Root
|
||||
className={cn('grid gap-2', className)}
|
||||
data-slot="radio-group"
|
||||
className={cn('grid gap-3', className)}
|
||||
{...props}
|
||||
ref={ref}
|
||||
/>
|
||||
);
|
||||
});
|
||||
RadioGroup.displayName = RadioGroupPrimitive.Root.displayName;
|
||||
}
|
||||
|
||||
const RadioGroupItem = React.forwardRef<
|
||||
React.ElementRef<typeof RadioGroupPrimitive.Item>,
|
||||
React.ComponentPropsWithoutRef<typeof RadioGroupPrimitive.Item>
|
||||
>(({ className, ...props }, ref) => {
|
||||
function RadioGroupItem({
|
||||
className,
|
||||
...props
|
||||
}: React.ComponentProps<typeof RadioGroupPrimitive.Item>) {
|
||||
return (
|
||||
<RadioGroupPrimitive.Item
|
||||
ref={ref}
|
||||
data-slot="radio-group-item"
|
||||
className={cn(
|
||||
'aspect-square h-4 w-4 rounded-full border border-primary text-primary ring-offset-background focus:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50',
|
||||
'border-input text-primary focus-visible:border-ring focus-visible:ring-ring/50 aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive dark:bg-input/30 aspect-square size-4 shrink-0 rounded-full border shadow-xs transition-[color,box-shadow] outline-none focus-visible:ring-[3px] disabled:cursor-not-allowed disabled:opacity-50',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
>
|
||||
<RadioGroupPrimitive.Indicator className="flex items-center justify-center">
|
||||
<Circle className="h-2.5 w-2.5 fill-current text-current" />
|
||||
<RadioGroupPrimitive.Indicator
|
||||
data-slot="radio-group-indicator"
|
||||
className="relative flex items-center justify-center"
|
||||
>
|
||||
<CircleIcon className="fill-primary absolute top-1/2 left-1/2 size-2 -translate-x-1/2 -translate-y-1/2" />
|
||||
</RadioGroupPrimitive.Indicator>
|
||||
</RadioGroupPrimitive.Item>
|
||||
);
|
||||
});
|
||||
RadioGroupItem.displayName = RadioGroupPrimitive.Item.displayName;
|
||||
}
|
||||
|
||||
export { RadioGroup, RadioGroupItem };
|
||||
|
||||
@ -150,7 +150,7 @@ export function RAGFlowPagination({
|
||||
<PaginationItem
|
||||
key={page}
|
||||
className={cn({
|
||||
['bg-background-header-bar rounded-md text-text-title']:
|
||||
['bg-bg-card rounded-md text-text-primary']:
|
||||
currentPage === page,
|
||||
})}
|
||||
>
|
||||
@ -174,7 +174,7 @@ export function RAGFlowPagination({
|
||||
options={sizeChangerOptions}
|
||||
value={currentPageSize}
|
||||
onChange={handlePageSizeChange}
|
||||
triggerClassName="bg-background-header-bar"
|
||||
triggerClassName="bg-bg-card"
|
||||
></RAGFlowSelect>
|
||||
)}
|
||||
</section>
|
||||
|
||||
@ -43,7 +43,7 @@ export function Segmented({
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
'flex items-center rounded-3xl p-1 gap-2 bg-background-header-bar px-5 py-2.5',
|
||||
'flex items-center rounded-3xl p-1 gap-2 bg-bg-card px-5 py-2.5',
|
||||
className,
|
||||
)}
|
||||
>
|
||||
@ -55,10 +55,10 @@ export function Segmented({
|
||||
<div
|
||||
key={actualValue}
|
||||
className={cn(
|
||||
'inline-flex items-center px-6 py-2 text-base font-normal rounded-3xl cursor-pointer text-text-badge',
|
||||
'inline-flex items-center px-6 py-2 text-base font-normal rounded-3xl cursor-pointer',
|
||||
{
|
||||
'bg-text-title': selectedValue === actualValue,
|
||||
'text-text-title-invert': selectedValue === actualValue,
|
||||
'bg-text-primary': selectedValue === actualValue,
|
||||
'text-bg-base': selectedValue === actualValue,
|
||||
},
|
||||
)}
|
||||
onClick={() => handleOnChange(actualValue)}
|
||||
|
||||
@ -26,7 +26,7 @@ const SelectTrigger = React.forwardRef<
|
||||
<SelectPrimitive.Trigger
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'flex h-8 w-full items-center justify-between rounded-md border border-input bg-colors-background-inverse-weak px-3 py-2 text-sm ring-offset-background placeholder:text-muted-foreground focus:outline-none focus:ring-2 focus:ring-ring focus:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 [&>span]:line-clamp-1',
|
||||
'flex h-8 w-full items-center bg-bg-card justify-between rounded-md border border-input px-3 py-2 text-sm ring-offset-background placeholder:text-muted-foreground focus:outline-none focus:ring-2 focus:ring-ring focus:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 [&>span]:line-clamp-1',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -316,6 +316,7 @@ const SidebarRail = React.forwardRef<
|
||||
'[[data-side=right][data-collapsible=offcanvas]_&]:-left-2',
|
||||
className,
|
||||
)}
|
||||
type="button"
|
||||
{...props}
|
||||
/>
|
||||
);
|
||||
|
||||
@ -11,7 +11,7 @@ const Switch = React.forwardRef<
|
||||
>(({ className, ...props }, ref) => (
|
||||
<SwitchPrimitives.Root
|
||||
className={cn(
|
||||
'peer inline-flex h-3.5 w-6 shrink-0 cursor-pointer items-center rounded-full border-2 border-transparent transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 focus-visible:ring-offset-background disabled:cursor-not-allowed disabled:opacity-50 data-[state=checked]:bg-background-checked data-[state=unchecked]:bg-text-sub-title',
|
||||
'peer inline-flex h-3.5 w-6 shrink-0 cursor-pointer items-center rounded-full border-2 border-transparent transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 focus-visible:ring-offset-background disabled:cursor-not-allowed disabled:opacity-50 data-[state=checked]:bg-accent-primary data-[state=unchecked]:bg-text-sub-title',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -8,7 +8,7 @@ const Table = React.forwardRef<
|
||||
>(({ className, rootClassName, ...props }, ref) => (
|
||||
<div
|
||||
className={cn(
|
||||
'relative w-full overflow-auto rounded-2xl bg-background-card',
|
||||
'relative w-full overflow-auto rounded-2xl bg-bg-card',
|
||||
rootClassName,
|
||||
)}
|
||||
>
|
||||
@ -82,7 +82,7 @@ const TableHead = React.forwardRef<
|
||||
<th
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'h-12 px-4 text-left align-middle font-normal text-text-sub-title [&:has([role=checkbox])]:pr-0',
|
||||
'h-12 px-4 text-left align-middle font-normal text-text-secondary [&:has([role=checkbox])]:pr-0',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
@ -97,7 +97,7 @@ const TableCell = React.forwardRef<
|
||||
<td
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'p-4 align-middle [&:has([role=checkbox])]:pr-0 text-text-title font-normal',
|
||||
'p-4 align-middle [&:has([role=checkbox])]:pr-0 text-text-primary font-normal',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -14,7 +14,7 @@ const TabsList = React.forwardRef<
|
||||
<TabsPrimitive.List
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'inline-flex h-10 items-center justify-center rounded-md bg-colors-background-inverse-standard p-1 text-colors-text-neutral-standard',
|
||||
'inline-flex h-10 items-center justify-center rounded-md p-1 ',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
@ -29,7 +29,7 @@ const TabsTrigger = React.forwardRef<
|
||||
<TabsPrimitive.Trigger
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'inline-flex items-center justify-center whitespace-nowrap rounded-sm px-3 py-1.5 text-sm font-medium ring-offset-background transition-all focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=active]:bg-text-title-invert data-[state=active]:text-text-title data-[state=active]:shadow-sm',
|
||||
'inline-flex items-center justify-center whitespace-nowrap rounded-sm px-3 py-1.5 text-sm font-medium ring-offset-background transition-all focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=active]:bg-text-title-invert data-[state=active]:text-text-primary data-[state=active]:shadow-sm',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -54,7 +54,7 @@ const Textarea = forwardRef<HTMLTextAreaElement, TextareaProps>(
|
||||
return (
|
||||
<textarea
|
||||
className={cn(
|
||||
'flex min-h-[80px] w-full rounded-md border border-input bg-colors-background-inverse-weak px-3 py-2 text-base ring-offset-background placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 md:text-sm overflow-hidden',
|
||||
'flex min-h-[80px] w-full bg-bg-card rounded-md border border-input px-3 py-2 text-base ring-offset-background placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 md:text-sm overflow-hidden',
|
||||
className,
|
||||
)}
|
||||
rows={autoSize?.minRows ?? props.rows ?? undefined}
|
||||
|
||||
@ -49,8 +49,8 @@ export const LanguageList = [
|
||||
'Japanese',
|
||||
'Portuguese BR',
|
||||
'German',
|
||||
'French',
|
||||
];
|
||||
|
||||
export const LanguageMap = {
|
||||
English: 'English',
|
||||
Chinese: '简体中文',
|
||||
@ -61,6 +61,7 @@ export const LanguageMap = {
|
||||
Japanese: '日本語',
|
||||
'Portuguese BR': 'Português BR',
|
||||
German: 'German',
|
||||
French: 'Français',
|
||||
};
|
||||
|
||||
export enum LanguageAbbreviation {
|
||||
@ -73,6 +74,7 @@ export enum LanguageAbbreviation {
|
||||
Vi = 'vi',
|
||||
PtBr = 'pt-BR',
|
||||
De = 'de',
|
||||
Fr = 'fr',
|
||||
}
|
||||
|
||||
export const LanguageAbbreviationMap = {
|
||||
@ -85,6 +87,7 @@ export const LanguageAbbreviationMap = {
|
||||
[LanguageAbbreviation.Ja]: '日本語',
|
||||
[LanguageAbbreviation.PtBr]: 'Português BR',
|
||||
[LanguageAbbreviation.De]: 'Deutsch',
|
||||
[LanguageAbbreviation.Fr]: 'Français',
|
||||
};
|
||||
|
||||
export const LanguageTranslationMap = {
|
||||
@ -97,6 +100,7 @@ export const LanguageTranslationMap = {
|
||||
Japanese: 'ja',
|
||||
'Portuguese BR': 'pt-br',
|
||||
German: 'de',
|
||||
French: 'fr',
|
||||
};
|
||||
|
||||
export enum FileMimeType {
|
||||
|
||||
@ -52,6 +52,8 @@ export enum LLMFactory {
|
||||
GiteeAI = 'GiteeAI',
|
||||
Ai302 = '302.AI',
|
||||
DeepInfra = 'DeepInfra',
|
||||
Grok = 'Grok',
|
||||
XAI = 'xAI',
|
||||
}
|
||||
|
||||
// Please lowercase the file name
|
||||
@ -109,4 +111,6 @@ export const IconMap = {
|
||||
[LLMFactory.GiteeAI]: 'gitee-ai',
|
||||
[LLMFactory.Ai302]: 'ai302',
|
||||
[LLMFactory.DeepInfra]: 'deepinfra',
|
||||
[LLMFactory.Grok]: 'grok',
|
||||
[LLMFactory.XAI]: 'xai',
|
||||
};
|
||||
|
||||
@ -353,7 +353,12 @@ export const useHandleMessageInputChange = () => {
|
||||
export const useSelectDerivedMessages = () => {
|
||||
const [derivedMessages, setDerivedMessages] = useState<IMessage[]>([]);
|
||||
|
||||
const ref = useScrollToBottom(derivedMessages);
|
||||
const messageContainerRef = useRef<HTMLDivElement>(null);
|
||||
|
||||
const { scrollRef, scrollToBottom } = useScrollToBottom(
|
||||
derivedMessages,
|
||||
messageContainerRef,
|
||||
);
|
||||
|
||||
const addNewestQuestion = useCallback(
|
||||
(message: Message, answer: string = '') => {
|
||||
@ -492,7 +497,8 @@ export const useSelectDerivedMessages = () => {
|
||||
}, [setDerivedMessages]);
|
||||
|
||||
return {
|
||||
ref,
|
||||
scrollRef,
|
||||
messageContainerRef,
|
||||
derivedMessages,
|
||||
setDerivedMessages,
|
||||
addNewestQuestion,
|
||||
@ -503,6 +509,7 @@ export const useSelectDerivedMessages = () => {
|
||||
addNewestOneAnswer,
|
||||
removeMessagesAfterCurrentMessage,
|
||||
removeAllMessages,
|
||||
scrollToBottom,
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
@ -35,9 +35,12 @@ export const useNavigatePage = () => {
|
||||
navigate(Routes.Chats);
|
||||
}, [navigate]);
|
||||
|
||||
const navigateToChat = useCallback(() => {
|
||||
navigate(Routes.Chat);
|
||||
}, [navigate]);
|
||||
const navigateToChat = useCallback(
|
||||
(id: string) => () => {
|
||||
navigate(`${Routes.Chat}/${id}`);
|
||||
},
|
||||
[navigate],
|
||||
);
|
||||
|
||||
const navigateToAgents = useCallback(() => {
|
||||
navigate(Routes.Agents);
|
||||
|
||||
@ -48,6 +48,7 @@ export const enum AgentApiAction {
|
||||
FetchVersion = 'fetchVersion',
|
||||
FetchAgentAvatar = 'fetchAgentAvatar',
|
||||
FetchExternalAgentInputs = 'fetchExternalAgentInputs',
|
||||
SetAgentSetting = 'setAgentSetting',
|
||||
}
|
||||
|
||||
export const EmptyDsl = {
|
||||
@ -613,3 +614,30 @@ export const useFetchExternalAgentInputs = () => {
|
||||
|
||||
return { data, loading, refetch };
|
||||
};
|
||||
|
||||
export const useSetAgentSetting = () => {
|
||||
const { id } = useParams();
|
||||
const queryClient = useQueryClient();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [AgentApiAction.SetAgentSetting],
|
||||
mutationFn: async (params: any) => {
|
||||
const ret = await agentService.settingCanvas({ id, ...params });
|
||||
if (ret?.data?.code === 0) {
|
||||
message.success('success');
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: [AgentApiAction.FetchAgentDetail],
|
||||
});
|
||||
} else {
|
||||
message.error(ret?.data?.data);
|
||||
}
|
||||
return ret?.data?.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, setAgentSetting: mutateAsync };
|
||||
};
|
||||
|
||||
@ -1,9 +1,36 @@
|
||||
import message from '@/components/ui/message';
|
||||
import { ChatSearchParams } from '@/constants/chat';
|
||||
import { IDialog } from '@/interfaces/database/chat';
|
||||
import chatService from '@/services/chat-service';
|
||||
import { useQuery } from '@tanstack/react-query';
|
||||
import { IConversation, IDialog } from '@/interfaces/database/chat';
|
||||
import { IAskRequestBody } from '@/interfaces/request/chat';
|
||||
import { IClientConversation } from '@/pages/next-chats/chat/interface';
|
||||
import { useGetSharedChatSearchParams } from '@/pages/next-chats/hooks/use-send-shared-message';
|
||||
import { isConversationIdExist } from '@/pages/next-chats/utils';
|
||||
import chatService from '@/services/next-chat-service ';
|
||||
import { buildMessageListWithUuid, getConversationId } from '@/utils/chat';
|
||||
import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
|
||||
import { useDebounce } from 'ahooks';
|
||||
import { has } from 'lodash';
|
||||
import { useCallback, useMemo } from 'react';
|
||||
import { history, useSearchParams } from 'umi';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useParams, useSearchParams } from 'umi';
|
||||
import {
|
||||
useGetPaginationWithRouter,
|
||||
useHandleSearchChange,
|
||||
} from './logic-hooks';
|
||||
|
||||
export const enum ChatApiAction {
|
||||
FetchDialogList = 'fetchDialogList',
|
||||
RemoveDialog = 'removeDialog',
|
||||
SetDialog = 'setDialog',
|
||||
FetchDialog = 'fetchDialog',
|
||||
FetchConversationList = 'fetchConversationList',
|
||||
FetchConversation = 'fetchConversation',
|
||||
UpdateConversation = 'updateConversation',
|
||||
RemoveConversation = 'removeConversation',
|
||||
DeleteMessage = 'deleteMessage',
|
||||
FetchMindMap = 'fetchMindMap',
|
||||
FetchRelatedQuestions = 'fetchRelatedQuestions',
|
||||
}
|
||||
|
||||
export const useGetChatSearchParams = () => {
|
||||
const [currentQueryParameters] = useSearchParams();
|
||||
@ -39,39 +66,360 @@ export const useClickDialogCard = () => {
|
||||
return { handleClickDialog };
|
||||
};
|
||||
|
||||
export const useFetchDialogList = (pureFetch = false) => {
|
||||
const { handleClickDialog } = useClickDialogCard();
|
||||
const { dialogId } = useGetChatSearchParams();
|
||||
export const useFetchDialogList = () => {
|
||||
const { searchString, handleInputChange } = useHandleSearchChange();
|
||||
const { pagination, setPagination } = useGetPaginationWithRouter();
|
||||
const debouncedSearchString = useDebounce(searchString, { wait: 500 });
|
||||
|
||||
const {
|
||||
data,
|
||||
isFetching: loading,
|
||||
refetch,
|
||||
} = useQuery<IDialog[]>({
|
||||
queryKey: ['fetchDialogList'],
|
||||
initialData: [],
|
||||
} = useQuery<{ dialogs: IDialog[]; total: number }>({
|
||||
queryKey: [
|
||||
ChatApiAction.FetchDialogList,
|
||||
{
|
||||
debouncedSearchString,
|
||||
...pagination,
|
||||
},
|
||||
],
|
||||
initialData: { dialogs: [], total: 0 },
|
||||
gcTime: 0,
|
||||
refetchOnWindowFocus: false,
|
||||
queryFn: async (...params) => {
|
||||
console.log('🚀 ~ queryFn: ~ params:', params);
|
||||
const { data } = await chatService.listDialog();
|
||||
queryFn: async () => {
|
||||
const { data } = await chatService.listDialog(
|
||||
{
|
||||
params: {
|
||||
keywords: debouncedSearchString,
|
||||
page_size: pagination.pageSize,
|
||||
page: pagination.current,
|
||||
},
|
||||
data: {},
|
||||
},
|
||||
true,
|
||||
);
|
||||
|
||||
return data?.data ?? { dialogs: [], total: 0 };
|
||||
},
|
||||
});
|
||||
|
||||
const onInputChange: React.ChangeEventHandler<HTMLInputElement> = useCallback(
|
||||
(e) => {
|
||||
handleInputChange(e);
|
||||
},
|
||||
[handleInputChange],
|
||||
);
|
||||
|
||||
return {
|
||||
data,
|
||||
loading,
|
||||
refetch,
|
||||
searchString,
|
||||
handleInputChange: onInputChange,
|
||||
pagination: { ...pagination, total: data?.total },
|
||||
setPagination,
|
||||
};
|
||||
};
|
||||
|
||||
export const useRemoveDialog = () => {
|
||||
const queryClient = useQueryClient();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.RemoveDialog],
|
||||
mutationFn: async (dialogIds: string[]) => {
|
||||
const { data } = await chatService.removeDialog({ dialogIds });
|
||||
if (data.code === 0) {
|
||||
const list: IDialog[] = data.data;
|
||||
if (!pureFetch) {
|
||||
if (list.length > 0) {
|
||||
if (list.every((x) => x.id !== dialogId)) {
|
||||
handleClickDialog(data.data[0].id);
|
||||
}
|
||||
} else {
|
||||
history.push('/chat');
|
||||
}
|
||||
}
|
||||
}
|
||||
queryClient.invalidateQueries({ queryKey: ['fetchDialogList'] });
|
||||
|
||||
return data?.data ?? [];
|
||||
message.success(t('message.deleted'));
|
||||
}
|
||||
return data.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, removeDialog: mutateAsync };
|
||||
};
|
||||
|
||||
export const useSetDialog = () => {
|
||||
const queryClient = useQueryClient();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.SetDialog],
|
||||
mutationFn: async (params: Partial<IDialog>) => {
|
||||
const { data } = await chatService.setDialog(params);
|
||||
if (data.code === 0) {
|
||||
queryClient.invalidateQueries({
|
||||
exact: false,
|
||||
queryKey: [ChatApiAction.FetchDialogList],
|
||||
});
|
||||
|
||||
message.success(
|
||||
t(`message.${params.dialog_id ? 'modified' : 'created'}`),
|
||||
);
|
||||
}
|
||||
return data?.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, setDialog: mutateAsync };
|
||||
};
|
||||
|
||||
export const useFetchDialog = () => {
|
||||
const { id } = useParams();
|
||||
|
||||
const {
|
||||
data,
|
||||
isFetching: loading,
|
||||
refetch,
|
||||
} = useQuery<IDialog>({
|
||||
queryKey: [ChatApiAction.FetchDialog, id],
|
||||
gcTime: 0,
|
||||
initialData: {} as IDialog,
|
||||
enabled: !!id,
|
||||
refetchOnWindowFocus: false,
|
||||
queryFn: async () => {
|
||||
const { data } = await chatService.getDialog(
|
||||
{ params: { dialogId: id } },
|
||||
true,
|
||||
);
|
||||
|
||||
return data?.data ?? ({} as IDialog);
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, refetch };
|
||||
};
|
||||
|
||||
//#region Conversation
|
||||
|
||||
export const useClickConversationCard = () => {
|
||||
const [currentQueryParameters, setSearchParams] = useSearchParams();
|
||||
const newQueryParameters: URLSearchParams = useMemo(
|
||||
() => new URLSearchParams(currentQueryParameters.toString()),
|
||||
[currentQueryParameters],
|
||||
);
|
||||
|
||||
const handleClickConversation = useCallback(
|
||||
(conversationId: string, isNew: string) => {
|
||||
newQueryParameters.set(ChatSearchParams.ConversationId, conversationId);
|
||||
newQueryParameters.set(ChatSearchParams.isNew, isNew);
|
||||
setSearchParams(newQueryParameters);
|
||||
},
|
||||
[setSearchParams, newQueryParameters],
|
||||
);
|
||||
|
||||
return { handleClickConversation };
|
||||
};
|
||||
|
||||
export const useFetchConversationList = () => {
|
||||
const { id } = useParams();
|
||||
const { handleClickConversation } = useClickConversationCard();
|
||||
const {
|
||||
data,
|
||||
isFetching: loading,
|
||||
refetch,
|
||||
} = useQuery<IConversation[]>({
|
||||
queryKey: [ChatApiAction.FetchConversationList, id],
|
||||
initialData: [],
|
||||
gcTime: 0,
|
||||
refetchOnWindowFocus: false,
|
||||
enabled: !!id,
|
||||
queryFn: async () => {
|
||||
const { data } = await chatService.listConversation(
|
||||
{ params: { dialog_id: id } },
|
||||
true,
|
||||
);
|
||||
if (data.code === 0) {
|
||||
if (data.data.length > 0) {
|
||||
handleClickConversation(data.data[0].id, '');
|
||||
} else {
|
||||
handleClickConversation('', '');
|
||||
}
|
||||
}
|
||||
return data?.data;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, refetch };
|
||||
};
|
||||
|
||||
export const useFetchConversation = () => {
|
||||
const { isNew, conversationId } = useGetChatSearchParams();
|
||||
const { sharedId } = useGetSharedChatSearchParams();
|
||||
const {
|
||||
data,
|
||||
isFetching: loading,
|
||||
refetch,
|
||||
} = useQuery<IClientConversation>({
|
||||
queryKey: [ChatApiAction.FetchConversation, conversationId],
|
||||
initialData: {} as IClientConversation,
|
||||
// enabled: isConversationIdExist(conversationId),
|
||||
gcTime: 0,
|
||||
refetchOnWindowFocus: false,
|
||||
queryFn: async () => {
|
||||
if (
|
||||
isNew !== 'true' &&
|
||||
isConversationIdExist(sharedId || conversationId)
|
||||
) {
|
||||
const { data } = await chatService.getConversation(
|
||||
{
|
||||
params: {
|
||||
conversationId: conversationId || sharedId,
|
||||
},
|
||||
},
|
||||
true,
|
||||
);
|
||||
|
||||
const conversation = data?.data ?? {};
|
||||
|
||||
const messageList = buildMessageListWithUuid(conversation?.message);
|
||||
|
||||
return { ...conversation, message: messageList };
|
||||
}
|
||||
return { message: [] };
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, refetch };
|
||||
};
|
||||
|
||||
export const useUpdateConversation = () => {
|
||||
const { t } = useTranslation();
|
||||
const queryClient = useQueryClient();
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.UpdateConversation],
|
||||
mutationFn: async (params: Record<string, any>) => {
|
||||
const { data } = await chatService.setConversation({
|
||||
...params,
|
||||
conversation_id: params.conversation_id
|
||||
? params.conversation_id
|
||||
: getConversationId(),
|
||||
});
|
||||
if (data.code === 0) {
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: [ChatApiAction.FetchConversationList],
|
||||
});
|
||||
message.success(t(`message.modified`));
|
||||
}
|
||||
return data;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, updateConversation: mutateAsync };
|
||||
};
|
||||
|
||||
export const useRemoveConversation = () => {
|
||||
const queryClient = useQueryClient();
|
||||
const { dialogId } = useGetChatSearchParams();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.RemoveConversation],
|
||||
mutationFn: async (conversationIds: string[]) => {
|
||||
const { data } = await chatService.removeConversation({
|
||||
conversationIds,
|
||||
dialogId,
|
||||
});
|
||||
if (data.code === 0) {
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: [ChatApiAction.FetchConversationList],
|
||||
});
|
||||
}
|
||||
return data.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, removeConversation: mutateAsync };
|
||||
};
|
||||
|
||||
export const useDeleteMessage = () => {
|
||||
const { conversationId } = useGetChatSearchParams();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.DeleteMessage],
|
||||
mutationFn: async (messageId: string) => {
|
||||
const { data } = await chatService.deleteMessage({
|
||||
messageId,
|
||||
conversationId,
|
||||
});
|
||||
|
||||
if (data.code === 0) {
|
||||
message.success(t(`message.deleted`));
|
||||
}
|
||||
|
||||
return data.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, deleteMessage: mutateAsync };
|
||||
};
|
||||
|
||||
//#endregion
|
||||
|
||||
//#region search page
|
||||
|
||||
export const useFetchMindMap = () => {
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.FetchMindMap],
|
||||
gcTime: 0,
|
||||
mutationFn: async (params: IAskRequestBody) => {
|
||||
try {
|
||||
const ret = await chatService.getMindMap(params);
|
||||
return ret?.data?.data ?? {};
|
||||
} catch (error: any) {
|
||||
if (has(error, 'message')) {
|
||||
message.error(error.message);
|
||||
}
|
||||
|
||||
return [];
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, fetchMindMap: mutateAsync };
|
||||
};
|
||||
|
||||
export const useFetchRelatedQuestions = () => {
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.FetchRelatedQuestions],
|
||||
gcTime: 0,
|
||||
mutationFn: async (question: string): Promise<string[]> => {
|
||||
const { data } = await chatService.getRelatedQuestions({ question });
|
||||
|
||||
return data?.data ?? [];
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, fetchRelatedQuestions: mutateAsync };
|
||||
};
|
||||
//#endregion
|
||||
|
||||
@ -32,7 +32,7 @@ export declare interface IFlow {
|
||||
canvas_type: null;
|
||||
create_date: string;
|
||||
create_time: number;
|
||||
description: null;
|
||||
description: string;
|
||||
dsl: DSL;
|
||||
id: string;
|
||||
title: string;
|
||||
|
||||
@ -125,7 +125,7 @@ export function Header() {
|
||||
className="size-10 mr-[12]"
|
||||
onClick={handleLogoClick}
|
||||
/>
|
||||
<div className="flex items-center gap-1.5 text-text-sub-title">
|
||||
<div className="flex items-center gap-1.5 text-text-secondary">
|
||||
<Github className="size-3.5" />
|
||||
<span className=" text-base">21.5k stars</span>
|
||||
</div>
|
||||
@ -164,7 +164,7 @@ export function Header() {
|
||||
className="size-8 cursor-pointer"
|
||||
onClick={navigateToProfile}
|
||||
></RAGFlowAvatar>
|
||||
<Badge className="h-5 w-8 absolute font-normal p-0 justify-center -right-8 -top-2 text-text-title-invert bg-gradient-to-l from-[#42D7E7] to-[#478AF5]">
|
||||
<Badge className="h-5 w-8 absolute font-normal p-0 justify-center -right-8 -top-2 text-bg-base bg-gradient-to-l from-[#42D7E7] to-[#478AF5]">
|
||||
Pro
|
||||
</Badge>
|
||||
</div>
|
||||
|
||||
@ -3,7 +3,7 @@ import { Header } from './next-header';
|
||||
|
||||
export default function NextLayout() {
|
||||
return (
|
||||
<section className="h-full flex flex-col text-colors-text-neutral-strong">
|
||||
<section className="h-full flex flex-col">
|
||||
<Header></Header>
|
||||
<Outlet />
|
||||
</section>
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user