Compare commits

...

34 Commits

Author SHA1 Message Date
552023ee4b Fix: catch non-begin component output (#7827)
### What problem does this PR solve?

Catch non-begin component output

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 20:29:23 +08:00
6c9b8ec860 Refa: update gemini2.5 (#7822)
### What problem does this PR solve?

Update gemini2.5

### Type of change

- [x] Refactoring
2025-05-23 20:29:10 +08:00
f9e6ad86b7 Fix: Fixed the issue that the script text of the code operator is not displayed after refreshing the page after saving the script text of the code operator #4977 (#7825)
### What problem does this PR solve?

Fix: Fixed the issue that the script text of the code operator is not
displayed after refreshing the page after saving the script text of the
code operator #4977

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 18:57:45 +08:00
e604634d2a Feat: Refactor the MessageForm with shadcn #3221 (#7820)
### What problem does this PR solve?

Feat: Refactor the MessageForm with shadcn #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:45:13 +08:00
590b9dabab Docs: update for v0.19.0 (#7823)
### What problem does this PR solve?

update for v0.19.0

### Type of change

- [x] Documentation Update
2025-05-23 18:25:47 +08:00
c283ea57fd Docs: Added v0.19.0 release notes (#7818)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-23 18:25:33 +08:00
50ff16e7a4 Feat: add claude4 models (#7809)
### What problem does this PR solve?

Add claude4 models.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:25:13 +08:00
453287b06b Feat: more robust fallbacks for citations (#7801)
### What problem does this PR solve?

Add more robust fallbacks for citations

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:24:55 +08:00
e166f132b3 Feat: change default models (#7777)
### What problem does this PR solve?

change default models to buildin models
https://github.com/infiniflow/ragflow/issues/7774

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:21:25 +08:00
42f4d4dbc8 Fix: wrong type hint (#7738)
### What problem does this PR solve?

Wrong hint type. #7729.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 18:21:06 +08:00
7cb8368e0f Feat: sandox enhancement (#7739)
### What problem does this PR solve?

1. Add sandbox options for max memory and timeout.
2. ​Malicious code detection for Python only.​​

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 18:20:51 +08:00
Sol
0d7cfce6e1 Update rag/nlp/query.py (#7816)
### What problem does this PR solve?
Fix tokenizer resulting in low recall

![37743d3a495f734aa69f1e173fa77457](https://github.com/user-attachments/assets/1394757e-8fcb-4f87-96af-a92716144884)

![4aba633a17f34269a4e17e84fafb34c4](https://github.com/user-attachments/assets/a1828e32-3e17-4394-a633-ba3f09bd506d)

![image](https://github.com/user-attachments/assets/61308f32-2a4f-44d5-a034-d65bbec554ef)



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-23 17:13:37 +08:00
2d7c1368f0 Feat: add code_executor_manager (#7814)
### What problem does this PR solve?

Add code_executor_manager. #4977.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 16:33:38 +08:00
db4371c745 Fix: Improve First Chunk Size (#7806)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7790

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 14:30:19 +08:00
e6cd799d8a Feat: Translate the begin operator #3221 (#7811)
### What problem does this PR solve?

Feat: Translate the begin operator #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 14:18:27 +08:00
ab29b58316 Docs: Added instructions on cross-language search (#7812)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-05-23 14:18:14 +08:00
3f037c9786 Feat: Reconstruct the QueryTable of BeginForm using shandcn #3221 (#7807)
### What problem does this PR solve?

Feat: Reconstruct the QueryTable of BeginForm using shandcn #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 12:31:05 +08:00
Sol
53b991aa0e Fix backquotes in text2sql causing execution errors (#7793)
### What problem does this PR solve?
Remove the backquotes in the sql generated by LLM to prevent it from
causing execution errors.

![image](https://github.com/user-attachments/assets/40d57ef7-b812-402a-b469-5793e466b83d)


![image](https://github.com/user-attachments/assets/d0a9bc17-ff5a-43cb-90cb-b2b3827b00b0)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 09:49:45 +08:00
9e80f39caa Feat: Synchronize BeginForm's query data to the canvas #3221 (#7798)
### What problem does this PR solve?

Feat: Synchronize BeginForm's query data to the canvas #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 09:49:14 +08:00
bdc2b74e8f Fix baidu request error (#7799)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: xiaohzho <xiaohzho@cisco.com>
2025-05-23 09:48:55 +08:00
1fd92e6bee Docs: RAGFlow does not suppport batch metadata setting (#7795)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
2025-05-22 17:02:23 +08:00
02fd381072 Feat: Verify the parameters of the begin operator #3221 (#7794)
### What problem does this PR solve?

Feat: Verify the parameters of the begin operator #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-22 16:58:47 +08:00
b6f3a6a68a Feat: Refactor BeginForm with shadcn #3221 (#7792)
### What problem does this PR solve?

Feat: Refactor BeginForm with shadcn #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-22 15:33:40 +08:00
ae70512f5d fix:When creating a new assistant, an avatar was uploaded, but when selecting the assistant to start a new chat, the default avatar still appears in the chat window instead of the one uploaded during creation (#7769)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-22 11:50:02 +08:00
d4a123d6dd Fix: resolve regex library warnings (#7782)
### What problem does this PR solve?
This small PR resolves the regex library warnings showing in Python3.11:
```python
DeprecationWarning: 'count' is passed as positional argument
```

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-05-22 10:06:28 +08:00
ce816edb5f Fix: improve task cancel lag (#7765)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7761

but it may be difficult to achieve 0 delay (which need to pass the
cancel token to all parts)

Another solution is just 0 delay effect at UI.
And task will stop latter

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-22 09:28:08 +08:00
ac2643700b Feat: Add return value widget to CodeForm #3221 (#7776)
### What problem does this PR solve?
Feat: Add return value widget  to CodeForm #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-21 19:35:27 +08:00
558b252c5a Feat: Switching the programming language of the code operator will switch the corresponding language template #3221 (#7770)
### What problem does this PR solve?

Feat: Switching the programming language of the code operator will
switch the corresponding language template #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-21 18:22:06 +08:00
754a5e1cee Feat: Fixed the issue where the page would refresh continuously when opening the sheet on the right side of the canvas #3221 (#7756)
### What problem does this PR solve?

Feat: Fixed the issue where the page would refresh continuously when
opening the sheet on the right side of the canvas #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-21 17:03:16 +08:00
e3e7c7ddaa Feat: delete useless image blobs when task executor meet edge cases (#7727)
### What problem does this PR solve?

delete useless image blobs when the task executor meets edge cases

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-21 10:22:30 +08:00
76b278af8e 0519 pdfparser (#7747)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-05-20 19:41:55 +08:00
1c6320828c Feat: Rename agent #3221 (#7740)
### What problem does this PR solve?

Feat: Rename agent #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 19:13:19 +08:00
d72468426e Feat: Render the agent list page by page #3221 (#7736)
### What problem does this PR solve?

Feat: Render the agent list page by page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 16:03:55 +08:00
796f4032b8 Feat: Migrate the code operator to the new agent. #3221 (#7731)
### What problem does this PR solve?

Feat: Migrate the code operator to the new agent. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 15:30:56 +08:00
137 changed files with 5451 additions and 921 deletions

143
.gitignore vendored
View File

@ -44,3 +44,146 @@ nltk_data/
.lh/
.venv
docker/data
#--------------------------------------------------#
# The following was generated with gitignore.nvim: #
#--------------------------------------------------#
# Gitignore for the following technologies: Node
# Logs
logs
*.log
npm-debug.log*
yarn-debug.log*
yarn-error.log*
lerna-debug.log*
.pnpm-debug.log*
# Diagnostic reports (https://nodejs.org/api/report.html)
report.[0-9]*.[0-9]*.[0-9]*.[0-9]*.json
# Runtime data
pids
*.pid
*.seed
*.pid.lock
# Directory for instrumented libs generated by jscoverage/JSCover
lib-cov
# Coverage directory used by tools like istanbul
coverage
*.lcov
# nyc test coverage
.nyc_output
# Grunt intermediate storage (https://gruntjs.com/creating-plugins#storing-task-files)
.grunt
# Bower dependency directory (https://bower.io/)
bower_components
# node-waf configuration
.lock-wscript
# Compiled binary addons (https://nodejs.org/api/addons.html)
build/Release
# Dependency directories
node_modules/
jspm_packages/
# Snowpack dependency directory (https://snowpack.dev/)
web_modules/
# TypeScript cache
*.tsbuildinfo
# Optional npm cache directory
.npm
# Optional eslint cache
.eslintcache
# Optional stylelint cache
.stylelintcache
# Microbundle cache
.rpt2_cache/
.rts2_cache_cjs/
.rts2_cache_es/
.rts2_cache_umd/
# Optional REPL history
.node_repl_history
# Output of 'npm pack'
*.tgz
# Yarn Integrity file
.yarn-integrity
# dotenv environment variable files
.env
.env.development.local
.env.test.local
.env.production.local
.env.local
# parcel-bundler cache (https://parceljs.org/)
.cache
.parcel-cache
# Next.js build output
.next
out
# Nuxt.js build / generate output
.nuxt
dist
# Gatsby files
.cache/
# Comment in the public line in if your project uses Gatsby and not Next.js
# https://nextjs.org/blog/next-9-1#public-directory-support
# public
# vuepress build output
.vuepress/dist
# vuepress v2.x temp and cache directory
.temp
# Docusaurus cache and generated files
.docusaurus
# Serverless directories
.serverless/
# FuseBox cache
.fusebox/
# DynamoDB Local files
.dynamodb/
# TernJS port file
.tern-port
# Stores VSCode versions used for testing VSCode extensions
.vscode-test
# yarn v2
.yarn/cache
.yarn/unplugged
.yarn/build-state.yml
.yarn/install-state.gz
.pnp.*
# Serverless Webpack directories
.webpack/
# SvelteKit build / generate output
.svelte-kit

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -178,7 +178,7 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.18.0-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.18.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` for the full edition `v0.18.0`.
> The command below downloads the `v0.19.0-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.19.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` for the full edition `v0.19.0`.
```bash
$ cd ragflow/docker
@ -191,8 +191,8 @@ releases! 🌟
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -173,7 +173,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.18.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.18.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0 untuk edisi lengkap v0.18.0.
> Perintah di bawah ini mengunduh edisi v0.19.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.19.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0 untuk edisi lengkap v0.19.0.
```bash
$ cd ragflow/docker
@ -186,8 +186,8 @@ $ docker compose -f docker-compose.yml up -d
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -152,7 +152,7 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.18.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.18.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.18.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.19.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.19.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.19.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0 と設定します。
```bash
$ cd ragflow/docker
@ -165,8 +165,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -152,7 +152,7 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.18.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.18.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.18.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.19.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.19.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.19.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0로 설정합니다.
```bash
$ cd ragflow/docker
@ -165,8 +165,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -172,7 +172,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.18.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.18.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` para a edição completa `v0.18.0`.
> O comando abaixo baixa a edição `v0.19.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.19.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` para a edição completa `v0.19.0`.
```bash
$ cd ragflow/docker
@ -185,8 +185,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.18.0 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.18.0-slim | ~2 | ❌ | Lançamento estável |
| v0.19.0 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.19.0-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |

View File

@ -21,7 +21,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -151,7 +151,7 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.18.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.18.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` 來下載 RAGFlow 鏡像的 `v0.18.0` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.19.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.19.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` 來下載 RAGFlow 鏡像的 `v0.19.0` 完整發行版。
```bash
$ cd ragflow/docker
@ -164,8 +164,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -152,7 +152,7 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.18.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.18.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` 来下载 RAGFlow 镜像的 `v0.18.0` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.19.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.19.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` 来下载 RAGFlow 镜像的 `v0.19.0` 完整发行版。
```bash
$ cd ragflow/docker
@ -165,8 +165,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -17,6 +17,7 @@ import logging
from abc import ABC
import pandas as pd
import requests
from bs4 import BeautifulSoup
import re
from agent.component.base import ComponentBase, ComponentParamBase
@ -44,17 +45,28 @@ class Baidu(ComponentBase, ABC):
return Baidu.be_output("")
try:
url = 'http://www.baidu.com/s?wd=' + ans + '&rn=' + str(self._param.top_n)
url = 'https://www.baidu.com/s?wd=' + ans + '&rn=' + str(self._param.top_n)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36'}
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8',
'Connection': 'keep-alive',
}
response = requests.get(url=url, headers=headers)
url_res = re.findall(r"'url': \\\"(.*?)\\\"}", response.text)
title_res = re.findall(r"'title': \\\"(.*?)\\\",\\n", response.text)
body_res = re.findall(r"\"contentText\":\"(.*?)\"", response.text)
baidu_res = [{"content": re.sub('<em>|</em>', '', '<a href="' + url + '">' + title + '</a> ' + body)} for
url, title, body in zip(url_res, title_res, body_res)]
del body_res, url_res, title_res
# check if request success
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
url_res = []
title_res = []
body_res = []
for item in soup.select('.result.c-container'):
# extract title
title_res.append(item.select_one('h3 a').get_text(strip=True))
url_res.append(item.select_one('h3 a')['href'])
body_res.append(item.select_one('.c-abstract').get_text(strip=True) if item.select_one('.c-abstract') else '')
baidu_res = [{"content": re.sub('<em>|</em>', '', '<a href="' + url + '">' + title + '</a> ' + body)} for
url, title, body in zip(url_res, title_res, body_res)]
del body_res, url_res, title_res
except Exception as e:
return Baidu.be_output("**ERROR**: " + str(e))

View File

@ -79,15 +79,23 @@ class Code(ComponentBase, ABC):
def _run(self, history, **kwargs):
arguments = {}
for input in self._param.arguments:
assert "@" in input["component_id"], "Each code argument should bind to a specific compontent"
component_id = input["component_id"].split("@")[0]
refered_component_key = input["component_id"].split("@")[1]
refered_component = self._canvas.get_component(component_id)["obj"]
if "@" in input["component_id"]:
component_id = input["component_id"].split("@")[0]
refered_component_key = input["component_id"].split("@")[1]
refered_component = self._canvas.get_component(component_id)["obj"]
for param in refered_component._param.query:
if param["key"] == refered_component_key:
if "value" in param:
arguments[input["name"]] = param["value"]
for param in refered_component._param.query:
if param["key"] == refered_component_key:
if "value" in param:
arguments[input["name"]] = param["value"]
else:
cpn = self._canvas.get_component(input["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
arguments[input["name"]] = self._canvas.get_history(1)[0]["content"]
continue
_, out = cpn.output(allow_partial=False)
if not out.empty:
arguments[input["name"]] = "\n".join(out["content"])
return self._execute_code(
language=self._param.lang,

View File

@ -105,6 +105,7 @@ class ExeSQL(Generate, ABC):
sql_res = []
for i in range(len(input_list)):
single_sql = input_list[i]
single_sql = single_sql.replace('```','')
while self._loop <= self._param.loop:
self._loop += 1
if not single_sql:

View File

@ -16,6 +16,7 @@
import logging
from flask import request
from api import settings
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
@ -23,15 +24,14 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import TenantService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result, token_required, get_result, check_duplicate_ids
from api.utils.api_utils import check_duplicate_ids, get_error_data_result, get_result, token_required
@manager.route('/chats', methods=['POST']) # noqa: F821
@manager.route("/chats", methods=["POST"]) # noqa: F821
@token_required
def create(tenant_id):
req = request.json
ids = [i for i in req.get("dataset_ids", []) if i]
ids = [i for i in req.get("dataset_ids", []) if i]
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
@ -40,34 +40,30 @@ def create(tenant_id):
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids) if ids else []
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) > 1:
return get_result(message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
return get_result(message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
# llm
llm = req.get("llm")
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
if req.get("llm_id") is not None:
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(req["llm_id"])
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory, model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
return get_error_data_result(message="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id", "top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
@ -85,9 +81,7 @@ def create(tenant_id):
req["rerank_id"] = req.get("rerank_id", "")
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
llm_name=req.get("rerank_id"),
model_type="rerank"):
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id, llm_name=req.get("rerank_id"), model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if not req.get("llm_id"):
req["llm_id"] = tenant.llm_id
@ -106,27 +100,24 @@ def create(tenant_id):
{knowledge}
The above is the knowledge base.""",
"prologue": "Hi! I'm your assistant, what can I do for you?",
"parameters": [
{"key": "knowledge", "optional": False}
],
"parameters": [{"key": "knowledge", "optional": False}],
"empty_response": "Sorry! No relevant content was found in the knowledge base!",
"quote": True,
"tts": False,
"refine_multiturn": True
"refine_multiturn": True,
}
key_list_2 = ["system", "prologue", "parameters", "empty_response", "quote", "tts", "refine_multiturn"]
if "prompt_config" not in req:
req['prompt_config'] = {}
req["prompt_config"] = {}
for key in key_list_2:
temp = req['prompt_config'].get(key)
if (not temp and key == 'system') or (key not in req["prompt_config"]):
req['prompt_config'][key] = default_prompt[key]
for p in req['prompt_config']["parameters"]:
temp = req["prompt_config"].get(key)
if (not temp and key == "system") or (key not in req["prompt_config"]):
req["prompt_config"][key] = default_prompt[key]
for p in req["prompt_config"]["parameters"]:
if p["optional"]:
continue
if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(
message="Parameter '{}' is not used".format(p["key"]))
if req["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(message="Parameter '{}' is not used".format(p["key"]))
# save
if not DialogService.save(**req):
return get_error_data_result(message="Fail to new a chat!")
@ -141,10 +132,7 @@ def create(tenant_id):
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": 1-res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": 1 - res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res["rerank_id"]}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
@ -156,11 +144,11 @@ def create(tenant_id):
return get_result(data=res)
@manager.route('/chats/<chat_id>', methods=['PUT']) # noqa: F821
@manager.route("/chats/<chat_id>", methods=["PUT"]) # noqa: F821
@token_required
def update(tenant_id, chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(message='You do not own the chat')
return get_error_data_result(message="You do not own the chat")
req = request.json
ids = req.get("dataset_ids")
if "show_quotation" in req:
@ -174,14 +162,12 @@ def update(tenant_id, chat_id):
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) != 1:
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
return get_result(message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
llm = req.get("llm")
if llm:
@ -195,13 +181,8 @@ def update(tenant_id, chat_id):
return get_error_data_result(message="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id", "top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
@ -214,16 +195,12 @@ def update(tenant_id, chat_id):
res = res.to_json()
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
llm_name=req.get("rerank_id"),
model_type="rerank"):
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id, llm_name=req.get("rerank_id"), model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if "name" in req:
if not req.get("name"):
return get_error_data_result(message="`name` cannot be empty.")
if req["name"].lower() != res["name"].lower() \
and len(
DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
if req["name"].lower() != res["name"].lower() and len(DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
return get_error_data_result(message="Duplicated chat name in updating chat.")
if "prompt_config" in req:
res["prompt_config"].update(req["prompt_config"])
@ -246,7 +223,7 @@ def update(tenant_id, chat_id):
return get_result()
@manager.route('/chats', methods=['DELETE']) # noqa: F821
@manager.route("/chats", methods=["DELETE"]) # noqa: F821
@token_required
def delete(tenant_id):
errors = []
@ -273,30 +250,23 @@ def delete(tenant_id):
temp_dict = {"status": StatusEnum.INVALID.value}
DialogService.update_by_id(id, temp_dict)
success_count += 1
if errors:
if success_count > 0:
return get_result(
data={"success_count": success_count, "errors": errors},
message=f"Partially deleted {success_count} chats with {len(errors)} errors"
)
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} chats with {len(errors)} errors")
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(
message=f"Partially deleted {success_count} chats with {len(duplicate_messages)} errors",
data={"success_count": success_count, "errors": duplicate_messages}
)
return get_result(message=f"Partially deleted {success_count} chats with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@manager.route('/chats', methods=['GET']) # noqa: F821
@manager.route("/chats", methods=["GET"]) # noqa: F821
@token_required
def list_chat(tenant_id):
id = request.args.get("id")
@ -316,13 +286,15 @@ def list_chat(tenant_id):
if not chats:
return get_result(data=[])
list_assts = []
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight",
"do_refer": "show_quotation"}
key_mapping = {
"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight",
"do_refer": "show_quotation",
}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
for res in chats:
renamed_dict = {}
@ -331,10 +303,7 @@ def list_chat(tenant_id):
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": 1-res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": 1 - res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res["rerank_id"]}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]

View File

@ -13,36 +13,37 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import json
import logging
import re
from datetime import datetime
from flask import request, session, redirect
from werkzeug.security import generate_password_hash, check_password_hash
from flask_login import login_required, current_user, login_user, logout_user
from flask import redirect, request, session
from flask_login import current_user, login_required, login_user, logout_user
from werkzeug.security import check_password_hash, generate_password_hash
from api import settings
from api.apps.auth import get_auth_client
from api.db import FileType, UserTenantRole
from api.db.db_models import TenantLLM
from api.db.services.llm_service import TenantLLMService, LLMService
from api.utils.api_utils import (
server_error_response,
validate_request,
get_data_error_result,
)
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMService, TenantLLMService
from api.db.services.user_service import TenantService, UserService, UserTenantService
from api.utils import (
get_uuid,
get_format_time,
decrypt,
download_img,
current_timestamp,
datetime_format,
decrypt,
download_img,
get_format_time,
get_uuid,
)
from api.utils.api_utils import (
construct_response,
get_data_error_result,
get_json_result,
server_error_response,
validate_request,
)
from api.db import UserTenantRole, FileType
from api import settings
from api.db.services.user_service import UserService, TenantService, UserTenantService
from api.db.services.file_service import FileService
from api.utils.api_utils import get_json_result, construct_response
from api.apps.auth import get_auth_client
@manager.route("/login", methods=["POST", "GET"]) # noqa: F821
@ -77,9 +78,7 @@ def login():
type: object
"""
if not request.json:
return get_json_result(
data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="Unauthorized!"
)
return get_json_result(data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="Unauthorized!")
email = request.json.get("email", "")
users = UserService.query(email=email)
@ -94,9 +93,7 @@ def login():
try:
password = decrypt(password)
except BaseException:
return get_json_result(
data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password"
)
return get_json_result(data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password")
user = UserService.query_user(email, password)
if user:
@ -116,7 +113,7 @@ def login():
)
@manager.route("/login/channels", methods=["GET"]) # noqa: F821
@manager.route("/login/channels", methods=["GET"]) # noqa: F821
def get_login_channels():
"""
Get all supported authentication channels.
@ -124,22 +121,20 @@ def get_login_channels():
try:
channels = []
for channel, config in settings.OAUTH_CONFIG.items():
channels.append({
"channel": channel,
"display_name": config.get("display_name", channel.title()),
"icon": config.get("icon", "sso"),
})
channels.append(
{
"channel": channel,
"display_name": config.get("display_name", channel.title()),
"icon": config.get("icon", "sso"),
}
)
return get_json_result(data=channels)
except Exception as e:
logging.exception(e)
return get_json_result(
data=[],
message=f"Load channels failure, error: {str(e)}",
code=settings.RetCode.EXCEPTION_ERROR
)
return get_json_result(data=[], message=f"Load channels failure, error: {str(e)}", code=settings.RetCode.EXCEPTION_ERROR)
@manager.route("/login/<channel>", methods=["GET"]) # noqa: F821
@manager.route("/login/<channel>", methods=["GET"]) # noqa: F821
def oauth_login(channel):
channel_config = settings.OAUTH_CONFIG.get(channel)
if not channel_config:
@ -152,7 +147,7 @@ def oauth_login(channel):
return redirect(auth_url)
@manager.route("/oauth/callback/<channel>", methods=["GET"]) # noqa: F821
@manager.route("/oauth/callback/<channel>", methods=["GET"]) # noqa: F821
def oauth_callback(channel):
"""
Handle the OAuth/OIDC callback for various channels dynamically.
@ -190,7 +185,7 @@ def oauth_callback(channel):
# Login or register
users = UserService.query(email=user_info.email)
user_id = get_uuid()
if not users:
try:
try:
@ -434,9 +429,7 @@ def user_info_from_feishu(access_token):
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {access_token}",
}
res = requests.get(
"https://open.feishu.cn/open-apis/authen/v1/user_info", headers=headers
)
res = requests.get("https://open.feishu.cn/open-apis/authen/v1/user_info", headers=headers)
user_info = res.json()["data"]
user_info["email"] = None if user_info.get("email") == "" else user_info["email"]
return user_info
@ -446,17 +439,13 @@ def user_info_from_github(access_token):
import requests
headers = {"Accept": "application/json", "Authorization": f"token {access_token}"}
res = requests.get(
f"https://api.github.com/user?access_token={access_token}", headers=headers
)
res = requests.get(f"https://api.github.com/user?access_token={access_token}", headers=headers)
user_info = res.json()
email_info = requests.get(
f"https://api.github.com/user/emails?access_token={access_token}",
headers=headers,
).json()
user_info["email"] = next(
(email for email in email_info if email["primary"]), None
)["email"]
user_info["email"] = next((email for email in email_info if email["primary"]), None)["email"]
return user_info
@ -516,9 +505,7 @@ def setting_user():
request_data = request.json
if request_data.get("password"):
new_password = request_data.get("new_password")
if not check_password_hash(
current_user.password, decrypt(request_data["password"])
):
if not check_password_hash(current_user.password, decrypt(request_data["password"])):
return get_json_result(
data=False,
code=settings.RetCode.AUTHENTICATION_ERROR,
@ -549,9 +536,7 @@ def setting_user():
return get_json_result(data=True)
except Exception as e:
logging.exception(e)
return get_json_result(
data=False, message="Update failure!", code=settings.RetCode.EXCEPTION_ERROR
)
return get_json_result(data=False, message="Update failure!", code=settings.RetCode.EXCEPTION_ERROR)
@manager.route("/info", methods=["GET"]) # noqa: F821
@ -643,9 +628,23 @@ def user_register(user_id, user):
"model_type": llm.model_type,
"api_key": settings.API_KEY,
"api_base": settings.LLM_BASE_URL,
"max_tokens": llm.max_tokens if llm.max_tokens else 8192
"max_tokens": llm.max_tokens if llm.max_tokens else 8192,
}
)
if settings.LIGHTEN != 1:
for buildin_embedding_model in settings.BUILTIN_EMBEDDING_MODELS:
mdlnm, fid = TenantLLMService.split_model_name_and_factory(buildin_embedding_model)
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": fid,
"llm_name": mdlnm,
"model_type": "embedding",
"api_key": "",
"api_base": "",
"max_tokens": 1024 if buildin_embedding_model == "BAAI/bge-large-zh-v1.5@BAAI" else 512,
}
)
if not UserService.save(**user):
return

View File

@ -302,7 +302,7 @@ def chat(dialog, messages, stream=True, **kwargs):
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], max_tokens - used_token_count)
def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: dict):
def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
max_index = len(kbinfos["chunks"])
def safe_add(i):
@ -327,8 +327,8 @@ def chat(dialog, messages, stream=True, **kwargs):
find_and_replace(r"\$\[(\d+)\]\$") # $[12]$
find_and_replace(r"\$\$(\d+)\${2,}") # $$12$$$$
find_and_replace(r"\$(\d+)\$") # $12$
find_and_replace(r"#(\d+)\$\$") # #12$$
find_and_replace(r"##(\d+)\$") # ##12$
find_and_replace(r"(#{2,})(\d+)(\${2,})", group_index=2) # 2+ # and 2+ $
find_and_replace(r"(#{2,})(\d+)(#{1,})", group_index=2) # 2+ # and 1+ #
find_and_replace(r"##(\d+)#{2,}") # ##12###
find_and_replace(r"【(\d+)】") # 【12】
find_and_replace(r"ref\s*(\d+)", flags=re.IGNORECASE) # ref12, ref 12, REF 12
@ -623,4 +623,3 @@ def ask(question, kb_ids, tenant_id):
answer = ans
yield {"answer": answer, "reference": {}}
yield decorate_answer(answer)

View File

@ -81,7 +81,7 @@ def init_settings():
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
LLM = get_base_config("user_default_llm", {})
LLM_DEFAULT_MODELS = LLM.get("default_models", {})
LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
LLM_FACTORY = LLM.get("factory")
LLM_BASE_URL = LLM.get("base_url")
try:
REGISTER_ENABLED = int(os.environ.get("REGISTER_ENABLED", "1"))

View File

@ -567,7 +567,7 @@
{
"name": "Youdao",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"tags": "TEXT EMBEDDING",
"status": "1",
"llm": [
{
@ -755,7 +755,7 @@
{
"name": "BAAI",
"logo": "",
"tags": "TEXT EMBEDDING, TEXT RE-RANK",
"tags": "TEXT EMBEDDING",
"status": "1",
"llm": [
{
@ -996,7 +996,7 @@
"status": "1",
"llm": [
{
"llm_name": "gemini-2.5-flash-preview-04-17",
"llm_name": "gemini-2.5-flash-preview-05-20",
"tags": "LLM,CHAT,1024K,IMAGE2TEXT",
"max_tokens": 1048576,
"model_type": "image2text",
@ -1023,7 +1023,7 @@
"model_type": "image2text"
},
{
"llm_name": "gemini-2.5-pro-exp-03-25",
"llm_name": "gemini-2.5-pro-preview-05-06",
"tags": "LLM,IMAGE2TEXT,1024K",
"max_tokens": 1048576,
"model_type": "image2text"
@ -3133,6 +3133,20 @@
"tags": "LLM",
"status": "1",
"llm": [
{
"llm_name": "claude-opus-4-20250514",
"tags": "LLM,IMAGE2TEXT,200k",
"max_tokens": 204800,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-sonnet-4-20250514",
"tags": "LLM,IMAGE2TEXT,200k",
"max_tokens": 204800,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-3-7-sonnet-20250219",
"tags": "LLM,IMAGE2TEXT,200k",
@ -3283,4 +3297,4 @@
"llm": []
}
]
}
}

View File

@ -53,14 +53,14 @@ def corpNorm(nm, add_region=True):
nm = re.sub(r"&amp;", "&", nm)
nm = re.sub(r"[\(\)\+'\"\t \*\\【】-]+", " ", nm)
nm = re.sub(
r"([—-]+.*| +co\..*|corp\..*| +inc\..*| +ltd.*)", "", nm, 10000, re.IGNORECASE
r"([—-]+.*| +co\..*|corp\..*| +inc\..*| +ltd.*)", "", nm, count=10000, flags=re.IGNORECASE
)
nm = re.sub(
r"(计算机|技术|(技术|科技|网络)*有限公司|公司|有限|研发中心|中国|总部)$",
"",
nm,
10000,
re.IGNORECASE,
count=10000,
flags=re.IGNORECASE,
)
if not nm or (len(nm) < 5 and not regions.isName(nm[0:2])):
return nm

View File

@ -51,7 +51,7 @@ PY = Pinyin()
def rmHtmlTag(line):
return re.sub(r"<[a-z0-9.\"=';,:\+_/ -]+>", " ", line, 100000, re.IGNORECASE)
return re.sub(r"<[a-z0-9.\"=';,:\+_/ -]+>", " ", line, count=100000, flags=re.IGNORECASE)
def highest_degree(dg):
@ -507,7 +507,7 @@ def parse(cv):
(r".*国有.*", "国企"),
(r"[ \(\)人/·0-9-]+", ""),
(r".*(元|规模|于|=|北京|上海|至今|中国|工资|州|shanghai|强|餐饮|融资|职).*", "")]:
cv["corporation_type"] = re.sub(p, r, cv["corporation_type"], 1000, re.IGNORECASE)
cv["corporation_type"] = re.sub(p, r, cv["corporation_type"], count=1000, flags=re.IGNORECASE)
if len(cv["corporation_type"]) < 2:
del cv["corporation_type"]

View File

@ -91,13 +91,13 @@ REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download.
# Defaults to the v0.18.0-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0-slim
# Defaults to the v0.19.0-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0
#
# The Docker image of the v0.18.0 edition includes built-in embedding models:
# The Docker image of the v0.19.0 edition includes built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - maidalun1020/bce-embedding-base_v1
#
@ -169,6 +169,8 @@ REGISTER_ENABLED=1
# SANDBOX_BASE_NODEJS_IMAGE=infiniflow/sandbox-base-nodejs:latest
# SANDBOX_EXECUTOR_MANAGER_PORT=9385
# SANDBOX_ENABLE_SECCOMP=false
# SANDBOX_MAX_MEMORY=256m # b, k, m, g
# SANDBOX_TIMEOUT=10s # s, m, 1m30s
# Important: To enable sandbox, you must re-declare the compose profiles.
# 1. Comment out the COMPOSE_PROFILES line above.

View File

@ -78,8 +78,8 @@ The [.env](./.env) file contains important environment variables for Docker.
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.18.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.18.0`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.19.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.19.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -124,6 +124,8 @@ services:
- SANDBOX_BASE_PYTHON_IMAGE=${SANDBOX_BASE_PYTHON_IMAGE:-infiniflow/sandbox-base-python:latest}
- SANDBOX_BASE_NODEJS_IMAGE=${SANDBOX_BASE_NODEJS_IMAGE:-infiniflow/sandbox-base-nodejs:latest}
- SANDBOX_ENABLE_SECCOMP=${SANDBOX_ENABLE_SECCOMP:-false}
- SANDBOX_MAX_MEMORY=${SANDBOX_MAX_MEMORY:-256m}
- SANDBOX_TIMEOUT=${SANDBOX_TIMEOUT:-10s}
healthcheck:
test: ["CMD", "curl", "http://localhost:9385/healthz"]
interval: 10s

View File

@ -99,8 +99,8 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.18.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.18.0`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.19.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.19.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -77,7 +77,7 @@ After building the infiniflow/ragflow:nightly-slim image, you are ready to launc
1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.18.0-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.19.0-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
2. Launch the Service

View File

@ -23,7 +23,7 @@ Once a connection is established, an MCP server communicates with its client in
## Prerequisites
1. Ensure RAGFlow is upgraded to v0.18.0 or later.
2. Have your RAGFlow API key ready. See [Acquire a RAGFlow API key](./acquire_ragflow_api_key.md).
2. Have your RAGFlow API key ready. See [Acquire a RAGFlow API key](../acquire_ragflow_api_key.md).
:::tip INFO
If you wish to try out our MCP server without upgrading RAGFlow, community contributor [yiminghub2024](https://github.com/yiminghub2024) 👏 shares their recommended steps [here](#launch-an-mcp-server-without-upgrading-ragflow).

View File

@ -11,7 +11,7 @@ Switch your doc engine from Elasticsearch to Infinity.
RAGFlow uses Elasticsearch by default for storing full text and vectors. To switch to [Infinity](https://github.com/infiniflow/infinity/), follow these steps:
:::danger WARNING
:::caution WARNING
Switching to Infinity on a Linux/arm64 machine is not yet officially supported.
:::
@ -21,7 +21,7 @@ Switching to Infinity on a Linux/arm64 machine is not yet officially supported.
$ docker compose -f docker/docker-compose.yml down -v
```
:::cautiion WARNING
:::caution WARNING
`-v` will delete the docker container volumes, and the existing data will be cleared.
:::

View File

@ -30,17 +30,17 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.18.0-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.18.0`
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.19.0-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.19.0`
---
### Which embedding models can be deployed locally?
RAGFlow offers two Docker image editions, `v0.18.0-slim` and `v0.18.0`:
RAGFlow offers two Docker image editions, `v0.19.0-slim` and `v0.19.0`:
- `infiniflow/ragflow:v0.18.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.18.0`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.19.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.19.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -25,7 +25,7 @@ When debugging your chat assistant, you can use AI search as a reference to veri
## Frequently asked questions
### key difference between an AI search and an AI chat?
### Key difference between an AI search and an AI chat?
A chat is a multi-turn AI conversation where you can define your retrieval strategy (a weighted reranking score can be used to replace the weighted vector similarity in a hybrid search) and choose your chat model. In an AI chat, you can configure advanced RAG strategies, such as knowledge graphs, auto-keyword, and auto-question, for your specific case. Retrieved chunks are not displayed along with the answer.

View File

@ -30,7 +30,7 @@ In the **Variable** section, you add, remove, or update variables.
`{knowledge}` is the system's reserved variable, representing the chunks retrieved from the knowledge base(s) specified by **Knowledge bases** under the **Assistant settings** tab. If your chat assistant is associated with certain knowledge bases, you can keep it as is.
:::info NOTE
It does not currently make a difference whether you set `{knowledge}` to optional or mandatory, but note that this design will be updated at a later point.
It currently makes no difference whether `{knowledge}` is set as optional or mandatory, but please note this design will be updated in due course.
:::
From v0.17.0 onward, you can start an AI chat without specifying knowledge bases. In this case, we recommend removing the `{knowledge}` variable to prevent unnecessary reference and keeping the **Empty response** field empty to avoid errors.

View File

@ -42,9 +42,13 @@ You start an AI conversation by creating an assistant.
- **Rerank model** sets the reranker model to use. It is left empty by default.
- If **Rerank model** is left empty, the hybrid score system uses keyword similarity and vector similarity, and the default weight assigned to the vector similarity component is 1-0.7=0.3.
- If **Rerank model** is selected, the hybrid score system uses keyword similarity and reranker score, and the default weight assigned to the reranker score is 1-0.7=0.3.
- **Cross-language search**: Optional
Select one or more target languages from the dropdown menu. The systems default chat model will then translate your query into the selected target language(s). This translation ensures accurate semantic matching across languages, allowing you to retrieve relevant results regardless of language differences.
- When selecting target languages, please ensure that these languages are present in the knowledge base to guarantee an effective search.
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
- If you are uncertain about the logic behind **Variable**, leave it *as-is*.
- As of v0.18.0, if you add custom variables here, the only way you can pass in their values is to call:
- As of v0.19.0, if you add custom variables here, the only way you can pass in their values is to call:
- HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or
- Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant).

View File

@ -16,4 +16,4 @@ Please note that some of your settings may consume a significant amount of time.
- On the configuration page of your knowledge base, switch off **Use RAPTOR to enhance retrieval**.
- Extracting knowledge graph (GraphRAG) is time-consuming.
- Disable **Auto-keyword** and **Auto-question** on the configuration page of your knowledge base, as both depend on the LLM.
- **v0.17.0+:** If your document is plain text PDF and does not require GPU-intensive processes like OCR (Optical Character Recognition), TSR (Table Structure Recognition), or DLA (Document Layout Analysis), you can choose **Naive** over **DeepDoc** or other time-consuming large model options in the **Document parser** dropdown. This will substantially reduce document parsing time.
- **v0.17.0+:** If all PDFs in your knowledge base are plain text and do not require GPU-intensive processes like OCR (Optical Character Recognition), TSR (Table Structure Recognition), or DLA (Document Layout Analysis), you can choose **Naive** over **DeepDoc** or other time-consuming large model options in the **Document parser** dropdown. This will substantially reduce document parsing time.

View File

@ -1,5 +1,5 @@
---
sidebar_position: 0
sidebar_position: -1
slug: /configure_knowledge_base
---
@ -67,6 +67,10 @@ The following embedding models can be deployed locally:
- BAAI/bge-large-zh-v1.5
- maidalun1020/bce-embedding-base_v1
:::danger IMPORTANT
Please note these two embedding models support both English and Chinese. If your knowledge base contains other languages, the performance may be COMPROMISED.
:::
### Upload file
- RAGFlow's **File Management** allows you to link a file to multiple knowledge bases, in which case each target knowledge base holds a reference to the file.
@ -124,7 +128,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
## Search for knowledge base
As of RAGFlow v0.18.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
As of RAGFlow v0.19.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)

View File

@ -47,7 +47,7 @@ The RAPTOR feature is disabled by default. To enable it, manually switch on the
### Prompt
The following prompt will be applied recursively for cluster summarization, with `{cluster_content}` serving as an internal parameter. We recommend that you keep it as-is for now. The design will be updated at a later point.
The following prompt will be applied recursively for cluster summarization, with `{cluster_content}` serving as an internal parameter. We recommend that you keep it as-is for now. The design will be updated in due course.
```
Please summarize the following paragraphs... Paragraphs as following:

View File

@ -60,6 +60,15 @@ The switch is disabled by default. When enabled, RAGFlow performs the following
Using a knowledge graph in a retrieval test will significantly increase the time to receive a response.
:::
### Cross-language search
To perform a cross-language search, select one or more target languages from the dropdown menu. The systems default chat model will then translate your query entered in the Test text field into the selected target language(s). This translation ensures accurate semantic matching across languages, allowing you to retrieve relevant results regardless of language differences.
:::tip NOTE
- When selecting target languages, please ensure that these languages are present in the knowledge base to guarantee an effective search.
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
:::
### Test text
This field is where you put in your testing query.

View File

@ -0,0 +1,53 @@
---
sidebar_position: 2
slug: /select_pdf_parser
---
# Select PDF parser
Select a visual model for parsing your PDFs.
---
RAGFlow isn't one-size-fits-all. It is built for flexibility and supports deeper customization to accommodate more complex use cases. From v0.17.0 onwards, RAGFlow decouples DeepDoc-specific data extraction tasks from chunking methods **for PDF files**. This separation enables you to autonomously select a visual model for OCR (Optical Character Recognition), TSR (Table Structure Recognition), and DLR (Document Layout Recognition) tasks that balances speed and performance to suit your specific use cases. If your PDFs contain only plain text, you can opt to skip these tasks by selecting the **Naive** option, to reduce the overall parsing time.
![data extraction](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/data_extraction.jpg)
## Prerequisites
- The PDF parser dropdown menu appears only when you select a chunking method compatible with PDFs, including:
- **General**
- **Manual**
- **Paper**
- **Book**
- **Laws**
- **Presentation**
- **One**
- To use a third-party visual model for parsing PDFs, ensure you have set a default img2txt model under **Set default models** on the **Model providers** page.
## Procedure
1. On your knowledge base's **Configuration** page, select a chunking method, say **General**.
_The **PDF parser** dropdown menu appears._
2. Select the option that works best with your scenario:
- DeepDoc: (Default) The default visual model for OCR, TSR, and DLR tasks, which is time-consuming.
- Naive: Skip OCR, TSR, and DLR tasks if *all* your PDFs are plain text.
- A third-party visual model provided by a specific model provider.
:::caution WARNING
Third-party visual models are marked **Experimental**, because we have not fully tested these models for the aforementioned data extraction tasks.
:::
## Frequently asked questions
### When should I select DeepDoc or a third-party visual model as the PDF parser?
Use a visual model to extract data if your PDFs contain formatted or image-based text rather than plain text. DeepDoc is the default visual model but can be time-consuming. You can also choose a lightweight or high-performance img2txt model depending on your needs and hardware capabilities.
### Can I select a visual model to parse my DOCX files?
No, you cannot. This dropdown menu is for PDFs only. To use this feature, convert your DOCX files to PDF first.

View File

@ -1,5 +1,5 @@
---
sidebar_position: 1
sidebar_position: 0
slug: /set_metada
---
@ -19,4 +19,10 @@ For example, if you have a dataset of HTML files and want the LLM to cite the so
Ensure that your metadata is in JSON format; otherwise, your updates will not be applied.
:::
![Image](https://github.com/user-attachments/assets/379cf2c5-4e37-4b79-8aeb-53bf8e01d326)
![Image](https://github.com/user-attachments/assets/379cf2c5-4e37-4b79-8aeb-53bf8e01d326)
## Frequently asked questions
### Can I set metadata for multiple documents at once?
No, RAGFlow does not support batch metadata setting. If you still consider this feature essential, please [raise an issue](https://github.com/infiniflow/ragflow/issues) explaining your use case and its importance.

View File

@ -87,4 +87,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.18.0, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.19.0, bulk download is not supported, nor can you download an entire folder.

View File

@ -49,6 +49,6 @@ After logging into RAGFlow, you can *only* configure API Key on the **Model prov
5. Click **OK** to confirm your changes.
:::note
To update an existing model API key at a later point:
To update an existing model API key:
![update api key](https://github.com/infiniflow/ragflow/assets/93570324/0bfba679-33f7-4f6b-9ed6-f0e6e4b228ad)
:::

View File

@ -18,7 +18,7 @@ RAGFlow ships with a built-in [Langfuse](https://langfuse.com) integration so th
Langfuse stores traces, spans and prompt payloads in a purpose-built observability backend and offers filtering and visualisations on top.
:::info NOTE
• RAGFlow **≥ 0.18.0** (contains the Langfuse connector)
• RAGFlow **≥ 0.19.0** (contains the Langfuse connector)
• A Langfuse workspace (cloud or self-hosted) with a _Project Public Key_ and _Secret Key_
:::

View File

@ -66,16 +66,16 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
git clone https://github.com/infiniflow/ragflow.git
```
2. Switch to the latest, officially published release, e.g., `v0.18.0`:
2. Switch to the latest, officially published release, e.g., `v0.19.0`:
```bash
git checkout -f v0.18.0
git checkout -f v0.19.0
```
3. Update **ragflow/docker/.env** as follows:
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0
RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0
```
4. Update the RAGFlow image and restart RAGFlow:
@ -92,10 +92,10 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
1. From an environment with Internet access, pull the required Docker image.
2. Save the Docker image to a **.tar** file.
```bash
docker save -o ragflow.v0.18.0.tar infiniflow/ragflow:v0.18.0
docker save -o ragflow.v0.19.0.tar infiniflow/ragflow:v0.19.0
```
3. Copy the **.tar** file to the target server.
4. Load the **.tar** file into Docker:
```bash
docker load -i ragflow.v0.18.0.tar
docker load -i ragflow.v0.19.0.tar
```

View File

@ -44,7 +44,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.18.0 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
RAGFlow v0.19.0 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs
defaultValue="linux"
@ -184,13 +184,13 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/docker
$ git checkout -f v0.18.0
$ git checkout -f v0.19.0
```
3. Use the pre-built Docker images and start up the server:
:::tip NOTE
The command below downloads the `v0.18.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.18.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` for the full edition `v0.18.0`.
The command below downloads the `v0.19.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.19.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` for the full edition `v0.19.0`.
:::
```bash
@ -205,10 +205,10 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
<APITable>
```
| RAGFlow image tag | Image size (GB) | Has embedding models and Python packages? | Stable? |
| RAGFlow image tag | Image size (GB) | Has embedding models and Python packages?:collision: | Stable? |
| ------------------- | --------------- | ----------------------------------------- | ------------------------ |
| `v0.18.0` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.18.0-slim` | &approx;2 | ❌ | Stable release |
| `v0.19.0` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.19.0-slim` | &approx;2 | ❌ | Stable release |
| `nightly` | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| `nightly-slim` | &approx;2 | ❌ | *Unstable* nightly build |
@ -216,6 +216,15 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
</APITable>
```
:::danger IMPORTANT
:collision: The embedding models included in `v0.19.0` and `nightly` are:
- BAAI/bge-large-zh-v1.5
- maidalun1020/bce-embedding-base_v1
Please note these two embedding models support both English and Chinese. If your knowledge base contains other languages, the performance may be COMPROMISED.
:::
4. Check the server status after having the server up and running:
```bash
@ -258,8 +267,6 @@ To add and configure an LLM:
![add llm](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
> Each RAGFlow account is able to use **text-embedding-v2** for free, an embedding model of Tongyi-Qianwen. This is why you can see Tongyi-Qianwen in the **Added models** list. And you may need to update your Tongyi-Qianwen API key at a later point.
2. Click on the desired LLM and update the API key accordingly (DeepSeek-V2 in this case):
![update api key](https://github.com/infiniflow/ragflow/assets/93570324/4e5e13ef-a98d-42e6-bcb1-0c6045fc1666)

View File

@ -0,0 +1,26 @@
---
sidebar_position: 0
slug: /glossary
---
# Glossary
Definitions of key terms and basic concepts related to RAGFlow.
---
import TOCInline from '@theme/TOCInline';
<TOCInline toc={toc} />
---
## C
### Cross-language search
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.19.0. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the systems default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
By enabling cross-language search, users can effortlessly access a broader range of information regardless of language barriers, significantly enhancing the systems usability and inclusiveness.
This feature is available in the retrieval test and chat assistant settings. See [Run retrieval test](../guides/dataset/run_retrieval_test.md) and [Start AI chat](../guides/chat/start_chat.md) for further details.

View File

@ -1,5 +1,5 @@
---
sidebar_position: 1
sidebar_position: 4
slug: /http_api_reference
---

View File

@ -1,5 +1,5 @@
---
sidebar_position: 2
sidebar_position: 5
slug: /python_api_reference
---

View File

@ -1,5 +1,5 @@
---
sidebar_position: 0
sidebar_position: 1
slug: /supported_models
---

View File

@ -9,10 +9,36 @@ Key features, improvements and bug fixes in the latest releases.
:::info
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.18.0-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.18.0`
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.19.0-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.19.0`
:::
:::danger IMPORTANT
:collision: The embedding models included in a full edition are:
- BAAI/bge-large-zh-v1.5
- maidalun1020/bce-embedding-base_v1
Please note these two embedding models support both English and Chinese. If your knowledge base contains other languages, the performance may be COMPROMISED.
:::
## v0.19.0
Released on May 26, 2025.
### New features
- Cross-language search is supported in the Knowledge and Chat modules, enhancing search accuracy and user experience in multilingual environments, such as in Chinese-English knowledge bases.
- Agent component: A new Code component supports Python and JavaScript scripts, enabling developers to handle more complex tasks like dynamic data processing.
- Enhanced image display: Images in Chat and Search now render directly within responses, rather than as external references. Knowledge retrieval testing can retrieve images directly, instead of texts extracted from images.
- Claude 4: Developers can now use the newly released, most advanced Claude model.
> The following features are contributed by our community contributors:
- Agent component: Enables tool calling within the Generate Component. Kudos to [notsyncing](https://github.com/notsyncing).
- Markdown rendering: Image references in a markdown file can be displayed after chunking. Kudos to [Woody-Hu](https://github.com/Woody-Hu).
- Vector database support: OpenSearch can now be used as RAGFlow's document engine. Kudos to [pyyuhao](https://github.com/pyyuhao).
## v0.18.0
Released on April 23, 2025.
@ -117,7 +143,7 @@ Released on March 3, 2025.
- AI chat: Leverages Tavily-based web search to enhance contexts in agentic reasoning. To activate this, enter the correct Tavily API key under the **Assistant settings** tab of your chat assistant dialogue.
- AI chat: Supports starting a chat without specifying knowledge bases.
- AI chat: HTML files can also be previewed and referenced, in addition to PDF files.
- Dataset: Adds a **PDF parser**, aka **Document parser**, dropdown menu to dataset configurations. This includes a DeepDoc model option, which is time-consuming, a much faster **naive** option (plain text), which skips DLA (Document Layout Analysis), OCR (Optical Character Recognition), and TSR (Table Structure Recognition) tasks, and several currently *experimental* large model options.
- Dataset: Adds a **PDF parser**, aka **Document parser**, dropdown menu to dataset configurations. This includes a DeepDoc model option, which is time-consuming, a much faster **naive** option (plain text), which skips DLA (Document Layout Analysis), OCR (Optical Character Recognition), and TSR (Table Structure Recognition) tasks, and several currently *experimental* large model options. See [here](./guides/dataset/select_pdf_parser.md).
- Agent component: **(x)** or a forward slash `/` can be used to insert available keys (variables) in the system prompt field of the **Generate** or **Template** component.
- Object storage: Supports using Aliyun OSS (Object Storage Service) as a file storage option.
- Models: Updates the supported model list for Tongyi-Qianwen (Qwen), adding DeepSeek-specific models; adds ModelScope as a model provider.

View File

@ -27,13 +27,13 @@ env:
REDIS_PASSWORD: infini_rag_flow_helm
# The RAGFlow Docker image to download.
# Defaults to the v0.18.0-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE: infiniflow/ragflow:v0.18.0-slim
# Defaults to the v0.19.0-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE: infiniflow/ragflow:v0.19.0-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE: infiniflow/ragflow:v0.18.0
# RAGFLOW_IMAGE: infiniflow/ragflow:v0.19.0
#
# The Docker image of the v0.18.0 edition includes:
# The Docker image of the v0.19.0 edition includes:
# - Built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - BAAI/bge-reranker-v2-m3

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow"
version = "0.18.0"
version = "0.19.0"
description = "[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data."
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
license-files = ["LICENSE"]

View File

@ -343,7 +343,7 @@ def remove_contents_table(sections, eng=False):
type("")) else sections[i][0]).strip()
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$",
re.sub(r"( | |\u3000)+", "", get(i).split("@@")[0], re.IGNORECASE)):
re.sub(r"( | |\u3000)+", "", get(i).split("@@")[0], flags=re.IGNORECASE)):
i += 1
continue
sections.pop(i)
@ -524,7 +524,7 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。"):
if tnum < 8:
pos = ""
# Ensure that the length of the merged chunk does not exceed chunk_token_num
if tk_nums[-1] > chunk_token_num:
if cks[-1] == "" or tk_nums[-1] > chunk_token_num:
if t.find(pos) < 0:
t += pos
@ -560,7 +560,7 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
if tnum < 8:
pos = ""
# Ensure that the length of the merged chunk does not exceed chunk_token_num
if tk_nums[-1] > chunk_token_num:
if cks[-1] == "" or tk_nums[-1] > chunk_token_num:
if t.find(pos) < 0:
t += pos
cks.append(t)
@ -627,7 +627,7 @@ def naive_merge_docx(sections, chunk_token_num=128, delimiter="\n。"):
tnum = num_tokens_from_string(t)
if tnum < 8:
pos = ""
if tk_nums[-1] > chunk_token_num:
if cks[-1] == "" or tk_nums[-1] > chunk_token_num:
if t.find(pos) < 0:
t += pos
cks.append(t)

View File

@ -71,7 +71,19 @@ class FulltextQueryer:
txt = otxt
return txt
@staticmethod
def add_space_between_eng_zh(txt):
# (ENG/ENG+NUM) + ZH
txt = re.sub(r'([A-Za-z]+[0-9]+)([\u4e00-\u9fa5]+)', r'\1 \2', txt)
# ENG + ZH
txt = re.sub(r'([A-Za-z])([\u4e00-\u9fa5]+)', r'\1 \2', txt)
# ZH + (ENG/ENG+NUM)
txt = re.sub(r'([\u4e00-\u9fa5]+)([A-Za-z]+[0-9]+)', r'\1 \2', txt)
txt = re.sub(r'([\u4e00-\u9fa5]+)([A-Za-z])', r'\1 \2', txt)
return txt
def question(self, txt, tbl="qa", min_match: float = 0.6):
txt = FulltextQueryer.add_space_between_eng_zh(txt)
txt = re.sub(
r"[ :|\r\n\t,,。??/`!&^%%()\[\]{}<>]+",
" ",

View File

@ -368,6 +368,10 @@ async def build_chunks(task, progress_callback):
docs_to_tag = []
for d in docs:
task_canceled = TaskService.do_cancel(task["id"])
if task_canceled:
progress_callback(-1, msg="Task has been canceled.")
return
if settings.retrievaler.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0:
examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]})
else:
@ -577,8 +581,22 @@ async def do_handle_task(task):
start_ts = timer()
doc_store_result = ""
es_bulk_size = 4
async def delete_image(kb_id, chunk_id):
try:
async with minio_limiter:
STORAGE_IMPL.delete(kb_id, chunk_id)
except Exception:
logging.exception(
"Deleting image of chunk {}/{}/{} got exception".format(task["location"], task["name"], chunk_id))
raise
for b in range(0, len(chunks), es_bulk_size):
doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert(chunks[b:b + es_bulk_size], search.index_name(task_tenant_id), task_dataset_id))
task_canceled = TaskService.do_cancel(task_id)
if task_canceled:
progress_callback(-1, msg="Task has been canceled.")
return
if b % 128 == 0:
progress_callback(prog=0.8 + 0.1 * (b + 1) / len(chunks), msg="")
if doc_store_result:
@ -592,7 +610,11 @@ async def do_handle_task(task):
except DoesNotExist:
logging.warning(f"do_handle_task update_chunk_ids failed since task {task['id']} is unknown.")
doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(task_tenant_id), task_dataset_id))
async with trio.open_nursery() as nursery:
for chunk_id in chunk_ids:
nursery.start_soon(delete_image, task_dataset_id, chunk_id)
return
logging.info("Indexing doc({}), page({}-{}), chunks({}), elapsed: {:.2f}".format(task_document_name, task_from_page,
task_to_page, len(chunks),
timer() - start_ts))

114
sandbox/Makefile Normal file
View File

@ -0,0 +1,114 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Force using Bash to ensure the source command is available
SHELL := /bin/bash
# Environment variable definitions
VENV := .venv
PYTHON := $(VENV)/bin/python
UV := uv
ACTIVATE_SCRIPT := $(VENV)/bin/activate
SYS_PYTHON := python3
PYTHONPATH := $(shell pwd)
.PHONY: all setup ensure_env ensure_uv start stop restart build clean test logs
all: setup start
# 🌱 Initialize environment + install dependencies
setup: ensure_env ensure_uv
@echo "📦 Installing dependencies with uv..."
source $(ACTIVATE_SCRIPT) && \
export PYTHONPATH=$(PYTHONPATH)
@$(UV) pip install -r executor_manager/requirements.txt
@echo "✅ Setup complete."
# 🔑 Ensure .env exists (copy from .env.example on first run)
ensure_env:
@if [ ! -f ".env" ]; then \
if [ -f ".env.example" ]; then \
echo "📝 Creating .env from .env.example..."; \
cp .env.example .env; \
else \
echo "⚠️ Warning: .env.example not found, creating empty .env"; \
touch .env; \
fi; \
else \
echo "✅ .env already exists."; \
fi
# 🔧 Ensure uv is executable (install using system Python)
ensure_uv:
@if ! command -v $(UV) >/dev/null 2>&1; then \
echo "🛠️ Installing uv using system Python..."; \
$(SYS_PYTHON) -m pip install -q --upgrade pip; \
$(SYS_PYTHON) -m pip install -q uv || (echo "⚠️ uv install failed, check manually" && exit 1); \
fi
# 🐳 Service control (using safer variable loading)
start:
@echo "🚀 Starting services..."
source $(ACTIVATE_SCRIPT) && \
export PYTHONPATH=$(PYTHONPATH) && \
[ -f .env ] && source .env || true && \
bash scripts/start.sh
stop:
@echo "🛑 Stopping services..."
source $(ACTIVATE_SCRIPT) && \
bash scripts/stop.sh
restart: stop start
@echo "🔁 Restarting services..."
build:
@echo "🔧 Building base sandbox images..."
@if [ -f .env ]; then \
source .env && \
echo "🐍 Building base sandbox image for Python ($$SANDBOX_BASE_PYTHON_IMAGE)..." && \
docker build -t "$$SANDBOX_BASE_PYTHON_IMAGE" ./sandbox_base_image/python && \
echo "⬢ Building base sandbox image for Nodejs ($$SANDBOX_BASE_NODEJS_IMAGE)..." && \
docker build -t "$$SANDBOX_BASE_NODEJS_IMAGE" ./sandbox_base_image/nodejs; \
else \
echo "⚠️ .env file not found, skipping build."; \
fi
test:
@echo "🧪 Running sandbox security tests..."
source $(ACTIVATE_SCRIPT) && \
export PYTHONPATH=$(PYTHONPATH) && \
$(PYTHON) tests/sandbox_security_tests_full.py
logs:
@echo "📋 Showing logs from api-server and executor-manager..."
docker compose logs -f
# 🧹 Clean all containers and volumes
clean:
@echo "🧹 Cleaning all containers and volumes..."
@docker compose down -v || true
@if [ -f .env ]; then \
source .env && \
for i in $$(seq 0 $$((SANDBOX_EXECUTOR_MANAGER_POOL_SIZE - 1))); do \
echo "🧹 Deleting sandbox_python_$$i..." && \
docker rm -f sandbox_python_$$i 2>/dev/null || true && \
echo "🧹 Deleting sandbox_nodejs_$$i..." && \
docker rm -f sandbox_nodejs_$$i 2>/dev/null || true; \
done; \
else \
echo "⚠️ .env not found, skipping container cleanup"; \
fi

218
sandbox/README.md Normal file
View File

@ -0,0 +1,218 @@
# RAGFlow Sandbox
A secure, pluggable code execution backend for RAGFlow and beyond.
## 🔧 Features
-**Seamless RAGFlow Integration** — Out-of-the-box compatibility with the `code` component.
- 🔐 **High Security** — Leverages [gVisor](https://gvisor.dev/) for syscall-level sandboxing.
- 🔧 **Customizable Sandboxing** — Easily modify `seccomp` settings as needed.
- 🧩 **Pluggable Runtime Support** — Easily extend to support any programming language.
- ⚙️ **Developer Friendly** — Get started with a single command using `Makefile`.
## 🏗 Architecture
<p align="center">
<img src="asserts/code_executor_manager.svg" width="520" alt="Architecture Diagram">
</p>
## 🚀 Quick Start
### 📋 Prerequisites
#### Required
- Linux distro compatible with gVisor
- [gVisor](https://gvisor.dev/docs/user_guide/install/)
- Docker >= `24.0.0`
- Docker Compose >= `v2.26.1` like [RAGFlow](https://github.com/infiniflow/ragflow)
- [uv](https://docs.astral.sh/uv/) as package and project manager
#### Optional (Recommended)
- [GNU Make](https://www.gnu.org/software/make/) for simplified CLI management
---
### 🐳 Build Docker Base Images
We use isolated base images for secure containerized execution:
```bash
# Build base images manually
docker build -t sandbox-base-python:latest ./sandbox_base_image/python
docker build -t sandbox-base-nodejs:latest ./sandbox_base_image/nodejs
# OR use Makefile
make build
```
Then, build the executor manager image:
```bash
docker build -t sandbox-executor-manager:latest ./executor_manager
```
---
### 📦 Running with RAGFlow
1. Ensure gVisor is correctly installed.
2. Configure your `.env` in `docker/.env`:
- Uncomment sandbox-related variables.
- Enable sandbox profile at the bottom.
3. Add the following line to `/etc/hosts` as recommended:
```text
127.0.0.1 sandbox-executor-manager
```
4. Start RAGFlow service.
---
### 🧭 Running Standalone
#### Manual Setup
1. Initialize environment:
```bash
cp .env.example .env
```
2. Launch:
```bash
docker compose -f docker-compose.yml up
```
3. Test:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
uv pip install -r executor_manager/requirements.txt
uv run tests/sandbox_security_tests_full.py
```
#### With Make
```bash
make # setup + build + launch + test
```
---
### 📈 Monitoring
```bash
docker logs -f sandbox-executor-manager # Manual
make logs # With Make
```
---
### 🧰 Makefile Toolbox
| Command | Description |
| ----------------- | ------------------------------------------------ |
| `make` | Setup, build, launch and test all at once |
| `make setup` | Initialize environment and install uv |
| `make ensure_env` | Auto-create `.env` if missing |
| `make ensure_uv` | Install `uv` package manager if missing |
| `make build` | Build all Docker base images |
| `make start` | Start services with safe env loading and testing |
| `make stop` | Gracefully stop all services |
| `make restart` | Shortcut for `stop` + `start` |
| `make test` | Run full test suite |
| `make logs` | Stream container logs |
| `make clean` | Stop and remove orphan containers and volumes |
---
## 🔐 Security
The RAGFlow sandbox is designed to balance security and usability, offering solid protection without compromising developer experience.
### ✅ gVisor Isolation
At its core, we use [gVisor](https://gvisor.dev/docs/architecture_guide/security/), a user-space kernel, to isolate code execution from the host system. gVisor intercepts and restricts syscalls, offering robust protection against container escapes and privilege escalations.
### 🔒 Optional seccomp Support (Advanced)
For users who need **zero-trust-level syscall control**, we support an additional `seccomp` profile. This feature restricts containers to only a predefined set of system calls, as specified in `executor_manager/seccomp-profile-default.json`.
> ⚠️ This feature is **disabled by default** to maintain compatibility and usability. Enabling it may cause compatibility issues with some dependencies.
#### To enable seccomp
1. Edit your `.env` file:
```dotenv
SANDBOX_ENABLE_SECCOMP=true
```
2. Customize allowed syscalls in:
```
executor_manager/seccomp-profile-default.json
```
This profile is passed to the container with:
```bash
--security-opt seccomp=/app/seccomp-profile-default.json
```
### 🧠 Python Code AST Inspection
In addition to sandboxing, Python code is **statically analyzed via AST (Abstract Syntax Tree)** before execution. Potentially malicious code (e.g. file operations, subprocess calls, etc.) is rejected early, providing an extra layer of protection.
---
This security model strikes a balance between **robust isolation** and **developer usability**. While `seccomp` can be highly restrictive, our default setup aims to keep things usable for most developers — no obscure crashes or cryptic setup required.
## 📦 Add Extra Dependencies for Supported Languages
Currently, the following languages are officially supported:
| Language | Priority |
| -------- | -------- |
| Python | High |
| Node.js | Medium |
### 🐍 Python
To add Python dependencies, simply edit the following file:
```bash
sandbox_base_image/python/requirements.txt
```
Add any additional packages you need, one per line (just like a normal pip requirements file).
### 🟨 Node.js
To add Node.js dependencies:
1. Navigate to the Node.js base image directory:
```bash
cd sandbox_base_image/nodejs
```
2. Use `npm` to install the desired packages. For example:
```bash
npm install lodash
```
3. The dependencies will be saved to `package.json` and `package-lock.json`, and included in the Docker image when rebuilt.
---
## 🤝 Contribution
Contributions are welcome!

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 45 KiB

View File

@ -0,0 +1,31 @@
services:
sandbox-executor-manager:
container_name: sandbox-executor-manager
build:
context: .
dockerfile: executor_manager/Dockerfile
image: sandbox-executor-manager:latest
runtime: runc
privileged: true
ports:
- "${EXECUTOR_PORT:-9385}:9385"
volumes:
- /var/run/docker.sock:/var/run/docker.sock
networks:
- sandbox-network
restart: always
security_opt:
- no-new-privileges:true
environment:
- SANDBOX_EXECUTOR_MANAGER_POOL_SIZE=${SANDBOX_EXECUTOR_MANAGER_POOL_SIZE:-5}
- SANDBOX_BASE_PYTHON_IMAGE=${SANDBOX_BASE_PYTHON_IMAGE-"sandbox-base-python:latest"}
- SANDBOX_BASE_NODEJS_IMAGE=${SANDBOX_BASE_NODEJS_IMAGE-"sandbox-base-nodejs:latest"}
- SANDBOX_ENABLE_SECCOMP=${SANDBOX_ENABLE_SECCOMP:-false}
healthcheck:
test: ["CMD-SHELL", "curl --fail http://localhost:9385/healthz || exit 1"]
interval: 10s
timeout: 5s
retries: 5
networks:
sandbox-network:
driver: bridge

View File

@ -0,0 +1,23 @@
FROM python:3.11-slim-bookworm
RUN grep -rl 'deb.debian.org' /etc/apt/ | xargs sed -i 's|http[s]*://deb.debian.org|https://mirrors.tuna.tsinghua.edu.cn|g' && \
apt-get update && \
apt-get install -y curl gcc && \
rm -rf /var/lib/apt/lists/*
RUN curl -fsSL https://mirrors.aliyun.com/docker-ce/linux/static/stable/x86_64/docker-24.0.7.tgz -o docker.tgz && \
tar -xzf docker.tgz && \
mv docker/docker /usr/bin/docker && \
rm -rf docker docker.tgz
COPY --from=ghcr.io/astral-sh/uv:0.7.5 /uv /uvx /bin/
ENV UV_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple
WORKDIR /app
COPY executor_manager/ .
RUN uv pip install --system -r requirements.txt
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "9385"]

View File

@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

View File

@ -0,0 +1,44 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
from core.logger import logger
from fastapi import Request
from models.enums import ResultStatus
from models.schemas import CodeExecutionRequest, CodeExecutionResult
from services.execution import execute_code
from services.limiter import limiter
from services.security import analyze_code_security
async def healthz_handler():
return {"status": "ok"}
@limiter.limit("5/second")
async def run_code_handler(req: CodeExecutionRequest, request: Request):
logger.info("🟢 Received /run request")
code = base64.b64decode(req.code_b64).decode("utf-8")
is_safe, issues = analyze_code_security(code, language=req.language)
if not is_safe:
issue_details = "\n".join([f"Line {lineno}: {issue}" for issue, lineno in issues])
return CodeExecutionResult(status=ResultStatus.PROGRAM_RUNNER_ERROR, stdout="", stderr=issue_details, exit_code=-999, detail="Code is unsafe")
try:
return await execute_code(req)
except Exception as e:
return CodeExecutionResult(status=ResultStatus.PROGRAM_RUNNER_ERROR, stdout="", stderr=str(e), exit_code=-999, detail="unhandled_exception")

View File

@ -0,0 +1,23 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from fastapi import APIRouter
from api.handlers import healthz_handler, run_code_handler
router = APIRouter()
router.get("/healthz")(healthz_handler)
router.post("/run")(run_code_handler)

View File

@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

View File

@ -0,0 +1,44 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from contextlib import asynccontextmanager
from fastapi import FastAPI
from util import format_timeout_duration, parse_timeout_duration
from core.container import init_containers, teardown_containers
from core.logger import logger
TIMEOUT = 10
@asynccontextmanager
async def _lifespan(app: FastAPI):
"""Asynchronous lifecycle management"""
size = int(os.getenv("SANDBOX_EXECUTOR_MANAGER_POOL_SIZE", 1))
success_count, total_task_count = await init_containers(size)
logger.info(f"\n📊 Container pool initialization complete: {success_count}/{total_task_count} available")
yield
await teardown_containers()
def init():
TIMEOUT = parse_timeout_duration(os.getenv("SANDBOX_TIMEOUT"))
logger.info(f"Global timeout: {format_timeout_duration(TIMEOUT)}")
return _lifespan

View File

@ -0,0 +1,190 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import contextlib
import os
import time
from queue import Empty, Queue
from threading import Lock
from models.enums import SupportLanguage
from util import env_setting_enabled, is_valid_memory_limit
from utils.common import async_run_command
from core.logger import logger
_CONTAINER_QUEUES: dict[SupportLanguage, Queue] = {}
_CONTAINER_LOCK: Lock = Lock()
async def init_containers(size: int) -> tuple[int, int]:
global _CONTAINER_QUEUES
_CONTAINER_QUEUES = {SupportLanguage.PYTHON: Queue(), SupportLanguage.NODEJS: Queue()}
with _CONTAINER_LOCK:
while not _CONTAINER_QUEUES[SupportLanguage.PYTHON].empty():
_CONTAINER_QUEUES[SupportLanguage.PYTHON].get_nowait()
while not _CONTAINER_QUEUES[SupportLanguage.NODEJS].empty():
_CONTAINER_QUEUES[SupportLanguage.NODEJS].get_nowait()
create_tasks = []
for i in range(size):
name = f"sandbox_python_{i}"
logger.info(f"🛠️ Creating Python container {i + 1}/{size}")
create_tasks.append(_prepare_container(name, SupportLanguage.PYTHON))
name = f"sandbox_nodejs_{i}"
logger.info(f"🛠️ Creating Node.js container {i + 1}/{size}")
create_tasks.append(_prepare_container(name, SupportLanguage.NODEJS))
results = await asyncio.gather(*create_tasks, return_exceptions=True)
success_count = sum(1 for r in results if r is True)
total_task_count = len(create_tasks)
return success_count, total_task_count
async def teardown_containers():
with _CONTAINER_LOCK:
while not _CONTAINER_QUEUES[SupportLanguage.PYTHON].empty():
name = _CONTAINER_QUEUES[SupportLanguage.PYTHON].get_nowait()
await async_run_command("docker", "rm", "-f", name, timeout=5)
while not _CONTAINER_QUEUES[SupportLanguage.NODEJS].empty():
name = _CONTAINER_QUEUES[SupportLanguage.NODEJS].get_nowait()
await async_run_command("docker", "rm", "-f", name, timeout=5)
async def _prepare_container(name: str, language: SupportLanguage) -> bool:
"""Prepare a single container"""
with contextlib.suppress(Exception):
await async_run_command("docker", "rm", "-f", name, timeout=5)
if await create_container(name, language):
_CONTAINER_QUEUES[language].put(name)
return True
return False
async def create_container(name: str, language: SupportLanguage) -> bool:
"""Asynchronously create a container"""
create_args = [
"docker",
"run",
"-d",
"--runtime=runsc",
"--name",
name,
"--read-only",
"--tmpfs",
"/workspace:rw,exec,size=100M,uid=65534,gid=65534",
"--tmpfs",
"/tmp:rw,exec,size=50M",
"--user",
"nobody",
"--workdir",
"/workspace",
]
if os.getenv("SANDBOX_MAX_MEMORY"):
memory_limit = os.getenv("SANDBOX_MAX_MEMORY") or "256m"
if is_valid_memory_limit(memory_limit):
logger.info(f"SANDBOX_MAX_MEMORY: {os.getenv('SANDBOX_MAX_MEMORY')}")
else:
logger.info("Invalid SANDBOX_MAX_MEMORY, using default value: 256m")
memory_limit = "256m"
create_args.extend(["--memory", memory_limit])
else:
logger.info("Set default SANDBOX_MAX_MEMORY: 256m")
create_args.extend(["--memory", "256m"])
if env_setting_enabled("SANDBOX_ENABLE_SECCOMP", "false"):
logger.info(f"SANDBOX_ENABLE_SECCOMP: {os.getenv('SANDBOX_ENABLE_SECCOMP')}")
create_args.extend(["--security-opt", "seccomp=/app/seccomp-profile-default.json"])
if language == SupportLanguage.PYTHON:
create_args.append(os.getenv("SANDBOX_BASE_PYTHON_IMAGE", "sandbox-base-python:latest"))
elif language == SupportLanguage.NODEJS:
create_args.append(os.getenv("SANDBOX_BASE_NODEJS_IMAGE", "sandbox-base-nodejs:latest"))
logger.info(f"Sandbox config:\n\t {create_args}")
try:
returncode, _, stderr = await async_run_command(*create_args, timeout=10)
if returncode != 0:
logger.error(f"❌ Container creation failed {name}: {stderr}")
return False
if language == SupportLanguage.NODEJS:
copy_cmd = ["docker", "exec", name, "bash", "-c", "cp -a /app/node_modules /workspace/"]
returncode, _, stderr = await async_run_command(*copy_cmd, timeout=10)
if returncode != 0:
logger.error(f"❌ Failed to prepare dependencies for {name}: {stderr}")
return False
return await container_is_running(name)
except Exception as e:
logger.error(f"❌ Container creation exception {name}: {str(e)}")
return False
async def recreate_container(name: str, language: SupportLanguage) -> bool:
"""Asynchronously recreate a container"""
logger.info(f"🛠️ Recreating container: {name}")
try:
await async_run_command("docker", "rm", "-f", name, timeout=5)
return await create_container(name, language)
except Exception as e:
logger.error(f"❌ Container {name} recreation failed: {str(e)}")
return False
async def release_container(name: str, language: SupportLanguage):
"""Asynchronously release a container"""
with _CONTAINER_LOCK:
if await container_is_running(name):
_CONTAINER_QUEUES[language].put(name)
logger.info(f"🟢 Released container: {name} (remaining available: {_CONTAINER_QUEUES[language].qsize()})")
else:
logger.warning(f"⚠️ Container {name} has crashed, attempting to recreate...")
if await recreate_container(name, language):
_CONTAINER_QUEUES[language].put(name)
logger.info(f"✅ Container {name} successfully recreated and returned to queue")
async def allocate_container_blocking(language: SupportLanguage, timeout=10) -> str:
"""Asynchronously allocate an available container"""
start_time = time.time()
while time.time() - start_time < timeout:
try:
name = _CONTAINER_QUEUES[language].get_nowait()
with _CONTAINER_LOCK:
if not await container_is_running(name) and not await recreate_container(name, language):
continue
return name
except Empty:
await asyncio.sleep(0.1)
return ""
async def container_is_running(name: str) -> bool:
"""Asynchronously check the container status"""
try:
returncode, stdout, _ = await async_run_command("docker", "inspect", "-f", "{{.State.Running}}", name, timeout=2)
return returncode == 0 and stdout.strip() == "true"
except Exception:
return False

View File

@ -0,0 +1,19 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("sandbox")

View File

@ -0,0 +1,25 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.routes import router as api_router
from core.config import init
from fastapi import FastAPI
from services.limiter import limiter, rate_limit_exceeded_handler
from slowapi.errors import RateLimitExceeded
app = FastAPI(lifespan=init())
app.include_router(api_router)
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, rate_limit_exceeded_handler)

View File

@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

View File

@ -0,0 +1,47 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from enum import Enum
class SupportLanguage(str, Enum):
PYTHON = "python"
NODEJS = "nodejs"
class ResultStatus(str, Enum):
SUCCESS = "success"
PROGRAM_ERROR = "program_error"
RESOURCE_LIMIT_EXCEEDED = "resource_limit_exceeded"
UNAUTHORIZED_ACCESS = "unauthorized_access"
RUNTIME_ERROR = "runtime_error"
PROGRAM_RUNNER_ERROR = "program_runner_error"
class ResourceLimitType(str, Enum):
TIME = "time"
MEMORY = "memory"
OUTPUT = "output"
class UnauthorizedAccessType(str, Enum):
DISALLOWED_SYSCALL = "disallowed_syscall"
FILE_ACCESS = "file_access"
NETWORK_ACCESS = "network_access"
class RuntimeErrorType(str, Enum):
SIGNALLED = "signalled"
NONZERO_EXIT = "nonzero_exit"

View File

@ -0,0 +1,53 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
from typing import Optional
from pydantic import BaseModel, Field, field_validator
from models.enums import ResourceLimitType, ResultStatus, RuntimeErrorType, SupportLanguage, UnauthorizedAccessType
class CodeExecutionResult(BaseModel):
status: ResultStatus
stdout: str
stderr: str
exit_code: int
detail: Optional[str] = None
# Resource usage
time_used_ms: Optional[float] = None
memory_used_kb: Optional[float] = None
# Error details
resource_limit_type: Optional[ResourceLimitType] = None
unauthorized_access_type: Optional[UnauthorizedAccessType] = None
runtime_error_type: Optional[RuntimeErrorType] = None
class CodeExecutionRequest(BaseModel):
code_b64: str = Field(..., description="Base64 encoded code string")
language: SupportLanguage = Field(default=SupportLanguage.PYTHON, description="Programming language")
arguments: Optional[dict] = Field(default={}, description="Arguments")
@field_validator("code_b64")
@classmethod
def validate_base64(cls, v: str) -> str:
try:
base64.b64decode(v, validate=True)
return v
except Exception as e:
raise ValueError(f"Invalid base64 encoding: {str(e)}")

View File

@ -0,0 +1,3 @@
fastapi
uvicorn
slowapi

View File

@ -0,0 +1,55 @@
{
"defaultAction": "SCMP_ACT_ERRNO",
"archMap": [
{
"architecture": "SCMP_ARCH_X86_64",
"subArchitectures": [
"SCMP_ARCH_X86",
"SCMP_ARCH_X32"
]
}
],
"syscalls": [
{
"names": [
"read",
"write",
"exit",
"sigreturn",
"brk",
"mmap",
"munmap",
"rt_sigaction",
"rt_sigprocmask",
"futex",
"clone",
"execve",
"arch_prctl",
"access",
"openat",
"close",
"stat",
"fstat",
"lstat",
"getpid",
"gettid",
"getuid",
"getgid",
"geteuid",
"getegid",
"clock_gettime",
"nanosleep",
"uname",
"writev",
"readlink",
"getrandom",
"statx",
"faccessat2",
"pread64",
"pwrite64",
"rt_sigreturn"
],
"action": "SCMP_ACT_ALLOW"
}
]
}

View File

@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

View File

@ -0,0 +1,245 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import base64
import json
import os
import time
import uuid
from core.config import TIMEOUT
from core.container import allocate_container_blocking, release_container
from core.logger import logger
from models.enums import ResourceLimitType, ResultStatus, RuntimeErrorType, SupportLanguage, UnauthorizedAccessType
from models.schemas import CodeExecutionRequest, CodeExecutionResult
from utils.common import async_run_command
async def execute_code(req: CodeExecutionRequest):
"""Fully asynchronous execution logic"""
language = req.language
container = await allocate_container_blocking(language)
if not container:
return CodeExecutionResult(
status=ResultStatus.PROGRAM_RUNNER_ERROR,
stdout="",
stderr="Container pool is busy",
exit_code=-10,
detail="no_available_container",
)
task_id = str(uuid.uuid4())
workdir = f"/tmp/sandbox_{task_id}"
os.makedirs(workdir, mode=0o700, exist_ok=True)
try:
if language == SupportLanguage.PYTHON:
code_name = "main.py"
# code
code_path = os.path.join(workdir, code_name)
with open(code_path, "wb") as f:
f.write(base64.b64decode(req.code_b64))
# runner
runner_name = "runner.py"
runner_path = os.path.join(workdir, runner_name)
with open(runner_path, "w") as f:
f.write("""import json
import os
import sys
sys.path.insert(0, os.path.dirname(__file__))
from main import main
if __name__ == "__main__":
args = json.loads(sys.argv[1])
result = main(**args)
if result is not None:
print(result)
""")
elif language == SupportLanguage.NODEJS:
code_name = "main.js"
code_path = os.path.join(workdir, "main.js")
with open(code_path, "wb") as f:
f.write(base64.b64decode(req.code_b64))
runner_name = "runner.js"
runner_path = os.path.join(workdir, "runner.js")
with open(runner_path, "w") as f:
f.write("""
const fs = require('fs');
const path = require('path');
const args = JSON.parse(process.argv[2]);
const mainPath = path.join(__dirname, 'main.js');
if (fs.existsSync(mainPath)) {
const { main } = require(mainPath);
if (typeof args === 'object' && args !== null) {
main(args).then(result => {
if (result !== null) {
console.log(result);
}
}).catch(err => {
console.error('Error in main function:', err);
});
} else {
console.error('Error: args is not a valid object:', args);
}
} else {
console.error('main.js not found in the current directory');
}
""")
# dirs
returncode, _, stderr = await async_run_command("docker", "exec", container, "mkdir", "-p", f"/workspace/{task_id}", timeout=5)
if returncode != 0:
raise RuntimeError(f"Directory creation failed: {stderr}")
# archive
tar_proc = await asyncio.create_subprocess_exec("tar", "czf", "-", "-C", workdir, code_name, runner_name, stdout=asyncio.subprocess.PIPE)
tar_stdout, _ = await tar_proc.communicate()
# unarchive
docker_proc = await asyncio.create_subprocess_exec(
"docker", "exec", "-i", container, "tar", "xzf", "-", "-C", f"/workspace/{task_id}", stdin=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE
)
stdout, stderr = await docker_proc.communicate(input=tar_stdout)
if docker_proc.returncode != 0:
raise RuntimeError(stderr.decode())
# exec
start_time = time.time()
try:
logger.info(f"Passed in args: {req.arguments}")
args_json = json.dumps(req.arguments or {})
run_args = [
"docker",
"exec",
"--workdir",
f"/workspace/{task_id}",
container,
"timeout",
str(TIMEOUT),
language,
]
# flags
if language == SupportLanguage.PYTHON:
run_args.extend(["-I", "-B"])
elif language == SupportLanguage.NODEJS:
run_args.extend([])
else:
assert True, "Will never reach here"
run_args.extend([runner_name, args_json])
returncode, stdout, stderr = await async_run_command(
*run_args,
timeout=TIMEOUT + 5,
)
time_used_ms = (time.time() - start_time) * 1000
logger.info("----------------------------------------------")
logger.info(f"Code: {str(base64.b64decode(req.code_b64))}")
logger.info(f"{returncode=}")
logger.info(f"{stdout=}")
logger.info(f"{stderr=}")
logger.info(f"{args_json=}")
if returncode == 0:
return CodeExecutionResult(
status=ResultStatus.SUCCESS,
stdout=str(stdout),
stderr=stderr,
exit_code=0,
time_used_ms=time_used_ms,
)
elif returncode == 124:
return CodeExecutionResult(
status=ResultStatus.RESOURCE_LIMIT_EXCEEDED,
stdout="",
stderr="Execution timeout",
exit_code=-124,
resource_limit_type=ResourceLimitType.TIME,
time_used_ms=time_used_ms,
)
elif returncode == 137:
return CodeExecutionResult(
status=ResultStatus.RESOURCE_LIMIT_EXCEEDED,
stdout="",
stderr="Memory limit exceeded (killed by OOM)",
exit_code=-137,
resource_limit_type=ResourceLimitType.MEMORY,
time_used_ms=time_used_ms,
)
return analyze_error_result(stderr, returncode)
except asyncio.TimeoutError:
await async_run_command("docker", "exec", container, "pkill", "-9", language)
return CodeExecutionResult(
status=ResultStatus.RESOURCE_LIMIT_EXCEEDED,
stdout="",
stderr="Execution timeout",
exit_code=-1,
resource_limit_type=ResourceLimitType.TIME,
time_used_ms=(time.time() - start_time) * 1000,
)
except Exception as e:
logger.error(f"Execution exception: {str(e)}")
return CodeExecutionResult(status=ResultStatus.PROGRAM_RUNNER_ERROR, stdout="", stderr=str(e), exit_code=-3, detail="internal_error")
finally:
# cleanup
cleanup_tasks = [async_run_command("docker", "exec", container, "rm", "-rf", f"/workspace/{task_id}"), async_run_command("rm", "-rf", workdir)]
await asyncio.gather(*cleanup_tasks, return_exceptions=True)
await release_container(container, language)
def analyze_error_result(stderr: str, exit_code: int) -> CodeExecutionResult:
"""Analyze the error result and classify it"""
if "Permission denied" in stderr:
return CodeExecutionResult(
status=ResultStatus.UNAUTHORIZED_ACCESS,
stdout="",
stderr=stderr,
exit_code=exit_code,
unauthorized_access_type=UnauthorizedAccessType.FILE_ACCESS,
)
elif "Operation not permitted" in stderr:
return CodeExecutionResult(
status=ResultStatus.UNAUTHORIZED_ACCESS,
stdout="",
stderr=stderr,
exit_code=exit_code,
unauthorized_access_type=UnauthorizedAccessType.DISALLOWED_SYSCALL,
)
elif "MemoryError" in stderr:
return CodeExecutionResult(
status=ResultStatus.RESOURCE_LIMIT_EXCEEDED,
stdout="",
stderr=stderr,
exit_code=exit_code,
resource_limit_type=ResourceLimitType.MEMORY,
)
else:
return CodeExecutionResult(
status=ResultStatus.PROGRAM_ERROR,
stdout="",
stderr=stderr,
exit_code=exit_code,
runtime_error_type=RuntimeErrorType.NONZERO_EXIT,
)

View File

@ -0,0 +1,38 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from fastapi import Request
from fastapi.responses import JSONResponse
from models.enums import ResultStatus
from models.schemas import CodeExecutionResult
from slowapi import Limiter
from slowapi.errors import RateLimitExceeded
from slowapi.util import get_remote_address
limiter = Limiter(key_func=get_remote_address)
async def rate_limit_exceeded_handler(request: Request, exc: Exception) -> JSONResponse:
if isinstance(exc, RateLimitExceeded):
return JSONResponse(
content=CodeExecutionResult(
status=ResultStatus.PROGRAM_RUNNER_ERROR,
stdout="",
stderr="Too many requests, please try again later",
exit_code=-429,
detail="Too many requests, please try again later",
).model_dump(),
)
raise exc

View File

@ -0,0 +1,173 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ast
from typing import List, Tuple
from core.logger import logger
from models.enums import SupportLanguage
class SecurePythonAnalyzer(ast.NodeVisitor):
"""
An AST-based analyzer for detecting unsafe Python code patterns.
"""
DANGEROUS_IMPORTS = {"os", "subprocess", "sys", "shutil", "socket", "ctypes", "pickle", "threading", "multiprocessing", "asyncio", "http.client", "ftplib", "telnetlib"}
DANGEROUS_CALLS = {
"eval",
"exec",
"open",
"__import__",
"compile",
"input",
"system",
"popen",
"remove",
"rename",
"rmdir",
"chdir",
"chmod",
"chown",
"getattr",
"setattr",
"globals",
"locals",
"shutil.rmtree",
"subprocess.call",
"subprocess.Popen",
"ctypes",
"pickle.load",
"pickle.loads",
"pickle.dump",
"pickle.dumps",
}
def __init__(self):
self.unsafe_items: List[Tuple[str, int]] = []
def visit_Import(self, node: ast.Import):
"""Check for dangerous imports."""
for alias in node.names:
if alias.name.split(".")[0] in self.DANGEROUS_IMPORTS:
self.unsafe_items.append((f"Import: {alias.name}", node.lineno))
self.generic_visit(node)
def visit_ImportFrom(self, node: ast.ImportFrom):
"""Check for dangerous imports from specific modules."""
if node.module and node.module.split(".")[0] in self.DANGEROUS_IMPORTS:
self.unsafe_items.append((f"From Import: {node.module}", node.lineno))
self.generic_visit(node)
def visit_Call(self, node: ast.Call):
"""Check for dangerous function calls."""
if isinstance(node.func, ast.Name) and node.func.id in self.DANGEROUS_CALLS:
self.unsafe_items.append((f"Call: {node.func.id}", node.lineno))
self.generic_visit(node)
def visit_Attribute(self, node: ast.Attribute):
"""Check for dangerous attribute access."""
if isinstance(node.value, ast.Name) and node.value.id in self.DANGEROUS_IMPORTS:
self.unsafe_items.append((f"Attribute Access: {node.value.id}.{node.attr}", node.lineno))
self.generic_visit(node)
def visit_BinOp(self, node: ast.BinOp):
"""Check for possible unsafe operations like concatenating strings with commands."""
# This could be useful to detect `eval("os." + "system")`
if isinstance(node.left, ast.Constant) and isinstance(node.right, ast.Constant):
self.unsafe_items.append(("Possible unsafe string concatenation", node.lineno))
self.generic_visit(node)
def visit_FunctionDef(self, node: ast.FunctionDef):
"""Check for dangerous function definitions (e.g., user-defined eval)."""
if node.name in self.DANGEROUS_CALLS:
self.unsafe_items.append((f"Function Definition: {node.name}", node.lineno))
self.generic_visit(node)
def visit_Assign(self, node: ast.Assign):
"""Check for assignments to variables that might lead to dangerous operations."""
for target in node.targets:
if isinstance(target, ast.Name) and target.id in self.DANGEROUS_CALLS:
self.unsafe_items.append((f"Assignment to dangerous variable: {target.id}", node.lineno))
self.generic_visit(node)
def visit_Lambda(self, node: ast.Lambda):
"""Check for lambda functions with dangerous operations."""
if isinstance(node.body, ast.Call) and isinstance(node.body.func, ast.Name) and node.body.func.id in self.DANGEROUS_CALLS:
self.unsafe_items.append(("Lambda with dangerous function call", node.lineno))
self.generic_visit(node)
def visit_ListComp(self, node: ast.ListComp):
"""Check for list comprehensions with dangerous operations."""
# First, visit the generators to check for any issues there
for elem in node.generators:
if isinstance(elem, ast.comprehension):
self.generic_visit(elem)
if isinstance(node.elt, ast.Call) and isinstance(node.elt.func, ast.Name) and node.elt.func.id in self.DANGEROUS_CALLS:
self.unsafe_items.append(("List comprehension with dangerous function call", node.lineno))
self.generic_visit(node)
def visit_DictComp(self, node: ast.DictComp):
"""Check for dictionary comprehensions with dangerous operations."""
# Check for dangerous calls in both the key and value expressions of the dictionary comprehension
if isinstance(node.key, ast.Call) and isinstance(node.key.func, ast.Name) and node.key.func.id in self.DANGEROUS_CALLS:
self.unsafe_items.append(("Dict comprehension with dangerous function call in key", node.lineno))
if isinstance(node.value, ast.Call) and isinstance(node.value.func, ast.Name) and node.value.func.id in self.DANGEROUS_CALLS:
self.unsafe_items.append(("Dict comprehension with dangerous function call in value", node.lineno))
# Visit other sub-nodes (e.g., the generators in the comprehension)
self.generic_visit(node)
def visit_SetComp(self, node: ast.SetComp):
"""Check for set comprehensions with dangerous operations."""
for elt in node.generators:
if isinstance(elt, ast.comprehension):
self.generic_visit(elt)
if isinstance(node.elt, ast.Call) and isinstance(node.elt.func, ast.Name) and node.elt.func.id in self.DANGEROUS_CALLS:
self.unsafe_items.append(("Set comprehension with dangerous function call", node.lineno))
self.generic_visit(node)
def visit_Yield(self, node: ast.Yield):
"""Check for yield statements that could be used to produce unsafe values."""
if isinstance(node.value, ast.Call) and isinstance(node.value.func, ast.Name) and node.value.func.id in self.DANGEROUS_CALLS:
self.unsafe_items.append(("Yield with dangerous function call", node.lineno))
self.generic_visit(node)
def analyze_code_security(code: str, language: SupportLanguage) -> Tuple[bool, List[Tuple[str, int]]]:
"""
Analyze the provided code string and return whether it's safe and why.
:param code: The source code to analyze.
:param language: The programming language of the code.
:return: (is_safe: bool, issues: List of (description, line number))
"""
if language == SupportLanguage.PYTHON:
try:
tree = ast.parse(code)
analyzer = SecurePythonAnalyzer()
analyzer.visit(tree)
return len(analyzer.unsafe_items) == 0, analyzer.unsafe_items
except Exception as e:
logger.error(f"[SafeCheck] Python parsing failed: {str(e)}")
return False, [(f"Parsing Error: {str(e)}", -1)]
else:
logger.warning(f"[SafeCheck] Unsupported language for security analysis: {language} — defaulting to SAFE (manual review recommended)")
return True, [(f"Unsupported language for security analysis: {language} — defaulted to SAFE, manual review recommended", -1)]

View File

@ -0,0 +1,76 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import re
def is_enabled(value: str) -> bool:
return str(value).strip().lower() in {"1", "true", "yes", "on"}
def env_setting_enabled(env_key: str, default: str = "false") -> bool:
value = os.getenv(env_key, default)
return is_enabled(value)
def is_valid_memory_limit(mem: str | None) -> bool:
"""
Return True if the input string is a valid Docker memory limit (e.g. '256m', '1g').
Units allowed: b, k, m, g (case-insensitive).
Disallows zero or negative values.
"""
if not mem or not isinstance(mem, str):
return False
mem = mem.strip().lower()
return re.fullmatch(r"[1-9]\d*(b|k|m|g)", mem) is not None
def parse_timeout_duration(timeout: str | None, default_seconds: int = 10) -> int:
"""
Parses a string like '90s', '2m', '1m30s' into total seconds (int).
Supports 's', 'm' (lower or upper case). Returns default if invalid.
'1m30s' -> 90
"""
if not timeout or not isinstance(timeout, str):
return default_seconds
timeout = timeout.strip().lower()
pattern = r"^(?:(\d+)m)?(?:(\d+)s)?$"
match = re.fullmatch(pattern, timeout)
if not match:
return default_seconds
minutes = int(match.group(1)) if match.group(1) else 0
seconds = int(match.group(2)) if match.group(2) else 0
total = minutes * 60 + seconds
return total if total > 0 else default_seconds
def format_timeout_duration(seconds: int) -> str:
"""
Formats an integer number of seconds into a string like '1m30s'.
90 -> '1m30s'
"""
if seconds < 60:
return f"{seconds}s"
minutes, sec = divmod(seconds, 60)
if sec == 0:
return f"{minutes}m"
return f"{minutes}m{sec}s"

View File

@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

View File

@ -0,0 +1,36 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
from typing import Tuple
async def async_run_command(*args, timeout: float = 5) -> Tuple[int, str, str]:
"""Safe asynchronous command execution tool"""
proc = await asyncio.create_subprocess_exec(*args, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
try:
stdout, stderr = await asyncio.wait_for(proc.communicate(), timeout=timeout)
if proc.returncode is None:
raise RuntimeError("Process finished but returncode is None")
return proc.returncode, stdout.decode(), stderr.decode()
except asyncio.TimeoutError:
proc.kill()
await proc.wait()
raise RuntimeError("Command timed out")
except Exception as e:
proc.kill()
await proc.wait()
raise e

28
sandbox/pyproject.toml Normal file
View File

@ -0,0 +1,28 @@
[project]
name = "gvisor-sandbox"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.10"
dependencies = [
"fastapi>=0.115.12",
"httpx>=0.28.1",
"pydantic>=2.11.4",
"requests>=2.32.3",
"slowapi>=0.1.9",
"uvicorn>=0.34.2",
]
[[tool.uv.index]]
url = "https://pypi.tuna.tsinghua.edu.cn/simple"
[dependency-groups]
dev = [
"basedpyright>=1.29.1",
]
[tool.ruff]
line-length = 200
[tool.ruff.lint]
extend-select = ["C4", "SIM", "TCH"]

View File

@ -0,0 +1,17 @@
FROM node:24-bookworm-slim
RUN npm config set registry https://registry.npmmirror.com
# RUN grep -rl 'deb.debian.org' /etc/apt/ | xargs sed -i 's|http[s]*://deb.debian.org|https://mirrors.ustc.edu.cn|g' && \
# apt-get update && \
# apt-get install -y curl gcc make
WORKDIR /app
COPY package.json package-lock.json .
RUN npm install
CMD ["sleep", "infinity"]

View File

@ -0,0 +1,294 @@
{
"name": "nodejs",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "nodejs",
"version": "1.0.0",
"license": "ISC",
"dependencies": {
"axios": "^1.9.0"
}
},
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmmirror.com/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"license": "MIT"
},
"node_modules/axios": {
"version": "1.9.0",
"resolved": "https://registry.npmmirror.com/axios/-/axios-1.9.0.tgz",
"integrity": "sha512-re4CqKTJaURpzbLHtIi6XpDv20/CnpXOtjRY5/CU32L8gU8ek9UIivcfvSWvmKEngmVbrUtPpdDwWDWL7DNHvg==",
"license": "MIT",
"dependencies": {
"follow-redirects": "^1.15.6",
"form-data": "^4.0.0",
"proxy-from-env": "^1.1.0"
}
},
"node_modules/call-bind-apply-helpers": {
"version": "1.0.2",
"resolved": "https://registry.npmmirror.com/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz",
"integrity": "sha512-Sp1ablJ0ivDkSzjcaJdxEunN5/XvksFJ2sMBFfq6x0ryhQV/2b/KwFe21cMpmHtPOSij8K99/wSfoEuTObmuMQ==",
"license": "MIT",
"dependencies": {
"es-errors": "^1.3.0",
"function-bind": "^1.1.2"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/combined-stream": {
"version": "1.0.8",
"resolved": "https://registry.npmmirror.com/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"license": "MIT",
"dependencies": {
"delayed-stream": "~1.0.0"
},
"engines": {
"node": ">= 0.8"
}
},
"node_modules/delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmmirror.com/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"license": "MIT",
"engines": {
"node": ">=0.4.0"
}
},
"node_modules/dunder-proto": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/dunder-proto/-/dunder-proto-1.0.1.tgz",
"integrity": "sha512-KIN/nDJBQRcXw0MLVhZE9iQHmG68qAVIBg9CqmUYjmQIhgij9U5MFvrqkUL5FbtyyzZuOeOt0zdeRe4UY7ct+A==",
"license": "MIT",
"dependencies": {
"call-bind-apply-helpers": "^1.0.1",
"es-errors": "^1.3.0",
"gopd": "^1.2.0"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/es-define-property": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/es-define-property/-/es-define-property-1.0.1.tgz",
"integrity": "sha512-e3nRfgfUZ4rNGL232gUgX06QNyyez04KdjFrF+LTRoOXmrOgFKDg4BCdsjW8EnT69eqdYGmRpJwiPVYNrCaW3g==",
"license": "MIT",
"engines": {
"node": ">= 0.4"
}
},
"node_modules/es-errors": {
"version": "1.3.0",
"resolved": "https://registry.npmmirror.com/es-errors/-/es-errors-1.3.0.tgz",
"integrity": "sha512-Zf5H2Kxt2xjTvbJvP2ZWLEICxA6j+hAmMzIlypy4xcBg1vKVnx89Wy0GbS+kf5cwCVFFzdCFh2XSCFNULS6csw==",
"license": "MIT",
"engines": {
"node": ">= 0.4"
}
},
"node_modules/es-object-atoms": {
"version": "1.1.1",
"resolved": "https://registry.npmmirror.com/es-object-atoms/-/es-object-atoms-1.1.1.tgz",
"integrity": "sha512-FGgH2h8zKNim9ljj7dankFPcICIK9Cp5bm+c2gQSYePhpaG5+esrLODihIorn+Pe6FGJzWhXQotPv73jTaldXA==",
"license": "MIT",
"dependencies": {
"es-errors": "^1.3.0"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/es-set-tostringtag": {
"version": "2.1.0",
"resolved": "https://registry.npmmirror.com/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
"integrity": "sha512-j6vWzfrGVfyXxge+O0x5sh6cvxAog0a/4Rdd2K36zCMV5eJ+/+tOAngRO8cODMNWbVRdVlmGZQL2YS3yR8bIUA==",
"license": "MIT",
"dependencies": {
"es-errors": "^1.3.0",
"get-intrinsic": "^1.2.6",
"has-tostringtag": "^1.0.2",
"hasown": "^2.0.2"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/follow-redirects": {
"version": "1.15.9",
"resolved": "https://registry.npmmirror.com/follow-redirects/-/follow-redirects-1.15.9.tgz",
"integrity": "sha512-gew4GsXizNgdoRyqmyfMHyAmXsZDk6mHkSxZFCzW9gwlbtOW44CDtYavM+y+72qD/Vq2l550kMF52DT8fOLJqQ==",
"funding": [
{
"type": "individual",
"url": "https://github.com/sponsors/RubenVerborgh"
}
],
"license": "MIT",
"engines": {
"node": ">=4.0"
},
"peerDependenciesMeta": {
"debug": {
"optional": true
}
}
},
"node_modules/form-data": {
"version": "4.0.2",
"resolved": "https://registry.npmmirror.com/form-data/-/form-data-4.0.2.tgz",
"integrity": "sha512-hGfm/slu0ZabnNt4oaRZ6uREyfCj6P4fT/n6A1rGV+Z0VdGXjfOhVUpkn6qVQONHGIFwmveGXyDs75+nr6FM8w==",
"license": "MIT",
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
"es-set-tostringtag": "^2.1.0",
"mime-types": "^2.1.12"
},
"engines": {
"node": ">= 6"
}
},
"node_modules/function-bind": {
"version": "1.1.2",
"resolved": "https://registry.npmmirror.com/function-bind/-/function-bind-1.1.2.tgz",
"integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==",
"license": "MIT",
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/get-intrinsic": {
"version": "1.3.0",
"resolved": "https://registry.npmmirror.com/get-intrinsic/-/get-intrinsic-1.3.0.tgz",
"integrity": "sha512-9fSjSaos/fRIVIp+xSJlE6lfwhES7LNtKaCBIamHsjr2na1BiABJPo0mOjjz8GJDURarmCPGqaiVg5mfjb98CQ==",
"license": "MIT",
"dependencies": {
"call-bind-apply-helpers": "^1.0.2",
"es-define-property": "^1.0.1",
"es-errors": "^1.3.0",
"es-object-atoms": "^1.1.1",
"function-bind": "^1.1.2",
"get-proto": "^1.0.1",
"gopd": "^1.2.0",
"has-symbols": "^1.1.0",
"hasown": "^2.0.2",
"math-intrinsics": "^1.1.0"
},
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/get-proto": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/get-proto/-/get-proto-1.0.1.tgz",
"integrity": "sha512-sTSfBjoXBp89JvIKIefqw7U2CCebsc74kiY6awiGogKtoSGbgjYE/G/+l9sF3MWFPNc9IcoOC4ODfKHfxFmp0g==",
"license": "MIT",
"dependencies": {
"dunder-proto": "^1.0.1",
"es-object-atoms": "^1.0.0"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/gopd": {
"version": "1.2.0",
"resolved": "https://registry.npmmirror.com/gopd/-/gopd-1.2.0.tgz",
"integrity": "sha512-ZUKRh6/kUFoAiTAtTYPZJ3hw9wNxx+BIBOijnlG9PnrJsCcSjs1wyyD6vJpaYtgnzDrKYRSqf3OO6Rfa93xsRg==",
"license": "MIT",
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/has-symbols": {
"version": "1.1.0",
"resolved": "https://registry.npmmirror.com/has-symbols/-/has-symbols-1.1.0.tgz",
"integrity": "sha512-1cDNdwJ2Jaohmb3sg4OmKaMBwuC48sYni5HUw2DvsC8LjGTLK9h+eb1X6RyuOHe4hT0ULCW68iomhjUoKUqlPQ==",
"license": "MIT",
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/has-tostringtag": {
"version": "1.0.2",
"resolved": "https://registry.npmmirror.com/has-tostringtag/-/has-tostringtag-1.0.2.tgz",
"integrity": "sha512-NqADB8VjPFLM2V0VvHUewwwsw0ZWBaIdgo+ieHtK3hasLz4qeCRjYcqfB6AQrBggRKppKF8L52/VqdVsO47Dlw==",
"license": "MIT",
"dependencies": {
"has-symbols": "^1.0.3"
},
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/hasown": {
"version": "2.0.2",
"resolved": "https://registry.npmmirror.com/hasown/-/hasown-2.0.2.tgz",
"integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==",
"license": "MIT",
"dependencies": {
"function-bind": "^1.1.2"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/math-intrinsics": {
"version": "1.1.0",
"resolved": "https://registry.npmmirror.com/math-intrinsics/-/math-intrinsics-1.1.0.tgz",
"integrity": "sha512-/IXtbwEk5HTPyEwyKX6hGkYXxM9nbj64B+ilVJnC/R6B0pH5G4V3b0pVbL7DBj4tkhBAppbQUlf6F6Xl9LHu1g==",
"license": "MIT",
"engines": {
"node": ">= 0.4"
}
},
"node_modules/mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmmirror.com/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmmirror.com/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"license": "MIT",
"dependencies": {
"mime-db": "1.52.0"
},
"engines": {
"node": ">= 0.6"
}
},
"node_modules/proxy-from-env": {
"version": "1.1.0",
"resolved": "https://registry.npmmirror.com/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg==",
"license": "MIT"
}
}
}

View File

@ -0,0 +1,15 @@
{
"name": "nodejs",
"version": "1.0.0",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC",
"description": "",
"dependencies": {
"axios": "^1.9.0"
}
}

View File

@ -0,0 +1,15 @@
FROM python:3.11-slim-bookworm
COPY --from=ghcr.io/astral-sh/uv:0.7.5 /uv /uvx /bin/
ENV UV_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple
COPY requirements.txt .
RUN grep -rl 'deb.debian.org' /etc/apt/ | xargs sed -i 's|http[s]*://deb.debian.org|https://mirrors.tuna.tsinghua.edu.cn|g' && \
apt-get update && \
apt-get install -y curl gcc && \
uv pip install --system -r requirements.txt
WORKDIR /workspace
CMD ["sleep", "infinity"]

View File

@ -0,0 +1,3 @@
numpy
pandas
requests

21
sandbox/scripts/restart.sh Executable file
View File

@ -0,0 +1,21 @@
#!/bin/bash
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
set -e
bash "$(dirname "$0")/stop.sh"
bash "$(dirname "$0")/start.sh"

72
sandbox/scripts/start.sh Executable file
View File

@ -0,0 +1,72 @@
#!/bin/bash
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
set -e
BASE_DIR="$(cd "$(dirname "$0")/.." && pwd)"
cd "$BASE_DIR"
if [ -f .env ]; then
source .env
SANDBOX_EXECUTOR_MANAGER_PORT="${SANDBOX_EXECUTOR_MANAGER_PORT:-9385}" # Default to 9385 if not set in .env
SANDBOX_EXECUTOR_MANAGER_POOL_SIZE="${SANDBOX_EXECUTOR_MANAGER_POOL_SIZE:-5}" # Default to 5 if not set in .env
SANDBOX_BASE_PYTHON_IMAGE=${SANDBOX_BASE_PYTHON_IMAGE-"sandbox-base-python:latest"}
SANDBOX_BASE_NODEJS_IMAGE=${SANDBOX_BASE_NODEJS_IMAGE-"sandbox-base-nodejs:latest"}
else
echo "⚠️ .env not found, using default ports and pool size"
SANDBOX_EXECUTOR_MANAGER_PORT=9385
SANDBOX_EXECUTOR_MANAGER_POOL_SIZE=5
SANDBOX_BASE_PYTHON_IMAGE=sandbox-base-python:latest
SANDBOX_BASE_NODEJS_IMAGE=sandbox-base-nodejs:latest
fi
echo "📦 STEP 1: Build sandbox-base image ..."
if [ -f .env ]; then
source .env &&
echo "🐍 Building base sandbox image for Python ($SANDBOX_BASE_PYTHON_IMAGE)..." &&
docker build -t "$SANDBOX_BASE_PYTHON_IMAGE" ./sandbox_base_image/python &&
echo "⬢ Building base sandbox image for Nodejs ($SANDBOX_BASE_NODEJS_IMAGE)..." &&
docker build -t "$SANDBOX_BASE_NODEJS_IMAGE" ./sandbox_base_image/nodejs
else
echo "⚠️ .env file not found, skipping build."
fi
echo "🧹 STEP 2: Clean up old sandbox containers (sandbox_nodejs_0~$((SANDBOX_EXECUTOR_MANAGER_POOL_SIZE - 1)) and sandbox_python_0~$((SANDBOX_EXECUTOR_MANAGER_POOL_SIZE - 1))) ..."
for i in $(seq 0 $((SANDBOX_EXECUTOR_MANAGER_POOL_SIZE - 1))); do
echo "🧹 Deleting sandbox_python_$i..."
docker rm -f "sandbox_python_$i" >/dev/null 2>&1 || true
echo "🧹 Deleting sandbox_nodejs_$i..."
docker rm -f "sandbox_nodejs_$i" >/dev/null 2>&1 || true
done
echo "🔧 STEP 3: Build executor services ..."
docker compose build
echo "🚀 STEP 4: Start services ..."
docker compose up -d
echo "⏳ STEP 5a: Check if ports are open (basic connectivity) ..."
bash ./scripts/wait-for-it.sh "localhost" "$SANDBOX_EXECUTOR_MANAGER_PORT" -t 30
echo "⏳ STEP 5b: Check if the interfaces are healthy (/healthz) ..."
bash ./scripts/wait-for-it-http.sh "http://localhost:$SANDBOX_EXECUTOR_MANAGER_PORT/healthz" 30
echo "✅ STEP 6: Run security tests ..."
python3 ./tests/sandbox_security_tests_full.py
echo "🎉 Service is ready: http://localhost:$SANDBOX_EXECUTOR_MANAGER_PORT/docs"

40
sandbox/scripts/stop.sh Executable file
View File

@ -0,0 +1,40 @@
#!/bin/bash
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
set -e
BASE_DIR="$(cd "$(dirname "$0")/.." && pwd)"
cd "$BASE_DIR"
echo "🛑 Stopping all services..."
docker compose down
echo "🧹 Deleting sandbox containers..."
if [ -f .env ]; then
source .env
for i in $(seq 0 $((SANDBOX_EXECUTOR_MANAGER_POOL_SIZE - 1))); do
echo "🧹 Deleting sandbox_python_$i..."
docker rm -f "sandbox_python_$i" >/dev/null 2>&1 || true
echo "🧹 Deleting sandbox_nodejs_$i..."
docker rm -f "sandbox_nodejs_$i" >/dev/null 2>&1 || true
done
else
echo "⚠️ .env not found, skipping container cleanup"
fi
echo "✅ Stopping and cleanup complete"

View File

@ -0,0 +1,31 @@
#!/bin/bash
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
url=$1
timeout=${2:-15}
quiet=${3:-0}
for i in $(seq "$timeout"); do
if curl -fs "$url" >/dev/null; then
[[ "$quiet" -ne 1 ]] && echo "$url is healthy after $i seconds"
exit 0
fi
sleep 1
done
echo "✖ Timeout after $timeout seconds waiting for $url"
exit 1

50
sandbox/scripts/wait-for-it.sh Executable file
View File

@ -0,0 +1,50 @@
#!/bin/bash
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
host=$1
port=$2
shift 2
timeout=15
quiet=0
while [[ $# -gt 0 ]]; do
case "$1" in
-t | --timeout)
timeout="$2"
shift 2
;;
-q | --quiet)
quiet=1
shift
;;
*)
break
;;
esac
done
for i in $(seq "$timeout"); do
if nc -z "$host" "$port" >/dev/null 2>&1; then
[[ "$quiet" -ne 1 ]] && echo "$host:$port is available after $i seconds"
exit 0
fi
sleep 1
done
echo "✖ Timeout after $timeout seconds waiting for $host:$port"
exit 1

View File

@ -0,0 +1,436 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
import os
import textwrap
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from enum import Enum
from typing import Dict, Optional
import requests
from pydantic import BaseModel
API_URL = os.getenv("SANDBOX_API_URL", "http://localhost:9385/run")
TIMEOUT = 15
MAX_WORKERS = 5
class ResultStatus(str, Enum):
SUCCESS = "success"
PROGRAM_ERROR = "program_error"
RESOURCE_LIMIT_EXCEEDED = "resource_limit_exceeded"
UNAUTHORIZED_ACCESS = "unauthorized_access"
RUNTIME_ERROR = "runtime_error"
PROGRAM_RUNNER_ERROR = "program_runner_error"
class ResourceLimitType(str, Enum):
TIME = "time"
MEMORY = "memory"
OUTPUT = "output"
class UnauthorizedAccessType(str, Enum):
DISALLOWED_SYSCALL = "disallowed_syscall"
FILE_ACCESS = "file_access"
NETWORK_ACCESS = "network_access"
class RuntimeErrorType(str, Enum):
SIGNALLED = "signalled"
NONZERO_EXIT = "nonzero_exit"
class ExecutionResult(BaseModel):
status: ResultStatus
stdout: str
stderr: str
exit_code: int
detail: Optional[str] = None
resource_limit_type: Optional[ResourceLimitType] = None
unauthorized_access_type: Optional[UnauthorizedAccessType] = None
runtime_error_type: Optional[RuntimeErrorType] = None
class TestResult(BaseModel):
name: str
passed: bool
duration: float
expected_failure: bool = False
result: Optional[ExecutionResult] = None
error: Optional[str] = None
validation_error: Optional[str] = None
def encode_code(code: str) -> str:
return base64.b64encode(code.encode("utf-8")).decode("utf-8")
def execute_single_test(name: str, code: str, language: str, arguments: dict, expect_fail: bool = False) -> TestResult:
"""Execute a single test case"""
payload = {
"code_b64": encode_code(textwrap.dedent(code)),
"language": language,
"arguments": arguments,
}
test_result = TestResult(name=name, passed=False, duration=0, expected_failure=expect_fail)
really_processed = False
try:
while not really_processed:
start_time = time.perf_counter()
resp = requests.post(API_URL, json=payload, timeout=TIMEOUT)
resp.raise_for_status()
response_data = resp.json()
if response_data["exit_code"] == -429: # too many request
print(f"[{name}] Reached request limit, retring...")
time.sleep(0.5)
continue
really_processed = True
print("-------------------")
print(f"{name}:\n{response_data}")
print("-------------------")
test_result.duration = time.perf_counter() - start_time
test_result.result = ExecutionResult(**response_data)
# Validate test result expectations
validate_test_result(name, expect_fail, test_result)
except requests.exceptions.RequestException as e:
test_result.duration = time.perf_counter() - start_time
test_result.error = f"Request failed: {str(e)}"
test_result.result = ExecutionResult(
status=ResultStatus.PROGRAM_RUNNER_ERROR,
stdout="",
stderr=str(e),
exit_code=-999,
detail="request_failed",
)
return test_result
def validate_test_result(name: str, expect_fail: bool, test_result: TestResult):
"""Validate if the test result meets expectations"""
if not test_result.result:
test_result.passed = False
test_result.validation_error = "No result returned"
return
test_result.passed = test_result.result.status == ResultStatus.SUCCESS
# General validation logic
if expect_fail:
# Tests expected to fail should return a non-success status
if test_result.passed:
test_result.validation_error = "Expected failure but actually succeeded"
else:
# Tests expected to succeed should return a success status
if not test_result.passed:
test_result.validation_error = f"Unexpected failure (status={test_result.result.status})"
def get_test_cases() -> Dict[str, dict]:
"""Return test cases (code, whether expected to fail)"""
return {
"1 Infinite loop: Should be forcibly terminated": {
"code": """
def main():
while True:
pass
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"2 Infinite loop: Should be forcibly terminated": {
"code": """
def main():
while True:
pass
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"3 Infinite loop: Should be forcibly terminated": {
"code": """
def main():
while True:
pass
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"4 Infinite loop: Should be forcibly terminated": {
"code": """
def main():
while True:
pass
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"5 Infinite loop: Should be forcibly terminated": {
"code": """
def main():
while True:
pass
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"6 Infinite loop: Should be forcibly terminated": {
"code": """
def main():
while True:
pass
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"7 Normal test: Python without dependencies": {
"code": """
def main():
return {"data": "hello, world"}
""",
"should_fail": False,
"arguments": {},
"language": "python",
},
"8 Normal test: Python with pandas, should pass without any error": {
"code": """
import pandas as pd
def main():
data = {'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]}
df = pd.DataFrame(data)
""",
"should_fail": False,
"arguments": {},
"language": "python",
},
"9 Normal test: Nodejs without dependencies, should pass without any error": {
"code": """
const https = require('https');
async function main(args) {
return new Promise((resolve, reject) => {
const req = https.get('https://example.com/', (res) => {
let data = '';
res.on('data', (chunk) => {
data += chunk;
});
res.on('end', () => {
clearTimeout(timeout);
console.log('Body:', data);
resolve(data);
});
});
const timeout = setTimeout(() => {
req.destroy(new Error('Request timeout after 10s'));
}, 10000);
req.on('error', (err) => {
clearTimeout(timeout);
console.error('Error:', err.message);
reject(err);
});
});
}
module.exports = { main };
""",
"should_fail": False,
"arguments": {},
"language": "nodejs",
},
"10 Normal test: Nodejs with axios, should pass without any error": {
"code": """
const axios = require('axios');
async function main(args) {
try {
const response = await axios.get('https://example.com/', {
timeout: 10000
});
console.log('Body:', response.data);
} catch (error) {
console.error('Error:', error.message);
}
}
module.exports = { main };
""",
"should_fail": False,
"arguments": {},
"language": "nodejs",
},
"11 Dangerous import: Should fail due to os module import": {
"code": """
import os
def main():
pass
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"12 Dangerous import from subprocess: Should fail due to subprocess import": {
"code": """
from subprocess import Popen
def main():
pass
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"13 Dangerous call: Should fail due to eval function call": {
"code": """
def main():
eval('os.system("echo hello")')
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"14 Dangerous attribute access: Should fail due to shutil.rmtree": {
"code": """
import shutil
def main():
shutil.rmtree('/some/path')
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"15 Dangerous binary operation: Should fail due to unsafe concatenation leading to eval": {
"code": """
def main():
dangerous_string = "os." + "system"
eval(dangerous_string + '("echo hello")')
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"16 Dangerous function definition: Should fail due to user-defined eval function": {
"code": """
def eval_function():
eval('os.system("echo hello")')
def main():
eval_function()
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
"17 Memory exhaustion(256m): Should fail due to exceeding memory limit(try to allocate 300m)": {
"code": """
def main():
x = ['a' * 1024 * 1024] * 300 # 300MB
""",
"should_fail": True,
"arguments": {},
"language": "python",
},
}
def print_test_report(results: Dict[str, TestResult]):
print("\n=== 🔍 Test Report ===")
max_name_len = max(len(name) for name in results)
for name, result in results.items():
status = "" if result.passed else ""
if result.expected_failure:
status = "⚠️" if result.passed else "" # Expected failure case
print(f"{status} {name.ljust(max_name_len)} {result.duration:.2f}s")
if result.error:
print(f" REQUEST ERROR: {result.error}")
if result.validation_error:
print(f" VALIDATION ERROR: {result.validation_error}")
if result.result and not result.passed:
print(f" STATUS: {result.result.status}")
if result.result.stderr:
print(f" STDERR: {result.result.stderr[:200]}...")
if result.result.detail:
print(f" DETAIL: {result.result.detail}")
passed = sum(1 for r in results.values() if ((not r.expected_failure and r.passed) or (r.expected_failure and not r.passed)))
failed = len(results) - passed
print("\n=== 📊 Statistics ===")
print(f"✅ Passed: {passed}")
print(f"❌ Failed: {failed}")
print(f"📌 Total: {len(results)}")
def main():
print(f"🔐 Starting sandbox security tests (API: {API_URL})")
print(f"🚀 Concurrent threads: {MAX_WORKERS}")
test_cases = get_test_cases()
results = {}
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
futures = {}
for name, detail in test_cases.items():
# ✅ Log when a task is submitted
print(f"✅ Task submitted: {name}")
time.sleep(0.4)
future = executor.submit(execute_single_test, name, detail["code"], detail["language"], detail["arguments"], detail["should_fail"])
futures[future] = name
print("\n=== 🚦 Test Progress ===")
for i, future in enumerate(as_completed(futures)):
name = futures[future]
print(f" {i + 1}/{len(test_cases)} completed: {name}")
try:
results[name] = future.result()
except Exception as e:
print(f"⚠️ Test {name} execution exception: {str(e)}")
results[name] = TestResult(name=name, passed=False, duration=0, error=f"Execution exception: {str(e)}")
print_test_report(results)
if any(not r.passed and not r.expected_failure for r in results.values()):
exit(1)
if __name__ == "__main__":
main()

539
sandbox/uv.lock generated Normal file
View File

@ -0,0 +1,539 @@
version = 1
revision = 1
requires-python = ">=3.10"
[[package]]
name = "annotated-types"
version = "0.7.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/ee/67/531ea369ba64dcff5ec9c3402f9f51bf748cec26dde048a2f973a4eea7f5/annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89", size = 16081 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53", size = 13643 },
]
[[package]]
name = "anyio"
version = "4.9.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "exceptiongroup", marker = "python_full_version < '3.11'" },
{ name = "idna" },
{ name = "sniffio" },
{ name = "typing-extensions", marker = "python_full_version < '3.13'" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/95/7d/4c1bd541d4dffa1b52bd83fb8527089e097a106fc90b467a7313b105f840/anyio-4.9.0.tar.gz", hash = "sha256:673c0c244e15788651a4ff38710fea9675823028a6f08a5eda409e0c9840a028", size = 190949 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a1/ee/48ca1a7c89ffec8b6a0c5d02b89c305671d5ffd8d3c94acf8b8c408575bb/anyio-4.9.0-py3-none-any.whl", hash = "sha256:9f76d541cad6e36af7beb62e978876f3b41e3e04f2c1fbf0884604c0a9c4d93c", size = 100916 },
]
[[package]]
name = "basedpyright"
version = "1.29.1"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "nodejs-wheel-binaries" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/b9/18/f5e488eac4960ad9a2e71b95f0d91cf93a982c7f68aa90e4e0554f0bc37e/basedpyright-1.29.1.tar.gz", hash = "sha256:06bbe6c3b50ab4af20f80e154049477a50d8b81d2522eadbc9f472f2f92cd44b", size = 21773469 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/95/1b/1bb837bbb7e259928f33d3c105dfef4f5349ef08b3ef45576801256e3234/basedpyright-1.29.1-py3-none-any.whl", hash = "sha256:b7eb65b9d4aaeeea29a349ac494252032a75a364942d0ac466d7f07ddeacc786", size = 11397959 },
]
[[package]]
name = "certifi"
version = "2025.4.26"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/e8/9e/c05b3920a3b7d20d3d3310465f50348e5b3694f4f88c6daf736eef3024c4/certifi-2025.4.26.tar.gz", hash = "sha256:0a816057ea3cdefcef70270d2c515e4506bbc954f417fa5ade2021213bb8f0c6", size = 160705 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4a/7e/3db2bd1b1f9e95f7cddca6d6e75e2f2bd9f51b1246e546d88addca0106bd/certifi-2025.4.26-py3-none-any.whl", hash = "sha256:30350364dfe371162649852c63336a15c70c6510c2ad5015b21c2345311805f3", size = 159618 },
]
[[package]]
name = "charset-normalizer"
version = "3.4.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/e4/33/89c2ced2b67d1c2a61c19c6751aa8902d46ce3dacb23600a283619f5a12d/charset_normalizer-3.4.2.tar.gz", hash = "sha256:5baececa9ecba31eff645232d59845c07aa030f0c81ee70184a90d35099a0e63", size = 126367 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/95/28/9901804da60055b406e1a1c5ba7aac1276fb77f1dde635aabfc7fd84b8ab/charset_normalizer-3.4.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7c48ed483eb946e6c04ccbe02c6b4d1d48e51944b6db70f697e089c193404941", size = 201818 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d9/9b/892a8c8af9110935e5adcbb06d9c6fe741b6bb02608c6513983048ba1a18/charset_normalizer-3.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2d318c11350e10662026ad0eb71bb51c7812fc8590825304ae0bdd4ac283acd", size = 144649 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/7b/a5/4179abd063ff6414223575e008593861d62abfc22455b5d1a44995b7c101/charset_normalizer-3.4.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9cbfacf36cb0ec2897ce0ebc5d08ca44213af24265bd56eca54bee7923c48fd6", size = 155045 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3b/95/bc08c7dfeddd26b4be8c8287b9bb055716f31077c8b0ea1cd09553794665/charset_normalizer-3.4.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18dd2e350387c87dabe711b86f83c9c78af772c748904d372ade190b5c7c9d4d", size = 147356 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a8/2d/7a5b635aa65284bf3eab7653e8b4151ab420ecbae918d3e359d1947b4d61/charset_normalizer-3.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8075c35cd58273fee266c58c0c9b670947c19df5fb98e7b66710e04ad4e9ff86", size = 149471 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ae/38/51fc6ac74251fd331a8cfdb7ec57beba8c23fd5493f1050f71c87ef77ed0/charset_normalizer-3.4.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5bf4545e3b962767e5c06fe1738f951f77d27967cb2caa64c28be7c4563e162c", size = 151317 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b7/17/edee1e32215ee6e9e46c3e482645b46575a44a2d72c7dfd49e49f60ce6bf/charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7a6ab32f7210554a96cd9e33abe3ddd86732beeafc7a28e9955cdf22ffadbab0", size = 146368 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/26/2c/ea3e66f2b5f21fd00b2825c94cafb8c326ea6240cd80a91eb09e4a285830/charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b33de11b92e9f75a2b545d6e9b6f37e398d86c3e9e9653c4864eb7e89c5773ef", size = 154491 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/52/47/7be7fa972422ad062e909fd62460d45c3ef4c141805b7078dbab15904ff7/charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8755483f3c00d6c9a77f490c17e6ab0c8729e39e6390328e42521ef175380ae6", size = 157695 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2f/42/9f02c194da282b2b340f28e5fb60762de1151387a36842a92b533685c61e/charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:68a328e5f55ec37c57f19ebb1fdc56a248db2e3e9ad769919a58672958e8f366", size = 154849 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/67/44/89cacd6628f31fb0b63201a618049be4be2a7435a31b55b5eb1c3674547a/charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:21b2899062867b0e1fde9b724f8aecb1af14f2778d69aacd1a5a1853a597a5db", size = 150091 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1f/79/4b8da9f712bc079c0f16b6d67b099b0b8d808c2292c937f267d816ec5ecc/charset_normalizer-3.4.2-cp310-cp310-win32.whl", hash = "sha256:e8082b26888e2f8b36a042a58307d5b917ef2b1cacab921ad3323ef91901c71a", size = 98445 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/7d/d7/96970afb4fb66497a40761cdf7bd4f6fca0fc7bafde3a84f836c1f57a926/charset_normalizer-3.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:f69a27e45c43520f5487f27627059b64aaf160415589230992cec34c5e18a509", size = 105782 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/05/85/4c40d00dcc6284a1c1ad5de5e0996b06f39d8232f1031cd23c2f5c07ee86/charset_normalizer-3.4.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:be1e352acbe3c78727a16a455126d9ff83ea2dfdcbc83148d2982305a04714c2", size = 198794 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/41/d9/7a6c0b9db952598e97e93cbdfcb91bacd89b9b88c7c983250a77c008703c/charset_normalizer-3.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aa88ca0b1932e93f2d961bf3addbb2db902198dca337d88c89e1559e066e7645", size = 142846 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/66/82/a37989cda2ace7e37f36c1a8ed16c58cf48965a79c2142713244bf945c89/charset_normalizer-3.4.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d524ba3f1581b35c03cb42beebab4a13e6cdad7b36246bd22541fa585a56cccd", size = 153350 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/df/68/a576b31b694d07b53807269d05ec3f6f1093e9545e8607121995ba7a8313/charset_normalizer-3.4.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28a1005facc94196e1fb3e82a3d442a9d9110b8434fc1ded7a24a2983c9888d8", size = 145657 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/92/9b/ad67f03d74554bed3aefd56fe836e1623a50780f7c998d00ca128924a499/charset_normalizer-3.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdb20a30fe1175ecabed17cbf7812f7b804b8a315a25f24678bcdf120a90077f", size = 147260 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a6/e6/8aebae25e328160b20e31a7e9929b1578bbdc7f42e66f46595a432f8539e/charset_normalizer-3.4.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0f5d9ed7f254402c9e7d35d2f5972c9bbea9040e99cd2861bd77dc68263277c7", size = 149164 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/8b/f2/b3c2f07dbcc248805f10e67a0262c93308cfa149a4cd3d1fe01f593e5fd2/charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:efd387a49825780ff861998cd959767800d54f8308936b21025326de4b5a42b9", size = 144571 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/60/5b/c3f3a94bc345bc211622ea59b4bed9ae63c00920e2e8f11824aa5708e8b7/charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f0aa37f3c979cf2546b73e8222bbfa3dc07a641585340179d768068e3455e544", size = 151952 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e2/4d/ff460c8b474122334c2fa394a3f99a04cf11c646da895f81402ae54f5c42/charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:e70e990b2137b29dc5564715de1e12701815dacc1d056308e2b17e9095372a82", size = 155959 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a2/2b/b964c6a2fda88611a1fe3d4c400d39c66a42d6c169c924818c848f922415/charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:0c8c57f84ccfc871a48a47321cfa49ae1df56cd1d965a09abe84066f6853b9c0", size = 153030 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/59/2e/d3b9811db26a5ebf444bc0fa4f4be5aa6d76fc6e1c0fd537b16c14e849b6/charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6b66f92b17849b85cad91259efc341dce9c1af48e2173bf38a85c6329f1033e5", size = 148015 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/90/07/c5fd7c11eafd561bb51220d600a788f1c8d77c5eef37ee49454cc5c35575/charset_normalizer-3.4.2-cp311-cp311-win32.whl", hash = "sha256:daac4765328a919a805fa5e2720f3e94767abd632ae410a9062dff5412bae65a", size = 98106 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a8/05/5e33dbef7e2f773d672b6d79f10ec633d4a71cd96db6673625838a4fd532/charset_normalizer-3.4.2-cp311-cp311-win_amd64.whl", hash = "sha256:e53efc7c7cee4c1e70661e2e112ca46a575f90ed9ae3fef200f2a25e954f4b28", size = 105402 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d7/a4/37f4d6035c89cac7930395a35cc0f1b872e652eaafb76a6075943754f095/charset_normalizer-3.4.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0c29de6a1a95f24b9a1aa7aefd27d2487263f00dfd55a77719b530788f75cff7", size = 199936 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ee/8a/1a5e33b73e0d9287274f899d967907cd0bf9c343e651755d9307e0dbf2b3/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cddf7bd982eaa998934a91f69d182aec997c6c468898efe6679af88283b498d3", size = 143790 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/66/52/59521f1d8e6ab1482164fa21409c5ef44da3e9f653c13ba71becdd98dec3/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcbe676a55d7445b22c10967bceaaf0ee69407fbe0ece4d032b6eb8d4565982a", size = 153924 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/86/2d/fb55fdf41964ec782febbf33cb64be480a6b8f16ded2dbe8db27a405c09f/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d41c4d287cfc69060fa91cae9683eacffad989f1a10811995fa309df656ec214", size = 146626 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/8c/73/6ede2ec59bce19b3edf4209d70004253ec5f4e319f9a2e3f2f15601ed5f7/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e594135de17ab3866138f496755f302b72157d115086d100c3f19370839dd3a", size = 148567 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/09/14/957d03c6dc343c04904530b6bef4e5efae5ec7d7990a7cbb868e4595ee30/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf713fe9a71ef6fd5adf7a79670135081cd4431c2943864757f0fa3a65b1fafd", size = 150957 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0d/c8/8174d0e5c10ccebdcb1b53cc959591c4c722a3ad92461a273e86b9f5a302/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a370b3e078e418187da8c3674eddb9d983ec09445c99a3a263c2011993522981", size = 145408 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/58/aa/8904b84bc8084ac19dc52feb4f5952c6df03ffb460a887b42615ee1382e8/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a955b438e62efdf7e0b7b52a64dc5c3396e2634baa62471768a64bc2adb73d5c", size = 153399 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c2/26/89ee1f0e264d201cb65cf054aca6038c03b1a0c6b4ae998070392a3ce605/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:7222ffd5e4de8e57e03ce2cef95a4c43c98fcb72ad86909abdfc2c17d227fc1b", size = 156815 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fd/07/68e95b4b345bad3dbbd3a8681737b4338ff2c9df29856a6d6d23ac4c73cb/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:bee093bf902e1d8fc0ac143c88902c3dfc8941f7ea1d6a8dd2bcb786d33db03d", size = 154537 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/77/1a/5eefc0ce04affb98af07bc05f3bac9094513c0e23b0562d64af46a06aae4/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:dedb8adb91d11846ee08bec4c8236c8549ac721c245678282dcb06b221aab59f", size = 149565 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/37/a0/2410e5e6032a174c95e0806b1a6585eb21e12f445ebe239fac441995226a/charset_normalizer-3.4.2-cp312-cp312-win32.whl", hash = "sha256:db4c7bf0e07fc3b7d89ac2a5880a6a8062056801b83ff56d8464b70f65482b6c", size = 98357 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6c/4f/c02d5c493967af3eda9c771ad4d2bbc8df6f99ddbeb37ceea6e8716a32bc/charset_normalizer-3.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:5a9979887252a82fefd3d3ed2a8e3b937a7a809f65dcb1e068b090e165bbe99e", size = 105776 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ea/12/a93df3366ed32db1d907d7593a94f1fe6293903e3e92967bebd6950ed12c/charset_normalizer-3.4.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:926ca93accd5d36ccdabd803392ddc3e03e6d4cd1cf17deff3b989ab8e9dbcf0", size = 199622 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/04/93/bf204e6f344c39d9937d3c13c8cd5bbfc266472e51fc8c07cb7f64fcd2de/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eba9904b0f38a143592d9fc0e19e2df0fa2e41c3c3745554761c5f6447eedabf", size = 143435 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/22/2a/ea8a2095b0bafa6c5b5a55ffdc2f924455233ee7b91c69b7edfcc9e02284/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3fddb7e2c84ac87ac3a947cb4e66d143ca5863ef48e4a5ecb83bd48619e4634e", size = 153653 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b6/57/1b090ff183d13cef485dfbe272e2fe57622a76694061353c59da52c9a659/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98f862da73774290f251b9df8d11161b6cf25b599a66baf087c1ffe340e9bfd1", size = 146231 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e2/28/ffc026b26f441fc67bd21ab7f03b313ab3fe46714a14b516f931abe1a2d8/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c9379d65defcab82d07b2a9dfbfc2e95bc8fe0ebb1b176a3190230a3ef0e07c", size = 148243 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c0/0f/9abe9bd191629c33e69e47c6ef45ef99773320e9ad8e9cb08b8ab4a8d4cb/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e635b87f01ebc977342e2697d05b56632f5f879a4f15955dfe8cef2448b51691", size = 150442 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/67/7c/a123bbcedca91d5916c056407f89a7f5e8fdfce12ba825d7d6b9954a1a3c/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:1c95a1e2902a8b722868587c0e1184ad5c55631de5afc0eb96bc4b0d738092c0", size = 145147 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ec/fe/1ac556fa4899d967b83e9893788e86b6af4d83e4726511eaaad035e36595/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ef8de666d6179b009dce7bcb2ad4c4a779f113f12caf8dc77f0162c29d20490b", size = 153057 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2b/ff/acfc0b0a70b19e3e54febdd5301a98b72fa07635e56f24f60502e954c461/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:32fc0341d72e0f73f80acb0a2c94216bd704f4f0bce10aedea38f30502b271ff", size = 156454 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/92/08/95b458ce9c740d0645feb0e96cea1f5ec946ea9c580a94adfe0b617f3573/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:289200a18fa698949d2b39c671c2cc7a24d44096784e76614899a7ccf2574b7b", size = 154174 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/78/be/8392efc43487ac051eee6c36d5fbd63032d78f7728cb37aebcc98191f1ff/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4a476b06fbcf359ad25d34a057b7219281286ae2477cc5ff5e3f70a246971148", size = 149166 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/44/96/392abd49b094d30b91d9fbda6a69519e95802250b777841cf3bda8fe136c/charset_normalizer-3.4.2-cp313-cp313-win32.whl", hash = "sha256:aaeeb6a479c7667fbe1099af9617c83aaca22182d6cf8c53966491a0f1b7ffb7", size = 98064 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e9/b0/0200da600134e001d91851ddc797809e2fe0ea72de90e09bec5a2fbdaccb/charset_normalizer-3.4.2-cp313-cp313-win_amd64.whl", hash = "sha256:aa6af9e7d59f9c12b33ae4e9450619cf2488e2bbe9b44030905877f0b2324980", size = 105641 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/20/94/c5790835a017658cbfabd07f3bfb549140c3ac458cfc196323996b10095a/charset_normalizer-3.4.2-py3-none-any.whl", hash = "sha256:7f56930ab0abd1c45cd15be65cc741c28b1c9a34876ce8c17a2fa107810c0af0", size = 52626 },
]
[[package]]
name = "click"
version = "8.1.8"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "colorama", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/b9/2e/0090cbf739cee7d23781ad4b89a9894a41538e4fcf4c31dcdd705b78eb8b/click-8.1.8.tar.gz", hash = "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a", size = 226593 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/7e/d4/7ebdbd03970677812aac39c869717059dbb71a4cfc033ca6e5221787892c/click-8.1.8-py3-none-any.whl", hash = "sha256:63c132bbbed01578a06712a2d1f497bb62d9c1c0d329b7903a866228027263b2", size = 98188 },
]
[[package]]
name = "colorama"
version = "0.4.6"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 },
]
[[package]]
name = "deprecated"
version = "1.2.18"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "wrapt" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/98/97/06afe62762c9a8a86af0cfb7bfdab22a43ad17138b07af5b1a58442690a2/deprecated-1.2.18.tar.gz", hash = "sha256:422b6f6d859da6f2ef57857761bfb392480502a64c3028ca9bbe86085d72115d", size = 2928744 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6e/c6/ac0b6c1e2d138f1002bcf799d330bd6d85084fece321e662a14223794041/Deprecated-1.2.18-py2.py3-none-any.whl", hash = "sha256:bd5011788200372a32418f888e326a09ff80d0214bd961147cfed01b5c018eec", size = 9998 },
]
[[package]]
name = "exceptiongroup"
version = "1.2.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/09/35/2495c4ac46b980e4ca1f6ad6db102322ef3ad2410b79fdde159a4b0f3b92/exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc", size = 28883 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/02/cc/b7e31358aac6ed1ef2bb790a9746ac2c69bcb3c8588b41616914eb106eaf/exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b", size = 16453 },
]
[[package]]
name = "fastapi"
version = "0.115.12"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "pydantic" },
{ name = "starlette" },
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/f4/55/ae499352d82338331ca1e28c7f4a63bfd09479b16395dce38cf50a39e2c2/fastapi-0.115.12.tar.gz", hash = "sha256:1e2c2a2646905f9e83d32f04a3f86aff4a286669c6c950ca95b5fd68c2602681", size = 295236 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/50/b3/b51f09c2ba432a576fe63758bddc81f78f0c6309d9e5c10d194313bf021e/fastapi-0.115.12-py3-none-any.whl", hash = "sha256:e94613d6c05e27be7ffebdd6ea5f388112e5e430c8f7d6494a9d1d88d43e814d", size = 95164 },
]
[[package]]
name = "gvisor-sandbox"
version = "0.1.0"
source = { virtual = "." }
dependencies = [
{ name = "fastapi" },
{ name = "httpx" },
{ name = "pydantic" },
{ name = "requests" },
{ name = "slowapi" },
{ name = "uvicorn" },
]
[package.dev-dependencies]
dev = [
{ name = "basedpyright" },
]
[package.metadata]
requires-dist = [
{ name = "fastapi", specifier = ">=0.115.12" },
{ name = "httpx", specifier = ">=0.28.1" },
{ name = "pydantic", specifier = ">=2.11.4" },
{ name = "requests", specifier = ">=2.32.3" },
{ name = "slowapi", specifier = ">=0.1.9" },
{ name = "uvicorn", specifier = ">=0.34.2" },
]
[package.metadata.requires-dev]
dev = [{ name = "basedpyright", specifier = ">=1.29.1" }]
[[package]]
name = "h11"
version = "0.16.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/01/ee/02a2c011bdab74c6fb3c75474d40b3052059d95df7e73351460c8588d963/h11-0.16.0.tar.gz", hash = "sha256:4e35b956cf45792e4caa5885e69fba00bdbc6ffafbfa020300e549b208ee5ff1", size = 101250 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl", hash = "sha256:63cf8bbe7522de3bf65932fda1d9c2772064ffb3dae62d55932da54b31cb6c86", size = 37515 },
]
[[package]]
name = "httpcore"
version = "1.0.9"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "certifi" },
{ name = "h11" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/06/94/82699a10bca87a5556c9c59b5963f2d039dbd239f25bc2a63907a05a14cb/httpcore-1.0.9.tar.gz", hash = "sha256:6e34463af53fd2ab5d807f399a9b45ea31c3dfa2276f15a2c3f00afff6e176e8", size = 85484 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/7e/f5/f66802a942d491edb555dd61e3a9961140fd64c90bce1eafd741609d334d/httpcore-1.0.9-py3-none-any.whl", hash = "sha256:2d400746a40668fc9dec9810239072b40b4484b640a8c38fd654a024c7a1bf55", size = 78784 },
]
[[package]]
name = "httpx"
version = "0.28.1"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "anyio" },
{ name = "certifi" },
{ name = "httpcore" },
{ name = "idna" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/b1/df/48c586a5fe32a0f01324ee087459e112ebb7224f646c0b5023f5e79e9956/httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc", size = 141406 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad", size = 73517 },
]
[[package]]
name = "idna"
version = "3.10"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442 },
]
[[package]]
name = "limits"
version = "5.1.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "deprecated" },
{ name = "packaging" },
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/c6/94/a04e64f487a56f97aff67c53df609cc19d5c3f3e7e5697ec8a1ff8413829/limits-5.1.0.tar.gz", hash = "sha256:b298e4af0b47997da03cbeee9df027ddc2328f8630546125e81083bb56311827", size = 94655 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/de/00/876a5ec60addda62ee13ac4b588a5afc0d1a86a431645a91711ceae834cf/limits-5.1.0-py3-none-any.whl", hash = "sha256:f368d4572ac3ef8190cb8b9911ed481175a0b4189894a63cac95cae39ebeb147", size = 60472 },
]
[[package]]
name = "nodejs-wheel-binaries"
version = "22.15.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/45/5b/6c5f973765b96793d4e4d03684bcbd273b17e471ecc7e9bec4c32b595ebd/nodejs_wheel_binaries-22.15.0.tar.gz", hash = "sha256:ff81aa2a79db279c2266686ebcb829b6634d049a5a49fc7dc6921e4f18af9703", size = 8054 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d3/a8/a32e5bb99e95c536e7dac781cffab1e7e9f8661b8ee296b93df77e4df7f9/nodejs_wheel_binaries-22.15.0-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:aa16366d48487fff89446fb237693e777aa2ecd987208db7d4e35acc40c3e1b1", size = 50514526 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/05/e8/eb024dbb3a7d3b98c8922d1c306be989befad4d2132292954cb902f43b07/nodejs_wheel_binaries-22.15.0-py2.py3-none-macosx_11_0_x86_64.whl", hash = "sha256:a54bb3fee9170003fa8abc69572d819b2b1540344eff78505fcc2129a9175596", size = 51409179 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3f/0f/baa968456c3577e45c7d0e3715258bd175dcecc67b683a41a5044d5dae40/nodejs_wheel_binaries-22.15.0-py2.py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:867121ccf99d10523f6878a26db86e162c4939690e24cfb5bea56d01ea696c93", size = 57364460 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2f/a2/977f63cd07ed8fc27bc0d0cd72e801fc3691ffc8cd40a51496ff18a6d0a2/nodejs_wheel_binaries-22.15.0-py2.py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ab0fbcda2ddc8aab7db1505d72cb958f99324b3834c4543541a305e02bfe860", size = 57889101 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/67/7f/57b9c24a4f0d25490527b043146aa0fdff2d8fdc82f90667cdaf6f00cfc9/nodejs_wheel_binaries-22.15.0-py2.py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:2bde1d8e00cd955b9ce9ee9ac08309923e2778a790ee791b715e93e487e74bfd", size = 59190817 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fd/7f/970acbe33b81c22b3c7928f52e32347030aa46d23d779cf781cf9a9cf557/nodejs_wheel_binaries-22.15.0-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:acdd4ef73b6701aab9fbe02ac5e104f208a5e3c300402fa41ad7bc7f49499fbf", size = 60220316 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/07/4c/030243c04bb60f0de66c2d7ee3be289c6d28ef09113c06ffa417bdfedf8f/nodejs_wheel_binaries-22.15.0-py2.py3-none-win_amd64.whl", hash = "sha256:51deaf13ee474e39684ce8c066dfe86240edb94e7241950ca789befbbbcbd23d", size = 40718853 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1f/49/011d472814af4fabeaab7d7ce3d5a1a635a3dadc23ae404d1f546839ecb3/nodejs_wheel_binaries-22.15.0-py2.py3-none-win_arm64.whl", hash = "sha256:01a3fe4d60477f93bf21a44219db33548c75d7fed6dc6e6f4c05cf0adf015609", size = 36436645 },
]
[[package]]
name = "packaging"
version = "25.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469 },
]
[[package]]
name = "pydantic"
version = "2.11.4"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "annotated-types" },
{ name = "pydantic-core" },
{ name = "typing-extensions" },
{ name = "typing-inspection" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/77/ab/5250d56ad03884ab5efd07f734203943c8a8ab40d551e208af81d0257bf2/pydantic-2.11.4.tar.gz", hash = "sha256:32738d19d63a226a52eed76645a98ee07c1f410ee41d93b4afbfa85ed8111c2d", size = 786540 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e7/12/46b65f3534d099349e38ef6ec98b1a5a81f42536d17e0ba382c28c67ba67/pydantic-2.11.4-py3-none-any.whl", hash = "sha256:d9615eaa9ac5a063471da949c8fc16376a84afb5024688b3ff885693506764eb", size = 443900 },
]
[[package]]
name = "pydantic-core"
version = "2.33.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/ad/88/5f2260bdfae97aabf98f1778d43f69574390ad787afb646292a638c923d4/pydantic_core-2.33.2.tar.gz", hash = "sha256:7cb8bc3605c29176e1b105350d2e6474142d7c1bd1d9327c4a9bdb46bf827acc", size = 435195 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e5/92/b31726561b5dae176c2d2c2dc43a9c5bfba5d32f96f8b4c0a600dd492447/pydantic_core-2.33.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2b3d326aaef0c0399d9afffeb6367d5e26ddc24d351dbc9c636840ac355dc5d8", size = 2028817 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a3/44/3f0b95fafdaca04a483c4e685fe437c6891001bf3ce8b2fded82b9ea3aa1/pydantic_core-2.33.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0e5b2671f05ba48b94cb90ce55d8bdcaaedb8ba00cc5359f6810fc918713983d", size = 1861357 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/30/97/e8f13b55766234caae05372826e8e4b3b96e7b248be3157f53237682e43c/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0069c9acc3f3981b9ff4cdfaf088e98d83440a4c7ea1bc07460af3d4dc22e72d", size = 1898011 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/9b/a3/99c48cf7bafc991cc3ee66fd544c0aae8dc907b752f1dad2d79b1b5a471f/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d53b22f2032c42eaaf025f7c40c2e3b94568ae077a606f006d206a463bc69572", size = 1982730 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/de/8e/a5b882ec4307010a840fb8b58bd9bf65d1840c92eae7534c7441709bf54b/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0405262705a123b7ce9f0b92f123334d67b70fd1f20a9372b907ce1080c7ba02", size = 2136178 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e4/bb/71e35fc3ed05af6834e890edb75968e2802fe98778971ab5cba20a162315/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b25d91e288e2c4e0662b8038a28c6a07eaac3e196cfc4ff69de4ea3db992a1b", size = 2736462 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/31/0d/c8f7593e6bc7066289bbc366f2235701dcbebcd1ff0ef8e64f6f239fb47d/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bdfe4b3789761f3bcb4b1ddf33355a71079858958e3a552f16d5af19768fef2", size = 2005652 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d2/7a/996d8bd75f3eda405e3dd219ff5ff0a283cd8e34add39d8ef9157e722867/pydantic_core-2.33.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:efec8db3266b76ef9607c2c4c419bdb06bf335ae433b80816089ea7585816f6a", size = 2113306 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ff/84/daf2a6fb2db40ffda6578a7e8c5a6e9c8affb251a05c233ae37098118788/pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:031c57d67ca86902726e0fae2214ce6770bbe2f710dc33063187a68744a5ecac", size = 2073720 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/77/fb/2258da019f4825128445ae79456a5499c032b55849dbd5bed78c95ccf163/pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:f8de619080e944347f5f20de29a975c2d815d9ddd8be9b9b7268e2e3ef68605a", size = 2244915 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d8/7a/925ff73756031289468326e355b6fa8316960d0d65f8b5d6b3a3e7866de7/pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:73662edf539e72a9440129f231ed3757faab89630d291b784ca99237fb94db2b", size = 2241884 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0b/b0/249ee6d2646f1cdadcb813805fe76265745c4010cf20a8eba7b0e639d9b2/pydantic_core-2.33.2-cp310-cp310-win32.whl", hash = "sha256:0a39979dcbb70998b0e505fb1556a1d550a0781463ce84ebf915ba293ccb7e22", size = 1910496 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/66/ff/172ba8f12a42d4b552917aa65d1f2328990d3ccfc01d5b7c943ec084299f/pydantic_core-2.33.2-cp310-cp310-win_amd64.whl", hash = "sha256:b0379a2b24882fef529ec3b4987cb5d003b9cda32256024e6fe1586ac45fc640", size = 1955019 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3f/8d/71db63483d518cbbf290261a1fc2839d17ff89fce7089e08cad07ccfce67/pydantic_core-2.33.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:4c5b0a576fb381edd6d27f0a85915c6daf2f8138dc5c267a57c08a62900758c7", size = 2028584 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/24/2f/3cfa7244ae292dd850989f328722d2aef313f74ffc471184dc509e1e4e5a/pydantic_core-2.33.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e799c050df38a639db758c617ec771fd8fb7a5f8eaaa4b27b101f266b216a246", size = 1855071 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b3/d3/4ae42d33f5e3f50dd467761304be2fa0a9417fbf09735bc2cce003480f2a/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc46a01bf8d62f227d5ecee74178ffc448ff4e5197c756331f71efcc66dc980f", size = 1897823 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f4/f3/aa5976e8352b7695ff808599794b1fba2a9ae2ee954a3426855935799488/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a144d4f717285c6d9234a66778059f33a89096dfb9b39117663fd8413d582dcc", size = 1983792 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d5/7a/cda9b5a23c552037717f2b2a5257e9b2bfe45e687386df9591eff7b46d28/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:73cf6373c21bc80b2e0dc88444f41ae60b2f070ed02095754eb5a01df12256de", size = 2136338 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2b/9f/b8f9ec8dd1417eb9da784e91e1667d58a2a4a7b7b34cf4af765ef663a7e5/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dc625f4aa79713512d1976fe9f0bc99f706a9dee21dfd1810b4bbbf228d0e8a", size = 2730998 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/47/bc/cd720e078576bdb8255d5032c5d63ee5c0bf4b7173dd955185a1d658c456/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b21b5549499972441da4758d662aeea93f1923f953e9cbaff14b8b9565aef", size = 2003200 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ca/22/3602b895ee2cd29d11a2b349372446ae9727c32e78a94b3d588a40fdf187/pydantic_core-2.33.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bdc25f3681f7b78572699569514036afe3c243bc3059d3942624e936ec93450e", size = 2113890 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ff/e6/e3c5908c03cf00d629eb38393a98fccc38ee0ce8ecce32f69fc7d7b558a7/pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fe5b32187cbc0c862ee201ad66c30cf218e5ed468ec8dc1cf49dec66e160cc4d", size = 2073359 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/12/e7/6a36a07c59ebefc8777d1ffdaf5ae71b06b21952582e4b07eba88a421c79/pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:bc7aee6f634a6f4a95676fcb5d6559a2c2a390330098dba5e5a5f28a2e4ada30", size = 2245883 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/16/3f/59b3187aaa6cc0c1e6616e8045b284de2b6a87b027cce2ffcea073adf1d2/pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:235f45e5dbcccf6bd99f9f472858849f73d11120d76ea8707115415f8e5ebebf", size = 2241074 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e0/ed/55532bb88f674d5d8f67ab121a2a13c385df382de2a1677f30ad385f7438/pydantic_core-2.33.2-cp311-cp311-win32.whl", hash = "sha256:6368900c2d3ef09b69cb0b913f9f8263b03786e5b2a387706c5afb66800efd51", size = 1910538 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fe/1b/25b7cccd4519c0b23c2dd636ad39d381abf113085ce4f7bec2b0dc755eb1/pydantic_core-2.33.2-cp311-cp311-win_amd64.whl", hash = "sha256:1e063337ef9e9820c77acc768546325ebe04ee38b08703244c1309cccc4f1bab", size = 1952909 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/49/a9/d809358e49126438055884c4366a1f6227f0f84f635a9014e2deb9b9de54/pydantic_core-2.33.2-cp311-cp311-win_arm64.whl", hash = "sha256:6b99022f1d19bc32a4c2a0d544fc9a76e3be90f0b3f4af413f87d38749300e65", size = 1897786 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/18/8a/2b41c97f554ec8c71f2a8a5f85cb56a8b0956addfe8b0efb5b3d77e8bdc3/pydantic_core-2.33.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a7ec89dc587667f22b6a0b6579c249fca9026ce7c333fc142ba42411fa243cdc", size = 2009000 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a1/02/6224312aacb3c8ecbaa959897af57181fb6cf3a3d7917fd44d0f2917e6f2/pydantic_core-2.33.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3c6db6e52c6d70aa0d00d45cdb9b40f0433b96380071ea80b09277dba021ddf7", size = 1847996 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d6/46/6dcdf084a523dbe0a0be59d054734b86a981726f221f4562aed313dbcb49/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e61206137cbc65e6d5256e1166f88331d3b6238e082d9f74613b9b765fb9025", size = 1880957 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ec/6b/1ec2c03837ac00886ba8160ce041ce4e325b41d06a034adbef11339ae422/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb8c529b2819c37140eb51b914153063d27ed88e3bdc31b71198a198e921e011", size = 1964199 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2d/1d/6bf34d6adb9debd9136bd197ca72642203ce9aaaa85cfcbfcf20f9696e83/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c52b02ad8b4e2cf14ca7b3d918f3eb0ee91e63b3167c32591e57c4317e134f8f", size = 2120296 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e0/94/2bd0aaf5a591e974b32a9f7123f16637776c304471a0ab33cf263cf5591a/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:96081f1605125ba0855dfda83f6f3df5ec90c61195421ba72223de35ccfb2f88", size = 2676109 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f9/41/4b043778cf9c4285d59742281a769eac371b9e47e35f98ad321349cc5d61/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f57a69461af2a5fa6e6bbd7a5f60d3b7e6cebb687f55106933188e79ad155c1", size = 2002028 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/cb/d5/7bb781bf2748ce3d03af04d5c969fa1308880e1dca35a9bd94e1a96a922e/pydantic_core-2.33.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:572c7e6c8bb4774d2ac88929e3d1f12bc45714ae5ee6d9a788a9fb35e60bb04b", size = 2100044 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fe/36/def5e53e1eb0ad896785702a5bbfd25eed546cdcf4087ad285021a90ed53/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:db4b41f9bd95fbe5acd76d89920336ba96f03e149097365afe1cb092fceb89a1", size = 2058881 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/01/6c/57f8d70b2ee57fc3dc8b9610315949837fa8c11d86927b9bb044f8705419/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:fa854f5cf7e33842a892e5c73f45327760bc7bc516339fda888c75ae60edaeb6", size = 2227034 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/27/b9/9c17f0396a82b3d5cbea4c24d742083422639e7bb1d5bf600e12cb176a13/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5f483cfb75ff703095c59e365360cb73e00185e01aaea067cd19acffd2ab20ea", size = 2234187 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b0/6a/adf5734ffd52bf86d865093ad70b2ce543415e0e356f6cacabbc0d9ad910/pydantic_core-2.33.2-cp312-cp312-win32.whl", hash = "sha256:9cb1da0f5a471435a7bc7e439b8a728e8b61e59784b2af70d7c169f8dd8ae290", size = 1892628 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/43/e4/5479fecb3606c1368d496a825d8411e126133c41224c1e7238be58b87d7e/pydantic_core-2.33.2-cp312-cp312-win_amd64.whl", hash = "sha256:f941635f2a3d96b2973e867144fde513665c87f13fe0e193c158ac51bfaaa7b2", size = 1955866 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0d/24/8b11e8b3e2be9dd82df4b11408a67c61bb4dc4f8e11b5b0fc888b38118b5/pydantic_core-2.33.2-cp312-cp312-win_arm64.whl", hash = "sha256:cca3868ddfaccfbc4bfb1d608e2ccaaebe0ae628e1416aeb9c4d88c001bb45ab", size = 1888894 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/46/8c/99040727b41f56616573a28771b1bfa08a3d3fe74d3d513f01251f79f172/pydantic_core-2.33.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:1082dd3e2d7109ad8b7da48e1d4710c8d06c253cbc4a27c1cff4fbcaa97a9e3f", size = 2015688 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3a/cc/5999d1eb705a6cefc31f0b4a90e9f7fc400539b1a1030529700cc1b51838/pydantic_core-2.33.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f517ca031dfc037a9c07e748cefd8d96235088b83b4f4ba8939105d20fa1dcd6", size = 1844808 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6f/5e/a0a7b8885c98889a18b6e376f344da1ef323d270b44edf8174d6bce4d622/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a9f2c9dd19656823cb8250b0724ee9c60a82f3cdf68a080979d13092a3b0fef", size = 1885580 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3b/2a/953581f343c7d11a304581156618c3f592435523dd9d79865903272c256a/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b0a451c263b01acebe51895bfb0e1cc842a5c666efe06cdf13846c7418caa9a", size = 1973859 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e6/55/f1a813904771c03a3f97f676c62cca0c0a4138654107c1b61f19c644868b/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ea40a64d23faa25e62a70ad163571c0b342b8bf66d5fa612ac0dec4f069d916", size = 2120810 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/aa/c3/053389835a996e18853ba107a63caae0b9deb4a276c6b472931ea9ae6e48/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0fb2d542b4d66f9470e8065c5469ec676978d625a8b7a363f07d9a501a9cb36a", size = 2676498 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/eb/3c/f4abd740877a35abade05e437245b192f9d0ffb48bbbbd708df33d3cda37/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fdac5d6ffa1b5a83bca06ffe7583f5576555e6c8b3a91fbd25ea7780f825f7d", size = 2000611 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/59/a7/63ef2fed1837d1121a894d0ce88439fe3e3b3e48c7543b2a4479eb99c2bd/pydantic_core-2.33.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:04a1a413977ab517154eebb2d326da71638271477d6ad87a769102f7c2488c56", size = 2107924 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/04/8f/2551964ef045669801675f1cfc3b0d74147f4901c3ffa42be2ddb1f0efc4/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:c8e7af2f4e0194c22b5b37205bfb293d166a7344a5b0d0eaccebc376546d77d5", size = 2063196 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/26/bd/d9602777e77fc6dbb0c7db9ad356e9a985825547dce5ad1d30ee04903918/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:5c92edd15cd58b3c2d34873597a1e20f13094f59cf88068adb18947df5455b4e", size = 2236389 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/42/db/0e950daa7e2230423ab342ae918a794964b053bec24ba8af013fc7c94846/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:65132b7b4a1c0beded5e057324b7e16e10910c106d43675d9bd87d4f38dde162", size = 2239223 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/58/4d/4f937099c545a8a17eb52cb67fe0447fd9a373b348ccfa9a87f141eeb00f/pydantic_core-2.33.2-cp313-cp313-win32.whl", hash = "sha256:52fb90784e0a242bb96ec53f42196a17278855b0f31ac7c3cc6f5c1ec4811849", size = 1900473 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a0/75/4a0a9bac998d78d889def5e4ef2b065acba8cae8c93696906c3a91f310ca/pydantic_core-2.33.2-cp313-cp313-win_amd64.whl", hash = "sha256:c083a3bdd5a93dfe480f1125926afcdbf2917ae714bdb80b36d34318b2bec5d9", size = 1955269 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f9/86/1beda0576969592f1497b4ce8e7bc8cbdf614c352426271b1b10d5f0aa64/pydantic_core-2.33.2-cp313-cp313-win_arm64.whl", hash = "sha256:e80b087132752f6b3d714f041ccf74403799d3b23a72722ea2e6ba2e892555b9", size = 1893921 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a4/7d/e09391c2eebeab681df2b74bfe6c43422fffede8dc74187b2b0bf6fd7571/pydantic_core-2.33.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61c18fba8e5e9db3ab908620af374db0ac1baa69f0f32df4f61ae23f15e586ac", size = 1806162 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f1/3d/847b6b1fed9f8ed3bb95a9ad04fbd0b212e832d4f0f50ff4d9ee5a9f15cf/pydantic_core-2.33.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95237e53bb015f67b63c91af7518a62a8660376a6a0db19b89acc77a4d6199f5", size = 1981560 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6f/9a/e73262f6c6656262b5fdd723ad90f518f579b7bc8622e43a942eec53c938/pydantic_core-2.33.2-cp313-cp313t-win_amd64.whl", hash = "sha256:c2fc0a768ef76c15ab9238afa6da7f69895bb5d1ee83aeea2e3509af4472d0b9", size = 1935777 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/30/68/373d55e58b7e83ce371691f6eaa7175e3a24b956c44628eb25d7da007917/pydantic_core-2.33.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5c4aa4e82353f65e548c476b37e64189783aa5384903bfea4f41580f255fddfa", size = 2023982 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a4/16/145f54ac08c96a63d8ed6442f9dec17b2773d19920b627b18d4f10a061ea/pydantic_core-2.33.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d946c8bf0d5c24bf4fe333af284c59a19358aa3ec18cb3dc4370080da1e8ad29", size = 1858412 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/41/b1/c6dc6c3e2de4516c0bb2c46f6a373b91b5660312342a0cf5826e38ad82fa/pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87b31b6846e361ef83fedb187bb5b4372d0da3f7e28d85415efa92d6125d6e6d", size = 1892749 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/12/73/8cd57e20afba760b21b742106f9dbdfa6697f1570b189c7457a1af4cd8a0/pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa9d91b338f2df0508606f7009fde642391425189bba6d8c653afd80fd6bb64e", size = 2067527 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e3/d5/0bb5d988cc019b3cba4a78f2d4b3854427fc47ee8ec8e9eaabf787da239c/pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2058a32994f1fde4ca0480ab9d1e75a0e8c87c22b53a3ae66554f9af78f2fe8c", size = 2108225 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f1/c5/00c02d1571913d496aabf146106ad8239dc132485ee22efe08085084ff7c/pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:0e03262ab796d986f978f79c943fc5f620381be7287148b8010b4097f79a39ec", size = 2069490 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/22/a8/dccc38768274d3ed3a59b5d06f59ccb845778687652daa71df0cab4040d7/pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:1a8695a8d00c73e50bff9dfda4d540b7dee29ff9b8053e38380426a85ef10052", size = 2237525 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d4/e7/4f98c0b125dda7cf7ccd14ba936218397b44f50a56dd8c16a3091df116c3/pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:fa754d1850735a0b0e03bcffd9d4b4343eb417e47196e4485d9cca326073a42c", size = 2238446 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ce/91/2ec36480fdb0b783cd9ef6795753c1dea13882f2e68e73bce76ae8c21e6a/pydantic_core-2.33.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a11c8d26a50bfab49002947d3d237abe4d9e4b5bdc8846a63537b6488e197808", size = 2066678 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/7b/27/d4ae6487d73948d6f20dddcd94be4ea43e74349b56eba82e9bdee2d7494c/pydantic_core-2.33.2-pp311-pypy311_pp73-macosx_10_12_x86_64.whl", hash = "sha256:dd14041875d09cc0f9308e37a6f8b65f5585cf2598a53aa0123df8b129d481f8", size = 2025200 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f1/b8/b3cb95375f05d33801024079b9392a5ab45267a63400bf1866e7ce0f0de4/pydantic_core-2.33.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:d87c561733f66531dced0da6e864f44ebf89a8fba55f31407b00c2f7f9449593", size = 1859123 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/05/bc/0d0b5adeda59a261cd30a1235a445bf55c7e46ae44aea28f7bd6ed46e091/pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f82865531efd18d6e07a04a17331af02cb7a651583c418df8266f17a63c6612", size = 1892852 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3e/11/d37bdebbda2e449cb3f519f6ce950927b56d62f0b84fd9cb9e372a26a3d5/pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bfb5112df54209d820d7bf9317c7a6c9025ea52e49f46b6a2060104bba37de7", size = 2067484 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/8c/55/1f95f0a05ce72ecb02a8a8a1c3be0579bbc29b1d5ab68f1378b7bebc5057/pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:64632ff9d614e5eecfb495796ad51b0ed98c453e447a76bcbeeb69615079fc7e", size = 2108896 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/53/89/2b2de6c81fa131f423246a9109d7b2a375e83968ad0800d6e57d0574629b/pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f889f7a40498cc077332c7ab6b4608d296d852182211787d4f3ee377aaae66e8", size = 2069475 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b8/e9/1f7efbe20d0b2b10f6718944b5d8ece9152390904f29a78e68d4e7961159/pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:de4b83bb311557e439b9e186f733f6c645b9417c84e2eb8203f3f820a4b988bf", size = 2239013 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3c/b2/5309c905a93811524a49b4e031e9851a6b00ff0fb668794472ea7746b448/pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:82f68293f055f51b51ea42fafc74b6aad03e70e191799430b90c13d643059ebb", size = 2238715 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/32/56/8a7ca5d2cd2cda1d245d34b1c9a942920a718082ae8e54e5f3e5a58b7add/pydantic_core-2.33.2-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:329467cecfb529c925cf2bbd4d60d2c509bc2fb52a20c1045bf09bb70971a9c1", size = 2066757 },
]
[[package]]
name = "requests"
version = "2.32.3"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "certifi" },
{ name = "charset-normalizer" },
{ name = "idna" },
{ name = "urllib3" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760", size = 131218 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6", size = 64928 },
]
[[package]]
name = "slowapi"
version = "0.1.9"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "limits" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/a0/99/adfc7f94ca024736f061257d39118e1542bade7a52e86415a4c4ae92d8ff/slowapi-0.1.9.tar.gz", hash = "sha256:639192d0f1ca01b1c6d95bf6c71d794c3a9ee189855337b4821f7f457dddad77", size = 14028 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2b/bb/f71c4b7d7e7eb3fc1e8c0458a8979b912f40b58002b9fbf37729b8cb464b/slowapi-0.1.9-py3-none-any.whl", hash = "sha256:cfad116cfb84ad9d763ee155c1e5c5cbf00b0d47399a769b227865f5df576e36", size = 14670 },
]
[[package]]
name = "sniffio"
version = "1.3.1"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/a2/87/a6771e1546d97e7e041b6ae58d80074f81b7d5121207425c964ddf5cfdbd/sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc", size = 20372 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235 },
]
[[package]]
name = "starlette"
version = "0.46.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "anyio" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/ce/20/08dfcd9c983f6a6f4a1000d934b9e6d626cff8d2eeb77a89a68eef20a2b7/starlette-0.46.2.tar.gz", hash = "sha256:7f7361f34eed179294600af672f565727419830b54b7b084efe44bb82d2fccd5", size = 2580846 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/8b/0c/9d30a4ebeb6db2b25a841afbb80f6ef9a854fc3b41be131d249a977b4959/starlette-0.46.2-py3-none-any.whl", hash = "sha256:595633ce89f8ffa71a015caed34a5b2dc1c0cdb3f0f1fbd1e69339cf2abeec35", size = 72037 },
]
[[package]]
name = "typing-extensions"
version = "4.13.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/f6/37/23083fcd6e35492953e8d2aaaa68b860eb422b34627b13f2ce3eb6106061/typing_extensions-4.13.2.tar.gz", hash = "sha256:e6c81219bd689f51865d9e372991c540bda33a0379d5573cddb9a3a23f7caaef", size = 106967 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/8b/54/b1ae86c0973cc6f0210b53d508ca3641fb6d0c56823f288d108bc7ab3cc8/typing_extensions-4.13.2-py3-none-any.whl", hash = "sha256:a439e7c04b49fec3e5d3e2beaa21755cadbbdc391694e28ccdd36ca4a1408f8c", size = 45806 },
]
[[package]]
name = "typing-inspection"
version = "0.4.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/82/5c/e6082df02e215b846b4b8c0b887a64d7d08ffaba30605502639d44c06b82/typing_inspection-0.4.0.tar.gz", hash = "sha256:9765c87de36671694a67904bf2c96e395be9c6439bb6c87b5142569dcdd65122", size = 76222 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/31/08/aa4fdfb71f7de5176385bd9e90852eaf6b5d622735020ad600f2bab54385/typing_inspection-0.4.0-py3-none-any.whl", hash = "sha256:50e72559fcd2a6367a19f7a7e610e6afcb9fac940c650290eed893d61386832f", size = 14125 },
]
[[package]]
name = "urllib3"
version = "2.4.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/8a/78/16493d9c386d8e60e442a35feac5e00f0913c0f4b7c217c11e8ec2ff53e0/urllib3-2.4.0.tar.gz", hash = "sha256:414bc6535b787febd7567804cc015fee39daab8ad86268f1310a9250697de466", size = 390672 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6b/11/cc635220681e93a0183390e26485430ca2c7b5f9d33b15c74c2861cb8091/urllib3-2.4.0-py3-none-any.whl", hash = "sha256:4e16665048960a0900c702d4a66415956a584919c03361cac9f1df5c5dd7e813", size = 128680 },
]
[[package]]
name = "uvicorn"
version = "0.34.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "click" },
{ name = "h11" },
{ name = "typing-extensions", marker = "python_full_version < '3.11'" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/a6/ae/9bbb19b9e1c450cf9ecaef06463e40234d98d95bf572fab11b4f19ae5ded/uvicorn-0.34.2.tar.gz", hash = "sha256:0e929828f6186353a80b58ea719861d2629d766293b6d19baf086ba31d4f3328", size = 76815 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b1/4b/4cef6ce21a2aaca9d852a6e84ef4f135d99fcd74fa75105e2fc0c8308acd/uvicorn-0.34.2-py3-none-any.whl", hash = "sha256:deb49af569084536d269fe0a6d67e3754f104cf03aba7c11c40f01aadf33c403", size = 62483 },
]
[[package]]
name = "wrapt"
version = "1.17.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/c3/fc/e91cc220803d7bc4db93fb02facd8461c37364151b8494762cc88b0fbcef/wrapt-1.17.2.tar.gz", hash = "sha256:41388e9d4d1522446fe79d3213196bd9e3b301a336965b9e27ca2788ebd122f3", size = 55531 }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/5a/d1/1daec934997e8b160040c78d7b31789f19b122110a75eca3d4e8da0049e1/wrapt-1.17.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3d57c572081fed831ad2d26fd430d565b76aa277ed1d30ff4d40670b1c0dd984", size = 53307 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1b/7b/13369d42651b809389c1a7153baa01d9700430576c81a2f5c5e460df0ed9/wrapt-1.17.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b5e251054542ae57ac7f3fba5d10bfff615b6c2fb09abeb37d2f1463f841ae22", size = 38486 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/62/bf/e0105016f907c30b4bd9e377867c48c34dc9c6c0c104556c9c9126bd89ed/wrapt-1.17.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:80dd7db6a7cb57ffbc279c4394246414ec99537ae81ffd702443335a61dbf3a7", size = 38777 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/27/70/0f6e0679845cbf8b165e027d43402a55494779295c4b08414097b258ac87/wrapt-1.17.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a6e821770cf99cc586d33833b2ff32faebdbe886bd6322395606cf55153246c", size = 83314 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0f/77/0576d841bf84af8579124a93d216f55d6f74374e4445264cb378a6ed33eb/wrapt-1.17.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b60fb58b90c6d63779cb0c0c54eeb38941bae3ecf7a73c764c52c88c2dcb9d72", size = 74947 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/90/ec/00759565518f268ed707dcc40f7eeec38637d46b098a1f5143bff488fe97/wrapt-1.17.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b870b5df5b71d8c3359d21be8f0d6c485fa0ebdb6477dda51a1ea54a9b558061", size = 82778 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f8/5a/7cffd26b1c607b0b0c8a9ca9d75757ad7620c9c0a9b4a25d3f8a1480fafc/wrapt-1.17.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4011d137b9955791f9084749cba9a367c68d50ab8d11d64c50ba1688c9b457f2", size = 81716 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/7e/09/dccf68fa98e862df7e6a60a61d43d644b7d095a5fc36dbb591bbd4a1c7b2/wrapt-1.17.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:1473400e5b2733e58b396a04eb7f35f541e1fb976d0c0724d0223dd607e0f74c", size = 74548 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b7/8e/067021fa3c8814952c5e228d916963c1115b983e21393289de15128e867e/wrapt-1.17.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3cedbfa9c940fdad3e6e941db7138e26ce8aad38ab5fe9dcfadfed9db7a54e62", size = 81334 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4b/0d/9d4b5219ae4393f718699ca1c05f5ebc0c40d076f7e65fd48f5f693294fb/wrapt-1.17.2-cp310-cp310-win32.whl", hash = "sha256:582530701bff1dec6779efa00c516496968edd851fba224fbd86e46cc6b73563", size = 36427 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/72/6a/c5a83e8f61aec1e1aeef939807602fb880e5872371e95df2137142f5c58e/wrapt-1.17.2-cp310-cp310-win_amd64.whl", hash = "sha256:58705da316756681ad3c9c73fd15499aa4d8c69f9fd38dc8a35e06c12468582f", size = 38774 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/cd/f7/a2aab2cbc7a665efab072344a8949a71081eed1d2f451f7f7d2b966594a2/wrapt-1.17.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ff04ef6eec3eee8a5efef2401495967a916feaa353643defcc03fc74fe213b58", size = 53308 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/50/ff/149aba8365fdacef52b31a258c4dc1c57c79759c335eff0b3316a2664a64/wrapt-1.17.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4db983e7bca53819efdbd64590ee96c9213894272c776966ca6306b73e4affda", size = 38488 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/65/46/5a917ce85b5c3b490d35c02bf71aedaa9f2f63f2d15d9949cc4ba56e8ba9/wrapt-1.17.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9abc77a4ce4c6f2a3168ff34b1da9b0f311a8f1cfd694ec96b0603dff1c79438", size = 38776 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ca/74/336c918d2915a4943501c77566db41d1bd6e9f4dbc317f356b9a244dfe83/wrapt-1.17.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b929ac182f5ace000d459c59c2c9c33047e20e935f8e39371fa6e3b85d56f4a", size = 83776 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/09/99/c0c844a5ccde0fe5761d4305485297f91d67cf2a1a824c5f282e661ec7ff/wrapt-1.17.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f09b286faeff3c750a879d336fb6d8713206fc97af3adc14def0cdd349df6000", size = 75420 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b4/b0/9fc566b0fe08b282c850063591a756057c3247b2362b9286429ec5bf1721/wrapt-1.17.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a7ed2d9d039bd41e889f6fb9364554052ca21ce823580f6a07c4ec245c1f5d6", size = 83199 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/9d/4b/71996e62d543b0a0bd95dda485219856def3347e3e9380cc0d6cf10cfb2f/wrapt-1.17.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:129a150f5c445165ff941fc02ee27df65940fcb8a22a61828b1853c98763a64b", size = 82307 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/39/35/0282c0d8789c0dc9bcc738911776c762a701f95cfe113fb8f0b40e45c2b9/wrapt-1.17.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:1fb5699e4464afe5c7e65fa51d4f99e0b2eadcc176e4aa33600a3df7801d6662", size = 75025 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4f/6d/90c9fd2c3c6fee181feecb620d95105370198b6b98a0770cba090441a828/wrapt-1.17.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9a2bce789a5ea90e51a02dfcc39e31b7f1e662bc3317979aa7e5538e3a034f72", size = 81879 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/8f/fa/9fb6e594f2ce03ef03eddbdb5f4f90acb1452221a5351116c7c4708ac865/wrapt-1.17.2-cp311-cp311-win32.whl", hash = "sha256:4afd5814270fdf6380616b321fd31435a462019d834f83c8611a0ce7484c7317", size = 36419 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/47/f8/fb1773491a253cbc123c5d5dc15c86041f746ed30416535f2a8df1f4a392/wrapt-1.17.2-cp311-cp311-win_amd64.whl", hash = "sha256:acc130bc0375999da18e3d19e5a86403667ac0c4042a094fefb7eec8ebac7cf3", size = 38773 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a1/bd/ab55f849fd1f9a58ed7ea47f5559ff09741b25f00c191231f9f059c83949/wrapt-1.17.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d5e2439eecc762cd85e7bd37161d4714aa03a33c5ba884e26c81559817ca0925", size = 53799 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/53/18/75ddc64c3f63988f5a1d7e10fb204ffe5762bc663f8023f18ecaf31a332e/wrapt-1.17.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:3fc7cb4c1c744f8c05cd5f9438a3caa6ab94ce8344e952d7c45a8ed59dd88392", size = 38821 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/48/2a/97928387d6ed1c1ebbfd4efc4133a0633546bec8481a2dd5ec961313a1c7/wrapt-1.17.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8fdbdb757d5390f7c675e558fd3186d590973244fab0c5fe63d373ade3e99d40", size = 38919 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/73/54/3bfe5a1febbbccb7a2f77de47b989c0b85ed3a6a41614b104204a788c20e/wrapt-1.17.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bb1d0dbf99411f3d871deb6faa9aabb9d4e744d67dcaaa05399af89d847a91d", size = 88721 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/25/cb/7262bc1b0300b4b64af50c2720ef958c2c1917525238d661c3e9a2b71b7b/wrapt-1.17.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d18a4865f46b8579d44e4fe1e2bcbc6472ad83d98e22a26c963d46e4c125ef0b", size = 80899 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2a/5a/04cde32b07a7431d4ed0553a76fdb7a61270e78c5fd5a603e190ac389f14/wrapt-1.17.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc570b5f14a79734437cb7b0500376b6b791153314986074486e0b0fa8d71d98", size = 89222 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/09/28/2e45a4f4771fcfb109e244d5dbe54259e970362a311b67a965555ba65026/wrapt-1.17.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6d9187b01bebc3875bac9b087948a2bccefe464a7d8f627cf6e48b1bbae30f82", size = 86707 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c6/d2/dcb56bf5f32fcd4bd9aacc77b50a539abdd5b6536872413fd3f428b21bed/wrapt-1.17.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:9e8659775f1adf02eb1e6f109751268e493c73716ca5761f8acb695e52a756ae", size = 79685 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/80/4e/eb8b353e36711347893f502ce91c770b0b0929f8f0bed2670a6856e667a9/wrapt-1.17.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e8b2816ebef96d83657b56306152a93909a83f23994f4b30ad4573b00bd11bb9", size = 87567 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/17/27/4fe749a54e7fae6e7146f1c7d914d28ef599dacd4416566c055564080fe2/wrapt-1.17.2-cp312-cp312-win32.whl", hash = "sha256:468090021f391fe0056ad3e807e3d9034e0fd01adcd3bdfba977b6fdf4213ea9", size = 36672 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/15/06/1dbf478ea45c03e78a6a8c4be4fdc3c3bddea5c8de8a93bc971415e47f0f/wrapt-1.17.2-cp312-cp312-win_amd64.whl", hash = "sha256:ec89ed91f2fa8e3f52ae53cd3cf640d6feff92ba90d62236a81e4e563ac0e991", size = 38865 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ce/b9/0ffd557a92f3b11d4c5d5e0c5e4ad057bd9eb8586615cdaf901409920b14/wrapt-1.17.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6ed6ffac43aecfe6d86ec5b74b06a5be33d5bb9243d055141e8cabb12aa08125", size = 53800 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c0/ef/8be90a0b7e73c32e550c73cfb2fa09db62234227ece47b0e80a05073b375/wrapt-1.17.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:35621ae4c00e056adb0009f8e86e28eb4a41a4bfa8f9bfa9fca7d343fe94f998", size = 38824 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/36/89/0aae34c10fe524cce30fe5fc433210376bce94cf74d05b0d68344c8ba46e/wrapt-1.17.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a604bf7a053f8362d27eb9fefd2097f82600b856d5abe996d623babd067b1ab5", size = 38920 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3b/24/11c4510de906d77e0cfb5197f1b1445d4fec42c9a39ea853d482698ac681/wrapt-1.17.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cbabee4f083b6b4cd282f5b817a867cf0b1028c54d445b7ec7cfe6505057cf8", size = 88690 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/71/d7/cfcf842291267bf455b3e266c0c29dcb675b5540ee8b50ba1699abf3af45/wrapt-1.17.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:49703ce2ddc220df165bd2962f8e03b84c89fee2d65e1c24a7defff6f988f4d6", size = 80861 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d5/66/5d973e9f3e7370fd686fb47a9af3319418ed925c27d72ce16b791231576d/wrapt-1.17.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8112e52c5822fc4253f3901b676c55ddf288614dc7011634e2719718eaa187dc", size = 89174 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a7/d3/8e17bb70f6ae25dabc1aaf990f86824e4fd98ee9cadf197054e068500d27/wrapt-1.17.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:9fee687dce376205d9a494e9c121e27183b2a3df18037f89d69bd7b35bcf59e2", size = 86721 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6f/54/f170dfb278fe1c30d0ff864513cff526d624ab8de3254b20abb9cffedc24/wrapt-1.17.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:18983c537e04d11cf027fbb60a1e8dfd5190e2b60cc27bc0808e653e7b218d1b", size = 79763 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4a/98/de07243751f1c4a9b15c76019250210dd3486ce098c3d80d5f729cba029c/wrapt-1.17.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:703919b1633412ab54bcf920ab388735832fdcb9f9a00ae49387f0fe67dad504", size = 87585 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f9/f0/13925f4bd6548013038cdeb11ee2cbd4e37c30f8bfd5db9e5a2a370d6e20/wrapt-1.17.2-cp313-cp313-win32.whl", hash = "sha256:abbb9e76177c35d4e8568e58650aa6926040d6a9f6f03435b7a522bf1c487f9a", size = 36676 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/bf/ae/743f16ef8c2e3628df3ddfd652b7d4c555d12c84b53f3d8218498f4ade9b/wrapt-1.17.2-cp313-cp313-win_amd64.whl", hash = "sha256:69606d7bb691b50a4240ce6b22ebb319c1cfb164e5f6569835058196e0f3a845", size = 38871 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3d/bc/30f903f891a82d402ffb5fda27ec1d621cc97cb74c16fea0b6141f1d4e87/wrapt-1.17.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:4a721d3c943dae44f8e243b380cb645a709ba5bd35d3ad27bc2ed947e9c68192", size = 56312 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/8a/04/c97273eb491b5f1c918857cd26f314b74fc9b29224521f5b83f872253725/wrapt-1.17.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:766d8bbefcb9e00c3ac3b000d9acc51f1b399513f44d77dfe0eb026ad7c9a19b", size = 40062 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4e/ca/3b7afa1eae3a9e7fefe499db9b96813f41828b9fdb016ee836c4c379dadb/wrapt-1.17.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:e496a8ce2c256da1eb98bd15803a79bee00fc351f5dfb9ea82594a3f058309e0", size = 40155 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/89/be/7c1baed43290775cb9030c774bc53c860db140397047cc49aedaf0a15477/wrapt-1.17.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d615e4fe22f4ad3528448c193b218e077656ca9ccb22ce2cb20db730f8d306", size = 113471 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/32/98/4ed894cf012b6d6aae5f5cc974006bdeb92f0241775addad3f8cd6ab71c8/wrapt-1.17.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a5aaeff38654462bc4b09023918b7f21790efb807f54c000a39d41d69cf552cb", size = 101208 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ea/fd/0c30f2301ca94e655e5e057012e83284ce8c545df7661a78d8bfca2fac7a/wrapt-1.17.2-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a7d15bbd2bc99e92e39f49a04653062ee6085c0e18b3b7512a4f2fe91f2d681", size = 109339 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/75/56/05d000de894c4cfcb84bcd6b1df6214297b8089a7bd324c21a4765e49b14/wrapt-1.17.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:e3890b508a23299083e065f435a492b5435eba6e304a7114d2f919d400888cc6", size = 110232 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/53/f8/c3f6b2cf9b9277fb0813418e1503e68414cd036b3b099c823379c9575e6d/wrapt-1.17.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:8c8b293cd65ad716d13d8dd3624e42e5a19cc2a2f1acc74b30c2c13f15cb61a6", size = 100476 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a7/b1/0bb11e29aa5139d90b770ebbfa167267b1fc548d2302c30c8f7572851738/wrapt-1.17.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:4c82b8785d98cdd9fed4cac84d765d234ed3251bd6afe34cb7ac523cb93e8b4f", size = 106377 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6a/e1/0122853035b40b3f333bbb25f1939fc1045e21dd518f7f0922b60c156f7c/wrapt-1.17.2-cp313-cp313t-win32.whl", hash = "sha256:13e6afb7fe71fe7485a4550a8844cc9ffbe263c0f1a1eea569bc7091d4898555", size = 37986 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/09/5e/1655cf481e079c1f22d0cabdd4e51733679932718dc23bf2db175f329b76/wrapt-1.17.2-cp313-cp313t-win_amd64.whl", hash = "sha256:eaf675418ed6b3b31c7a989fd007fa7c3be66ce14e5c3b27336383604c9da85c", size = 40750 },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2d/82/f56956041adef78f849db6b289b282e72b55ab8045a75abad81898c28d19/wrapt-1.17.2-py3-none-any.whl", hash = "sha256:b18f2d1533a71f069c7f82d524a52599053d4c7166e9dd374ae2136b7f40f7c8", size = 23594 },
]

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow-sdk"
version = "0.18.0"
version = "0.19.0"
description = "Python client sdk of [RAGFlow](https://github.com/infiniflow/ragflow). RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding."
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
license = { text = "Apache License, Version 2.0" }

View File

@ -20,7 +20,9 @@ import pytest
import requests
HOST_ADDRESS = os.getenv("HOST_ADDRESS", "http://127.0.0.1:9380")
ZHIPU_AI_API_KEY = os.getenv("ZHIPU_AI_API_KEY", "ca148e43209c40109e2bc2f56281dd11.BltyA2N1B043B7Ra")
if ZHIPU_AI_API_KEY is None:
pytest.exit("Error: Environment variable ZHIPU_AI_API_KEY must be set")
# def generate_random_email():
# return 'user_' + ''.join(random.choices(string.ascii_lowercase + string.digits, k=8))+'@1.com'
@ -87,3 +89,64 @@ def get_auth():
@pytest.fixture(scope="session")
def get_email():
return EMAIL
def get_my_llms(auth, name):
url = HOST_ADDRESS + "/v1/llm/my_llms"
authorization = {"Authorization": auth}
response = requests.get(url=url, headers=authorization)
res = response.json()
if res.get("code") != 0:
raise Exception(res.get("message"))
if name in res.get("data"):
return True
return False
def add_models(auth):
url = HOST_ADDRESS + "/v1/llm/set_api_key"
authorization = {"Authorization": auth}
models_info = {
"ZHIPU-AI": {"llm_factory": "ZHIPU-AI", "api_key": ZHIPU_AI_API_KEY},
}
for name, model_info in models_info.items():
if not get_my_llms(auth, name):
response = requests.post(url=url, headers=authorization, json=model_info)
res = response.json()
if res.get("code") != 0:
pytest.exit(f"Critical error in add_models: {res.get('message')}")
def get_tenant_info(auth):
url = HOST_ADDRESS + "/v1/user/tenant_info"
authorization = {"Authorization": auth}
response = requests.get(url=url, headers=authorization)
res = response.json()
if res.get("code") != 0:
raise Exception(res.get("message"))
return res["data"].get("tenant_id")
@pytest.fixture(scope="session", autouse=True)
def set_tenant_info(get_auth):
auth = get_auth
try:
add_models(auth)
tenant_id = get_tenant_info(auth)
except Exception as e:
pytest.exit(f"Error in set_tenant_info: {str(e)}")
url = HOST_ADDRESS + "/v1/user/set_tenant_info"
authorization = {"Authorization": get_auth}
tenant_info = {
"tenant_id": tenant_id,
"llm_id": "glm-4-flash@ZHIPU-AI",
"embd_id": "BAAI/bge-large-zh-v1.5@BAAI",
"img2txt_id": "glm-4v@ZHIPU-AI",
"asr_id": "",
"tts_id": None,
}
response = requests.post(url=url, headers=authorization, json=tenant_info)
res = response.json()
if res.get("code") != 0:
raise Exception(res.get("message"))

View File

@ -16,7 +16,6 @@
import os
import pytest
import requests
from common import (
add_chunk,
batch_create_datasets,
@ -49,9 +48,6 @@ MARKER_EXPRESSIONS = {
"p3": "p1 or p2 or p3",
}
HOST_ADDRESS = os.getenv("HOST_ADDRESS", "http://127.0.0.1:9380")
ZHIPU_AI_API_KEY = os.getenv("ZHIPU_AI_API_KEY", "ca148e43209c40109e2bc2f56281dd11.BltyA2N1B043B7Ra")
if ZHIPU_AI_API_KEY is None:
pytest.exit("Error: Environment variable ZHIPU_AI_API_KEY must be set")
def pytest_addoption(parser: pytest.Parser) -> None:
@ -85,67 +81,6 @@ def get_http_api_auth(get_api_key_fixture):
return RAGFlowHttpApiAuth(get_api_key_fixture)
def get_my_llms(auth, name):
url = HOST_ADDRESS + "/v1/llm/my_llms"
authorization = {"Authorization": auth}
response = requests.get(url=url, headers=authorization)
res = response.json()
if res.get("code") != 0:
raise Exception(res.get("message"))
if name in res.get("data"):
return True
return False
def add_models(auth):
url = HOST_ADDRESS + "/v1/llm/set_api_key"
authorization = {"Authorization": auth}
models_info = {
"ZHIPU-AI": {"llm_factory": "ZHIPU-AI", "api_key": ZHIPU_AI_API_KEY},
}
for name, model_info in models_info.items():
if not get_my_llms(auth, name):
response = requests.post(url=url, headers=authorization, json=model_info)
res = response.json()
if res.get("code") != 0:
pytest.exit(f"Critical error in add_models: {res.get('message')}")
def get_tenant_info(auth):
url = HOST_ADDRESS + "/v1/user/tenant_info"
authorization = {"Authorization": auth}
response = requests.get(url=url, headers=authorization)
res = response.json()
if res.get("code") != 0:
raise Exception(res.get("message"))
return res["data"].get("tenant_id")
@pytest.fixture(scope="session", autouse=True)
def set_tenant_info(get_auth):
auth = get_auth
try:
add_models(auth)
tenant_id = get_tenant_info(auth)
except Exception as e:
pytest.exit(f"Error in set_tenant_info: {str(e)}")
url = HOST_ADDRESS + "/v1/user/set_tenant_info"
authorization = {"Authorization": get_auth}
tenant_info = {
"tenant_id": tenant_id,
"llm_id": "glm-4-flash@ZHIPU-AI",
"embd_id": "BAAI/bge-large-zh-v1.5@BAAI",
"img2txt_id": "glm-4v@ZHIPU-AI",
"asr_id": "",
"tts_id": None,
}
response = requests.post(url=url, headers=authorization, json=tenant_info)
res = response.json()
if res.get("code") != 0:
raise Exception(res.get("message"))
@pytest.fixture(scope="function")
def clear_datasets(request, get_http_api_auth):
def cleanup():

View File

@ -14,8 +14,9 @@
# limitations under the License.
#
from ragflow_sdk import RAGFlow
from common import HOST_ADDRESS
from ragflow_sdk import RAGFlow
from ragflow_sdk.modules.chat import Chat
def test_create_chat_with_name(get_api_key_fixture):
@ -31,7 +32,18 @@ def test_create_chat_with_name(get_api_key_fixture):
docs = kb.upload_documents(documents)
for doc in docs:
doc.add_chunk("This is a test to add chunk")
rag.create_chat("test_create_chat", dataset_ids=[kb.id])
llm = Chat.LLM(
rag,
{
"model_name": "glm-4-flash@ZHIPU-AI",
"temperature": 0.1,
"top_p": 0.3,
"presence_penalty": 0.4,
"frequency_penalty": 0.7,
"max_tokens": 512,
},
)
rag.create_chat("test_create_chat", dataset_ids=[kb.id], llm=llm)
def test_update_chat_with_name(get_api_key_fixture):
@ -47,7 +59,18 @@ def test_update_chat_with_name(get_api_key_fixture):
docs = kb.upload_documents(documents)
for doc in docs:
doc.add_chunk("This is a test to add chunk")
chat = rag.create_chat("test_update_chat", dataset_ids=[kb.id])
llm = Chat.LLM(
rag,
{
"model_name": "glm-4-flash@ZHIPU-AI",
"temperature": 0.1,
"top_p": 0.3,
"presence_penalty": 0.4,
"frequency_penalty": 0.7,
"max_tokens": 512,
},
)
chat = rag.create_chat("test_update_chat", dataset_ids=[kb.id], llm=llm)
chat.update({"name": "new_chat"})
@ -64,7 +87,18 @@ def test_delete_chats_with_success(get_api_key_fixture):
docs = kb.upload_documents(documents)
for doc in docs:
doc.add_chunk("This is a test to add chunk")
chat = rag.create_chat("test_delete_chat", dataset_ids=[kb.id])
llm = Chat.LLM(
rag,
{
"model_name": "glm-4-flash@ZHIPU-AI",
"temperature": 0.1,
"top_p": 0.3,
"presence_penalty": 0.4,
"frequency_penalty": 0.7,
"max_tokens": 512,
},
)
chat = rag.create_chat("test_delete_chat", dataset_ids=[kb.id], llm=llm)
rag.delete_chats(ids=[chat.id])
@ -81,6 +115,17 @@ def test_list_chats_with_success(get_api_key_fixture):
docs = kb.upload_documents(documents)
for doc in docs:
doc.add_chunk("This is a test to add chunk")
rag.create_chat("test_list_1", dataset_ids=[kb.id])
rag.create_chat("test_list_2", dataset_ids=[kb.id])
llm = Chat.LLM(
rag,
{
"model_name": "glm-4-flash@ZHIPU-AI",
"temperature": 0.1,
"top_p": 0.3,
"presence_penalty": 0.4,
"frequency_penalty": 0.7,
"max_tokens": 512,
},
)
rag.create_chat("test_list_1", dataset_ids=[kb.id], llm=llm)
rag.create_chat("test_list_2", dataset_ids=[kb.id], llm=llm)
rag.list_chats()

2
sdk/python/uv.lock generated
View File

@ -342,7 +342,7 @@ wheels = [
[[package]]
name = "ragflow-sdk"
version = "0.18.0"
version = "0.19.0"
source = { virtual = "." }
dependencies = [
{ name = "beartype" },

2
uv.lock generated
View File

@ -4813,7 +4813,7 @@ wheels = [
[[package]]
name = "ragflow"
version = "0.18.0"
version = "0.19.0"
source = { virtual = "." }
dependencies = [
{ name = "akshare" },

View File

@ -0,0 +1,28 @@
import {
Collapsible,
CollapsibleContent,
CollapsibleTrigger,
} from '@/components/ui/collapsible';
import { ListCollapse } from 'lucide-react';
import { PropsWithChildren, ReactNode } from 'react';
type CollapseProps = {
title?: ReactNode;
rightContent?: ReactNode;
} & PropsWithChildren;
export function Collapse({ title, children, rightContent }: CollapseProps) {
return (
<Collapsible defaultOpen>
<CollapsibleTrigger className="w-full">
<section className="flex justify-between items-center pb-2">
<div className="flex items-center gap-1">
<ListCollapse className="size-4" /> {title}
</div>
<div>{rightContent}</div>
</section>
</CollapsibleTrigger>
<CollapsibleContent>{children}</CollapsibleContent>
</Collapsible>
);
}

View File

@ -19,7 +19,7 @@ import {
import { cn } from '@/lib/utils';
import { useLexicalComposerContext } from '@lexical/react/LexicalComposerContext';
import { Variable } from 'lucide-react';
import { useCallback, useState } from 'react';
import { ReactNode, useCallback, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { Tooltip, TooltipContent, TooltipTrigger } from '../ui/tooltip';
import theme from './theme';
@ -45,6 +45,7 @@ const Nodes: Array<Klass<LexicalNode>> = [
type IProps = {
value?: string;
onChange?: (value?: string) => void;
placeholder?: ReactNode;
};
function PromptContent() {
@ -99,7 +100,7 @@ function PromptContent() {
);
}
export function PromptEditor({ value, onChange }: IProps) {
export function PromptEditor({ value, onChange, placeholder }: IProps) {
const { t } = useTranslation();
const initialConfig: InitialConfigType = {
namespace: 'PromptEditor',
@ -124,16 +125,25 @@ export function PromptEditor({ value, onChange }: IProps) {
);
return (
<LexicalComposer initialConfig={initialConfig}>
<RichTextPlugin
contentEditable={<PromptContent></PromptContent>}
placeholder={
<div className="absolute top-2 left-2">{t('common.pleaseInput')}</div>
}
ErrorBoundary={LexicalErrorBoundary}
/>
<VariablePickerMenuPlugin value={value}></VariablePickerMenuPlugin>
<VariableOnChangePlugin onChange={onValueChange}></VariableOnChangePlugin>
</LexicalComposer>
<div className="relative">
<LexicalComposer initialConfig={initialConfig}>
<RichTextPlugin
contentEditable={<PromptContent></PromptContent>}
placeholder={
<div
className="absolute top-10 left-2 text-text-sub-title"
data-xxx
>
{placeholder || t('common.pleaseInput')}
</div>
}
ErrorBoundary={LexicalErrorBoundary}
/>
<VariablePickerMenuPlugin value={value}></VariablePickerMenuPlugin>
<VariableOnChangePlugin
onChange={onValueChange}
></VariableOnChangePlugin>
</LexicalComposer>
</div>
);
}

View File

@ -3,7 +3,7 @@ import { cva, type VariantProps } from 'class-variance-authority';
import * as React from 'react';
import { cn } from '@/lib/utils';
import { Loader2 } from 'lucide-react';
import { Loader2, Plus } from 'lucide-react';
const buttonVariants = cva(
'inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium ring-offset-background transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg]:size-4 [&_svg]:shrink-0',
@ -93,3 +93,18 @@ export const ButtonLoading = React.forwardRef<
ButtonLoading.displayName = 'ButtonLoading';
export { Button, buttonVariants };
export const BlockButton = React.forwardRef<HTMLButtonElement, ButtonProps>(
({ children, className, ...props }, ref) => {
return (
<Button
variant={'outline'}
ref={ref}
className={cn('w-full border-dashed border-input-border', className)}
{...props}
>
<Plus /> {children}
</Button>
);
},
);

View File

@ -14,8 +14,7 @@ import {
import { Label } from '@/components/ui/label';
import { cn } from '@/lib/utils';
import { Info } from 'lucide-react';
import { Tooltip, TooltipContent, TooltipTrigger } from './tooltip';
import { FormTooltip } from './tooltip';
const Form = FormProvider;
@ -104,16 +103,7 @@ const FormLabel = React.forwardRef<
{...props}
>
{props.children}
{tooltip && (
<Tooltip>
<TooltipTrigger>
<Info className="size-3 ml-2" />
</TooltipTrigger>
<TooltipContent>
<p>{tooltip}</p>
</TooltipContent>
</Tooltip>
)}
{tooltip && <FormTooltip tooltip={tooltip}></FormTooltip>}
</Label>
);
});

View File

@ -4,6 +4,7 @@ import * as TooltipPrimitive from '@radix-ui/react-tooltip';
import * as React from 'react';
import { cn } from '@/lib/utils';
import { Info } from 'lucide-react';
const TooltipProvider = TooltipPrimitive.Provider;
@ -28,3 +29,16 @@ const TooltipContent = React.forwardRef<
TooltipContent.displayName = TooltipPrimitive.Content.displayName;
export { Tooltip, TooltipContent, TooltipProvider, TooltipTrigger };
export const FormTooltip = ({ tooltip }: { tooltip: React.ReactNode }) => {
return (
<Tooltip>
<TooltipTrigger>
<Info className="size-3 ml-2" />
</TooltipTrigger>
<TooltipContent>
<p>{tooltip}</p>
</TooltipContent>
</Tooltip>
);
};

View File

@ -1,22 +1,111 @@
import { IFlow } from '@/interfaces/database/flow';
import flowService from '@/services/flow-service';
import { useQuery } from '@tanstack/react-query';
import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
import { useDebounce } from 'ahooks';
import { message } from 'antd';
import { useCallback } from 'react';
import {
useGetPaginationWithRouter,
useHandleSearchChange,
} from './logic-hooks';
export const enum AgentApiAction {
FetchAgentList = 'fetchAgentList',
UpdateAgentSetting = 'updateAgentSetting',
DeleteAgent = 'deleteAgent',
}
export const useFetchAgentList = () => {
const { data, isFetching: loading } = useQuery<IFlow[]>({
queryKey: [AgentApiAction.FetchAgentList],
initialData: [],
export const useFetchAgentListByPage = () => {
const { searchString, handleInputChange } = useHandleSearchChange();
const { pagination, setPagination } = useGetPaginationWithRouter();
const debouncedSearchString = useDebounce(searchString, { wait: 500 });
const { data, isFetching: loading } = useQuery<{
kbs: IFlow[];
total: number;
}>({
queryKey: [
AgentApiAction.FetchAgentList,
{
debouncedSearchString,
...pagination,
},
],
initialData: { kbs: [], total: 0 },
gcTime: 0,
queryFn: async () => {
const { data } = await flowService.listCanvas();
const { data } = await flowService.listCanvasTeam({
keywords: debouncedSearchString,
page_size: pagination.pageSize,
page: pagination.current,
});
return data?.data ?? [];
},
});
return { data, loading };
const onInputChange: React.ChangeEventHandler<HTMLInputElement> = useCallback(
(e) => {
// setPagination({ page: 1 }); // TODO: 这里导致重复请求
handleInputChange(e);
},
[handleInputChange],
);
return {
data: data.kbs,
loading,
searchString,
handleInputChange: onInputChange,
pagination: { ...pagination, total: data?.total },
setPagination,
};
};
export const useUpdateAgentSetting = () => {
const queryClient = useQueryClient();
const {
data,
isPending: loading,
mutateAsync,
} = useMutation({
mutationKey: [AgentApiAction.UpdateAgentSetting],
mutationFn: async (params: any) => {
const ret = await flowService.settingCanvas(params);
if (ret?.data?.code === 0) {
message.success('success');
queryClient.invalidateQueries({
queryKey: [AgentApiAction.FetchAgentList],
});
} else {
message.error(ret?.data?.data);
}
return ret?.data?.code;
},
});
return { data, loading, updateAgentSetting: mutateAsync };
};
export const useDeleteAgent = () => {
const queryClient = useQueryClient();
const {
data,
isPending: loading,
mutateAsync,
} = useMutation({
mutationKey: [AgentApiAction.DeleteAgent],
mutationFn: async (canvasIds: string[]) => {
const { data } = await flowService.removeCanvas({ canvasIds });
if (data.code === 0) {
queryClient.invalidateQueries({
queryKey: [AgentApiAction.FetchAgentList],
});
}
return data?.data ?? [];
},
});
return { data, loading, deleteAgent: mutateAsync };
};

Some files were not shown because too many files have changed in this diff Show More