Compare commits

...

185 Commits

Author SHA1 Message Date
6ca1aef52e Fix: catch non-begin component output (#7827)
### What problem does this PR solve?

Catch non-begin component output

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 20:07:39 +08:00
d285a12b85 Fix: Fixed the issue that the script text of the code operator is not displayed after refreshing the page after saving the script text of the code operator #4977 (#7826)
### What problem does this PR solve?

Fix: Fixed the issue that the script text of the code operator is not
displayed after refreshing the page after saving the script text of the
code operator #4977

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-23 19:02:31 +08:00
cbb90e171d Refa: update gemini2.5 (#7822)
### What problem does this PR solve?

Update gemini2.5

### Type of change

- [x] Refactoring
2025-05-23 18:57:59 +08:00
59934b63aa Docs: Added code component reference (#7821)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-23 18:30:02 +08:00
31e229ff78 Docs: update for v0.19.0 (#7823)
### What problem does this PR solve?

update for v0.19.0

### Type of change

- [x] Documentation Update
2025-05-23 18:18:58 +08:00
f21d023260 Docs: Added v0.19.0 release notes (#7818)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-23 16:02:00 +08:00
40423878eb Docs: Added instructions on cross-language search (#7812) (#7813)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-05-23 14:32:13 +08:00
db8a3f3480 Feat: add claude4 models (#7809)
### What problem does this PR solve?

Add claude4 models.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 13:35:59 +08:00
0cf8c5bedb Feat: more robust fallbacks for citations (#7801)
### What problem does this PR solve?

Add more robust fallbacks for citations

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-05-23 09:46:38 +08:00
47c5cdccf6 Feat: change default models (#7777)
### What problem does this PR solve?

change default models to buildin models
https://github.com/infiniflow/ragflow/issues/7774

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-22 11:59:12 +08:00
0c2b8182e4 Fix: wrong type hint (#7738)
### What problem does this PR solve?

Wrong hint type. #7729.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-20 17:21:42 +08:00
4a7ed9afef Feat: sandox enhancement (#7739)
### What problem does this PR solve?

1. Add sandbox options for max memory and timeout.
2. ​Malicious code detection for Python only.​​

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 17:21:28 +08:00
1ae7b942d9 Feat: The image displayed in the reply message can also be clicked to display the location of the source document where the slice is located #7623 (#7723)
### What problem does this PR solve?

Feat: The image displayed in the reply message can also be clicked to
display the location of the source document where the slice is located
#7623

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 10:40:53 +08:00
fed1221302 Refa: HTTP API list datasets / test cases / docs (#7720)
### What problem does this PR solve?

This PR introduces Pydantic-based validation for the list datasets HTTP
API, improving code clarity and robustness. Key changes include:

Pydantic Validation
Error Handling
Test Updates
Documentation Updates

### Type of change

- [x] Documentation Update
- [x] Refactoring
2025-05-20 09:58:26 +08:00
6ed81d6774 Feat: Add OAuth state parameter for CSRF protection (#7709)
### What problem does this PR solve?

Add OAuth `state` parameter for CSRF protection:
- Updated `get_authorization_url()` to accept an optional state
parameter
- Generated a unique state value during OAuth login and stored in
session
- Verified state parameter in callback to ensure request legitimacy

This PR follows OAuth 2.0 security best practices by ensuring that the
authorization request originates from the same user who initiated the
flow.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-20 09:40:31 +08:00
115850945e Fix:When you create a new API module named xxxa_api, the access route will become xxx instead of xxxa. For example, when I create a new API module named 'data_api', the access route will become 'dat' instead of 'data (#7325)
### What problem does this PR solve?

Fix:When you create a new API module named xxxa_api, the access route
will become xxx instead of xxxa. For example, when I create a new API
module named 'data_api', the access route will become 'dat' instead of
'data'
Fix:Fixed the issue where the new knowledge base would not be renamed
when there was a knowledge base with the same name

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: tangyu <1@1.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-20 09:39:26 +08:00
8e87436725 Feat: Modify the Python language template code of the code operator #4977 (#7714)
### What problem does this PR solve?

Feat: Modify the Python language template code of the code operator
#4977
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-19 19:34:43 +08:00
e8e2a95165 Refa: more fallbacks for bad citation format (#7710)
### What problem does this PR solve?

More fallbacks for bad citation format

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
2025-05-19 19:34:05 +08:00
b908c33464 Fix: uncaptured image data with position information (#7683)
### What problem does this PR solve?

Fixed uncaptured figure data with position information. #7466, #7681

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-19 19:33:28 +08:00
0ebf05440e Feat: repair corrupted PDF files on upload automatically (#7693)
### What problem does this PR solve?

Try the best to repair corrupted PDF files on upload automatically.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-19 14:54:06 +08:00
7df1bd4b4a When creating an assistant, no dataset is specified, a different default system promt is used (#7690)
### What problem does this PR solve?

- Updated the dialog settings function to add a default prompt
configuration for no dataset.
- The prompt configuration will be determined based on the presence of
`kb_ids` in the request.


### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (Non-breaking change, adding functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-05-19 11:33:54 +08:00
5d21cc3660 fix: Fix the problem that concurrent execution limit in task executor fails and causes OOM (issue#7580) (#7700)
### What problem does this PR solve?

## Cause of the bug:
During the execution process, due to improper use of trio
CapacityLimiter, the configuration parameter MAX_CONCURRENT_TASKS is
invalid, causing the executor to take out a large number of tasks from
the Redis queue at one time.

This behavior will cause the task executor to occupy too much memory and
be killed by the OS when a large number of tasks exist at the same time.
As a result, all executing tasks are suspended.

## Fix:
Added the task_manager method to the entry of /rag/svr/task_executor.py
to make CapacityLimiter effective. Deleted the invalid async with
statement.

## Fix result:
After testing, the task executor execution meets expectations, that is:
concurrent execution of up to $MAX_CONCURRENT_TASKS tasks.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-19 10:25:56 +08:00
b0275b8483 Fix: value too long error for chat name (#7697)
### What problem does this PR solve?

Hello, when I input a very long line in the chat input box, it will fail
with following error:

```
2025-05-17 16:11:26,004 ERROR    182558 value too long for type character varying(255)
Traceback (most recent call last):
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3291, in execute_sql
    cursor.execute(sql, params or ())
psycopg2.errors.StringDataRightTruncation: value too long for type character varying(255)


During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/var/home/sfc/Projects/ragflow/api/apps/conversation_app.py", line 68, in set_conversation
    ConversationService.save(**conv)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3128, in inner
    return fn(*args, **kwargs)
  File "/var/home/sfc/Projects/ragflow/api/db/services/common_service.py", line 145, in save
    return cls.save_n(**kwargs)
  File "/var/home/sfc/Projects/ragflow/api/db/services/common_service.py", line 139, in save_n
    sample_obj = cls.model(**kwargs).save(force_insert=True)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 6923, in save
    pk = self.insert(**field_dict).execute()
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2011, in inner
    return method(self, database, *args, **kwargs)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2082, in execute
    return self._execute(database)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2887, in _execute
    return super(Insert, self)._execute(database)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2598, in _execute
    cursor = self.execute_returning(database)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 2605, in execute_returning
    cursor = database.execute(self)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3299, in execute
    return self.execute_sql(sql, params)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3289, in execute_sql
    with __exception_wrapper__:
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3059, in __exit__
    reraise(new_type, new_type(exc_value, *exc_args), traceback)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 192, in reraise
    raise value.with_traceback(tb)
  File "/var/home/sfc/Projects/ragflow/.venv/lib/python3.10/site-packages/peewee.py", line 3291, in execute_sql
    cursor.execute(sql, params or ())
peewee.DataError: value too long for type character varying(255)
```

This PR fix it by truncate the `name` field in the `set_conversation`
method in the `conversation_app.py`.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-19 10:25:41 +08:00
86c6fee320 Docs: Added an FAQ (#7694)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-19 09:58:10 +08:00
c0bee906d2 Docs: Added a guide on switching document engine (#7692)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-16 19:02:36 +08:00
bfaa469b9a Feat: Rendering recall test page #3221 (#7689)
### What problem does this PR solve?

Feat: Rendering recall test page #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 18:56:48 +08:00
d73a08b9eb Fix: Fixed the issue where message references could not be displayed (#7691)
### What problem does this PR solve?

Fix: Fixed the issue where message references could not be displayed

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-16 18:56:25 +08:00
a1f06a4fdc Feat: Support tool calling in Generate component (#7572)
### What problem does this PR solve?

Hello, our use case requires LLM agent to invoke some tools, so I made a
simple implementation here.

This PR does two things:

1. A simple plugin mechanism based on `pluginlib`:

This mechanism lives in the `plugin` directory. It will only load
plugins from `plugin/embedded_plugins` for now.

A sample plugin `bad_calculator.py` is placed in
`plugin/embedded_plugins/llm_tools`, it accepts two numbers `a` and `b`,
then give a wrong result `a + b + 100`.

In the future, it can load plugins from external location with little
code change.

Plugins are divided into different types. The only plugin type supported
in this PR is `llm_tools`, which must implement the `LLMToolPlugin`
class in the `plugin/llm_tool_plugin.py`.
More plugin types can be added in the future.

2. A tool selector in the `Generate` component:

Added a tool selector to select one or more tools for LLM:


![image](https://github.com/user-attachments/assets/74a21fdf-9333-4175-991b-43df6524c5dc)

And with the `bad_calculator` tool, it results this with the `qwen-max`
model:


![image](https://github.com/user-attachments/assets/93aff9c4-8550-414a-90a2-1a15a5249d94)


### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-05-16 16:32:19 +08:00
cb26564d50 Docs: Added contribution guidelines and sandbox-related tips (#7685)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-16 16:28:21 +08:00
59705a1c1d Test: change variable for ZHIPU_AI_API_KEY (#7684)
### What problem does this PR solve?

change variable for ZHIPU_AI_API_KEY

### Type of change

- [x] Update test case
2025-05-16 15:58:54 +08:00
205974c359 Docs: Improve oauth configuration documentation and examples (#7675)
### What problem does this PR solve?

Improve oauth configuration documentation and examples.

- Related pull requests: 
  - #7379
  - #7553
  - #7587
- Related issues:
  -  #3495
### Type of change

- [x] Documentation Update
2025-05-16 14:17:39 +08:00
04edf9729f Test: use environment variable for ZHIPU_AI_API_KEY (#7680)
### What problem does this PR solve?

use environment variable for ZHIPU_AI_API_KEY

### Type of change

- [x] Test update
2025-05-16 13:51:21 +08:00
bb1268ef4b Fix: Fixed the issue where the height of the chat page shared externally did not fill the window #7460 (#7682)
### What problem does this PR solve?
Fix: Fixed the issue where the height of the chat page shared externally
did not fill the window #7460
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 13:45:44 +08:00
c5826d4720 Feat: launch sandbox from docker-compose (#7671)
### What problem does this PR solve?

Launch sandbox from docker-compose.
#4977
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-05-16 11:14:57 +08:00
deb2faf7aa Fix:Fail to get list_sessions (#7678)
### What problem does this PR solve?

Close #7655

Based on the codes atthe api_app, I think the reference is one-to-one
with the message
`
    def fillin_conv(ans):
        nonlocal conv, message_id
        if not conv.reference:
            conv.reference.append(ans["reference"])
        else:
            conv.reference[-1] = ans["reference"]
conv.message[-1] = {"role": "assistant", "content": ans["answer"], "id":
message_id}
        ans["id"] = message_id
`



### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-16 10:58:28 +08:00
2777941b4e Feat: add code agent component (#7672)
### What problem does this PR solve?

Add code agent component.
#4977
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 10:27:47 +08:00
ae8b628f0a Refa: HTTP API delete dataset / test cases / docs (#7657)
### What problem does this PR solve?

This PR introduces Pydantic-based validation for the delete dataset HTTP
API, improving code clarity and robustness. Key changes include:

1. Pydantic Validation
2. Error Handling
3. Test Updates
4. Documentation Updates

### Type of change

- [x] Documentation Update
- [x] Refactoring
2025-05-16 10:16:43 +08:00
0e9ff8c1f7 Feat: Fixed the issue where the dataset configuration page kept refreshing #3221 (#7666)
### What problem does this PR solve?

Feat: Fixed the issue where the dataset configuration page kept
refreshing #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 09:53:47 +08:00
d373c46976 Fix: Use DOMPurify to filter out dangerous HTML #7668 (#7669)
### What problem does this PR solve?

Fix: Use DOMPurify to filter out dangerous HTML #7668

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-16 09:53:34 +08:00
008e55a65e Feat: Add the JS code (or other) executor component to Agent. #4977 (#7677)
### What problem does this PR solve?

Feat: Add the JS code (or other) executor component to Agent. #4977

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-16 09:53:00 +08:00
772992812a Docs: Added a guide on AI search (#7674)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-15 18:41:39 +08:00
a8542508b7 Refa: Deprecate /github_callback in favor of /oauth/callback/<channel> for GitHub OAuth integration (#7587)
### What problem does this PR solve?

Deprecate `/github_callback` route in favor of
`/oauth/callback/<channel>` for GitHub OAuth integration:

- Added GitHub OAuth support in the authentication module
- Introduced `GithubOAuthClient` with methods to fetch and normalize
user info
  - Updated `CLIENT_TYPES` to include GitHub OAuth client
- Deprecated `/github_callback` route and suggested using the generic
`/oauth/callback/<channel>` route

---
- Related pull requests: 
  - #7379
  - #7553 

### Usage

- [Create a GitHub OAuth
App](https://github.com/settings/applications/new) to obtain the
`client_id` and `client_secret`, configure the authorization callback
url: `https://your-app.com/v1/user/oauth/callback/github`
- Edit `service_conf.yaml.template`:
  ```yaml
  # ...
  oauth:
    github:
      type: "github"
      icon: "github"
      display_name: "Github"
      client_id: "your_client_id"
      client_secret: "your_client_secret"
      redirect_uri: "https://your-app.com/v1/user/oauth/callback/github"
  # ...
  ```

### Type of change

- [x] Documentation Update
- [x] Refactoring (non-breaking change)
2025-05-15 14:39:37 +08:00
0b4d366514 Fix: Setuptools project.license as a TOML table deprecation (#7652)
TOML-table-based project.license is deprecated as per PEP 639, see:
https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license-and-license-files

### What problem does this PR solve?

The following error when building project (e.g. `uv build`)

```
SetuptoolsDeprecationWarning: `project.license` as a TOML table is deprecated
!!

        ********************************************************************************
        Please use a simple string containing a SPDX expression for `project.license`. You can also use `project.license-files`. (Both options available on setuptools>=77.0.0).

        By 2026-Feb-18, you need to update your project and remove deprecated calls
        or your builds will no longer be supported.

        See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details.
        ********************************************************************************

!!
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-15 12:23:29 +08:00
e7a84bdac2 Fix: setuptools package definitions (#7654)
### What problem does this PR solve?
For `uv package`/`uv pip install ".[full]"`, bug introduced in #6370:

* Removes erroneous (non-package) directories (`helm`, `flask_session`)
* Adds `mcp.server` package
* Resolves "warning: package would be ignored" ambiguity by changing
`sdk` to `sdk.python.ragflow_sdk`
* Resolves "error: package directory 'intergrations' does not exist" by
including `intergrations.chatgpt-on-wechat.plugins` explicitly
* Also rearranges packages in alphabetical order, for DX.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-15 12:22:56 +08:00
d2b346cf9e Feat: When Delete Chunk Will Also Delete Chunk Related Image (#7656)
### What problem does this PR solve?

When Delete Chunk Will Also Delete Chunk Related Image

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-05-15 11:53:47 +08:00
1d0dcddf61 Docs: Miscellaneous UI updates (#7648)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-05-15 11:35:52 +08:00
d49025b501 Trival. (#7653)
### What problem does this PR solve?

#7623

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-15 11:03:05 +08:00
dd0fd13ea8 Fix: Anonymize profile input defaults (#7649)
Remove PII from webapp profile page input defaults

### Type of change

- [x] Other (please describe): Chore
2025-05-15 09:19:35 +08:00
36e32dde1a Feat: update llm factories for SILICONFLOW (#7620)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Other (please describe): llm factories update
2025-05-14 19:46:27 +08:00
53a2c8e452 Docs: Chat assistant relative time expressions were enabled in 0.17.1. (#7647)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
2025-05-14 19:42:27 +08:00
5218ff775c Feat: Add data set configuration form #3221 (#7646)
### What problem does this PR solve?

Feat: Add data set configuration form #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-14 19:09:01 +08:00
5d5dbb3bcb Feat: Display inline (non-quoted) images in the chat and search modules #7623 (#7638)
### What problem does this PR solve?

Feat: Display inline (non-quoted) images in the chat and search modules
#7623

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-14 15:44:54 +08:00
5a0273e3ea Docs: update 7 readme (#7639)
### What problem does this PR solve?

Update 7 readme

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-14 15:44:24 +08:00
ce81e470e3 Fix:Agent running message i10n (#7635)
### What problem does this PR solve?

Close #7612

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-14 14:27:12 +08:00
4ac61fc470 Docs: Update README.md (#7607)
### What problem does this PR solve?

Add libjemalloc installation command. If the operating system does not
have the libjemalloc library, the execution of entrypoint.sh and
launch_backend_service.sh will be interrupted, and the
rag/svr/task_executor.py script will not be started normally.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-14 14:24:30 +08:00
bfe97d896d Fix: docx get image exception. (#7636)
### What problem does this PR solve?

Close #7631

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-14 12:24:48 +08:00
e7a6a9e47e Feat: Add frontend support for third-party login integration (#7553)
### What problem does this PR solve?

Add frontend support for third-party login integration:

- Used `getLoginChannels` API to fetch available login channels from the
server
- Used `loginWithChannel` function to initiate login based on the
selected channel
- Refactored `useLoginWithGithub` hook to `useOAuthCallback` for
generalized OAuth callback handling
- Updated the login page to dynamically render third-party login buttons
based on the fetched channel list
- Styled third-party login buttons to improve user experience
- Removed unused code snippets

> This PR removes the previously hardcoded GitHub login button. Since
the functionality only worked when `location.host` was equal to
`demo.ragflow.io`, and the authentication logic is now based on
`login.ragflow.io`, this change does not affect the existing logic and
is considered a non-breaking change
---
#### Frontend Screenshot && Backend Configuration


![image](https://github.com/user-attachments/assets/190ad3a5-3718-409a-ad0e-01e7aca39069)

```yaml
# docker/service_conf.yaml.template

# ...
oauth:
  github:
    icon: github
    display_name: "Github"
    # ...

  custom_channel:
    display_name: "OIDC"
    # ...

  custom_channel_2:
    display_name: "OAuth2"
    # ...
```
---
- Related pull requests:
  - #7379
  - #7521 
- Related issues:
  - #3495 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Refactoring
- [x] Performance Improvement
2025-05-14 12:19:28 +08:00
d06431f670 FIX: knowledge will not render a paginator when count is greater than 30 (#7596)
### What problem does this PR solve?

as https://github.com/infiniflow/ragflow/issues/7538
and https://github.com/infiniflow/ragflow/pull/7550

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-14 11:53:11 +08:00
2fa8e3309f Fix: file name length limit mismtach (#7630)
### What problem does this PR solve?

Close #7597

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-14 10:13:03 +08:00
fe3b2acde0 Feat: Show images in reply messages #7608 (#7625)
### What problem does this PR solve?

Feat: Show images in reply messages #7608

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 19:30:17 +08:00
01330fa428 Feat: let image citation being shown. (#7624)
### What problem does this PR solve?

#7623

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 19:30:05 +08:00
b4cc37f3c1 Feat: Fixed the issue where the chat page would jump after entering the homepage #3221 (#7616)
### What problem does this PR solve?

Feat: Fixed the issue where the chat page would jump after entering the
homepage #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 17:57:28 +08:00
a8dbb5d3b0 Docs: Restructured docs (#7614)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-05-13 15:49:08 +08:00
321a280031 Feat: add image preview to retrieval test. (#7610)
### What problem does this PR solve?

#7608

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 14:30:36 +08:00
5c9025918a Feat: Adjust the display position of recall test item images #7608 (#7609)
### What problem does this PR solve?
Feat: Adjust the display position of recall test item images #7608


### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-13 14:09:51 +08:00
573d46a4ef FIX:ZeroDivisionError when using large page_size in client.retrieve() (#7595)
### What problem does this PR solve?

Close #7592

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-13 10:46:31 +08:00
4ae8f87754 Fix: missing graph resolution and community extraction in graphrag tasks (#7586)
### What problem does this PR solve?

Info of whether applying graph resolution and community extraction is
storage in `task["kb_parser_config"]`. However, previous code get
`graphrag_conf` from `task["parser_config"]`, making `with_resolution`
and `with_community` are always false.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-13 09:21:03 +08:00
63af158086 Docs: Guide on enabling Excel2HTML (#7590)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-05-12 19:44:29 +08:00
3877bcfc21 Feat: Add FormContainer component #3221 (#7588)
### What problem does this PR solve?

Feat: Add FormContainer component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-12 19:39:37 +08:00
f8cc557892 Fix(api): correct default value handling in dataset parser config (#7589)
### What problem does this PR solve?

Fix  HTTP API Create/Update dataset parser config default value error

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-12 19:39:18 +08:00
e39ceb2bd1 Feat: add support for OpenAi gpt 4.1 series (#7540)
### What problem does this PR solve?

Adds support for the GPT-4.1 series from OpenAI.

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-12 18:24:53 +08:00
992398bca3 Feat: Add http api to create, update, or delete agents. (#7515)
### What problem does this PR solve?

Hello, we are using ragflow as a backend service, so we need to manage
agents from our own frontend. So adding these http APIs to manage
agents.

The code logic is copied and modified from the `rm` and `save` methods
in `api/apps/canvas_app.py`.

btw, I found that the `save` method in `canvas_app.py` actually allows
to modify an agent to an existing title, so I kept the behavior in the
http api. I'm not sure if this is intentional.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-12 17:59:53 +08:00
baa108f5cc Fix: markdown table conversion error (#7570)
### What problem does this PR solve?

Since `import markdown.markdown` has been changed to `import markdown`
in `rag/app/naive.py`, previous code for converting markdown tables
would call a markdown module instead of a callable function. This cause
error.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-12 17:16:55 +08:00
4a891f2d67 Fix: InfiniteScroll sometimes can not fetch next page (#7550)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7538

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-12 17:15:55 +08:00
514c08a932 add show debug (#7390)
### What problem does this PR solve?

add show debug
![Recording2025-04-28142829-ezgif
com-video-to-gif-converter](https://github.com/user-attachments/assets/0c67da34-c2b6-428f-ae9b-b5b21464885c)

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-12 17:15:19 +08:00
d05e8a173d Docs:Updated langfuse guide (#7583)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-12 11:28:14 +08:00
ad412380cb Fix:Discrepancy between Document.list_chunks() API documentation and implementation (#7575)
### What problem does this PR solve?


Close #7567

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-12 11:05:32 +08:00
af35e84655 Set helm resource-policy to be keep (#7574)
Modified the chart to retain persistent volumes by default when the
chart is uninstalled, following established best practices in the Helm
community (e.g., Bitnami charts)

### What problem does this PR solve?

Previously, deleting the helm chart would automatically remove all
persistent data, which poses a risk of accidental data loss.

### Rationale

This change aligns with industry standards to safeguard data by
requiring explicit action to remove persistence, rather than making
deletion the default behavior.

### Impact: 

Users who intentionally want to remove persistent data will need to do
so manually or by setting appropriate flags during chart uninstallation.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-12 10:23:49 +08:00
29f45a85e4 docs: add langfuse documentation (#7568)
### What problem does this PR solve?

As RAGFlow has an integration with Langfuse, this docs page shows how to
configure Langfuse tracing.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-12 09:55:34 +08:00
ea5e8caa69 feat: Enable antialiasing for PDF image extraction to improve OCR accuracy (#7562)
### What problem does this PR solve?

When the PDF uses vector fonts, the rendered text in the captured page
image often has missing strokes, leading to numerous OCR errors and
incorrect characters. Similar issues also occur in the extracted chart
images.

**Before**

![0089e1f76205b5b3](https://github.com/user-attachments/assets/a84f8cd7-48ae-4da4-81ca-fc0bd93320f1)

**After**

![03053149e919773a](https://github.com/user-attachments/assets/45fa5ebb-a2de-42b1-9535-1ea087877eb2)

You can use the following document for testing.

[Casio说明书.pdf](https://github.com/user-attachments/files/20119690/Casio.pdf)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-05-12 09:50:21 +08:00
473aa28422 Docs: Restructured MCP-specific documents (#7565)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-05-12 09:49:54 +08:00
ef0c4b134d Test: skip unstable test cases (#7578)
### What problem does this PR solve?

Skip unstable test cases to ensure daily testing stability

### Type of change

- [x] Update test cases
2025-05-12 09:49:14 +08:00
35e36cb945 Refa: HTTP API update dataset / test cases / docs (#7564)
### What problem does this PR solve?

This PR introduces Pydantic-based validation for the update dataset HTTP
API, improving code clarity and robustness. Key changes include:
1. Pydantic Validation
2. ​​Error Handling
3. Test Updates
4. Documentation Updates
5. fix bug: #5915

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Refactoring
2025-05-09 19:17:08 +08:00
31718581b5 Fix: helm template redis (#7563)
### What problem does this PR solve?

Fixes bug & regression introduced by [PR #7187 - refactor: Update Redis
configuration to use StatefulSet instead of deployment with
pvc](https://github.com/infiniflow/ragflow/pull/7187):

1. Fixes bug #7403 - `redis.persistence.enabled` missing from
`helm/values.yaml` causes helm error:

[ERROR] templates/: template: ragflow/templates/redis.yaml:55:24:
executing "ragflow/templates/redis.yaml" at
<.Values.redis.persistence.enabled>: nil pointer evaluating interface
{}.enabled

2. Fixes regression: reverts hardcoded redis.storage.capacity value back
to using variable `redis.storage.capacity` from `helm/values.yaml`.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-09 19:04:50 +08:00
6bd7d572ec Perf: Increase database connection pool size (#7559)
### What problem does this PR solve?

1. The MySQL instance is configured with max_connections=1000,
but our connection pool was limited to max_connections: 100.
This mismatch caused connection pool exhaustion during performance
testing.

2.  Increase stale_timeout to resolve #6548

### Type of change

- [x] Performance Improvement
2025-05-09 17:52:03 +08:00
5b626870d0 Refa: remove ollama keep alive. (#7560)
### What problem does this PR solve?

#7518

### Type of change

- [x] Refactoring
2025-05-09 17:51:49 +08:00
2ccec93d71 Feat: support cross-lang search. (#7557)
### What problem does this PR solve?

#7376
#4503
#5710 
#7470

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-09 15:32:02 +08:00
2fe332d01d Feat: Cross-language query #7376 #4503 #5710 #7470 (#7554)
### What problem does this PR solve?

Feat: Cross-language query #7376 #4503  #5710 #7470
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-09 15:01:57 +08:00
a14865e6bb Fix: empty query issue. (#7551)
### What problem does this PR solve?

#5214

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-09 12:20:19 +08:00
d66c17ab5c Feat: add document enabled (#7549)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-09 12:20:07 +08:00
b781207752 Feat: KB detail supports document total size (#7546)
### What problem does this PR solve?

Kb detail supports return document total size now.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-05-09 11:48:54 +08:00
34ec550014 CI: add daily test (#7548)
### What problem does this PR solve?

Add scheduled workflow for daily HTTP API full tests
Configure cron job to trigger at 16:00:00Z(00:00:00+08:00)

### Type of change

- [X] CI update
2025-05-09 11:48:40 +08:00
c2c63b07c3 Feat: Replace the submit form button with ButtonLoading #3221 (#7547)
### What problem does this PR solve?

Feat: Replace the submit form button with ButtonLoading #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-09 10:17:36 +08:00
332e6ffbd4 Fix:local_es_tag (#7534)
Two Case when local  Es tag search has result which is filtered by score
1: Doc has empty tag,and not visi LLM
2: Code may use empty examples in Prompt for LLM search tag

Co-authored-by: huangfuqunze <huangfuqunze.hfqz@alibaba-inc.com>
2025-05-09 10:17:24 +08:00
5352bdf4da Error storing tag in Redis (#7541)
### What problem does this PR solve?

The parameter positions were incorrect and have been corrected to use
keyword argument passing

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-09 10:17:09 +08:00
138778b51b Docs: UI updates (#7536)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-05-09 09:37:46 +08:00
17e7571639 Updated MCP (#7533)
### What problem does this PR solve?


### Type of change


- [x ] Documentation Update
2025-05-09 09:37:05 +08:00
0fbca63e9d Test: Configure test case priorities to reduce CI execution time (#7532)
### What problem does this PR solve?

Configure test case priorities to reduce CI execution time

### Type of change

- [x] Test cases update
2025-05-08 19:22:52 +08:00
1657755b5d Feat: Adjust the operation cell of the table on the file management page and dataset page #3221. (#7526)
### What problem does this PR solve?

Feat: Adjust the operation cell of the table on the file management page
and dataset page #3221.
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-08 15:25:26 +08:00
9d3dd13fef Refa: text order be robuster. (#7525)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-05-08 12:58:10 +08:00
3827c47515 Feat: Add API to support get chunk by id (#7522)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/7519
### Type of change
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-05-08 12:24:38 +08:00
e9053b6ed4 fix bug #7309 deepseek-ai/deepseek-vl2 model can not be select as a VL model to parse pdf image (#7312)
### What problem does this PR solve?
fix deepseek-ai/deepseek-vl2 model can not be select as a VL model to
parse pdf image . And add other vl models config from siliconflow
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: unknown <taoshi.ln@chinatelecom.cn>
2025-05-08 11:24:39 +08:00
e349635a3d Feat: Add /login/channels route and improve auth logic for frontend third-party login integration (#7521)
### What problem does this PR solve?

Add `/login/channels` route and improve auth logic to support frontend
integration with third-party login providers:

- Add `/login/channels` route to provide authentication channel list
with `display_name` and `icon`
- Optimize user info parsing logic by prioritizing `avatar_url` and
falling back to `picture`
- Simplify OIDC token validation by removing unnecessary `kid` checks
- Ensure `client_id` is safely cast to string during `audience`
validation
- Fix typo

---
- Related pull request: #7379 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-05-08 10:23:19 +08:00
014a1535f2 Docs: correct wrong URL for related_questions HTTP API (#7507)
### What problem does this PR solve?

Correct wrong URL for related_questions HTTP API. #7282

### Type of change

- [x] Documentation Update
2025-05-08 09:32:21 +08:00
7b57ab5dea Fix: retrieval component for shared KB issue. (#7513)
### What problem does this PR solve?

#7483

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-08 09:20:34 +08:00
e300d90c00 Docs: minor format updates (#7514)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-05-07 19:49:01 +08:00
87317bcfc4 Docs: Initial editorial pass to MCP server (#7359)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-05-07 19:40:45 +08:00
9849230a04 Fix: remove deprecated novitaAI. (#7511)
### What problem does this PR solve?

#7484

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-07 19:36:16 +08:00
fa32a2d0fd Fix:When sharing the knowledge base of multiple tenants with one person, when this person queries the knowledge base of both tenants, they will only query the question of the first person's knowledge base (#7500)
Fix:When sharing the knowledge base of multiple tenants with one person,
when this person queries the knowledge base of both tenants, they will
only query the question of the first person's knowledge base

Co-authored-by: 杜有强 <duyq@internal.ths.com.cn>
2025-05-07 16:05:40 +08:00
27ffc0ed74 Feat: Improve 'user_canvan_version' delete and 'document' delete performance (#6553)
### What problem does this PR solve?

1.  Add delete_by_ids method
2. Add get_doc_ids_by_doc_names
3. Improve user_canvan_version's logic (avoid O(n) db IO)
4. Improve document delete logic (avoid O(n) db IO)

### Type of change

- [x] Performance Improvement
2025-05-07 10:55:08 +08:00
539876af11 docs: add API key instructions for MCP host mode (#7496)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: 马继龙 <majilong@ideal.com>
2025-05-07 10:38:21 +08:00
b1c8746984 fix: After the file is deleted, it still remains in the bucket. (#7482)
### What problem does this PR solve?

Fix: After deleting the file from the file management menu, it was not
removed from the MinIO bucket.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-05-06 19:30:42 +08:00
bc3160f75a Feat: Support knowledge base type input in agent flow debugger (#7471)
### What problem does this PR solve?

This is a follow-up of #7088 , adding a knowledge base type input to the
`Begin` component, and a knowledge base selector to the agent flow debug
input panel:


![image](https://github.com/user-attachments/assets/e4cd35f1-1c8e-4f69-bed4-5d613b96d148)

then you can select one or more knowledge bases when testing the agent:


![image](https://github.com/user-attachments/assets/724b547e-4790-4cd8-83d3-67e02f2e76d8)

Note: the lines changed in `agent/component/retrieval.py` after line 94
are modified by `ruff format` from the `pre-commit` hooks, no functional
change.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-06 19:30:27 +08:00
75b24ba02a Fix: chat solo issue. (#7479)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 19:30:00 +08:00
953b3e1b3f Fix: Sometimes VisionFigureParser.figures may is tuple (#7477)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/7466
I think due to some times we can not get position 

### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 17:38:22 +08:00
c98933499a refa: Optimize create dataset validation (#7451)
### What problem does this PR solve?

Optimize dataset validation and add function docs

### Type of change

- [x] Refactoring
2025-05-06 17:38:06 +08:00
2f768b96e8 perf: optimze figure parser (#7392)
### What problem does this PR solve?

When parsing documents containing images, the current code uses a
single-threaded approach to call the VL model, resulting in extremely
slow parsing speed (e.g., parsing a Word document with dozens of images
takes over 20 minutes).

By switching to a multithreaded approach to call the VL model, the
parsing speed can be improved to an acceptable level.

### Type of change

- [x] Performance Improvement

---------

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-05-06 14:39:45 +08:00
d6cc6453d1 fixed errror when vars of cnt begin declare with key contain "begin" (#7457)
### What problem does this PR solve?
fixed errror when vars of cnt begin  declare with key contain "begin"

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 14:39:22 +08:00
45dfaf230c fix(deps): incorrect nltk download dir (#7447)
### What problem does this PR solve?

Fix https://github.com/infiniflow/ragflow/issues/7224 and
https://github.com/infiniflow/ragflow/issues/6793

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)a
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-06 14:39:05 +08:00
65537b8200 Fix:Set CUDA_VISIBLE_DEVICES In DefaultEmbedding (#7465)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/7420

### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 14:38:36 +08:00
60787f8d5d Fix Ollama instructions (#7478)
Fix instructions for Ollama

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-06 13:57:39 +08:00
c4b3d3af95 Fix instructions for Ollama (#7468)
1. Use `host.docker.internal` as base URL
2. Fix numbers in list
3. Make clear what is the console input and what is the output

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-06 09:47:19 +08:00
f29a5de9f5 Fix: filed_map was incorrectly persisted (#7443)
### What problem does this PR solve?

Fix `filed_map` was incorrectly persisted. #7412 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-05-06 09:44:38 +08:00
cb37f00a8f Feat: Modify the style of the dataset page #3221 (#7446)
### What problem does this PR solve?

Feat:  Modify the style of the dataset page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-05-02 21:27:21 +08:00
fc379e90d1 Fix: change create dataset htto api delimiter default value to r'\n' (#7434)
### What problem does this PR solve?

change create dataset delimiter default value to r'\n'

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 17:43:42 +08:00
fea9d970ec Feat: Modify the dataset list page style #3221 (#7437)
### What problem does this PR solve?

Feat: Modify the dataset list page style #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 15:37:16 +08:00
6e7dd54a50 Feat: Support passing knowledge base id as variable in retrieval component (#7088)
### What problem does this PR solve?

Fix #6600

Hello, I have the same business requirement as #6600. My use case is: 

We have many departments (> 20 now and increasing), and each department
has its own knowledge base. Because the agent workflow is the same, so I
want to change the knowledge base on the fly, instead of creating agents
for every department.

It now looks like this:


![屏幕截图_20250416_212622](https://github.com/user-attachments/assets/5cb3dade-d4fb-4591-ade3-4b9c54387911)

Knowledge bases can be selected from the dropdown, and passed through
the variables in the table. All selected knowledge bases are used for
retrieval.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-30 15:32:14 +08:00
f56b651acb Built-in reranker models have been removed from official deliveries. (#7439)
### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2025-04-30 15:28:03 +08:00
2dbcc0a1bf Fix: Tried to fix the fid mis match under some cases (#7426)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7407

Based on this context, I think there should be some reasons that let
some LLMs have a mismatch (add the wrong "@xxx"),
So I think when use fid can not fetch llm then tried to just use name
should can fetch it.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-30 14:55:21 +08:00
1f82889001 Fix: create dataset remove unnecessary parameter constraints (#7432)
### What problem does this PR solve?

Remove unnecessary parameter restrictions in dataset creation API

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-30 14:50:23 +08:00
e6c824e606 Test: Update tests to use new fixture instead of deprecated one (#7431)
### What problem does this PR solve?

Deprecate get_dataset_id_and_document_id fixture, use add_document
instead

### Type of change

- [x] Update test cases
2025-04-30 14:49:26 +08:00
e2b0bceb1b Feat: filler list by user change input (#7389)
### What problem does this PR solve?

filler list by user change input

![Recording2025-04-28163440-ezgif
com-video-to-gif-converter](https://github.com/user-attachments/assets/6ff2cfea-dea9-4293-b9a6-b4c61ab9a549)

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 14:48:41 +08:00
713c055e04 DOC: Added a UI tip for document parsing (#7430)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-04-30 13:10:13 +08:00
1fc52033ba Feat: Using IconFont as an additional icon library #3221 (#7427)
### What problem does this PR solve?
Feat: Using IconFont as an additional icon library #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 13:09:42 +08:00
ab27609a64 Fix: whole knowledge graph lost after removing any document in the knowledge base (#7151)
### What problem does this PR solve?

When you removed any document in a knowledge base using knowledge graph,
the graph's `removed_kwd` is set to "Y".
However, in the function `graphrag.utils.get_gaph`, `rebuild_graph`
method is passed and directly return `None` while `removed_kwd=Y`,
making residual part of the graph abandoned (but old entity data still
exist in db).

Besides, infinity instance actually pass deleting graph components'
`source_id` when removing document. It may cause wrong graph after
rebuild.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-30 09:43:17 +08:00
538a408608 Feat: Modify background color of Card #3221 (#7421)
### What problem does this PR solve?

Feat: Modify background color of Card #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-30 09:12:28 +08:00
093d280528 Feat: add Qwen3 and OpenAI o series (#7415)
### What problem does this PR solve?

Qwen3 and more LLMs.

Close #7296

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-29 18:26:29 +08:00
de166d0ff2 Feat: Add a language switch drop-down box to the top navigation bar #3221 (#7416)
### What problem does this PR solve?

Feat: Add a language switch drop-down box to the top navigation bar
#3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 18:20:46 +08:00
942b94fc3c feat: dataset filter by parsing status (#7404)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/5931

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 17:29:58 +08:00
77bb7750e9 Feat: Modify the segmented component style #3221 (#7409)
### What problem does this PR solve?

Feat: Modify the segmented component style #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 17:05:23 +08:00
78380fa181 Refa: http API create dataset and test cases (#7393)
### What problem does this PR solve?

This PR introduces Pydantic-based validation for the create dataset HTTP
API, improving code clarity and robustness. Key changes include:
1. Pydantic Validation
2. ​​Error Handling
3. Test Updates
4. Documentation

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Refactoring
2025-04-29 16:53:57 +08:00
c88e4b3fc0 Fix: improve recover_pending_tasks timeout (#7408)
### What problem does this PR solve?

Fix the redis lock will always timeout (change the logic order release
lock first)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-29 16:50:39 +08:00
552475dd5c Feat: Adjust the style of the home page #3221 (#7405)
### What problem does this PR solve?

Feat: Adjust the style of the home page #3321

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 15:32:50 +08:00
c69fbca24f fixed missing list input ref in query (#7375)
### What problem does this PR solve?

fixed missing list input ref in query

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-29 13:03:36 +08:00
5bb1c383ac Feat: Bind data to the agent module of the home page #3221 (#7385)
### What problem does this PR solve?

Feat: Bind data to the agent module of the home page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-29 09:50:54 +08:00
c7310f7fb2 Refa: similarity calculations. (#7381)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-04-28 19:17:11 +08:00
3a43043c8a Feat: Add support for OAuth2 and OpenID Connect (OIDC) authentication (#7379)
### What problem does this PR solve?

Add support for OAuth2 and OpenID Connect (OIDC) authentication,
allowing OAuth/OIDC authentication using the specified routes:
- `/login/<channel>`: Initiates the OAuth flow for the specified channel
- `/oauth/callback/<channel>`: Handles the OAuth callback after
successful authentication

The callback URL should be configured in your OAuth provider as:
```
https://your-app.com/oauth/callback/<channel>
```

For detailed instructions on configuring **service_conf.yaml.template**,
see: `./api/apps/auth/README.md#usage`.

- Related issues
#3495  

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-04-28 16:15:52 +08:00
dbfa859ca3 Knowledge graph no longer exists as a chunking method (#7382)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-04-28 15:58:20 +08:00
Qi
53c59c47a1 Fix:Update chat assistant with an empty dataset (#7354)
### What problem does this PR solve?

When updating a chat assistant using API,if the dataset attached by the
current chat assistant is not empty,setting dataset to
null("dataset_ids":[]) will cause update failure:'dataset_ids' can't be
empty

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-28 15:19:21 +08:00
af393b0003 Feat: Add AsyncTreeSelect component #3221 (#7377)
### What problem does this PR solve?

Feat: Add AsyncTreeSelect component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-28 14:58:33 +08:00
1a5608d0f8 Fix: Add title_tks for Pictures (#7365)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/7362

append title_tks
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-28 13:35:34 +08:00
23dcbc94ef feat: replace models of novita (#7360)
### What problem does this PR solve?

Replace models of novita

### Type of change

- [x] Other (please describe): Replace models of novita
2025-04-28 13:35:09 +08:00
af770c5ced perf: Optimize GraphRAG’s LOOP_PROMPT (#7356)
### What problem does this PR solve?

当前graphrag的LOOP_PROMPT,会导致模型输出Y之后,继续补充了实体和关系,比较浪费时间。参照[graph
rag](https://github.com/microsoft/graphrag/blob/main/graphrag/prompts/index/extract_graph.py)最新的代码,修改了LOOP_PROMPT,经过验证,修改后可以稳定的输出Y停止。

Currently, GraphRAG’s LOOP_PROMPT causes the model to keep appending
entities and relationships even after outputting “Y,” which wastes time.
Referring to the latest code in
[graphRAG](https://github.com/microsoft/graphrag/blob/main/graphrag/prompts/index/extract_graph.py),
I modified the LOOP_PROMPT, and after verification the updated prompt
reliably outputs “Y” and stops.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [x] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-04-28 13:31:04 +08:00
8ce5e69b2f Feat: Preview the file #3221 (#7355)
### What problem does this PR solve?

Feat: Preview the file #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-27 18:50:24 +08:00
1aa97600df Fix mcp server startup failure (#7329)
### What problem does this PR solve?
0.18.0 mcp server can not start with upgrade from 0.17.2 or new install
except rebuild all docker

Close #7321

mcp server can not start auto from docker :
2025-04-25 17:30:44,512 INFO 25 task_executor_2a9f3e2de99a_0 reported
heartbeat: {"name": "task_executor_2a9f3e2de99a_0", "now":
"2025-04-25T17:30:44.509+08:00", "boot_at":
"2025-04-25T16:43:33.038+08:00", "pending": 0, "lag": 0, "done": 0,
"failed": 0, "current": {}}
usage: server.py [-h] [--base_url BASE_URL] [--host HOST] [--port PORT]
                 [--mode MODE] [--api_key API_KEY]
server.py: error: unrecognized arguments:

problem:
server.py in docker start arguments not correct , so mcp server start
fail
reason:
```
1. docker-copose.yaml
     example  - --mcp-host-api-key="ragflow-12345678" is wrong.  do not add "" to key or it says:"api-key wrong"
2.docker file  entrypoint.sh  can not translate config to exec command , we need mapping file from host to docker
     - ./entrypoint.sh:/ragflow/entrypoint.sh
3.just add one code raw fix all probelm 
```
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Performance Improvement

---------

Co-authored-by: Yongteng Lei <yongtengrey@outlook.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-27 18:47:12 +08:00
969c596d4c Fix: tenant_id spelling error. (#7331)
### What problem does this PR solve?

In the generate_confirmation_token method, a spelling error was found
with 'tenent_id'. The correct spelling should be 'tenant_id'.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: shengliang xiao <shengliangxiao2024@gmail.com>
2025-04-27 17:34:13 +08:00
67b087019c Update Groq AI Model Config (#7335)
With current config will get error "Fail to access model(gemma-7b-it)
using this api key"
Since the model has been removed, according to Groq official document:
https://console.groq.com/docs/models

### Type of change

- [ x] Bug Fix (non-breaking change which fixes an issue)
2025-04-27 17:05:25 +08:00
6a45d93005 Feat: Batch operations on documents in a dataset #3221 (#7352)
### What problem does this PR solve?

Feat: Batch operations on documents in a dataset #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-27 17:00:41 +08:00
43e507d554 Updated RAPTOR-specific UI (#7348)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-04-27 16:49:14 +08:00
a4be6c50cf [BREAKING CHANGE] GET to POST: enhance document list capability (#7349)
### What problem does this PR solve?

Enhance capability of `list_docs`.

Breaking change: change method from `GET` to `POST`.

### Type of change

- [x] Refactoring
- [x] Enhancement with breaking change
2025-04-27 16:48:27 +08:00
5043143bc5 Feat: Create empty document. #3221 (#7343)
### What problem does this PR solve?

Feat: Create empty document. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-27 16:12:10 +08:00
bdebd1b2e3 Feat: Filter document by running status and file type. #3221 (#7340)
### What problem does this PR solve?
Feat: Filter document by running status and file type. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-27 14:39:05 +08:00
dadd8d9f94 DOC: Miscellaneous UI and editorial updates (#7324)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-04-27 11:44:08 +08:00
3da8776a3c Fix: Creating Knowledge Base Support Enter Key (#7258)
### What problem does this PR solve?


[https://github.com/infiniflow/ragflow/issues/7180](https://github.com/infiniflow/ragflow/issues/7180)
When creating a knowledge base, support the enter key
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-25 18:53:52 +08:00
3052006ba8 Feat: Save document metadata #3221 (#7323)
### What problem does this PR solve?

Feat: Save document metadata #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-25 18:38:15 +08:00
1662c7eda3 Feat: Markdown add image (#7124)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/6984

1. Markdown parser supports get pictures
2. For Native, when handling Markdown, it will handle images
3. improve merge and 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-25 18:35:28 +08:00
fef44a71c5 Feat: Save the configuration information of the knowledge base document #3221 (#7317)
### What problem does this PR solve?

Feat: Save the configuration information of the knowledge base document
#3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-25 17:31:28 +08:00
b271cc34b3 Fix: LLM generated tag issue. (#7301)
### What problem does this PR solve?
#7298

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-25 14:38:34 +08:00
eead838353 Fix pymysql interface error (#7295)
### What problem does this PR solve?

According to the
[[Rucongzhang](https://github.com/Rucongzhang)](https://github.com/infiniflow/ragflow/pull/7057#issuecomment-2827410047)
I added DB reconnection strategy in function `update_by_id`
2025-04-25 13:29:47 +08:00
02cc867c06 Feat: Display the document configuration dialog with shadcn #3221 (#7302)
### What problem does this PR solve?

Feat: Display the document configuration dialog with shadcn #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-25 11:15:44 +08:00
6e98cd311c Doc: Updated sharing behavior in the open-source editions. (#7293)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-04-25 09:21:33 +08:00
97a13ef1ab Fix: Qwen-vl-plus url error (#7281)
### What problem does this PR solve?

Fix Qwen-vl-* url error. #7277

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-25 09:20:10 +08:00
7e1464a950 Feat: Replace the logo of novita (#7287)
### What problem does this PR solve?

Replace the logo of novita

### Type of change

- [x] Other (please describe): Update logo
2025-04-24 21:20:36 +08:00
e6a4d6bcf0 DocsHow to disable user registration (#7265)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-04-24 18:02:32 +08:00
c8c3b756b0 Feat: Adds OpenSearch2.19.1 as the vector_database support (#7140)
### What problem does this PR solve?

This PR adds the support for latest OpenSearch2.19.1 as the store engine
& search engine option for RAGFlow.

### Main Benefit

1. OpenSearch2.19.1 is licensed under the [Apache v2.0 License] which is
much better than Elasticsearch
2. For search, OpenSearch2.19.1 supports full-text
search、vector_search、hybrid_search those are similar with Elasticsearch
on schema
3. For store, OpenSearch2.19.1 stores text、vector those are quite
simliar with Elasticsearch on schema

### Changes

- Support opensearch_python_connetor. I make a lot of adaptions since
the schema and api/method between ES and Opensearch differs in many
ways(especially the knn_search has a significant gap) :
rag/utils/opensearch_coon.py
- Support static config adaptions by changing:
conf/service_conf.yaml、api/settings.py、rag/settings.py
- Supprt some store&search schema changes between OpenSearch and ES:
conf/os_mapping.json
- Support OpenSearch python sdk : pyproject.toml
- Support docker config for OpenSearch2.19.1 :
docker/.env、docker/docker-compose-base.yml、docker/service_conf.yaml.template

### How to use
- I didn't change the priority that ES as the default doc/search engine.
Only if in docker/.env , we set DOC_ENGINE=${DOC_ENGINE:-opensearch}, it
will work.


### Others
Our team tested a lot of docs in our environment by using OpenSearch as
the vector database ,it works very well.
All the conifg for OpenSearch is necessary.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Yongteng Lei <yongtengrey@outlook.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-04-24 16:03:31 +08:00
9a8dda8fc7 Feat: Delete and rename files in the knowledge base #3221 (#7268)
### What problem does this PR solve?

Feat: Delete and rename files in the knowledge base #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-24 14:51:20 +08:00
ff442c48b5 Feat: Display document parsing status #3221 (#7241)
### What problem does this PR solve?

Feat: Display document parsing status #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-24 11:45:37 +08:00
216cd7474b fix: task_executor bug fix (#7253)
### What problem does this PR solve?

The lock is not released correctly when task_exectuor is abnormal

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-24 11:44:34 +08:00
2c62652ea8 <think> tag is missing. (#7256)
### What problem does this PR solve?

Some models force thinking, resulting in the absence of the think tag in
the returned content

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-24 11:44:10 +08:00
4e8fd73a20 chore: adds pre-commit (#7242)
### What problem does this PR solve?

Sometimes after we commit the code and open the PR the CI pipeline fails
in Ruff checks. Including a pre-commit we can identify this problem
early and avoid time loss.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [X] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-24 11:25:33 +08:00
19931cd9ed Fix: mcp server start (#7251)
### What problem does this PR solve?

Fix the entrypoint file from the docker container to solve #7249 

Here is the important part from the logs:
```
docker logs -f ragflow-server
...
usage: server.py [-h] [--base_url BASE_URL] [--host HOST] [--port PORT]
[--mode MODE] [--api_key API_KEY]
server.py: error: unrecognized arguments:
...
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-24 10:52:12 +08:00
0b460a9a12 Fix: improve retrieval API (#6744)
### What problem does this PR solve?

Get the highlight parameter from the request to keep consistency with
the document

> 
- Method: POST
- URL: `/api/v1/retrieval`
- Headers:
  - `'content-Type: application/json'`
  - `'Authorization: Bearer <YOUR_API_KEY>'`
- Body:
  - `"question"`: `string`  
  - `"dataset_ids"`: `list[string]`  
  - `"document_ids"`: `list[string]`
  - `"page"`: `integer`  
  - `"page_size"`: `integer`  
  - `"similarity_threshold"`: `float`  
  - `"vector_similarity_weight"`: `float`  
  - `"top_k"`: `integer`  
  - `"rerank_id"`: `string`  
  - `"keyword"`: `boolean`  
  - `"highlight"`: `boolean`
>

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-24 09:29:00 +08:00
4e31eea55f Fix/mcp doc (#7239)
### What problem does this PR solve?

This PR fixes an issue with the MCP server configuration in RAGFlow's
Docker deployment where:
1. Incorrect parameter naming (`--mcp--host-api-key` with double
hyphens) caused server startup failures
2. Port binding conflicts occurred due to unexposed MCP ports in Docker
3. Inconsistent host addressing between `0.0.0.0` and `127.0.0.1` led to
connectivity issues

The changes ensure proper MCP server initialization and reliable
inter-service communication.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

### Key Changes

1. **Parameter Correction**:
   - Fixed `--mcp--host-api-key` → `--mcp-host-api-key`
2025-04-24 09:20:26 +08:00
1366712560 Feat: Deleting files in batches. #3221 (#7234)
### What problem does this PR solve?
Feat: Deleting files in batches. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-23 19:03:02 +08:00
51d9bde5a3 Feat: Create a folder #3221 (#7228)
### What problem does this PR solve?

Feat: Create a folder #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-23 15:21:09 +08:00
414 changed files with 18350 additions and 5308 deletions

3
.gitattributes vendored
View File

@ -1 +1,2 @@
*.sh text eol=lf
*.sh text eol=lf
docker/entrypoint.sh text eol=lf executable

View File

@ -15,6 +15,8 @@ on:
- 'docs/**'
- '*.md'
- '*.mdx'
schedule:
- cron: '0 16 * * *' # This schedule runs every 16:00:00Z(00:00:00+08:00)
# https://docs.github.com/en/actions/using-jobs/using-concurrency
concurrency:
@ -48,9 +50,9 @@ jobs:
# https://github.com/astral-sh/ruff-action
- name: Static check with Ruff
uses: astral-sh/ruff-action@v2
uses: astral-sh/ruff-action@v3
with:
version: ">=0.8.2"
version: ">=0.11.x"
args: "check"
- name: Build ragflow:nightly-slim
@ -86,7 +88,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
cd sdk/python && uv sync --python 3.10 --group test --frozen && uv pip install . && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
- name: Run frontend api tests against Elasticsearch
run: |
@ -96,7 +98,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
cd sdk/python && uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
- name: Run http api tests against Elasticsearch
run: |
@ -106,7 +108,12 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_http_api && pytest -s --tb=short -m "not slow"
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
cd sdk/python && uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_http_api && pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL}
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed
@ -125,7 +132,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
cd sdk/python && uv sync --python 3.10 --group test --frozen && uv pip install . && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
- name: Run frontend api tests against Infinity
run: |
@ -135,7 +142,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
cd sdk/python && uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
- name: Run http api tests against Infinity
run: |
@ -145,7 +152,12 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_http_api && DOC_ENGINE=infinity pytest -s --tb=short -m "not slow"
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
cd sdk/python && uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_http_api && DOC_ENGINE=infinity pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL}
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed

2
.gitignore vendored
View File

@ -42,3 +42,5 @@ nltk_data/
# Exclude hash-like temporary files like 9b5ad71b2ce5302211f9c61530b329a4922fc6a4
*[0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f]*
.lh/
.venv
docker/data

19
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,19 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.6.0
hooks:
- id: check-yaml
- id: check-json
- id: end-of-file-fixer
- id: trailing-whitespace
- id: check-case-conflict
- id: check-merge-conflict
- id: mixed-line-ending
- id: check-symlinks
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.6
hooks:
- id: ruff
args: [ --fix ]
- id: ruff-format

View File

@ -59,7 +59,8 @@ RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
apt install -y libatk-bridge2.0-0 && \
apt install -y libpython3-dev libgtk-4-1 libnss3 xdg-utils libgbm-dev && \
apt install -y libjemalloc-dev && \
apt install -y python3-pip pipx nginx unzip curl wget git vim less
apt install -y python3-pip pipx nginx unzip curl wget git vim less && \
apt install -y ghostscript
RUN if [ "$NEED_MIRROR" == "1" ]; then \
pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple && \
@ -199,6 +200,7 @@ COPY graphrag graphrag
COPY agentic_reasoning agentic_reasoning
COPY pyproject.toml uv.lock ./
COPY mcp mcp
COPY plugin plugin
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template
COPY docker/entrypoint.sh ./

View File

@ -33,6 +33,7 @@ ADD ./rag ./rag
ADD ./requirements.txt ./requirements.txt
ADD ./agent ./agent
ADD ./graphrag ./graphrag
ADD ./plugin ./plugin
RUN dnf install -y openmpi openmpi-devel python3-openmpi
ENV C_INCLUDE_PATH /usr/include/openmpi-x86_64:$C_INCLUDE_PATH

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -137,8 +137,10 @@ releases! 🌟
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> If you have not installed Docker on your local machine (Windows, Mac, or Linux),
> see [Install Docker Engine](https://docs.docker.com/engine/install/).
- [gVisor](https://gvisor.dev/docs/user_guide/install/): Required only if you intend to use the code executor (sandbox) feature of RAGFlow.
> [!TIP]
> If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Start up the server
@ -176,7 +178,7 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.18.0-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.18.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` for the full edition `v0.18.0`.
> The command below downloads the `v0.19.0-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.19.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` for the full edition `v0.19.0`.
```bash
$ cd ragflow/docker
@ -189,8 +191,8 @@ releases! 🌟
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -296,7 +298,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
1. Install uv, or skip this step if it is already installed:
```bash
pipx install uv
pipx install uv pre-commit
```
2. Clone the source code and install Python dependencies:
@ -305,6 +307,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
@ -316,7 +320,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
Add the following line to `/etc/hosts` to resolve all hosts specified in **docker/.env** to `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. If you cannot access HuggingFace, set the `HF_ENDPOINT` environment variable to use a mirror site:
@ -325,7 +329,16 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export HF_ENDPOINT=https://hf-mirror.com
```
5. Launch backend service:
5. If your operating system does not have jemalloc, please install it as follows:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. Launch backend service:
```bash
source .venv/bin/activate
@ -333,12 +346,14 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
bash docker/launch_backend_service.sh
```
6. Install frontend dependencies:
7. Install frontend dependencies:
```bash
cd web
npm install
```
7. Launch frontend service:
8. Launch frontend service:
```bash
npm run dev
@ -348,6 +363,13 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Stop RAGFlow front-end and back-end service after development is complete:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Documentation
- [Quickstart](https://ragflow.io/docs/dev/)
@ -371,4 +393,4 @@ See the [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214
## 🙌 Contributing
RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community.
If you would like to be a part, review our [Contribution Guidelines](./CONTRIBUTING.md) first.
If you would like to be a part, review our [Contribution Guidelines](https://ragflow.io/docs/dev/contributing) first.

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -132,6 +132,10 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
- [gVisor](https://gvisor.dev/docs/user_guide/install/): Hanya diperlukan jika Anda ingin menggunakan fitur eksekutor kode (sandbox) dari RAGFlow.
> [!TIP]
> Jika Anda belum menginstal Docker di komputer lokal Anda (Windows, Mac, atau Linux), lihat [Install Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Menjalankan Server
@ -169,7 +173,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.18.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.18.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0 untuk edisi lengkap v0.18.0.
> Perintah di bawah ini mengunduh edisi v0.19.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.19.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0 untuk edisi lengkap v0.19.0.
```bash
$ cd ragflow/docker
@ -182,8 +186,8 @@ $ docker compose -f docker-compose.yml up -d
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -262,7 +266,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
1. Instal uv, atau lewati langkah ini jika sudah terinstal:
```bash
pipx install uv
pipx install uv pre-commit
```
2. Clone kode sumber dan instal dependensi Python:
@ -271,6 +275,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Jalankan aplikasi yang diperlukan (MinIO, Elasticsearch, Redis, dan MySQL) menggunakan Docker Compose:
@ -282,7 +288,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
Tambahkan baris berikut ke `/etc/hosts` untuk memetakan semua host yang ditentukan di **conf/service_conf.yaml** ke `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. Jika Anda tidak dapat mengakses HuggingFace, atur variabel lingkungan `HF_ENDPOINT` untuk menggunakan situs mirror:
@ -291,7 +297,16 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export HF_ENDPOINT=https://hf-mirror.com
```
5. Jalankan aplikasi backend:
5. Jika sistem operasi Anda tidak memiliki jemalloc, instal sebagai berikut:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. Jalankan aplikasi backend:
```bash
source .venv/bin/activate
@ -299,12 +314,14 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
bash docker/launch_backend_service.sh
```
6. Instal dependensi frontend:
7. Instal dependensi frontend:
```bash
cd web
npm install
```
7. Jalankan aplikasi frontend:
8. Jalankan aplikasi frontend:
```bash
npm run dev
@ -314,6 +331,14 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Hentikan layanan front-end dan back-end RAGFlow setelah pengembangan selesai:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Dokumentasi
- [Quickstart](https://ragflow.io/docs/dev/)
@ -337,4 +362,4 @@ Lihat [Roadmap RAGFlow 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🙌 Kontribusi
RAGFlow berkembang melalui kolaborasi open-source. Dalam semangat ini, kami menerima kontribusi dari komunitas.
Jika Anda ingin berpartisipasi, tinjau terlebih dahulu [Panduan Kontribusi](./CONTRIBUTING.md).
Jika Anda ingin berpartisipasi, tinjau terlebih dahulu [Panduan Kontribusi](https://ragflow.io/docs/dev/contributing).

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -112,7 +112,10 @@
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> ローカルマシンWindows、Mac、または Linuxに Docker をインストールしていない場合は、[Docker Engine のインストール](https://docs.docker.com/engine/install/) を参照してください
- [gVisor](https://gvisor.dev/docs/user_guide/install/): RAGFlowのコード実行サンドボックス機能を利用する場合のみ必要です
> [!TIP]
> ローカルマシンWindows、Mac、または Linuxに Docker をインストールしていない場合は、[Docker Engine のインストール](https://docs.docker.com/engine/install/) を参照してください。
### 🚀 サーバーを起動
@ -149,7 +152,7 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.18.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.18.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.18.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.19.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.19.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.19.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0 と設定します。
```bash
$ cd ragflow/docker
@ -162,8 +165,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -258,7 +261,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
1. uv をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
```bash
pipx install uv
pipx install uv pre-commit
```
2. ソースコードをクローンし、Python の依存関係をインストールする:
@ -267,6 +270,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Docker Compose を使用して依存サービスMinIO、Elasticsearch、Redis、MySQLを起動する:
@ -278,7 +283,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
`/etc/hosts` に以下の行を追加して、**conf/service_conf.yaml** に指定されたすべてのホストを `127.0.0.1` に解決します:
```
127.0.0.1 es01 infinity mysql minio redis
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. HuggingFace にアクセスできない場合は、`HF_ENDPOINT` 環境変数を設定してミラーサイトを使用してください:
@ -287,7 +292,16 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export HF_ENDPOINT=https://hf-mirror.com
```
5. バックエンドサービスを起動する:
5. オペレーティングシステムにjemallocがない場合は、次のようにインストールします:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. バックエンドサービスを起動する:
```bash
source .venv/bin/activate
@ -295,12 +309,14 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
bash docker/launch_backend_service.sh
```
6. フロントエンドの依存関係をインストールする:
7. フロントエンドの依存関係をインストールする:
```bash
cd web
npm install
```
7. フロントエンドサービスを起動する:
8. フロントエンドサービスを起動する:
```bash
npm run dev
@ -310,6 +326,13 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. 開発が完了したら、RAGFlow のフロントエンド サービスとバックエンド サービスを停止します:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 ドキュメンテーション
- [Quickstart](https://ragflow.io/docs/dev/)
@ -332,4 +355,4 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🙌 コントリビュート
RAGFlow はオープンソースのコラボレーションによって発展してきました。この精神に基づき、私たちはコミュニティからの多様なコントリビュートを受け入れています。 参加を希望される方は、まず [コントリビューションガイド](./CONTRIBUTING.md)をご覧ください。
RAGFlow はオープンソースのコラボレーションによって発展してきました。この精神に基づき、私たちはコミュニティからの多様なコントリビュートを受け入れています。 参加を希望される方は、まず [コントリビューションガイド](https://ragflow.io/docs/dev/contributing)をご覧ください。

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -112,7 +112,10 @@
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> 로컬 머신(Windows, Mac, Linux)에 Docker가 설치되지 않은 경우, [Docker 엔진 설치](<(https://docs.docker.com/engine/install/)>)를 참조하세요.
- [gVisor](https://gvisor.dev/docs/user_guide/install/): RAGFlow의 코드 실행기(샌드박스) 기능을 사용하려는 경우에만 필요합니다.
> [!TIP]
> 로컬 머신(Windows, Mac, Linux)에 Docker가 설치되지 않은 경우, [Docker 엔진 설치](<(https://docs.docker.com/engine/install/)>)를 참조하세요.
### 🚀 서버 시작하기
@ -149,7 +152,7 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.18.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.18.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.18.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.19.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.19.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.19.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0로 설정합니다.
```bash
$ cd ragflow/docker
@ -162,8 +165,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -257,7 +260,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
1. uv를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다:
```bash
pipx install uv
pipx install uv pre-commit
```
2. 소스 코드를 클론하고 Python 의존성을 설치합니다:
@ -266,6 +269,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. Docker Compose를 사용하여 의존 서비스(MinIO, Elasticsearch, Redis 및 MySQL)를 시작합니다:
@ -277,7 +282,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
`/etc/hosts` 에 다음 줄을 추가하여 **conf/service_conf.yaml** 에 지정된 모든 호스트를 `127.0.0.1` 로 해결합니다:
```
127.0.0.1 es01 infinity mysql minio redis
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. HuggingFace에 접근할 수 없는 경우, `HF_ENDPOINT` 환경 변수를 설정하여 미러 사이트를 사용하세요:
@ -286,7 +291,16 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export HF_ENDPOINT=https://hf-mirror.com
```
5. 백엔드 서비스를 시작합니다:
5. 만약 운영 체제에 jemalloc이 없으면 다음 방식으로 설치하세요:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. 백엔드 서비스를 시작합니다:
```bash
source .venv/bin/activate
@ -294,12 +308,14 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
bash docker/launch_backend_service.sh
```
6. 프론트엔드 의존성을 설치합니다:
7. 프론트엔드 의존성을 설치합니다:
```bash
cd web
npm install
```
7. 프론트엔드 서비스를 시작합니다:
8. 프론트엔드 서비스를 시작합니다:
```bash
npm run dev
@ -309,6 +325,14 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. 개발이 완료된 후 RAGFlow 프론트엔드 및 백엔드 서비스를 중지합니다.
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 문서
- [Quickstart](https://ragflow.io/docs/dev/)
@ -331,4 +355,4 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🙌 컨트리뷰션
RAGFlow는 오픈소스 협업을 통해 발전합니다. 이러한 정신을 바탕으로, 우리는 커뮤니티의 다양한 기여를 환영합니다. 참여하고 싶으시다면, 먼저 [가이드라인](./CONTRIBUTING.md)을 검토해 주세요.
RAGFlow는 오픈소스 협업을 통해 발전합니다. 이러한 정신을 바탕으로, 우리는 커뮤니티의 다양한 기여를 환영합니다. 참여하고 싶으시다면, 먼저 [가이드라인](https://ragflow.io/docs/dev/contributing)을 검토해 주세요.

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -132,7 +132,10 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
- RAM >= 16 GB
- Disco >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> Se você não instalou o Docker na sua máquina local (Windows, Mac ou Linux), veja [Instalar Docker Engine](https://docs.docker.com/engine/install/).
- [gVisor](https://gvisor.dev/docs/user_guide/install/): Necessário apenas se você pretende usar o recurso de executor de código (sandbox) do RAGFlow.
> [!TIP]
> Se você não instalou o Docker na sua máquina local (Windows, Mac ou Linux), veja [Instalar Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Iniciar o servidor
@ -169,7 +172,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.18.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.18.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` para a edição completa `v0.18.0`.
> O comando abaixo baixa a edição `v0.19.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.19.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` para a edição completa `v0.19.0`.
```bash
$ cd ragflow/docker
@ -182,8 +185,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.18.0 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.18.0-slim | ~2 | ❌ | Lançamento estável |
| v0.19.0 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.19.0-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
@ -281,7 +284,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
1. Instale o `uv`, ou pule esta etapa se ele já estiver instalado:
```bash
pipx install uv
pipx install uv pre-commit
```
2. Clone o código-fonte e instale as dependências Python:
@ -290,6 +293,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # instala os módulos Python dependentes do RAGFlow
uv run download_deps.py
pre-commit install
```
3. Inicie os serviços dependentes (MinIO, Elasticsearch, Redis e MySQL) usando Docker Compose:
@ -301,7 +306,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
Adicione a seguinte linha ao arquivo `/etc/hosts` para resolver todos os hosts especificados em **docker/.env** para `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. Se não conseguir acessar o HuggingFace, defina a variável de ambiente `HF_ENDPOINT` para usar um site espelho:
@ -310,7 +315,16 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export HF_ENDPOINT=https://hf-mirror.com
```
5. Lance o serviço de back-end:
5. Se o seu sistema operacional não tiver jemalloc, instale-o da seguinte maneira:
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum instalar jemalloc
```
6. Lance o serviço de back-end:
```bash
source .venv/bin/activate
@ -318,14 +332,14 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
bash docker/launch_backend_service.sh
```
6. Instale as dependências do front-end:
7. Instale as dependências do front-end:
```bash
cd web
npm install
```
7. Lance o serviço de front-end:
8. Lance o serviço de front-end:
```bash
npm run dev
@ -335,6 +349,13 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Pare os serviços de front-end e back-end do RAGFlow após a conclusão do desenvolvimento:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Documentação
- [Quickstart](https://ragflow.io/docs/dev/)
@ -358,4 +379,4 @@ Veja o [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🙌 Contribuindo
O RAGFlow prospera por meio da colaboração de código aberto. Com esse espírito, abraçamos contribuições diversas da comunidade.
Se você deseja fazer parte, primeiro revise nossas [Diretrizes de Contribuição](./CONTRIBUTING.md).
Se você deseja fazer parte, primeiro revise nossas [Diretrizes de Contribuição](https://ragflow.io/docs/dev/contributing).

View File

@ -21,7 +21,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -111,7 +111,10 @@
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> 如果你並沒有在本機安裝 DockerWindows、Mac或 Linux, 可以參考文件 [Install Docker Engine](https://docs.docker.com/engine/install/) 自行安裝。
- [gVisor](https://gvisor.dev/docs/user_guide/install/): 僅在您打算使用 RAGFlow 的代碼執行器(沙箱)功能時才需要安裝。
> [!TIP]
> 如果你並沒有在本機安裝 DockerWindows、Mac或 Linux, 可以參考文件 [Install Docker Engine](https://docs.docker.com/engine/install/) 自行安裝。
### 🚀 啟動伺服器
@ -148,7 +151,7 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.18.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.18.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` 來下載 RAGFlow 鏡像的 `v0.18.0` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.19.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.19.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` 來下載 RAGFlow 鏡像的 `v0.19.0` 完整發行版。
```bash
$ cd ragflow/docker
@ -161,8 +164,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -269,7 +272,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
1. 安裝 uv。如已安裝可跳過此步驟
```bash
pipx install uv
pipx install uv pre-commit
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
@ -279,6 +282,8 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. 透過 Docker Compose 啟動依賴的服務MinIO, Elasticsearch, Redis, and MySQL
@ -290,7 +295,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
在 `/etc/hosts` 中加入以下程式碼,將 **conf/service_conf.yaml** 檔案中的所有 host 位址都解析為 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. 如果無法存取 HuggingFace可以把環境變數 `HF_ENDPOINT` 設為對應的鏡像網站:
@ -299,24 +304,34 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
export HF_ENDPOINT=https://hf-mirror.com
```
5.啟動後端服務
『`bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
5. 如果你的操作系统没有 jemalloc请按照如下方式安装
```
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. 安裝前端依賴
『`bash
cd web
npm install
```
6. 啟動後端服務
7. 啟動前端服務:
`bash
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. 安裝前端依賴:
```bash
cd web
npm install
```
8. 啟動前端服務:
```bash
npm run dev
```
以下界面說明系統已成功啟動_
@ -324,6 +339,13 @@ npm install
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
```
9. 開發完成後停止 RAGFlow 前端和後端服務:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 技術文檔
- [Quickstart](https://ragflow.io/docs/dev/)
@ -346,7 +368,7 @@ npm install
## 🙌 貢獻指南
RAGFlow 只有透過開源協作才能蓬勃發展。秉持這項精神,我們歡迎來自社區的各種貢獻。如果您有意參與其中,請查閱我們的 [貢獻者指南](./CONTRIBUTING.md) 。
RAGFlow 只有透過開源協作才能蓬勃發展。秉持這項精神,我們歡迎來自社區的各種貢獻。如果您有意參與其中,請查閱我們的 [貢獻者指南](https://ragflow.io/docs/dev/contributing) 。
## 🤝 商務合作

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.19.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.19.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -112,7 +112,10 @@
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> 如果你并没有在本机安装 DockerWindows、Mac或者 Linux, 可以参考文档 [Install Docker Engine](https://docs.docker.com/engine/install/) 自行安装。
- [gVisor](https://gvisor.dev/docs/user_guide/install/): 仅在你打算使用 RAGFlow 的代码执行器(沙箱)功能时才需要安装。
> [!TIP]
> 如果你并没有在本机安装 DockerWindows、Mac或者 Linux, 可以参考文档 [Install Docker Engine](https://docs.docker.com/engine/install/) 自行安装。
### 🚀 启动服务器
@ -149,7 +152,7 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.18.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.18.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` 来下载 RAGFlow 镜像的 `v0.18.0` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.19.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.19.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0` 来下载 RAGFlow 镜像的 `v0.19.0` 完整发行版。
```bash
$ cd ragflow/docker
@ -162,8 +165,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| v0.19.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.19.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -270,7 +273,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
1. 安装 uv。如已经安装可跳过本步骤
```bash
pipx install uv
pipx install uv pre-commit
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
@ -280,6 +283,8 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```
3. 通过 Docker Compose 启动依赖的服务MinIO, Elasticsearch, Redis, and MySQL
@ -291,7 +296,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
在 `/etc/hosts` 中添加以下代码,目的是将 **conf/service_conf.yaml** 文件中的所有 host 地址都解析为 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. 如果无法访问 HuggingFace可以把环境变量 `HF_ENDPOINT` 设成相应的镜像站点:
@ -299,7 +304,16 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
export HF_ENDPOINT=https://hf-mirror.com
```
5. 启动后端服务
5. 如果你的操作系统没有 jemalloc请按照如下方式安装
```bash
# ubuntu
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
```
6. 启动后端服务:
```bash
source .venv/bin/activate
@ -307,12 +321,14 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
bash docker/launch_backend_service.sh
```
6. 安装前端依赖:
7. 安装前端依赖:
```bash
cd web
npm install
```
7. 启动前端服务:
8. 启动前端服务:
```bash
npm run dev
@ -321,12 +337,14 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
_以下界面说明系统已经成功启动_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
8. 开发完成后停止 RAGFlow 服务
停止 RAGFlow 前端和后端服务:
9. 开发完成后停止 RAGFlow 前端和后端服务:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 技术文档
- [Quickstart](https://ragflow.io/docs/dev/)
@ -349,7 +367,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
## 🙌 贡献指南
RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的 [贡献者指南](./CONTRIBUTING.md) 。
RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的 [贡献者指南](https://ragflow.io/docs/dev/contributing) 。
## 🤝 商务合作

View File

@ -17,7 +17,6 @@ import logging
import json
from copy import deepcopy
from functools import partial
import pandas as pd
from agent.component import component_class
@ -167,7 +166,10 @@ class Canvas:
return n["data"]["name"]
return ""
def run(self, **kwargs):
def run(self, running_hint_text = "is running...🕞", **kwargs):
if not running_hint_text or not isinstance(running_hint_text, str):
running_hint_text = "is running...🕞"
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
@ -209,7 +211,7 @@ class Canvas:
if c not in waiting:
waiting.append(c)
continue
yield "*'{}'* is running...🕞".format(self.get_component_name(c))
yield "*'{}'* {}".format(self.get_component_name(c), running_hint_text)
if cpn.component_name.lower() == "iteration":
st_cpn = cpn.get_start()
@ -362,4 +364,7 @@ class Canvas:
return self.components["begin"]["obj"]._param.query
def get_component_input_elements(self, cpnnm):
return self.components[cpnnm]["obj"].get_input_elements()
return self.components[cpnnm]["obj"].get_input_elements()
def set_component_infor(self, cpn_id, infor):
self.components[cpn_id]["obj"].set_infor(infor)

View File

@ -50,6 +50,7 @@ from .template import Template, TemplateParam
from .email import Email, EmailParam
from .iteration import Iteration, IterationParam
from .iterationitem import IterationItem, IterationItemParam
from .code import Code, CodeParam
def component_class(class_name):
@ -129,5 +130,7 @@ __all__ = [
"TemplateParam",
"Email",
"EmailParam",
"Code",
"CodeParam",
"component_class"
]

View File

@ -19,7 +19,7 @@ import json
import os
import logging
from functools import partial
from typing import Tuple, Union
from typing import Any, Tuple, Union
import pandas as pd
@ -34,6 +34,7 @@ _IS_RAW_CONF = "_is_raw_conf"
class ComponentParamBase(ABC):
def __init__(self):
self.output_var_name = "output"
self.infor_var_name = "infor"
self.message_history_window_size = 22
self.query = []
self.inputs = []
@ -462,6 +463,35 @@ class ComponentBase(ABC):
def set_output(self, v):
setattr(self._param, self._param.output_var_name, v)
def set_infor(self, v):
setattr(self._param, self._param.infor_var_name, v)
def _fetch_outputs_from(self, sources: list[dict[str, Any]]) -> list[pd.DataFrame]:
outs = []
for q in sources:
if q.get("component_id"):
if "@" in q["component_id"] and q["component_id"].split("@")[0].lower().find("begin") >= 0:
cpn_id, key = q["component_id"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
outs.append(pd.DataFrame([{"content": p.get("value", "")}]))
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
if q["component_id"].lower().find("answer") == 0:
txt = []
for r, c in self._canvas.history[::-1][:self._param.message_history_window_size][::-1]:
txt.append(f"{r.upper()}:{c}")
txt = "\n".join(txt)
outs.append(pd.DataFrame([{"content": txt}]))
continue
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
elif q.get("value"):
outs.append(pd.DataFrame([{"content": q["value"]}]))
return outs
def get_input(self):
if self._param.debug_inputs:
return pd.DataFrame([{"content": v["value"]} for v in self._param.debug_inputs if v.get("value")])
@ -475,37 +505,24 @@ class ComponentBase(ABC):
if self._param.query:
self._param.inputs = []
outs = []
for q in self._param.query:
if q.get("component_id"):
if q["component_id"].split("@")[0].lower().find("begin") >= 0:
cpn_id, key = q["component_id"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
outs.append(pd.DataFrame([{"content": p.get("value", "")}]))
self._param.inputs.append({"component_id": q["component_id"],
"content": p.get("value", "")})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
outs = self._fetch_outputs_from(self._param.query)
if q["component_id"].lower().find("answer") == 0:
txt = []
for r, c in self._canvas.history[::-1][:self._param.message_history_window_size][::-1]:
txt.append(f"{r.upper()}:{c}")
txt = "\n".join(txt)
self._param.inputs.append({"content": txt, "component_id": q["component_id"]})
outs.append(pd.DataFrame([{"content": txt}]))
continue
for out in outs:
records = out.to_dict("records")
content: str
if len(records) > 1:
content = "\n".join(
[str(d["content"]) for d in records]
)
else:
content = records[0]["content"]
self._param.inputs.append({
"component_id": records[0].get("component_id"),
"content": content
})
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
self._param.inputs.append({"component_id": q["component_id"],
"content": "\n".join(
[str(d["content"]) for d in outs[-1].to_dict('records')])})
elif q.get("value"):
self._param.inputs.append({"component_id": None, "content": q["value"]})
outs.append(pd.DataFrame([{"content": q["value"]}]))
if outs:
df = pd.concat(outs, ignore_index=True)
if "content" in df:

View File

@ -85,6 +85,8 @@ class Categorize(Generate, ABC):
input = self.get_input()
input = " - ".join(input["content"]) if "content" in input else ""
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
self._canvas.set_component_infor(self._id, {"prompt":self._param.get_prompt(input),"messages": [{"role": "user", "content": "\nCategory: "}],"conf": self._param.gen_conf()})
ans = chat_mdl.chat(self._param.get_prompt(input), [{"role": "user", "content": "\nCategory: "}],
self._param.gen_conf())
logging.debug(f"input: {input}, answer: {str(ans)}")

138
agent/component/code.py Normal file
View File

@ -0,0 +1,138 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
from abc import ABC
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field, field_validator
from agent.component.base import ComponentBase, ComponentParamBase
from api import settings
class Language(str, Enum):
PYTHON = "python"
NODEJS = "nodejs"
class CodeExecutionRequest(BaseModel):
code_b64: str = Field(..., description="Base64 encoded code string")
language: Language = Field(default=Language.PYTHON, description="Programming language")
arguments: Optional[dict] = Field(default={}, description="Arguments")
@field_validator("code_b64")
@classmethod
def validate_base64(cls, v: str) -> str:
try:
base64.b64decode(v, validate=True)
return v
except Exception as e:
raise ValueError(f"Invalid base64 encoding: {str(e)}")
@field_validator("language", mode="before")
@classmethod
def normalize_language(cls, v) -> str:
if isinstance(v, str):
low = v.lower()
if low in ("python", "python3"):
return "python"
elif low in ("javascript", "nodejs"):
return "nodejs"
raise ValueError(f"Unsupported language: {v}")
class CodeParam(ComponentParamBase):
"""
Define the code sandbox component parameters.
"""
def __init__(self):
super().__init__()
self.lang = "python"
self.script = ""
self.arguments = []
self.address = f"http://{settings.SANDBOX_HOST}:9385/run"
self.enable_network = True
def check(self):
self.check_valid_value(self.lang, "Support languages", ["python", "python3", "nodejs", "javascript"])
self.check_defined_type(self.enable_network, "Enable network", ["bool"])
class Code(ComponentBase, ABC):
component_name = "Code"
def _run(self, history, **kwargs):
arguments = {}
for input in self._param.arguments:
if "@" in input["component_id"]:
component_id = input["component_id"].split("@")[0]
refered_component_key = input["component_id"].split("@")[1]
refered_component = self._canvas.get_component(component_id)["obj"]
for param in refered_component._param.query:
if param["key"] == refered_component_key:
if "value" in param:
arguments[input["name"]] = param["value"]
else:
cpn = self._canvas.get_component(input["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
arguments[input["name"]] = self._canvas.get_history(1)[0]["content"]
continue
_, out = cpn.output(allow_partial=False)
if not out.empty:
arguments[input["name"]] = "\n".join(out["content"])
return self._execute_code(
language=self._param.lang,
code=self._param.script,
arguments=arguments,
address=self._param.address,
enable_network=self._param.enable_network,
)
def _execute_code(self, language: str, code: str, arguments: dict, address: str, enable_network: bool):
import requests
try:
code_b64 = self._encode_code(code)
code_req = CodeExecutionRequest(code_b64=code_b64, language=language, arguments=arguments).model_dump()
except Exception as e:
return Code.be_output("**Error**: construct code request error: " + str(e))
try:
resp = requests.post(url=address, json=code_req, timeout=10)
body = resp.json()
if body:
stdout = body.get("stdout")
stderr = body.get("stderr")
return Code.be_output(stdout or stderr)
else:
return Code.be_output("**Error**: There is no response from sanbox")
except Exception as e:
return Code.be_output("**Error**: Internal error in sanbox: " + str(e))
def _encode_code(self, code: str) -> str:
return base64.b64encode(code.encode("utf-8")).decode("utf-8")
def get_input_elements(self):
elements = []
for input in self._param.arguments:
cpn_id = input["component_id"]
elements.append({"key": cpn_id, "name": input["name"]})
return elements

View File

@ -61,7 +61,7 @@ class ExeSQL(Generate, ABC):
component_name = "ExeSQL"
def _refactor(self, ans):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
match = re.search(r"```sql\s*(.*?)\s*```", ans, re.DOTALL)
if match:
ans = match.group(1) # Query content

View File

@ -16,15 +16,29 @@
import json
import re
from functools import partial
from typing import Any
import pandas as pd
from api.db import LLMType
from api.db.services.conversation_service import structure_answer
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from plugin import GlobalPluginManager
from plugin.llm_tool_plugin import llm_tool_metadata_to_openai_tool
from rag.llm.chat_model import ToolCallSession
from rag.prompts import message_fit_in
class LLMToolPluginCallSession(ToolCallSession):
def tool_call(self, name: str, arguments: dict[str, Any]) -> str:
tool = GlobalPluginManager.get_llm_tool_by_name(name)
if tool is None:
raise ValueError(f"LLM tool {name} does not exist")
return tool().invoke(**arguments)
class GenerateParam(ComponentParamBase):
"""
Define the Generate component parameters.
@ -41,6 +55,7 @@ class GenerateParam(ComponentParamBase):
self.frequency_penalty = 0
self.cite = True
self.parameters = []
self.llm_enabled_tools = []
def check(self):
self.check_decimal_float(self.temperature, "[Generate] Temperature")
@ -133,6 +148,15 @@ class Generate(ComponentBase):
def _run(self, history, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
if len(self._param.llm_enabled_tools) > 0:
tools = GlobalPluginManager.get_llm_tools_by_names(self._param.llm_enabled_tools)
chat_mdl.bind_tools(
LLMToolPluginCallSession(),
[llm_tool_metadata_to_openai_tool(t.get_metadata()) for t in tools]
)
prompt = self._param.prompt
retrieval_res = []
@ -200,8 +224,8 @@ class Generate(ComponentBase):
if len(msg) < 2:
msg.append({"role": "user", "content": "Output: "})
ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
self._canvas.set_component_infor(self._id, {"prompt":msg[0]["content"],"messages": msg[1:],"conf": self._param.gen_conf()})
if self._param.cite and "chunks" in retrieval_res.columns:
res = self.set_cite(retrieval_res, ans)
return pd.DataFrame([res])
@ -234,7 +258,7 @@ class Generate(ComponentBase):
if self._param.cite and "chunks" in retrieval_res.columns:
res = self.set_cite(retrieval_res, answer)
yield res
self._canvas.set_component_infor(self._id, {"prompt":msg[0]["content"],"messages": msg[1:],"conf": self._param.gen_conf()})
self.set_output(Generate.be_output(res))
def debug(self, **kwargs):

View File

@ -51,13 +51,19 @@ class KeywordExtract(Generate, ABC):
def _run(self, history, **kwargs):
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
if hasattr(query, "to_dict") and "content" in query:
query = ", ".join(map(str, query["content"].dropna()))
else:
query = str(query)
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
self._canvas.set_component_infor(self._id, {"prompt":self._param.get_prompt(),"messages": [{"role": "user", "content": query}],"conf": self._param.gen_conf()})
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": query}],
self._param.gen_conf())
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r".*keyword:", "", ans).strip()
logging.debug(f"ans: {ans}")
return KeywordExtract.be_output(ans)

View File

@ -15,6 +15,7 @@
#
import json
import logging
import re
from abc import ABC
import pandas as pd
@ -30,10 +31,10 @@ from rag.utils.tavily_conn import Tavily
class RetrievalParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.similarity_threshold = 0.2
@ -41,6 +42,7 @@ class RetrievalParam(ComponentParamBase):
self.top_n = 8
self.top_k = 1024
self.kb_ids = []
self.kb_vars = []
self.rerank_id = ""
self.empty_response = ""
self.tavily_api_key = ""
@ -58,7 +60,26 @@ class Retrieval(ComponentBase, ABC):
def _run(self, history, **kwargs):
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
query = re.split(r"(USER:|ASSISTANT:)", query)[-1]
kb_ids: list[str] = self._param.kb_ids or []
kb_vars = self._fetch_outputs_from(self._param.kb_vars)
if len(kb_vars) > 0:
for kb_var in kb_vars:
if len(kb_var) == 1:
kb_var_value = str(kb_var["content"][0])
for v in kb_var_value.split(","):
kb_ids.append(v)
else:
for v in kb_var.to_dict("records"):
kb_ids.append(v["content"])
filtered_kb_ids: list[str] = [kb_id for kb_id in kb_ids if kb_id]
kbs = KnowledgebaseService.get_by_ids(filtered_kb_ids)
if not kbs:
return Retrieval.be_output("")
@ -75,20 +96,24 @@ class Retrieval(ComponentBase, ABC):
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
if kbs:
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs))
kbinfos = settings.retrievaler.retrieval(
query,
embd_mdl,
[kb.tenant_id for kb in kbs],
filtered_kb_ids,
1,
self._param.top_n,
self._param.similarity_threshold,
1 - self._param.keywords_similarity_weight,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs),
)
else:
kbinfos = {"chunks": [], "doc_aggs": []}
if self._param.use_kg and kbs:
ck = settings.kg_retrievaler.retrieval(query,
[kbs[0].tenant_id],
self._param.kb_ids,
embd_mdl,
LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
ck = settings.kg_retrievaler.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
@ -107,5 +132,3 @@ class Retrieval(ComponentBase, ABC):
df = pd.DataFrame({"content": kb_prompt(kbinfos, 200000), "chunks": json.dumps(kbinfos["chunks"])})
logging.debug("{} {}".format(query, df))
return df.dropna()

View File

@ -57,7 +57,7 @@ class DeepResearcher:
msg_history[-1]["content"] += "\n\nContinues reasoning with the new information.\n"
for ans in self.chat_mdl.chat_streamly(REASON_PROMPT, msg_history, {"temperature": 0.7}):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
if not ans:
continue
query_think = ans
@ -142,7 +142,7 @@ class DeepResearcher:
[{"role": "user",
"content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}],
{"temperature": 0.7}):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
if not ans:
continue
summary_think = ans

View File

@ -107,7 +107,7 @@ def search_pages_path(pages_dir):
def register_page(page_path):
path = f"{page_path}"
page_name = page_path.stem.rstrip("_app")
page_name = page_path.stem.removesuffix("_app")
module_name = ".".join(
page_path.parts[page_path.parts.index("api"): -1] + (page_name,)
)

View File

@ -21,7 +21,7 @@ from flask import request, Response
from api.db.services.llm_service import TenantLLMService
from flask_login import login_required, current_user
from api.db import FileType, LLMType, ParserType, FileSource
from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileType, LLMType, ParserType, FileSource
from api.db.db_models import APIToken, Task, File
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
@ -345,7 +345,7 @@ def completion():
@manager.route('/conversation/<conversation_id>', methods=['GET']) # noqa: F821
# @login_required
def get(conversation_id):
def get_conversation(conversation_id):
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
@ -548,6 +548,31 @@ def list_chunks():
return get_json_result(data=res)
@manager.route('/get_chunk/<chunk_id>', methods=['GET']) # noqa: F821
# @login_required
def get_chunk(chunk_id):
from rag.nlp import search
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
try:
tenant_id = objs[0].tenant_id
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
if chunk is None:
return server_error_response(Exception("Chunk not found"))
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
k.append(n)
for n in k:
del chunk[n]
return get_json_result(data=chunk)
except Exception as e:
return server_error_response(e)
@manager.route('/list_kb_docs', methods=['POST']) # noqa: F821
# @login_required
@ -577,10 +602,23 @@ def list_kb_docs():
orderby = req.get("orderby", "create_time")
desc = req.get("desc", True)
keywords = req.get("keywords", "")
status = req.get("status", [])
if status:
invalid_status = {s for s in status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(
message=f"Invalid filter status conditions: {', '.join(invalid_status)}"
)
types = req.get("types", [])
if types:
invalid_types = {t for t in types if t not in VALID_FILE_TYPES}
if invalid_types:
return get_data_error_result(
message=f"Invalid filter conditions: {', '.join(invalid_types)} type{'s' if len(invalid_types) > 1 else ''}"
)
try:
docs, tol = DocumentService.get_by_kb_id(
kb_id, page_number, items_per_page, orderby, desc, keywords)
kb_id, page_number, items_per_page, orderby, desc, keywords, status, types)
docs = [{"doc_id": doc['id'], "doc_name": doc['name']} for doc in docs]
return get_json_result(data={"total": tol, "docs": docs})
@ -615,7 +653,7 @@ def document_rm():
tenant_id = objs[0].tenant_id
req = request.json
try:
doc_ids = [DocumentService.get_doc_id_by_doc_name(doc_name) for doc_name in req.get("doc_names", [])]
doc_ids = DocumentService.get_doc_ids_by_doc_names(req.get("doc_names", []))
for doc_id in req.get("doc_ids", []):
if doc_id not in doc_ids:
doc_ids.append(doc_id)
@ -633,11 +671,16 @@ def document_rm():
FileService.init_knowledgebase_docs(pf_id, tenant_id)
errors = ""
docs = DocumentService.get_by_ids(doc_ids)
doc_dic = {}
for doc in docs:
doc_dic[doc.id] = doc
for doc_id in doc_ids:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
if doc_id not in doc_dic:
return get_data_error_result(message="Document not found!")
doc = doc_dic[doc_id]
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
@ -818,10 +861,11 @@ def retrieval():
doc_ids = req.get("doc_ids", [])
question = req.get("question")
page = int(req.get("page", 1))
size = int(req.get("size", 30))
size = int(req.get("page_size", 30))
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))
highlight = bool(req.get("highlight", False))
try:
kbs = KnowledgebaseService.get_by_ids(kb_ids)
@ -842,7 +886,7 @@ def retrieval():
question += keyword_extraction(chat_mdl, question)
ranks = settings.retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl,
doc_ids, rerank_mdl=rerank_mdl, highlight= highlight,
rank_feature=label_question(question, kbs))
for c in ranks["chunks"]:
c.pop("vector", None)

76
api/apps/auth/README.md Normal file
View File

@ -0,0 +1,76 @@
# Auth
The Auth module provides implementations of OAuth2 and OpenID Connect (OIDC) authentication for integration with third-party identity providers.
**Features**
- Supports both OAuth2 and OIDC authentication protocols
- Automatic OIDC configuration discovery (via `/.well-known/openid-configuration`)
- JWT token validation
- Unified user information handling
## Usage
```python
# OAuth2 configuration
oauth_config = {
"type": "oauth2",
"client_id": "your_client_id",
"client_secret": "your_client_secret",
"authorization_url": "https://your-oauth-provider.com/oauth/authorize",
"token_url": "https://your-oauth-provider.com/oauth/token",
"userinfo_url": "https://your-oauth-provider.com/oauth/userinfo",
"redirect_uri": "https://your-app.com/v1/user/oauth/callback/<channel>"
}
# OIDC configuration
oidc_config = {
"type": "oidc",
"issuer": "https://your-oauth-provider.com/oidc",
"client_id": "your_client_id",
"client_secret": "your_client_secret",
"redirect_uri": "https://your-app.com/v1/user/oauth/callback/<channel>"
}
# Github OAuth configuration
github_config = {
"type": "github"
"client_id": "your_client_id",
"client_secret": "your_client_secret",
"redirect_uri": "https://your-app.com/v1/user/oauth/callback/<channel>"
}
# Get client instance
client = get_auth_client(oauth_config)
```
### Authentication Flow
1. Get authorization URL:
```python
auth_url = client.get_authorization_url()
```
2. After user authorization, exchange authorization code for token:
```python
token_response = client.exchange_code_for_token(authorization_code)
access_token = token_response["access_token"]
```
3. Fetch user information:
```python
user_info = client.fetch_user_info(access_token)
```
## User Information Structure
All authentication methods return user information following this structure:
```python
{
"email": "user@example.com",
"username": "username",
"nickname": "User Name",
"avatar_url": "https://example.com/avatar.jpg"
}
```

40
api/apps/auth/__init__.py Normal file
View File

@ -0,0 +1,40 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .oauth import OAuthClient
from .oidc import OIDCClient
from .github import GithubOAuthClient
CLIENT_TYPES = {
"oauth2": OAuthClient,
"oidc": OIDCClient,
"github": GithubOAuthClient
}
def get_auth_client(config)->OAuthClient:
channel_type = str(config.get("type", "")).lower()
if channel_type == "":
if config.get("issuer"):
channel_type = "oidc"
else:
channel_type = "oauth2"
client_class = CLIENT_TYPES.get(channel_type)
if not client_class:
raise ValueError(f"Unsupported type: {channel_type}")
return client_class(config)

63
api/apps/auth/github.py Normal file
View File

@ -0,0 +1,63 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import requests
from .oauth import OAuthClient, UserInfo
class GithubOAuthClient(OAuthClient):
def __init__(self, config):
"""
Initialize the GithubOAuthClient with the provider's configuration.
"""
config.update({
"authorization_url": "https://github.com/login/oauth/authorize",
"token_url": "https://github.com/login/oauth/access_token",
"userinfo_url": "https://api.github.com/user",
"scope": "user:email"
})
super().__init__(config)
def fetch_user_info(self, access_token, **kwargs):
"""
Fetch github user info.
"""
user_info = {}
try:
headers = {"Authorization": f"Bearer {access_token}"}
# user info
response = requests.get(self.userinfo_url, headers=headers, timeout=self.http_request_timeout)
response.raise_for_status()
user_info.update(response.json())
# email info
response = requests.get(self.userinfo_url+"/emails", headers=headers, timeout=self.http_request_timeout)
response.raise_for_status()
email_info = response.json()
user_info["email"] = next(
(email for email in email_info if email["primary"]), None
)["email"]
return self.normalize_user_info(user_info)
except requests.exceptions.RequestException as e:
raise ValueError(f"Failed to fetch github user info: {e}")
def normalize_user_info(self, user_info):
email = user_info.get("email")
username = user_info.get("login", str(email).split("@")[0])
nickname = user_info.get("name", username)
avatar_url = user_info.get("avatar_url", "")
return UserInfo(email=email, username=username, nickname=nickname, avatar_url=avatar_url)

110
api/apps/auth/oauth.py Normal file
View File

@ -0,0 +1,110 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import requests
import urllib.parse
class UserInfo:
def __init__(self, email, username, nickname, avatar_url):
self.email = email
self.username = username
self.nickname = nickname
self.avatar_url = avatar_url
def to_dict(self):
return {key: value for key, value in self.__dict__.items()}
class OAuthClient:
def __init__(self, config):
"""
Initialize the OAuthClient with the provider's configuration.
"""
self.client_id = config["client_id"]
self.client_secret = config["client_secret"]
self.authorization_url = config["authorization_url"]
self.token_url = config["token_url"]
self.userinfo_url = config["userinfo_url"]
self.redirect_uri = config["redirect_uri"]
self.scope = config.get("scope", None)
self.http_request_timeout = 7
def get_authorization_url(self, state=None):
"""
Generate the authorization URL for user login.
"""
params = {
"client_id": self.client_id,
"redirect_uri": self.redirect_uri,
"response_type": "code",
}
if self.scope:
params["scope"] = self.scope
if state:
params["state"] = state
authorization_url = f"{self.authorization_url}?{urllib.parse.urlencode(params)}"
return authorization_url
def exchange_code_for_token(self, code):
"""
Exchange authorization code for access token.
"""
try:
payload = {
"client_id": self.client_id,
"client_secret": self.client_secret,
"code": code,
"redirect_uri": self.redirect_uri,
"grant_type": "authorization_code"
}
response = requests.post(
self.token_url,
data=payload,
headers={"Accept": "application/json"},
timeout=self.http_request_timeout
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise ValueError(f"Failed to exchange authorization code for token: {e}")
def fetch_user_info(self, access_token, **kwargs):
"""
Fetch user information using access token.
"""
try:
headers = {"Authorization": f"Bearer {access_token}"}
response = requests.get(self.userinfo_url, headers=headers, timeout=self.http_request_timeout)
response.raise_for_status()
user_info = response.json()
return self.normalize_user_info(user_info)
except requests.exceptions.RequestException as e:
raise ValueError(f"Failed to fetch user info: {e}")
def normalize_user_info(self, user_info):
email = user_info.get("email")
username = user_info.get("username", str(email).split("@")[0])
nickname = user_info.get("nickname", username)
avatar_url = user_info.get("avatar_url", None)
if avatar_url is None:
avatar_url = user_info.get("picture", "")
return UserInfo(email=email, username=username, nickname=nickname, avatar_url=avatar_url)

100
api/apps/auth/oidc.py Normal file
View File

@ -0,0 +1,100 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import jwt
import requests
from .oauth import OAuthClient
class OIDCClient(OAuthClient):
def __init__(self, config):
"""
Initialize the OIDCClient with the provider's configuration.
Use `issuer` as the single source of truth for configuration discovery.
"""
self.issuer = config.get("issuer")
if not self.issuer:
raise ValueError("Missing issuer in configuration.")
oidc_metadata = self._load_oidc_metadata(self.issuer)
config.update({
'issuer': oidc_metadata['issuer'],
'jwks_uri': oidc_metadata['jwks_uri'],
'authorization_url': oidc_metadata['authorization_endpoint'],
'token_url': oidc_metadata['token_endpoint'],
'userinfo_url': oidc_metadata['userinfo_endpoint']
})
super().__init__(config)
self.issuer = config['issuer']
self.jwks_uri = config['jwks_uri']
def _load_oidc_metadata(self, issuer):
"""
Load OIDC metadata from `/.well-known/openid-configuration`.
"""
try:
metadata_url = f"{issuer}/.well-known/openid-configuration"
response = requests.get(metadata_url, timeout=7)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise ValueError(f"Failed to fetch OIDC metadata: {e}")
def parse_id_token(self, id_token):
"""
Parse and validate OIDC ID Token (JWT format) with signature verification.
"""
try:
# Decode JWT header without verifying signature
headers = jwt.get_unverified_header(id_token)
# OIDC usually uses `RS256` for signing
alg = headers.get("alg", "RS256")
# Use PyJWT's PyJWKClient to fetch JWKS and find signing key
jwks_url = f"{self.issuer}/.well-known/jwks.json"
jwks_cli = jwt.PyJWKClient(jwks_url)
signing_key = jwks_cli.get_signing_key_from_jwt(id_token).key
# Decode and verify signature
decoded_token = jwt.decode(
id_token,
key=signing_key,
algorithms=[alg],
audience=str(self.client_id),
issuer=self.issuer,
)
return decoded_token
except Exception as e:
raise ValueError(f"Error parsing ID Token: {e}")
def fetch_user_info(self, access_token, id_token=None, **kwargs):
"""
Fetch user info.
"""
user_info = {}
if id_token:
user_info = self.parse_id_token(id_token)
user_info.update(super().fetch_user_info(access_token).to_dict())
return self.normalize_user_info(user_info)
def normalize_user_info(self, user_info):
return super().normalize_user_info(user_info)

View File

@ -26,7 +26,6 @@ from api.utils.api_utils import get_json_result, server_error_response, validate
from agent.canvas import Canvas
from peewee import MySQLDatabase, PostgresqlDatabase
from api.db.db_models import APIToken
import logging
import time
@manager.route('/templates', methods=['GET']) # noqa: F821
@ -89,7 +88,6 @@ def save():
@login_required
def get(canvas_id):
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
logging.info(f"get canvas_id: {canvas_id} c: {c}")
if not e:
return get_data_error_result(message="canvas not found.")
return get_json_result(data=c)
@ -115,6 +113,7 @@ def getsse(canvas_id):
def run():
req = request.json
stream = req.get("stream", True)
running_hint_text = req.get("running_hint_text", "")
e, cvs = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
@ -140,7 +139,7 @@ def run():
def sse():
nonlocal answer, cvs
try:
for ans in canvas.run(stream=True):
for ans in canvas.run(running_hint_text = running_hint_text, stream=True):
if ans.get("running_status"):
yield "data:" + json.dumps({"code": 0, "message": "",
"data": {"answer": ans["content"],
@ -178,7 +177,7 @@ def run():
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
for answer in canvas.run(stream=False):
for answer in canvas.run(running_hint_text = running_hint_text, stream=False):
if answer.get("running_status"):
continue
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""

View File

@ -22,7 +22,7 @@ from flask_login import login_required, current_user
from rag.app.qa import rmPrefix, beAdoc
from rag.app.tag import label_question
from rag.nlp import search, rag_tokenizer
from rag.prompts import keyword_extraction
from rag.prompts import keyword_extraction, cross_languages
from rag.settings import PAGERANK_FLD
from rag.utils import rmSpace
from api.db import LLMType, ParserType
@ -37,6 +37,7 @@ import xxhash
import re
@manager.route('/list', methods=['POST']) # noqa: F821
@login_required
@validate_request("doc_id")
@ -194,6 +195,7 @@ def switch():
@login_required
@validate_request("chunk_ids", "doc_id")
def rm():
from rag.utils.storage_factory import STORAGE_IMPL
req = request.json
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
@ -204,6 +206,9 @@ def rm():
deleted_chunk_ids = req["chunk_ids"]
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
for cid in deleted_chunk_ids:
if STORAGE_IMPL.obj_exist(doc.kb_id, cid):
STORAGE_IMPL.rm(doc.kb_id, cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -275,6 +280,7 @@ def retrieval_test():
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
langs = req.get("cross_languages", [])
tenant_ids = []
try:
@ -294,6 +300,9 @@ def retrieval_test():
if not e:
return get_data_error_result(message="Knowledgebase not found!")
if langs:
question = cross_languages(kb.tenant_id, None, question, langs)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
rerank_mdl = None

View File

@ -41,6 +41,11 @@ def set_conversation():
req = request.json
conv_id = req.get("conversation_id")
is_new = req.get("is_new")
name = req.get("name", "New conversation")
if len(name) > 255:
name = name[0:255]
del req["is_new"]
if not is_new:
del req["conversation_id"]
@ -59,7 +64,7 @@ def set_conversation():
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(message="Dialog not found")
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": req.get("name", "New conversation"), "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]}
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": name, "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]}
ConversationService.save(**conv)
return get_json_result(data=conv)
except Exception as e:
@ -99,6 +104,7 @@ def get():
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
"doc_type": get_value(ck, "doc_type", "doc_type_kwd"),
}
for ck in ref.get("chunks", [])
]
@ -210,6 +216,7 @@ def completion():
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
"doc_type": get_value(ck, "doc_type_kwd", "doc_type_kwd"),
}
for ck in ref.get("chunks", [])
]

View File

@ -43,7 +43,7 @@ def set_dialog():
similarity_threshold = req.get("similarity_threshold", 0.1)
vector_similarity_weight = req.get("vector_similarity_weight", 0.3)
llm_setting = req.get("llm_setting", {})
default_prompt = {
default_prompt_with_dataset = {
"system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
以下是知识库:
{knowledge}
@ -54,10 +54,22 @@ def set_dialog():
],
"empty_response": "Sorry! 知识库中未找到相关内容!"
}
prompt_config = req.get("prompt_config", default_prompt)
default_prompt_no_dataset = {
"system": """You are a helpful assistant.""",
"prologue": "您好我是您的助手小樱长得可爱又善良can I help you?",
"parameters": [
],
"empty_response": ""
}
prompt_config = req.get("prompt_config", default_prompt_with_dataset)
if not prompt_config["system"]:
prompt_config["system"] = default_prompt["system"]
prompt_config["system"] = default_prompt_with_dataset["system"]
if not req.get("kb_ids", []):
if prompt_config['system'] == default_prompt_with_dataset['system'] or "{knowledge}" in prompt_config['system']:
prompt_config = default_prompt_no_dataset
for p in prompt_config["parameters"]:
if p["optional"]:

View File

@ -20,79 +20,73 @@ import re
import flask
from flask import request
from flask_login import login_required, current_user
from flask_login import current_user, login_required
from deepdoc.parser.html_parser import RAGFlowHtmlParser
from rag.nlp import search
from api.db import FileType, TaskStatus, ParserType, FileSource
from api import settings
from api.constants import IMG_BASE64_PREFIX
from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileSource, FileType, ParserType, TaskStatus
from api.db.db_models import File, Task
from api.db.services import duplicate_name
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.task_service import queue_tasks
from api.db.services.user_service import UserTenantService
from api.db.services import duplicate_name
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import TaskService
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.db.services.task_service import TaskService, queue_tasks
from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from api.utils.api_utils import (
server_error_response,
get_data_error_result,
get_json_result,
server_error_response,
validate_request,
)
from api.utils import get_uuid
from api import settings
from api.utils.api_utils import get_json_result
from rag.utils.storage_factory import STORAGE_IMPL
from api.utils.file_utils import filename_type, thumbnail, get_project_base_directory
from api.utils.file_utils import filename_type, get_project_base_directory, thumbnail
from api.utils.web_utils import html2pdf, is_valid_url
from api.constants import IMG_BASE64_PREFIX
from deepdoc.parser.html_parser import RAGFlowHtmlParser
from rag.nlp import search
from rag.utils.storage_factory import STORAGE_IMPL
@manager.route('/upload', methods=['POST']) # noqa: F821
@manager.route("/upload", methods=["POST"]) # noqa: F821
@login_required
@validate_request("kb_id")
def upload():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
if file_obj.filename == "":
return get_json_result(data=False, message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
err, files = FileService.upload_document(kb, file_objs, current_user.id)
files = [f[0] for f in files] # remove the blob
if not files:
return get_json_result(data=files, message="There seems to be an issue with your file format. Please verify it is correct and not corrupted.", code=settings.RetCode.DATA_ERROR)
files = [f[0] for f in files] # remove the blob
if err:
return get_json_result(
data=files, message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=files, message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=files)
@manager.route('/web_crawl', methods=['POST']) # noqa: F821
@manager.route("/web_crawl", methods=["POST"]) # noqa: F821
@login_required
@validate_request("kb_id", "name", "url")
def web_crawl():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
name = request.form.get("name")
url = request.form.get("url")
if not is_valid_url(url):
return get_json_result(
data=False, message='The URL format is invalid', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="The URL format is invalid", code=settings.RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
@ -108,10 +102,7 @@ def web_crawl():
kb_folder = FileService.new_a_file_from_kb(kb.tenant_id, kb.name, kb_root_folder["id"])
try:
filename = duplicate_name(
DocumentService.query,
name=name + ".pdf",
kb_id=kb.id)
filename = duplicate_name(DocumentService.query, name=name + ".pdf", kb_id=kb.id)
filetype = filename_type(filename)
if filetype == FileType.OTHER.value:
raise RuntimeError("This type of file has not been supported yet!")
@ -130,7 +121,7 @@ def web_crawl():
"name": filename,
"location": location,
"size": len(blob),
"thumbnail": thumbnail(filename, blob)
"thumbnail": thumbnail(filename, blob),
}
if doc["type"] == FileType.VISUAL:
doc["parser_id"] = ParserType.PICTURE.value
@ -147,129 +138,127 @@ def web_crawl():
return get_json_result(data=True)
@manager.route('/create', methods=['POST']) # noqa: F821
@manager.route("/create", methods=["POST"]) # noqa: F821
@login_required
@validate_request("name", "kb_id")
def create():
req = request.json
kb_id = req["kb_id"]
if not kb_id:
return get_json_result(
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
try:
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return get_data_error_result(
message="Can't find this knowledgebase!")
return get_data_error_result(message="Can't find this knowledgebase!")
if DocumentService.query(name=req["name"], kb_id=kb_id):
return get_data_error_result(
message="Duplicated document name in the same knowledgebase.")
return get_data_error_result(message="Duplicated document name in the same knowledgebase.")
doc = DocumentService.insert({
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": kb.parser_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"type": FileType.VIRTUAL,
"name": req["name"],
"location": "",
"size": 0
})
doc = DocumentService.insert(
{
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": kb.parser_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"type": FileType.VIRTUAL,
"name": req["name"],
"location": "",
"size": 0,
}
)
return get_json_result(data=doc.to_json())
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET']) # noqa: F821
@manager.route("/list", methods=["POST"]) # noqa: F821
@login_required
def list_docs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
tenants = UserTenantService.query(user_id=current_user.id)
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kb_id):
if KnowledgebaseService.query(tenant_id=tenant.tenant_id, id=kb_id):
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 15))
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
req = request.get_json()
run_status = req.get("run_status", [])
if run_status:
invalid_status = {s for s in run_status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(message=f"Invalid filter run status conditions: {', '.join(invalid_status)}")
types = req.get("types", [])
if types:
invalid_types = {t for t in types if t not in VALID_FILE_TYPES}
if invalid_types:
return get_data_error_result(message=f"Invalid filter conditions: {', '.join(invalid_types)} type{'s' if len(invalid_types) > 1 else ''}")
try:
docs, tol = DocumentService.get_by_kb_id(
kb_id, page_number, items_per_page, orderby, desc, keywords)
docs, tol = DocumentService.get_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, keywords, run_status, types)
for doc_item in docs:
if doc_item['thumbnail'] and not doc_item['thumbnail'].startswith(IMG_BASE64_PREFIX):
doc_item['thumbnail'] = f"/v1/document/image/{kb_id}-{doc_item['thumbnail']}"
if doc_item["thumbnail"] and not doc_item["thumbnail"].startswith(IMG_BASE64_PREFIX):
doc_item["thumbnail"] = f"/v1/document/image/{kb_id}-{doc_item['thumbnail']}"
return get_json_result(data={"total": tol, "docs": docs})
except Exception as e:
return server_error_response(e)
@manager.route('/infos', methods=['POST']) # noqa: F821
@manager.route("/infos", methods=["POST"]) # noqa: F821
@login_required
def docinfos():
req = request.json
doc_ids = req["doc_ids"]
for doc_id in doc_ids:
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
docs = DocumentService.get_by_ids(doc_ids)
return get_json_result(data=list(docs.dicts()))
@manager.route('/thumbnails', methods=['GET']) # noqa: F821
@manager.route("/thumbnails", methods=["GET"]) # noqa: F821
# @login_required
def thumbnails():
doc_ids = request.args.get("doc_ids").split(",")
if not doc_ids:
return get_json_result(
data=False, message='Lack of "Document ID"', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Lack of "Document ID"', code=settings.RetCode.ARGUMENT_ERROR)
try:
docs = DocumentService.get_thumbnails(doc_ids)
for doc_item in docs:
if doc_item['thumbnail'] and not doc_item['thumbnail'].startswith(IMG_BASE64_PREFIX):
doc_item['thumbnail'] = f"/v1/document/image/{doc_item['kb_id']}-{doc_item['thumbnail']}"
if doc_item["thumbnail"] and not doc_item["thumbnail"].startswith(IMG_BASE64_PREFIX):
doc_item["thumbnail"] = f"/v1/document/image/{doc_item['kb_id']}-{doc_item['thumbnail']}"
return get_json_result(data={d["id"]: d["thumbnail"] for d in docs})
except Exception as e:
return server_error_response(e)
@manager.route('/change_status', methods=['POST']) # noqa: F821
@manager.route("/change_status", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "status")
def change_status():
req = request.json
if str(req["status"]) not in ["0", "1"]:
return get_json_result(
data=False,
message='"Status" must be either 0 or 1!',
code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='"Status" must be either 0 or 1!', code=settings.RetCode.ARGUMENT_ERROR)
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
@ -277,23 +266,19 @@ def change_status():
return get_data_error_result(message="Document not found!")
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
if not e:
return get_data_error_result(
message="Can't find this knowledgebase!")
return get_data_error_result(message="Can't find this knowledgebase!")
if not DocumentService.update_by_id(
req["doc_id"], {"status": str(req["status"])}):
return get_data_error_result(
message="Database error (Document update)!")
if not DocumentService.update_by_id(req["doc_id"], {"status": str(req["status"])}):
return get_data_error_result(message="Database error (Document update)!")
status = int(req["status"])
settings.docStoreConn.update({"doc_id": req["doc_id"]}, {"available_int": status},
search.index_name(kb.tenant_id), doc.kb_id)
settings.docStoreConn.update({"doc_id": req["doc_id"]}, {"available_int": status}, search.index_name(kb.tenant_id), doc.kb_id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST']) # noqa: F821
@manager.route("/rm", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id")
def rm():
@ -304,16 +289,13 @@ def rm():
for doc_id in doc_ids:
if not DocumentService.accessible4deletion(doc_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
root_folder = FileService.get_root_folder(current_user.id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, current_user.id)
errors = ""
kb_table_num_map = {}
for doc_id in doc_ids:
try:
e, doc = DocumentService.get_by_id(doc_id)
@ -327,14 +309,25 @@ def rm():
TaskService.filter_delete([Task.doc_id == doc_id])
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
message="Database error (Document removal)!")
return get_data_error_result(message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
deleted_file_count = FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
deleted_file_count = 0
if f2d:
deleted_file_count = FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc_id)
if deleted_file_count > 0:
STORAGE_IMPL.rm(b, n)
doc_parser = doc.parser_id
if doc_parser == ParserType.TABLE:
kb_id = doc.kb_id
if kb_id not in kb_table_num_map:
counts = DocumentService.count_by_kb_id(kb_id=kb_id, keywords="", run_status=[TaskStatus.DONE], types=[])
kb_table_num_map[kb_id] = counts
kb_table_num_map[kb_id] -= 1
if kb_table_num_map[kb_id] <= 0:
KnowledgebaseService.delete_field_map(kb_id)
except Exception as e:
errors += str(e)
@ -344,19 +337,16 @@ def rm():
return get_json_result(data=True)
@manager.route('/run', methods=['POST']) # noqa: F821
@manager.route("/run", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_ids", "run")
def run():
def run():
req = request.json
for doc_id in req["doc_ids"]:
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
kb_table_num_map = {}
for id in req["doc_ids"]:
info = {"run": str(req["run"]), "progress": 0}
if str(req["run"]) == TaskStatus.RUNNING.value and req.get("delete", False):
@ -379,6 +369,17 @@ def run():
e, doc = DocumentService.get_by_id(id)
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
doc_parser = doc.get("parser_id", ParserType.NAIVE)
if doc_parser == ParserType.TABLE:
kb_id = doc.get("kb_id")
if not kb_id:
continue
if kb_id not in kb_table_num_map:
count = DocumentService.count_by_kb_id(kb_id=kb_id, keywords="", run_status=[TaskStatus.DONE], types=[])
kb_table_num_map[kb_id] = count
if kb_table_num_map[kb_id] <= 0:
KnowledgebaseService.delete_field_map(kb_id)
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name, 0)
@ -387,36 +388,25 @@ def run():
return server_error_response(e)
@manager.route('/rename', methods=['POST']) # noqa: F821
@manager.route("/rename", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "name")
def rename():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
doc.name.lower()).suffix:
return get_json_result(
data=False,
message="The extension of file can't be changed",
code=settings.RetCode.ARGUMENT_ERROR)
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
return get_json_result(data=False, message="The extension of file can't be changed", code=settings.RetCode.ARGUMENT_ERROR)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_data_error_result(
message="Duplicated document name in the same knowledgebase.")
return get_data_error_result(message="Duplicated document name in the same knowledgebase.")
if not DocumentService.update_by_id(
req["doc_id"], {"name": req["name"]}):
return get_data_error_result(
message="Database error (Document rename)!")
if not DocumentService.update_by_id(req["doc_id"], {"name": req["name"]}):
return get_data_error_result(message="Database error (Document rename)!")
informs = File2DocumentService.get_by_document_id(req["doc_id"])
if informs:
@ -428,7 +418,7 @@ def rename():
return server_error_response(e)
@manager.route('/get/<doc_id>', methods=['GET']) # noqa: F821
@manager.route("/get/<doc_id>", methods=["GET"]) # noqa: F821
# @login_required
def get(doc_id):
try:
@ -442,29 +432,22 @@ def get(doc_id):
ext = re.search(r"\.([^.]+)$", doc.name)
if ext:
if doc.type == FileType.VISUAL.value:
response.headers.set('Content-Type', 'image/%s' % ext.group(1))
response.headers.set("Content-Type", "image/%s" % ext.group(1))
else:
response.headers.set(
'Content-Type',
'application/%s' %
ext.group(1))
response.headers.set("Content-Type", "application/%s" % ext.group(1))
return response
except Exception as e:
return server_error_response(e)
@manager.route('/change_parser', methods=['POST']) # noqa: F821
@manager.route("/change_parser", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "parser_id")
def change_parser():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
@ -476,21 +459,16 @@ def change_parser():
else:
return get_json_result(data=True)
if ((doc.type == FileType.VISUAL and req["parser_id"] != "picture")
or (re.search(
r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation")):
if (doc.type == FileType.VISUAL and req["parser_id"] != "picture") or (re.search(r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation"):
return get_data_error_result(message="Not supported yet!")
e = DocumentService.update_by_id(doc.id,
{"parser_id": req["parser_id"], "progress": 0, "progress_msg": "",
"run": TaskStatus.UNSTART.value})
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": TaskStatus.UNSTART.value})
if not e:
return get_data_error_result(message="Document not found!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1,
doc.process_duation * -1)
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, doc.process_duation * -1)
if not e:
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
@ -504,7 +482,7 @@ def change_parser():
return server_error_response(e)
@manager.route('/image/<image_id>', methods=['GET']) # noqa: F821
@manager.route("/image/<image_id>", methods=["GET"]) # noqa: F821
# @login_required
def get_image(image_id):
try:
@ -513,53 +491,46 @@ def get_image(image_id):
return get_data_error_result(message="Image not found.")
bkt, nm = image_id.split("-")
response = flask.make_response(STORAGE_IMPL.get(bkt, nm))
response.headers.set('Content-Type', 'image/JPEG')
response.headers.set("Content-Type", "image/JPEG")
return response
except Exception as e:
return server_error_response(e)
@manager.route('/upload_and_parse', methods=['POST']) # noqa: F821
@manager.route("/upload_and_parse", methods=["POST"]) # noqa: F821
@login_required
@validate_request("conversation_id")
def upload_and_parse():
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
if file_obj.filename == "":
return get_json_result(data=False, message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR)
doc_ids = doc_upload_and_parse(request.form.get("conversation_id"), file_objs, current_user.id)
return get_json_result(data=doc_ids)
@manager.route('/parse', methods=['POST']) # noqa: F821
@manager.route("/parse", methods=["POST"]) # noqa: F821
@login_required
def parse():
url = request.json.get("url") if request.json else ""
if url:
if not is_valid_url(url):
return get_json_result(
data=False, message='The URL format is invalid', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="The URL format is invalid", code=settings.RetCode.ARGUMENT_ERROR)
download_path = os.path.join(get_project_base_directory(), "logs/downloads")
os.makedirs(download_path, exist_ok=True)
from seleniumwire.webdriver import Chrome, ChromeOptions
options = ChromeOptions()
options.add_argument('--headless')
options.add_argument('--disable-gpu')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
options.add_experimental_option('prefs', {
'download.default_directory': download_path,
'download.prompt_for_download': False,
'download.directory_upgrade': True,
'safebrowsing.enabled': True
})
options.add_argument("--headless")
options.add_argument("--disable-gpu")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
options.add_experimental_option("prefs", {"download.default_directory": download_path, "download.prompt_for_download": False, "download.directory_upgrade": True, "safebrowsing.enabled": True})
driver = Chrome(options=options)
driver.get(url)
res_headers = [r.response.headers for r in driver.requests if r and r.response]
@ -582,51 +553,41 @@ def parse():
r = re.search(r"filename=\"([^\"]+)\"", str(res_headers))
if not r or not r.group(1):
return get_json_result(
data=False, message="Can't not identify downloaded file", code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message="Can't not identify downloaded file", code=settings.RetCode.ARGUMENT_ERROR)
f = File(r.group(1), os.path.join(download_path, r.group(1)))
txt = FileService.parse_docs([f], current_user.id)
return get_json_result(data=txt)
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
file_objs = request.files.getlist("file")
txt = FileService.parse_docs(file_objs, current_user.id)
return get_json_result(data=txt)
@manager.route('/set_meta', methods=['POST']) # noqa: F821
@manager.route("/set_meta", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "meta")
def set_meta():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
meta = json.loads(req["meta"])
except Exception as e:
return get_json_result(
data=False, message=f'Json syntax error: {e}', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message=f"Json syntax error: {e}", code=settings.RetCode.ARGUMENT_ERROR)
if not isinstance(meta, dict):
return get_json_result(
data=False, message='Meta data should be in Json map format, like {"key": "value"}', code=settings.RetCode.ARGUMENT_ERROR)
return get_json_result(data=False, message='Meta data should be in Json map format, like {"key": "value"}', code=settings.RetCode.ARGUMENT_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if not DocumentService.update_by_id(
req["doc_id"], {"meta_fields": meta}):
return get_data_error_result(
message="Database error (meta updates)!")
if not DocumentService.update_by_id(req["doc_id"], {"meta_fields": meta}):
return get_data_error_result(message="Database error (meta updates)!")
return get_json_result(data=True)
except Exception as e:

View File

@ -257,6 +257,7 @@ def rm():
STORAGE_IMPL.rm(file.parent_id, file.location)
FileService.delete_folder_by_pf_id(current_user.id, file_id)
else:
STORAGE_IMPL.rm(file.parent_id, file.location)
if not FileService.delete(file):
return get_data_error_result(
message="Database error (File removal)!")

View File

@ -58,6 +58,7 @@ def create():
status=StatusEnum.VALID.value)
try:
req["id"] = get_uuid()
req["name"] = dataset_name
req["tenant_id"] = current_user.id
req["created_by"] = current_user.id
e, t = TenantService.get_by_id(current_user.id)
@ -99,7 +100,7 @@ def update():
if req.get("parser_id", "") == "tag" and os.environ.get('DOC_ENGINE', "elasticsearch") == "infinity":
return get_json_result(
data=False,
message='The chunk method Tag has not been supported by Infinity yet.',
message='The chunking method Tag has not been supported by Infinity yet.',
code=settings.RetCode.OPERATING_ERROR
)
@ -152,6 +153,7 @@ def detail():
if not kb:
return get_data_error_result(
message="Can't find this knowledgebase!")
kb["size"] = DocumentService.get_total_size_by_kb_id(kb_id=kb["id"],keywords="", run_status=[], types=[])
return get_json_result(data=kb)
except Exception as e:
return server_error_response(e)

12
api/apps/plugin_app.py Normal file
View File

@ -0,0 +1,12 @@
from flask import Response
from flask_login import login_required
from api.utils.api_utils import get_json_result
from plugin import GlobalPluginManager
@manager.route('/llm_tools', methods=['GET']) # noqa: F821
@login_required
def llm_tools() -> Response:
tools = GlobalPluginManager.get_llm_tools()
tools_metadata = [t.get_metadata() for t in tools]
return get_json_result(data=tools_metadata)

View File

@ -14,8 +14,14 @@
# limitations under the License.
#
import json
import time
from typing import Any, cast
from api.db.services.canvas_service import UserCanvasService
from api.utils.api_utils import get_error_data_result, token_required
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_data_error_result, get_error_data_result, get_json_result, token_required
from api.utils.api_utils import get_result
from flask import request
@ -37,3 +43,86 @@ def list_agents(tenant_id):
desc = True
canvas = UserCanvasService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,title)
return get_result(data=canvas)
@manager.route("/agents", methods=["POST"]) # noqa: F821
@token_required
def create_agent(tenant_id: str):
req: dict[str, Any] = cast(dict[str, Any], request.json)
req["user_id"] = tenant_id
if req.get("dsl") is not None:
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
else:
return get_json_result(data=False, message="No DSL data in request.", code=RetCode.ARGUMENT_ERROR)
if req.get("title") is not None:
req["title"] = req["title"].strip()
else:
return get_json_result(data=False, message="No title in request.", code=RetCode.ARGUMENT_ERROR)
if UserCanvasService.query(user_id=tenant_id, title=req["title"]):
return get_data_error_result(message=f"Agent with title {req['title']} already exists.")
agent_id = get_uuid()
req["id"] = agent_id
if not UserCanvasService.save(**req):
return get_data_error_result(message="Fail to create agent.")
UserCanvasVersionService.insert(
user_canvas_id=agent_id,
title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")),
dsl=req["dsl"]
)
return get_json_result(data=True)
@manager.route("/agents/<agent_id>", methods=["PUT"]) # noqa: F821
@token_required
def update_agent(tenant_id: str, agent_id: str):
req: dict[str, Any] = {k: v for k, v in cast(dict[str, Any], request.json).items() if v is not None}
req["user_id"] = tenant_id
if req.get("dsl") is not None:
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
if req.get("title") is not None:
req["title"] = req["title"].strip()
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_json_result(
data=False, message="Only owner of canvas authorized for this operation.",
code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(agent_id, req)
if req.get("dsl") is not None:
UserCanvasVersionService.insert(
user_canvas_id=agent_id,
title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")),
dsl=req["dsl"]
)
UserCanvasVersionService.delete_all_versions(agent_id)
return get_json_result(data=True)
@manager.route("/agents/<agent_id>", methods=["DELETE"]) # noqa: F821
@token_required
def delete_agent(tenant_id: str, agent_id: str):
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_json_result(
data=False, message="Only owner of canvas authorized for this operation.",
code=RetCode.OPERATING_ERROR)
UserCanvasService.delete_by_id(agent_id)
return get_json_result(data=True)

View File

@ -16,6 +16,7 @@
import logging
from flask import request
from api import settings
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
@ -23,15 +24,14 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import TenantService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result, token_required, get_result, check_duplicate_ids
from api.utils.api_utils import check_duplicate_ids, get_error_data_result, get_result, token_required
@manager.route('/chats', methods=['POST']) # noqa: F821
@manager.route("/chats", methods=["POST"]) # noqa: F821
@token_required
def create(tenant_id):
req = request.json
ids = [i for i in req.get("dataset_ids", []) if i]
ids = [i for i in req.get("dataset_ids", []) if i]
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
@ -40,34 +40,30 @@ def create(tenant_id):
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids) if ids else []
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) > 1:
return get_result(message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
return get_result(message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
# llm
llm = req.get("llm")
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
if req.get("llm_id") is not None:
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(req["llm_id"])
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory, model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
return get_error_data_result(message="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id", "top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
@ -85,9 +81,7 @@ def create(tenant_id):
req["rerank_id"] = req.get("rerank_id", "")
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
llm_name=req.get("rerank_id"),
model_type="rerank"):
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id, llm_name=req.get("rerank_id"), model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if not req.get("llm_id"):
req["llm_id"] = tenant.llm_id
@ -106,27 +100,24 @@ def create(tenant_id):
{knowledge}
The above is the knowledge base.""",
"prologue": "Hi! I'm your assistant, what can I do for you?",
"parameters": [
{"key": "knowledge", "optional": False}
],
"parameters": [{"key": "knowledge", "optional": False}],
"empty_response": "Sorry! No relevant content was found in the knowledge base!",
"quote": True,
"tts": False,
"refine_multiturn": True
"refine_multiturn": True,
}
key_list_2 = ["system", "prologue", "parameters", "empty_response", "quote", "tts", "refine_multiturn"]
if "prompt_config" not in req:
req['prompt_config'] = {}
req["prompt_config"] = {}
for key in key_list_2:
temp = req['prompt_config'].get(key)
if (not temp and key == 'system') or (key not in req["prompt_config"]):
req['prompt_config'][key] = default_prompt[key]
for p in req['prompt_config']["parameters"]:
temp = req["prompt_config"].get(key)
if (not temp and key == "system") or (key not in req["prompt_config"]):
req["prompt_config"][key] = default_prompt[key]
for p in req["prompt_config"]["parameters"]:
if p["optional"]:
continue
if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(
message="Parameter '{}' is not used".format(p["key"]))
if req["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(message="Parameter '{}' is not used".format(p["key"]))
# save
if not DialogService.save(**req):
return get_error_data_result(message="Fail to new a chat!")
@ -141,10 +132,7 @@ def create(tenant_id):
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": 1-res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": 1 - res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res["rerank_id"]}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
@ -156,36 +144,31 @@ def create(tenant_id):
return get_result(data=res)
@manager.route('/chats/<chat_id>', methods=['PUT']) # noqa: F821
@manager.route("/chats/<chat_id>", methods=["PUT"]) # noqa: F821
@token_required
def update(tenant_id, chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(message='You do not own the chat')
return get_error_data_result(message="You do not own the chat")
req = request.json
ids = req.get("dataset_ids")
if "show_quotation" in req:
req["do_refer"] = req.pop("show_quotation")
if "dataset_ids" in req:
if not ids:
return get_error_data_result("`dataset_ids` can't be empty")
if ids:
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) != 1:
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
if ids is not None:
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) != 1:
return get_result(message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
llm = req.get("llm")
if llm:
if "model_name" in llm:
@ -198,13 +181,8 @@ def update(tenant_id, chat_id):
return get_error_data_result(message="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id", "top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
@ -217,16 +195,12 @@ def update(tenant_id, chat_id):
res = res.to_json()
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
llm_name=req.get("rerank_id"),
model_type="rerank"):
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id, llm_name=req.get("rerank_id"), model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if "name" in req:
if not req.get("name"):
return get_error_data_result(message="`name` cannot be empty.")
if req["name"].lower() != res["name"].lower() \
and len(
DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
if req["name"].lower() != res["name"].lower() and len(DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
return get_error_data_result(message="Duplicated chat name in updating chat.")
if "prompt_config" in req:
res["prompt_config"].update(req["prompt_config"])
@ -249,7 +223,7 @@ def update(tenant_id, chat_id):
return get_result()
@manager.route('/chats', methods=['DELETE']) # noqa: F821
@manager.route("/chats", methods=["DELETE"]) # noqa: F821
@token_required
def delete(tenant_id):
errors = []
@ -276,30 +250,23 @@ def delete(tenant_id):
temp_dict = {"status": StatusEnum.INVALID.value}
DialogService.update_by_id(id, temp_dict)
success_count += 1
if errors:
if success_count > 0:
return get_result(
data={"success_count": success_count, "errors": errors},
message=f"Partially deleted {success_count} chats with {len(errors)} errors"
)
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} chats with {len(errors)} errors")
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(
message=f"Partially deleted {success_count} chats with {len(duplicate_messages)} errors",
data={"success_count": success_count, "errors": duplicate_messages}
)
return get_result(message=f"Partially deleted {success_count} chats with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@manager.route('/chats', methods=['GET']) # noqa: F821
@manager.route("/chats", methods=["GET"]) # noqa: F821
@token_required
def list_chat(tenant_id):
id = request.args.get("id")
@ -319,13 +286,15 @@ def list_chat(tenant_id):
if not chats:
return get_result(data=[])
list_assts = []
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight",
"do_refer": "show_quotation"}
key_mapping = {
"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight",
"do_refer": "show_quotation",
}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
for res in chats:
renamed_dict = {}
@ -334,10 +303,7 @@ def list_chat(tenant_id):
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": 1-res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": 1 - res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res["rerank_id"]}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]

View File

@ -14,23 +14,39 @@
# limitations under the License.
#
import logging
from flask import request
from api.db import StatusEnum, FileSource
from peewee import OperationalError
from api.db import FileSource, StatusEnum
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService, LLMService
from api.db.services.user_service import TenantService
from api import settings
from api.utils import get_uuid
from api.utils.api_utils import (
get_result,
token_required,
deep_merge,
get_error_argument_result,
get_error_data_result,
valid,
get_parser_config, valid_parser_config, dataset_readonly_fields,check_duplicate_ids
get_error_operating_result,
get_error_permission_result,
get_parser_config,
get_result,
remap_dictionary_keys,
token_required,
verify_embedding_availability,
)
from api.utils.validation_utils import (
CreateDatasetReq,
DeleteDatasetReq,
ListDatasetReq,
UpdateDatasetReq,
validate_and_parse_json_request,
validate_and_parse_request_args,
)
@ -62,16 +78,28 @@ def create(tenant_id):
name:
type: string
description: Name of the dataset.
avatar:
type: string
description: Base64 encoding of the avatar.
description:
type: string
description: Description of the dataset.
embedding_model:
type: string
description: Embedding model Name.
permission:
type: string
enum: ['me', 'team']
description: Dataset permission.
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "email", "tag"
enum: ["naive", "book", "email", "laws", "manual", "one", "paper",
"picture", "presentation", "qa", "table", "tag"
]
description: Chunking method.
pagerank:
type: integer
description: Set page rank.
parser_config:
type: object
description: Parser configuration.
@ -84,106 +112,59 @@ def create(tenant_id):
data:
type: object
"""
req = request.json
for k in req.keys():
if dataset_readonly_fields(k):
return get_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"'{k}' is readonly.")
e, t = TenantService.get_by_id(tenant_id)
permission = req.get("permission")
chunk_method = req.get("chunk_method")
parser_config = req.get("parser_config")
valid_parser_config(parser_config)
valid_permission = ["me", "team"]
valid_chunk_method = [
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"email",
"tag"
]
check_validation = valid(
permission,
valid_permission,
chunk_method,
valid_chunk_method,
)
if check_validation:
return check_validation
req["parser_config"] = get_parser_config(chunk_method, parser_config)
if "tenant_id" in req:
return get_error_data_result(message="`tenant_id` must not be provided")
if "chunk_count" in req or "document_count" in req:
return get_error_data_result(
message="`chunk_count` or `document_count` must not be provided"
)
if "name" not in req:
return get_error_data_result(message="`name` is not empty!")
# Field name transformations during model dump:
# | Original | Dump Output |
# |----------------|-------------|
# | embedding_model| embd_id |
# | chunk_method | parser_id |
req, err = validate_and_parse_json_request(request, CreateDatasetReq)
if err is not None:
return get_error_argument_result(err)
try:
if KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_operating_result(message=f"Dataset name '{req['name']}' already exists")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
req["parser_config"] = get_parser_config(req["parser_id"], req["parser_config"])
req["id"] = get_uuid()
req["name"] = req["name"].strip()
if req["name"] == "":
return get_error_data_result(message="`name` is not empty string!")
if len(req["name"]) >= 128:
return get_error_data_result(
message="Dataset name should not be longer than 128 characters."
)
if KnowledgebaseService.query(
name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value
):
return get_error_data_result(
message="Duplicated dataset name in creating dataset."
)
req["tenant_id"] = tenant_id
req["created_by"] = tenant_id
if not req.get("embedding_model"):
req["embedding_model"] = t.embd_id
try:
ok, t = TenantService.get_by_id(tenant_id)
if not ok:
return get_error_permission_result(message="Tenant not found")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if not req.get("embd_id"):
req["embd_id"] = t.embd_id
else:
valid_embedding_models = [
"BAAI/bge-large-zh-v1.5",
"maidalun1020/bce-embedding-base_v1",
]
embd_model = LLMService.query(
llm_name=req["embedding_model"], model_type="embedding"
)
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding",llm_name=req.get("embedding_model"),):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
if not embd_model:
embd_model=TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model"))
if not embd_model:
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model",
}
mapped_keys = {
new_key: req[old_key]
for new_key, old_key in key_mapping.items()
if old_key in req
}
req.update(mapped_keys)
flds = list(req.keys())
for f in flds:
if req[f] == "" and f in ["permission", "parser_id", "chunk_method"]:
del req[f]
if not KnowledgebaseService.save(**req):
return get_error_data_result(message="Create dataset error.(Database error)")
renamed_data = {}
e, k = KnowledgebaseService.get_by_id(req["id"])
for key, value in k.to_dict().items():
new_key = key_mapping.get(key, key)
renamed_data[new_key] = value
return get_result(data=renamed_data)
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
if not ok:
return err
try:
if not KnowledgebaseService.save(**req):
return get_error_data_result(message="Create dataset error.(Database error)")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
try:
ok, k = KnowledgebaseService.get_by_id(req["id"])
if not ok:
return get_error_data_result(message="Dataset created failed")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
response_data = remap_dictionary_keys(k.to_dict())
return get_result(data=response_data)
@manager.route("/datasets", methods=["DELETE"]) # noqa: F821
@ -208,75 +189,88 @@ def delete(tenant_id):
required: true
schema:
type: object
required:
- ids
properties:
ids:
type: array
type: array or null
items:
type: string
description: List of dataset IDs to delete.
description: |
Specifies the datasets to delete:
- If `null`, all datasets will be deleted.
- If an array of IDs, only the specified datasets will be deleted.
- If an empty array, no datasets will be deleted.
responses:
200:
description: Successful operation.
schema:
type: object
"""
req, err = validate_and_parse_json_request(request, DeleteDatasetReq)
if err is not None:
return get_error_argument_result(err)
kb_id_instance_pairs = []
if req["ids"] is None:
try:
kbs = KnowledgebaseService.query(tenant_id=tenant_id)
for kb in kbs:
kb_id_instance_pairs.append((kb.id, kb))
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
else:
error_kb_ids = []
for kb_id in req["ids"]:
try:
kb = KnowledgebaseService.get_or_none(id=kb_id, tenant_id=tenant_id)
if kb is None:
error_kb_ids.append(kb_id)
continue
kb_id_instance_pairs.append((kb_id, kb))
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if len(error_kb_ids) > 0:
return get_error_permission_result(message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
errors = []
success_count = 0
req = request.json
if not req:
ids = None
else:
ids = req.get("ids")
if not ids:
id_list = []
kbs = KnowledgebaseService.query(tenant_id=tenant_id)
for kb in kbs:
id_list.append(kb.id)
else:
id_list = ids
unique_id_list, duplicate_messages = check_duplicate_ids(id_list, "dataset")
id_list = unique_id_list
for id in id_list:
kbs = KnowledgebaseService.query(id=id, tenant_id=tenant_id)
if not kbs:
errors.append(f"You don't own the dataset {id}")
continue
for doc in DocumentService.query(kb_id=id):
if not DocumentService.remove_document(doc, tenant_id):
errors.append(f"Remove document error for dataset {id}")
for kb_id, kb in kb_id_instance_pairs:
try:
for doc in DocumentService.query(kb_id=kb_id):
if not DocumentService.remove_document(doc, tenant_id):
errors.append(f"Remove document '{doc.id}' error for dataset '{kb_id}'")
continue
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete(
[
File.source_type == FileSource.KNOWLEDGEBASE,
File.id == f2d[0].file_id,
]
)
File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
if not KnowledgebaseService.delete_by_id(kb_id):
errors.append(f"Delete dataset error for {kb_id}")
continue
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete(
[
File.source_type == FileSource.KNOWLEDGEBASE,
File.id == f2d[0].file_id,
]
)
File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete(
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
if not KnowledgebaseService.delete_by_id(id):
errors.append(f"Delete dataset error for {id}")
continue
success_count += 1
if errors:
if success_count > 0:
return get_result(
data={"success_count": success_count, "errors": errors},
message=f"Partially deleted {success_count} datasets with {len(errors)} errors"
)
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(message=f"Partially deleted {success_count} datasets with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages},)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result(code=settings.RetCode.SUCCESS)
success_count += 1
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if not errors:
return get_result()
error_message = f"Successfully deleted {success_count} datasets, {len(errors)} failed. Details: {'; '.join(errors)[:128]}..."
if success_count == 0:
return get_error_data_result(message=error_message)
return get_result(data={"success_count": success_count, "errors": errors[:5]}, message=error_message)
@manager.route("/datasets/<dataset_id>", methods=["PUT"]) # noqa: F821
@manager.route("/datasets/<dataset_id>", methods=["PUT"]) # noqa: F821
@token_required
def update(tenant_id, dataset_id):
"""
@ -307,16 +301,28 @@ def update(tenant_id, dataset_id):
name:
type: string
description: New name of the dataset.
avatar:
type: string
description: Updated base64 encoding of the avatar.
description:
type: string
description: Updated description of the dataset.
embedding_model:
type: string
description: Updated embedding model Name.
permission:
type: string
enum: ['me', 'team']
description: Updated permission.
description: Updated dataset permission.
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "email", "tag"
enum: ["naive", "book", "email", "laws", "manual", "one", "paper",
"picture", "presentation", "qa", "table", "tag"
]
description: Updated chunking method.
pagerank:
type: integer
description: Updated page rank.
parser_config:
type: object
description: Updated parser configuration.
@ -326,128 +332,60 @@ def update(tenant_id, dataset_id):
schema:
type: object
"""
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message="You don't own the dataset")
req = request.json
for k in req.keys():
if dataset_readonly_fields(k):
return get_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"'{k}' is readonly.")
e, t = TenantService.get_by_id(tenant_id)
invalid_keys = {"id", "embd_id", "chunk_num", "doc_num", "parser_id", "create_date", "create_time", "created_by", "status","token_num","update_date","update_time"}
if any(key in req for key in invalid_keys):
return get_error_data_result(message="The input parameters are invalid.")
permission = req.get("permission")
chunk_method = req.get("chunk_method")
parser_config = req.get("parser_config")
valid_parser_config(parser_config)
valid_permission = ["me", "team"]
valid_chunk_method = [
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"email",
"tag"
]
check_validation = valid(
permission,
valid_permission,
chunk_method,
valid_chunk_method,
)
if check_validation:
return check_validation
if "tenant_id" in req:
if req["tenant_id"] != tenant_id:
return get_error_data_result(message="Can't change `tenant_id`.")
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if "parser_config" in req:
temp_dict = kb.parser_config
temp_dict.update(req["parser_config"])
req["parser_config"] = temp_dict
if "chunk_count" in req:
if req["chunk_count"] != kb.chunk_num:
return get_error_data_result(message="Can't change `chunk_count`.")
req.pop("chunk_count")
if "document_count" in req:
if req["document_count"] != kb.doc_num:
return get_error_data_result(message="Can't change `document_count`.")
req.pop("document_count")
if req.get("chunk_method"):
if kb.chunk_num != 0 and req["chunk_method"] != kb.parser_id:
return get_error_data_result(
message="If `chunk_count` is not 0, `chunk_method` is not changeable."
)
req["parser_id"] = req.pop("chunk_method")
if req["parser_id"] != kb.parser_id:
if not req.get("parser_config"):
req["parser_config"] = get_parser_config(chunk_method, parser_config)
if "embedding_model" in req:
if kb.chunk_num != 0 and req["embedding_model"] != kb.embd_id:
return get_error_data_result(
message="If `chunk_count` is not 0, `embedding_model` is not changeable."
)
if not req.get("embedding_model"):
return get_error_data_result("`embedding_model` can't be empty")
valid_embedding_models = [
"BAAI/bge-large-zh-v1.5",
"BAAI/bge-base-en-v1.5",
"BAAI/bge-large-en-v1.5",
"BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5",
"jinaai/jina-embeddings-v2-base-en",
"jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5",
"sentence-transformers/all-MiniLM-L6-v2",
"text-embedding-v2",
"text-embedding-v3",
"maidalun1020/bce-embedding-base_v1",
]
embd_model = LLMService.query(
llm_name=req["embedding_model"], model_type="embedding"
)
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding",llm_name=req.get("embedding_model"),):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
if not embd_model:
embd_model=TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model"))
# Field name transformations during model dump:
# | Original | Dump Output |
# |----------------|-------------|
# | embedding_model| embd_id |
# | chunk_method | parser_id |
extras = {"dataset_id": dataset_id}
req, err = validate_and_parse_json_request(request, UpdateDatasetReq, extras=extras, exclude_unset=True)
if err is not None:
return get_error_argument_result(err)
if not embd_model:
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
req["embd_id"] = req.pop("embedding_model")
if "name" in req:
req["name"] = req["name"].strip()
if len(req["name"]) >= 128:
return get_error_data_result(
message="Dataset name should not be longer than 128 characters."
)
if (
req["name"].lower() != kb.name.lower()
and len(
KnowledgebaseService.query(
name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value
)
)
> 0
):
return get_error_data_result(
message="Duplicated dataset name in updating dataset."
)
flds = list(req.keys())
for f in flds:
if req[f] == "" and f in ["permission", "parser_id", "chunk_method"]:
del req[f]
if not KnowledgebaseService.update_by_id(kb.id, req):
return get_error_data_result(message="Update dataset error.(Database error)")
return get_result(code=settings.RetCode.SUCCESS)
if not req:
return get_error_argument_result(message="No properties were modified")
try:
kb = KnowledgebaseService.get_or_none(id=dataset_id, tenant_id=tenant_id)
if kb is None:
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if req.get("parser_config"):
req["parser_config"] = deep_merge(kb.parser_config, req["parser_config"])
if (chunk_method := req.get("parser_id")) and chunk_method != kb.parser_id:
if not req.get("parser_config"):
req["parser_config"] = get_parser_config(chunk_method, None)
elif "parser_config" in req and not req["parser_config"]:
del req["parser_config"]
if "name" in req and req["name"].lower() != kb.name.lower():
try:
exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)
if exists:
return get_error_data_result(message=f"Dataset name '{req['name']}' already exists")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if "embd_id" in req:
if kb.chunk_num != 0 and req["embd_id"] != kb.embd_id:
return get_error_data_result(message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
if not ok:
return err
try:
if not KnowledgebaseService.update_by_id(kb.id, req):
return get_error_data_result(message="Update dataset error.(Database error)")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
return get_result()
@manager.route("/datasets", methods=["GET"]) # noqa: F821
@ -481,7 +419,7 @@ def list_datasets(tenant_id):
name: page_size
type: integer
required: false
default: 1024
default: 30
description: Number of items per page.
- in: query
name: orderby
@ -508,47 +446,46 @@ def list_datasets(tenant_id):
items:
type: object
"""
id = request.args.get("id")
name = request.args.get("name")
if id:
kbs = KnowledgebaseService.get_kb_by_id(id,tenant_id)
args, err = validate_and_parse_request_args(request, ListDatasetReq)
if err is not None:
return get_error_argument_result(err)
kb_id = request.args.get("id")
name = args.get("name")
if kb_id:
try:
kbs = KnowledgebaseService.get_kb_by_id(kb_id, tenant_id)
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if not kbs:
return get_error_data_result(f"You don't own the dataset {id}")
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{kb_id}'")
if name:
kbs = KnowledgebaseService.get_kb_by_name(name,tenant_id)
try:
kbs = KnowledgebaseService.get_kb_by_name(name, tenant_id)
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
if not kbs:
return get_error_data_result(f"You don't own the dataset {name}")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc", "false").lower() not in ["true", "false"]:
return get_error_data_result("desc should be true or false")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
kbs = KnowledgebaseService.get_list(
[m["tenant_id"] for m in tenants],
tenant_id,
page_number,
items_per_page,
orderby,
desc,
id,
name,
)
renamed_list = []
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{name}'")
try:
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
kbs = KnowledgebaseService.get_list(
[m["tenant_id"] for m in tenants],
tenant_id,
args["page"],
args["page_size"],
args["orderby"],
args["desc"],
kb_id,
name,
)
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
response_data_list = []
for kb in kbs:
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model",
}
renamed_data = {}
for key, value in kb.items():
new_key = key_mapping.get(key, key)
renamed_data[new_key] = value
renamed_list.append(renamed_data)
return get_result(data=renamed_list)
response_data_list.append(remap_dictionary_keys(kb))
return get_result(data=response_data_list)

View File

@ -222,6 +222,9 @@ def update_doc(tenant_id, dataset_id, document_id):
chunk_method:
type: string
description: Chunking method.
enabled:
type: boolean
description: Document status.
responses:
200:
description: Document updated successfully.
@ -231,6 +234,10 @@ def update_doc(tenant_id, dataset_id, document_id):
req = request.json
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message="You don't own the dataset.")
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if not e:
return get_error_data_result(
message="Can't find this knowledgebase!")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(message="The dataset doesn't own the document.")
@ -332,9 +339,25 @@ def update_doc(tenant_id, dataset_id, document_id):
return get_error_data_result(message="Document not found!")
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
if "enabled" in req:
status = int(req["enabled"])
if doc.status != req["enabled"]:
try:
if not DocumentService.update_by_id(
doc.id, {"status": str(status)}):
return get_error_data_result(
message="Database error (Document update)!")
settings.docStoreConn.update({"doc_id": doc.id}, {"available_int": status},
search.index_name(kb.tenant_id), doc.kb_id)
return get_result(data=True)
except Exception as e:
return server_error_response(e)
return get_result()
@manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["GET"]) # noqa: F821
@token_required
def download(tenant_id, dataset_id, document_id):
@ -833,6 +856,12 @@ def list_chunks(tenant_id, dataset_id, document_id):
required: false
default: 30
description: Number of items per page.
- in: query
name: id
type: string
required: false
default: ""
description: Chunk Id.
- in: header
name: Authorization
type: string
@ -1407,6 +1436,7 @@ def retrieval_test(tenant_id):
else:
highlight = True
try:
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Dataset not found!")
@ -1423,7 +1453,7 @@ def retrieval_test(tenant_id):
ranks = settings.retrievaler.retrieval(
question,
embd_mdl,
kb.tenant_id,
tenant_ids,
kb_ids,
page,
size,

View File

@ -464,12 +464,11 @@ def list_session(tenant_id, chat_id):
if conv["reference"]:
messages = conv["messages"]
message_num = 0
chunk_num = 0
while message_num < len(messages):
if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = []
if "chunks" in conv["reference"][chunk_num]:
chunks = conv["reference"][chunk_num]["chunks"]
if "chunks" in conv["reference"][message_num]:
chunks = conv["reference"][message_num]["chunks"]
for chunk in chunks:
new_chunk = {
"id": chunk.get("chunk_id", chunk.get("id")),
@ -482,7 +481,6 @@ def list_session(tenant_id, chat_id):
}
chunk_list.append(new_chunk)
chunk_num += 1
messages[message_num]["reference"] = chunk_list
message_num += 1
del conv["reference"]

View File

@ -13,35 +13,37 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import json
import logging
import re
from datetime import datetime
from flask import request, session, redirect
from werkzeug.security import generate_password_hash, check_password_hash
from flask_login import login_required, current_user, login_user, logout_user
from flask import redirect, request, session
from flask_login import current_user, login_required, login_user, logout_user
from werkzeug.security import check_password_hash, generate_password_hash
from api import settings
from api.apps.auth import get_auth_client
from api.db import FileType, UserTenantRole
from api.db.db_models import TenantLLM
from api.db.services.llm_service import TenantLLMService, LLMService
from api.utils.api_utils import (
server_error_response,
validate_request,
get_data_error_result,
)
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMService, TenantLLMService
from api.db.services.user_service import TenantService, UserService, UserTenantService
from api.utils import (
get_uuid,
get_format_time,
decrypt,
download_img,
current_timestamp,
datetime_format,
decrypt,
download_img,
get_format_time,
get_uuid,
)
from api.utils.api_utils import (
construct_response,
get_data_error_result,
get_json_result,
server_error_response,
validate_request,
)
from api.db import UserTenantRole, FileType
from api import settings
from api.db.services.user_service import UserService, TenantService, UserTenantService
from api.db.services.file_service import FileService
from api.utils.api_utils import get_json_result, construct_response
@manager.route("/login", methods=["POST", "GET"]) # noqa: F821
@ -76,9 +78,7 @@ def login():
type: object
"""
if not request.json:
return get_json_result(
data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="Unauthorized!"
)
return get_json_result(data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="Unauthorized!")
email = request.json.get("email", "")
users = UserService.query(email=email)
@ -93,9 +93,7 @@ def login():
try:
password = decrypt(password)
except BaseException:
return get_json_result(
data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password"
)
return get_json_result(data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password")
user = UserService.query_user(email, password)
if user:
@ -115,9 +113,131 @@ def login():
)
@manager.route("/login/channels", methods=["GET"]) # noqa: F821
def get_login_channels():
"""
Get all supported authentication channels.
"""
try:
channels = []
for channel, config in settings.OAUTH_CONFIG.items():
channels.append(
{
"channel": channel,
"display_name": config.get("display_name", channel.title()),
"icon": config.get("icon", "sso"),
}
)
return get_json_result(data=channels)
except Exception as e:
logging.exception(e)
return get_json_result(data=[], message=f"Load channels failure, error: {str(e)}", code=settings.RetCode.EXCEPTION_ERROR)
@manager.route("/login/<channel>", methods=["GET"]) # noqa: F821
def oauth_login(channel):
channel_config = settings.OAUTH_CONFIG.get(channel)
if not channel_config:
raise ValueError(f"Invalid channel name: {channel}")
auth_cli = get_auth_client(channel_config)
state = get_uuid()
session["oauth_state"] = state
auth_url = auth_cli.get_authorization_url(state)
return redirect(auth_url)
@manager.route("/oauth/callback/<channel>", methods=["GET"]) # noqa: F821
def oauth_callback(channel):
"""
Handle the OAuth/OIDC callback for various channels dynamically.
"""
try:
channel_config = settings.OAUTH_CONFIG.get(channel)
if not channel_config:
raise ValueError(f"Invalid channel name: {channel}")
auth_cli = get_auth_client(channel_config)
# Check the state
state = request.args.get("state")
if not state or state != session.get("oauth_state"):
return redirect("/?error=invalid_state")
session.pop("oauth_state", None)
# Obtain the authorization code
code = request.args.get("code")
if not code:
return redirect("/?error=missing_code")
# Exchange authorization code for access token
token_info = auth_cli.exchange_code_for_token(code)
access_token = token_info.get("access_token")
if not access_token:
return redirect("/?error=token_failed")
id_token = token_info.get("id_token")
# Fetch user info
user_info = auth_cli.fetch_user_info(access_token, id_token=id_token)
if not user_info.email:
return redirect("/?error=email_missing")
# Login or register
users = UserService.query(email=user_info.email)
user_id = get_uuid()
if not users:
try:
try:
avatar = download_img(user_info.avatar_url)
except Exception as e:
logging.exception(e)
avatar = ""
users = user_register(
user_id,
{
"access_token": get_uuid(),
"email": user_info.email,
"avatar": avatar,
"nickname": user_info.nickname,
"login_channel": channel,
"last_login_time": get_format_time(),
"is_superuser": False,
},
)
if not users:
raise Exception(f"Failed to register {user_info.email}")
if len(users) > 1:
raise Exception(f"Same email: {user_info.email} exists!")
# Try to log in
user = users[0]
login_user(user)
return redirect(f"/?auth={user.get_id()}")
except Exception as e:
rollback_user_registration(user_id)
logging.exception(e)
return redirect(f"/?error={str(e)}")
# User exists, try to log in
user = users[0]
user.access_token = get_uuid()
login_user(user)
user.save()
return redirect(f"/?auth={user.get_id()}")
except Exception as e:
logging.exception(e)
return redirect(f"/?error={str(e)}")
@manager.route("/github_callback", methods=["GET"]) # noqa: F821
def github_callback():
"""
**Deprecated**, Use `/oauth/callback/<channel>` instead.
GitHub OAuth callback endpoint.
---
tags:
@ -309,9 +429,7 @@ def user_info_from_feishu(access_token):
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {access_token}",
}
res = requests.get(
"https://open.feishu.cn/open-apis/authen/v1/user_info", headers=headers
)
res = requests.get("https://open.feishu.cn/open-apis/authen/v1/user_info", headers=headers)
user_info = res.json()["data"]
user_info["email"] = None if user_info.get("email") == "" else user_info["email"]
return user_info
@ -321,17 +439,13 @@ def user_info_from_github(access_token):
import requests
headers = {"Accept": "application/json", "Authorization": f"token {access_token}"}
res = requests.get(
f"https://api.github.com/user?access_token={access_token}", headers=headers
)
res = requests.get(f"https://api.github.com/user?access_token={access_token}", headers=headers)
user_info = res.json()
email_info = requests.get(
f"https://api.github.com/user/emails?access_token={access_token}",
headers=headers,
).json()
user_info["email"] = next(
(email for email in email_info if email["primary"]), None
)["email"]
user_info["email"] = next((email for email in email_info if email["primary"]), None)["email"]
return user_info
@ -391,9 +505,7 @@ def setting_user():
request_data = request.json
if request_data.get("password"):
new_password = request_data.get("new_password")
if not check_password_hash(
current_user.password, decrypt(request_data["password"])
):
if not check_password_hash(current_user.password, decrypt(request_data["password"])):
return get_json_result(
data=False,
code=settings.RetCode.AUTHENTICATION_ERROR,
@ -424,9 +536,7 @@ def setting_user():
return get_json_result(data=True)
except Exception as e:
logging.exception(e)
return get_json_result(
data=False, message="Update failure!", code=settings.RetCode.EXCEPTION_ERROR
)
return get_json_result(data=False, message="Update failure!", code=settings.RetCode.EXCEPTION_ERROR)
@manager.route("/info", methods=["GET"]) # noqa: F821
@ -518,9 +628,23 @@ def user_register(user_id, user):
"model_type": llm.model_type,
"api_key": settings.API_KEY,
"api_base": settings.LLM_BASE_URL,
"max_tokens": llm.max_tokens if llm.max_tokens else 8192
"max_tokens": llm.max_tokens if llm.max_tokens else 8192,
}
)
if settings.LIGHTEN != 1:
for buildin_embedding_model in settings.BUILTIN_EMBEDDING_MODELS:
mdlnm, fid = TenantLLMService.split_model_name_and_factory(buildin_embedding_model)
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": fid,
"llm_name": mdlnm,
"model_type": "embedding",
"api_key": "",
"api_base": "",
"max_tokens": 1024 if buildin_embedding_model == "BAAI/bge-large-zh-v1.5@BAAI" else 512,
}
)
if not UserService.save(**user):
return

View File

@ -49,6 +49,7 @@ class FileType(StrEnum):
FOLDER = 'folder'
OTHER = "other"
VALID_FILE_TYPES = {FileType.PDF, FileType.DOC, FileType.VISUAL, FileType.AURAL, FileType.VIRTUAL, FileType.FOLDER, FileType.OTHER}
class LLMType(StrEnum):
CHAT = 'chat'
@ -73,6 +74,7 @@ class TaskStatus(StrEnum):
DONE = "3"
FAIL = "4"
VALID_TASK_STATUS = {TaskStatus.UNSTART, TaskStatus.RUNNING, TaskStatus.CANCEL, TaskStatus.DONE, TaskStatus.FAIL}
class ParserType(StrEnum):
PRESENTATION = "presentation"

View File

@ -119,7 +119,7 @@ def init_llm_factory():
except Exception:
pass
LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
LLMFactoriesService.filter_delete([(LLMFactories.name == "Local") | (LLMFactories.name == "novita.ai")])
LLMService.filter_delete([LLM.fid == "Local"])
LLMService.filter_delete([LLM.llm_name == "qwen-vl-max"])
LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])

View File

@ -18,57 +18,57 @@ from datetime import datetime
import peewee
from api.db.db_models import DB
from api.utils import datetime_format, current_timestamp, get_uuid
from api.utils import current_timestamp, datetime_format, get_uuid
class CommonService:
"""Base service class that provides common database operations.
This class serves as a foundation for all service classes in the application,
implementing standard CRUD operations and common database query patterns.
It uses the Peewee ORM for database interactions and provides a consistent
interface for database operations across all derived service classes.
Attributes:
model: The Peewee model class that this service operates on. Must be set by subclasses.
"""
model = None
@classmethod
@DB.connection_context()
def query(cls, cols=None, reverse=None, order_by=None, **kwargs):
"""Execute a database query with optional column selection and ordering.
This method provides a flexible way to query the database with various filters
and sorting options. It supports column selection, sort order control, and
additional filter conditions.
Args:
cols (list, optional): List of column names to select. If None, selects all columns.
reverse (bool, optional): If True, sorts in descending order. If False, sorts in ascending order.
order_by (str, optional): Column name to sort results by.
**kwargs: Additional filter conditions passed as keyword arguments.
Returns:
peewee.ModelSelect: A query result containing matching records.
"""
return cls.model.query(cols=cols, reverse=reverse,
order_by=order_by, **kwargs)
return cls.model.query(cols=cols, reverse=reverse, order_by=order_by, **kwargs)
@classmethod
@DB.connection_context()
def get_all(cls, cols=None, reverse=None, order_by=None):
"""Retrieve all records from the database with optional column selection and ordering.
This method fetches all records from the model's table with support for
column selection and result ordering. If no order_by is specified and reverse
is True, it defaults to ordering by create_time.
Args:
cols (list, optional): List of column names to select. If None, selects all columns.
reverse (bool, optional): If True, sorts in descending order. If False, sorts in ascending order.
order_by (str, optional): Column name to sort results by. Defaults to 'create_time' if reverse is specified.
Returns:
peewee.ModelSelect: A query containing all matching records.
"""
@ -80,27 +80,25 @@ class CommonService:
if not order_by or not hasattr(cls, order_by):
order_by = "create_time"
if reverse is True:
query_records = query_records.order_by(
cls.model.getter_by(order_by).desc())
query_records = query_records.order_by(cls.model.getter_by(order_by).desc())
elif reverse is False:
query_records = query_records.order_by(
cls.model.getter_by(order_by).asc())
query_records = query_records.order_by(cls.model.getter_by(order_by).asc())
return query_records
@classmethod
@DB.connection_context()
def get(cls, **kwargs):
"""Get a single record matching the given criteria.
This method retrieves a single record from the database that matches
the specified filter conditions.
Args:
**kwargs: Filter conditions as keyword arguments.
Returns:
Model instance: Single matching record.
Raises:
peewee.DoesNotExist: If no matching record is found.
"""
@ -110,13 +108,13 @@ class CommonService:
@DB.connection_context()
def get_or_none(cls, **kwargs):
"""Get a single record or None if not found.
This method attempts to retrieve a single record matching the given criteria,
returning None if no match is found instead of raising an exception.
Args:
**kwargs: Filter conditions as keyword arguments.
Returns:
Model instance or None: Matching record if found, None otherwise.
"""
@ -129,13 +127,13 @@ class CommonService:
@DB.connection_context()
def save(cls, **kwargs):
"""Save a new record to database.
This method creates a new record in the database with the provided field values,
forcing an insert operation rather than an update.
Args:
**kwargs: Record field values as keyword arguments.
Returns:
Model instance: The created record object.
"""
@ -146,13 +144,13 @@ class CommonService:
@DB.connection_context()
def insert(cls, **kwargs):
"""Insert a new record with automatic ID and timestamps.
This method creates a new record with automatically generated ID and timestamp fields.
It handles the creation of create_time, create_date, update_time, and update_date fields.
Args:
**kwargs: Record field values as keyword arguments.
Returns:
Model instance: The newly created record object.
"""
@ -169,10 +167,10 @@ class CommonService:
@DB.connection_context()
def insert_many(cls, data_list, batch_size=100):
"""Insert multiple records in batches.
This method efficiently inserts multiple records into the database using batch processing.
It automatically sets creation timestamps for all records.
Args:
data_list (list): List of dictionaries containing record data to insert.
batch_size (int, optional): Number of records to insert in each batch. Defaults to 100.
@ -182,16 +180,16 @@ class CommonService:
d["create_time"] = current_timestamp()
d["create_date"] = datetime_format(datetime.now())
for i in range(0, len(data_list), batch_size):
cls.model.insert_many(data_list[i:i + batch_size]).execute()
cls.model.insert_many(data_list[i : i + batch_size]).execute()
@classmethod
@DB.connection_context()
def update_many_by_id(cls, data_list):
"""Update multiple records by their IDs.
This method updates multiple records in the database, identified by their IDs.
It automatically updates the update_time and update_date fields for each record.
Args:
data_list (list): List of dictionaries containing record data to update.
Each dictionary must include an 'id' field.
@ -200,8 +198,7 @@ class CommonService:
for data in data_list:
data["update_time"] = current_timestamp()
data["update_date"] = datetime_format(datetime.now())
cls.model.update(data).where(
cls.model.id == data["id"]).execute()
cls.model.update(data).where(cls.model.id == data["id"]).execute()
@classmethod
@DB.connection_context()
@ -258,6 +255,18 @@ class CommonService:
# Number of records deleted
return cls.model.delete().where(cls.model.id == pid).execute()
@classmethod
@DB.connection_context()
def delete_by_ids(cls, pids):
# Delete multiple records by their IDs
# Args:
# pids: List of record IDs
# Returns:
# Number of records deleted
with DB.atomic():
res = cls.model.delete().where(cls.model.id.in_(pids)).execute()
return res
@classmethod
@DB.connection_context()
def filter_delete(cls, filters):
@ -292,13 +301,12 @@ class CommonService:
# List of tuples containing chunks
length = len(tar_list)
arr = range(length)
result = [tuple(tar_list[x:(x + n)]) for x in arr[::n]]
result = [tuple(tar_list[x : (x + n)]) for x in arr[::n]]
return result
@classmethod
@DB.connection_context()
def filter_scope_list(cls, in_key, in_filters_list,
filters=None, cols=None):
def filter_scope_list(cls, in_key, in_filters_list, filters=None, cols=None):
# Get records matching IN clause filters with optional column selection
# Args:
# in_key: Field name for IN clause
@ -313,22 +321,12 @@ class CommonService:
res_list = []
if cols:
for i in in_filters_tuple_list:
query_records = cls.model.select(
*
cols).where(
getattr(
cls.model,
in_key).in_(i),
*
filters)
query_records = cls.model.select(*cols).where(getattr(cls.model, in_key).in_(i), *filters)
if query_records:
res_list.extend(
[query_record for query_record in query_records])
res_list.extend([query_record for query_record in query_records])
else:
for i in in_filters_tuple_list:
query_records = cls.model.select().where(
getattr(cls.model, in_key).in_(i), *filters)
query_records = cls.model.select().where(getattr(cls.model, in_key).in_(i), *filters)
if query_records:
res_list.extend(
[query_record for query_record in query_records])
res_list.extend([query_record for query_record in query_records])
return res_list

View File

@ -14,11 +14,11 @@
# limitations under the License.
#
import binascii
from datetime import datetime
import logging
import re
import time
from copy import deepcopy
from datetime import datetime
from functools import partial
from timeit import default_timer as timer
@ -36,7 +36,7 @@ from api.utils import current_timestamp, datetime_format
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts import chunks_format, citation_prompt, full_question, kb_prompt, keyword_extraction, llm_id2llm_type, message_fit_in
from rag.prompts import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, llm_id2llm_type, message_fit_in
from rag.utils import num_tokens_from_string, rmSpace
from rag.utils.tavily_conn import Tavily
@ -109,6 +109,7 @@ def chat_solo(dialog, messages, stream=True):
msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"]
if stream:
last_ans = ""
delta_ans = ""
for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
answer = ans
delta_ans = ans[len(last_ans) :]
@ -116,6 +117,7 @@ def chat_solo(dialog, messages, stream=True):
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
delta_ans = ""
if delta_ans:
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
else:
@ -212,6 +214,9 @@ def chat(dialog, messages, stream=True, **kwargs):
else:
questions = questions[-1:]
if prompt_config.get("cross_languages"):
questions = [cross_languages(dialog.tenant_id, dialog.llm_id, questions[0], prompt_config["cross_languages"])]
refine_question_ts = timer()
rerank_mdl = None
@ -297,6 +302,39 @@ def chat(dialog, messages, stream=True, **kwargs):
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], max_tokens - used_token_count)
def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
max_index = len(kbinfos["chunks"])
def safe_add(i):
if 0 <= i < max_index:
idx.add(i)
return True
return False
def find_and_replace(pattern, group_index=1, repl=lambda i: f"##{i}$$", flags=0):
nonlocal answer
for match in re.finditer(pattern, answer, flags=flags):
try:
i = int(match.group(group_index))
if safe_add(i):
answer = answer.replace(match.group(0), repl(i))
except Exception:
continue
find_and_replace(r"\(\s*ID:\s*(\d+)\s*\)") # (ID: 12)
find_and_replace(r"ID[: ]+(\d+)") # ID: 12, ID 12
find_and_replace(r"\$\$(\d+)\$\$") # $$12$$
find_and_replace(r"\$\[(\d+)\]\$") # $[12]$
find_and_replace(r"\$\$(\d+)\${2,}") # $$12$$$$
find_and_replace(r"\$(\d+)\$") # $12$
find_and_replace(r"(#{2,})(\d+)(\${2,})", group_index=2) # 2+ # and 2+ $
find_and_replace(r"(#{2,})(\d+)(#{1,})", group_index=2) # 2+ # and 1+ #
find_and_replace(r"##(\d+)#{2,}") # ##12###
find_and_replace(r"【(\d+)】") # 【12】
find_and_replace(r"ref\s*(\d+)", flags=re.IGNORECASE) # ref12, ref 12, REF 12
return answer, idx
def decorate_answer(answer):
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions, langfuse_tracer
@ -325,15 +363,7 @@ def chat(dialog, messages, stream=True, **kwargs):
if i < len(kbinfos["chunks"]):
idx.add(i)
# handle (ID: 1), ID: 2 etc.
for match in re.finditer(r"\(\s*ID:\s*(\d+)\s*\)|ID[: ]+\s*(\d+)", answer):
full_match = match.group(0)
id = match.group(1) or match.group(2)
if id:
i = int(id)
if i < len(kbinfos["chunks"]):
idx.add(i)
answer = answer.replace(full_match, f"##{i}$$")
answer, idx = repair_bad_citation_formats(answer, kbinfos, idx)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
@ -400,7 +430,7 @@ def chat(dialog, messages, stream=True, **kwargs):
answer = ""
for ans in chat_mdl.chat_streamly(prompt + prompt4citation, msg[1:], gen_conf):
if thought:
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
answer = ans
delta_ans = ans[len(last_ans) :]
if num_tokens_from_string(delta_ans) < 16:
@ -436,7 +466,7 @@ Please write the SQL, only SQL, without any other explanations or text.
def get_table():
nonlocal sys_prompt, user_prompt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {"temperature": 0.06})
sql = re.sub(r"<think>.*</think>", "", sql, flags=re.DOTALL)
sql = re.sub(r"^.*</think>", "", sql, flags=re.DOTALL)
logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*select ", "select ", sql.lower())
@ -496,7 +526,7 @@ Please write the SQL, only SQL, without any other explanations or text.
# compose Markdown table
columns = (
"|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
"|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
)
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + ("|------|" if docid_idx and docid_idx else "")
@ -592,4 +622,4 @@ def ask(question, kb_ids, tenant_id):
for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
answer = ans
yield {"answer": answer, "reference": {}}
yield decorate_answer(answer)
yield decorate_answer(answer)

View File

@ -37,6 +37,7 @@ from rag.nlp import rag_tokenizer, search
from rag.settings import get_svr_queue_name
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL
from rag.utils.doc_store_conn import OrderByExpr
class DocumentService(CommonService):
@ -70,7 +71,7 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def get_by_kb_id(cls, kb_id, page_number, items_per_page,
orderby, desc, keywords):
orderby, desc, keywords, run_status, types):
if keywords:
docs = cls.model.select().where(
(cls.model.kb_id == kb_id),
@ -78,16 +79,60 @@ class DocumentService(CommonService):
)
else:
docs = cls.model.select().where(cls.model.kb_id == kb_id)
if run_status:
docs = docs.where(cls.model.run.in_(run_status))
if types:
docs = docs.where(cls.model.type.in_(types))
count = docs.count()
if desc:
docs = docs.order_by(cls.model.getter_by(orderby).desc())
else:
docs = docs.order_by(cls.model.getter_by(orderby).asc())
docs = docs.paginate(page_number, items_per_page)
if page_number and items_per_page:
docs = docs.paginate(page_number, items_per_page)
return list(docs.dicts()), count
@classmethod
@DB.connection_context()
def count_by_kb_id(cls, kb_id, keywords, run_status, types):
if keywords:
docs = cls.model.select().where(
(cls.model.kb_id == kb_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
else:
docs = cls.model.select().where(cls.model.kb_id == kb_id)
if run_status:
docs = docs.where(cls.model.run.in_(run_status))
if types:
docs = docs.where(cls.model.type.in_(types))
count = docs.count()
return count
@classmethod
@DB.connection_context()
def get_total_size_by_kb_id(cls, kb_id, keywords="", run_status=[], types=[]):
query = cls.model.select(fn.COALESCE(fn.SUM(cls.model.size), 0)).where(
cls.model.kb_id == kb_id
)
if keywords:
query = query.where(fn.LOWER(cls.model.name).contains(keywords.lower()))
if run_status:
query = query.where(cls.model.run.in_(run_status))
if types:
query = query.where(cls.model.type.in_(types))
return int(query.scalar()) or 0
@classmethod
@DB.connection_context()
def insert(cls, doc):
@ -103,14 +148,18 @@ class DocumentService(CommonService):
cls.clear_chunk_num(doc.id)
try:
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "source_id": doc.id},
{"remove": {"source_id": doc.id}},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["graph"]},
{"removed_kwd": "Y"},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.delete({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "must_not": {"exists": "source_id"}},
search.index_name(tenant_id), doc.kb_id)
graph_source = settings.docStoreConn.getFields(
settings.docStoreConn.search(["source_id"], [], {"kb_id": doc.kb_id, "knowledge_graph_kwd": ["graph"]}, [], OrderByExpr(), 0, 1, search.index_name(tenant_id), [doc.kb_id]), ["source_id"]
)
if len(graph_source) > 0 and doc.id in list(graph_source.values())[0]["source_id"]:
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "source_id": doc.id},
{"remove": {"source_id": doc.id}},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["graph"]},
{"removed_kwd": "Y"},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.delete({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "must_not": {"exists": "source_id"}},
search.index_name(tenant_id), doc.kb_id)
except Exception:
pass
return cls.delete_by_id(doc.id)
@ -327,6 +376,15 @@ class DocumentService(CommonService):
if not doc_id:
return
return doc_id[0]["id"]
@classmethod
@DB.connection_context()
def get_doc_ids_by_doc_names(cls, doc_names):
if not doc_names:
return []
query = cls.model.select(cls.model.id).where(cls.model.name.in_(doc_names))
return list(query.scalars().iterator())
@classmethod
@DB.connection_context()

View File

@ -14,22 +14,21 @@
# limitations under the License.
#
import logging
import re
import os
import re
from concurrent.futures import ThreadPoolExecutor
from flask_login import current_user
from peewee import fn
from api.db import FileType, KNOWLEDGEBASE_FOLDER_NAME, FileSource, ParserType
from api.db.db_models import DB, File2Document, Knowledgebase
from api.db.db_models import File, Document
from api.db import KNOWLEDGEBASE_FOLDER_NAME, FileSource, FileType, ParserType
from api.db.db_models import DB, Document, File, File2Document, Knowledgebase
from api.db.services import duplicate_name
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.utils import get_uuid
from api.utils.file_utils import filename_type, thumbnail_img
from api.utils.file_utils import filename_type, read_potential_broken_pdf, thumbnail_img
from rag.utils.storage_factory import STORAGE_IMPL
@ -39,8 +38,7 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_by_pf_id(cls, tenant_id, pf_id, page_number, items_per_page,
orderby, desc, keywords):
def get_by_pf_id(cls, tenant_id, pf_id, page_number, items_per_page, orderby, desc, keywords):
# Get files by parent folder ID with pagination and filtering
# Args:
# tenant_id: ID of the tenant
@ -53,17 +51,9 @@ class FileService(CommonService):
# Returns:
# Tuple of (file_list, total_count)
if keywords:
files = cls.model.select().where(
(cls.model.tenant_id == tenant_id),
(cls.model.parent_id == pf_id),
(fn.LOWER(cls.model.name).contains(keywords.lower())),
~(cls.model.id == pf_id)
)
files = cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == pf_id), (fn.LOWER(cls.model.name).contains(keywords.lower())), ~(cls.model.id == pf_id))
else:
files = cls.model.select().where((cls.model.tenant_id == tenant_id),
(cls.model.parent_id == pf_id),
~(cls.model.id == pf_id)
)
files = cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == pf_id), ~(cls.model.id == pf_id))
count = files.count()
if desc:
files = files.order_by(cls.model.getter_by(orderby).desc())
@ -76,16 +66,20 @@ class FileService(CommonService):
for file in res_files:
if file["type"] == FileType.FOLDER.value:
file["size"] = cls.get_folder_size(file["id"])
file['kbs_info'] = []
children = list(cls.model.select().where(
(cls.model.tenant_id == tenant_id),
(cls.model.parent_id == file["id"]),
~(cls.model.id == file["id"]),
).dicts())
file["has_child_folder"] = any(value["type"] == FileType.FOLDER.value for value in children)
file["kbs_info"] = []
children = list(
cls.model.select()
.where(
(cls.model.tenant_id == tenant_id),
(cls.model.parent_id == file["id"]),
~(cls.model.id == file["id"]),
)
.dicts()
)
file["has_child_folder"] = any(value["type"] == FileType.FOLDER.value for value in children)
continue
kbs_info = cls.get_kb_id_by_file_id(file['id'])
file['kbs_info'] = kbs_info
kbs_info = cls.get_kb_id_by_file_id(file["id"])
file["kbs_info"] = kbs_info
return res_files, count
@ -97,16 +91,18 @@ class FileService(CommonService):
# file_id: File ID
# Returns:
# List of dictionaries containing knowledge base IDs and names
kbs = (cls.model.select(*[Knowledgebase.id, Knowledgebase.name])
.join(File2Document, on=(File2Document.file_id == file_id))
.join(Document, on=(File2Document.document_id == Document.id))
.join(Knowledgebase, on=(Knowledgebase.id == Document.kb_id))
.where(cls.model.id == file_id))
kbs = (
cls.model.select(*[Knowledgebase.id, Knowledgebase.name])
.join(File2Document, on=(File2Document.file_id == file_id))
.join(Document, on=(File2Document.document_id == Document.id))
.join(Knowledgebase, on=(Knowledgebase.id == Document.kb_id))
.where(cls.model.id == file_id)
)
if not kbs:
return []
kbs_info_list = []
for kb in list(kbs.dicts()):
kbs_info_list.append({"kb_id": kb['id'], "kb_name": kb['name']})
kbs_info_list.append({"kb_id": kb["id"], "kb_name": kb["name"]})
return kbs_info_list
@classmethod
@ -178,16 +174,9 @@ class FileService(CommonService):
if count > len(name) - 2:
return file
else:
file = cls.insert({
"id": get_uuid(),
"parent_id": parent_id,
"tenant_id": current_user.id,
"created_by": current_user.id,
"name": name[count],
"location": "",
"size": 0,
"type": FileType.FOLDER.value
})
file = cls.insert(
{"id": get_uuid(), "parent_id": parent_id, "tenant_id": current_user.id, "created_by": current_user.id, "name": name[count], "location": "", "size": 0, "type": FileType.FOLDER.value}
)
return cls.create_folder(file, file.id, name, count + 1)
@classmethod
@ -212,9 +201,7 @@ class FileService(CommonService):
# tenant_id: Tenant ID
# Returns:
# Root folder dictionary
for file in cls.model.select().where((cls.model.tenant_id == tenant_id),
(cls.model.parent_id == cls.model.id)
):
for file in cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
return file.to_dict()
file_id = get_uuid()
@ -239,11 +226,8 @@ class FileService(CommonService):
# tenant_id: Tenant ID
# Returns:
# Knowledge base folder dictionary
for root in cls.model.select().where(
(cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
for folder in cls.model.select().where(
(cls.model.tenant_id == tenant_id), (cls.model.parent_id == root.id),
(cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)):
for root in cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
for folder in cls.model.select().where((cls.model.tenant_id == tenant_id), (cls.model.parent_id == root.id), (cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)):
return folder.to_dict()
assert False, "Can't find the KB folder. Database init error."
@ -271,7 +255,7 @@ class FileService(CommonService):
"type": ty,
"size": size,
"location": location,
"source_type": FileSource.KNOWLEDGEBASE
"source_type": FileSource.KNOWLEDGEBASE,
}
cls.save(**file)
return file
@ -283,12 +267,11 @@ class FileService(CommonService):
# Args:
# root_id: Root folder ID
# tenant_id: Tenant ID
for _ in cls.model.select().where((cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)\
& (cls.model.parent_id == root_id)):
for _ in cls.model.select().where((cls.model.name == KNOWLEDGEBASE_FOLDER_NAME) & (cls.model.parent_id == root_id)):
return
folder = cls.new_a_file_from_kb(tenant_id, KNOWLEDGEBASE_FOLDER_NAME, root_id)
for kb in Knowledgebase.select(*[Knowledgebase.id, Knowledgebase.name]).where(Knowledgebase.tenant_id==tenant_id):
for kb in Knowledgebase.select(*[Knowledgebase.id, Knowledgebase.name]).where(Knowledgebase.tenant_id == tenant_id):
kb_folder = cls.new_a_file_from_kb(tenant_id, kb.name, folder["id"])
for doc in DocumentService.query(kb_id=kb.id):
FileService.add_file_from_kb(doc.to_dict(), kb_folder["id"], tenant_id)
@ -357,12 +340,10 @@ class FileService(CommonService):
@DB.connection_context()
def delete_folder_by_pf_id(cls, user_id, folder_id):
try:
files = cls.model.select().where((cls.model.tenant_id == user_id)
& (cls.model.parent_id == folder_id))
files = cls.model.select().where((cls.model.tenant_id == user_id) & (cls.model.parent_id == folder_id))
for file in files:
cls.delete_folder_by_pf_id(user_id, file.id)
return cls.model.delete().where((cls.model.tenant_id == user_id)
& (cls.model.id == folder_id)).execute(),
return (cls.model.delete().where((cls.model.tenant_id == user_id) & (cls.model.id == folder_id)).execute(),)
except Exception:
logging.exception("delete_folder_by_pf_id")
raise RuntimeError("Database error (File retrieval)!")
@ -380,8 +361,7 @@ class FileService(CommonService):
def dfs(parent_id):
nonlocal size
for f in cls.model.select(*[cls.model.id, cls.model.size, cls.model.type]).where(
cls.model.parent_id == parent_id, cls.model.id != parent_id):
for f in cls.model.select(*[cls.model.id, cls.model.size, cls.model.type]).where(cls.model.parent_id == parent_id, cls.model.id != parent_id):
size += f.size
if f.type == FileType.FOLDER.value:
dfs(f.id)
@ -403,16 +383,16 @@ class FileService(CommonService):
"type": doc["type"],
"size": doc["size"],
"location": doc["location"],
"source_type": FileSource.KNOWLEDGEBASE
"source_type": FileSource.KNOWLEDGEBASE,
}
cls.save(**file)
File2DocumentService.save(**{"id": get_uuid(), "file_id": file["id"], "document_id": doc["id"]})
@classmethod
@DB.connection_context()
def move_file(cls, file_ids, folder_id):
try:
cls.filter_update((cls.model.id << file_ids, ), { 'parent_id': folder_id })
cls.filter_update((cls.model.id << file_ids,), {"parent_id": folder_id})
except Exception:
logging.exception("move_file")
raise RuntimeError("Database error (File move)!")
@ -429,16 +409,13 @@ class FileService(CommonService):
err, files = [], []
for file in file_objs:
try:
MAX_FILE_NUM_PER_USER = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
MAX_FILE_NUM_PER_USER = int(os.environ.get("MAX_FILE_NUM_PER_USER", 0))
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(kb.tenant_id) >= MAX_FILE_NUM_PER_USER:
raise RuntimeError("Exceed the maximum file number of a free user!")
if len(file.filename) >= 128:
if len(file.filename.encode("utf-8")) >= 128:
raise RuntimeError("Exceed the maximum length of file name!")
filename = duplicate_name(
DocumentService.query,
name=file.filename,
kb_id=kb.id)
filename = duplicate_name(DocumentService.query, name=file.filename, kb_id=kb.id)
filetype = filename_type(filename)
if filetype == FileType.OTHER.value:
raise RuntimeError("This type of file has not been supported yet!")
@ -446,15 +423,18 @@ class FileService(CommonService):
location = filename
while STORAGE_IMPL.obj_exist(kb.id, location):
location += "_"
blob = file.read()
if filetype == FileType.PDF.value:
blob = read_potential_broken_pdf(blob)
STORAGE_IMPL.put(kb.id, location, blob)
doc_id = get_uuid()
img = thumbnail_img(filename, blob)
thumbnail_location = ''
thumbnail_location = ""
if img is not None:
thumbnail_location = f'thumbnail_{doc_id}.png'
thumbnail_location = f"thumbnail_{doc_id}.png"
STORAGE_IMPL.put(kb.id, thumbnail_location, img)
doc = {
@ -467,7 +447,7 @@ class FileService(CommonService):
"name": filename,
"location": location,
"size": len(blob),
"thumbnail": thumbnail_location
"thumbnail": thumbnail_location,
}
DocumentService.insert(doc)
@ -480,29 +460,17 @@ class FileService(CommonService):
@staticmethod
def parse_docs(file_objs, user_id):
from rag.app import presentation, picture, naive, audio, email
from rag.app import audio, email, naive, picture, presentation
def dummy(prog=None, msg=""):
pass
FACTORY = {
ParserType.PRESENTATION.value: presentation,
ParserType.PICTURE.value: picture,
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email
}
FACTORY = {ParserType.PRESENTATION.value: presentation, ParserType.PICTURE.value: picture, ParserType.AUDIO.value: audio, ParserType.EMAIL.value: email}
parser_config = {"chunk_token_num": 16096, "delimiter": "\n!?;。;!?", "layout_recognize": "Plain Text"}
exe = ThreadPoolExecutor(max_workers=12)
threads = []
for file in file_objs:
kwargs = {
"lang": "English",
"callback": dummy,
"parser_config": parser_config,
"from_page": 0,
"to_page": 100000,
"tenant_id": user_id
}
kwargs = {"lang": "English", "callback": dummy, "parser_config": parser_config, "from_page": 0, "to_page": 100000, "tenant_id": user_id}
filetype = filename_type(file.filename)
blob = file.read()
threads.append(exe.submit(FACTORY.get(FileService.get_parser(filetype, file.filename, ""), naive).chunk, file.filename, blob, **kwargs))
@ -523,4 +491,5 @@ class FileService(CommonService):
return ParserType.PRESENTATION.value
if re.search(r"\.(eml)$", filename):
return ParserType.EMAIL.value
return default
return default

View File

@ -97,7 +97,7 @@ class KnowledgebaseService(CommonService):
kb = kbs[0]
# Get all documents in the knowledge base
docs, _ = DocumentService.get_by_kb_id(kb_id, 1, 1000, "create_time", True, "")
docs, _ = DocumentService.get_by_kb_id(kb_id, 1, 1000, "create_time", True, "", [], [])
# Check parsing status of each document
for doc in docs:
@ -226,7 +226,10 @@ class KnowledgebaseService(CommonService):
cls.model.chunk_num,
cls.model.parser_id,
cls.model.parser_config,
cls.model.pagerank]
cls.model.pagerank,
cls.model.create_time,
cls.model.update_time
]
kbs = cls.model.select(*fields).join(Tenant, on=(
(Tenant.id == cls.model.tenant_id) & (Tenant.status == StatusEnum.VALID.value))).where(
(cls.model.id == kb_id),
@ -266,6 +269,16 @@ class KnowledgebaseService(CommonService):
dfs_update(m.parser_config, config)
cls.update_by_id(id, {"parser_config": m.parser_config})
@classmethod
@DB.connection_context()
def delete_field_map(cls, id):
e, m = cls.get_by_id(id)
if not e:
raise LookupError(f"knowledgebase({id}) not found.")
m.parser_config.pop("field_map", None)
cls.update_by_id(id, {"parser_config": m.parser_config})
@classmethod
@DB.connection_context()
def get_field_map(cls, ids):

View File

@ -100,9 +100,13 @@ class TenantLLMService(CommonService):
model_config = cls.get_api_key(tenant_id, mdlnm)
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
if not model_config: # for some cases seems fid mismatch
model_config = cls.get_api_key(tenant_id, mdlnm)
if model_config:
model_config = model_config.to_dict()
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if not llm and fid: # for some cases seems fid mismatch
llm = LLMService.query(llm_name=mdlnm)
if llm:
model_config["is_tools"] = llm[0].is_tools
if not model_config:
@ -159,12 +163,6 @@ class TenantLLMService(CommonService):
@classmethod
@DB.connection_context()
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
try:
if not DB.is_connection_usable():
DB.connect()
except Exception:
DB.close()
DB.connect()
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
logging.error(f"Tenant not found: {tenant_id}")
@ -228,6 +226,7 @@ class LLMBundle:
def bind_tools(self, toolcall_session, tools):
if not self.is_tools:
logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!")
return
self.mdl.bind_tools(toolcall_session, tools)
@ -362,7 +361,7 @@ class LLMBundle:
ans = ""
chat_streamly = self.mdl.chat_streamly
total_tokens = 0
total_tokens = 0
if self.is_tools and self.mdl.is_tools:
chat_streamly = self.mdl.chat_streamly_with_tools

View File

@ -31,8 +31,11 @@ class UserCanvasVersionService(CommonService):
try:
user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by(cls.model.create_time.desc())
if user_canvas_version.count() > 20:
delete_ids = []
for i in range(20, user_canvas_version.count()):
cls.delete(user_canvas_version[i].id)
delete_ids.append(user_canvas_version[i].id)
cls.delete_by_ids(delete_ids)
return True
except DoesNotExist:
return None

View File

@ -19,6 +19,7 @@
# beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
from api.utils.log_utils import initRootLogger
from plugin import GlobalPluginManager
initRootLogger("ragflow_server")
import logging
@ -119,6 +120,8 @@ if __name__ == '__main__':
RuntimeConfig.init_env()
RuntimeConfig.init_config(JOB_SERVER_HOST=settings.HOST_IP, HTTP_PORT=settings.HOST_PORT)
GlobalPluginManager.load_plugins()
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)

View File

@ -13,21 +13,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
from datetime import date
from enum import IntEnum, Enum
import json
import rag.utils.es_conn
import rag.utils.infinity_conn
from enum import Enum, IntEnum
import rag.utils
from rag.nlp import search
from graphrag import search as kg_search
from api.utils import get_base_config, decrypt_database_config
import rag.utils.es_conn
import rag.utils.infinity_conn
import rag.utils.opensearch_coon
from api.constants import RAG_FLOW_SERVICE_NAME
from api.utils import decrypt_database_config, get_base_config
from api.utils.file_utils import get_project_base_directory
from graphrag import search as kg_search
from rag.nlp import search
LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
LLM = None
LLM_FACTORY = None
@ -44,7 +45,7 @@ HOST_PORT = None
SECRET_KEY = None
FACTORY_LLM_INFOS = None
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
DATABASE_TYPE = os.getenv("DB_TYPE", "mysql")
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
# authentication
@ -55,7 +56,7 @@ CLIENT_AUTHENTICATION = None
HTTP_APP_KEY = None
GITHUB_OAUTH = None
FEISHU_OAUTH = None
OAUTH_CONFIG = None
DOC_ENGINE = None
docStoreConn = None
@ -66,20 +67,27 @@ kg_retrievaler = None
REGISTER_ENABLED = 1
# sandbox-executor-manager
SANDBOX_ENABLED = 0
SANDBOX_HOST = None
BUILTIN_EMBEDDING_MODELS = ["BAAI/bge-large-zh-v1.5@BAAI", "maidalun1020/bce-embedding-base_v1@Youdao"]
def init_settings():
global LLM, LLM_FACTORY, LLM_BASE_URL, LIGHTEN, DATABASE_TYPE, DATABASE, FACTORY_LLM_INFOS, REGISTER_ENABLED
LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
DATABASE_TYPE = os.getenv("DB_TYPE", "mysql")
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
LLM = get_base_config("user_default_llm", {})
LLM_DEFAULT_MODELS = LLM.get("default_models", {})
LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
LLM_FACTORY = LLM.get("factory")
LLM_BASE_URL = LLM.get("base_url")
try:
REGISTER_ENABLED = int(os.environ.get("REGISTER_ENABLED", "1"))
except Exception:
pass
pass
try:
with open(os.path.join(get_project_base_directory(), "conf", "llm_factories.json"), "r") as f:
FACTORY_LLM_INFOS = json.load(f)["factory_llm_infos"]
@ -88,7 +96,7 @@ def init_settings():
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
if not LIGHTEN:
EMBEDDING_MDL = "BAAI/bge-large-zh-v1.5@BAAI"
EMBEDDING_MDL = BUILTIN_EMBEDDING_MODELS[0]
if LLM_DEFAULT_MODELS:
CHAT_MDL = LLM_DEFAULT_MODELS.get("chat_model", CHAT_MDL)
@ -102,47 +110,51 @@ def init_settings():
EMBEDDING_MDL = EMBEDDING_MDL + (f"@{LLM_FACTORY}" if "@" not in EMBEDDING_MDL and EMBEDDING_MDL != "" else "")
RERANK_MDL = RERANK_MDL + (f"@{LLM_FACTORY}" if "@" not in RERANK_MDL and RERANK_MDL != "" else "")
ASR_MDL = ASR_MDL + (f"@{LLM_FACTORY}" if "@" not in ASR_MDL and ASR_MDL != "" else "")
IMAGE2TEXT_MDL = IMAGE2TEXT_MDL + (
f"@{LLM_FACTORY}" if "@" not in IMAGE2TEXT_MDL and IMAGE2TEXT_MDL != "" else "")
IMAGE2TEXT_MDL = IMAGE2TEXT_MDL + (f"@{LLM_FACTORY}" if "@" not in IMAGE2TEXT_MDL and IMAGE2TEXT_MDL != "" else "")
global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
API_KEY = LLM.get("api_key", "")
API_KEY = LLM.get("api_key")
PARSERS = LLM.get(
"parsers",
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag")
"parsers", "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"
)
HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")
SECRET_KEY = get_base_config(
RAG_FLOW_SERVICE_NAME,
{}).get("secret_key", str(date.today()))
SECRET_KEY = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("secret_key", str(date.today()))
global AUTHENTICATION_CONF, CLIENT_AUTHENTICATION, HTTP_APP_KEY, GITHUB_OAUTH, FEISHU_OAUTH
global AUTHENTICATION_CONF, CLIENT_AUTHENTICATION, HTTP_APP_KEY, GITHUB_OAUTH, FEISHU_OAUTH, OAUTH_CONFIG
# authentication
AUTHENTICATION_CONF = get_base_config("authentication", {})
# client
CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get(
"client", {}).get(
"switch", False)
CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get("client", {}).get("switch", False)
HTTP_APP_KEY = AUTHENTICATION_CONF.get("client", {}).get("http_app_key")
GITHUB_OAUTH = get_base_config("oauth", {}).get("github")
FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")
OAUTH_CONFIG = get_base_config("oauth", {})
global DOC_ENGINE, docStoreConn, retrievaler, kg_retrievaler
DOC_ENGINE = os.environ.get('DOC_ENGINE', "elasticsearch")
DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch")
# DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch")
lower_case_doc_engine = DOC_ENGINE.lower()
if lower_case_doc_engine == "elasticsearch":
docStoreConn = rag.utils.es_conn.ESConnection()
elif lower_case_doc_engine == "infinity":
docStoreConn = rag.utils.infinity_conn.InfinityConnection()
elif lower_case_doc_engine == "opensearch":
docStoreConn = rag.utils.opensearch_coon.OSConnection()
else:
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
retrievaler = search.Dealer(docStoreConn)
kg_retrievaler = kg_search.KGSearch(docStoreConn)
if int(os.environ.get("SANDBOX_ENABLED", "0")):
global SANDBOX_HOST
SANDBOX_HOST = os.environ.get("SANDBOX_HOST", "sandbox-executor-manager")
class CustomEnum(Enum):
@classmethod

View File

@ -19,6 +19,7 @@ import logging
import random
import time
from base64 import b64encode
from copy import deepcopy
from functools import wraps
from hmac import HMAC
from io import BytesIO
@ -36,11 +37,13 @@ from flask import (
request as flask_request,
)
from itsdangerous import URLSafeTimedSerializer
from peewee import OperationalError
from werkzeug.http import HTTP_STATUS_CODES
from api import settings
from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC
from api.db.db_models import APIToken
from api.db.services.llm_service import LLMService, TenantLLMService
from api.utils import CustomJSONEncoder, get_uuid, json_dumps
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
@ -322,25 +325,21 @@ def get_error_data_result(
return jsonify(response)
def generate_confirmation_token(tenent_id):
serializer = URLSafeTimedSerializer(tenent_id)
return "ragflow-" + serializer.dumps(get_uuid(), salt=tenent_id)[2:34]
def get_error_argument_result(message="Invalid arguments"):
return get_result(code=settings.RetCode.ARGUMENT_ERROR, message=message)
def valid(permission, valid_permission, chunk_method, valid_chunk_method):
if valid_parameter(permission, valid_permission):
return valid_parameter(permission, valid_permission)
if valid_parameter(chunk_method, valid_chunk_method):
return valid_parameter(chunk_method, valid_chunk_method)
def get_error_permission_result(message="Permission error"):
return get_result(code=settings.RetCode.PERMISSION_ERROR, message=message)
def valid_parameter(parameter, valid_values):
if parameter and parameter not in valid_values:
return get_error_data_result(f"'{parameter}' is not in {valid_values}")
def get_error_operating_result(message="Operating error"):
return get_result(code=settings.RetCode.OPERATING_ERROR, message=message)
def dataset_readonly_fields(field_name):
return field_name in ["chunk_count", "create_date", "create_time", "update_date", "update_time", "created_by", "document_count", "token_num", "status", "tenant_id", "id"]
def generate_confirmation_token(tenant_id):
serializer = URLSafeTimedSerializer(tenant_id)
return "ragflow-" + serializer.dumps(get_uuid(), salt=tenant_id)[2:34]
def get_parser_config(chunk_method, parser_config):
@ -349,7 +348,7 @@ def get_parser_config(chunk_method, parser_config):
if not chunk_method:
chunk_method = "naive"
key_mapping = {
"naive": {"chunk_token_num": 128, "delimiter": "\\n!?;。;!?", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}},
"naive": {"chunk_token_num": 128, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}},
"qa": {"raptor": {"use_raptor": False}},
"tag": None,
"resume": None,
@ -360,7 +359,7 @@ def get_parser_config(chunk_method, parser_config):
"laws": {"raptor": {"use_raptor": False}},
"presentation": {"raptor": {"use_raptor": False}},
"one": None,
"knowledge_graph": {"chunk_token_num": 8192, "delimiter": "\\n!?;。;!?", "entity_types": ["organization", "person", "location", "event", "time"]},
"knowledge_graph": {"chunk_token_num": 8192, "delimiter": r"\n", "entity_types": ["organization", "person", "location", "event", "time"]},
"email": None,
"picture": None,
}
@ -368,81 +367,32 @@ def get_parser_config(chunk_method, parser_config):
return parser_config
def get_data_openai(id=None,
created=None,
model=None,
prompt_tokens= 0,
completion_tokens=0,
content = None,
finish_reason= None,
object="chat.completion",
param=None,
def get_data_openai(
id=None,
created=None,
model=None,
prompt_tokens=0,
completion_tokens=0,
content=None,
finish_reason=None,
object="chat.completion",
param=None,
):
total_tokens= prompt_tokens + completion_tokens
total_tokens = prompt_tokens + completion_tokens
return {
"id":f"{id}",
"id": f"{id}",
"object": object,
"created": int(time.time()) if created else None,
"model": model,
"param":param,
"param": param,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens,
"completion_tokens_details": {
"reasoning_tokens": 0,
"accepted_prediction_tokens": 0,
"rejected_prediction_tokens": 0
}
"completion_tokens_details": {"reasoning_tokens": 0, "accepted_prediction_tokens": 0, "rejected_prediction_tokens": 0},
},
"choices": [
{
"message": {
"role": "assistant",
"content": content
},
"logprobs": None,
"finish_reason": finish_reason,
"index": 0
}
]
}
def valid_parser_config(parser_config):
if not parser_config:
return
scopes = set(
[
"chunk_token_num",
"delimiter",
"raptor",
"graphrag",
"layout_recognize",
"task_page_size",
"pages",
"html4excel",
"auto_keywords",
"auto_questions",
"tag_kb_ids",
"topn_tags",
"filename_embd_weight",
]
)
for k in parser_config.keys():
assert k in scopes, f"Abnormal 'parser_config'. Invalid key: {k}"
assert isinstance(parser_config.get("chunk_token_num", 1), int), "chunk_token_num should be int"
assert 1 <= parser_config.get("chunk_token_num", 1) < 100000000, "chunk_token_num should be in range from 1 to 100000000"
assert isinstance(parser_config.get("task_page_size", 1), int), "task_page_size should be int"
assert 1 <= parser_config.get("task_page_size", 1) < 100000000, "task_page_size should be in range from 1 to 100000000"
assert isinstance(parser_config.get("auto_keywords", 1), int), "auto_keywords should be int"
assert 0 <= parser_config.get("auto_keywords", 0) < 32, "auto_keywords should be in range from 0 to 32"
assert isinstance(parser_config.get("auto_questions", 1), int), "auto_questions should be int"
assert 0 <= parser_config.get("auto_questions", 0) < 10, "auto_questions should be in range from 0 to 10"
assert isinstance(parser_config.get("topn_tags", 1), int), "topn_tags should be int"
assert 0 <= parser_config.get("topn_tags", 0) < 10, "topn_tags should be in range from 0 to 10"
assert isinstance(parser_config.get("html4excel", False), bool), "html4excel should be True or False"
assert isinstance(parser_config.get("delimiter", ""), str), "delimiter should be str"
"choices": [{"message": {"role": "assistant", "content": content}, "logprobs": None, "finish_reason": finish_reason, "index": 0}],
}
def check_duplicate_ids(ids, id_type="item"):
@ -472,3 +422,138 @@ def check_duplicate_ids(ids, id_type="item"):
# Return unique IDs and error messages
return list(set(ids)), duplicate_messages
def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, Response | None]:
"""
Verifies availability of an embedding model for a specific tenant.
Implements a four-stage validation process:
1. Model identifier parsing and validation
2. System support verification
3. Tenant authorization check
4. Database operation error handling
Args:
embd_id (str): Unique identifier for the embedding model in format "model_name@factory"
tenant_id (str): Tenant identifier for access control
Returns:
tuple[bool, Response | None]:
- First element (bool):
- True: Model is available and authorized
- False: Validation failed
- Second element contains:
- None on success
- Error detail dict on failure
Raises:
ValueError: When model identifier format is invalid
OperationalError: When database connection fails (auto-handled)
Examples:
>>> verify_embedding_availability("text-embedding@openai", "tenant_123")
(True, None)
>>> verify_embedding_availability("invalid_model", "tenant_123")
(False, {'code': 101, 'message': "Unsupported model: <invalid_model>"})
"""
try:
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(embd_id)
if not LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding"):
return False, get_error_argument_result(f"Unsupported model: <{embd_id}>")
# Tongyi-Qianwen is added to TenantLLM by default, but remains unusable with empty api_key
tenant_llms = TenantLLMService.get_my_llms(tenant_id=tenant_id)
is_tenant_model = any(llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for llm in tenant_llms)
is_builtin_model = embd_id in settings.BUILTIN_EMBEDDING_MODELS
if not (is_builtin_model or is_tenant_model):
return False, get_error_argument_result(f"Unauthorized model: <{embd_id}>")
except OperationalError as e:
logging.exception(e)
return False, get_error_data_result(message="Database operation failed")
return True, None
def deep_merge(default: dict, custom: dict) -> dict:
"""
Recursively merges two dictionaries with priority given to `custom` values.
Creates a deep copy of the `default` dictionary and iteratively merges nested
dictionaries using a stack-based approach. Non-dict values in `custom` will
completely override corresponding entries in `default`.
Args:
default (dict): Base dictionary containing default values.
custom (dict): Dictionary containing overriding values.
Returns:
dict: New merged dictionary combining values from both inputs.
Example:
>>> from copy import deepcopy
>>> default = {"a": 1, "nested": {"x": 10, "y": 20}}
>>> custom = {"b": 2, "nested": {"y": 99, "z": 30}}
>>> deep_merge(default, custom)
{'a': 1, 'b': 2, 'nested': {'x': 10, 'y': 99, 'z': 30}}
>>> deep_merge({"config": {"mode": "auto"}}, {"config": "manual"})
{'config': 'manual'}
Notes:
1. Merge priority is always given to `custom` values at all nesting levels
2. Non-dict values (e.g. list, str) in `custom` will replace entire values
in `default`, even if the original value was a dictionary
3. Time complexity: O(N) where N is total key-value pairs in `custom`
4. Recommended for configuration merging and nested data updates
"""
merged = deepcopy(default)
stack = [(merged, custom)]
while stack:
base_dict, override_dict = stack.pop()
for key, val in override_dict.items():
if key in base_dict and isinstance(val, dict) and isinstance(base_dict[key], dict):
stack.append((base_dict[key], val))
else:
base_dict[key] = val
return merged
def remap_dictionary_keys(source_data: dict, key_aliases: dict = None) -> dict:
"""
Transform dictionary keys using a configurable mapping schema.
Args:
source_data: Original dictionary to process
key_aliases: Custom key transformation rules (Optional)
When provided, overrides default key mapping
Format: {<original_key>: <new_key>, ...}
Returns:
dict: New dictionary with transformed keys preserving original values
Example:
>>> input_data = {"old_key": "value", "another_field": 42}
>>> remap_dictionary_keys(input_data, {"old_key": "new_key"})
{'new_key': 'value', 'another_field': 42}
"""
DEFAULT_KEY_MAP = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model",
}
transformed_data = {}
mapping = key_aliases or DEFAULT_KEY_MAP
for original_key, value in source_data.items():
mapped_key = mapping.get(original_key, original_key)
transformed_data[mapped_key] = value
return transformed_data

View File

@ -17,17 +17,20 @@ import base64
import json
import os
import re
import shutil
import subprocess
import sys
import tempfile
import threading
from io import BytesIO
import pdfplumber
from PIL import Image
from cachetools import LRUCache, cached
from PIL import Image
from ruamel.yaml import YAML
from api.db import FileType
from api.constants import IMG_BASE64_PREFIX
from api.db import FileType
PROJECT_BASE = os.getenv("RAG_PROJECT_BASE") or os.getenv("RAG_DEPLOY_BASE")
RAG_BASE = os.getenv("RAG_BASE")
@ -74,7 +77,7 @@ def get_rag_python_directory(*args):
def get_home_cache_dir():
dir = os.path.join(os.path.expanduser('~'), ".ragflow")
dir = os.path.join(os.path.expanduser("~"), ".ragflow")
try:
os.mkdir(dir)
except OSError:
@ -92,9 +95,7 @@ def load_json_conf(conf_path):
with open(json_conf_path) as f:
return json.load(f)
except BaseException:
raise EnvironmentError(
"loading json file config from '{}' failed!".format(json_conf_path)
)
raise EnvironmentError("loading json file config from '{}' failed!".format(json_conf_path))
def dump_json_conf(config_data, conf_path):
@ -106,9 +107,7 @@ def dump_json_conf(config_data, conf_path):
with open(json_conf_path, "w") as f:
json.dump(config_data, f, indent=4)
except BaseException:
raise EnvironmentError(
"loading json file config from '{}' failed!".format(json_conf_path)
)
raise EnvironmentError("loading json file config from '{}' failed!".format(json_conf_path))
def load_json_conf_real_time(conf_path):
@ -120,9 +119,7 @@ def load_json_conf_real_time(conf_path):
with open(json_conf_path) as f:
return json.load(f)
except BaseException:
raise EnvironmentError(
"loading json file config from '{}' failed!".format(json_conf_path)
)
raise EnvironmentError("loading json file config from '{}' failed!".format(json_conf_path))
def load_yaml_conf(conf_path):
@ -130,12 +127,10 @@ def load_yaml_conf(conf_path):
conf_path = os.path.join(get_project_base_directory(), conf_path)
try:
with open(conf_path) as f:
yaml = YAML(typ='safe', pure=True)
yaml = YAML(typ="safe", pure=True)
return yaml.load(f)
except Exception as e:
raise EnvironmentError(
"loading yaml file config from {} failed:".format(conf_path), e
)
raise EnvironmentError("loading yaml file config from {} failed:".format(conf_path), e)
def rewrite_yaml_conf(conf_path, config):
@ -146,13 +141,11 @@ def rewrite_yaml_conf(conf_path, config):
yaml = YAML(typ="safe")
yaml.dump(config, f)
except Exception as e:
raise EnvironmentError(
"rewrite yaml file config {} failed:".format(conf_path), e
)
raise EnvironmentError("rewrite yaml file config {} failed:".format(conf_path), e)
def rewrite_json_file(filepath, json_data):
with open(filepath, "w", encoding='utf-8') as f:
with open(filepath, "w", encoding="utf-8") as f:
json.dump(json_data, f, indent=4, separators=(",", ": "))
f.close()
@ -162,12 +155,10 @@ def filename_type(filename):
if re.match(r".*\.pdf$", filename):
return FileType.PDF.value
if re.match(
r".*\.(eml|doc|docx|ppt|pptx|yml|xml|htm|json|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|html|sql)$", filename):
if re.match(r".*\.(eml|doc|docx|ppt|pptx|yml|xml|htm|json|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|html|sql)$", filename):
return FileType.DOC.value
if re.match(
r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus|mp3)$", filename):
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus|mp3)$", filename):
return FileType.AURAL.value
if re.match(r".*\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico|mpg|mpeg|avi|rm|rmvb|mov|wmv|asf|dat|asx|wvx|mpe|mpa|mp4)$", filename):
@ -175,6 +166,7 @@ def filename_type(filename):
return FileType.OTHER.value
def thumbnail_img(filename, blob):
"""
MySQL LongText max length is 65535
@ -183,6 +175,7 @@ def thumbnail_img(filename, blob):
if re.match(r".*\.pdf$", filename):
with sys.modules[LOCK_KEY_pdfplumber]:
pdf = pdfplumber.open(BytesIO(blob))
buffered = BytesIO()
resolution = 32
img = None
@ -206,8 +199,9 @@ def thumbnail_img(filename, blob):
return buffered.getvalue()
elif re.match(r".*\.(ppt|pptx)$", filename):
import aspose.slides as slides
import aspose.pydrawing as drawing
import aspose.slides as slides
try:
with slides.Presentation(BytesIO(blob)) as presentation:
buffered = BytesIO()
@ -215,8 +209,7 @@ def thumbnail_img(filename, blob):
img = None
for _ in range(10):
# https://reference.aspose.com/slides/python-net/aspose.slides/slide/get_thumbnail/#float-float
presentation.slides[0].get_thumbnail(scale, scale).save(
buffered, drawing.imaging.ImageFormat.png)
presentation.slides[0].get_thumbnail(scale, scale).save(buffered, drawing.imaging.ImageFormat.png)
img = buffered.getvalue()
if len(img) >= 64000:
scale = scale / 2.0
@ -232,10 +225,9 @@ def thumbnail_img(filename, blob):
def thumbnail(filename, blob):
img = thumbnail_img(filename, blob)
if img is not None:
return IMG_BASE64_PREFIX + \
base64.b64encode(img).decode("utf-8")
return IMG_BASE64_PREFIX + base64.b64encode(img).decode("utf-8")
else:
return ''
return ""
def traversal_files(base):
@ -243,3 +235,52 @@ def traversal_files(base):
for f in fs:
fullname = os.path.join(root, f)
yield fullname
def repair_pdf_with_ghostscript(input_bytes):
if shutil.which("gs") is None:
return input_bytes
with tempfile.NamedTemporaryFile(suffix=".pdf") as temp_in, tempfile.NamedTemporaryFile(suffix=".pdf") as temp_out:
temp_in.write(input_bytes)
temp_in.flush()
cmd = [
"gs",
"-o",
temp_out.name,
"-sDEVICE=pdfwrite",
"-dPDFSETTINGS=/prepress",
temp_in.name,
]
try:
proc = subprocess.run(cmd, capture_output=True, text=True)
if proc.returncode != 0:
return input_bytes
except Exception:
return input_bytes
temp_out.seek(0)
repaired_bytes = temp_out.read()
return repaired_bytes
def read_potential_broken_pdf(blob):
def try_open(blob):
try:
with pdfplumber.open(BytesIO(blob)) as pdf:
if pdf.pages:
return True
except Exception:
return False
return False
if try_open(blob):
return blob
repaired = repair_pdf_with_ghostscript(blob)
if try_open(repaired):
return repaired
return blob

View File

@ -0,0 +1,653 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import Counter
from enum import auto
from typing import Annotated, Any
from uuid import UUID
from flask import Request
from pydantic import BaseModel, Field, StringConstraints, ValidationError, field_validator
from pydantic_core import PydanticCustomError
from strenum import StrEnum
from werkzeug.exceptions import BadRequest, UnsupportedMediaType
from api.constants import DATASET_NAME_LIMIT
def validate_and_parse_json_request(request: Request, validator: type[BaseModel], *, extras: dict[str, Any] | None = None, exclude_unset: bool = False) -> tuple[dict[str, Any] | None, str | None]:
"""
Validates and parses JSON requests through a multi-stage validation pipeline.
Implements a four-stage validation process:
1. Content-Type verification (must be application/json)
2. JSON syntax validation
3. Payload structure type checking
4. Pydantic model validation with error formatting
Args:
request (Request): Flask request object containing HTTP payload
validator (type[BaseModel]): Pydantic model class for data validation
extras (dict[str, Any] | None): Additional fields to merge into payload
before validation. These fields will be removed from the final output
exclude_unset (bool): Whether to exclude fields that have not been explicitly set
Returns:
tuple[Dict[str, Any] | None, str | None]:
- First element:
- Validated dictionary on success
- None on validation failure
- Second element:
- None on success
- Diagnostic error message on failure
Raises:
UnsupportedMediaType: When Content-Type header is not application/json
BadRequest: For structural JSON syntax errors
ValidationError: When payload violates Pydantic schema rules
Examples:
>>> validate_and_parse_json_request(valid_request, DatasetSchema)
({"name": "Dataset1", "format": "csv"}, None)
>>> validate_and_parse_json_request(xml_request, DatasetSchema)
(None, "Unsupported content type: Expected application/json, got text/xml")
>>> validate_and_parse_json_request(bad_json_request, DatasetSchema)
(None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding")
Notes:
1. Validation Priority:
- Content-Type verification precedes JSON parsing
- Structural validation occurs before schema validation
2. Extra fields added via `extras` parameter are automatically removed
from the final output after validation
"""
try:
payload = request.get_json() or {}
except UnsupportedMediaType:
return None, f"Unsupported content type: Expected application/json, got {request.content_type}"
except BadRequest:
return None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding"
if not isinstance(payload, dict):
return None, f"Invalid request payload: expected object, got {type(payload).__name__}"
try:
if extras is not None:
payload.update(extras)
validated_request = validator(**payload)
except ValidationError as e:
return None, format_validation_error_message(e)
parsed_payload = validated_request.model_dump(by_alias=True, exclude_unset=exclude_unset)
if extras is not None:
for key in list(parsed_payload.keys()):
if key in extras:
del parsed_payload[key]
return parsed_payload, None
def validate_and_parse_request_args(request: Request, validator: type[BaseModel], *, extras: dict[str, Any] | None = None) -> tuple[dict[str, Any] | None, str | None]:
"""
Validates and parses request arguments against a Pydantic model.
This function performs a complete request validation workflow:
1. Extracts query parameters from the request
2. Merges with optional extra values (if provided)
3. Validates against the specified Pydantic model
4. Cleans the output by removing extra values
5. Returns either parsed data or an error message
Args:
request (Request): Web framework request object containing query parameters
validator (type[BaseModel]): Pydantic model class for validation
extras (dict[str, Any] | None): Optional additional values to include in validation
but exclude from final output. Defaults to None.
Returns:
tuple[dict[str, Any] | None, str | None]:
- First element: Validated/parsed arguments as dict if successful, None otherwise
- Second element: Formatted error message if validation failed, None otherwise
Behavior:
- Query parameters are merged with extras before validation
- Extras are automatically removed from the final output
- All validation errors are formatted into a human-readable string
Raises:
TypeError: If validator is not a Pydantic BaseModel subclass
Examples:
Successful validation:
>>> validate_and_parse_request_args(request, MyValidator)
({'param1': 'value'}, None)
Failed validation:
>>> validate_and_parse_request_args(request, MyValidator)
(None, "param1: Field required")
With extras:
>>> validate_and_parse_request_args(request, MyValidator, extras={'internal_id': 123})
({'param1': 'value'}, None) # internal_id removed from output
Notes:
- Uses request.args.to_dict() for Flask-compatible parameter extraction
- Maintains immutability of original request arguments
- Preserves type conversion from Pydantic validation
"""
args = request.args.to_dict(flat=True)
try:
if extras is not None:
args.update(extras)
validated_args = validator(**args)
except ValidationError as e:
return None, format_validation_error_message(e)
parsed_args = validated_args.model_dump()
if extras is not None:
for key in list(parsed_args.keys()):
if key in extras:
del parsed_args[key]
return parsed_args, None
def format_validation_error_message(e: ValidationError) -> str:
"""
Formats validation errors into a standardized string format.
Processes pydantic ValidationError objects to create human-readable error messages
containing field locations, error descriptions, and input values.
Args:
e (ValidationError): The validation error instance containing error details
Returns:
str: Formatted error messages joined by newlines. Each line contains:
- Field path (dot-separated)
- Error message
- Truncated input value (max 128 chars)
Example:
>>> try:
... UserModel(name=123, email="invalid")
... except ValidationError as e:
... print(format_validation_error_message(e))
Field: <name> - Message: <Input should be a valid string> - Value: <123>
Field: <email> - Message: <value is not a valid email address> - Value: <invalid>
"""
error_messages = []
for error in e.errors():
field = ".".join(map(str, error["loc"]))
msg = error["msg"]
input_val = error["input"]
input_str = str(input_val)
if len(input_str) > 128:
input_str = input_str[:125] + "..."
error_msg = f"Field: <{field}> - Message: <{msg}> - Value: <{input_str}>"
error_messages.append(error_msg)
return "\n".join(error_messages)
def normalize_str(v: Any) -> Any:
"""
Normalizes string values to a standard format while preserving non-string inputs.
Performs the following transformations when input is a string:
1. Trims leading/trailing whitespace (str.strip())
2. Converts to lowercase (str.lower())
Non-string inputs are returned unchanged, making this function safe for mixed-type
processing pipelines.
Args:
v (Any): Input value to normalize. Accepts any Python object.
Returns:
Any: Normalized string if input was string-type, original value otherwise.
Behavior Examples:
String Input: " Admin ""admin"
Empty String: " """ (empty string)
Non-String:
- 123 → 123
- None → None
- ["User"] → ["User"]
Typical Use Cases:
- Standardizing user input
- Preparing data for case-insensitive comparison
- Cleaning API parameters
- Normalizing configuration values
Edge Cases:
- Unicode whitespace is handled by str.strip()
- Locale-independent lowercasing (str.lower())
- Preserves falsy values (0, False, etc.)
Example:
>>> normalize_str(" ReadOnly ")
'readonly'
>>> normalize_str(42)
42
"""
if isinstance(v, str):
stripped = v.strip()
normalized = stripped.lower()
return normalized
return v
def validate_uuid1_hex(v: Any) -> str:
"""
Validates and converts input to a UUID version 1 hexadecimal string.
This function performs strict validation and normalization:
1. Accepts either UUID objects or UUID-formatted strings
2. Verifies the UUID is version 1 (time-based)
3. Returns the 32-character hexadecimal representation
Args:
v (Any): Input value to validate. Can be:
- UUID object (must be version 1)
- String in UUID format (e.g. "550e8400-e29b-41d4-a716-446655440000")
Returns:
str: 32-character lowercase hexadecimal string without hyphens
Example: "550e8400e29b41d4a716446655440000"
Raises:
PydanticCustomError: With code "invalid_UUID1_format" when:
- Input is not a UUID object or valid UUID string
- UUID version is not 1
- String doesn't match UUID format
Examples:
Valid cases:
>>> validate_uuid1_hex("550e8400-e29b-41d4-a716-446655440000")
'550e8400e29b41d4a716446655440000'
>>> validate_uuid1_hex(UUID('550e8400-e29b-41d4-a716-446655440000'))
'550e8400e29b41d4a716446655440000'
Invalid cases:
>>> validate_uuid1_hex("not-a-uuid") # raises PydanticCustomError
>>> validate_uuid1_hex(12345) # raises PydanticCustomError
>>> validate_uuid1_hex(UUID(int=0)) # v4, raises PydanticCustomError
Notes:
- Uses Python's built-in UUID parser for format validation
- Version check prevents accidental use of other UUID versions
- Hyphens in input strings are automatically removed in output
"""
try:
uuid_obj = UUID(v) if isinstance(v, str) else v
if uuid_obj.version != 1:
raise PydanticCustomError("invalid_UUID1_format", "Must be a UUID1 format")
return uuid_obj.hex
except (AttributeError, ValueError, TypeError):
raise PydanticCustomError("invalid_UUID1_format", "Invalid UUID1 format")
class PermissionEnum(StrEnum):
me = auto()
team = auto()
class ChunkMethodnEnum(StrEnum):
naive = auto()
book = auto()
email = auto()
laws = auto()
manual = auto()
one = auto()
paper = auto()
picture = auto()
presentation = auto()
qa = auto()
table = auto()
tag = auto()
class GraphragMethodEnum(StrEnum):
light = auto()
general = auto()
class Base(BaseModel):
class Config:
extra = "forbid"
class RaptorConfig(Base):
use_raptor: bool = Field(default=False)
prompt: Annotated[
str,
StringConstraints(strip_whitespace=True, min_length=1),
Field(
default="Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize."
),
]
max_token: int = Field(default=256, ge=1, le=2048)
threshold: float = Field(default=0.1, ge=0.0, le=1.0)
max_cluster: int = Field(default=64, ge=1, le=1024)
random_seed: int = Field(default=0, ge=0)
class GraphragConfig(Base):
use_graphrag: bool = Field(default=False)
entity_types: list[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"])
method: GraphragMethodEnum = Field(default=GraphragMethodEnum.light)
community: bool = Field(default=False)
resolution: bool = Field(default=False)
class ParserConfig(Base):
auto_keywords: int = Field(default=0, ge=0, le=32)
auto_questions: int = Field(default=0, ge=0, le=10)
chunk_token_num: int = Field(default=128, ge=1, le=2048)
delimiter: str = Field(default=r"\n", min_length=1)
graphrag: GraphragConfig | None = None
html4excel: bool = False
layout_recognize: str = "DeepDOC"
raptor: RaptorConfig | None = None
tag_kb_ids: list[str] = Field(default_factory=list)
topn_tags: int = Field(default=1, ge=1, le=10)
filename_embd_weight: float | None = Field(default=None, ge=0.0, le=1.0)
task_page_size: int | None = Field(default=None, ge=1)
pages: list[list[int]] | None = None
class CreateDatasetReq(Base):
name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(...)]
avatar: str | None = Field(default=None, max_length=65535)
description: str | None = Field(default=None, max_length=65535)
embedding_model: Annotated[str, StringConstraints(strip_whitespace=True, max_length=255), Field(default="", serialization_alias="embd_id")]
permission: PermissionEnum = Field(default=PermissionEnum.me, min_length=1, max_length=16)
chunk_method: ChunkMethodnEnum = Field(default=ChunkMethodnEnum.naive, min_length=1, max_length=32, serialization_alias="parser_id")
pagerank: int = Field(default=0, ge=0, le=100)
parser_config: ParserConfig | None = Field(default=None)
@field_validator("avatar")
@classmethod
def validate_avatar_base64(cls, v: str | None) -> str | None:
"""
Validates Base64-encoded avatar string format and MIME type compliance.
Implements a three-stage validation workflow:
1. MIME prefix existence check
2. MIME type format validation
3. Supported type verification
Args:
v (str): Raw avatar field value
Returns:
str: Validated Base64 string
Raises:
PydanticCustomError: For structural errors in these cases:
- Missing MIME prefix header
- Invalid MIME prefix format
- Unsupported image MIME type
Example:
```python
# Valid case
CreateDatasetReq(avatar="...")
# Invalid cases
CreateDatasetReq(avatar="image/jpeg;base64,...") # Missing 'data:' prefix
CreateDatasetReq(avatar="data:video/mp4;base64,...") # Unsupported MIME type
```
"""
if v is None:
return v
if "," in v:
prefix, _ = v.split(",", 1)
if not prefix.startswith("data:"):
raise PydanticCustomError("format_invalid", "Invalid MIME prefix format. Must start with 'data:'")
mime_type = prefix[5:].split(";")[0]
supported_mime_types = ["image/jpeg", "image/png"]
if mime_type not in supported_mime_types:
raise PydanticCustomError("format_invalid", "Unsupported MIME type. Allowed: {supported_mime_types}", {"supported_mime_types": supported_mime_types})
return v
else:
raise PydanticCustomError("format_invalid", "Missing MIME prefix. Expected format: data:<mime>;base64,<data>")
@field_validator("embedding_model", mode="after")
@classmethod
def validate_embedding_model(cls, v: str) -> str:
"""
Validates embedding model identifier format compliance.
Validation pipeline:
1. Structural format verification
2. Component non-empty check
3. Value normalization
Args:
v (str): Raw model identifier
Returns:
str: Validated <model_name>@<provider> format
Raises:
PydanticCustomError: For these violations:
- Missing @ separator
- Empty model_name/provider
- Invalid component structure
Examples:
Valid: "text-embedding-3-large@openai"
Invalid: "invalid_model" (no @)
Invalid: "@openai" (empty model_name)
Invalid: "text-embedding-3-large@" (empty provider)
"""
if "@" not in v:
raise PydanticCustomError("format_invalid", "Embedding model identifier must follow <model_name>@<provider> format")
components = v.split("@", 1)
if len(components) != 2 or not all(components):
raise PydanticCustomError("format_invalid", "Both model_name and provider must be non-empty strings")
model_name, provider = components
if not model_name.strip() or not provider.strip():
raise PydanticCustomError("format_invalid", "Model name and provider cannot be whitespace-only strings")
return v
@field_validator("permission", mode="before")
@classmethod
def normalize_permission(cls, v: Any) -> Any:
return normalize_str(v)
@field_validator("parser_config", mode="before")
@classmethod
def normalize_empty_parser_config(cls, v: Any) -> Any:
"""
Normalizes empty parser configuration by converting empty dictionaries to None.
This validator ensures consistent handling of empty parser configurations across
the application by converting empty dicts to None values.
Args:
v (Any): Raw input value for the parser config field
Returns:
Any: Returns None if input is an empty dict, otherwise returns the original value
Example:
>>> normalize_empty_parser_config({})
None
>>> normalize_empty_parser_config({"key": "value"})
{"key": "value"}
"""
if v == {}:
return None
return v
@field_validator("parser_config", mode="after")
@classmethod
def validate_parser_config_json_length(cls, v: ParserConfig | None) -> ParserConfig | None:
"""
Validates serialized JSON length constraints for parser configuration.
Implements a two-stage validation workflow:
1. Null check - bypass validation for empty configurations
2. Model serialization - convert Pydantic model to JSON string
3. Size verification - enforce maximum allowed payload size
Args:
v (ParserConfig | None): Raw parser configuration object
Returns:
ParserConfig | None: Validated configuration object
Raises:
PydanticCustomError: When serialized JSON exceeds 65,535 characters
"""
if v is None:
return None
if (json_str := v.model_dump_json()) and len(json_str) > 65535:
raise PydanticCustomError("string_too_long", "Parser config exceeds size limit (max 65,535 characters). Current size: {actual}", {"actual": len(json_str)})
return v
class UpdateDatasetReq(CreateDatasetReq):
dataset_id: str = Field(...)
name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(default="")]
@field_validator("dataset_id", mode="before")
@classmethod
def validate_dataset_id(cls, v: Any) -> str:
return validate_uuid1_hex(v)
class DeleteReq(Base):
ids: list[str] | None = Field(...)
@field_validator("ids", mode="after")
@classmethod
def validate_ids(cls, v_list: list[str] | None) -> list[str] | None:
"""
Validates and normalizes a list of UUID strings with None handling.
This post-processing validator performs:
1. None input handling (pass-through)
2. UUID version 1 validation for each list item
3. Duplicate value detection
4. Returns normalized UUID hex strings or None
Args:
v_list (list[str] | None): Input list that has passed initial validation.
Either a list of UUID strings or None.
Returns:
list[str] | None:
- None if input was None
- List of normalized UUID hex strings otherwise:
* 32-character lowercase
* Valid UUID version 1
* Unique within list
Raises:
PydanticCustomError: With structured error details when:
- "invalid_UUID1_format": Any string fails UUIDv1 validation
- "duplicate_uuids": If duplicate IDs are detected
Validation Rules:
- None input returns None
- Empty list returns empty list
- All non-None items must be valid UUIDv1
- No duplicates permitted
- Original order preserved
Examples:
Valid cases:
>>> validate_ids(None)
None
>>> validate_ids([])
[]
>>> validate_ids(["550e8400-e29b-41d4-a716-446655440000"])
["550e8400e29b41d4a716446655440000"]
Invalid cases:
>>> validate_ids(["invalid"])
# raises PydanticCustomError(invalid_UUID1_format)
>>> validate_ids(["550e...", "550e..."])
# raises PydanticCustomError(duplicate_uuids)
Security Notes:
- Validates UUID version to prevent version spoofing
- Duplicate check prevents data injection
- None handling maintains pipeline integrity
"""
if v_list is None:
return None
ids_list = []
for v in v_list:
try:
ids_list.append(validate_uuid1_hex(v))
except PydanticCustomError as e:
raise e
duplicates = [item for item, count in Counter(ids_list).items() if count > 1]
if duplicates:
duplicates_str = ", ".join(duplicates)
raise PydanticCustomError("duplicate_uuids", "Duplicate ids: '{duplicate_ids}'", {"duplicate_ids": duplicates_str})
return ids_list
class DeleteDatasetReq(DeleteReq): ...
class OrderByEnum(StrEnum):
create_time = auto()
update_time = auto()
class BaseListReq(Base):
id: str | None = None
name: str | None = None
page: int = Field(default=1, ge=1)
page_size: int = Field(default=30, ge=1)
orderby: OrderByEnum = Field(default=OrderByEnum.create_time)
desc: bool = Field(default=True)
@field_validator("id", mode="before")
@classmethod
def validate_id(cls, v: Any) -> str:
return validate_uuid1_hex(v)
@field_validator("orderby", mode="before")
@classmethod
def normalize_orderby(cls, v: Any) -> Any:
return normalize_str(v)
class ListDatasetReq(BaseListReq): ...

View File

@ -38,5 +38,7 @@
"entity_type_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"source_id": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"n_hop_with_weight": {"type": "varchar", "default": ""},
"removed_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"}
"removed_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"doc_type_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"}
}

File diff suppressed because it is too large Load Diff

213
conf/os_mapping.json Normal file
View File

@ -0,0 +1,213 @@
{
"settings": {
"index": {
"number_of_shards": 2,
"number_of_replicas": 0,
"refresh_interval": "1000ms",
"knn": true,
"similarity": {
"scripted_sim": {
"type": "scripted",
"script": {
"source": "double idf = Math.log(1+(field.docCount-term.docFreq+0.5)/(term.docFreq + 0.5))/Math.log(1+((field.docCount-0.5)/1.5)); return query.boost * idf * Math.min(doc.freq, 1);"
}
}
}
}
},
"mappings": {
"properties": {
"lat_lon": {
"type": "geo_point",
"store": "true"
}
},
"date_detection": "true",
"dynamic_templates": [
{
"int": {
"match": "*_int",
"mapping": {
"type": "integer",
"store": "true"
}
}
},
{
"ulong": {
"match": "*_ulong",
"mapping": {
"type": "unsigned_long",
"store": "true"
}
}
},
{
"long": {
"match": "*_long",
"mapping": {
"type": "long",
"store": "true"
}
}
},
{
"short": {
"match": "*_short",
"mapping": {
"type": "short",
"store": "true"
}
}
},
{
"numeric": {
"match": "*_flt",
"mapping": {
"type": "float",
"store": true
}
}
},
{
"tks": {
"match": "*_tks",
"mapping": {
"type": "text",
"similarity": "scripted_sim",
"analyzer": "whitespace",
"store": true
}
}
},
{
"ltks": {
"match": "*_ltks",
"mapping": {
"type": "text",
"analyzer": "whitespace",
"store": true
}
}
},
{
"kwd": {
"match_pattern": "regex",
"match": "^(.*_(kwd|id|ids|uid|uids)|uid)$",
"mapping": {
"type": "keyword",
"similarity": "boolean",
"store": true
}
}
},
{
"dt": {
"match_pattern": "regex",
"match": "^.*(_dt|_time|_at)$",
"mapping": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||yyyy-MM-dd_HH:mm:ss",
"store": true
}
}
},
{
"nested": {
"match": "*_nst",
"mapping": {
"type": "nested"
}
}
},
{
"object": {
"match": "*_obj",
"mapping": {
"type": "object",
"dynamic": "true"
}
}
},
{
"string": {
"match_pattern": "regex",
"match": "^.*_(with_weight|list)$",
"mapping": {
"type": "text",
"index": "false",
"store": true
}
}
},
{
"rank_feature": {
"match": "*_fea",
"mapping": {
"type": "rank_feature"
}
}
},
{
"rank_features": {
"match": "*_feas",
"mapping": {
"type": "rank_features"
}
}
},
{
"knn_vector": {
"match": "*_512_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 512
}
}
},
{
"knn_vector": {
"match": "*_768_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 768
}
}
},
{
"knn_vector": {
"match": "*_1024_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 1024
}
}
},
{
"knn_vector": {
"match": "*_1536_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 1536
}
}
},
{
"binary": {
"match": "*_bin",
"mapping": {
"type": "binary"
}
}
}
]
}
}

View File

@ -7,8 +7,8 @@ mysql:
password: 'infini_rag_flow'
host: 'localhost'
port: 5455
max_connections: 100
stale_timeout: 30
max_connections: 900
stale_timeout: 300
minio:
user: 'rag_flow'
password: 'infini_rag_flow'
@ -17,6 +17,10 @@ es:
hosts: 'http://localhost:1200'
username: 'elastic'
password: 'infini_rag_flow'
os:
hosts: 'http://localhost:1201'
username: 'admin'
password: 'infini_rag_flow_OS_01'
infinity:
uri: 'localhost:23817'
db_name: 'default_db'
@ -59,16 +63,28 @@ redis:
# api_key: 'sk-xxxxxxxxxxxxx'
# base_url: ''
# oauth:
# oauth2:
# display_name: "OAuth2"
# client_id: "your_client_id"
# client_secret: "your_client_secret"
# authorization_url: "https://your-oauth-provider.com/oauth/authorize"
# token_url: "https://your-oauth-provider.com/oauth/token"
# userinfo_url: "https://your-oauth-provider.com/oauth/userinfo"
# redirect_uri: "https://your-app.com/v1/user/oauth/callback/oauth2"
# oidc:
# display_name: "OIDC"
# client_id: "your_client_id"
# client_secret: "your_client_secret"
# issuer: "https://your-oauth-provider.com/oidc"
# scope: "openid email profile"
# redirect_uri: "https://your-app.com/v1/user/oauth/callback/oidc"
# github:
# client_id: xxxxxxxxxxxxxxxxxxxxxxxxx
# secret_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
# url: https://github.com/login/oauth/access_token
# feishu:
# app_id: cli_xxxxxxxxxxxxxxxxxxx
# app_secret: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
# app_access_token_url: https://open.feishu.cn/open-apis/auth/v3/app_access_token/internal
# user_access_token_url: https://open.feishu.cn/open-apis/authen/v1/oidc/access_token
# grant_type: 'authorization_code'
# type: "github"
# icon: "github"
# display_name: "Github"
# client_id: "your_client_id"
# client_secret: "your_client_secret"
# redirect_uri: "https://your-app.com/v1/user/oauth/callback/github"
# authentication:
# client:
# switch: false

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from concurrent.futures import ThreadPoolExecutor, as_completed
from PIL import Image
@ -22,10 +22,17 @@ from rag.prompts import vision_llm_figure_describe_prompt
def vision_figure_parser_figure_data_wraper(figures_data_without_positions):
return [(
(figure_data[1], [figure_data[0]]),
[(0, 0, 0, 0, 0)]
) for figure_data in figures_data_without_positions if isinstance(figure_data[1], Image.Image)]
return [
(
(figure_data[1], [figure_data[0]]),
[(0, 0, 0, 0, 0)],
)
for figure_data in figures_data_without_positions
if isinstance(figure_data[1], Image.Image)
]
shared_executor = ThreadPoolExecutor(max_workers=10)
class VisionFigureParser:
@ -42,14 +49,14 @@ class VisionFigureParser:
for item in figures_data:
# position
if len(item) == 2 and isinstance(item[1], list) and len(item[1]) == 1 and isinstance(item[1][0], tuple) and len(item[1][0]) == 5:
if len(item) == 2 and isinstance(item[0], tuple) and len(item[0]) == 2 and isinstance(item[1], list) and isinstance(item[1][0], tuple) and len(item[1][0]) == 5:
img_desc = item[0]
assert len(img_desc) == 2 and isinstance(img_desc[0], Image.Image) and isinstance(img_desc[1], list), "Should be (figure, [description])"
self.figures.append(img_desc[0])
self.descriptions.append(img_desc[1])
self.positions.append(item[1])
else:
assert len(item) == 2 and isinstance(item, tuple) and isinstance(item[1], list), f"get {len(item)=}, {item=}"
assert len(item) == 2 and isinstance(item[0], Image.Image) and isinstance(item[1], list), f"Unexpected form of figure data: get {len(item)=}, {item=}"
self.figures.append(item[0])
self.descriptions.append(item[1])
@ -73,16 +80,21 @@ class VisionFigureParser:
def __call__(self, **kwargs):
callback = kwargs.get("callback", lambda prog, msg: None)
for idx, img_binary in enumerate(self.figures or []):
figure_num = idx # 0-based
txt = picture_vision_llm_chunk(
binary=img_binary,
def process(figure_idx, figure_binary):
description_text = picture_vision_llm_chunk(
binary=figure_binary,
vision_model=self.vision_model,
prompt=vision_llm_figure_describe_prompt(),
callback=callback,
)
return figure_idx, description_text
futures = []
for idx, img_binary in enumerate(self.figures or []):
futures.append(shared_executor.submit(process, idx, img_binary))
for future in as_completed(futures):
figure_num, txt = future.result()
if txt:
self.descriptions[figure_num] = txt + "\n".join(self.descriptions[figure_num])

View File

@ -307,13 +307,13 @@ class RAGFlowPdfParser:
[{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM,
"top": b[0][1] / ZM, "text": "", "txt": t,
"bottom": b[-1][1] / ZM,
"chars": [],
"page_number": pagenum} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
self.mean_height[-1] / 3
self.mean_height[pagenum-1] / 3
)
# merge chars in the same rect
for c in Recognizer.sort_Y_firstly(
chars, self.mean_height[pagenum - 1] // 4):
for c in chars:
ii = Recognizer.find_overlapped(c, bxs)
if ii is None:
self.lefted_chars.append(c)
@ -323,11 +323,20 @@ class RAGFlowPdfParser:
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != ' ':
self.lefted_chars.append(c)
continue
if c["text"] == " " and bxs[ii]["text"]:
if re.match(r"[0-9a-zA-Zа-яА-Я,.?;:!%%]", bxs[ii]["text"][-1]):
bxs[ii]["text"] += " "
else:
bxs[ii]["text"] += c["text"]
bxs[ii]["chars"].append(c)
for b in bxs:
if not b["chars"]:
del b["chars"]
continue
m_ht = np.mean([c["height"] for c in b["chars"]])
for c in Recognizer.sort_Y_firstly(b["chars"], m_ht):
if c["text"] == " " and b["text"]:
if re.match(r"[0-9a-zA-Zа-яА-Я,.?;:!%%]", b["text"][-1]):
b["text"] += " "
else:
b["text"] += c["text"]
del b["chars"]
logging.info(f"__ocr sorting {len(chars)} chars cost {timer() - start}s")
start = timer()
@ -346,8 +355,8 @@ class RAGFlowPdfParser:
del boxes_to_reg[i]["box_image"]
logging.info(f"__ocr recognize {len(bxs)} boxes cost {timer() - start}s")
bxs = [b for b in bxs if b["text"]]
if self.mean_height[-1] == 0:
self.mean_height[-1] = np.median([b["bottom"] - b["top"]
if self.mean_height[pagenum-1] == 0:
self.mean_height[pagenum-1] = np.median([b["bottom"] - b["top"]
for b in bxs])
self.boxes.append(bxs)
@ -1006,7 +1015,7 @@ class RAGFlowPdfParser:
with sys.modules[LOCK_KEY_pdfplumber]:
with (pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))) as pdf:
self.pdf = pdf
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
try:

View File

@ -1,7 +1,8 @@
# The type of doc engine to use.
# Available options:
# - `elasticsearch` (default)
# - `elasticsearch` (default)
# - `infinity` (https://github.com/infiniflow/infinity)
# - `opensearch` (https://github.com/opensearch-project/OpenSearch)
DOC_ENGINE=${DOC_ENGINE:-elasticsearch}
# ------------------------------
@ -17,14 +18,24 @@ STACK_VERSION=8.11.3
# The hostname where the Elasticsearch service is exposed
ES_HOST=es01
# The port used to expose the Elasticsearch service to the host machine,
# The port used to expose the Elasticsearch service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
ES_PORT=1200
# The password for Elasticsearch.
# The password for Elasticsearch.
ELASTIC_PASSWORD=infini_rag_flow
# The port used to expose the Kibana service to the host machine,
# the hostname where OpenSearch service is exposed, set it not the same as elasticsearch
OS_PORT=1201
# The hostname where the OpenSearch service is exposed
OS_HOST=opensearch01
# The password for OpenSearch.
# At least one uppercase letter, one lowercase letter, one digit, and one special character
OPENSEARCH_PASSWORD=infini_rag_flow_OS_01
# The port used to expose the Kibana service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
KIBANA_PORT=6601
KIBANA_USER=rag_flow
@ -42,56 +53,54 @@ INFINITY_THRIFT_PORT=23817
INFINITY_HTTP_PORT=23820
INFINITY_PSQL_PORT=5432
# The password for MySQL.
# The password for MySQL.
MYSQL_PASSWORD=infini_rag_flow
# The hostname where the MySQL service is exposed
MYSQL_HOST=mysql
# The database of the MySQL service to use
MYSQL_DBNAME=rag_flow
# The port used to expose the MySQL service to the host machine,
# allowing EXTERNAL access to the MySQL database running inside the Docker container.
# The port used to expose the MySQL service to the host machine,
# allowing EXTERNAL access to the MySQL database running inside the Docker container.
MYSQL_PORT=5455
# The hostname where the MinIO service is exposed
MINIO_HOST=minio
# The port used to expose the MinIO console interface to the host machine,
# allowing EXTERNAL access to the web-based console running inside the Docker container.
# The port used to expose the MinIO console interface to the host machine,
# allowing EXTERNAL access to the web-based console running inside the Docker container.
MINIO_CONSOLE_PORT=9001
# The port used to expose the MinIO API service to the host machine,
# allowing EXTERNAL access to the MinIO object storage service running inside the Docker container.
# The port used to expose the MinIO API service to the host machine,
# allowing EXTERNAL access to the MinIO object storage service running inside the Docker container.
MINIO_PORT=9000
# The username for MinIO.
# The username for MinIO.
# When updated, you must revise the `minio.user` entry in service_conf.yaml accordingly.
MINIO_USER=rag_flow
# The password for MinIO.
# The password for MinIO.
# When updated, you must revise the `minio.password` entry in service_conf.yaml accordingly.
MINIO_PASSWORD=infini_rag_flow
# The hostname where the Redis service is exposed
REDIS_HOST=redis
# The port used to expose the Redis service to the host machine,
# The port used to expose the Redis service to the host machine,
# allowing EXTERNAL access to the Redis service running inside the Docker container.
REDIS_PORT=6379
# The password for Redis.
REDIS_PASSWORD=infini_rag_flow
# The port used to expose RAGFlow's HTTP API service to the host machine,
# The port used to expose RAGFlow's HTTP API service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download.
# Defaults to the v0.18.0-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0-slim
# Defaults to the v0.19.0-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0
#
# The Docker image of the v0.18.0 edition includes built-in embedding models:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.19.0
#
# The Docker image of the v0.19.0 edition includes built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - maidalun1020/bce-embedding-base_v1
#
#
# If you cannot download the RAGFlow Docker image:
#
@ -120,13 +129,13 @@ TIMEZONE='Asia/Shanghai'
# Note that neither `MAX_CONTENT_LENGTH` nor `client_max_body_size` sets the maximum size for files uploaded to an agent.
# See https://ragflow.io/docs/dev/begin_component for details.
# The log level for the RAGFlow's owned packages and imported packages.
# Available level:
# Log level for the RAGFlow's own and imported packages.
# Available levels:
# - `DEBUG`
# - `INFO` (default)
# - `WARNING`
# - `ERROR`
# For example, following line changes the log level of `ragflow.es_conn` to `DEBUG`:
# For example, the following line changes the log level of `ragflow.es_conn` to `DEBUG`:
# LOG_LEVELS=ragflow.es_conn=DEBUG
# aliyun OSS configuration
@ -137,5 +146,38 @@ TIMEZONE='Asia/Shanghai'
# REGION=cn-hangzhou
# BUCKET=ragflow65536
# user registration switch
# A user registration switch:
# - Enable registration: 1
# - Disable registration: 0
REGISTER_ENABLED=1
# Sandbox settings
# Important: To enable sandbox, you must re-declare the compose profiles. See hints at the end of file.
# Double check if you add `sandbox-executor-manager` to your `/etc/hosts`
# Pull the required base images before running:
# docker pull infiniflow/sandbox-base-nodejs:latest
# docker pull infiniflow/sandbox-base-python:latest
# Our default sandbox environments include:
# - Node.js base image: includes axios
# - Python base image: includes requests, numpy, and pandas
# Specify custom executor images below if you're using non-default environments.
# SANDBOX_ENABLED=1
# SANDBOX_HOST=sandbox-executor-manager
# SANDBOX_EXECUTOR_MANAGER_IMAGE=infiniflow/sandbox-executor-manager:latest
# SANDBOX_EXECUTOR_MANAGER_POOL_SIZE=3
# SANDBOX_BASE_PYTHON_IMAGE=infiniflow/sandbox-base-python:latest
# SANDBOX_BASE_NODEJS_IMAGE=infiniflow/sandbox-base-nodejs:latest
# SANDBOX_EXECUTOR_MANAGER_PORT=9385
# SANDBOX_ENABLE_SECCOMP=false
# SANDBOX_MAX_MEMORY=256m # b, k, m, g
# SANDBOX_TIMEOUT=10s # s, m, 1m30s
# Important: To enable sandbox, you must re-declare the compose profiles.
# 1. Comment out the COMPOSE_PROFILES line above.
# 2. Uncomment one of the following based on your chosen document engine:
# - For Elasticsearch:
# COMPOSE_PROFILES=elasticsearch,sandbox
# - For Infinity:
# COMPOSE_PROFILES=infinity,sandbox
# - For OpenSearch:
# COMPOSE_PROFILES=opensearch,sandbox

View File

@ -78,8 +78,8 @@ The [.env](./.env) file contains important environment variables for Docker.
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.18.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.18.0`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.19.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.19.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`
@ -154,9 +154,20 @@ The [.env](./.env) file contains important environment variables for Docker.
- `addressing_style`: Optional. The style of addressing to use for the S3 endpoint. This can be `path` or `virtual`.
- `prefix_path`: Optional. A prefix path to prepend to file names in the S3 bucket, which can help organize files within the bucket.
- `oauth`
The OAuth configuration for signing up or signing in to RAGFlow using a third-party account. It is disabled by default. To enable this feature, uncomment the corresponding lines in **service_conf.yaml.template**.
- `github`: The GitHub authentication settings for your application. Visit the [Github Developer Settings page](https://github.com/settings/developers) to obtain your client_id and secret_key.
- `oauth`
The OAuth configuration for signing up or signing in to RAGFlow using a third-party account.
- `<channel>`: Custom channel ID.
- `type`: Authentication type, options include `oauth2`, `oidc`, `github`. Default is `oauth2`, when `issuer` parameter is provided, defaults to `oidc`.
- `icon`: Icon ID, options include `github`, `sso`, default is `sso`.
- `display_name`: Channel name, defaults to the Title Case format of the channel ID.
- `client_id`: Required, unique identifier assigned to the client application.
- `client_secret`: Required, secret key for the client application, used for communication with the authentication server.
- `authorization_url`: Base URL for obtaining user authorization.
- `token_url`: URL for exchanging authorization code and obtaining access token.
- `userinfo_url`: URL for obtaining user information (username, email, etc.).
- `issuer`: Base URL of the identity provider. OIDC clients can dynamically obtain the identity provider's metadata (`authorization_url`, `token_url`, `userinfo_url`) through `issuer`.
- `scope`: Requested permission scope, a space-separated string. For example, `openid profile email`.
- `redirect_uri`: Required, URI to which the authorization server redirects during the authentication flow to return results. Must match the callback URI registered with the authentication server. Format: `https://your-app.com/v1/user/oauth/callback/<channel>`. For local configuration, you can directly use `http://127.0.0.1:80/v1/user/oauth/callback/<channel>`.
- `user_default_llm`
The default LLM to use for a new RAGFlow user. It is disabled by default. To enable this feature, uncomment the corresponding lines in **service_conf.yaml.template**.

View File

@ -35,6 +35,44 @@ services:
- ragflow
restart: on-failure
opensearch01:
container_name: ragflow-opensearch-01
profiles:
- opensearch
image: hub.icert.top/opensearchproject/opensearch:2.19.1
volumes:
- osdata01:/usr/share/opensearch/data
ports:
- ${OS_PORT}:9201
env_file: .env
environment:
- node.name=opensearch01
- OPENSEARCH_PASSWORD=${OPENSEARCH_PASSWORD}
- OPENSEARCH_INITIAL_ADMIN_PASSWORD=${OPENSEARCH_PASSWORD}
- bootstrap.memory_lock=false
- discovery.type=single-node
- plugins.security.disabled=false
- plugins.security.ssl.http.enabled=false
- plugins.security.ssl.transport.enabled=true
- cluster.routing.allocation.disk.watermark.low=5gb
- cluster.routing.allocation.disk.watermark.high=3gb
- cluster.routing.allocation.disk.watermark.flood_stage=2gb
- TZ=${TIMEZONE}
- http.port=9201
mem_limit: ${MEM_LIMIT}
ulimits:
memlock:
soft: -1
hard: -1
healthcheck:
test: ["CMD-SHELL", "curl http://localhost:9201"]
interval: 10s
timeout: 10s
retries: 120
networks:
- ragflow
restart: on-failure
infinity:
container_name: ragflow-infinity
profiles:
@ -65,6 +103,35 @@ services:
retries: 120
restart: on-failure
sandbox-executor-manager:
container_name: ragflow-sandbox-executor-manager
profiles:
- sandbox
image: ${SANDBOX_EXECUTOR_MANAGER_IMAGE}
privileged: true
ports:
- ${SANDBOX_EXECUTOR_MANAGER_PORT}:9385
env_file: .env
volumes:
- /var/run/docker.sock:/var/run/docker.sock
networks:
- ragflow
security_opt:
- no-new-privileges:true
environment:
- TZ=${TIMEZONE}
- SANDBOX_EXECUTOR_MANAGER_POOL_SIZE=${SANDBOX_EXECUTOR_MANAGER_POOL_SIZE:-3}
- SANDBOX_BASE_PYTHON_IMAGE=${SANDBOX_BASE_PYTHON_IMAGE:-infiniflow/sandbox-base-python:latest}
- SANDBOX_BASE_NODEJS_IMAGE=${SANDBOX_BASE_NODEJS_IMAGE:-infiniflow/sandbox-base-nodejs:latest}
- SANDBOX_ENABLE_SECCOMP=${SANDBOX_ENABLE_SECCOMP:-false}
- SANDBOX_MAX_MEMORY=${SANDBOX_MAX_MEMORY:-256m}
- SANDBOX_TIMEOUT=${SANDBOX_TIMEOUT:-10s}
healthcheck:
test: ["CMD", "curl", "http://localhost:9385/healthz"]
interval: 10s
timeout: 5s
retries: 5
restart: on-failure
mysql:
# mysql:5.7 linux/arm64 image is unavailable.
@ -133,6 +200,8 @@ services:
volumes:
esdata01:
driver: local
osdata01:
driver: local
infinity_data:
driver: local
mysql_data:

View File

@ -8,7 +8,7 @@ services:
mysql:
condition: service_healthy
image: ${RAGFLOW_IMAGE}
# example to setup MCP server
# Example configuration to set up an MCP server:
# command:
# - --enable-mcpserver
# - --mcp-host=0.0.0.0
@ -16,7 +16,7 @@ services:
# - --mcp-base-url=http://127.0.0.1:9380
# - --mcp-script-path=/ragflow/mcp/server/server.py
# - --mcp-mode=self-host
# - --mcp--host-api-key="ragflow-xxxxxxx"
# - --mcp-host-api-key=ragflow-xxxxxxx
container_name: ragflow-server
ports:
- ${SVR_HTTP_PORT}:9380
@ -24,7 +24,7 @@ services:
- 443:443
- 5678:5678
- 5679:5679
- 9382:9382 # entry for MCP (host_port:docker_port). The docker_port should match with the value you set for `mcp-port` above
- 9382:9382 # entry for MCP (host_port:docker_port). The docker_port must match the value you set for `mcp-port` above.
volumes:
- ./ragflow-logs:/ragflow/logs
- ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
@ -32,6 +32,7 @@ services:
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
- ../history_data_agent:/ragflow/history_data_agent
- ./service_conf.yaml.template:/ragflow/conf/service_conf.yaml.template
- ./entrypoint.sh:/ragflow/entrypoint.sh
env_file: .env
environment:
@ -42,7 +43,7 @@ services:
- ragflow
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
# If you use Docker Desktop, the --add-host flag is optional. This flag ensures that the host's internal IP is exposed to the Prometheus container.
extra_hosts:
- "host.docker.internal:host-gateway"
# executor:

2
docker/entrypoint.sh Normal file → Executable file
View File

@ -150,7 +150,7 @@ function start_mcp_server() {
--port="${MCP_PORT}" \
--base_url="${MCP_BASE_URL}" \
--mode="${MCP_MODE}" \
--api_key="${MCP_HOST_API_KEY}" \ &
--api_key="${MCP_HOST_API_KEY}" &
}
# -----------------------------------------------------------------------------

View File

@ -47,6 +47,9 @@ STOP=false
# Array to keep track of child PIDs
PIDS=()
# Set the path to the NLTK data directory
export NLTK_DATA="./nltk_data"
# Function to handle termination signals
cleanup() {
echo "Termination signal received. Shutting down..."

View File

@ -7,8 +7,8 @@ mysql:
password: '${MYSQL_PASSWORD:-infini_rag_flow}'
host: '${MYSQL_HOST:-mysql}'
port: 3306
max_connections: 100
stale_timeout: 30
max_connections: 900
stale_timeout: 300
minio:
user: '${MINIO_USER:-rag_flow}'
password: '${MINIO_PASSWORD:-infini_rag_flow}'
@ -17,6 +17,10 @@ es:
hosts: 'http://${ES_HOST:-es01}:9200'
username: '${ES_USER:-elastic}'
password: '${ELASTIC_PASSWORD:-infini_rag_flow}'
os:
hosts: 'http://${OS_HOST:-opensearch01}:9201'
username: '${OS_USER:-admin}'
password: '${OPENSEARCHH_PASSWORD:-infini_rag_flow_OS_01}'
infinity:
uri: '${INFINITY_HOST:-infinity}:23817'
db_name: 'default_db'
@ -71,16 +75,28 @@ redis:
# asr_model: ''
# image2text_model: ''
# oauth:
# oauth2:
# display_name: "OAuth2"
# client_id: "your_client_id"
# client_secret: "your_client_secret"
# authorization_url: "https://your-oauth-provider.com/oauth/authorize"
# token_url: "https://your-oauth-provider.com/oauth/token"
# userinfo_url: "https://your-oauth-provider.com/oauth/userinfo"
# redirect_uri: "https://your-app.com/v1/user/oauth/callback/oauth2"
# oidc:
# display_name: "OIDC"
# client_id: "your_client_id"
# client_secret: "your_client_secret"
# issuer: "https://your-oauth-provider.com/oidc"
# scope: "openid email profile"
# redirect_uri: "https://your-app.com/v1/user/oauth/callback/oidc"
# github:
# client_id: xxxxxxxxxxxxxxxxxxxxxxxxx
# secret_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
# url: https://github.com/login/oauth/access_token
# feishu:
# app_id: cli_xxxxxxxxxxxxxxxxxxx
# app_secret: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
# app_access_token_url: https://open.feishu.cn/open-apis/auth/v3/app_access_token/internal
# user_access_token_url: https://open.feishu.cn/open-apis/authen/v1/oidc/access_token
# grant_type: 'authorization_code'
# type: "github"
# icon: "github"
# display_name: "Github"
# client_id: "your_client_id"
# client_secret: "your_client_secret"
# redirect_uri: "https://your-app.com/v1/user/oauth/callback/github"
# authentication:
# client:
# switch: false

View File

@ -99,8 +99,8 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.18.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.18.0`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.19.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.19.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`
@ -132,6 +132,12 @@ If you cannot download the RAGFlow Docker image, try the following mirrors.
- `MACOS`
Optimizations for macOS. It is disabled by default. You can uncomment this line if your OS is macOS.
### User registration
- `REGISTER_ENABLED`
- `1`: (Default) Enable user registration.
- `0`: Disable user registration.
## Service configuration
[service_conf.yaml.template](https://github.com/infiniflow/ragflow/blob/main/docker/service_conf.yaml.template) specifies the system-level configuration for RAGFlow and is used by its API server and task executor.
@ -158,9 +164,52 @@ If you cannot download the RAGFlow Docker image, try the following mirrors.
### `oauth`
The OAuth configuration for signing up or signing in to RAGFlow using a third-party account. It is disabled by default. To enable this feature, uncomment the corresponding lines in **service_conf.yaml.template**.
The OAuth configuration for signing up or signing in to RAGFlow using a third-party account.
- `github`: The GitHub authentication settings for your application. Visit the [GitHub Developer Settings](https://github.com/settings/developers) page to obtain your client_id and secret_key.
- `<channel>`: Custom channel ID.
- `type`: Authentication type, options include `oauth2`, `oidc`, `github`. Default is `oauth2`, when `issuer` parameter is provided, defaults to `oidc`.
- `icon`: Icon ID, options include `github`, `sso`, default is `sso`.
- `display_name`: Channel name, defaults to the Title Case format of the channel ID.
- `client_id`: Required, unique identifier assigned to the client application.
- `client_secret`: Required, secret key for the client application, used for communication with the authentication server.
- `authorization_url`: Base URL for obtaining user authorization.
- `token_url`: URL for exchanging authorization code and obtaining access token.
- `userinfo_url`: URL for obtaining user information (username, email, etc.).
- `issuer`: Base URL of the identity provider. OIDC clients can dynamically obtain the identity provider's metadata (`authorization_url`, `token_url`, `userinfo_url`) through `issuer`.
- `scope`: Requested permission scope, a space-separated string. For example, `openid profile email`.
- `redirect_uri`: Required, URI to which the authorization server redirects during the authentication flow to return results. Must match the callback URI registered with the authentication server. Format: `https://your-app.com/v1/user/oauth/callback/<channel>`. For local configuration, you can directly use `http://127.0.0.1:80/v1/user/oauth/callback/<channel>`.
:::tip NOTE
The following are best practices for configuring various third-party authentication methods. You can configure one or multiple third-party authentication methods for Ragflow:
```yaml
oauth:
oauth2:
display_name: "OAuth2"
client_id: "your_client_id"
client_secret: "your_client_secret"
authorization_url: "https://your-oauth-provider.com/oauth/authorize"
token_url: "https://your-oauth-provider.com/oauth/token"
userinfo_url: "https://your-oauth-provider.com/oauth/userinfo"
redirect_uri: "https://your-app.com/v1/user/oauth/callback/oauth2"
oidc:
display_name: "OIDC"
client_id: "your_client_id"
client_secret: "your_client_secret"
issuer: "https://your-oauth-provider.com/oidc"
scope: "openid email profile"
redirect_uri: "https://your-app.com/v1/user/oauth/callback/oidc"
github:
# https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app
type: "github"
icon: "github"
display_name: "Github"
client_id: "your_client_id"
client_secret: "your_client_secret"
redirect_uri: "https://your-app.com/v1/user/oauth/callback/github"
```
:::
### `user_default_llm`

View File

@ -0,0 +1,8 @@
{
"label": "Contribution",
"position": 8,
"link": {
"type": "generated-index",
"description": "Miscellaneous contribution guides."
}
}

View File

@ -1,5 +1,14 @@
---
sidebar_position: 1
slug: /contributing
---
# Contribution guidelines
General guidelines for RAGFlow's community contributors.
---
This document offers guidelines and major considerations for submitting your contributions to RAGFlow.
- To report a bug, file a [GitHub issue](https://github.com/infiniflow/ragflow/issues/new/choose) with us.

View File

@ -1,11 +1,11 @@
---
sidebar_position: 3
sidebar_position: 4
slug: /acquire_ragflow_api_key
---
# Acquire RAGFlow API key
A key is required for the RAGFlow server to authenticate your requests via HTTP or a Python API. This documents provides instructions on obtaining a RAGFlow API key.
An API key is required for the RAGFlow server to authenticate your HTTP/Python or MCP requests. This documents provides instructions on obtaining a RAGFlow API key.
1. Click your avatar in the top right corner of the RAGFlow UI to access the configuration page.
2. Click **API** to switch to the **API** page.

View File

@ -77,7 +77,7 @@ After building the infiniflow/ragflow:nightly-slim image, you are ready to launc
1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.18.0-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.19.0-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
2. Launch the Service

View File

@ -1,195 +0,0 @@
---
sidebar_position: 4
slug: /mcp_server
---
# RAGFlow MCP server overview
The RAGFlow Model Context Protocol (MCP) server operates as an independent component that complements the RAGFlow server. However, it requires a RAGFlow server to work functionally well, meaning, the MCP client and server communicate with each other in MCP HTTP+SSE mode (once the connection is established, server pushes messages to client only), and responses are expected from RAGFlow server.
The MCP server currently offers a specific tool to assist users in searching for relevant information powered by RAGFlow DeepDoc technology:
- **retrieve**: Fetches relevant chunks from specified `dataset_ids` and optional `document_ids` using the RAGFlow retrieve interface, based on a given question. Details of all available datasets, namely, `id` and `description`, are provided within the tool description for each individual dataset.
## Launching the MCP Server
Similar to launching the RAGFlow server, the MCP server can be started either from source code or via Docker.
### Launch Modes
The MCP server supports two launch modes:
1. **Self-Host Mode**:
- In this mode, the MCP server is launched to access a specific tenant's datasets.
- This is the default mode.
- The `--api_key` argument is **required** to authenticate the server with the RAGFlow server.
- Example:
```bash
uv run mcp/server/server.py --host=127.0.0.1 --port=9382 --base_url=http://127.0.0.1:9380 --mode=self-host --api_key=ragflow-xxxxx
```
1. **Host Mode**:
- In this mode, the MCP server allows each user to access their own datasets.
- To ensure secure access, a valid API key must be included in the request headers to identify the user.
- The `--api_key` argument is **not required** during server launch but must be provided in the headers on each client request for user authentication.
- Example:
```bash
uv run mcp/server/server.py --host=127.0.0.1 --port=9382 --base_url=http://127.0.0.1:9380 --mode=host
```
### Launching from Source Code
All you need to do is stand on the right place and strike out command, assuming you are on the project working directory.
```bash
uv run mcp/server/server.py --host=127.0.0.1 --port=9382 --base_url=http://127.0.0.1:9380 --api_key=ragflow-xxxxx
```
For testing purposes, there is an [MCP client example](#example_mcp_client) provided, free to take!
#### Required Arguments
- **`host`**: Specifies the server's host address.
- **`port`**: Defines the server's listening port.
- **`base_url`**: The address of the RAGFlow server that is already running and ready to handle tasks.
- **`mode`**: Launch mode, only accept `self-host` or `host`.
- **`api_key`**: Required when `mode` is `self-host` to authenticate the MCP server with the RAGFlow server.
Here are three augments required, the first two,`host` and `port`, are self-explained. The`base_url` is the address of the ready-to-serve RAGFlow server to actually perform the task.
### Launching from Docker
Building a standalone MCP server image is straightforward and easy, so we just proposed a way to launch it with RAGFlow server here.
#### Alongside RAGFlow
As MCP server is an extra and optional component of RAGFlow server, we consume that not everybody going to use it. Thus, it is disable by default.
To enable it, simply find `docker/docker-compose.yml` to uncomment `services.ragflow.command` section.
```yaml
services:
ragflow:
...
image: ${RAGFLOW_IMAGE}
# example to setup MCP server
command:
- --enable-mcpserver
- --mcp-host=0.0.0.0
- --mcp-port=9382
- --mcp-base-url=http://127.0.0.1:9380
- --mcp-script-path=/ragflow/mcp/server/server.py
- --mcp-mode=self-host # `self-host` or `host`
- --mcp--host-api-key="ragflow-xxxxxxx" # only need to privide when mode is `self-host`
```
Then launch it normally `docker compose -f docker-compose.yml`.
```bash
ragflow-server | Starting MCP Server on 0.0.0.0:9382 with base URL http://127.0.0.1:9380...
ragflow-server | Starting 1 task executor(s) on host 'dd0b5e07e76f'...
ragflow-server | 2025-04-18 15:41:18,816 INFO 27 ragflow_server log path: /ragflow/logs/ragflow_server.log, log levels: {'peewee': 'WARNING', 'pdfminer': 'WARNING', 'root': 'INFO'}
ragflow-server |
ragflow-server | __ __ ____ ____ ____ _____ ______ _______ ____
ragflow-server | | \/ |/ ___| _ \ / ___|| ____| _ \ \ / / ____| _ \
ragflow-server | | |\/| | | | |_) | \___ \| _| | |_) \ \ / /| _| | |_) |
ragflow-server | | | | | |___| __/ ___) | |___| _ < \ V / | |___| _ <
ragflow-server | |_| |_|\____|_| |____/|_____|_| \_\ \_/ |_____|_| \_\
ragflow-server |
ragflow-server | MCP launch mode: self-host
ragflow-server | MCP host: 0.0.0.0
ragflow-server | MCP port: 9382
ragflow-server | MCP base_url: http://127.0.0.1:9380
ragflow-server | INFO: Started server process [26]
ragflow-server | INFO: Waiting for application startup.
ragflow-server | INFO: Application startup complete.
ragflow-server | INFO: Uvicorn running on http://0.0.0.0:9382 (Press CTRL+C to quit)
ragflow-server | 2025-04-18 15:41:20,469 INFO 27 found 0 gpus
ragflow-server | 2025-04-18 15:41:23,263 INFO 27 init database on cluster mode successfully
ragflow-server | 2025-04-18 15:41:25,318 INFO 27 load_model /ragflow/rag/res/deepdoc/det.onnx uses CPU
ragflow-server | 2025-04-18 15:41:25,367 INFO 27 load_model /ragflow/rag/res/deepdoc/rec.onnx uses CPU
ragflow-server | ____ ___ ______ ______ __
ragflow-server | / __ \ / | / ____// ____// /____ _ __
ragflow-server | / /_/ // /| | / / __ / /_ / // __ \| | /| / /
ragflow-server | / _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
ragflow-server | /_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
ragflow-server |
ragflow-server |
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 RAGFlow version: v0.18.0-285-gb2c299fa full
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 project base: /ragflow
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 Current configs, from /ragflow/conf/service_conf.yaml:
ragflow-server | ragflow: {'host': '0.0.0.0', 'http_port': 9380}
...
ragflow-server | * Running on all addresses (0.0.0.0)
ragflow-server | * Running on http://127.0.0.1:9380
ragflow-server | * Running on http://172.19.0.6:9380
ragflow-server | ______ __ ______ __
ragflow-server | /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____
ragflow-server | / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
ragflow-server | / / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / /
ragflow-server | /_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/
ragflow-server |
ragflow-server | 2025-04-18 15:41:34,501 INFO 32 TaskExecutor: RAGFlow version: v0.18.0-285-gb2c299fa full
ragflow-server | 2025-04-18 15:41:34,501 INFO 32 Use Elasticsearch http://es01:9200 as the doc engine.
...
```
You are ready to brew🍺!
## Testing and Usage
Typically, there are various ways to utilize an MCP server. You can integrate it with LLMs or use it as a standalone tool. You find the way.
### Example MCP Client {#example_mcp_client}
```python
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mcp.client.session import ClientSession
from mcp.client.sse import sse_client
async def main():
try:
# To access RAGFlow server in `host` mode, you need to attach `api_key` for each request to indicate identification.
# async with sse_client("http://localhost:9382/sse", headers={"api_key": "ragflow-IyMGI1ZDhjMTA2ZTExZjBiYTMyMGQ4Zm"}) as streams:
async with sse_client("http://localhost:9382/sse") as streams:
async with ClientSession(
streams[0],
streams[1],
) as session:
await session.initialize()
tools = await session.list_tools()
print(f"{tools.tools=}")
response = await session.call_tool(name="ragflow_retrieval", arguments={"dataset_ids": ["ce3bb17cf27a11efa69751e139332ced"], "document_ids": [], "question": "How to install neovim?"})
print(f"Tool response: {response.model_dump()}")
except Exception as e:
print(e)
if __name__ == "__main__":
from anyio import run
run(main)
```
## Security and Concerns
Since MCP technology is still in booming age and there are still no official Authentication and Authorization best practices to follow, RAGFlow uses `api_key` to validate the identification, and it is required to perform any operations mentioned in the preview section. Obviously, this is not a premium solution to do so, thus this RAGFlow MCP server is not expected to exposed to public use as it could be highly venerable to be attacked. For local SSE server, bind only to localhost (127.0.0.1) instead of all interfaces (0.0.0.0). For additional guidance, you can refer to [MCP official website](https://modelcontextprotocol.io/docs/concepts/transports#security-considerations).

View File

@ -0,0 +1,8 @@
{
"label": "MCP",
"position": 40,
"link": {
"type": "generated-index",
"description": "Guides and references on accessing RAGFlow's knowledge bases via MCP."
}
}

View File

@ -0,0 +1,197 @@
---
sidebar_position: 1
slug: /launch_mcp_server
---
# Launch RAGFlow MCP server
Launch an MCP server from source or via Docker.
---
A RAGFlow Model Context Protocol (MCP) server is designed as an independent component to complement the RAGFlow server. Note that an MCP server must operate alongside a properly functioning RAGFlow server.
An MCP server can start up in either self-host mode (default) or host mode:
- **Self-host mode**:
When launching an MCP server in self-host mode, you must provide an API key to authenticate the MCP server with the RAGFlow server. In this mode, the MCP server can access *only* the datasets (knowledge bases) of a specified tenant on the RAGFlow server.
- **Host mode**:
In host mode, each MCP client can access their own knowledge bases on the RAGFlow server. However, each client request must include a valid API key to authenticate the client with the RAGFlow server.
Once a connection is established, an MCP server communicates with its client in MCP HTTP+SSE (Server-Sent Events) mode, unidirectionally pushing responses from the RAGFlow server to its client in real time.
## Prerequisites
1. Ensure RAGFlow is upgraded to v0.18.0 or later.
2. Have your RAGFlow API key ready. See [Acquire a RAGFlow API key](./acquire_ragflow_api_key.md).
:::tip INFO
If you wish to try out our MCP server without upgrading RAGFlow, community contributor [yiminghub2024](https://github.com/yiminghub2024) 👏 shares their recommended steps [here](#launch-an-mcp-server-without-upgrading-ragflow).
:::
## Launch an MCP server
You can start an MCP server either from source code or via Docker.
### Launch from source code
1. Ensure that a RAGFlow server v0.18.0+ is properly running.
2. Launch the MCP server:
```bash
# Launch the MCP server to work in self-host mode, run either of the following
uv run mcp/server/server.py --host=127.0.0.1 --port=9382 --base_url=http://127.0.0.1:9380 --api_key=ragflow-xxxxx
# uv run mcp/server/server.py --host=127.0.0.1 --port=9382 --base_url=http://127.0.0.1:9380 mode=self-host --api_key=ragflow-xxxxx
# To launch the MCP server to work in host mode, run the following instead:
# uv run mcp/server/server.py --host=127.0.0.1 --port=9382 --base_url=http://127.0.0.1:9380 mode=host
```
Where:
- `host`: The MCP server's host address.
- `port`: The MCP server's listening port.
- `base_url`: The address of the running RAGFlow server.
- `mode`: The launch mode.
- `self-host`: (default) self-host mode.
- `host`: host mode.
- `api_key`: Required in self-host mode to authenticate the MCP server with the RAGFlow server.
### Launch from Docker
#### 1. Enable MCP server
The MCP server is designed as an optional component that complements the RAGFlow server and disabled by default. To enable MCP server:
1. Navigate to **docker/docker-compose.yml**.
2. Uncomment the `services.ragflow.command` section as shown below:
```yaml {6-13}
services:
ragflow:
...
image: ${RAGFLOW_IMAGE}
# Example configuration to set up an MCP server:
command:
- --enable-mcpserver
- --mcp-host=0.0.0.0
- --mcp-port=9382
- --mcp-base-url=http://127.0.0.1:9380
- --mcp-script-path=/ragflow/mcp/server/server.py
- --mcp-mode=self-host
- --mcp-host-api-key=ragflow-xxxxxxx
```
Where:
- `mcp-host`: The MCP server's host address.
- `mcp-port`: The MCP server's listening port.
- `mcp-base_url`: The address of the running RAGFlow server.
- `mcp-script-path`: The file path to the MCP servers main script.
- `mcp-mode`: The launch mode.
- `self-host`: (default) self-host mode.
- `host`: host mode.
- `mcp-host-api_key`: Required in self-host mode to authenticate the MCP server with the RAGFlow server.
#### 2. Launch a RAGFlow server with an MCP server
Run `docker compose -f docker-compose.yml` to launch the RAGFlow server together with the MCP server.
*The following ASCII art confirms a successful launch:*
```bash
ragflow-server | Starting MCP Server on 0.0.0.0:9382 with base URL http://127.0.0.1:9380...
ragflow-server | Starting 1 task executor(s) on host 'dd0b5e07e76f'...
ragflow-server | 2025-04-18 15:41:18,816 INFO 27 ragflow_server log path: /ragflow/logs/ragflow_server.log, log levels: {'peewee': 'WARNING', 'pdfminer': 'WARNING', 'root': 'INFO'}
ragflow-server |
ragflow-server | __ __ ____ ____ ____ _____ ______ _______ ____
ragflow-server | | \/ |/ ___| _ \ / ___|| ____| _ \ \ / / ____| _ \
ragflow-server | | |\/| | | | |_) | \___ \| _| | |_) \ \ / /| _| | |_) |
ragflow-server | | | | | |___| __/ ___) | |___| _ < \ V / | |___| _ <
ragflow-server | |_| |_|\____|_| |____/|_____|_| \_\ \_/ |_____|_| \_\
ragflow-server |
ragflow-server | MCP launch mode: self-host
ragflow-server | MCP host: 0.0.0.0
ragflow-server | MCP port: 9382
ragflow-server | MCP base_url: http://127.0.0.1:9380
ragflow-server | INFO: Started server process [26]
ragflow-server | INFO: Waiting for application startup.
ragflow-server | INFO: Application startup complete.
ragflow-server | INFO: Uvicorn running on http://0.0.0.0:9382 (Press CTRL+C to quit)
ragflow-server | 2025-04-18 15:41:20,469 INFO 27 found 0 gpus
ragflow-server | 2025-04-18 15:41:23,263 INFO 27 init database on cluster mode successfully
ragflow-server | 2025-04-18 15:41:25,318 INFO 27 load_model /ragflow/rag/res/deepdoc/det.onnx uses CPU
ragflow-server | 2025-04-18 15:41:25,367 INFO 27 load_model /ragflow/rag/res/deepdoc/rec.onnx uses CPU
ragflow-server | ____ ___ ______ ______ __
ragflow-server | / __ \ / | / ____// ____// /____ _ __
ragflow-server | / /_/ // /| | / / __ / /_ / // __ \| | /| / /
ragflow-server | / _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
ragflow-server | /_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
ragflow-server |
ragflow-server |
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 RAGFlow version: v0.18.0-285-gb2c299fa full
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 project base: /ragflow
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 Current configs, from /ragflow/conf/service_conf.yaml:
ragflow-server | ragflow: {'host': '0.0.0.0', 'http_port': 9380}
...
ragflow-server | * Running on all addresses (0.0.0.0)
ragflow-server | * Running on http://127.0.0.1:9380
ragflow-server | * Running on http://172.19.0.6:9380
ragflow-server | ______ __ ______ __
ragflow-server | /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____
ragflow-server | / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
ragflow-server | / / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / /
ragflow-server | /_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/
ragflow-server |
ragflow-server | 2025-04-18 15:41:34,501 INFO 32 TaskExecutor: RAGFlow version: v0.18.0-285-gb2c299fa full
ragflow-server | 2025-04-18 15:41:34,501 INFO 32 Use Elasticsearch http://es01:9200 as the doc engine.
...
```
#### Launch an MCP server without upgrading RAGFlow
:::info KUDOS
This section is contributed by our community contributor [yiminghub2024](https://github.com/yiminghub2024). 👏
:::
1. Prepare all MCP-specific files and directories.
i. Copy the [mcp/](https://github.com/infiniflow/ragflow/tree/main/mcp) directory to your local working directory.
ii. Copy [docker/docker-compose.yml](https://github.com/infiniflow/ragflow/blob/main/docker/docker-compose.yml) locally.
iii. Copy [docker/entrypoint.sh](https://github.com/infiniflow/ragflow/blob/main/docker/entrypoint.sh) locally.
iv. Install the required dependencies using `uv`:
- Run `uv add mcp` or
- Copy [pyproject.toml](https://github.com/infiniflow/ragflow/blob/main/pyproject.toml) locally and run `uv sync --python 3.10 --all-extras`.
2. Edit **docker-compose.yml** to enable MCP (disabled by default).
3. Launch the MCP server:
```bash
docker compose -f docker-compose.yml up -d`
```
### Check MCP server status
Run the following to check the logs the RAGFlow server and the MCP server:
```bash
docker logs ragflow-server
```
## Security considerations
As MCP technology is still at early stage and no official best practices for authentication or authorization have been established, RAGFlow currently uses [API key](./acquire_ragflow_api_key.md) to validate identity for the operations described earlier. However, in public environments, this makeshift solution could expose your MCP server to potential network attacks. Therefore, when running a local SSE server, it is recommended to bind only to localhost (`127.0.0.1`) rather than to all interfaces (`0.0.0.0`).
For further guidance, see the [official MCP documentation](https://modelcontextprotocol.io/docs/concepts/transports#security-considerations).
## Frequently asked questions
### When to use an API key for authentication?
The use of an API key depends on the operating mode of your MCP server.
- **Self-host mode** (default):
When starting the MCP server in self-host mode, you should provide an API key when launching it to authenticate it with the RAGFlow server:
- If launching from source, include the API key in the command.
- If launching from Docker, update the API key in **docker/docker-compose.yml**.
- **Host mode**:
If your RAGFlow MCP server is working in host mode, include the API key in the `headers` of your client requests to authenticate your client with the RAGFlow server. An example is available [here](https://github.com/infiniflow/ragflow/blob/main/mcp/client/client.py).

View File

@ -0,0 +1,16 @@
---
sidebar_position: 3
slug: /mcp_client
---
# RAGFlow MCP client example
We provide a *prototype* MCP client example for testing [here](https://github.com/infiniflow/ragflow/blob/main/mcp/client/client.py).
:::danger IMPORTANT
If your MCP server is running in host mode, include your acquired API key in your client's `headers` as shown below:
```python
async with sse_client("http://localhost:9382/sse", headers={"api_key": "YOUR_KEY_HERE"}) as streams:
# Rest of your code...
```
:::

View File

@ -0,0 +1,12 @@
---
sidebar_position: 2
slug: /mcp_tools
---
# RAGFlow MCP tools
The MCP server currently offers a specialized tool to assist users in searching for relevant information powered by RAGFlow DeepDoc technology:
- **retrieve**: Fetches relevant chunks from specified `dataset_ids` and optional `document_ids` using the RAGFlow retrieve interface, based on a given question. Details of all available datasets, namely, `id` and `description`, are provided within the tool description for each individual dataset.
For more information, see our Python implementation of the [MCP server](https://github.com/infiniflow/ragflow/blob/main/mcp/server/server.py).

View File

@ -0,0 +1,34 @@
---
sidebar_position: 3
slug: /switch_doc_engine
---
# Switch document engine
Switch your doc engine from Elasticsearch to Infinity.
---
RAGFlow uses Elasticsearch by default for storing full text and vectors. To switch to [Infinity](https://github.com/infiniflow/infinity/), follow these steps:
:::danger WARNING
Switching to Infinity on a Linux/arm64 machine is not yet officially supported.
:::
1. Stop all running containers:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
:::cautiion WARNING
`-v` will delete the docker container volumes, and the existing data will be cleared.
:::
2. Set `DOC_ENGINE` in **docker/.env** to `infinity`.
3. Start the containers:
```bash
$ docker compose -f docker-compose.yml up -d
```

View File

@ -26,6 +26,36 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
---
### Differences between RAGFlow full edition and RAGFlow slim edition?
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.19.0-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.19.0`
---
### Which embedding models can be deployed locally?
RAGFlow offers two Docker image editions, `v0.19.0-slim` and `v0.19.0`:
- `infiniflow/ragflow:v0.19.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.19.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`
- Embedding models that will be downloaded once you select them in the RAGFlow UI:
- `BAAI/bge-base-en-v1.5`
- `BAAI/bge-large-en-v1.5`
- `BAAI/bge-small-en-v1.5`
- `BAAI/bge-small-zh-v1.5`
- `jinaai/jina-embeddings-v2-base-en`
- `jinaai/jina-embeddings-v2-small-en`
- `nomic-ai/nomic-embed-text-v1.5`
- `sentence-transformers/all-MiniLM-L6-v2`
---
### Where to find the version of RAGFlow? How to interpret it?
You can find the RAGFlow version number on the **System** page of the UI:
@ -55,6 +85,22 @@ Where:
---
### Why not use other open-source vector databases as the document engine?
Currently, only Elasticsearch and [Infinity](https://github.com/infiniflow/infinity) meet the hybrid search requirements of RAGFlow. Most open-source vector databases have limited support for full-text search, and sparse embedding is not an alternative to full-text search. Additionally, these vector databases lack critical features essential to RAGFlow, such as phrase search and advanced ranking capabilities.
These limitations led us to develop [Infinity](https://github.com/infiniflow/infinity), the AI-native database, from the ground up.
---
### Differences between demo.ragflow.io and a locally deployed open-source RAGFlow service?
demo.ragflow.io demonstrates the capabilities of RAGFlow Enterprise. Its DeepDoc models are pre-trained using proprietary data and it offers much more sophisticated team permission controls. Essentially, demo.ragflow.io serves as a preview of RAGFlow's forthcoming SaaS (Software as a Service) offering.
You can deploy an open-source RAGFlow service and call it from a Python client or through RESTful APIs. However, this is not supported on demo.ragflow.io.
---
### Why does it take longer for RAGFlow to parse a document than LangChain?
We put painstaking effort into document pre-processing tasks like layout analysis, table structure recognition, and OCR (Optical Character Recognition) using our vision models. This contributes to the additional time required.
@ -73,29 +119,6 @@ We officially support x86 CPU and nvidia GPU. While we also test RAGFlow on ARM6
---
### Which embedding models can be deployed locally?
RAGFlow offers two Docker image editions, `v0.18.0-slim` and `v0.18.0`:
- `infiniflow/ragflow:v0.18.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.18.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`
- `maidalun1020/bce-embedding-base_v1`
- `maidalun1020/bce-reranker-base_v1`
- Embedding models that will be downloaded once you select them in the RAGFlow UI:
- `BAAI/bge-base-en-v1.5`
- `BAAI/bge-large-en-v1.5`
- `BAAI/bge-small-en-v1.5`
- `BAAI/bge-small-zh-v1.5`
- `jinaai/jina-embeddings-v2-base-en`
- `jinaai/jina-embeddings-v2-small-en`
- `nomic-ai/nomic-embed-text-v1.5`
- `sentence-transformers/all-MiniLM-L6-v2`
---
### Do you offer an API for integration with third-party applications?
The corresponding APIs are now available. See the [RAGFlow HTTP API Reference](./references/http_api_reference.md) or the [RAGFlow Python API Reference](./references/python_api_reference.md) for more information.

View File

@ -71,7 +71,7 @@ As mentioned earlier, the **Begin** component is indispensable for an agent. Sti
### Is the uploaded file in a knowledge base?
No. Files uploaded to an agent as input are not stored in a knowledge base and hence will not be processed using RAGFlow's built-in OCR, DLR or TSR models, or chunked using RAGFlow's built-in chunk methods.
No. Files uploaded to an agent as input are not stored in a knowledge base and hence will not be processed using RAGFlow's built-in OCR, DLR or TSR models, or chunked using RAGFlow's built-in chunking methods.
### How to upload a webpage or file from a URL?

View File

@ -0,0 +1,50 @@
---
sidebar_position: 13
slug: /code_component
---
# Code component
A component that enables users to integrate Python or JavaScript codes into their Agent for dynamic data processing.
---
## Scenarios
A **Code** component is essential when you need to integrate complex code logic (Python or JavaScript) into your Agent for dynamic data processing.
## Input variables
You can specify multiple input sources for the **Code** component. Click **+ Add variable** in the **Input variables** section to include the desired input variables.
After defining an input variable, you are required to select from the dropdown menu:
- A component ID under **Component Output**, or
- A global variable under **Begin input**, which is defined in the **Begin** component.
## Coding field
### A Python code example
```Python
def main(arg1: str, arg2: str) -> dict:
return {
"result": arg1 + arg2,
}
```
### A JavaScript code example
```JavaScript
const axios = require('axios');
async function main(args) {
try {
const response = await axios.get('https://github.com/infiniflow/ragflow');
console.log('Body:', response.data);
} catch (error) {
console.error('Error:', error.message);
}
}
```

View File

@ -83,10 +83,9 @@ This toggle sets whether to cite the original text as reference.
:::tip NOTE
This feature is used for multi-turn dialogue *only* and is applicable *only* when the original documents are uploaded to a knowledge base and have finished file parsing.
This feature applies *only* after the original documents have been uploaded to the corresponding knowledge base(s) and file parsing is complete.
:::
### Message window size
An integer specifying the number of previous dialogue rounds to input into the LLM. For example, if it is set to 12, the tokens from the last 12 dialogue rounds will be fed to the LLM. This feature consumes additional tokens.

View File

@ -1,5 +1,5 @@
---
sidebar_position: 13
sidebar_position: 18
slug: /note_component
---

View File

@ -5,7 +5,11 @@ slug: /text2sql_agent
# Create a Text2SQL agent
Build a Text2SQL agent leveraging RAGFlow's RAG capabilities. Contributed by @TeslaZY.
Build a Text2SQL agent leveraging RAGFlow's RAG capabilities.
:::info KUDOS
This document is contributed by our community contributor [TeslaZY](https://github.com/TeslaZY). 👏
:::
## Scenario

31
docs/guides/ai_search.md Normal file
View File

@ -0,0 +1,31 @@
---
sidebar_position: 2
slug: /ai_search
---
# Search
Conduct an AI search.
---
An AI search is a single-turn AI conversation using a predefined retrieval strategy (a hybrid search of weighted keyword similarity and weighted vector similarity) and the system's default chat model. It does not involve advanced RAG strategies like knowledge graph, auto-keyword, or auto-question. Retrieved chunks will be listed below the chat model's response.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ai_search.jpg)
:::tip NOTE
When debugging your chat assistant, you can use AI search as a reference to verify your model settings and retrieval strategy.
:::
## Prerequisites
- Ensure that you have configured the system's default models on the **Model providers** page.
- Ensure that the intended knowledge bases are properly configured and the intended documents have finished file parsing.
## Frequently asked questions
### key difference between an AI search and an AI chat?
A chat is a multi-turn AI conversation where you can define your retrieval strategy (a weighted reranking score can be used to replace the weighted vector similarity in a hybrid search) and choose your chat model. In an AI chat, you can configure advanced RAG strategies, such as knowledge graphs, auto-keyword, and auto-question, for your specific case. Retrieved chunks are not displayed along with the answer.

View File

@ -0,0 +1,8 @@
{
"label": "Best practices",
"position": 7,
"link": {
"type": "generated-index",
"description": "Best practices on chat assistant configuration."
}
}

View File

@ -1,5 +1,5 @@
---
sidebar_position: 2
sidebar_position: 1
slug: /accelerate_question_answering
---

View File

@ -42,9 +42,13 @@ You start an AI conversation by creating an assistant.
- **Rerank model** sets the reranker model to use. It is left empty by default.
- If **Rerank model** is left empty, the hybrid score system uses keyword similarity and vector similarity, and the default weight assigned to the vector similarity component is 1-0.7=0.3.
- If **Rerank model** is selected, the hybrid score system uses keyword similarity and reranker score, and the default weight assigned to the reranker score is 1-0.7=0.3.
- **Cross-language search**: Optional
Select one or more target languages from the dropdown menu. The systems default chat model will then translate your query into the selected target language(s). This translation ensures accurate semantic matching across languages, allowing you to retrieve relevant results regardless of language differences.
- When selecting target languages, please ensure that these languages are present in the knowledge base to guarantee an effective search.
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
- If you are uncertain about the logic behind **Variable**, leave it *as-is*.
- As of v0.18.0, if you add custom variables here, the only way you can pass in their values is to call:
- As of v0.19.0, if you add custom variables here, the only way you can pass in their values is to call:
- HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or
- Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant).

View File

@ -0,0 +1,8 @@
{
"label": "Best practices",
"position": 11,
"link": {
"type": "generated-index",
"description": "Best practices on configuring a knowledge base."
}
}

View File

@ -1,5 +1,5 @@
---
sidebar_position: 9
sidebar_position: 1
slug: /accelerate_doc_indexing
---

View File

@ -22,41 +22,41 @@ _Each time a knowledge base is created, a folder with the same name is generated
## Configure knowledge base
The following screenshot shows the configuration page of a knowledge base. A proper configuration of your knowledge base is crucial for future AI chats. For example, choosing the wrong embedding model or chunk method would cause unexpected semantic loss or mismatched answers in chats.
The following screenshot shows the configuration page of a knowledge base. A proper configuration of your knowledge base is crucial for future AI chats. For example, choosing the wrong embedding model or chunking method would cause unexpected semantic loss or mismatched answers in chats.
![knowledge base configuration](https://github.com/infiniflow/ragflow/assets/93570324/384c671a-8b9c-468c-b1c9-1401128a9b65)
This section covers the following topics:
- Select chunk method
- Select chunking method
- Select embedding model
- Upload file
- Parse file
- Intervene with file parsing results
- Run retrieval testing
### Select chunk method
### Select chunking method
RAGFlow offers multiple chunking template to facilitate chunking files of different layouts and ensure semantic integrity. In **Chunk method**, you can choose the default template that suits the layouts and formats of your files. The following table shows the descriptions and the compatible file formats of each supported chunk template:
RAGFlow offers multiple chunking template to facilitate chunking files of different layouts and ensure semantic integrity. In **Chunking method**, you can choose the default template that suits the layouts and formats of your files. The following table shows the descriptions and the compatible file formats of each supported chunk template:
| **Template** | Description | File format |
|--------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| General | Files are consecutively chunked based on a preset chunk token number. | DOCX, XLSX, XLS (Excel97~2003), PPT, PDF, TXT, JPEG, JPG, PNG, TIF, GIF, CSV, JSON, EML, HTML |
| Q&A | | XLSX, XLS (Excel97~2003), CSV/TXT |
| General | Files are consecutively chunked based on a preset chunk token number. | DOCX, XLSX, XLS (Excel 97-2003), PPT, PDF, TXT, JPEG, JPG, PNG, TIF, GIF, CSV, JSON, EML, HTML |
| Q&A | | XLSX, XLS (Excel 97-2003), CSV/TXT |
| Resume | Enterprise edition only. You can also try it out on demo.ragflow.io. | DOCX, PDF, TXT |
| Manual | | PDF |
| Table | | XLSX, XLS (Excel97~2003), CSV/TXT |
| Table | | XLSX, XLS (Excel 97-2003), CSV/TXT |
| Paper | | PDF |
| Book | | DOCX, PDF, TXT |
| Laws | | DOCX, PDF, TXT |
| Presentation | | PDF, PPTX |
| Picture | | JPEG, JPG, PNG, TIF, GIF |
| One | Each document is chunked in its entirety (as one). | DOCX, XLSX, XLS (Excel97~2003), PDF, TXT |
| One | Each document is chunked in its entirety (as one). | DOCX, XLSX, XLS (Excel 97-2003), PDF, TXT |
| Tag | The knowledge base functions as a tag set for the others. | XLSX, CSV/TXT |
You can also change a file's chunk method on the **Datasets** page.
You can also change a file's chunking method on the **Datasets** page.
![change chunk method](https://github.com/infiniflow/ragflow/assets/93570324/ac116353-2793-42b2-b181-65e7082bed42)
![change chunking method](https://github.com/infiniflow/ragflow/assets/93570324/ac116353-2793-42b2-b181-65e7082bed42)
### Select embedding model
@ -67,6 +67,10 @@ The following embedding models can be deployed locally:
- BAAI/bge-large-zh-v1.5
- maidalun1020/bce-embedding-base_v1
:::danger IMPORTANT
Please note these two embedding models support both English and Chinese. If your knowledge base contains other languages, the performance may be COMPROMISED.
:::
### Upload file
- RAGFlow's **File Management** allows you to link a file to multiple knowledge bases, in which case each target knowledge base holds a reference to the file.
@ -76,13 +80,13 @@ While uploading files directly to a knowledge base seems more convenient, we *hi
### Parse file
File parsing is a crucial topic in knowledge base configuration. The meaning of file parsing in RAGFlow is twofold: chunking files based on file layout and building embedding and full-text (keyword) indexes on these chunks. After having selected the chunk method and embedding model, you can start parsing a file:
File parsing is a crucial topic in knowledge base configuration. The meaning of file parsing in RAGFlow is twofold: chunking files based on file layout and building embedding and full-text (keyword) indexes on these chunks. After having selected the chunking method and embedding model, you can start parsing a file:
![parse file](https://github.com/infiniflow/ragflow/assets/93570324/5311f166-6426-447f-aa1f-bd488f1cfc7b)
- Click the play button next to **UNSTART** to start file parsing.
- Click the red-cross icon and then refresh, if your file parsing stalls for a long time.
- As shown above, RAGFlow allows you to use a different chunk method for a particular file, offering flexibility beyond the default method.
- As shown above, RAGFlow allows you to use a different chunking method for a particular file, offering flexibility beyond the default method.
- As shown above, RAGFlow allows you to enable or disable individual files, offering finer control over knowledge base-based AI chats.
### Intervene with file parsing results
@ -124,7 +128,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
## Search for knowledge base
As of RAGFlow v0.18.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
As of RAGFlow v0.19.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)

View File

@ -9,7 +9,7 @@ Generate a knowledge graph for your knowledge base.
---
To enhance multi-hop question-answering, RAGFlow adds a knowledge graph construction step between data extraction and indexing, as illustrated below. This step creates additional chunks from existing ones generated by your specified chunk method.
To enhance multi-hop question-answering, RAGFlow adds a knowledge graph construction step between data extraction and indexing, as illustrated below. This step creates additional chunks from existing ones generated by your specified chunking method.
![Image](https://github.com/user-attachments/assets/1ec21d8e-f255-4d65-9918-69b72dfa142b)
@ -85,8 +85,12 @@ Yes, you can. Just one graph is generated per knowledge base. The smaller graphs
### Does the knowledge graph automatically update when I remove a related file?
Nope. The knowledge graph does *not* automatically update *until* a newly uploaded graph is parsed.
Nope. The knowledge graph does *not* automatically update *until* a newly uploaded document is parsed.
### How to remove a generated knowledge graph?
To remove the generated knowledge graph, delete all related files in your knowledge base. Although the **Knowledge graph** entry will still be visible, the graph has actually been deleted.
To remove the generated knowledge graph, delete all related files in your knowledge base. Although the **Knowledge graph** entry will still be visible, the graph has actually been deleted.
### Where is the created knowledge graph stored?
All chunks of the created knowledge graph are stored in RAGFlow's document engine: either Elasticsearch or [Infinity](https://github.com/infiniflow/infinity).

View File

@ -0,0 +1,42 @@
---
sidebar_position: 4
slug: /enable_excel2html
---
# Enable Excel2HTML
Convert complex Excel spreadsheets into HTML tables.
---
When using the General chunking method, you can enable the **Excel to HTML** toggle to convert spreadsheet files into HTML tables. If it is disabled, spreadsheet tables will be represented as key-value pairs. For complex tables that cannot be simply represented this way, you must enable this feature.
:::caution WARNING
The feature is disabled by default. If your knowledge base contains spreadsheets with complex tables and you do not enable this feature, RAGFlow will not throw an error but your tables are likely to be garbled.
:::
## Scenarios
Works with complex tables that cannot be represented as key-value pairs. Examples include spreadsheet tables with multiple columns, tables with merged cells, or multiple tables within one sheet. In such cases, consider converting these spreadsheet tables into HTML tables.
## Considerations
- The Excel2HTML feature applies only to spreadsheet files (XLSX or XLS (Excel 97-2003)).
- This feature is associated with the General chunking method. In other words, it is available *only when* you select the General chunking method.
- When this feature is enabled, spreadsheet tables with more than 12 rows will be split into chunks of 12 rows each.
## Procedure
1. On your knowledge base's **Configuration** page, select **General** as the chunking method.
_The **Excel to HTML** toggle appears._
2. Enable **Excel to HTML** if your knowledge base contains complex spreadsheet tables that cannot be represented as key-value pairs.
3. Leave **Excel to HTML** disabled if your knowledge base has no spreadsheet tables or if its spreadsheet tables can be represented as key-value pairs.
4. If question-answering regarding complex tables is unsatisfactory, check if **Excel to HTML** is enabled.
## Frequently asked questions
### Should I enable this feature for PDFs with complex tables?
Nope. This feature applies to spreadsheet files only. Enabling **Excel to HTML** does not affect your PDFs.

View File

@ -21,7 +21,7 @@ Enabling RAPTOR requires significant memory, computational resources, and tokens
## Basic principles
After the original documents are divided into chunks, the chunks are clustered by semantic similarity rather than by their original order in the text. Clusters are then summarized into higher-level chunks by your system's default chat model. This process is applied recursively, forming a tree structure with various levels of summarization from the bottom up. As illustrated in the figure below, the initial chunks form the leaf nodes (shown in blue) and are progressively summarized into a root node (shown in orange).
After the original documents are divided into chunks, the chunks are clustered by semantic similarity rather than by their original order in the text. Clusters are then summarized into higher-level chunks by your system's default chat model. This process is applied recursively, forming a tree structure with various levels of summarization from the bottom up. As illustrated in the figure below, the initial chunks form the leaf nodes (shown in blue) and are recursively summarized into a root node (shown in orange).
![raptor](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/clustering_and_summarizing.jpg)
@ -67,8 +67,8 @@ It defaults to 0.1, with a maximum limit of 1. A higher **Threshold** means fewe
### Max cluster
The maximum number of clusters to create. Defaults to 108, with a maximum limit of 1024.
The maximum number of clusters to create. Defaults to 64, with a maximum limit of 1024.
### Random seed
A random seed. Click the **+** button to change the seed value.
A random seed. Click **+** to change the seed value.

View File

@ -11,7 +11,7 @@ Conduct a retrieval test on your knowledge base to check whether the intended ch
After your files are uploaded and parsed, it is recommended that you run a retrieval test before proceeding with the chat assistant configuration. Running a retrieval test is *not* an unnecessary or superfluous step at all! Just like fine-tuning a precision instrument, RAGFlow requires careful tuning to deliver optimal question answering performance. Your knowledge base settings, chat assistant configurations, and the specified large and small models can all significantly impact the final results. Running a retrieval test verifies whether the intended chunks can be recovered, allowing you to quickly identify areas for improvement or pinpoint any issue that needs addressing. For instance, when debugging your question answering system, if you know that the correct chunks can be retrieved, you can focus your efforts elsewhere. For example, in issue [#5627](https://github.com/infiniflow/ragflow/issues/5627), the problem was found to be due to the LLM's limitations.
During a retrieval test, chunks created from your specified chunk method are retrieved using a hybrid search. This search combines weighted keyword similarity with either weighted vector cosine similarity or a weighted reranking score, depending on your settings:
During a retrieval test, chunks created from your specified chunking method are retrieved using a hybrid search. This search combines weighted keyword similarity with either weighted vector cosine similarity or a weighted reranking score, depending on your settings:
- If no rerank model is selected, weighted keyword similarity will be combined with weighted vector cosine similarity.
- If a rerank model is selected, weighted keyword similarity will be combined with weighted vector reranking score.
@ -60,6 +60,15 @@ The switch is disabled by default. When enabled, RAGFlow performs the following
Using a knowledge graph in a retrieval test will significantly increase the time to receive a response.
:::
### Cross-language search
To perform a cross-language search, select one or more target languages from the dropdown menu. The systems default chat model will then translate your query entered in the Test text field into the selected target language(s). This translation ensures accurate semantic matching across languages, allowing you to retrieve relevant results regardless of language differences.
:::tip NOTE
- When selecting target languages, please ensure that these languages are present in the knowledge base to guarantee an effective search.
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
:::
### Test text
This field is where you put in your testing query.

View File

@ -32,7 +32,7 @@ The page rank value must be an integer. Range: [0,100]
If you set the page rank value to a non-integer, say 1.7, it will be rounded down to the nearest integer, which in this case is 1.
:::
## Mechanism
## Scoring mechanism
If you configure a chat assistant's **similarity threshold** to 0.2, only chunks with a hybrid score greater than 0.2 x 100 = 20 will be retrieved and sent to the chat model for content generation. This initial filtering step is crucial for narrowing down relevant information.

Some files were not shown because too many files have changed in this diff Show More