Compare commits

...

197 Commits

Author SHA1 Message Date
d6836444c9 DOC: for release. (#5472)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update

---------

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
2025-03-02 18:47:06 +08:00
3b30799b7e minor (#5497)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-02-28 19:36:50 +08:00
e61da33672 Moved agent components into the agent folder (#5496)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-28 19:27:57 +08:00
6a71314d70 Feat: Add the Experimental text to the option of the large model of the Image2text type of LayoutRecognizeItem (#5495)
### What problem does this PR solve?
Feat: Add the Experimental text to the option of the large model of the
Image2text type of LayoutRecognizeItem

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 18:44:04 +08:00
06e0c7d1a9 Feat: multiline text input for chat (#5317)
### What problem does this PR solve?

Improves the chat interface by adding a multiline chat area that grows
when multiple lines exists.

Some images:

* Empty:
<img width="1334" alt="image"
src="https://github.com/user-attachments/assets/e8a68b46-def9-45af-b5b1-db0f0b67e6d8"
/>

* With multiple lines and documents:
<img width="1070" alt="image"
src="https://github.com/user-attachments/assets/ff976c5c-08fa-492f-9fc0-17512c95f9f2"
/>


### Type of change
- [X] New Feature (non-breaking change which adds functionality)
2025-02-28 18:05:50 +08:00
7600ebd263 Feat: Hide the suffix of the large model name. #5433 (#5494)
### What problem does this PR solve?

Feat: Hide the suffix of the large model name. #5433

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 18:02:33 +08:00
21943ce0e2 Refine error message while embedding model error, (#5490)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-28 17:52:38 +08:00
aa313e112a Feat: Wrap MaxTokenNumber with DatasetConfigurationContainer. #5467 (#5491)
### What problem does this PR solve?

Feat: Wrap MaxTokenNumber with DatasetConfigurationContainer. #5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 17:52:18 +08:00
2c7428e2ee Feat: Put the configuration of different parsing methods into separate components. #5467 (#5487)
### What problem does this PR solve?

Feat: Put the configuration of different parsing methods into separate
components. #5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 16:54:04 +08:00
014f2ef900 Fix typo and error (#5479)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-02-28 16:09:40 +08:00
b418ce5643 Fix table parser issue. (#5482)
### What problem does this PR solve?

#1475
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 16:09:12 +08:00
fe1c48178e Refa: better gitignore (#5473)
### What problem does this PR solve?

when develop ragflow local there would be a hash file generate that is
kind of not good for develop
this patch add a regex to `.gitignore` for better developing 

### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 15:07:39 +08:00
35f13e882e Fix typos (#5476)
### What problem does this PR solve?

Fix lots of typos.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-02-28 15:01:54 +08:00
85924e898e Fix: enhance aliyun oss access with adding prefix path (#5475)
### What problem does this PR solve?

Enhance aliyun oss access with adding prefix path.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 15:00:00 +08:00
622b72db4b Fix: add ctrl+c signal for better exit (#5469)
### What problem does this PR solve?

This patch add signal for ctrl + c that can exit the code friendly
cause code base use thread daemon can not exit friendly for being
started.

how to reproduce
1. docker-compose -f docker/docker-compose-base.yml up
2. other window `bash docker/launch_backend_service.sh`
3. stop 1 first
4. try to stop 2 then two thread can not exit which must use `kill pid`

This patch fix it 
and should fix most the related issues in the `issues`

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 14:52:40 +08:00
a0a7b46cff DOCS: amend docker image building page and more hints for mac users (#5461)
### What problem does this PR solve?

Amend docker image building page and more hints for mac users

### Type of change

- [x] Documentation Update
2025-02-28 14:46:22 +08:00
37aacb3960 Refa: drop useless fasttext (#5470)
### What problem does this PR solve?

This patch drop useless fastext which is seems useless in the code base 
and its very kind of hard install
should close #4498


### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 14:30:56 +08:00
79bc9d97c9 Refa: better service conf (#5471)
### What problem does this PR solve?

This patch fix most of the issues like #4853 #5038 and so on

the root reason is that we need to add the hostname to the `/etc/hosts`
which is not wrote in main README
and the code side read `conf/service_conf.yaml` as settings 
and its hard for developers to debug, this patch fix it, or maybe can
discuss better solution here
 
### Type of change

- [x] Refactoring

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-28 14:28:00 +08:00
f150687dbc Fix: language selection display on the profile settings page (#5459)
### What problem does this PR solve?

Improve the language selection display on the profile settings page.

| before | after |
| --- | --- |
|![截屏2025-02-28 上午8 46
54](https://github.com/user-attachments/assets/0924275c-99d4-4ddd-8935-693286c0d07f)|![CleanShot
2025-02-28 at 09 58
21](https://github.com/user-attachments/assets/a96c9d73-8e16-40a8-aa80-d31fecc18edf)|

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 11:20:52 +08:00
b2a5482d2c Feat: Modify the parsing method string to an enumeration type. #5467 (#5468)
### What problem does this PR solve?

Feat: Modify the parsing method string to an enumeration type. #5467

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-28 11:13:56 +08:00
5fdfb8d465 Fix: rm think if stream is Flase. (#5458)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-28 10:05:18 +08:00
8b2c04abc4 Feat: If the user is not logged in, jump to the login page by refreshing. (#5451)
### What problem does this PR solve?

Feat: If the user is not logged in, jump to the login page by
refreshing.
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-27 18:48:53 +08:00
83d0949498 Fix: fix special delimiter parsing issue (#5448)
### What problem does this PR solve?

Fix special delimiter parsing issue #5382 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 18:33:55 +08:00
244cf49ba4 Feat: Use shadcn-ui to build GenerateForm. #3221 (#5449)
### What problem does this PR solve?

Feat: Use shadcn-ui to build GenerateForm. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-27 18:13:41 +08:00
651422127c Feat: Accessing Alibaba Cloud OSS with Amazon S3 SDK (#5438)
Accessing Alibaba Cloud OSS with Amazon S3 SDK
2025-02-27 17:02:42 +08:00
11de7599e5 Feat: add data type invoke (#5126)
### What problem does this PR solve?
```
Invoke agent
To be able to interact dynamically with the API, there is a customizable Data Type JSON or FormData, the default is JSON 
```

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-27 16:15:33 +08:00
7a6e70d6b3 Feat: Wrap DynamicVariableForm with Collapsible. #3221 (#5440)
### What problem does this PR solve?

Feat: Wrap DynamicVariableForm with Collapsible. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-27 16:09:12 +08:00
230865c4f7 Fix: stream post body (#5434)
### What problem does this PR solve?

Fix stream post body

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 16:08:54 +08:00
4c9a3e918f Fix: add image2text issue. (#5431)
### What problem does this PR solve?

#5356

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 14:06:49 +08:00
5beb022ee1 Fix: string format error. (#5422)
### What problem does this PR solve?

#5404

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 12:01:46 +08:00
170abf9b7f Fix: drop useless ABC method (#5408)
### What problem does this PR solve?

seems  no need use ABC here, there's no `abstractmethod` here

### Type of change

- [x] Performance Improvement

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-27 11:03:21 +08:00
afaa7144a5 Fix: issue of no id for /datasets/<dataset_id>/documents (#5420)
### What problem does this PR solve?

#5401

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-27 10:39:34 +08:00
eaa1adb3b2 ci: remove may expand into attacker-controllable code (#5407)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

This patch remove dangerous code that `may expand into
attacker-controllable code`

more:

```cli
error[template-injection]: code injection via template expansion
  --> /Users/hyi/prs/ragflow/.github/workflows/tests.yml:35:9
   |
35 |         - name: Show PR labels
   |           ^^^^^^^^^^^^^^^^^^^^ this step
36 |           run: |
   |  _________^
37 | |           echo "Workflow triggered by ${{ github.event_name }}"
38 | |           if [[ ${{ github.event_name }} == 'pull_request' ]]; then
39 | |             echo "PR labels: ${{ join(github.event.pull_request.labels.*.name, ', ') }}"
40 | |           fi
   | |____________^ github.event.pull_request.labels.*.name may expand into attacker-controllable code
   |
   = note: audit confidence → High

```

using zizmor to check 
https://woodruffw.github.io/zizmor/

but this patch do not fix them all, just remove high audit confidence →
High

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [x] Other (please describe):

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
2025-02-27 10:20:04 +08:00
fa76974e24 Fix issue of ask API. (#5400)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 19:45:22 +08:00
f372bd8809 Miscelleneous editorial updates (#5390)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-02-26 19:03:50 +08:00
0284248c93 Fix: correct wrong vLLM rerank model (#5399)
### What problem does this PR solve?

Correct wrong vLLM rerank model #4316 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 18:59:36 +08:00
d9dd1171a3 Feat: Support vLLM #4316 (#5395)
### What problem does this PR solve?
Feat: Support vLLM #4316

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 18:33:43 +08:00
fefea3a2a5 Fixed OpenAI compatibility stream [DONE] (#5389)
Fixed OpenAI compatibility stream [DONE]



- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-26 17:55:12 +08:00
0e920a91dd FIX: correct typo (#5387)
### What problem does this PR solve?

Correct typo in supported_models file

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 17:21:09 +08:00
63e3398f49 Feat: Add DualRangeSlider #3221 (#5386)
### What problem does this PR solve?

Feat: Add DualRangeSlider #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 17:02:42 +08:00
cdcaae17c6 Feat: add VLLM (#5380)
### What problem does this PR solve?

Read to add VLMM.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 16:04:53 +08:00
96e9d50060 Let parallism of RAPTOR controlable. (#5379)
### What problem does this PR solve?

#4874
### Type of change

- [x] Refactoring
2025-02-26 15:58:06 +08:00
k
5cab6c4ccb Fix:HTTP API -> Stop parsing documents(AttributeError: ‘list‘ object … (#5375)
…has no attribute ‘id‘)

### What problem does this PR solve?

No PR

![image](https://github.com/user-attachments/assets/988d31bc-6551-4bb8-846c-cbbc1883d804)


![image](https://github.com/user-attachments/assets/8b09681b-1239-4ed9-8bc3-11436c5e90bc)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-02-26 15:57:50 +08:00
b3b341173f DOCS: add OpenAI-compatible http and python api reference (#5374)
### What problem does this PR solve?

Add OpenAI-compatible http and python api reference

### Type of change

- [x] Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-02-26 15:52:26 +08:00
a9e4695b74 Fix:validate knowledge base association before document upload (#5373)
### What problem does this PR solve?

fix this bug: https://github.com/infiniflow/ragflow/issues/5368

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-26 15:47:34 +08:00
4f40f685d9 Code refactor (#5371)
### What problem does this PR solve?

#5173

### Type of change

- [x] Refactoring
2025-02-26 15:40:52 +08:00
ffb4cda475 Run keyword_extraction, question_proposal, content_tagging in thread pool (#5376)
### What problem does this PR solve?

Run keyword_extraction, question_proposal, content_tagging in threads

### Type of change

- [x] Performance Improvement
2025-02-26 15:21:14 +08:00
5859a3df72 Feat: Add FormSheet. #3221 (#5377)
### What problem does this PR solve?

Feat: Add FormSheet. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 15:03:09 +08:00
5c6a7cb4b8 Added OpenAI-like completion api (#5351)
### What problem does this PR solve?

Added OpenAI-like completion api, related to #4672, #4705 

This function allows users to interact with a model to get responses
based on a series of messages.
If `stream` is set to True, the response will be streamed in chunks,
mimicking the OpenAI-style API.

#### Example usage:

```bash
curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer $RAGFLOW_API_KEY" \
    -d '{
        "model": "model",
        "messages": [{"role": "user", "content": "Say this is a test!"}],
        "stream": true
    }'
```

Alternatively, you can use Python's `OpenAI` client:

```python
from openai import OpenAI

model = "model"
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")

completion = client.chat.completions.create(
    model=model,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who you are?"},
        {"role": "assistant", "content": "I am an AI assistant named..."},
        {"role": "user", "content": "Can you tell me how to install neovim"},
    ],
    stream=True
)

stream = True
if stream:
    for chunk in completion:
        print(chunk)
else:
    print(completion.choices[0].message.content)
```
### Type of change
- [x] New Feature (non-breaking change which adds functionality)

### Related Issues
Related to #4672, #4705
2025-02-26 11:37:29 +08:00
4e2afcd3b8 Fix FlagRerank max_length issue. (#5366)
### What problem does this PR solve?

#5352

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 11:01:13 +08:00
11e6d84d46 Fix: 'Chunk not found!' error in team-sharing knowledge base. (#5361)
### What problem does this PR solve?

As issue #3268 mentioned, "Chun not found!" exception will occur,
especially during the teamwork of knowledge bases.

### The reason of this bug

"tenants" are the people on current_user's team, including the team
owner itself. The old one only checks the first "tenant", tenants[0],
which will cause error when anyone editing the chunk that is not in
tenants[0]'s knowledge base.

My modification won't introduce new errors while iterate all the tenant
then retrieve knowledge bases of each.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-26 10:24:35 +08:00
53b9e7b52f Add tavily as web searh tool. (#5349)
### What problem does this PR solve?

#5198

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 10:21:04 +08:00
e5e9ca0015 Feat: Add Tavily Api Key to chat configuration modal. #5198 (#5347)
### What problem does this PR solve?

Feat: Add Tavily Api Key to chat configuration modal. #5198

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-26 10:20:40 +08:00
150ab9c6a4 Fix: Prevent message sending during IME composition and block new submissions while waiting for a response (#5331)
### What problem does this PR solve?

This pull request addresses an issue where the "Enter" key would send
the message prematurely while using Input Method Editor (IME) for text
composition. This problem occurs when users are typing with a non-Latin
input method, such as Chinese(Zhuyin), and press "Enter" to confirm
their selection, which unintentionally triggers message submission. Also
fixed the issue of blocking new submissions while waiting for a response

Before:


https://github.com/user-attachments/assets/233f3ac9-4b4b-4424-b4ab-ea2e31bb0663

After:


https://github.com/user-attachments/assets/f1c01af6-d1d7-4a79-9e81-5bdf3c0b3529

Block new submissions while waiting for a response:



https://github.com/user-attachments/assets/10a45b5f-44b9-4e36-9342-b1bbb4096312


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 18:49:08 +08:00
f789463982 Fix: Due to the reference to tailwindcss, the height attribute setting of the image is invalid, resulting in an uneven model list #5339 (#5340)
### What problem does this PR solve?

Fix: Due to the reference to tailwindcss, the height attribute setting
of the image is invalid, resulting in an uneven model list #5339

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 17:52:31 +08:00
955801db2e Resolve super class invokation error. (#5337)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 17:42:29 +08:00
93b2e80eb8 Feat: Add DynamicVariableForm with shadcn-ui. #3221 (#5336)
### What problem does this PR solve?

Feat: Add DynamicVariableForm with shadcn-ui. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-25 16:57:46 +08:00
1a41b92f77 More robust community report. (#5328)
### What problem does this PR solve?

#5289
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 12:58:10 +08:00
58a8f1f1b0 Fix release.yml (#5327)
### What problem does this PR solve?

Fix release.yml

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 12:41:34 +08:00
daddfc9e1b Remove dup gb2312, solve currupt error. (#5326)
### What problem does this PR solve?

#5252 
#5325

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 12:22:37 +08:00
ecf5f6976f Make node merging parallel. (#5324)
### What problem does this PR solve?

#5314

### Type of change

- [x] Performance Improvement
2025-02-25 12:02:44 +08:00
e2448fb6dd Fix: type-script new change (#5159)
### What problem does this PR solve?
```
fixed type-script on MessageInput change to TextArea
```
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-25 11:42:31 +08:00
9c9f2dbe3f Feat: Add FormDrawer to agent page. #3221 (#5323)
### What problem does this PR solve?

Feat: Add FormDrawer to agent page. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-25 11:32:01 +08:00
b3d579e2c1 Refine prompt of agentic search. (#5312)
### What problem does this PR solve?

#5173

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-25 09:21:52 +08:00
eb72d598b1 Replaced pypi.tuna.tsinghua.edu.cn with mirrors.aliyun.com/pypi (#5309)
### What problem does this PR solve?

Replaced pypi.tuna.tsinghua.edu.cn with mirrors.aliyun.com/pypi.
I notice aliyun.com sometimes is much faster than tsinghua.edu.

### Type of change

- [x] Refactoring
2025-02-24 20:15:40 +08:00
033a4cf21e Feat: Upload agent file #3221 (#5311)
### What problem does this PR solve?

Feat: Upload agent file #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 19:30:33 +08:00
fda9b58ab7 Feat: Render agent details #3221 (#5307)
### What problem does this PR solve?

Feat: Render agent details #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 17:19:06 +08:00
ca865df87f Feat: Render operator menu by category. #3221 (#5302)
### What problem does this PR solve?
Feat: Render operator menu by category. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 16:51:44 +08:00
f9f75aa119 Added a file size limit (#5301)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-24 16:38:11 +08:00
db42d0e0ae Optimize ocr (#5297)
### What problem does this PR solve?

Introduced OCR.recognize_batch

### Type of change

- [x] Performance Improvement
2025-02-24 16:21:55 +08:00
df3d0f61bd Fix base url missing for deepseek from Tongyi. (#5294)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-24 15:43:32 +08:00
c6bc69cbc5 Feat: Add AgentSidebar #3221 (#5296)
### What problem does this PR solve?

Feat: Add AgentSidebar #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 15:43:20 +08:00
8c9df482ab Added a prerequisite for ARM platforms (#5295)
### What problem does this PR solve?

#5114 

### Type of change


- [x] Documentation Update
2025-02-24 15:15:11 +08:00
1137b04154 Feat: Disable Max_token by default #5283 (#5290)
### What problem does this PR solve?

Feat: Disable Max_token by default #5283

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 14:22:15 +08:00
ec96426c00 Tongyi adapts deepseek. (#5285)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 14:04:25 +08:00
4d22daefa7 Feat: Add PageHeader to DatasetWrapper #3221 (#5284)
### What problem does this PR solve?

Feat: Add PageHeader to DatasetWrapper #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-24 13:50:21 +08:00
bcc92e04c9 Remove <think> content for Generate if it's not stream output. (#5281)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-24 13:44:11 +08:00
9aa222f738 Let list_chat go without kb checking. (#5280)
### What problem does this PR solve?

#5278 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-24 13:21:05 +08:00
605cfdb8dc Refine error message for re-rank model. (#5278)
### What problem does this PR solve?

#5261

### Type of change

- [x] Refactoring
2025-02-24 13:01:34 +08:00
041d72b755 Refine the error message. (#5275)
### What problem does this PR solve?

#5265

### Type of change

- [x] Refactoring
2025-02-24 12:42:52 +08:00
569e40544d Refactor rerank model with dynamic batch processing and memory manage… (#5273)
…ment

### What problem does this PR solve?
Issue:https://github.com/infiniflow/ragflow/issues/5262
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-24 11:32:08 +08:00
3d605a23fe Feat: add partition of file uploads (#5248)
### What problem does this PR solve?

Partitions the upload of documents in parts of 20 to avoid the size
limit error. Allows uploading 100s of documents on a single interaction.

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-02-24 11:12:12 +08:00
4f2816c01c Add support to boto3 default connection (#5246)
### What problem does this PR solve?
 
This pull request includes changes to the initialization logic of the
`ChatModel` and `EmbeddingModel` classes to enhance the handling of AWS
credentials.

Use cases:
- Use env variables for credentials instead of managing them on the DB 
- Easy connection when deploying on an AWS machine

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2025-02-24 11:01:14 +08:00
a0b461a18e Add configuration to choose default llm models (#5245)
### What problem does this PR solve?

This pull request includes changes to the `api/settings.py` and
`docker/service_conf.yaml.template` files to add support for default
models in the LLM configuration (specially for LIGHTEN builds). The most
important changes include adding default model configurations and
updating the initialization settings to use these defaults.

For example:
With this configuration Bedrock will be enable by default with claude
and titan embeddings.

```
user_default_llm:
  factory: 'Bedrock'
  api_key: '{}' 
  base_url: ''
  default_models:
    chat_model: 'anthropic.claude-3-5-sonnet-20240620-v1:0'
    embedding_model: 'amazon.titan-embed-text-v2:0'
    rerank_model: ''
    asr_model: ''
    image2text_model: ''
```


### Type of change

- [X] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-24 10:13:39 +08:00
7ce675030b Support downloading models from ModelScope Community. (#5073)
This PR supports downloading models from ModelScope. The main
modifications are as follows:
-New Feature (non-breaking change which adds functionality)
-Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-24 10:12:20 +08:00
217caecfda Added a guide on running a retrieval test, with and without knowledge graph (#5200)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-21 19:36:20 +08:00
ef8847eda7 Double check error of adding llm. (#5237)
### What problem does this PR solve?

#5227

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 19:09:49 +08:00
d78010c376 Fixed similarity on infinity (#5236)
### What problem does this PR solve?

Fixed similarity on infinity

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 18:50:54 +08:00
3444cb15e3 Refine search query. (#5235)
### What problem does this PR solve?

#5173
#5214

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 18:32:32 +08:00
0151d42156 Reuse loaded modules if possible (#5231)
### What problem does this PR solve?

Reuse loaded modules if possible

### Type of change

- [x] Refactoring
2025-02-21 17:21:01 +08:00
392f28882f Feat: Add RAGFlowSelect component #3221 (#5228)
### What problem does this PR solve?

Feat: Add RAGFlowSelect component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-21 16:37:50 +08:00
cdb3e6434a Fix empty question issue. (#5225)
### What problem does this PR solve?

#5241

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 15:47:39 +08:00
bf5f6ec262 Fix spelling errors (#5224)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 15:47:27 +08:00
1a755e75c5 Remove v1 (#5220)
### What problem does this PR solve?

#5201

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 15:15:38 +08:00
46ff897107 Feat: Chat without KB. #5216 (#5217)
### What problem does this PR solve?
Feat: Chat without KB. #5216

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-21 12:24:13 +08:00
f5d63bb7df Support chat solo. (#5218)
### What problem does this PR solve?

#5216

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-21 12:24:02 +08:00
c54ec09519 Fix session.ask return generator bug when stream=False on python sdk (#5209)
add non-stream mode support to session.ask function

### What problem does this PR solve?

same as title, I do not know why the stream=False is not work on the
server side also, when stream=False, the response in the
session._ask_chat is a fully connnected SSE string.

This is a quick fix on the sdk side to make the response format align
with API docs

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-21 11:50:08 +08:00
7b3d700d5f Apply agentic searching. (#5196)
### What problem does this PR solve?

#5173

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 17:41:01 +08:00
744ff55c62 Feat: Add AgentTemplates component. #3221 (#5194)
### What problem does this PR solve?

Feat: Add AgentTemplates component. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 17:02:42 +08:00
c326f14fed Optimized Recognizer.sort_X_firstly and Recognizer.sort_Y_firstly (#5182)
### What problem does this PR solve?

Optimized Recognizer.sort_X_firstly and Recognizer.sort_Y_firstly

### Type of change

- [x] Performance Improvement
2025-02-20 15:41:12 +08:00
07ddb8fcff Feat: Add SearchPage component. #3221 (#5184)
### What problem does this PR solve?

Feat: Add SearchPage component. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 15:37:53 +08:00
84bcd8b3bc Feat: Add agent page. #3221 (#5179)
### What problem does this PR solve?

Feat: Add agent page. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 15:02:53 +08:00
f52970b038 Feat: Add reasoning item to chat configuration modal #5173 (#5177)
### What problem does this PR solve?

Feat: Add reasoning item to chat configuration modal #5173

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 14:05:52 +08:00
39b96849a9 Fix window size issue of ES. (#5175)
### What problem does this PR solve?

#5152

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-20 12:54:29 +08:00
f298e55ded Fix: Normalize embedding model ID comparison across datasets (#5169)
Modify embedding model ID comparison to remove vendor suffixes, ensuring
consistent model identification when working with multiple knowledge
bases. This change affects dialog creation, chat operations, and
document retrieval test functions.

### What problem does this PR solve?

resolve this bug: https://github.com/infiniflow/ragflow/issues/5166

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-20 12:40:59 +08:00
ed943b1b5b Feat: Show formulas when answering, show reference labels in style, remove cursor flashing effect. #5173 (#5174)
### What problem does this PR solve?

Feat: Show formulas when answering, show reference labels in style,
remove cursor flashing effect. #5173

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-20 12:19:53 +08:00
0c6d787f92 Iframe should support input variables (#5156)
### What problem does this PR solve?

Right now we cannot embed a chat in website when it has variables in the
begin component.
This PR tries to read the variables values from the query string via a
data_ prefixed variable.

#5016 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: gstrat88 <gstrat@innews.gr>
2025-02-20 11:52:44 +08:00
a4f9aa2172 Fix: Improve message input handling with Shift+Enter support (#5129)
### What problem does this PR solve?

just resolve issue: [Improve message input handling with Shift+Enter
support](https://github.com/infiniflow/ragflow/issues/5116)
### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-02-19 19:32:35 +08:00
c432ce6be5 Feat: Add insert variable icon in the header of prompt editor. #4764 (#5142)
### What problem does this PR solve?

Feat: Add insert variable icon in the header of prompt editor. #4764

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-19 19:20:00 +08:00
c5b32b2211 Docs: Add note about docker volume deletion in README files,will be more novice-friendly (#5133)
### What problem does this PR solve?


Docs: Add note about docker volume deletion in README files
refer to this question:
https://github.com/infiniflow/ragflow/issues/5132
### Type of change

- [x] Documentation Update

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-02-19 16:51:33 +08:00
24efa86f26 Feat: Support preview of HTML files #5096 (#5134)
### What problem does this PR solve?

Feat: Support preview of HTML files #5096
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-19 16:28:48 +08:00
38e551cc3d Feat: Allow the Rewrite operator to connect to the Generate operator #1739 (#5128)
### What problem does this PR solve?

Feat: Allow the Rewrite operator to connect to the Generate operator
#1739

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-19 15:47:48 +08:00
ef95f08c48 Remove redandent code. (#5121)
### What problem does this PR solve?

#5107

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 15:46:52 +08:00
3ced290eb5 Feat: Add support for document meta fields update through api (#5120)
### What problem does this PR solve?

add support for update document meta data through  api
### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-19 13:39:31 +08:00
fab0f07379 fix: Ensure that the commands are executed in the correct directory s… (#5089)
…o that all services (including the es and infinity containers) can be
started correctly, and resolve the Failed to resolve 'es01' #4875

### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/4875

### Type of change

- [x] Documentation Update
2025-02-19 13:19:36 +08:00
8525f55ad0 Fix: Option ineffective in Chat API (#5118)
### What problem does this PR solve?

API options like `stream` was ignored when no session_id was provided.

This PR fixes the issue.

Test command and expected result:
```
curl  --request POST \
     --url http://:9222/api/v1/chats/2f2e1d30ee6111efafe211749b004925/completions \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer ragflow-xxx' \
     --data '{
   "question":"Who are you",
   "stream":false
}'
{"code":0,"data":"data:{\"code\": 0, \"message\": \"\", \"data\": {\"answer\": \"Hi! I'm your assistant, what can I do for you?\", \"reference\": {}, \"audio_binary\": null, \"id\": null, \"session_id\": \"82ceb0fcee7111efafe211749b004925\"}}\n\n"}

```



### Type of change

- [*] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 13:18:51 +08:00
e6c024f8bf Fix too many clause while searching. (#5119)
### What problem does this PR solve?

#5100

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 13:18:39 +08:00
c28bc41a96 Fix docx table issue. (#5117)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 12:40:06 +08:00
29a59ed7e2 Fix: Use self.dataStore.indexExist in all_tags method of Dealer (#5108)
### What problem does this PR solve?

This PR fixes an AttributeError in the all_tags method of the Dealer
class. Previously, the method incorrectly called
self.docStoreConn.indexExist instead of self.dataStore.indexExist. Since
self.docStoreConn was never set (and self.dataStore is already
initialized in init), this resulted in an error when attempting to check
if the index exists. This change ensures that the proper connector is
used for the index existence check, thereby resolving the issue._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-19 11:50:57 +08:00
f8b80f3f93 Feat: Write the thinking style in the MarkdownContent layer #4930 (#5091)
### What problem does this PR solve?

Feat: Write the thinking style in the MarkdownContent layer #4930

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 19:34:54 +08:00
189007e44d Fix: PUT method does not work as expected with Invoke component (#5081)
### What problem does this PR solve?
Invoke component can be used to call third party services.
Tried GET/POST/PUT from web UI, and found PUT request failed like this:
(test api: api/v1/chats/<assistant_id>)
 ```
{"code":100,"data":null,"message":"AttributeError("'NoneType' object has
no attribute 'get'")"}
```

Root cause: Invoke PUT with a 'data=args' parameter, which is a form-encoded data, however the default content type setting of request header is application/json. The test api could not deal with such case.

Fix: use the 'json' parameter of reqeusts.put(), same as Invoke POST. Do not use the 'data' parameter.
Another way is to use 'data=json.dumps(args)'.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-18 19:34:22 +08:00
3cffadc7a2 Added an FAQ (#5092)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-02-18 19:29:40 +08:00
18e43831bc Feat: Add ChunkedResultPanel #3221 (#5085)
### What problem does this PR solve?

Feat: Add ChunkedResultPanel #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 17:53:51 +08:00
3356de55ed Fix: Chunk problem tag content cannot be displayed completely. #5076 (#5077)
### What problem does this PR solve?

Fix: Chunk problem tag content cannot be displayed completely. #5076

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-18 15:26:24 +08:00
375e727f9a Feat: Extract the common parts of groupImage2TextOptions and groupOptionsByModelType #5063 (#5074)
### What problem does this PR solve?

Feat: Extract the common parts of groupImage2TextOptions and
groupOptionsByModelType #5063

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 15:13:55 +08:00
a2b8ba472f Feat: Add LanguageAbbreviation to simplify language resource files. #5065 (#5072)
### What problem does this PR solve?

Feat: Add LanguageAbbreviation to simplify language resource files.
#5065

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-18 15:06:53 +08:00
00c7ddbc9b Fix: The max tokens defined by the tenant are not used (#4297) (#2817) (#5066)
### What problem does this PR solve?

Fix: The max tokens defined by the tenant are not used (#4297) (#2817)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-18 13:42:22 +08:00
3e0bc9e36b Added a graphrag guide (#4978)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-18 13:42:06 +08:00
d6ba4bd255 add option Embed into webpage (#5065)
add option Embed into webpage

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-18 13:41:19 +08:00
84b4b38cbb Remove <think> for exeSql component. (#5069)
### What problem does this PR solve?

#5061
#5067

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-18 13:39:37 +08:00
4694604836 Specify img2text model by tag (#5063)
### What problem does this PR solve?

The current design is not well-suited for multimodal models, as each
model can only be configured for a single purpose—either chat or
Img2txt. To work around this limitation, we use model aliases such as
gpt-4o-mini and gpt-4o-mini-2024-07-18.

To fix this, this PR allows specifying the Img2txt model by tag instead
of model_type.

### Type of change
- [x] Refactoring
2025-02-18 11:14:48 +08:00
224c5472c8 update locale vi (#5035)
update locale vi
2025-02-18 10:16:03 +08:00
409310aae9 Update agent session API, to support uploading files while create a new session (#5039)
### What problem does this PR solve?
Update the agent session API "POST /api/v1/agents/{agent_id}/sessions",
to support uploading files while create a new session:
- currently, the API only supports requesting with a json body. If user
wants to upload a doc or image when create session, like what is already
supported on the web client, we need to update the API.
- if upload an image, ragflow will call image2text, and a user_id is
needed for the image2text model. So we need to send user_id in the API
request. As form-data is needed to upload files, not json body, seems we
need to put the user_id in the url as an optional parameter (currently
user_id is an optional in json body).


### Type of change

- [x] Documentation Update
- [x] Other (please describe):
2025-02-18 09:45:40 +08:00
9ff825f39d Ignore exceptions when no index ahead. (#5047)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-02-18 09:09:22 +08:00
7b5d831296 Fix: Starting the source code on Windows, the 'HTTP API' returns 404 (#5042)
Fix: When starting the backend service from source code on Windows, the
"HTTP API" no longer returns 404.
2025-02-17 19:33:49 +08:00
42ee209084 Feat: Replace next-login-bg.svg #3221 (#5046)
### What problem does this PR solve?

Feat: Replace next-login-bg.svg #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-17 19:33:34 +08:00
e4096fbc33 Add another decrypt function. (#5043)
### What problem does this PR solve?



### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-17 18:09:11 +08:00
3aa5c2a699 Ignore exception of empty index. (#5030)
### What problem does this PR solve?

### Type of change


- [x] Refactoring
2025-02-17 15:59:55 +08:00
2ddf278e2d Fix: Cannot distinguish between export and import icons #5025 (#5031)
### What problem does this PR solve?

Fix: Cannot distinguish between export and import icons #5025

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 15:25:34 +08:00
f46448d04c Remove <think> for KG extraction. (#5027)
### What problem does this PR solve?

#4946

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 14:06:06 +08:00
ab17606e79 Rewrite Support specified language or language according to initial question (#4990)
Support specified language or language according to initial question

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-02-17 13:33:43 +08:00
7c90b87715 Fix window size of ES issue. (#5026)
### What problem does this PR solve?

#5015

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 12:48:56 +08:00
d2929e432e Feat: add LLM provider PPIO (#5013)
### What problem does this PR solve?

Add a LLM provider: PPIO

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-02-17 12:03:26 +08:00
88daa349f9 Optimize conversation when uploading attachments (#4964)
### What problem does this PR solve?

#4929

### Type of change

- [x] Performance Improvement
2025-02-17 12:03:04 +08:00
f29da49893 Fix keyerror issue while rebuilding graph. (#5022)
### What problem does this PR solve?

#4995

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 12:02:44 +08:00
194e8ea696 Fix knowledge graph node not found (#4968) (#4970)
### What problem does this PR solve?

Fix knowledge graph node not found (#4968)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 11:49:27 +08:00
810f997276 Fix <think> in keywords or question auto-generations. (#5021)
### What problem does this PR solve?

**#4983**

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-17 11:20:57 +08:00
6daae7f226 Added PEP 723 metadata to download_deps.py (#4988)
### What problem does this PR solve?

Added PEP 723 metadata to download_deps.py

### Type of change

- [x] Refactoring
2025-02-15 14:54:21 +08:00
f9fe6ac642 Feat: Add background color to GraphRag configuration #4980 (#4981)
### What problem does this PR solve?

Feat: Add background color to GraphRag configuration #4980

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 18:57:09 +08:00
b4ad565df6 Feat: Add ParsedPageCard component #3221 (#4976)
### What problem does this PR solve?

Feat: Add ParsedPageCard component #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 18:12:39 +08:00
754d5ea364 add gemini-2.0-flash-thinking-exp-01-21 (#4957)
add gemini-2.0-flash-thinking-exp-01-21
2025-02-14 13:31:07 +08:00
26add87c3d Feat: Jump from the chunk page to the dataset page #3221 (#4961)
### What problem does this PR solve?
Feat: Jump from the chunk page to the dataset page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 13:30:55 +08:00
986062a604 format number float (#4954)
format number float
2025-02-14 12:00:34 +08:00
29ceeba95f Fix hit cache error while raptoring. (#4955)
### What problem does this PR solve?

#4126

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-14 12:00:19 +08:00
849d9eb463 Ignore tenant not found error while increasing token usage. (#4950)
### What problem does this PR solve?

#4940

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-14 11:10:49 +08:00
dce7053c24 Feat: Add an id to the dataset testing route #3221 (#4951)
### What problem does this PR solve?

Feat: Add an id to the dataset testing route #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 10:43:59 +08:00
042f4c90c6 Fixes KeyError: 'content' when using stream=False (#4944)
### 🛠 Fixes `KeyError: 'content'` when using `stream=False`

#### 🔍 Problem  
When calling the chat API with `stream=False`, the code attempts to
access `msg[-1]["content"]` without verifying if the key exists. This
causes a `KeyError` when the message structure does not contain
`"content"`.

This issue was discussed in
[#4885](https://github.com/infiniflow/ragflow/issues/4885), where we
analyzed the root cause. The error does not occur with `stream=True`, as
the response is processed differently.

####  Solution  
- **Logging Fix:**  
  - Before accessing `msg[-1]["content"]`, we check if the key exists.  
- If it does not exist, a default value (`"[content not available]"`) is
used to prevent errors.

- **Structural Fix in `msg` Construction:**  
- Ensured that every message in `msg` contains the `"content"` key, even
if empty.
- This fixes the issue at its root and ensures consistent behavior
between `stream=True` and `stream=False`.

#### 🔄 Impact  
- Prevents the `KeyError` without affecting normal application flow.  
- Ensures the integrity of the `msg` structure, avoiding future
failures.



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-14 10:27:01 +08:00
c1583a3e1d Feat: Bind data to datasets page #3221 (#4938)
### What problem does this PR solve?

Feat: Bind data to datasets page #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-14 09:38:48 +08:00
17fa2e9e8e Added a guide on setting metadata (#4935)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-02-13 18:16:45 +08:00
ff237f2dbc Feat: Display Think for Deepseek R1 model #4903 (#4930)
### What problem does this PR solve?

Feat: Display Think for Deepseek R1 model #4903

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-13 15:59:42 +08:00
50c99599f2 Fix DB assistant template error. (#4925)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-13 11:33:25 +08:00
891ee85fa6 Feat: Add ChatInput component #3221 (#4915)
### What problem does this PR solve?

Feat: Add ChatInput component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 19:32:49 +08:00
a03f5dd9f6 Add a list of large language models of deepseek and image2text models… (#4914)
### What problem does this PR solve?

#4870 
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 17:52:29 +08:00
415c4b7ed5 Organized and add a list of large language models of Nvidia.v1.1 (#4910)
### What problem does this PR solve?

#4870

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 17:10:19 +08:00
d599707154 Fix: After deleting all conversation lists, the chat input box can still be used for input. #4907 (#4909)
### What problem does this PR solve?

Fix: After deleting all conversation lists, the chat input box can still
be used for input. #4907

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 16:54:14 +08:00
7f06712a30 Feat: Add LlmSettingFieldItems component #3221 (#4906)
### What problem does this PR solve?

Feat: Add LlmSettingFieldItems component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 15:43:31 +08:00
b08bb56f6c Display thinking for deepseek r1 (#4904)
### What problem does this PR solve?
#4903
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-12 15:43:13 +08:00
9bcccadebd Remove use of eval() from search.py (#4887)
Use `json.loads()` instead.

### What problem does this PR solve?

Using `eval()` can lead to code injections. I think this loads a JSON
field, right? If yes, why is this done via `eval()` and not
`json.loads()`?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 13:15:38 +08:00
1287558f24 Fix xinference chat role order issue. (#4898)
### What problem does this PR solve?

#4831

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 13:15:23 +08:00
6b389e01b5 Remove use of eval() from operators.py (#4888)
Use `np.float32()` instead.

### What problem does this PR solve?

Using `eval()` can lead to code injections.

I think `eval()` is only used to parse a floating point number here.
This change preserves the correct behavior if the string `"None"` is
supplied. But if that behavior isn't intended then this part could be
just deleted instead, since `np.float32()` is parsing strings anyway:

```Python
        if isinstance(scale, str):
            scale = eval(scale)
```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 12:53:42 +08:00
8fcca1b958 fix: big xls file error (#4859)
### What problem does this PR solve?

if *.xls file is too large, .eg >50M, I get error.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 12:39:25 +08:00
a1cf792245 Changed elasticsearch image url (#4897)
### What problem does this PR solve?

Changed elasticsearch image url to speed up image downloading. 

### Type of change

- [x] Refactoring
2025-02-12 12:38:13 +08:00
978b580dcf Fix: Knowledge base page crashes when network connection is lost. #4894 (#4895)
### What problem does this PR solve?

Fix: Knowledge base page crashes when network connection is lost. #4894
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 11:26:26 +08:00
d197f33646 Feat: Add hatPromptEngine component #3221 (#4881)
### What problem does this PR solve?

Feat: Add hatPromptEngine component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-11 19:04:10 +08:00
521d25d4e6 Feat: Add ChatBasicSetting component #3221 (#4876)
### What problem does this PR solve?

Feat: Add ChatBasicSetting component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-11 15:45:24 +08:00
ca1648052a fix categorize agent input content not format error (#4842)
### What problem does this PR solve?

Fix categorize agent input content not format error

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wangrui <wangrui@haima.me>
2025-02-11 13:32:42 +08:00
f34b913bd8 Feat: Add Sessions component #3221 (#4865)
### What problem does this PR solve?

Feat: Add Sessions component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-11 13:11:15 +08:00
0d3ed37b48 Make the update script shorter. (#4854)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 18:18:49 +08:00
bc68f18c48 Feat: Add ChatCard #3221 (#4852)
### What problem does this PR solve?
Feat: Add  ChatCard #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-10 17:38:10 +08:00
6e42687e65 Added a release notes (#4848)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-02-10 17:05:24 +08:00
e4bd879686 Feat: Modify the Preset configurations item style to distinguish it from other fields #4844 (#4845)
### What problem does this PR solve?

Feat: Modify the Preset configurations item style to distinguish it from
other fields #4844

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-10 16:49:07 +08:00
78982d88e0 Reformat error message. (#4829)
### What problem does this PR solve?

#4828

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 16:47:53 +08:00
fa5c7edab4 Fix: Fail to open console with Firefox #4816 (#4838)
### What problem does this PR solve?

Fix: Fail to open console with Firefox #4816

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 14:33:10 +08:00
6fa34d5532 Fix KG circle. (#4823)
### What problem does this PR solve?

#4760

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-10 11:02:29 +08:00
9e5427dc6e Feat: Remove begin's width from agent templates #4764 (#4809)
### What problem does this PR solve?

Feat: Remove begin's width from agent templates #4764
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-10 09:59:59 +08:00
a357190eff Feat: Fixed the issue where the prompt always displayed the initial value when switching between different generate operators #4764 (#4808)
### What problem does this PR solve?

Feat: Fixed the issue where the prompt always displayed the initial
value when switching between different generate operators #4764

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 18:25:25 +08:00
bfcc2abe47 Feat: Add VariablePickerMenuPlugin to select variables in the prompt text box by menu #4764 (#4765)
### What problem does this PR solve?

Feat: Add VariablePickerMenuPlugin to select variables in the prompt
text box by menu #4764

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 18:09:13 +08:00
f64ae9dc33 Inner prompt parameter setting. (#4806)
### What problem does this PR solve?

#4764

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 18:09:02 +08:00
5a51bdd824 Fix: The requested interface timeout will cause the page to crash #4787 (#4788)
### What problem does this PR solve?

Fix: The requested interface timeout will cause the page to crash #4787

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-08 11:26:36 +08:00
b48c85dcf9 Increase ES update script length. (#4785)
### What problem does this PR solve?

#4749

### Type of change

- [x] Performance Improvement
2025-02-08 11:03:31 +08:00
f374dd38b6 Fix divided by zero issue. (#4784)
### What problem does this PR solve?

#4779

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-08 10:36:26 +08:00
ccb72e6787 Add a comment to valkey. (#4783)
### What problem does this PR solve?
#4775

### Type of change

- [x] Documentation Update
2025-02-08 10:31:50 +08:00
55823dbdf6 Refresh Gemini model list. (#4780)
### What problem does this PR solve?

#4761

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-08 10:19:51 +08:00
588207d7c1 optimize TenantLLMService.increase_usage for "can't update token usag… (#4755)
…e error " message

### What problem does this PR solve?

optimize TenantLLMService.increase_usage Performance

### Type of change

- [x] Performance Improvement

Co-authored-by: che_shuai <che_shuai@massclouds.com>
2025-02-07 12:16:17 +08:00
2aa0cdde8f Fix Gemini chat issue. (#4757)
### What problem does this PR solve?

#4753

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-07 12:00:19 +08:00
44d798d8f0 Config chat share (#4700)
Config chat share
2025-02-07 10:35:49 +08:00
4150805073 More models for siliconflow. (#4756)
### What problem does this PR solve?

#4751

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-02-07 10:32:52 +08:00
436 changed files with 37486 additions and 15979 deletions

View File

@ -75,12 +75,6 @@ jobs:
# The body field does not support environment variable substitution directly.
body_path: release_body.md
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
# https://github.com/marketplace/actions/docker-login
- name: Login to Docker Hub
uses: docker/login-action@v3

View File

@ -32,12 +32,9 @@ jobs:
# https://github.com/hmarr/debug-action
#- uses: hmarr/debug-action@v2
- name: Show PR labels
- name: Show who triggered this workflow
run: |
echo "Workflow triggered by ${{ github.event_name }}"
if [[ ${{ github.event_name }} == 'pull_request' ]]; then
echo "PR labels: ${{ join(github.event.pull_request.labels.*.name, ', ') }}"
fi
- name: Ensure workspace ownership
run: echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
@ -68,7 +65,7 @@ jobs:
- name: Start ragflow:nightly-slim
run: |
echo "RAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Stop ragflow:nightly-slim
@ -78,7 +75,7 @@ jobs:
- name: Start ragflow:nightly
run: |
echo "RAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Run sdk tests against Elasticsearch

3
.gitignore vendored
View File

@ -38,3 +38,6 @@ sdk/python/dist/
sdk/python/ragflow_sdk.egg-info/
huggingface.co/
nltk_data/
# Exclude hash-like temporary files like 9b5ad71b2ce5302211f9c61530b329a4922fc6a4
*[0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f][0-9a-f]*

View File

@ -62,11 +62,11 @@ RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
apt install -y python3-pip pipx nginx unzip curl wget git vim less
RUN if [ "$NEED_MIRROR" == "1" ]; then \
pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && \
pip3 config set global.trusted-host pypi.tuna.tsinghua.edu.cn; \
pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple && \
pip3 config set global.trusted-host mirrors.aliyun.com; \
mkdir -p /etc/uv && \
echo "[[index]]" > /etc/uv/uv.toml && \
echo 'url = "https://pypi.tuna.tsinghua.edu.cn/simple"' >> /etc/uv/uv.toml && \
echo 'url = "https://mirrors.aliyun.com/pypi/simple"' >> /etc/uv/uv.toml && \
echo "default = true" >> /etc/uv/uv.toml; \
fi; \
pipx install uv
@ -150,9 +150,9 @@ COPY pyproject.toml uv.lock ./
# uv records index url into uv.lock but doesn't failover among multiple indexes
RUN --mount=type=cache,id=ragflow_uv,target=/root/.cache/uv,sharing=locked \
if [ "$NEED_MIRROR" == "1" ]; then \
sed -i 's|pypi.org|pypi.tuna.tsinghua.edu.cn|g' uv.lock; \
sed -i 's|pypi.org|mirrors.aliyun.com/pypi|g' uv.lock; \
else \
sed -i 's|pypi.tuna.tsinghua.edu.cn|pypi.org|g' uv.lock; \
sed -i 's|mirrors.aliyun.com/pypi|pypi.org|g' uv.lock; \
fi; \
if [ "$LIGHTEN" == "1" ]; then \
uv sync --python 3.10 --frozen; \
@ -196,6 +196,7 @@ COPY deepdoc deepdoc
COPY rag rag
COPY agent agent
COPY graphrag graphrag
COPY agentic_reasoning agentic_reasoning
COPY pyproject.toml uv.lock ./
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.16.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.16.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -80,7 +80,7 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
- 2025-02-05 Updates the model list of 'SILICONFLOW' and adds support for Deepseek-R1/DeepSeek-V3.
- 2025-01-26 Optimizes knowledge graph extraction and application, offering various configuration options.
- 2024-12-18 Upgrades Document Layout Analysis model in Deepdoc.
- 2024-12-18 Upgrades Document Layout Analysis model in DeepDoc.
- 2024-12-04 Adds support for pagerank score in knowledge base.
- 2024-11-22 Adds more variables to Agent.
- 2024-11-01 Adds keyword extraction and related question generation to the parsed chunks to improve the accuracy of retrieval.
@ -173,17 +173,17 @@ releases! 🌟
3. Start up the server using the pre-built Docker images:
> The command below downloads the `v0.16.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download an RAGFlow edition different from `v0.16.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0` for the full edition `v0.16.0`.
> The command below downloads the `v0.17.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.17.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` for the full edition `v0.17.0`.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.16.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.16.0-slim | &approx;2 | ❌ | Stable release |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -204,9 +204,6 @@ releases! 🌟
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anormal`
@ -240,7 +237,7 @@ to `<YOUR_SERVING_PORT>:80`.
Updates to the above configurations require a reboot of all containers to take effect:
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Switch doc engine from Elasticsearch to Infinity
@ -253,12 +250,15 @@ RAGFlow uses Elasticsearch by default for storing full text and vectors. To swit
$ docker compose -f docker/docker-compose.yml down -v
```
> [!WARNING]
> `-v` will delete the docker container volumes, and the existing data will be cleared.
2. Set `DOC_ENGINE` in **docker/.env** to `infinity`.
3. Start the containers:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.16.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.16.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -41,7 +41,7 @@
</h4>
<details open>
<summary></b>📕 Daftar Isi</b></summary>
<summary><b>📕 Daftar Isi </b> </summary>
- 💡 [Apa Itu RAGFlow?](#-apa-itu-ragflow)
- 🎮 [Demo](#-demo)
@ -77,7 +77,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
- 2025-02-05 Memperbarui daftar model 'SILICONFLOW' dan menambahkan dukungan untuk Deepseek-R1/DeepSeek-V3.
- 2025-01-26 Optimalkan ekstraksi dan penerapan grafik pengetahuan dan sediakan berbagai opsi konfigurasi.
- 2024-12-18 Meningkatkan model Analisis Tata Letak Dokumen di Deepdoc.
- 2024-12-18 Meningkatkan model Analisis Tata Letak Dokumen di DeepDoc.
- 2024-12-04 Mendukung skor pagerank ke basis pengetahuan.
- 2024-11-22 Peningkatan definisi dan penggunaan variabel di Agen.
- 2024-11-01 Penambahan ekstraksi kata kunci dan pembuatan pertanyaan terkait untuk meningkatkan akurasi pengambilan.
@ -166,19 +166,19 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
3. Bangun image Docker pre-built dan jalankan server:
> Perintah di bawah ini mengunduh edisi v0.16.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.16.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0 untuk edisi lengkap v0.16.0.
> Perintah di bawah ini mengunduh edisi v0.17.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.17.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0 untuk edisi lengkap v0.17.0.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.16.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.16.0-slim | &approx;2 | ❌ | Stable release |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. Periksa status server setelah server aktif dan berjalan:
@ -197,9 +197,6 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network anormal`
@ -230,7 +227,7 @@ menjadi `<YOUR_SERVING_PORT>:80`.
Pembaruan konfigurasi ini memerlukan reboot semua kontainer agar efektif:
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
## 🔧 Membangun Docker Image tanpa Model Embedding

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.16.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.16.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -57,7 +57,7 @@
- 2025-02-05 シリコン フローの St およびモデル リストを更新し、Deep Seek-R1/Deep Seek-V3 のサポートを追加しました。
- 2025-01-26 ナレッジ グラフの抽出と適用を最適化し、さまざまな構成オプションを提供します。
- 2024-12-18 Deepdoc のドキュメント レイアウト分析モデルをアップグレードします。
- 2024-12-18 DeepDoc のドキュメント レイアウト分析モデルをアップグレードします。
- 2024-12-04 ナレッジ ベースへのページランク スコアをサポートしました。
- 2024-11-22 エージェントでの変数の定義と使用法を改善しました。
- 2024-11-01 再現の精度を向上させるために、解析されたチャンクにキーワード抽出と関連質問の生成を追加しました。
@ -146,19 +146,19 @@
3. ビルド済みの Docker イメージをビルドし、サーバーを起動する:
> 以下のコマンドは、RAGFlow Docker イメージの v0.16.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.16.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.16.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.17.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.17.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.17.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0 と設定します。
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.16.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.16.0-slim | &approx;2 | ❌ | Stable release |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. サーバーを立ち上げた後、サーバーの状態を確認する:
@ -176,9 +176,6 @@
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> もし確認ステップをスキップして直接 RAGFlow にログインした場合、その時点で RAGFlow が完全に初期化されていない可能性があるため、ブラウザーがネットワーク異常エラーを表示するかもしれません。
@ -208,7 +205,7 @@
> すべてのシステム設定のアップデートを有効にするには、システムの再起動が必要です:
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Elasticsearch から Infinity にドキュメントエンジンを切り替えます
@ -219,11 +216,12 @@ RAGFlow はデフォルトで Elasticsearch を使用して全文とベクトル
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` は docker コンテナのボリュームを削除し、既存のデータをクリアします。
2. **docker/.env** の「DOC \_ ENGINE」を「infinity」に設定します。
3. 起動コンテナ:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.16.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.16.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -57,7 +57,7 @@
- 2025-02-05 'SILICONFLOW' 모델 목록을 업데이트하고 Deepseek-R1/DeepSeek-V3에 대한 지원을 추가합니다.
- 2025-01-26 지식 그래프 추출 및 적용을 최적화하고 다양한 구성 옵션을 제공합니다.
- 2024-12-18 Deepdoc의 문서 레이아웃 분석 모델 업그레이드.
- 2024-12-18 DeepDoc의 문서 레이아웃 분석 모델 업그레이드.
- 2024-12-04 지식베이스에 대한 페이지랭크 점수를 지원합니다.
- 2024-11-22 에이전트의 변수 정의 및 사용을 개선했습니다.
@ -147,19 +147,19 @@
3. 미리 빌드된 Docker 이미지를 생성하고 서버를 시작하세요:
> 아래 명령어는 RAGFlow Docker 이미지의 v0.16.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.16.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.16.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.17.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.17.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.17.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0로 설정합니다.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.16.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.16.0-slim | &approx;2 | ❌ | Stable release |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. 서버가 시작된 후 서버 상태를 확인하세요:
@ -177,9 +177,6 @@
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 만약 확인 단계를 건너뛰고 바로 RAGFlow에 로그인하면, RAGFlow가 완전히 초기화되지 않았기 때문에 브라우저에서 `network anormal` 오류가 발생할 수 있습니다.
@ -209,7 +206,7 @@
> 모든 시스템 구성 업데이트는 적용되기 위해 시스템 재부팅이 필요합니다.
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Elasticsearch 에서 Infinity 로 문서 엔진 전환
@ -220,6 +217,7 @@ RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및
```bash
$docker compose-f docker/docker-compose.yml down -v
```
Note: `-v` 는 docker 컨테이너의 볼륨을 삭제하고 기존 데이터를 지우며, 이 작업은 컨테이너를 중지하는 것과 동일합니다.
2. **docker/.env**의 "DOC_ENGINE" 을 "infinity" 로 설정합니다.
3. 컨테이너 부팅:
```bash

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.16.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.16.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -41,7 +41,7 @@
</h4>
<details open>
<summary></b>📕 Índice</b></summary>
<summary><b>📕 Índice</b></summary>
- 💡 [O que é o RAGFlow?](#-o-que-é-o-ragflow)
- 🎮 [Demo](#-demo)
@ -77,7 +77,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
- 05-02-2025 Atualiza a lista de modelos de 'SILICONFLOW' e adiciona suporte para Deepseek-R1/DeepSeek-V3.
- 26-01-2025 Otimize a extração e aplicação de gráficos de conhecimento e forneça uma variedade de opções de configuração.
- 18-12-2024 Atualiza o modelo de Análise de Layout de Documentos no Deepdoc.
- 18-12-2024 Atualiza o modelo de Análise de Layout de Documentos no DeepDoc.
- 04-12-2024 Adiciona suporte para pontuação de pagerank na base de conhecimento.
- 22-11-2024 Adiciona mais variáveis para o Agente.
- 01-11-2024 Adiciona extração de palavras-chave e geração de perguntas relacionadas aos blocos analisados para melhorar a precisão da recuperação.
@ -166,19 +166,19 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
3. Inicie o servidor usando as imagens Docker pré-compiladas:
> O comando abaixo baixa a edição `v0.16.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.16.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0` para a edição completa `v0.16.0`.
> O comando abaixo baixa a edição `v0.17.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.17.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` para a edição completa `v0.17.0`.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.16.0 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.16.0-slim | ~2 | ❌ | Lançamento estável |
| v0.17.0 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.17.0-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
4. Verifique o status do servidor após tê-lo iniciado:
@ -196,9 +196,6 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Rodando em todos os endereços (0.0.0.0)
* Rodando em http://127.0.0.1:9380
* Rodando em http://x.x.x.x:9380
INFO:werkzeug:Pressione CTRL+C para sair
```
> Se você pular essa etapa de confirmação e acessar diretamente o RAGFlow, seu navegador pode exibir um erro `network anormal`, pois, nesse momento, seu RAGFlow pode não estar totalmente inicializado.
@ -228,7 +225,7 @@ Para atualizar a porta HTTP de serviço padrão (80), vá até [docker-compose.y
Atualizações nas configurações acima exigem um reinício de todos os contêineres para que tenham efeito:
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### Mudar o mecanismo de documentos de Elasticsearch para Infinity
@ -240,13 +237,13 @@ O RAGFlow usa o Elasticsearch por padrão para armazenar texto completo e vetore
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` irá deletar os volumes do contêiner, e os dados existentes serão apagados.
2. Defina `DOC_ENGINE` no **docker/.env** para `infinity`.
3. Inicie os contêineres:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!ATENÇÃO]

View File

@ -21,7 +21,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.16.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.16.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -56,7 +56,7 @@
- 2025-02-05 更新「SILICONFLOW」的型號清單並新增 Deepseek-R1/DeepSeek-V3 的支援。
- 2025-01-26 最佳化知識圖譜的擷取與應用,提供了多種配置選擇。
- 2024-12-18 升級了 Deepdoc 的文檔佈局分析模型。
- 2024-12-18 升級了 DeepDoc 的文檔佈局分析模型。
- 2024-12-04 支援知識庫的 Pagerank 分數。
- 2024-11-22 完善了 Agent 中的變數定義和使用。
- 2024-11-01 對解析後的 chunk 加入關鍵字抽取和相關問題產生以提高回想的準確度。
@ -145,19 +145,19 @@
3. 進入 **docker** 資料夾,利用事先編譯好的 Docker 映像啟動伺服器:
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.16.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.16.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0` 來下載 RAGFlow 鏡像的 `v0.16.0` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.17.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.17.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` 來下載 RAGFlow 鏡像的 `v0.17.0` 完整發行版。
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.16.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.16.0-slim | &approx;2 | ❌ | Stable release |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
> [!TIP]
> 如果你遇到 Docker 映像檔拉不下來的問題,可以在 **docker/.env** 檔案內根據變數 `RAGFLOW_IMAGE` 的註解提示選擇華為雲或阿里雲的對應映像。
@ -181,9 +181,6 @@
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 如果您跳過這一步驟系統確認步驟就登入 RAGFlow你的瀏覽器有可能會提示 `network anormal` 或 `網路異常`,因為 RAGFlow 可能並未完全啟動成功。
@ -200,7 +197,7 @@
系統配置涉及以下三份文件:
- [.env](./docker/.env):存放一些基本的系統環境變量,例如 `SVR_HTTP_PORT`、`MYSQL_PASSWORD`、`MINIO_PASSWORD` 等。
- [.env](./docker/.env):存放一些系統環境變量,例如 `SVR_HTTP_PORT`、`MYSQL_PASSWORD`、`MINIO_PASSWORD` 等。
- [service_conf.yaml.template](./docker/service_conf.yaml.template):設定各類別後台服務。
- [docker-compose.yml](./docker/docker-compose.yml): 系統依賴該檔案完成啟動。
@ -215,7 +212,7 @@
> 所有系統配置都需要透過系統重新啟動生效:
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
###把文檔引擎從 Elasticsearch 切換成為 Infinity
@ -227,13 +224,14 @@ RAGFlow 預設使用 Elasticsearch 儲存文字和向量資料. 如果要切換
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` 將會刪除 docker 容器的 volumes已有的資料會被清空。
2. 設定 **docker/.env** 目錄中的 `DOC_ENGINE` 為 `infinity`.
3. 啟動容器:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
@ -265,7 +263,7 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
```bash
pipx install uv
export UV_INDEX=https://pypi.tuna.tsinghua.edu.cn/simple
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
2. 下載原始碼並安裝 Python 依賴:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.16.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.16.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -57,7 +57,7 @@
- 2025-02-05 更新硅基流动的模型列表,增加了对 Deepseek-R1/DeepSeek-V3 的支持。
- 2025-01-26 优化知识图谱的提取和应用,提供了多种配置选择。
- 2024-12-18 升级了 Deepdoc 的文档布局分析模型。
- 2024-12-18 升级了 DeepDoc 的文档布局分析模型。
- 2024-12-04 支持知识库的 Pagerank 分数。
- 2024-11-22 完善了 Agent 中的变量定义和使用。
- 2024-11-01 对解析后的 chunk 加入关键词抽取和相关问题生成以提高召回的准确度。
@ -146,19 +146,19 @@
3. 进入 **docker** 文件夹,利用提前编译好的 Docker 镜像启动服务器:
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.16.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.16.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0` 来下载 RAGFlow 镜像的 `v0.16.0` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.17.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.17.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` 来下载 RAGFlow 镜像的 `v0.17.0` 完整发行版。
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.16.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.16.0-slim | &approx;2 | ❌ | Stable release |
| v0.17.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
> [!TIP]
> 如果你遇到 Docker 镜像拉不下来的问题,可以在 **docker/.env** 文件内根据变量 `RAGFLOW_IMAGE` 的注释提示选择华为云或者阿里云的相应镜像。
@ -182,12 +182,9 @@
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 如果您跳过这一步系统确认步骤就登录 RAGFlow你的浏览器有可能会提示 `network anormal` 或 `网络异常`,因为 RAGFlow 可能并未完全启动成功
> 如果您在没有看到上面的提示信息出来之前,就尝试登录 RAGFlow你的浏览器有可能会提示 `network anormal` 或 `网络异常`。
5. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。
> 上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80
@ -216,7 +213,7 @@
> 所有系统配置都需要通过系统重启生效:
>
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> $ docker compose -f docker-compose.yml up -d
> ```
### 把文档引擎从 Elasticsearch 切换成为 Infinity
@ -228,13 +225,14 @@ RAGFlow 默认使用 Elasticsearch 存储文本和向量数据. 如果要切换
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` 将会删除 docker 容器的 volumes已有的数据会被清空。
2. 设置 **docker/.env** 目录中的 `DOC_ENGINE` 为 `infinity`.
3. 启动容器:
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
@ -266,7 +264,7 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
```bash
pipx install uv
export UV_INDEX=https://pypi.tuna.tsinghua.edu.cn/simple
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
2. 下载源代码并安装 Python 依赖:

View File

@ -15,7 +15,6 @@
#
import logging
import json
from abc import ABC
from copy import deepcopy
from functools import partial
@ -25,7 +24,7 @@ from agent.component import component_class
from agent.component.base import ComponentBase
class Canvas(ABC):
class Canvas:
"""
dsl = {
"components": {
@ -162,7 +161,7 @@ class Canvas(ABC):
self.components[k]["obj"].reset()
self._embed_id = ""
def get_compnent_name(self, cid):
def get_component_name(self, cid):
for n in self.dsl["graph"]["nodes"]:
if cid == n["id"]:
return n["data"]["name"]
@ -210,7 +209,7 @@ class Canvas(ABC):
if c not in waiting:
waiting.append(c)
continue
yield "*'{}'* is running...🕞".format(self.get_compnent_name(c))
yield "*'{}'* is running...🕞".format(self.get_component_name(c))
if cpn.component_name.lower() == "iteration":
st_cpn = cpn.get_start()

View File

@ -555,7 +555,7 @@ class ComponentBase(ABC):
eles.extend(self._canvas.get_component(cpn_id)["obj"]._param.query)
continue
eles.append({"name": self._canvas.get_compnent_name(cpn_id), "key": cpn_id})
eles.append({"name": self._canvas.get_component_name(cpn_id), "key": cpn_id})
else:
eles.append({"key": q["value"], "name": q["value"], "value": q["value"]})
return eles

View File

@ -80,6 +80,7 @@ class Categorize(Generate, ABC):
def _run(self, history, **kwargs):
input = self.get_input()
input = " - ".join(input["content"]) if "content" in input else ""
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(input), [{"role": "user", "content": "\nCategory: "}],
self._param.gen_conf())
@ -93,5 +94,5 @@ class Categorize(Generate, ABC):
def debug(self, **kwargs):
df = self._run([], **kwargs)
cpn_id = df.iloc[0, 0]
return Categorize.be_output(self._canvas.get_compnent_name(cpn_id))
return Categorize.be_output(self._canvas.get_component_name(cpn_id))

View File

@ -52,15 +52,16 @@ class ExeSQLParam(GenerateParam):
self.check_positive_integer(self.top_n, "Number of records")
if self.database == "rag_flow":
if self.host == "ragflow-mysql":
raise ValueError("The host is not accessible.")
raise ValueError("For the security reason, it dose not support database named rag_flow.")
if self.password == "infini_rag_flow":
raise ValueError("The host is not accessible.")
raise ValueError("For the security reason, it dose not support database named rag_flow.")
class ExeSQL(Generate, ABC):
component_name = "ExeSQL"
def _refactor(self,ans):
def _refactor(self, ans):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
match = re.search(r"```sql\s*(.*?)\s*```", ans, re.DOTALL)
if match:
ans = match.group(1) # Query content
@ -78,7 +79,6 @@ class ExeSQL(Generate, ABC):
ans = self.get_input()
ans = "".join([str(a) for a in ans["content"]]) if "content" in ans else ""
ans = self._refactor(ans)
logging.info("db_type: ",self._param.db_type)
if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
@ -87,11 +87,11 @@ class ExeSQL(Generate, ABC):
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'mssql':
conn_str = (
r'DRIVER={ODBC Driver 17 for SQL Server};'
r'SERVER=' + self._param.host + ',' + str(self._param.port) + ';'
r'DATABASE=' + self._param.database + ';'
r'UID=' + self._param.username + ';'
r'PWD=' + self._param.password
r'DRIVER={ODBC Driver 17 for SQL Server};'
r'SERVER=' + self._param.host + ',' + str(self._param.port) + ';'
r'DATABASE=' + self._param.database + ';'
r'UID=' + self._param.username + ';'
r'PWD=' + self._param.password
)
db = pyodbc.connect(conn_str)
try:
@ -101,51 +101,50 @@ class ExeSQL(Generate, ABC):
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
self._loop += 1
input_list=re.split(r';', ans.replace(r"\n", " "))
input_list = re.split(r';', ans.replace(r"\n", " "))
sql_res = []
for i in range(len(input_list)):
single_sql=input_list[i]
single_sql = input_list[i]
while self._loop <= self._param.loop:
self._loop+=1
self._loop += 1
if not single_sql:
break
try:
logging.info("single_sql: ", single_sql)
cursor.execute(single_sql)
if cursor.rowcount == 0:
sql_res.append({"content": "No record in the database!"})
break
if self._param.db_type == 'mssql':
single_res = pd.DataFrame.from_records(cursor.fetchmany(self._param.top_n),columns = [desc[0] for desc in cursor.description])
single_res = pd.DataFrame.from_records(cursor.fetchmany(self._param.top_n),
columns=[desc[0] for desc in cursor.description])
else:
single_res = pd.DataFrame([i for i in cursor.fetchmany(self._param.top_n)])
single_res.columns = [i[0] for i in cursor.description]
sql_res.append({"content": single_res.to_markdown()})
sql_res.append({"content": single_res.to_markdown(index=False, floatfmt=".6f")})
break
except Exception as e:
single_sql = self._regenerate_sql(single_sql, str(e), **kwargs)
single_sql = self._refactor(single_sql)
if self._loop > self._param.loop:
sql_res.append({"content": "Can't query the correct data via SQL statement."})
# raise Exception("Maximum loop time exceeds. Can't query the correct data via SQL statement.")
db.close()
if not sql_res:
return ExeSQL.be_output("")
return pd.DataFrame(sql_res)
def _regenerate_sql(self, failed_sql, error_message,**kwargs):
def _regenerate_sql(self, failed_sql, error_message, **kwargs):
prompt = f'''
## You are the Repair SQL Statement Helper, please modify the original SQL statement based on the SQL query error report.
## The original SQL statement is as follows:{failed_sql}.
## The contents of the SQL query error report is as follows:{error_message}.
## Answer only the modified SQL statement. Please do not give any explanation, just answer the code.
'''
self._param.prompt=prompt
self._param.prompt = prompt
kwargs_ = deepcopy(kwargs)
kwargs_["stream"] = False
response = Generate._run(self, [], **kwargs_)
try:
regenerated_sql = response.loc[0,"content"]
regenerated_sql = response.loc[0, "content"]
return regenerated_sql
except Exception as e:
logging.error(f"Failed to regenerate SQL: {e}")

View File

@ -18,10 +18,10 @@ from functools import partial
import pandas as pd
from api.db import LLMType
from api.db.services.conversation_service import structure_answer
from api.db.services.dialog_service import message_fit_in
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.prompts import message_fit_in
class GenerateParam(ComponentParamBase):
@ -69,10 +69,8 @@ class Generate(ComponentBase):
component_name = "Generate"
def get_dependent_components(self):
cpnts = set([para["component_id"].split("@")[0] for para in self._param.parameters \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
inputs = self.get_input_elements()
cpnts = set([i["key"] for i in inputs[1:] if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
return list(cpnts)
def set_cite(self, retrieval_res, answer):
@ -110,10 +108,26 @@ class Generate(ComponentBase):
return res
def get_input_elements(self):
if self._param.parameters:
return [{"key": "user", "name": "Input your question here:"}, *self._param.parameters]
return [{"key": "user", "name": "Input your question here:"}]
key_set = set([])
res = [{"key": "user", "name": "Input your question here:"}]
for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.prompt, flags=re.IGNORECASE):
cpn_id = r.group(1)
if cpn_id in key_set:
continue
if cpn_id.lower().find("begin@") == 0:
cpn_id, key = cpn_id.split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] != key:
continue
res.append({"key": r.group(1), "name": p["name"]})
key_set.add(r.group(1))
continue
cpn_nm = self._canvas.get_component_name(cpn_id)
if not cpn_nm:
continue
res.append({"key": cpn_id, "name": cpn_nm})
key_set.add(cpn_id)
return res
def _run(self, history, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
@ -121,22 +135,20 @@ class Generate(ComponentBase):
retrieval_res = []
self._param.inputs = []
for para in self._param.parameters:
if not para.get("component_id"):
continue
component_id = para["component_id"].split("@")[0]
if para["component_id"].lower().find("@") >= 0:
cpn_id, key = para["component_id"].split("@")
for para in self.get_input_elements()[1:]:
if para["key"].lower().find("begin@") == 0:
cpn_id, key = para["key"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
kwargs[para["key"]] = p.get("value", "")
self._param.inputs.append(
{"component_id": para["component_id"], "content": kwargs[para["key"]]})
{"component_id": para["key"], "content": kwargs[para["key"]]})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
component_id = para["key"]
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
@ -152,8 +164,8 @@ class Generate(ComponentBase):
else:
if cpn.component_name.lower() == "retrieval":
retrieval_res.append(out)
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
kwargs[para["key"]] = " - " + "\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["key"], "content": kwargs[para["key"]]})
if retrieval_res:
retrieval_res = pd.concat(retrieval_res, ignore_index=True)
@ -175,17 +187,18 @@ class Generate(ComponentBase):
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
return pd.DataFrame([res])
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
res = self.set_cite(retrieval_res, ans)
@ -196,18 +209,18 @@ class Generate(ComponentBase):
def stream_output(self, chat_mdl, prompt, retrieval_res):
res = None
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
yield res
self.set_output(res)
return
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
answer = ""
for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
res = {"content": ans, "reference": []}
@ -230,5 +243,6 @@ class Generate(ComponentBase):
for n, v in kwargs.items():
prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)
ans = chat_mdl.chat(prompt, [{"role": "user", "content": kwargs.get("user", "")}], self._param.gen_conf())
u = kwargs.get("user")
ans = chat_mdl.chat(prompt, [{"role": "user", "content": u if u else "Output: "}], self._param.gen_conf())
return pd.DataFrame([ans])

View File

@ -35,12 +35,14 @@ class InvokeParam(ComponentParamBase):
self.url = ""
self.timeout = 60
self.clean_html = False
self.datatype = "json" # New parameter to determine data posting type
def check(self):
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ['get', 'post', 'put'])
self.check_empty(self.url, "End point URL")
self.check_positive_integer(self.timeout, "Timeout time in second")
self.check_boolean(self.clean_html, "Clean HTML")
self.check_valid_value(self.datatype.lower(), "Data post type", ['json', 'formdata']) # Check for valid datapost value
class Invoke(ComponentBase, ABC):
@ -94,22 +96,36 @@ class Invoke(ComponentBase, ABC):
return Invoke.be_output(response.text)
if method == 'put':
response = requests.put(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.datatype.lower() == 'json':
response = requests.put(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
else:
response = requests.put(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.clean_html:
sections = HtmlParser()(None, response.content)
return Invoke.be_output("\n".join(sections))
return Invoke.be_output(response.text)
if method == 'post':
response = requests.post(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.datatype.lower() == 'json':
response = requests.post(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
else:
response = requests.post(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.clean_html:
sections = HtmlParser()(None, response.content)
return Invoke.be_output("\n".join(sections))

View File

@ -19,11 +19,11 @@ from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.dialog_service import label_question
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.app.tag import label_question
class RetrievalParam(ComponentParamBase):
@ -43,7 +43,7 @@ class RetrievalParam(ComponentParamBase):
def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
self.check_positive_number(self.top_n, "[Retrieval] Top N")

View File

@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
@ -21,36 +20,33 @@ from agent.component import GenerateParam, Generate
class RewriteQuestionParam(GenerateParam):
"""
Define the QuestionRewrite component parameters.
"""
def __init__(self):
super().__init__()
self.temperature = 0.9
self.prompt = ""
self.language = ""
def check(self):
super().check()
def get_prompt(self, conv):
self.prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
return f"""
def get_prompt(self, conv, language, query):
prompt = """
Role: A helpful assistant
Task: Generate a full user question that would follow the conversation.
Requirements & Restrictions:
- Text generated MUST be in the same language of the original user's question.
- If the user's latest question is completely, don't do anything, just return the original question.
- DON'T generate anything except a refined question.
- DON'T generate anything except a refined question."""
if language:
prompt += f"""
- Text generated MUST be in {language}"""
prompt += f"""
######################
-Examples-
######################
@ -68,7 +64,7 @@ USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
ASSISTANT: Mary Trump.
User: What's her full name?
USER: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
######################
@ -76,8 +72,8 @@ Output: What's the full name of Donald Trump's mother Mary Trump?
## Conversation
{conv}
###############
"""
return self.prompt
"""
return prompt
class RewriteQuestion(Generate, ABC):
@ -85,21 +81,62 @@ class RewriteQuestion(Generate, ABC):
def _run(self, history, **kwargs):
hist = self._canvas.get_history(self._param.message_history_window_size)
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
conv = []
for m in hist:
if m["role"] not in ["user", "assistant"]:
continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conv = "\n".join(conv)
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(conv), [{"role": "user", "content": "Output: "}],
self._param.gen_conf())
ans = chat_mdl.chat(self._param.get_prompt(conv, self.gen_lang(self._param.language), query),
[{"role": "user", "content": "Output: "}], self._param.gen_conf())
self._canvas.history.pop()
self._canvas.history.append(("user", ans))
logging.debug(ans)
return RewriteQuestion.be_output(ans)
@staticmethod
def gen_lang(language):
# convert code lang to language word for the prompt
language_dict = {'af': 'Afrikaans', 'ak': 'Akan', 'sq': 'Albanian', 'ws': 'Samoan', 'am': 'Amharic',
'ar': 'Arabic', 'hy': 'Armenian', 'az': 'Azerbaijani', 'eu': 'Basque', 'be': 'Belarusian',
'bem': 'Bemba', 'bn': 'Bengali', 'bh': 'Bihari',
'xx-bork': 'Bork', 'bs': 'Bosnian', 'br': 'Breton', 'bg': 'Bulgarian', 'bt': 'Bhutani',
'km': 'Cambodian', 'ca': 'Catalan', 'chr': 'Cherokee', 'ny': 'Chichewa', 'zh-cn': 'Chinese',
'zh-tw': 'Chinese', 'co': 'Corsican',
'hr': 'Croatian', 'cs': 'Czech', 'da': 'Danish', 'nl': 'Dutch', 'xx-elmer': 'Elmer',
'en': 'English', 'eo': 'Esperanto', 'et': 'Estonian', 'ee': 'Ewe', 'fo': 'Faroese',
'tl': 'Filipino', 'fi': 'Finnish', 'fr': 'French',
'fy': 'Frisian', 'gaa': 'Ga', 'gl': 'Galician', 'ka': 'Georgian', 'de': 'German',
'el': 'Greek', 'kl': 'Greenlandic', 'gn': 'Guarani', 'gu': 'Gujarati', 'xx-hacker': 'Hacker',
'ht': 'Haitian Creole', 'ha': 'Hausa', 'haw': 'Hawaiian',
'iw': 'Hebrew', 'hi': 'Hindi', 'hu': 'Hungarian', 'is': 'Icelandic', 'ig': 'Igbo',
'id': 'Indonesian', 'ia': 'Interlingua', 'ga': 'Irish', 'it': 'Italian', 'ja': 'Japanese',
'jw': 'Javanese', 'kn': 'Kannada', 'kk': 'Kazakh', 'rw': 'Kinyarwanda',
'rn': 'Kirundi', 'xx-klingon': 'Klingon', 'kg': 'Kongo', 'ko': 'Korean', 'kri': 'Krio',
'ku': 'Kurdish', 'ckb': 'Kurdish (Sorani)', 'ky': 'Kyrgyz', 'lo': 'Laothian', 'la': 'Latin',
'lv': 'Latvian', 'ln': 'Lingala', 'lt': 'Lithuanian',
'loz': 'Lozi', 'lg': 'Luganda', 'ach': 'Luo', 'mk': 'Macedonian', 'mg': 'Malagasy',
'ms': 'Malay', 'ml': 'Malayalam', 'mt': 'Maltese', 'mv': 'Maldivian', 'mi': 'Maori',
'mr': 'Marathi', 'mfe': 'Mauritian Creole', 'mo': 'Moldavian', 'mn': 'Mongolian',
'sr-me': 'Montenegrin', 'my': 'Burmese', 'ne': 'Nepali', 'pcm': 'Nigerian Pidgin',
'nso': 'Northern Sotho', 'no': 'Norwegian', 'nn': 'Norwegian Nynorsk', 'oc': 'Occitan',
'or': 'Oriya', 'om': 'Oromo', 'ps': 'Pashto', 'fa': 'Persian',
'xx-pirate': 'Pirate', 'pl': 'Polish', 'pt': 'Portuguese', 'pt-br': 'Portuguese (Brazilian)',
'pt-pt': 'Portuguese (Portugal)', 'pa': 'Punjabi', 'qu': 'Quechua', 'ro': 'Romanian',
'rm': 'Romansh', 'nyn': 'Runyankole', 'ru': 'Russian', 'gd': 'Scots Gaelic',
'sr': 'Serbian', 'sh': 'Serbo-Croatian', 'st': 'Sesotho', 'tn': 'Setswana',
'crs': 'Seychellois Creole', 'sn': 'Shona', 'sd': 'Sindhi', 'si': 'Sinhalese', 'sk': 'Slovak',
'sl': 'Slovenian', 'so': 'Somali', 'es': 'Spanish', 'es-419': 'Spanish (Latin America)',
'su': 'Sundanese',
'sw': 'Swahili', 'sv': 'Swedish', 'tg': 'Tajik', 'ta': 'Tamil', 'tt': 'Tatar', 'te': 'Telugu',
'th': 'Thai', 'ti': 'Tigrinya', 'to': 'Tongan', 'lua': 'Tshiluba', 'tum': 'Tumbuka',
'tr': 'Turkish', 'tk': 'Turkmen', 'tw': 'Twi',
'ug': 'Uyghur', 'uk': 'Ukrainian', 'ur': 'Urdu', 'uz': 'Uzbek', 'vu': 'Vanuatu',
'vi': 'Vietnamese', 'cy': 'Welsh', 'wo': 'Wolof', 'xh': 'Xhosa', 'yi': 'Yiddish',
'yo': 'Yoruba', 'zu': 'Zulu'}
if language in language_dict:
return language_dict[language]
else:
return ""

View File

@ -38,27 +38,39 @@ class Template(ComponentBase):
component_name = "Template"
def get_dependent_components(self):
cpnts = set(
[
para["component_id"].split("@")[0]
for para in self._param.parameters
if para.get("component_id")
and para["component_id"].lower().find("answer") < 0
and para["component_id"].lower().find("begin") < 0
]
)
inputs = self.get_input_elements()
cpnts = set([i["key"] for i in inputs if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
return list(cpnts)
def get_input_elements(self):
key_set = set([])
res = []
for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.content, flags=re.IGNORECASE):
cpn_id = r.group(1)
if cpn_id in key_set:
continue
if cpn_id.lower().find("begin@") == 0:
cpn_id, key = cpn_id.split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] != key:
continue
res.append({"key": r.group(1), "name": p["name"]})
key_set.add(r.group(1))
continue
cpn_nm = self._canvas.get_component_name(cpn_id)
if not cpn_nm:
continue
res.append({"key": cpn_id, "name": cpn_nm})
key_set.add(cpn_id)
return res
def _run(self, history, **kwargs):
content = self._param.content
self._param.inputs = []
for para in self._param.parameters:
if not para.get("component_id"):
continue
component_id = para["component_id"].split("@")[0]
if para["component_id"].lower().find("@") >= 0:
cpn_id, key = para["component_id"].split("@")
for para in self.get_input_elements():
if para["key"].lower().find("begin@") == 0:
cpn_id, key = para["key"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
value = p.get("value", "")
@ -68,6 +80,7 @@ class Template(ComponentBase):
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
component_id = para["key"]
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
@ -114,7 +127,7 @@ class Template(ComponentBase):
def make_kwargs(self, para, kwargs, value):
self._param.inputs.append(
{"component_id": para["component_id"], "content": value}
{"component_id": para["key"], "content": value}
)
try:
value = json.loads(value)

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1 @@
from .deep_research import DeepResearcher as DeepResearcher

View File

@ -0,0 +1,167 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
from functools import partial
from agentic_reasoning.prompts import BEGIN_SEARCH_QUERY, BEGIN_SEARCH_RESULT, END_SEARCH_RESULT, MAX_SEARCH_LIMIT, \
END_SEARCH_QUERY, REASON_PROMPT, RELEVANT_EXTRACTION_PROMPT
from api.db.services.llm_service import LLMBundle
from rag.nlp import extract_between
from rag.prompts import kb_prompt
from rag.utils.tavily_conn import Tavily
class DeepResearcher:
def __init__(self,
chat_mdl: LLMBundle,
prompt_config: dict,
kb_retrieve: partial = None,
kg_retrieve: partial = None
):
self.chat_mdl = chat_mdl
self.prompt_config = prompt_config
self._kb_retrieve = kb_retrieve
self._kg_retrieve = kg_retrieve
def thinking(self, chunk_info: dict, question: str):
def rm_query_tags(line):
pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY)
return re.sub(pattern, "", line)
def rm_result_tags(line):
pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT)
return re.sub(pattern, "", line)
executed_search_queries = []
msg_hisotry = [{"role": "user", "content": f'Question:\"{question}\"\n'}]
all_reasoning_steps = []
think = "<think>"
for ii in range(MAX_SEARCH_LIMIT + 1):
if ii == MAX_SEARCH_LIMIT - 1:
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n"
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
all_reasoning_steps.append(summary_think)
msg_hisotry.append({"role": "assistant", "content": summary_think})
break
query_think = ""
if msg_hisotry[-1]["role"] != "user":
msg_hisotry.append({"role": "user", "content": "Continues reasoning with the new information.\n"})
else:
msg_hisotry[-1]["content"] += "\n\nContinues reasoning with the new information.\n"
for ans in self.chat_mdl.chat_streamly(REASON_PROMPT, msg_hisotry, {"temperature": 0.7}):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
if not ans:
continue
query_think = ans
yield {"answer": think + rm_query_tags(query_think) + "</think>", "reference": {}, "audio_binary": None}
think += rm_query_tags(query_think)
all_reasoning_steps.append(query_think)
queries = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)
if not queries:
if ii > 0:
break
queries = [question]
for search_query in queries:
logging.info(f"[THINK]Query: {ii}. {search_query}")
msg_hisotry.append({"role": "assistant", "content": search_query})
think += f"\n\n> {ii +1}. {search_query}\n\n"
yield {"answer": think + "</think>", "reference": {}, "audio_binary": None}
summary_think = ""
# The search query has been searched in previous steps.
if search_query in executed_search_queries:
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n"
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
all_reasoning_steps.append(summary_think)
msg_hisotry.append({"role": "user", "content": summary_think})
think += summary_think
continue
truncated_prev_reasoning = ""
for i, step in enumerate(all_reasoning_steps):
truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n"
prev_steps = truncated_prev_reasoning.split('\n\n')
if len(prev_steps) <= 5:
truncated_prev_reasoning = '\n\n'.join(prev_steps)
else:
truncated_prev_reasoning = ''
for i, step in enumerate(prev_steps):
if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step:
truncated_prev_reasoning += step + '\n\n'
else:
if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n':
truncated_prev_reasoning += '...\n\n'
truncated_prev_reasoning = truncated_prev_reasoning.strip('\n')
# Retrieval procedure:
# 1. KB search
# 2. Web search (optional)
# 3. KG search (optional)
kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []}
if self.prompt_config.get("tavily_api_key"):
tav = Tavily(self.prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(" ".join(search_query))
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if self.prompt_config.get("use_kg") and self._kg_retrieve:
ck = self._kg_retrieve(question=search_query)
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
# Merge chunk info for citations
if not chunk_info["chunks"]:
for k in chunk_info.keys():
chunk_info[k] = kbinfos[k]
else:
cids = [c["chunk_id"] for c in chunk_info["chunks"]]
for c in kbinfos["chunks"]:
if c["chunk_id"] in cids:
continue
chunk_info["chunks"].append(c)
dids = [d["doc_id"] for d in chunk_info["doc_aggs"]]
for d in kbinfos["doc_aggs"]:
if d["doc_id"] in dids:
continue
chunk_info["doc_aggs"].append(d)
think += "\n\n"
for ans in self.chat_mdl.chat_streamly(
RELEVANT_EXTRACTION_PROMPT.format(
prev_reasoning=truncated_prev_reasoning,
search_query=search_query,
document="\n".join(kb_prompt(kbinfos, 4096))
),
[{"role": "user",
"content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}],
{"temperature": 0.7}):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
if not ans:
continue
summary_think = ans
yield {"answer": think + rm_result_tags(summary_think) + "</think>", "reference": {}, "audio_binary": None}
all_reasoning_steps.append(summary_think)
msg_hisotry.append(
{"role": "user", "content": f"\n\n{BEGIN_SEARCH_RESULT}{summary_think}{END_SEARCH_RESULT}\n\n"})
think += rm_result_tags(summary_think)
logging.info(f"[THINK]Summary: {ii}. {summary_think}")
yield think + "</think>"

View File

@ -0,0 +1,112 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
BEGIN_SEARCH_QUERY = "<|begin_search_query|>"
END_SEARCH_QUERY = "<|end_search_query|>"
BEGIN_SEARCH_RESULT = "<|begin_search_result|>"
END_SEARCH_RESULT = "<|end_search_result|>"
MAX_SEARCH_LIMIT = 6
REASON_PROMPT = (
"You are a reasoning assistant with the ability to perform dataset searches to help "
"you answer the user's question accurately. You have special tools:\n\n"
f"- To perform a search: write {BEGIN_SEARCH_QUERY} your query here {END_SEARCH_QUERY}.\n"
f"Then, the system will search and analyze relevant content, then provide you with helpful information in the format {BEGIN_SEARCH_RESULT} ...search results... {END_SEARCH_RESULT}.\n\n"
f"You can repeat the search process multiple times if necessary. The maximum number of search attempts is limited to {MAX_SEARCH_LIMIT}.\n\n"
"Once you have all the information you need, continue your reasoning.\n\n"
"-- Example 1 --\n" ########################################
"Question: \"Are both the directors of Jaws and Casino Royale from the same country?\"\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Who is the director of Jaws?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nThe director of Jaws is Steven Spielberg...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information.\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Where is Steven Spielberg from?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nSteven Allan Spielberg is an American filmmaker...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Who is the director of Casino Royale?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nCasino Royale is a 2006 spy film directed by Martin Campbell...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Where is Martin Campbell from?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nMartin Campbell (born 24 October 1943) is a New Zealand film and television director...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\nIt's enough to answer the question\n"
"-- Example 2 --\n" #########################################
"Question: \"When was the founder of craigslist born?\"\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY}Who was the founder of craigslist?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nCraigslist was founded by Craig Newmark...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information.\n"
"Assistant:\n"
f" {BEGIN_SEARCH_QUERY} When was Craig Newmark born?{END_SEARCH_QUERY}\n\n"
"User:\n"
f" {BEGIN_SEARCH_RESULT}\nCraig Newmark was born on December 6, 1952...\n{END_SEARCH_RESULT}\n\n"
"Continues reasoning with the new information...\n\n"
"Assistant:\nIt's enough to answer the question\n"
"**Remember**:\n"
f"- You have a dataset to search, so you just provide a proper search query.\n"
f"- Use {BEGIN_SEARCH_QUERY} to request a dataset search and end with {END_SEARCH_QUERY}.\n"
"- The language of query MUST be as the same as 'Question' or 'search result'.\n"
"- When done searching, continue your reasoning.\n\n"
'Please answer the following question. You should think step by step to solve it.\n\n'
)
RELEVANT_EXTRACTION_PROMPT = """**Task Instruction:**
You are tasked with reading and analyzing web pages based on the following inputs: **Previous Reasoning Steps**, **Current Search Query**, and **Searched Web Pages**. Your objective is to extract relevant and helpful information for **Current Search Query** from the **Searched Web Pages** and seamlessly integrate this information into the **Previous Reasoning Steps** to continue reasoning for the original question.
**Guidelines:**
1. **Analyze the Searched Web Pages:**
- Carefully review the content of each searched web page.
- Identify factual information that is relevant to the **Current Search Query** and can aid in the reasoning process for the original question.
2. **Extract Relevant Information:**
- Select the information from the Searched Web Pages that directly contributes to advancing the **Previous Reasoning Steps**.
- Ensure that the extracted information is accurate and relevant.
3. **Output Format:**
- **If the web pages provide helpful information for current search query:** Present the information beginning with `**Final Information**` as shown below.
- The language of query **MUST BE** as the same as 'Search Query' or 'Web Pages'.\n"
**Final Information**
[Helpful information]
- **If the web pages do not provide any helpful information for current search query:** Output the following text.
**Final Information**
No helpful information found.
**Inputs:**
- **Previous Reasoning Steps:**
{prev_reasoning}
- **Current Search Query:**
{search_query}
- **Searched Web Pages:**
{document}
"""

View File

@ -119,8 +119,9 @@ def register_page(page_path):
sys.modules[module_name] = page
spec.loader.exec_module(page)
page_name = getattr(page, "page_name", page_name)
sdk_path = "\\sdk\\" if sys.platform.startswith("win") else "/sdk/"
url_prefix = (
f"/api/{API_VERSION}" if "/sdk/" in path else f"/{API_VERSION}/{page_name}"
f"/api/{API_VERSION}" if sdk_path in path else f"/{API_VERSION}/{page_name}"
)
app.register_blueprint(page.manager, url_prefix=url_prefix)

View File

@ -25,7 +25,7 @@ from api.db import FileType, LLMType, ParserType, FileSource
from api.db.db_models import APIToken, Task, File
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
from api.db.services.dialog_service import DialogService, chat, keyword_extraction, label_question
from api.db.services.dialog_service import DialogService, chat
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
@ -38,6 +38,8 @@ from api.utils.api_utils import server_error_response, get_data_error_result, ge
generate_confirmation_token
from api.utils.file_utils import filename_type, thumbnail
from rag.app.tag import label_question
from rag.prompts import keyword_extraction
from rag.utils.storage_factory import STORAGE_IMPL
from api.db.services.canvas_service import UserCanvasService

View File

@ -19,9 +19,10 @@ import json
from flask import request
from flask_login import login_required, current_user
from api.db.services.dialog_service import keyword_extraction, label_question
from rag.app.qa import rmPrefix, beAdoc
from rag.app.tag import label_question
from rag.nlp import search, rag_tokenizer
from rag.prompts import keyword_extraction
from rag.settings import PAGERANK_FLD
from rag.utils import rmSpace
from api.db import LLMType, ParserType
@ -93,12 +94,14 @@ def get():
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
for tenant in tenants:
kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
if chunk:
break
if chunk is None:
return server_error_response(Exception("Chunk not found"))
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):

View File

@ -25,13 +25,14 @@ from flask import request, Response
from flask_login import login_required, current_user
from api.db import LLMType
from api.db.services.dialog_service import DialogService, chat, ask, label_question
from api.db.services.dialog_service import DialogService, chat, ask
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle, TenantService
from api import settings
from api.utils.api_utils import get_json_result
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.tag import label_question
@manager.route('/set', methods=['POST']) # noqa: F821

View File

@ -18,6 +18,7 @@ from flask import request
from flask_login import login_required, current_user
from api.db.services.dialog_service import DialogService
from api.db import StatusEnum
from api.db.services.llm_service import TenantLLMService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService, UserTenantService
from api import settings
@ -57,11 +58,6 @@ def set_dialog():
if not prompt_config["system"]:
prompt_config["system"] = default_prompt["system"]
# if len(prompt_config["parameters"]) < 1:
# prompt_config["parameters"] = default_prompt["parameters"]
# for p in prompt_config["parameters"]:
# if p["key"] == "knowledge":break
# else: prompt_config["parameters"].append(default_prompt["parameters"][0])
for p in prompt_config["parameters"]:
if p["optional"]:
@ -74,22 +70,19 @@ def set_dialog():
e, tenant = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Tenant not found!")
kbs = KnowledgebaseService.get_by_ids(req.get("kb_ids"))
embd_count = len(set([kb.embd_id for kb in kbs]))
if embd_count != 1:
kbs = KnowledgebaseService.get_by_ids(req.get("kb_ids", []))
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = len(set(embd_ids))
if embd_count > 1:
return get_data_error_result(message=f'Datasets use different embedding models: {[kb.embd_id for kb in kbs]}"')
llm_id = req.get("llm_id", tenant.llm_id)
if not dialog_id:
if not req.get("kb_ids"):
return get_data_error_result(
message="Fail! Please select knowledgebase!")
dia = {
"id": get_uuid(),
"tenant_id": current_user.id,
"name": name,
"kb_ids": req["kb_ids"],
"kb_ids": req.get("kb_ids", []),
"description": description,
"llm_id": llm_id,
"llm_setting": llm_setting,

View File

@ -14,7 +14,6 @@
# limitations under the License.
#
import json
import logging
import os
from flask import request
@ -300,11 +299,12 @@ def knowledge_graph(kb_id):
"kb_id": [kb_id],
"knowledge_graph_kwd": ["graph"]
}
obj = {"graph": {}, "mind_map": {}}
try:
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [kb_id])
except Exception as e:
logging.exception(e)
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
return get_json_result(data=obj)
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [kb_id])
if not len(sres.ids):
return get_json_result(data=obj)
for id in sres.ids[:1]:
@ -318,6 +318,8 @@ def knowledge_graph(kb_id):
if "nodes" in obj["graph"]:
obj["graph"]["nodes"] = sorted(obj["graph"]["nodes"], key=lambda x: x.get("pagerank", 0), reverse=True)[:256]
if "edges" in obj["graph"]:
obj["graph"]["edges"] = sorted(obj["graph"]["edges"], key=lambda x: x.get("weight", 0), reverse=True)[:128]
if "edges" in obj["graph"]:
node_id_set = { o["id"] for o in obj["graph"]["nodes"] }
filtered_edges = [o for o in obj["graph"]["edges"] if o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
return get_json_result(data=obj)

View File

@ -152,6 +152,7 @@ def add_llm():
elif factory == "Tencent Cloud":
req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
return set_api_key()
elif factory == "Bedrock":
# For Bedrock, due to its special authentication method
@ -171,6 +172,10 @@ def add_llm():
llm_name = req["llm_name"] + "___OpenAI-API"
api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
elif factory == "VLLM":
llm_name = req["llm_name"] + "___VLLM"
api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
elif factory == "XunFei Spark":
llm_name = req["llm_name"]
if req["model_type"] == "chat":
@ -209,66 +214,69 @@ def add_llm():
}
msg = ""
mdl_nm = llm["llm_name"].split("___")[0]
if llm["model_type"] == LLMType.EMBEDDING.value:
mdl = EmbeddingModel[factory](
key=llm['api_key'],
model_name=llm["llm_name"],
model_name=mdl_nm,
base_url=llm["api_base"])
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0:
raise Exception("Fail")
except Exception as e:
msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.CHAT.value:
mdl = ChatModel[factory](
key=llm['api_key'],
model_name=llm["llm_name"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
"temperature": 0.9})
if not tc:
if not tc and m.find("**ERROR**:") >= 0:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(
msg += f"\nFail to access model({mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.RERANK:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=llm["llm_name"],
base_url=llm["api_base"]
)
try:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0:
raise Exception("Not known.")
except KeyError:
msg += f"{factory} dose not support this model({mdl_nm})"
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(
msg += f"\nFail to access model({mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
mdl = CvModel[factory](
key=llm["api_key"],
model_name=llm["llm_name"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
try:
with open(os.path.join(get_project_base_directory(), "web/src/assets/yay.jpg"), "rb") as f:
m, tc = mdl.describe(f.read())
if not tc:
if not m and not tc:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(e)
msg += f"\nFail to access model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.TTS:
mdl = TTSModel[factory](
key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)
try:
for resp in mdl.tts("Hello~ Ragflower!"):
pass
except RuntimeError as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(e)
msg += f"\nFail to access model({mdl_nm})." + str(e)
else:
# TODO: check other type of models
pass

View File

@ -13,6 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from flask import request
from api import settings
from api.db import StatusEnum
@ -41,7 +43,8 @@ def create(tenant_id):
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_count = list(set([kb.embd_id for kb in kbs]))
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) != 1:
return get_result(message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
@ -176,7 +179,8 @@ def update(tenant_id, chat_id):
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_count = list(set([kb.embd_id for kb in kbs]))
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
if len(embd_count) != 1:
return get_result(
message='Datasets use different embedding models."',
@ -316,7 +320,8 @@ def list_chat(tenant_id):
for kb_id in res["kb_ids"]:
kb = KnowledgebaseService.query(id=kb_id)
if not kb:
return get_error_data_result(message=f"Don't exist the kb {kb_id}")
logging.WARN(f"Don't exist the kb {kb_id}")
continue
kb_list.append(kb[0].to_json())
del res["kb_ids"]
res["datasets"] = kb_list

View File

@ -16,11 +16,11 @@
from flask import request, jsonify
from api.db import LLMType
from api.db.services.dialog_service import label_question
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import validate_request, build_error_result, apikey_required
from rag.app.tag import label_question
@manager.route('/dify/retrieval', methods=['POST']) # noqa: F821

View File

@ -16,7 +16,6 @@
import pathlib
import datetime
from api.db.services.dialog_service import keyword_extraction, label_question
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import rag_tokenizer
from api.db import LLMType, ParserType
@ -39,6 +38,8 @@ from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import construct_json_result, get_parser_config
from rag.nlp import search
from rag.prompts import keyword_extraction
from rag.app.tag import label_question
from rag.utils import rmSpace
from rag.utils.storage_factory import STORAGE_IMPL
@ -255,6 +256,10 @@ def update_doc(tenant_id, dataset_id, document_id):
)
if not DocumentService.update_by_id(document_id, {"name": req["name"]}):
return get_error_data_result(message="Database error (Document rename)!")
if "meta_fields" in req:
if not isinstance(req["meta_fields"], dict):
return get_error_data_result(message="meta_fields must be a dictionary")
DocumentService.update_meta_fields(document_id, req["meta_fields"])
informs = File2DocumentService.get_by_document_id(document_id)
if informs:
@ -472,10 +477,12 @@ def list_docs(dataset_id, tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
id = request.args.get("id")
name = request.args.get("name")
if not DocumentService.query(id=id, kb_id=dataset_id):
if id and not DocumentService.query(id=id, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {id}.")
if not DocumentService.query(name=name, kb_id=dataset_id):
if name and not DocumentService.query(name=name, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {name}.")
page = int(request.args.get("page", 1))
keywords = request.args.get("keywords", "")
page_size = int(request.args.get("page_size", 30))
@ -729,7 +736,7 @@ def stop_parsing(tenant_id, dataset_id):
)
info = {"run": "2", "progress": 0, "chunk_num": 0}
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
settings.docStoreConn.delete({"doc_id": doc[0].id}, search.index_name(tenant_id), dataset_id)
return get_result()
@ -1301,7 +1308,7 @@ def retrieval_test(tenant_id):
if not KnowledgebaseService.accessible(kb_id=id, user_id=tenant_id):
return get_error_data_result(f"You don't own the dataset {id}.")
kbs = KnowledgebaseService.get_by_ids(kb_ids)
embd_nms = list(set([kb.embd_id for kb in kbs]))
embd_nms = list(set([TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs])) # remove vendor suffix for comparison
if len(embd_nms) != 1:
return get_result(
message='Datasets use different embedding models."',

View File

@ -15,13 +15,13 @@
#
import re
import json
from api.db import LLMType
from flask import request, Response
import time
from api.db import LLMType
from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion
from api.db.services.canvas_service import completion as agent_completion
from api.db.services.dialog_service import ask
from api.db.services.dialog_service import ask, chat
from agent.canvas import Canvas
from api.db import StatusEnum
from api.db.db_models import APIToken
@ -30,11 +30,12 @@ from api.db.services.canvas_service import UserCanvasService
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result
from api.utils.api_utils import get_error_data_result, validate_request
from api.utils.api_utils import get_result, token_required
from api.db.services.llm_service import LLMBundle
from api.db.services.file_service import FileService
from flask import jsonify, request, Response
@manager.route('/chats/<chat_id>/sessions', methods=['POST']) # noqa: F821
@token_required
@ -68,6 +69,11 @@ def create(tenant_id, chat_id):
@token_required
def create_agent_session(tenant_id, agent_id):
req = request.json
if not request.is_json:
req = request.form
files = request.files
user_id = request.args.get('user_id', '')
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
return get_error_data_result("Agent not found.")
@ -84,15 +90,33 @@ def create_agent_session(tenant_id, agent_id):
if query:
for ele in query:
if not ele["optional"]:
if not req.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` is required")
ele["value"] = req[ele["key"]]
if ele["optional"]:
if req.get(ele["key"]):
ele["value"] = req[ele['key']]
if ele["type"] == "file":
if files is None or not files.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if "value" in ele:
ele.pop("value")
if req is None or not req.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
ele["value"] = req[ele["key"]]
else:
if ele["type"] == "file":
if files is not None and files.get(ele["key"]):
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if "value" in ele:
ele.pop("value")
else:
if req is not None and req.get(ele["key"]):
ele["value"] = req[ele['key']]
else:
if "value" in ele:
ele.pop("value")
else:
for ans in canvas.run(stream=False):
pass
@ -100,7 +124,7 @@ def create_agent_session(tenant_id, agent_id):
conv = {
"id": get_uuid(),
"dialog_id": cvs.id,
"user_id": req.get("user_id", "") if isinstance(req, dict) else "",
"user_id": user_id,
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
"source": "agent",
"dsl": cvs.dsl
@ -136,8 +160,10 @@ def update(tenant_id, chat_id, session_id):
@token_required
def chat_completion(tenant_id, chat_id):
req = request.json
if not req or not req.get("session_id"):
if not req:
req = {"question": ""}
if not req.get("session_id"):
req["question"]=""
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(f"You don't own the chat {chat_id}")
if req.get("session_id"):
@ -159,6 +185,169 @@ def chat_completion(tenant_id, chat_id):
return get_result(data=answer)
@manager.route('chats_openai/<chat_id>/chat/completions', methods=['POST']) # noqa: F821
@validate_request("model", "messages") # noqa: F821
@token_required
def chat_completion_openai_like(tenant_id, chat_id):
"""
OpenAI-like chat completion API that simulates the behavior of OpenAI's completions endpoint.
This function allows users to interact with a model and receive responses based on a series of historical messages.
If `stream` is set to True (by default), the response will be streamed in chunks, mimicking the OpenAI-style API.
Set `stream` to False explicitly, the response will be returned in a single complete answer.
Example usage:
curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $RAGFLOW_API_KEY" \
-d '{
"model": "model",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"stream": true
}'
Alternatively, you can use Python's `OpenAI` client:
from openai import OpenAI
model = "model"
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
completion = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
{"role": "assistant", "content": "I am an AI assistant named..."},
{"role": "user", "content": "Can you tell me how to install neovim"},
],
stream=True
)
stream = True
if stream:
for chunk in completion:
print(chunk)
else:
print(completion.choices[0].message.content)
"""
req = request.json
messages = req.get("messages", [])
# To prevent empty [] input
if len(messages) < 1:
return get_error_data_result("You have to provide messages.")
if messages[-1]["role"] != "user":
return get_error_data_result("The last content of this conversation is not from user.")
prompt = messages[-1]["content"]
# Treat context tokens as reasoning tokens
context_token_used = sum(len(message["content"]) for message in messages)
dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
if not dia:
return get_error_data_result(f"You don't own the chat {chat_id}")
dia = dia[0]
# Filter system and non-sense assistant messages
msg = None
msg = [m for m in messages if m["role"] != "system" and (m["role"] != "assistant" or msg)]
if req.get("stream", True):
# The value for the usage field on all chunks except for the last one will be null.
# The usage field on the last chunk contains token usage statistics for the entire request.
# The choices field on the last chunk will always be an empty array [].
def streamed_response_generator(chat_id, dia, msg):
token_used = 0
response = {
"id": f"chatcmpl-{chat_id}",
"choices": [
{
"delta": {
"content": "",
"role": "assistant",
"function_call": None,
"tool_calls": None
},
"finish_reason": None,
"index": 0,
"logprobs": None
}
],
"created": int(time.time()),
"model": "model",
"object": "chat.completion.chunk",
"system_fingerprint": "",
"usage": None
}
try:
for ans in chat(dia, msg, True):
answer = ans["answer"]
incremental = answer[token_used:]
token_used += len(incremental)
response["choices"][0]["delta"]["content"] = incremental
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
except Exception as e:
response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
# The last chunk
response["choices"][0]["delta"]["content"] = None
response["choices"][0]["finish_reason"] = "stop"
response["usage"] = {
"prompt_tokens": len(prompt),
"completion_tokens": token_used,
"total_tokens": len(prompt) + token_used
}
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
yield "data:[DONE]\n\n"
resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
else:
answer = None
for ans in chat(dia, msg, False):
# focus answer content only
answer = ans
break
content = answer["answer"]
response = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion",
"created": int(time.time()),
"model": req.get("model", ""),
"usage": {
"prompt_tokens": len(prompt),
"completion_tokens": len(content),
"total_tokens": len(prompt) + len(content),
"completion_tokens_details": {
"reasoning_tokens": context_token_used,
"accepted_prediction_tokens": len(content),
"rejected_prediction_tokens": 0 # 0 for simplicity
}
},
"choices": [
{
"message": {
"role": "assistant",
"content": content
},
"logprobs": None,
"finish_reason": "stop",
"index": 0
}
]
}
return jsonify(response)
@manager.route('/agents/<agent_id>/completions', methods=['POST']) # noqa: F821
@token_required
def agent_completions(tenant_id, agent_id):

View File

@ -23,6 +23,8 @@ from api.db.services.dialog_service import DialogService, chat
from api.utils import get_uuid
import json
from rag.prompts import chunks_format
class ConversationService(CommonService):
model = Conversation
@ -53,18 +55,7 @@ def structure_answer(conv, ans, message_id, session_id):
reference = {}
ans["reference"] = {}
def get_value(d, k1, k2):
return d.get(k1, d.get(k2))
chunk_list = [{
"id": get_value(chunk, "chunk_id", "id"),
"content": get_value(chunk, "content", "content_with_weight"),
"document_id": get_value(chunk, "doc_id", "document_id"),
"document_name": get_value(chunk, "docnm_kwd", "document_name"),
"dataset_id": get_value(chunk, "kb_id", "dataset_id"),
"image_id": get_value(chunk, "image_id", "img_id"),
"positions": get_value(chunk, "positions", "position_int"),
} for chunk in reference.get("chunks", [])]
chunk_list = chunks_format(reference)
reference["chunks"] = chunk_list
ans["id"] = message_id

View File

@ -15,28 +15,24 @@
#
import logging
import binascii
import os
import json
import json_repair
import time
from functools import partial
import re
from collections import defaultdict
from copy import deepcopy
from timeit import default_timer as timer
import datetime
from datetime import timedelta
from agentic_reasoning import DeepResearcher
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import Dialog, DB
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api import settings
from graphrag.utils import get_tags_from_cache, set_tags_to_cache
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.settings import TAG_FLD
from rag.utils import rmSpace, num_tokens_from_string, encoder
from api.utils.file_utils import get_project_base_directory
from rag.prompts import kb_prompt, message_fit_in, llm_id2llm_type, keyword_extraction, full_question, chunks_format
from rag.utils import rmSpace, num_tokens_from_string
from rag.utils.tavily_conn import Tavily
class DialogService(CommonService):
@ -65,128 +61,49 @@ class DialogService(CommonService):
return list(chats.dicts())
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:
tks_cnts.append(
{"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts:
total += m["count"]
return total
def chat_solo(dialog, messages, stream=True):
if llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
c = count()
if c < max_length:
return c, msg
msg_ = [m for m in msg[:-1] if m["role"] == "system"]
if len(msg) > 1:
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:
return c, msg
ll = num_tokens_from_string(msg_[0]["content"])
ll2 = num_tokens_from_string(msg_[-1]["content"])
if ll / (ll + ll2) > 0.8:
m = msg_[0]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[0]["content"] = m
return max_length, msg
m = msg_[1]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[1]["content"] = m
return max_length, msg
def llm_id2llm_type(llm_id):
llm_id, _ = TenantLLMService.split_model_name_and_factory(llm_id)
fnm = os.path.join(get_project_base_directory(), "conf")
llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
for llm_factory in llm_factories["factory_llm_infos"]:
for llm in llm_factory["llm"]:
if llm_id == llm["llm_name"]:
return llm["model_type"].strip(",")[-1]
def kb_prompt(kbinfos, max_tokens):
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
used_token_count = 0
chunks_num = 0
for i, c in enumerate(knowledges):
used_token_count += num_tokens_from_string(c)
chunks_num += 1
if max_tokens * 0.97 < used_token_count:
knowledges = knowledges[:i]
break
docs = DocumentService.get_by_ids([ck["doc_id"] for ck in kbinfos["chunks"][:chunks_num]])
docs = {d.id: d.meta_fields for d in docs}
doc2chunks = defaultdict(lambda: {"chunks": [], "meta": []})
for ck in kbinfos["chunks"][:chunks_num]:
doc2chunks[ck["docnm_kwd"]]["chunks"].append(ck["content_with_weight"])
doc2chunks[ck["docnm_kwd"]]["meta"] = docs.get(ck["doc_id"], {})
knowledges = []
for nm, cks_meta in doc2chunks.items():
txt = f"Document: {nm} \n"
for k,v in cks_meta["meta"].items():
txt += f"{k}: {v}\n"
txt += "Relevant fragments as following:\n"
for i, chunk in enumerate(cks_meta["chunks"], 1):
txt += f"{i}. {chunk}\n"
knowledges.append(txt)
return knowledges
def label_question(question, kbs):
tags = None
tag_kb_ids = []
for kb in kbs:
if kb.parser_config.get("tag_kb_ids"):
tag_kb_ids.extend(kb.parser_config["tag_kb_ids"])
if tag_kb_ids:
all_tags = get_tags_from_cache(tag_kb_ids)
if not all_tags:
all_tags = settings.retrievaler.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
set_tags_to_cache(all_tags, tag_kb_ids)
else:
all_tags = json.loads(all_tags)
tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids)
tags = settings.retrievaler.tag_query(question,
list(set([kb.tenant_id for kb in tag_kbs])),
tag_kb_ids,
all_tags,
kb.parser_config.get("topn_tags", 3)
)
return tags
prompt_config = dialog.prompt_config
tts_mdl = None
if prompt_config.get("tts"):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
for m in messages if m["role"] != "system"]
if stream:
last_ans = ""
for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
answer = ans
delta_ans = ans[len(last_ans):]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt":"", "created_at": time.time()}
else:
answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}
def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
if not dialog.kb_ids:
for ans in chat_solo(dialog, messages, stream):
yield ans
return
chat_start_ts = timer()
# Get llm model name and model provider name
llm_id, model_provider = TenantLLMService.split_model_name_and_factory(dialog.llm_id)
# Get llm model instance by model and provide name
llm = LLMService.query(llm_name=llm_id) if not model_provider else LLMService.query(llm_name=llm_id, fid=model_provider)
if not llm:
# Model name is provided by tenant, but not system built-in
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id) if not model_provider else \
TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id, llm_factory=model_provider)
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
max_tokens = 8192
if llm_id2llm_type(dialog.llm_id) == "image2text":
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
max_tokens = llm[0].max_tokens
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
max_tokens = llm_model_config.get("max_tokens", 8192)
check_llm_ts = timer()
@ -204,9 +121,6 @@ def chat(dialog, messages, stream=True, **kwargs):
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
if "doc_ids" in messages[-1]:
attachments = messages[-1]["doc_ids"]
for m in messages[:-1]:
if "doc_ids" in m:
attachments.extend(m["doc_ids"])
create_retriever_ts = timer()
@ -258,9 +172,11 @@ def chat(dialog, messages, stream=True, **kwargs):
bind_reranker_ts = timer()
generate_keyword_ts = bind_reranker_ts
thought = ""
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
knowledges = []
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
@ -268,28 +184,46 @@ def chat(dialog, messages, stream=True, **kwargs):
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(" ".join(questions), kbs)
)
if prompt_config.get("use_kg"):
ck = settings.kg_retrievaler.retrieval(" ".join(questions),
tenant_ids,
dialog.kb_ids,
embd_mdl,
LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
knowledges = []
if prompt_config.get("reasoning", False):
reasoner = DeepResearcher(chat_mdl,
prompt_config,
partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3))
retrieval_ts = timer()
for think in reasoner.thinking(kbinfos, " ".join(questions)):
if isinstance(think, str):
thought = think
knowledges = [t for t in think.split("\n") if t]
elif stream:
yield think
else:
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(" ".join(questions), kbs)
)
if prompt_config.get("tavily_api_key"):
tav = Tavily(prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(" ".join(questions))
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"):
ck = settings.kg_retrievaler.retrieval(" ".join(questions),
tenant_ids,
dialog.kb_ids,
embd_mdl,
LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
knowledges = kb_prompt(kbinfos, max_tokens)
knowledges = kb_prompt(kbinfos, max_tokens)
logging.debug(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
retrieval_ts = timer()
if not knowledges and prompt_config.get("empty_response"):
empty_res = prompt_config["empty_response"]
yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)}
@ -314,9 +248,12 @@ def chat(dialog, messages, stream=True, **kwargs):
def decorate_answer(answer):
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts
finish_chat_ts = timer()
refs = []
ans = answer.split("</think>")
think = ""
if len(ans) == 2:
think = ans[0] + "</think>"
answer = ans[1]
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retriever.insert_citations(answer,
[ck["content_ltks"]
@ -354,26 +291,28 @@ def chat(dialog, messages, stream=True, **kwargs):
generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms"
return {"answer": answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt)}
return {"answer": think+answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
if stream:
last_ans = ""
answer = ""
for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf):
if thought:
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
answer = ans
delta_ans = ans[len(last_ans):]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans):]
if delta_ans:
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(answer)
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(thought+answer)
else:
answer = chat_mdl.chat(prompt, msg[1:], gen_conf)
logging.debug("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
res = decorate_answer(answer)
res["audio_binary"] = tts(tts_mdl, answer)
yield res
@ -506,172 +445,6 @@ Please write the SQL, only SQL, without any other explanations or text.
}
def relevant(tenant_id, llm_id, question, contents: list):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
No other words needed except 'yes' or 'no'.
"""
if not contents:
return False
contents = "Documents: \n" + " - ".join(contents)
contents = f"Question: {question}\n" + contents
if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
if ans.lower().find("yes") >= 0:
return True
return False
def rewrite(tenant_id, llm_id, question):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
return ans
def keyword_extraction(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: extract the most important keywords/phrases of a given piece of text content.
Requirements:
- Summarize the text content, and give top {topn} important keywords/phrases.
- The keywords MUST be in language of the given piece of text content.
- The keywords are delimited by ENGLISH COMMA.
- Keywords ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def question_proposal(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: propose {topn} questions about a given piece of text content.
Requirements:
- Understand and summarize the text content, and propose top {topn} important questions.
- The questions SHOULD NOT have overlapping meanings.
- The questions SHOULD cover the main content of the text as much as possible.
- The questions MUST be in language of the given piece of text content.
- One question per line.
- Question ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def full_question(tenant_id, llm_id, messages):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
conv = []
for m in messages:
if m["role"] not in ["user", "assistant"]:
continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conv = "\n".join(conv)
today = datetime.date.today().isoformat()
yesterday = (datetime.date.today() - timedelta(days=1)).isoformat()
tomorrow = (datetime.date.today() + timedelta(days=1)).isoformat()
prompt = f"""
Role: A helpful assistant
Task and steps:
1. Generate a full user question that would follow the conversation.
2. If the user's question involves relative date, you need to convert it into absolute date based on the current date, which is {today}. For example: 'yesterday' would be converted to {yesterday}.
Requirements & Restrictions:
- Text generated MUST be in the same language of the original user's question.
- If the user's latest question is completely, don't do anything, just return the original question.
- DON'T generate anything except a refined question.
######################
-Examples-
######################
# Example 1
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
###############
Output: What's the name of Donald Trump's mother?
------------
# Example 2
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
ASSISTANT: Mary Trump.
User: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
------------
# Example 3
## Conversation
USER: What's the weather today in London?
ASSISTANT: Cloudy.
USER: What's about tomorrow in Rochester?
###############
Output: What's the weather in Rochester on {tomorrow}?
######################
# Real Data
## Conversation
{conv}
###############
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2})
return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
def tts(tts_mdl, text):
if not tts_mdl or not text:
return
@ -738,7 +511,7 @@ def ask(question, kb_ids, tenant_id):
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
return {"answer": answer, "reference": refs}
return {"answer": answer, "reference": chunks_format(refs)}
answer = ""
for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
@ -747,62 +520,3 @@ def ask(question, kb_ids, tenant_id):
yield decorate_answer(answer)
def content_tagging(chat_mdl, content, all_tags, examples, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: Tag (put on some labels) to a given piece of text content based on the examples and the entire tag set.
Steps::
- Comprehend the tag/label set.
- Comprehend examples which all consist of both text content and assigned tags with relevance score in format of JSON.
- Summarize the text content, and tag it with top {topn} most relevant tags from the set of tag/label and the corresponding relevance score.
Requirements
- The tags MUST be from the tag set.
- The output MUST be in JSON format only, the key is tag and the value is its relevance score.
- The relevance score must be range from 1 to 10.
- Keywords ONLY in output.
# TAG SET
{", ".join(all_tags)}
"""
for i, ex in enumerate(examples):
prompt += """
# Examples {}
### Text Content
{}
Output:
{}
""".format(i, ex["content"], json.dumps(ex[TAG_FLD], indent=2, ensure_ascii=False))
prompt += f"""
# Real Data
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.5})
if isinstance(kwd, tuple):
kwd = kwd[0]
if kwd.find("**ERROR**") >= 0:
raise Exception(kwd)
try:
return json_repair.loads(kwd)
except json_repair.JSONDecodeError:
try:
result = kwd.replace(prompt[:-1], '').replace('user', '').replace('model', '').strip()
result = '{' + result.split('{')[1].split('}')[0] + '}'
return json_repair.loads(result)
except Exception as e:
logging.exception(f"JSON parsing error: {result} -> {e}")
raise e

View File

@ -372,13 +372,17 @@ class DocumentService(CommonService):
"progress_msg": "Task is queued...",
"process_begin_at": get_format_time()
})
@classmethod
@DB.connection_context()
def update_meta_fields(cls, doc_id, meta_fields):
return cls.update_by_id(doc_id, {"meta_fields": meta_fields})
@classmethod
@DB.connection_context()
def update_progress(cls):
MSG = {
"raptor": "Start RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval).",
"graphrag": "Start Graph Extraction",
"graphrag": "Entities extraction progress",
"graph_resolution": "Start Graph Resolution",
"graph_community": "Start Graph Community Reports Generation"
}
@ -500,6 +504,9 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
assert e, "Conversation not found!"
e, dia = DialogService.get_by_id(conv.dialog_id)
if not dia.kb_ids:
raise LookupError("No knowledge base associated with this conversation. "
"Please add a knowledge base before uploading documents")
kb_id = dia.kb_ids[0]
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:

View File

@ -86,8 +86,7 @@ class TenantLLMService(CommonService):
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type,
llm_name=None, lang="Chinese"):
def get_model_config(cls, tenant_id, llm_type, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
@ -124,7 +123,13 @@ class TenantLLMService(CommonService):
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
raise LookupError("Model({}) not authorized".format(mdlnm))
return model_config
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type,
llm_name=None, lang="Chinese"):
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel:
return
@ -173,40 +178,39 @@ class TenantLLMService(CommonService):
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
logging.error(f"Tenant not found: {tenant_id}")
return 0
if llm_type == LLMType.EMBEDDING.value:
mdlnm = tenant.embd_id
elif llm_type == LLMType.SPEECH2TEXT.value:
mdlnm = tenant.asr_id
elif llm_type == LLMType.IMAGE2TEXT.value:
mdlnm = tenant.img2txt_id
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.rerank_id if not llm_name else llm_name
elif llm_type == LLMType.TTS:
mdlnm = tenant.tts_id if not llm_name else llm_name
else:
assert False, "LLM type error"
llm_map = {
LLMType.EMBEDDING.value: tenant.embd_id,
LLMType.SPEECH2TEXT.value: tenant.asr_id,
LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name
}
mdlnm = llm_map.get(llm_type)
if mdlnm is None:
logging.error(f"LLM type error: {llm_type}")
return 0
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
num = 0
try:
if llm_factory:
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory)
else:
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name)
if not tenant_llms:
return num
else:
tenant_llm = tenant_llms[0]
num = cls.model.update(used_tokens=tenant_llm.used_tokens + used_tokens) \
.where(cls.model.tenant_id == tenant_id, cls.model.llm_factory == tenant_llm.llm_factory, cls.model.llm_name == llm_name) \
.execute()
num = cls.model.update(
used_tokens=cls.model.used_tokens + used_tokens
).where(
cls.model.tenant_id == tenant_id,
cls.model.llm_name == llm_name,
cls.model.llm_factory == llm_factory if llm_factory else True
).execute()
except Exception:
logging.exception("TenantLLMService.increase_usage got exception")
logging.exception(
"TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s",
tenant_id, llm_name)
return 0
return num
@classmethod
@ -229,10 +233,8 @@ class LLMBundle(object):
tenant_id, llm_type, llm_name, lang=lang)
assert self.mdl, "Can't find model for {}/{}/{}".format(
tenant_id, llm_type, llm_name)
self.max_length = 8192
for lm in LLMService.query(llm_name=llm_name):
self.max_length = lm.max_tokens
break
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
self.max_length = model_config.get("max_tokens", 8192)
def encode(self, texts: list):
embeddings, used_tokens = self.mdl.encode(texts)

View File

@ -28,6 +28,7 @@ import sys
import time
import traceback
from concurrent.futures import ThreadPoolExecutor
import threading
from werkzeug.serving import run_simple
from api import settings
@ -42,15 +43,21 @@ from api.versions import get_ragflow_version
from api.utils import show_configs
from rag.settings import print_rag_settings
stop_event = threading.Event()
def update_progress():
while True:
time.sleep(6)
while not stop_event.is_set():
try:
DocumentService.update_progress()
stop_event.wait(6)
except Exception:
logging.exception("update_progress exception")
def signal_handler(sig, frame):
logging.info("Received interrupt signal, shutting down...")
stop_event.set()
time.sleep(1)
sys.exit(0)
if __name__ == '__main__':
logging.info(r"""
@ -96,6 +103,9 @@ if __name__ == '__main__':
RuntimeConfig.init_env()
RuntimeConfig.init_config(JOB_SERVER_HOST=settings.HOST_IP, HTTP_PORT=settings.HOST_PORT)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
thread = ThreadPoolExecutor(max_workers=1)
thread.submit(update_progress)
@ -112,4 +122,6 @@ if __name__ == '__main__':
)
except Exception:
traceback.print_exc()
stop_event.set()
time.sleep(1)
os.kill(os.getpid(), signal.SIGKILL)

View File

@ -66,75 +66,28 @@ def init_settings():
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
LLM = get_base_config("user_default_llm", {})
LLM_DEFAULT_MODELS = LLM.get("default_models", {})
LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
LLM_BASE_URL = LLM.get("base_url")
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
if not LIGHTEN:
default_llm = {
"Tongyi-Qianwen": {
"chat_model": "qwen-plus",
"embedding_model": "text-embedding-v2",
"image2text_model": "qwen-vl-max",
"asr_model": "paraformer-realtime-8k-v1",
},
"OpenAI": {
"chat_model": "gpt-3.5-turbo",
"embedding_model": "text-embedding-ada-002",
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"Azure-OpenAI": {
"chat_model": "gpt-35-turbo",
"embedding_model": "text-embedding-ada-002",
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"ZHIPU-AI": {
"chat_model": "glm-3-turbo",
"embedding_model": "embedding-2",
"image2text_model": "glm-4v",
"asr_model": "",
},
"Ollama": {
"chat_model": "qwen-14B-chat",
"embedding_model": "flag-embedding",
"image2text_model": "",
"asr_model": "",
},
"Moonshot": {
"chat_model": "moonshot-v1-8k",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"DeepSeek": {
"chat_model": "deepseek-chat",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"VolcEngine": {
"chat_model": "",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"BAAI": {
"chat_model": "",
"embedding_model": "BAAI/bge-large-zh-v1.5",
"image2text_model": "",
"asr_model": "",
"rerank_model": "BAAI/bge-reranker-v2-m3",
}
}
EMBEDDING_MDL = "BAAI/bge-large-zh-v1.5@BAAI"
if LLM_FACTORY:
CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"] + f"@{LLM_FACTORY}"
ASR_MDL = default_llm[LLM_FACTORY]["asr_model"] + f"@{LLM_FACTORY}"
IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"] + f"@{LLM_FACTORY}"
EMBEDDING_MDL = default_llm["BAAI"]["embedding_model"] + "@BAAI"
RERANK_MDL = default_llm["BAAI"]["rerank_model"] + "@BAAI"
if LLM_DEFAULT_MODELS:
CHAT_MDL = LLM_DEFAULT_MODELS.get("chat_model", CHAT_MDL)
EMBEDDING_MDL = LLM_DEFAULT_MODELS.get("embedding_model", EMBEDDING_MDL)
RERANK_MDL = LLM_DEFAULT_MODELS.get("rerank_model", RERANK_MDL)
ASR_MDL = LLM_DEFAULT_MODELS.get("asr_model", ASR_MDL)
IMAGE2TEXT_MDL = LLM_DEFAULT_MODELS.get("image2text_model", IMAGE2TEXT_MDL)
# factory can be specified in the config name with "@". LLM_FACTORY will be used if not specified
CHAT_MDL = CHAT_MDL + (f"@{LLM_FACTORY}" if "@" not in CHAT_MDL and CHAT_MDL != "" else "")
EMBEDDING_MDL = EMBEDDING_MDL + (f"@{LLM_FACTORY}" if "@" not in EMBEDDING_MDL and EMBEDDING_MDL != "" else "")
RERANK_MDL = RERANK_MDL + (f"@{LLM_FACTORY}" if "@" not in RERANK_MDL and RERANK_MDL != "" else "")
ASR_MDL = ASR_MDL + (f"@{LLM_FACTORY}" if "@" not in ASR_MDL and ASR_MDL != "" else "")
IMAGE2TEXT_MDL = IMAGE2TEXT_MDL + (
f"@{LLM_FACTORY}" if "@" not in IMAGE2TEXT_MDL and IMAGE2TEXT_MDL != "" else "")
global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
API_KEY = LLM.get("api_key", "")

View File

@ -70,6 +70,12 @@ def show_configs():
if "password" in v:
v = copy.deepcopy(v)
v["password"] = "*" * 8
if "access_key" in v:
v = copy.deepcopy(v)
v["access_key"] = "*" * 8
if "secret_key" in v:
v = copy.deepcopy(v)
v["secret_key"] = "*" * 8
msg += f"\n\t{k}: {v}"
logging.info(msg)
@ -351,6 +357,26 @@ def decrypt(line):
line), "Fail to decrypt password!").decode('utf-8')
def decrypt2(crypt_text):
from base64 import b64decode, b16decode
from Crypto.Cipher import PKCS1_v1_5 as Cipher_PKCS1_v1_5
from Crypto.PublicKey import RSA
decode_data = b64decode(crypt_text)
if len(decode_data) == 127:
hex_fixed = '00' + decode_data.hex()
decode_data = b16decode(hex_fixed.upper())
file_path = os.path.join(
file_utils.get_project_base_directory(),
"conf",
"private.pem")
pem = open(file_path).read()
rsa_key = RSA.importKey(pem, "Welcome")
cipher = Cipher_PKCS1_v1_5.new(rsa_key)
decrypt_text = cipher.decrypt(decode_data, None)
return (b64decode(decrypt_text)).decode()
def download_img(url):
if not url:
return ""

File diff suppressed because it is too large Load Diff

View File

@ -5,25 +5,25 @@ mysql:
name: 'rag_flow'
user: 'root'
password: 'infini_rag_flow'
host: 'mysql'
host: 'localhost'
port: 5455
max_connections: 100
stale_timeout: 30
minio:
user: 'rag_flow'
password: 'infini_rag_flow'
host: 'minio:9000'
host: 'localhost:9000'
es:
hosts: 'http://es01:1200'
hosts: 'http://localhost:1200'
username: 'elastic'
password: 'infini_rag_flow'
infinity:
uri: 'infinity:23817'
uri: 'localhost:23817'
db_name: 'default_db'
redis:
db: 1
password: 'infini_rag_flow'
host: 'redis:6379'
host: 'localhost:6379'
# postgres:
# name: 'rag_flow'
@ -37,6 +37,12 @@ redis:
# access_key: 'access_key'
# secret_key: 'secret_key'
# region: 'region'
# oss:
# access_key: 'access_key'
# secret_key: 'secret_key'
# endpoint_url: 'http://oss-cn-hangzhou.aliyuncs.com'
# region: 'cn-hangzhou'
# bucket: 'bucket_name'
# azure:
# auth_type: 'sas'
# container_url: 'container_url'

View File

@ -1,6 +1,3 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
@ -14,19 +11,51 @@
# limitations under the License.
#
from openpyxl import load_workbook
from openpyxl import load_workbook, Workbook
import sys
from io import BytesIO
from rag.nlp import find_codec
import pandas as pd
class RAGFlowExcelParser:
def html(self, fnm, chunk_rows=256):
if isinstance(fnm, str):
wb = load_workbook(fnm)
# if isinstance(fnm, str):
# wb = load_workbook(fnm)
# else:
# wb = load_workbook(BytesIO(fnm))++
s_fnm = fnm
if not isinstance(fnm, str):
s_fnm = BytesIO(fnm)
else:
wb = load_workbook(BytesIO(fnm))
pass
try:
wb = load_workbook(s_fnm)
except Exception as e:
print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
df = pd.read_excel(s_fnm)
wb = Workbook()
# if len(wb.worksheets) > 0:
# del wb.worksheets[0]
# else: pass
ws = wb.active
ws.title = "Data"
for col_num, column_name in enumerate(df.columns, 1):
ws.cell(row=1, column=col_num, value=column_name)
else:
pass
for row_num, row in enumerate(df.values, 2):
for col_num, value in enumerate(row, 1):
ws.cell(row=row_num, column=col_num, value=value)
else:
pass
else:
pass
tb_chunks = []
for sheetname in wb.sheetnames:
@ -45,7 +74,7 @@ class RAGFlowExcelParser:
tb += f"<table><caption>{sheetname}</caption>"
tb += tb_rows_0
for r in list(
rows[1 + chunk_i * chunk_rows : 1 + (chunk_i + 1) * chunk_rows]
rows[1 + chunk_i * chunk_rows: 1 + (chunk_i + 1) * chunk_rows]
):
tb += "<tr>"
for i, c in enumerate(r):
@ -60,10 +89,41 @@ class RAGFlowExcelParser:
return tb_chunks
def __call__(self, fnm):
if isinstance(fnm, str):
wb = load_workbook(fnm)
# if isinstance(fnm, str):
# wb = load_workbook(fnm)
# else:
# wb = load_workbook(BytesIO(fnm))
s_fnm = fnm
if not isinstance(fnm, str):
s_fnm = BytesIO(fnm)
else:
wb = load_workbook(BytesIO(fnm))
pass
try:
wb = load_workbook(s_fnm)
except Exception as e:
print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
df = pd.read_excel(s_fnm)
wb = Workbook()
if len(wb.worksheets) > 0:
del wb.worksheets[0]
else:
pass
ws = wb.active
ws.title = "Data"
for col_num, column_name in enumerate(df.columns, 1):
ws.cell(row=1, column=col_num, value=column_name)
else:
pass
for row_num, row in enumerate(df.values, 2):
for col_num, value in enumerate(row, 1):
ws.cell(row=row_num, column=col_num, value=value)
else:
pass
else:
pass
res = []
for sheetname in wb.sheetnames:
ws = wb[sheetname]
@ -104,3 +164,4 @@ class RAGFlowExcelParser:
if __name__ == "__main__":
psr = RAGFlowExcelParser()
psr(sys.argv[1])

View File

@ -17,6 +17,7 @@
import logging
import os
import random
from timeit import default_timer as timer
import xgboost as xgb
from io import BytesIO
@ -277,7 +278,11 @@ class RAGFlowPdfParser:
b["SP"] = ii
def __ocr(self, pagenum, img, chars, ZM=3):
start = timer()
bxs = self.ocr.detect(np.array(img))
logging.info(f"__ocr detecting boxes of a image cost ({timer() - start}s)")
start = timer()
if not bxs:
self.boxes.append([])
return
@ -308,14 +313,22 @@ class RAGFlowPdfParser:
else:
bxs[ii]["text"] += c["text"]
logging.info(f"__ocr sorting {len(chars)} chars cost {timer() - start}s")
start = timer()
boxes_to_reg = []
img_np = np.array(img)
for b in bxs:
if not b["text"]:
left, right, top, bott = b["x0"] * ZM, b["x1"] * \
ZM, b["top"] * ZM, b["bottom"] * ZM
b["text"] = self.ocr.recognize(np.array(img),
np.array([[left, top], [right, top], [right, bott], [left, bott]],
dtype=np.float32))
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
boxes_to_reg.append(b)
del b["txt"]
texts = self.ocr.recognize_batch([b["box_image"] for b in boxes_to_reg])
for i in range(len(boxes_to_reg)):
boxes_to_reg[i]["text"] = texts[i]
del boxes_to_reg[i]["box_image"]
logging.info(f"__ocr recognize {len(bxs)} boxes cost {timer() - start}s")
bxs = [b for b in bxs if b["text"]]
if self.mean_height[-1] == 0:
self.mean_height[-1] = np.median([b["bottom"] - b["top"]
@ -951,13 +964,14 @@ class RAGFlowPdfParser:
self.page_cum_height = [0]
self.page_layout = []
self.page_from = page_from
start = timer()
try:
self.pdf = pdfplumber.open(fnm) if isinstance(
fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
try:
self.page_chars = [[{**c, 'top': c['top'], 'bottom': c['bottom']} for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
except Exception as e:
logging.warning(f"Failed to extract characters for pages {page_from}-{page_to}: {str(e)}")
self.page_chars = [[] for _ in range(page_to - page_from)] # If failed to extract, using empty list instead.
@ -965,6 +979,7 @@ class RAGFlowPdfParser:
self.total_page = len(self.pdf.pages)
except Exception:
logging.exception("RAGFlowPdfParser __images__")
logging.info(f"__images__ dedupe_chars cost {timer() - start}s")
self.outlines = []
try:
@ -994,7 +1009,7 @@ class RAGFlowPdfParser:
else:
self.is_english = False
# st = timer()
start = timer()
for i, img in enumerate(self.page_images):
chars = self.page_chars[i] if not self.is_english else []
self.mean_height.append(
@ -1016,7 +1031,7 @@ class RAGFlowPdfParser:
self.__ocr(i + 1, img, chars, zoomin)
if callback and i % 6 == 5:
callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
# print("OCR:", timer()-st)
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
if not self.is_english and not any(
[c for c in self.page_chars]) and self.boxes:

View File

@ -51,11 +51,13 @@ class RAGFlowTxtParser:
s = t
if s < len(delimiter):
dels.extend(list(delimiter[s:]))
dels = [re.escape(d) for d in delimiter if d]
dels = [re.escape(d) for d in dels if d]
dels = [d for d in dels if d]
dels = "|".join(dels)
secs = re.split(r"(%s)" % dels, txt)
for sec in secs:
if re.match(f"^{dels}$", sec):
continue
add_chunk(sec)
return [[c, ""] for c in cks]

View File

@ -31,6 +31,7 @@ import onnxruntime as ort
from .postprocess import build_post_process
loaded_models = {}
def transform(data, ops=None):
""" transform """
@ -67,6 +68,12 @@ def create_operators(op_param_list, global_config=None):
def load_model(model_dir, nm):
model_file_path = os.path.join(model_dir, nm + ".onnx")
global loaded_models
loaded_model = loaded_models.get(model_file_path)
if loaded_model:
logging.info(f"load_model {model_file_path} reuses cached model")
return loaded_model
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
@ -102,15 +109,17 @@ def load_model(model_dir, nm):
provider_options=[cuda_provider_options]
)
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
logging.info(f"TextRecognizer {nm} uses GPU")
logging.info(f"load_model {model_file_path} uses GPU")
else:
sess = ort.InferenceSession(
model_file_path,
options=options,
providers=['CPUExecutionProvider'])
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
logging.info(f"TextRecognizer {nm} uses CPU")
return sess, sess.get_inputs()[0], run_options
logging.info(f"load_model {model_file_path} uses CPU")
loaded_model = (sess, run_options)
loaded_models[model_file_path] = loaded_model
return loaded_model
class TextRecognizer(object):
@ -123,7 +132,8 @@ class TextRecognizer(object):
"use_space_char": True
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.run_options = load_model(model_dir, 'rec')
self.predictor, self.run_options = load_model(model_dir, 'rec')
self.input_tensor = self.predictor.get_inputs()[0]
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
@ -408,7 +418,8 @@ class TextDetector(object):
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.run_options = load_model(model_dir, 'det')
self.predictor, self.run_options = load_model(model_dir, 'det')
self.input_tensor = self.predictor.get_inputs()[0]
img_h, img_w = self.input_tensor.shape[2:]
if isinstance(img_h, str) or isinstance(img_w, str):
@ -609,6 +620,16 @@ class OCR(object):
return ""
return text
def recognize_batch(self, img_list):
rec_res, elapse = self.text_recognizer(img_list)
texts = []
for i in range(len(rec_res)):
text, score = rec_res[i]
if score < self.drop_score:
text = ""
texts.append(text)
return texts
def __call__(self, img, cls=True):
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}

View File

@ -145,18 +145,6 @@ class ToCHWImage(object):
return data
class Fasttext(object):
def __init__(self, path="None", **kwargs):
import fasttext
self.fast_model = fasttext.load_model(path)
def __call__(self, data):
label = data['label']
fast_label = self.fast_model[label]
data['fast_label'] = fast_label
return data
class KeepKeys(object):
def __init__(self, keep_keys, **kwargs):
self.keep_keys = keep_keys

View File

@ -19,16 +19,14 @@ import os
import math
import numpy as np
import cv2
from copy import deepcopy
from functools import cmp_to_key
import onnxruntime as ort
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from .operators import * # noqa: F403
from .operators import preprocess
from . import operators
from .ocr import load_model
class Recognizer(object):
def __init__(self, label_list, task_name, model_dir=None):
@ -47,51 +45,7 @@ class Recognizer(object):
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
model_file_path = os.path.join(model_dir, task_name + ".onnx")
else:
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
def cuda_is_available():
try:
import torch
if torch.cuda.is_available():
return True
except Exception:
return False
return False
# https://github.com/microsoft/onnxruntime/issues/9509#issuecomment-951546580
# Shrink GPU memory after execution
self.run_options = ort.RunOptions()
if cuda_is_available():
options = ort.SessionOptions()
options.enable_cpu_mem_arena = False
cuda_provider_options = {
"device_id": 0, # Use specific GPU
"gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
"arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
}
self.ort_sess = ort.InferenceSession(
model_file_path, options=options,
providers=['CUDAExecutionProvider'],
provider_options=[cuda_provider_options]
)
self.run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
logging.info(f"Recognizer {task_name} uses GPU")
else:
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
self.run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
logging.info(f"Recognizer {task_name} uses CPU")
self.ort_sess, self.run_options = load_model(model_dir, task_name)
self.input_names = [node.name for node in self.ort_sess.get_inputs()]
self.output_names = [node.name for node in self.ort_sess.get_outputs()]
self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
@ -99,30 +53,22 @@ class Recognizer(object):
@staticmethod
def sort_Y_firstly(arr, threashold):
# sort using y1 first and then x1
arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
and arr[j + 1]["x0"] < arr[j]["x0"]:
tmp = deepcopy(arr[j])
arr[j] = deepcopy(arr[j + 1])
arr[j + 1] = deepcopy(tmp)
def cmp(c1, c2):
diff = c1["top"] - c2["top"]
if abs(diff) < threashold:
diff = c1["x0"] - c2["x0"]
return diff
arr = sorted(arr, key=cmp_to_key(cmp))
return arr
@staticmethod
def sort_X_firstly(arr, threashold, copy=True):
# sort using y1 first and then x1
arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
and arr[j + 1]["top"] < arr[j]["top"]:
tmp = deepcopy(arr[j]) if copy else arr[j]
arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
arr[j + 1] = deepcopy(tmp) if copy else tmp
def sort_X_firstly(arr, threashold):
def cmp(c1, c2):
diff = c1["x0"] - c2["x0"]
if abs(diff) < threashold:
diff = c1["top"] - c2["top"]
return diff
arr = sorted(arr, key=cmp_to_key(cmp))
return arr
@staticmethod
@ -145,8 +91,6 @@ class Recognizer(object):
arr[j + 1] = tmp
return arr
return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
@staticmethod
def sort_R_firstly(arr, thr=0):
# sort using y1 first and then x1

View File

@ -177,7 +177,7 @@ class TableStructureRecognizer(Recognizer):
colwm = np.min(colwm) if colwm else 0
crosspage = len(set([b["page_number"] for b in boxes])) > 1
if crosspage:
boxes = Recognizer.sort_X_firstly(boxes, colwm / 2, False)
boxes = Recognizer.sort_X_firstly(boxes, colwm / 2)
else:
boxes = Recognizer.sort_C_firstly(boxes, colwm / 2)
boxes[0]["cn"] = 0

View File

@ -80,13 +80,13 @@ REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download.
# Defaults to the v0.16.0-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0-slim
# Defaults to the v0.17.0-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0
#
# The Docker image of the v0.16.0 edition includes:
# The Docker image of the v0.17.0 edition includes:
# - Built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - BAAI/bge-reranker-v2-m3
@ -138,3 +138,11 @@ TIMEZONE='Asia/Shanghai'
# - `ERROR`
# For example, following line changes the log level of `ragflow.es_conn` to `DEBUG`:
# LOG_LEVELS=ragflow.es_conn=DEBUG
# aliyun OSS configuration
# STORAGE_IMPL=OSS
# ACCESS_KEY=xxx
# SECRET_KEY=eee
# ENDPOINT=http://oss-cn-hangzhou.aliyuncs.com
# REGION=cn-hangzhou
# BUCKET=ragflow65536

View File

@ -78,8 +78,8 @@ The [.env](./.env) file contains important environment variables for Docker.
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.16.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.16.0`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.17.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.17.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`

View File

@ -3,7 +3,7 @@ services:
container_name: ragflow-es-01
profiles:
- elasticsearch
image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}
image: elasticsearch:${STACK_VERSION}
volumes:
- esdata01:/usr/share/elasticsearch/data
ports:
@ -114,6 +114,7 @@ services:
restart: on-failure
redis:
# swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/valkey/valkey:8
image: valkey/valkey:8
container_name: ragflow-redis
command: redis-server --requirepass ${REDIS_PASSWORD} --maxmemory 128mb --maxmemory-policy allkeys-lru

View File

@ -1,5 +1,5 @@
# The RAGFlow team do not actively maintain docker-compose-gpu.yml, so use them at your own risk.
# However, you are welcome to file a pull request to improve it.
# Pull requests to improve it are welcome.
include:
- ./docker-compose-base.yml

View File

@ -37,6 +37,13 @@ redis:
# access_key: 'access_key'
# secret_key: 'secret_key'
# region: 'region'
# oss:
# access_key: '${ACCESS_KEY}'
# secret_key: '${SECRET_KEY}'
# endpoint_url: '${ENDPOINT}'
# region: '${REGION}'
# bucket: '${BUCKET}'
# prefix_path: '${OSS_PREFIX_PATH}'
# azure:
# auth_type: 'sas'
# container_url: 'container_url'
@ -52,6 +59,12 @@ redis:
# factory: 'Tongyi-Qianwen'
# api_key: 'sk-xxxxxxxxxxxxx'
# base_url: ''
# default_models:
# chat_model: 'qwen-plus'
# embedding_model: 'BAAI/bge-large-zh-v1.5@BAAI'
# rerank_model: ''
# asr_model: ''
# image2text_model: ''
# oauth:
# github:
# client_id: xxxxxxxxxxxxxxxxxxxxxxxxx

View File

@ -97,8 +97,8 @@ The [.env](https://github.com/infiniflow/ragflow/blob/main/docker/.env) file con
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.16.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.16.0`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.17.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.17.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`

View File

@ -15,8 +15,8 @@ Please note that some of your settings may consume a significant amount of time.
## 1. Accelerate document indexing
- Use GPU to reduce embedding time.
- On the configuration page of your knowledge base, toggle off **Use RAPTOR to enhance retrieval**.
- The **Knowledge Graph** chunk method (GraphRAG) is time-consuming.
- On the configuration page of your knowledge base, switch off **Use RAPTOR to enhance retrieval**.
- Extracting knowledge graph (GraphRAG) is time-consuming.
- Disable **Auto-keyword** and **Auto-question** on the configuration page of yor knowledge base, as both depend on the LLM.
## 2. Accelerate question answering

View File

@ -1,6 +1,6 @@
{
"label": "Agent Components",
"position": 3,
"position": 20,
"link": {
"type": "generated-index",
"description": "A complete reference for RAGFlow's agent components."

View File

@ -33,7 +33,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Model**: The chat model to use.
- Ensure you set the chat model correctly on the **Model providers** page.
- You can use different models for different components to increase flexibility or improve overall performance.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model.
- **Preset configurations**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
This parameter has three options:
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
@ -58,7 +58,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
:::tip NOTE
- It is not necessary to stick with the same model for all components. If a specific model is not performing well for a particular task, consider using a different one.
- If you are uncertain about the mechanism behind **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**, you can simply choose one of the three options of **Freedom**.
- If you are uncertain about the mechanism behind **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**, simply choose one of the three options of **Preset configurations**.
:::
### Message window size

View File

@ -24,7 +24,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Model**: The chat model to use.
- Ensure you set the chat model correctly on the **Model providers** page.
- You can use different models for different components to increase flexibility or improve overall performance.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model.
- **Preset configurations**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
This parameter has three options:
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
@ -49,7 +49,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
:::tip NOTE
- It is not necessary to stick with the same model for all components. If a specific model is not performing well for a particular task, consider using a different one.
- If you are uncertain about the mechanism behind **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**, you can simply choose one of the three options of **Freedom**.
- If you are uncertain about the mechanism behind **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**, simply choose one of the three options of **Preset configurations**.
:::
### System prompt
@ -76,6 +76,11 @@ When writing suggestions, pay attention to whether there are ways to improve the
Where `{source_text}` and `{target_lang}` are global variables defined by the **Begin** component, while `{translation_1}` is the output of another **Generate** component with the component ID **Translate directly**.
:::danger IMPORTANT
A **Generate** component relies on keys (variables) to specify its data inputs. Its immediate upstream component is *not* necessarily its data input, and the arrows in the workflow indicate *only* the processing sequence. Keys in a **Generate** component are used in conjunction with the system prompt to specify data inputs for the LLM. Use a forward slash `/` to show the keys to use.
:::
### Cite
This toggle sets whether to cite the original text as reference.
@ -95,19 +100,6 @@ This feature is used for multi-turn dialogue *only*.
:::
### Key (Variable)
:::danger IMPORTANT
A **Generate** component relies on keys (variables) to specify its data inputs. Its immediate upstream component is *not* necessarily its data input, and the arrows in the workflow indicate *only* the processing sequence.
:::
![variable_settings](https://github.com/user-attachments/assets/cb024c9e-264a-43ff-9ee7-8649afd571b0)
Keys in a **Generate** component are used in conjunction with the system prompt to specify data inputs for the LLM. As shown in the above screenshot, the values are categorized into two groups:
- **Component Output**: The value of the key should be a component ID.
- **Begin Input**: The value of the key should be the name of a global variable defined in the **Begin** component.
## Examples
You can explore our three-step interpreter agent template, where a **Generate** component (component ID: **Reflect**) takes three global variables:

View File

@ -34,7 +34,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Model**: The chat model to use.
- Ensure you set the chat model correctly on the **Model providers** page.
- You can use different models for different components to increase flexibility or improve overall performance.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model.
- **Preset configurations**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
This parameter has three options:
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
@ -59,7 +59,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
:::tip NOTE
- It is not necessary to stick with the same model for all components. If a specific model is not performing well for a particular task, consider using a different one.
- If you are uncertain about the mechanism behind **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**, you can simply choose one of the three options of **Freedom**.
- If you are uncertain about the mechanism behind **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**, simply choose one of the three options of **Preset**.
:::

View File

@ -30,7 +30,7 @@ RAGFlow employs a combination of weighted keyword similarity and weighted vector
Defaults to 0.2.
### Keywords similarity weight
### Keyword similarity weight
This parameter sets the weight of keyword similarity in the combined similarity score. The total of the two weights must equal 1.0. Its default value is 0.7, which means the weight of vector similarity in the combined search is 1 - 0.7 = 0.3.

View File

@ -16,7 +16,7 @@ A **Rewrite** component uses a specified LLM to rewrite a user query from the **
A **Rewrite** component is essential when you need to optimize a user query based on the context of previous conversations. It is usually the upstream component of a **Retrieval** component.
:::tip NOTE
See also the [Keyword](https://ragflow.io/docs/dev/keyword_component) component, a similar component used for multi-turn optimization.
See also the [Keyword](./keyword.mdx) component, a similar component used for multi-turn optimization.
:::
## Configurations
@ -32,7 +32,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Model**: The chat model to use.
- Ensure you set the chat model correctly on the **Model providers** page.
- You can use different models for different components to increase flexibility or improve overall performance.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model.
- **Preset configurations**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
This parameter has three options:
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
@ -57,7 +57,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
:::tip NOTE
- It is not necessary to stick with the same model for all components. If a specific model is not performing well for a particular task, consider using a different one.
- If you are uncertain about the mechanism behind **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**, you can simply choose one of the three options of **Freedom**.
- If you are uncertain about the mechanism behind **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**, simply choose one of the three options of **Preset configurations**.
:::

View File

@ -13,7 +13,7 @@ A **Switch** component evaluates conditions based on the output of specific comp
## Scenarios
A **Switch** component is essential for condition-based direction of execution flow. While it shares similarities with the [Categorize](https://ragflow.io/docs/dev/categorize_component) component, which is also used in multi-pronged strategies, the key distinction lies in their approach: the evaluation of the **Switch** component is rule-based, whereas the **Categorize** component involves AI and uses an LLM for decision-making.
A **Switch** component is essential for condition-based direction of execution flow. While it shares similarities with the [Categorize](./categorize.mdx) component, which is also used in multi-pronged strategies, the key distinction lies in their approach: the evaluation of the **Switch** component is rule-based, whereas the **Categorize** component involves AI and uses an LLM for decision-making.
## Configurations

View File

@ -5,7 +5,7 @@ slug: /text2sql_agent
# Create a Text2SQL agent
Build a Text2SQL agent leverging RAGFlow's RAG capabilities. Contributed by @TeslaZY.
Build a Text2SQL agent leveraging RAGFlow's RAG capabilities. Contributed by @TeslaZY.
## Scenario
@ -343,7 +343,7 @@ Synonyms: laptop computer,laptop pc
3. Create a Retrieval node and name it Thesaurus; create an ExeSQL node.
4. Configure the Q->SQL, DDL, DB_Description, and TextSQL_Thesaurus knowledge bases. Please refer to the following:
![Configure Retrieval node](https://github.com/user-attachments/assets/25d67b01-954e-4eb4-87f5-c54262cf9a3e)
5. Configure the Generate node, named LLMs prompt:
5. Configure the Generate node, named LLM's prompt:
- Add this content to the prompt provided by the template to provide the thesaurus content to the LLM:
```plaintext
## You may use the following Thesaurus statements. For example, what I ask is from Synonyms, you must use Standard noun to generate SQL. Use responses to past questions also to guide you: {sql_thesaurus}.
@ -383,7 +383,7 @@ Since version 0.15.0, ragflow has introduced step-by-step execution for Agent co
Find all customers who has bought a mobile phone
```
![](https://github.com/user-attachments/assets/a6270188-72af-4be7-a192-efddb611f3a4)
3. As the image shows, no matching information was retrieved from the Q->SQL knowledge base, yet a similar question exists within the database. Adjust the Rerank model, "Similarity threshold," or "Keywords similarity weight" accordingly to return relevant content.
3. As the image shows, no matching information was retrieved from the Q->SQL knowledge base, yet a similar question exists within the database. Adjust the Rerank model, "Similarity threshold," or "Keyword similarity weight" accordingly to return relevant content.
![](https://github.com/user-attachments/assets/0592c45b-9276-465d-93d3-2530b2fb81c0)
![](https://github.com/user-attachments/assets/9e72be3a-41af-4ef2-863d-03757ddfdde6)

View File

@ -0,0 +1,8 @@
{
"label": "Configure a knowledge base",
"position": 0,
"link": {
"type": "generated-index",
"description": "Guides on configuring a knowledge base."
}
}

View File

@ -42,9 +42,9 @@ RAGFlow offers multiple chunking template to facilitate chunking files of differ
| **Template** | Description | File format |
|--------------|-----------------------------------------------------------------------|------------------------------------------------------|
| General | Files are consecutively chunked based on a preset chunk token number. | DOCX, EXCEL, PPT, PDF, TXT, JPEG, JPG, PNG, TIF, GIF |
| Q&A | | EXCEL, CSV/TXT |
| Q&A | | XLSX, CSV/TXT |
| Manual | | PDF |
| Table | | EXCEL, CSV/TXT |
| Table | | XLSX, CSV/TXT |
| Paper | | PDF |
| Book | | DOCX, PDF, TXT |
| Laws | | DOCX, PDF, TXT |
@ -52,7 +52,7 @@ RAGFlow offers multiple chunking template to facilitate chunking files of differ
| Picture | | JPEG, JPG, PNG, TIF, GIF |
| One | The entire document is chunked as one. | DOCX, EXCEL, PDF, TXT |
You can also change the chunk template for a particular file on the **Datasets** page.
You can also change a file's chunk method on the **Datasets** page.
![change chunk method](https://github.com/infiniflow/ragflow/assets/93570324/ac116353-2793-42b2-b181-65e7082bed42)
@ -128,7 +128,7 @@ RAGFlow uses multiple recall of both full-text search and vector search in its c
## Search for knowledge base
As of RAGFlow v0.16.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
As of RAGFlow v0.17.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)

View File

@ -0,0 +1,84 @@
---
sidebar_position: 2
slug: /construct_knowledge_graph
---
# Construct knowledge graph
Generate a knowledge graph for your knowledge base.
---
To enhance multi-hop question-answering, RAGFlow adds a knowledge graph construction step between data extraction and indexing, as illustrated below. This step creates additional chunks from existing ones generated by your specified chunk method.
![Image](https://github.com/user-attachments/assets/1ec21d8e-f255-4d65-9918-69b72dfa142b)
As of v0.17.0, RAGFlow supports constructing a knowledge graph on a knowledge base, allowing you to construct a *unified* graph across multiple files within your knowledge base. When a newly uploaded file starts parsing, the generated graph will automatically update.
:::danger WARNING
Constructing a knowledge graph requires significant memory, computational resources, and tokens.
:::
## Scenarios
Knowledge graphs are especially useful for multi-hop question-answering involving *nested* logic. They outperform traditional extraction approaches when you are performing question answering on books or works with complex entities and relationships.
## Prerequisites
The system's default chat model is used to generate knowledge graph. Before proceeding, ensure that you have a chat model properly configured:
![Image](https://github.com/user-attachments/assets/6bc34279-68c3-4d99-8d20-b7bd1dafc1c1)
## Configurations
### Entity types (*Required*)
The types of the entities to extract from your knowledge base. The default types are: **organization**, **person**, **event**, and **category**. Add or remove types to suit your specific knowledge base.
### Method
The method to use to construct knowledge graph:
- **General**: Use prompts provided by [GraphRAG](https://github.com/microsoft/graphrag) to extract entities and relationships.
- **Light**: (Default) Use prompts provided by [LightRAG](https://github.com/HKUDS/LightRAG) to extract entities and relationships. This option consumes fewer tokens, less memory, and fewer computational resources.
### Entity resolution
Whether to enable entity resolution. You can think of this as an entity deduplication switch. When enabled, the LLM will combine similar entities - e.g., '2025' and 'the year of 2025', or 'IT' and 'Information Technology' - to construct a more effective graph.
- (Default) Disable entity resolution.
- Enable entity resolution. This option consumes more tokens.
### Community report generation
In a knowledge graph, a community is a cluster of entities linked by relationships. You can have the LLM generate an abstract for each community, known as a community report. See [here](https://www.microsoft.com/en-us/research/blog/graphrag-improving-global-search-via-dynamic-community-selection/) for more information. This indicates whether to generate community reports:
- Generate community reports. This option consumes more tokens.
- (Default) Do not generate community reports.
## Procedure
1. On the **Configuration** page of your knowledge base, switch on **Extract knowledge graph** or adjust its settings as needed, and click **Save** to confirm your changes.
- *The default knowledge graph configurations for your knowledge base are now set and files uploaded from this point onward will automatically use these settings during parsing.*
- *Files parsed before this update will retain their original knowledge graph settings.*
2. The knowledge graph of your knowledge base does *not* automatically update *until* a newly uploaded file is parsed.
_A **Knowledge graph** entry appears under **Configuration** once a knowledge graph is created._
3. Click **Knowledge graph** to view the details of the generated graph.
## Frequently asked questions
### Can I have different knowledge graph settings for different files in my knowledge base?
Yes, you can. Just one graph is generated per knowledge base. The smaller graphs of your files will be *combined* into one big, unified graph at the end of the graph extraction process.
### Does the knowledge graph automatically update when I remove a related file?
Nope. The knowledge graph does *not* automatically update *until* a newly uploaded graph is parsed.
### How to remove a generated knowledge graph?
To remove the generated knowledge graph, delete all related files in your knowledge base. Although the **Knowledge graph** entry will still be visible, the graph has actually been deleted.

View File

@ -0,0 +1,82 @@
---
sidebar_position: 10
slug: /run_retrieval_test
---
# Run retrieval test
Conduct a retrieval test on your knowledge base to check whether the intended chunks can be retrieved.
---
After your files are uploaded and parsed, it is recommended that you run a retrieval test before proceeding with the chat assistant configuration. Just like fine-tuning a precision instrument, RAGFlow requires careful tuning to deliver optimal question answering performance. Your knowledge base settings, chat assistant configurations, and the specified large and small models can all significantly impact the final results. Running a retrieval test verifies whether the intended chunks can be recovered, allowing you to quickly identify areas for improvement or pinpoint any issue that needs addressing. For instance, when debugging your question answering system, if you know that the correct chunks can be retrieved, you can focus your efforts elsewhere.
During a retrieval test, chunks created from your specified chunk method are retrieved using a hybrid search. This search combines weighted keyword similarity with either weighted vector cosine similarity or a weighted reranking score, depending on your settings:
- If no rerank model is selected, weighted keyword similarity will be combined with weighted vector cosine similarity.
- If a rerank model is selected, weighted keyword similarity will be combined with weighted vector reranking score.
In contrast, chunks created from [knowledge graph construction](./construct_knowledge_graph.md) are retrieved solely using vector cosine similarity.
## Prerequisites
- Your files are uploaded and successfully parsed before running a retrieval test.
- A knowledge graph must be successfully built before enabling **Use knowledge graph**.
## Configurations
### Similarity threshold
This sets the bar for retrieving chunks: chunks with similarities below the threshold will be filtered out. By default, the threshold is set to 0.2.
### Keyword similarity weight
This sets the weight of keyword similarity in the combined similarity score, whether used with vector cosine similarity or a reranking score. By default, it is set to 0.7, making the weight of the other component 0.3 (1 - 0.7).
### Rerank model
- If left empty, RAGFlow will use a combination of weighted keyword similarity and weighted vector cosine similarity.
- If a rerank model is selected, weighted keyword similarity will be combined with weighted vector reranking score.
:::danger IMPORTANT
Using a rerank model will significantly increase the time to receive a response.
:::
### Use knowledge graph
In a knowledge graph, an entity description, a relationship description, or a community report each exists as an independent chunk. This switch indicates whether to add these chunks to the retrieval.
The switch is disabled by default. When enabled, RAGFlow performs the following during a retrieval test:
1. Extract entities and entity types from your query using the LLM.
2. Retrieve top N entities from the graph based on their PageRank values, using the extracted entity types.
3. Find similar entities and their N-hop relationships from the graph using the embeddings of the extracted query entities.
4. Retrieve similar relationships from the graph using the query embedding.
5. Rank these retrieved entities and relationships by multiplying each one's PageRank value with its similarity score to the query, returning the top n as the final retrieval.
6. Retrieve the report for the community involving the most entities in the final retrieval.
*The retrieved entity descriptions, relationship descriptions, and the top 1 community report are sent to the LLM for content generation.*
:::danger IMPORTANT
Using a knowledge graph in a retrieval test will significantly increase the time to receive a response.
:::
### Test text
This field is where you put in your testing query.
## Procedure
1. Navigate to the **Retrieval testing** page of your knowledge base, enter your query in **Test text**, and click **Testing** to run the test.
2. If the results are unsatisfactory, tune the options listed in the Configuration section and rerun the test.
*The following is a screenshot of a retrieval test conducted without using knowledge graph. It demonstrates a hybrid search combining weighted keyword similarity and weighted vector cosine similarity. The overall hybrid similarity score is 28.56, calculated as 25.17 (term similarity score) x 0.7 + 36.49 (vector similarity score) x 0.3:*
![Image](https://github.com/user-attachments/assets/541554d4-3f3e-44e1-954b-0ae77d7372c6)
*The following is a screenshot of a retrieval test conducted using a knowledge graph. It shows that only vector similarity is used for knowledge graph-generated chunks:*
![Image](https://github.com/user-attachments/assets/30a03091-0f7b-4058-901a-f4dc5ca5aa6b)
## Frequently asked questions
### Is an LLM used when the Use Knowledge Graph switch is enabled?
Yes, your LLM will be involved to analyze your query and extract the related entities and relationship from the knowledge graph. This also explains why additional tokens and time will be consumed.

View File

@ -0,0 +1,22 @@
---
sidebar_position: 1
slug: /set_metada
---
# Set metadata
Add metadata to an uploaded file
---
On the **Dataset** page of your knowledge base, you can add metadata to any uploaded file. This approach enables you to 'tag' additional information like URL, author, date, and more to an existing file or dataset. In an AI-powered chat, such information will be sent to the LLM with the retrieved chunks for content generation.
For example, if you have a dataset of HTML files and want the LLM to cite the source URL when responding to your query, add a `"url"` parameter to each file's metadata.
![Image](https://github.com/user-attachments/assets/78cb5035-e96c-43f9-82d7-8fef1b68c843)
:::tip NOTE
Ensure that your metadata is in JSON format; otherwise, your updates will not be applied.
:::
![Image](https://github.com/user-attachments/assets/379cf2c5-4e37-4b79-8aeb-53bf8e01d326)

View File

@ -59,20 +59,20 @@ success
### 2. Ensure Ollama is accessible
If RAGFlow runs in Docker and Ollama runs on the same host machine, check if ollama is accessiable from inside the RAGFlow container:
If RAGFlow runs in Docker and Ollama runs on the same host machine, check if ollama is accessible from inside the RAGFlow container:
```bash
sudo docker exec -it ragflow-server bash
root@8136b8c3e914:/ragflow# curl http://host.docker.internal:11434/
Ollama is running
```
If RAGFlow runs from source code and Ollama runs on the same host machine, check if ollama is accessiable from RAGFlow host machine:
If RAGFlow runs from source code and Ollama runs on the same host machine, check if ollama is accessible from RAGFlow host machine:
```bash
curl http://localhost:11434/
Ollama is running
```
If RAGFlow and Ollama run on different machines, check if ollama is accessiable from RAGFlow host machine:
If RAGFlow and Ollama run on different machines, check if ollama is accessible from RAGFlow host machine:
```bash
curl http://${IP_OF_OLLAMA_MACHINE}:11434/
Ollama is running

View File

@ -12,8 +12,8 @@ A guide explaining how to build a RAGFlow Docker image from its source code. By
## Target Audience
- Developers who have added new features or modified the existing code and require a Docker image to view and debug their changes.
- Developers looking to build a RAGFlow Docker image for an ARM64 platform.
- Testers looking to explore the latest features of RAGFlow in a Docker image.
- Developers seeking to build a RAGFlow Docker image for an ARM64 platform.
- Testers aiming to explore the latest features of RAGFlow in a Docker image.
## Prerequisites
@ -21,6 +21,7 @@ A guide explaining how to build a RAGFlow Docker image from its source code. By
- RAM &ge; 16 GB
- Disk &ge; 50 GB
- Docker &ge; 24.0.0 & Docker Compose &ge; v2.26.1
- For ARM64 platforms, please upgrade the `xgboost` version in **pyproject.toml** to `1.6.0` and ensure **unixODBC** is properly installed.
## Build a Docker image
@ -41,6 +42,8 @@ While we also test RAGFlow on ARM64 platforms, we do not maintain RAGFlow Docker
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv run download_deps.py
docker build -f Dockerfile.deps -t infiniflow/ragflow_deps .
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
@ -57,12 +60,41 @@ While we also test RAGFlow on ARM64 platforms, we do not maintain RAGFlow Docker
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
pip3 install huggingface_hub nltk
python3 download_deps.py
uv run download_deps.py
docker build -f Dockerfile.deps -t infiniflow/ragflow_deps .
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
</TabItem>
</Tabs>
## Launch a RAGFlow Service from Docker for MacOS
After building the infiniflow/ragflow:nightly-slim image, you are ready to launch a fully-functional RAGFlow service with all the required components, such as Elasticsearch, MySQL, MinIO, Redis, and more.
## Example: Apple M2 Pro (Sequoia)
1. Edit Docker Compose Configuration
Open the `docker/docker-compose-base.yml` file. Find the `infinity.image` setting and change the image reference from `infiniflow/infinity:v0.6.0-dev3` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
```yaml
infinity:
container_name: ragflow-infinity
image: infiniflow/ragflow:nightly-slim # here
volumes:
- ...
- ...
...
```
2. Launch the Service
```bash
cd docker
$ docker compose -f docker-compose-macos.yml up -d
```
3. Access the RAGFlow Service
Once the setup is complete, open your web browser and navigate to http://127.0.0.1 or your server's \<IP_ADDRESS\>; (the default port is \<PORT\> = 80). You will be directed to the RAGFlow welcome page. Enjoy!🍻

View File

@ -3,7 +3,7 @@ sidebar_position: 2
slug: /launch_ragflow_from_source
---
# Launch the RAGFlow Service from Source
# Launch a RAGFlow Service from Source
A guide explaining how to set up a RAGFlow service from its source code. By following this guide, you'll be able to debug using the source code.

View File

@ -81,4 +81,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.16.0, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.17.0, bulk download is not supported, nor can you download an entire folder.

View File

@ -46,7 +46,7 @@ You start an AI conversation by creating an assistant.
4. Update **Model Setting**:
- In **Model**: you select the chat model. Though you have selected the default chat model in **System Model Settings**, RAGFlow allows you to choose an alternative chat model for your dialogue.
- **Freedom** refers to the level that the LLM improvises. From **Improvise**, **Precise**, to **Balance**, each freedom level corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
- **Preset configurations** refers to the level that the LLM improvises. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
- **Temperature**: Level of the prediction randomness of the LLM. The higher the value, the more creative the LLM is.
- **Top P** is also known as "nucleus sampling". See [here](https://en.wikipedia.org/wiki/Top-p_sampling) for more information.
- **Max Tokens**: The maximum length of the LLM's responses. Note that the responses may be curtailed if this value is set too low.

View File

@ -62,16 +62,16 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
git clone https://github.com/infiniflow/ragflow.git
```
2. Switch to the latest, officially published release, e.g., `v0.16.0`:
2. Switch to the latest, officially published release, e.g., `v0.17.0`:
```bash
git checkout -f v0.16.0
git checkout -f v0.17.0
```
3. Update **ragflow/docker/.env** as follows:
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0
RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0
```
4. Update the RAGFlow image and restart RAGFlow:

View File

@ -39,7 +39,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.16.0 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
RAGFlow v0.17.0 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs
defaultValue="linux"
@ -178,18 +178,18 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow
$ git checkout -f v0.16.0
$ cd ragflow/docker
$ git checkout -f v0.17.0
```
3. Use the pre-built Docker images and start up the server:
:::tip NOTE
The command below downloads the `v0.16.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download an RAGFlow edition different from `v0.15.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.1` for the full edition `v0.15.1`.
The command below downloads the `v0.17.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.17.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` for the full edition `v0.17.0`.
:::
```bash
$ docker compose -f docker/docker-compose.yml up -d
$ docker compose -f docker-compose.yml up -d
```
```mdx-code-block
@ -198,8 +198,8 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
| RAGFlow image tag | Image size (GB) | Has embedding models and Python packages? | Stable? |
| ------------------- | --------------- | ----------------------------------------- | ------------------------ |
| `v0.16.0` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.16.0-slim` | &approx;2 | ❌ | Stable release |
| `v0.17.0` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.17.0-slim` | &approx;2 | ❌ | Stable release |
| `nightly` | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| `nightly-slim` | &approx;2 | ❌ | *Unstable* nightly build |
@ -223,9 +223,6 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anomaly` error because, at that moment, your RAGFlow may not be fully initialized.

View File

@ -22,6 +22,35 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
---
### Where to find the version of RAGFlow? How to interpret it?
You can find the RAGFlow version number on the **System** page of the UI:
![Image](https://github.com/user-attachments/assets/20cf7213-2537-4e18-a88c-4dadf6228c6b)
If you build RAGFlow from source, the version number is also in the system log:
```
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
2025-02-18 10:10:43,835 INFO 1445658 RAGFlow version: v0.17.0-50-g6daae7f2 full
```
Where:
- `v0.17.0`: The officially published release.
- `50`: The number of git commits since the official release.
- `g6daae7f2`: `g` is the prefix, and `6daae7f2` is the first seven characters of the current commit ID.
- `full`/`slim`: The RAGFlow edition.
- `full`: The full RAGFlow edition.
- `slim`: The RAGFlow edition without embedding models and Python packages.
---
### Why does it take longer for RAGFlow to parse a document than LangChain?
We put painstaking effort into document pre-processing tasks like layout analysis, table structure recognition, and OCR (Optical Character Recognition) using our vision models. This contributes to the additional time required.
@ -42,10 +71,10 @@ We officially support x86 CPU and nvidia GPU. While we also test RAGFlow on ARM6
### Which embedding models can be deployed locally?
RAGFlow offers two Docker image editions, `v0.16.0-slim` and `v0.16.0`:
RAGFlow offers two Docker image editions, `v0.17.0-slim` and `v0.17.0`:
- `infiniflow/ragflow:v0.16.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.16.0`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.17.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.17.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`
@ -87,7 +116,7 @@ Yes, we support enhancing user queries based on existing context of an ongoing c
1. On the **Chat** page, hover over the desired assistant and select **Edit**.
2. In the **Chat Configuration** popup, click the **Prompt Engine** tab.
3. Toggle on **Multi-turn optimization** to enable this feature.
3. Switch on **Multi-turn optimization** to enable this feature.
---
@ -316,13 +345,13 @@ Your IP address or port number may be incorrect. If you are using the default co
A correct Ollama IP address and port is crucial to adding models to Ollama:
- If you are on demo.ragflow.io, ensure that the server hosting Ollama has a publicly accessible IP address. Note that 127.0.0.1 is not a publicly accessible IP address.
- If you deploy RAGFlow locally, ensure that Ollama and RAGFlow are in the same LAN and can comunicate with each other.
- If you deploy RAGFlow locally, ensure that Ollama and RAGFlow are in the same LAN and can communicate with each other.
See [Deploy a local LLM](../guides/deploy_local_llm.mdx) for more information.
---
#### Do you offer examples of using deepdoc to parse PDF or other files?
#### Do you offer examples of using DeepDoc to parse PDF or other files?
Yes, we do. See the Python files under the **rag/app** folder.

View File

@ -9,6 +9,154 @@ A complete reference for RAGFlow's RESTful API. Before proceeding, please ensure
---
## OpenAI-Compatible API
---
### Create chat completion
**POST** `/api/v1/chats_openai/{chat_id}/chat/completions`
Creates a model response for a given chat conversation.
This API follows the same request and response format as OpenAI's API. It allows you to interact with the model in a manner similar to how you would with [OpenAI's API](https://platform.openai.com/docs/api-reference/chat/create).
#### Request
- Method: POST
- URL: `/api/v1/chats_openai/{chat_id}/chat/completions`
- Headers:
- `'content-Type: application/json'`
- `'Authorization: Bearer <YOUR_API_KEY>'`
- Body:
- `"model"`: `string`
- `"messages"`: `object list`
- `"stream"`: `boolean`
##### Request example
```bash
curl --request POST \
--url http://{address}/api/v1/chats_openai/{chat_id}/chat/completions \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <YOUR_API_KEY>' \
--data '{
"model": "model",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"stream": true
}'
```
##### Request Parameters
- `model` (*Body parameter*) `string`, *Required*
The model used to generate the response. The server will parse this automatically, so you can set it to any value for now.
- `messages` (*Body parameter*) `list[object]`, *Required*
A list of historical chat messages used to generate the response. This must contain at least one message with the `user` role.
- `stream` (*Body parameter*) `boolean`
Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
#### Response
Stream:
```json
{
"id": "chatcmpl-3a9c3572f29311efa69751e139332ced",
"choices": [
{
"delta": {
"content": "This is a test. If you have any specific questions or need information, feel",
"role": "assistant",
"function_call": null,
"tool_calls": null
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 1740543996,
"model": "model",
"object": "chat.completion.chunk",
"system_fingerprint": "",
"usage": null
}
// omit duplicated information
{"choices":[{"delta":{"content":" free to ask, and I will do my best to provide an answer based on","role":"assistant"}}]}
{"choices":[{"delta":{"content":" the knowledge I have. If your question is unrelated to the provided knowledge base,","role":"assistant"}}]}
{"choices":[{"delta":{"content":" I will let you know.","role":"assistant"}}]}
// the last chunk
{
"id": "chatcmpl-3a9c3572f29311efa69751e139332ced",
"choices": [
{
"delta": {
"content": null,
"role": "assistant",
"function_call": null,
"tool_calls": null
},
"finish_reason": "stop",
"index": 0,
"logprobs": null
}
],
"created": 1740543996,
"model": "model",
"object": "chat.completion.chunk",
"system_fingerprint": "",
"usage": {
"prompt_tokens": 18,
"completion_tokens": 225,
"total_tokens": 243
}
}
```
Non-stream:
```json
{
"choices":[
{
"finish_reason":"stop",
"index":0,
"logprobs":null,
"message":{
"content":"This is a test. If you have any specific questions or need information, feel free to ask, and I will do my best to provide an answer based on the knowledge I have. If your question is unrelated to the provided knowledge base, I will let you know.",
"role":"assistant"
}
}
],
"created":1740543499,
"id":"chatcmpl-3a9c3572f29311efa69751e139332ced",
"model":"model",
"object":"chat.completion",
"usage":{
"completion_tokens":246,
"completion_tokens_details":{
"accepted_prediction_tokens":246,
"reasoning_tokens":18,
"rejected_prediction_tokens":0
},
"prompt_tokens":18,
"total_tokens":264
}
}
```
Failure:
```json
{
"code": 102,
"message": "The last content of this conversation is not from user."
}
```
## DATASET MANAGEMENT
---
@ -2171,18 +2319,19 @@ Creates a session with an agent.
#### Request
- Method: POST
- URL: `/api/v1/agents/{agent_id}/sessions`
- URL: `/api/v1/agents/{agent_id}/sessions?user_id={user_id}`
- Headers:
- `'content-Type: application/json'`
- `'content-Type: application/json' or 'multipart/form-data'`
- `'Authorization: Bearer <YOUR_API_KEY>'`
- Body:
- the required parameters:`str`
- the optional parameters:`str`
- `"user_id"`: `string`
The optional user-defined ID.
- other parameters:
The parameters specified in the **Begin** component.
##### Request example
If `begin` component in the agent doesn't have required parameters:
If the **Begin** component in your agent does not take required parameters:
```bash
curl --request POST \
--url http://{address}/api/v1/agents/{agent_id}/sessions \
@ -2191,7 +2340,9 @@ curl --request POST \
--data '{
}'
```
If `begin` component in the agent has required parameters:
If the **Begin** component in your agent takes required parameters:
```bash
curl --request POST \
--url http://{address}/api/v1/agents/{agent_id}/sessions \
@ -2203,10 +2354,22 @@ curl --request POST \
}'
```
If the **Begin** component in your agent takes required file parameters:
```bash
curl --request POST \
--url http://{address}/api/v1/agents/{agent_id}/sessions?user_id={user_id} \
--header 'Content-Type: multipart/form-data' \
--header 'Authorization: Bearer <YOUR_API_KEY>' \
--form '<FILE_KEY>=@./test1.png'
```
##### Request parameters
- `agent_id`: (*Path parameter*)
The ID of the associated agent.
- `user_id`: (*Filter parameter*)
The optional user-defined ID for parsing docs (especially images) when creating a session while uploading files.
#### Response
@ -2358,7 +2521,7 @@ Asks a specified agent a question to start an AI-powered conversation.
- `"user_id"`: `string`(optional)
- other parameters: `string`
##### Request example
If the `begin` component doesn't have parameters, the following code will create a session.
If the **Begin** component does not take parameters, the following code will create a session.
```bash
curl --request POST \
--url http://{address}/api/v1/agents/{agent_id}/completions \
@ -2368,7 +2531,7 @@ curl --request POST \
{
}'
```
If the `begin` component have parameters, the following code will create a session.
If the **Begin** component takes parameters, the following code will create a session.
```bash
curl --request POST \
--url http://{address}/api/v1/agents/{agent_id}/completions \
@ -2394,7 +2557,6 @@ curl --request POST \
}'
```
##### Request Parameters
- `agent_id`: (*Path parameter*), `string`
@ -2410,9 +2572,10 @@ curl --request POST \
- `"user_id"`: (*Body parameter*), `string`
The optional user-defined ID. Valid *only* when no `session_id` is provided.
- Other parameters: (*Body Parameter*)
The parameters in the begin component.
Parameters specified in the **Begin** component.
#### Response
success without `session_id` provided and with no parameters in the `begin` component:
success without `session_id` provided and with no parameters specified in the **Begin** component:
```json
data:{
"code": 0,
@ -2430,7 +2593,8 @@ data:{
"data": true
}
```
Success without `session_id` provided and with parameters in the `begin` component:
Success without `session_id` provided and with parameters specified in the **Begin** component:
```json
data:{
@ -2466,7 +2630,7 @@ data:{
}
data:
```
Success with parameters in the `begin` component:
Success with parameters specified in the **Begin** component:
```json
data:{
"code": 0,
@ -2545,7 +2709,6 @@ data:{
}
```
Failure:
```json

View File

@ -13,10 +13,63 @@ Run the following command to download the Python SDK:
```bash
pip install ragflow-sdk
```
:::
---
## OpenAI-Compatible API
---
### Create chat completion
Creates a model response for the given historical chat conversation via OpenAI's API.
#### Parameters
##### model: `str`, *Required*
The model used to generate the response. The server will parse this automatically, so you can set it to any value for now.
##### messages: `list[object]`, *Required*
A list of historical chat messages used to generate the response. This must contain at least one message with the `user` role.
##### stream: `boolean`
Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
#### Returns
- Success: Response [message](https://platform.openai.com/docs/api-reference/chat/create) like OpenAI
- Failure: `Exception`
#### Examples
```python
from openai import OpenAI
model = "model"
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
completion = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
],
stream=True
)
stream = True
if stream:
for chunk in completion:
print(chunk)
else:
print(completion.choices[0].message.content)
```
## DATASET MANAGEMENT
---
@ -262,6 +315,7 @@ A dictionary representing the attributes to update, with the following keys:
- `"email"`: Email
- `"knowledge_graph"`: Knowledge Graph
Ensure your LLM is properly configured on the **Settings** page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
- `"meta_fields"`: `dict[str, Any]` The meta fields of the dataset.
#### Returns
@ -1461,7 +1515,7 @@ In streaming mode, not all responses include a reference, as this depends on the
##### question: `str`
The question to start an AI-powered conversation. If the `begin` component takes parameters, a question is not required.
The question to start an AI-powered conversation. Ifthe **Begin** component takes parameters, a question is not required.
##### stream: `bool`

View File

@ -12,7 +12,7 @@ A complete list of models supported by RAGFlow, which will continue to expand.
<APITable>
```
| Provider | Chat | Embedding | Rerank | Img2txt | Sequence2txt | TTS |
| Provider | Chat | Embedding | Rerank | Img2txt | Speech2txt | TTS |
| --------------------- | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ |
| Anthropic | :heavy_check_mark: | | | | | |
| Azure-OpenAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | |
@ -35,15 +35,18 @@ A complete list of models supported by RAGFlow, which will continue to expand.
| LM-Studio | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| MiniMax | :heavy_check_mark: | | | | | |
| Mistral | :heavy_check_mark: | :heavy_check_mark: | | | | |
| ModelScope | :heavy_check_mark: | | | | | |
| Moonshot | :heavy_check_mark: | | | :heavy_check_mark: | | |
| novita.ai | :heavy_check_mark: | | | | | |
| NVIDIA | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| Ollama | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| OpenAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| OpenAI-API-Compatible | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| VLLM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| OpenRouter | :heavy_check_mark: | | | :heavy_check_mark: | | |
| PerfXCloud | :heavy_check_mark: | :heavy_check_mark: | | | | |
| Replicate | :heavy_check_mark: | :heavy_check_mark: | | | | |
| PPIO | :heavy_check_mark: | | | | | |
| SILICONFLOW | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| StepFun | :heavy_check_mark: | | | | | |
| Tencent Hunyuan | :heavy_check_mark: | | | | | |

View File

@ -7,6 +7,45 @@ slug: /release_notes
Key features, improvements and bug fixes in the latest releases.
## v0.16.0
Released on February 6, 2025.
### New features
- Supports DeepSeek R1 and DeepSeek V3.
- GraphRAG refactor: Knowledge graph is dynamically built on an entire knowledge base (dataset) rather than on an individual file, and automatically updated when a newly uploaded file starts parsing. See [here](https://ragflow.io/docs/dev/construct_knowledge_graph).
- Adds an **Iteration** agent component and a **Research report generator** agent template. See [here](./guides/agent/agent_component_reference/iteration.mdx).
- New UI language: Portuguese.
- Allows setting metadata for a specific file in a knowledge base to enhance AI-powered chats. See [here](./guides/configure_knowledge_base/set_metadata.md).
- Upgrades RAGFlow's document engine [Infinity](https://github.com/infiniflow/infinity) to v0.6.0.dev3.
- Supports GPU acceleration for DeepDoc (see [docker-compose-gpu.yml](https://github.com/infiniflow/ragflow/blob/main/docker/docker-compose-gpu.yml)).
- Supports creating and referencing a **Tag** knowledge base as a key milestone towards bridging the semantic gap between query and response.
:::danger IMPORTANT
The **Tag knowledge base** feature is *unavailable* on the [Infinity](https://github.com/infiniflow/infinity) document engine.
:::
### Documentation
#### Added documents
- [Construct knowledge graph](./guides/configure_knowledge_base/construct_knowledge_graph.md)
- [Set metadata](./guides/configure_knowledge_base/set_metadata.md)
- [Begin component](./guides/agent/agent_component_reference/begin.mdx)
- [Generate component](./guides/agent/agent_component_reference/generate.mdx)
- [Interact component](./guides/agent/agent_component_reference/interact.mdx)
- [Retrieval component](./guides/agent/agent_component_reference/retrieval.mdx)
- [Categorize component](./guides/agent/agent_component_reference/categorize.mdx)
- [Keyword component](./guides/agent/agent_component_reference/keyword.mdx)
- [Message component](./guides/agent/agent_component_reference/message.mdx)
- [Rewrite component](./guides/agent/agent_component_reference/rewrite.mdx)
- [Switch component](./guides/agent/agent_component_reference/switch.mdx)
- [Concentrator component](./guides/agent/agent_component_reference/concentrator.mdx)
- [Template component](./guides/agent/agent_component_reference/template.mdx)
- [Iteration component](./guides/agent/agent_component_reference/iteration.mdx)
- [Note component](./guides/agent/agent_component_reference/note.mdx)
## v0.15.1
Released on December 25, 2024.
@ -60,7 +99,7 @@ Released on December 18, 2024.
### Improvements
- Upgrades the Document Layout Analysis model in Deepdoc.
- Upgrades the Document Layout Analysis model in DeepDoc.
- Significantly enhances the retrieval performance when using [Infinity](https://github.com/infiniflow/infinity) as document engine.
### Related APIs
@ -233,7 +272,7 @@ Released on August 26, 2024.
- Incorporates monitoring for the task executor.
- Introduces Agent tools **GitHub**, **DeepL**, **BaiduFanyi**, **QWeather**, and **GoogleScholar**.
- Supports chunking of EML files.
- Supports more LLMs or model services: **GPT-4o-mini**, **PerfXCloud**, **TogetherAI**, **Upstage**, **Novita.AI**, **01.AI**, **SiliconFlow**, **XunFei Spark**, **Baidu Yiyan**, and **Tencent Hunyuan**.
- Supports more LLMs or model services: **GPT-4o-mini**, **PerfXCloud**, **TogetherAI**, **Upstage**, **Novita.AI**, **01.AI**, **SiliconFlow**, **PPIO**, **XunFei Spark**, **Baidu Yiyan**, and **Tencent Hunyuan**.
## v0.9.0

Some files were not shown because too many files have changed in this diff Show More