mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Compare commits
42 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 1160b58b6e | |||
| 61790ebe15 | |||
| bc3288d390 | |||
| 4e5f92f01b | |||
| 7d8e0602aa | |||
| 03cbbf7784 | |||
| b7a7413419 | |||
| 321e9f3719 | |||
| 76cd23eecf | |||
| d030b4a680 | |||
| a9fd6066d2 | |||
| c373dba0bc | |||
| cf62230548 | |||
| 8d73cf6f02 | |||
| b635002666 | |||
| 4abc144d3d | |||
| a4bccc1ae7 | |||
| 8f070c3d56 | |||
| 31d67c850e | |||
| 2cbe064080 | |||
| cac7851fc5 | |||
| 96da618b6a | |||
| f13f503952 | |||
| cb45431412 | |||
| 85083ad400 | |||
| 35580af875 | |||
| a0dc9e1bdf | |||
| 6379a934ff | |||
| 10a62115c7 | |||
| e38e3bcc3b | |||
| 8dcf99611b | |||
| 213218a094 | |||
| 478da3118c | |||
| 101b8ff813 | |||
| d8fca43017 | |||
| b35e811fe7 | |||
| 7474348394 | |||
| 8939206531 | |||
| 57c99dd811 | |||
| 561eeabfa4 | |||
| 5fb9136251 | |||
| 044bb0334b |
2
.github/workflows/release.yml
vendored
2
.github/workflows/release.yml
vendored
@ -119,6 +119,6 @@ jobs:
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
packages-dir: dist/
|
||||
packages-dir: sdk/python/dist/
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
verbose: true
|
||||
|
||||
@ -168,7 +168,7 @@ releases! 🌟
|
||||
|
||||
3. Start up the server using the pre-built Docker images:
|
||||
|
||||
> The command below downloads the `v0.15.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download an RAGFlow edition different from `v0.14.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1` for the full edition `v0.14.1`.
|
||||
> The command below downloads the `v0.15.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download an RAGFlow edition different from `v0.15.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0` for the full edition `v0.15.0`.
|
||||
|
||||
```bash
|
||||
$ cd ragflow
|
||||
|
||||
@ -161,7 +161,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
3. Bangun image Docker pre-built dan jalankan server:
|
||||
|
||||
> Perintah di bawah ini mengunduh edisi v0.15.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.14.1-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1 untuk edisi lengkap v0.14.1.
|
||||
> Perintah di bawah ini mengunduh edisi v0.15.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.15.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0 untuk edisi lengkap v0.15.0.
|
||||
|
||||
```bash
|
||||
$ cd ragflow
|
||||
|
||||
@ -142,7 +142,7 @@
|
||||
|
||||
3. ビルド済みの Docker イメージをビルドし、サーバーを起動する:
|
||||
|
||||
> 以下のコマンドは、RAGFlow Dockerイメージの v0.15.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.15.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.14.1 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1 と設定します。
|
||||
> 以下のコマンドは、RAGFlow Dockerイメージの v0.15.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.15.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.15.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0 と設定します。
|
||||
|
||||
```bash
|
||||
$ cd ragflow
|
||||
|
||||
@ -147,7 +147,7 @@
|
||||
|
||||
3. 미리 빌드된 Docker 이미지를 생성하고 서버를 시작하세요:
|
||||
|
||||
> 아래 명령어는 RAGFlow Docker 이미지의 v0.15.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.15.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.14.1을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1로 설정합니다.
|
||||
> 아래 명령어는 RAGFlow Docker 이미지의 v0.15.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.15.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.15.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0로 설정합니다.
|
||||
|
||||
```bash
|
||||
$ cd ragflow
|
||||
|
||||
@ -143,7 +143,7 @@
|
||||
|
||||
3. 进入 **docker** 文件夹,利用提前编译好的 Docker 镜像启动服务器:
|
||||
|
||||
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.15.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.15.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1` 来下载 RAGFlow 镜像的 `v0.14.1` 完整发行版。
|
||||
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.15.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.15.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0` 来下载 RAGFlow 镜像的 `v0.15.0` 完整发行版。
|
||||
|
||||
```bash
|
||||
$ cd ragflow
|
||||
|
||||
@ -477,6 +477,13 @@ class ComponentBase(ABC):
|
||||
assert False, f"Can't find parameter '{key}' for {cpn_id}"
|
||||
continue
|
||||
|
||||
if q["component_id"].lower().find("answer") == 0:
|
||||
for r, c in self._canvas.history[::-1]:
|
||||
if r == "user":
|
||||
self._param.inputs.append(pd.DataFrame([{"content": c, "component_id": q["component_id"]}]))
|
||||
break
|
||||
continue
|
||||
|
||||
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
|
||||
self._param.inputs.append({"component_id": q["component_id"],
|
||||
"content": "\n".join(
|
||||
|
||||
@ -267,9 +267,10 @@ def delete(tenant_id):
|
||||
def list_chat(tenant_id):
|
||||
id = request.args.get("id")
|
||||
name = request.args.get("name")
|
||||
chat = DialogService.query(id=id,name=name,status=StatusEnum.VALID.value,tenant_id=tenant_id)
|
||||
if not chat:
|
||||
return get_error_data_result(message="The chat doesn't exist")
|
||||
if id or name:
|
||||
chat = DialogService.query(id=id, name=name, status=StatusEnum.VALID.value, tenant_id=tenant_id)
|
||||
if not chat:
|
||||
return get_error_data_result(message="The chat doesn't exist")
|
||||
page_number = int(request.args.get("page", 1))
|
||||
items_per_page = int(request.args.get("page_size", 30))
|
||||
orderby = request.args.get("orderby", "create_time")
|
||||
|
||||
@ -42,9 +42,30 @@ from rag.nlp import search
|
||||
from rag.utils import rmSpace
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
from pydantic import BaseModel, Field, validator
|
||||
|
||||
MAXIMUM_OF_UPLOADING_FILES = 256
|
||||
|
||||
|
||||
class Chunk(BaseModel):
|
||||
id: str = ""
|
||||
content: str = ""
|
||||
document_id: str = ""
|
||||
docnm_kwd: str = ""
|
||||
important_keywords: list = Field(default_factory=list)
|
||||
questions: list = Field(default_factory=list)
|
||||
question_tks: str = ""
|
||||
image_id: str = ""
|
||||
available: bool = True
|
||||
positions: list[list[int]] = Field(default_factory=list)
|
||||
|
||||
@validator('positions')
|
||||
def validate_positions(cls, value):
|
||||
for sublist in value:
|
||||
if len(sublist) != 5:
|
||||
raise ValueError("Each sublist in positions must have a length of 5")
|
||||
return value
|
||||
|
||||
@manager.route("/datasets/<dataset_id>/documents", methods=["POST"]) # noqa: F821
|
||||
@token_required
|
||||
def upload(dataset_id, tenant_id):
|
||||
@ -848,20 +869,6 @@ def list_chunks(tenant_id, dataset_id, document_id):
|
||||
"available_int": sres.field[id].get("available_int", 1),
|
||||
"positions": sres.field[id].get("position_int", []),
|
||||
}
|
||||
if len(d["positions"]) % 5 == 0:
|
||||
poss = []
|
||||
for i in range(0, len(d["positions"]), 5):
|
||||
poss.append(
|
||||
[
|
||||
float(d["positions"][i]),
|
||||
float(d["positions"][i + 1]),
|
||||
float(d["positions"][i + 2]),
|
||||
float(d["positions"][i + 3]),
|
||||
float(d["positions"][i + 4]),
|
||||
]
|
||||
)
|
||||
d["positions"] = poss
|
||||
|
||||
origin_chunks.append(d)
|
||||
if req.get("id"):
|
||||
if req.get("id") == id:
|
||||
@ -892,6 +899,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
|
||||
if renamed_chunk["available"] == 1:
|
||||
renamed_chunk["available"] = True
|
||||
res["chunks"].append(renamed_chunk)
|
||||
_ = Chunk(**renamed_chunk) # validate the chunk
|
||||
return get_result(data=res)
|
||||
|
||||
|
||||
@ -1031,6 +1039,7 @@ def add_chunk(tenant_id, dataset_id, document_id):
|
||||
if key in key_mapping:
|
||||
new_key = key_mapping.get(key, key)
|
||||
renamed_chunk[new_key] = value
|
||||
_ = Chunk(**renamed_chunk) # validate the chunk
|
||||
return get_result(data={"chunk": renamed_chunk})
|
||||
# return get_result(data={"chunk_id": chunk_id})
|
||||
|
||||
|
||||
@ -47,7 +47,8 @@ def create(tenant_id, chat_id):
|
||||
"id": get_uuid(),
|
||||
"dialog_id": req["dialog_id"],
|
||||
"name": req.get("name", "New session"),
|
||||
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}]
|
||||
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
|
||||
"user_id": req.get("user_id", "")
|
||||
}
|
||||
if not conv.get("name"):
|
||||
return get_error_data_result(message="`name` can not be empty.")
|
||||
@ -65,23 +66,40 @@ def create(tenant_id, chat_id):
|
||||
@manager.route('/agents/<agent_id>/sessions', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def create_agent_session(tenant_id, agent_id):
|
||||
req = request.json
|
||||
e, cvs = UserCanvasService.get_by_id(agent_id)
|
||||
if not e:
|
||||
return get_error_data_result("Agent not found.")
|
||||
|
||||
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
||||
return get_error_data_result("You cannot access the agent.")
|
||||
|
||||
if not isinstance(cvs.dsl, str):
|
||||
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
||||
|
||||
canvas = Canvas(cvs.dsl, tenant_id)
|
||||
if canvas.get_preset_param():
|
||||
return get_error_data_result("The agent can't create a session directly")
|
||||
canvas.reset()
|
||||
query = canvas.get_preset_param()
|
||||
if query:
|
||||
for ele in query:
|
||||
if not ele["optional"]:
|
||||
if not req.get(ele["key"]):
|
||||
return get_error_data_result(f"`{ele['key']}` is required")
|
||||
ele["value"] = req[ele["key"]]
|
||||
if ele["optional"]:
|
||||
if req.get(ele["key"]):
|
||||
ele["value"] = req[ele['key']]
|
||||
else:
|
||||
if "value" in ele:
|
||||
ele.pop("value")
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
conv = {
|
||||
"id": get_uuid(),
|
||||
"dialog_id": cvs.id,
|
||||
"user_id": tenant_id,
|
||||
"user_id": req.get("user_id", "") if isinstance(req, dict) else "",
|
||||
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
|
||||
"source": "agent",
|
||||
"dsl": json.loads(cvs.dsl)
|
||||
"dsl": cvs.dsl
|
||||
}
|
||||
API4ConversationService.save(**conv)
|
||||
conv["agent_id"] = conv.pop("dialog_id")
|
||||
@ -115,11 +133,11 @@ def update(tenant_id, chat_id, session_id):
|
||||
def chat_completion(tenant_id, chat_id):
|
||||
req = request.json
|
||||
if not req or not req.get("session_id"):
|
||||
req = {"question":""}
|
||||
if not DialogService.query(tenant_id=tenant_id,id=chat_id,status=StatusEnum.VALID.value):
|
||||
req = {"question": ""}
|
||||
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
|
||||
return get_error_data_result(f"You don't own the chat {chat_id}")
|
||||
if req.get("session_id"):
|
||||
if not ConversationService.query(id=req["session_id"],dialog_id=chat_id):
|
||||
if not ConversationService.query(id=req["session_id"], dialog_id=chat_id):
|
||||
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
||||
if req.get("stream", True):
|
||||
resp = Response(rag_completion(tenant_id, chat_id, **req), mimetype="text/event-stream")
|
||||
@ -140,28 +158,34 @@ def chat_completion(tenant_id, chat_id):
|
||||
@manager.route('/agents/<agent_id>/completions', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def agent_completions(tenant_id, agent_id):
|
||||
req = request.json
|
||||
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
|
||||
if not cvs:
|
||||
return get_error_data_result(f"You don't own the agent {agent_id}")
|
||||
if req.get("session_id"):
|
||||
conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
|
||||
if not conv:
|
||||
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
||||
else:
|
||||
req["question"]=""
|
||||
if req.get("stream", True):
|
||||
resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
resp.headers.add_header("Connection", "keep-alive")
|
||||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||||
return resp
|
||||
try:
|
||||
for answer in agent_completion(tenant_id, agent_id, **req):
|
||||
return get_result(data=answer)
|
||||
except Exception as e:
|
||||
return get_error_data_result(str(e))
|
||||
req = request.json
|
||||
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
|
||||
if not cvs:
|
||||
return get_error_data_result(f"You don't own the agent {agent_id}")
|
||||
if req.get("session_id"):
|
||||
dsl = cvs[0].dsl
|
||||
if not isinstance(dsl, str):
|
||||
dsl = json.dumps(dsl)
|
||||
canvas = Canvas(dsl, tenant_id)
|
||||
if canvas.get_preset_param():
|
||||
req["question"] = ""
|
||||
conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
|
||||
if not conv:
|
||||
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
||||
else:
|
||||
req["question"] = ""
|
||||
if req.get("stream", True):
|
||||
resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
resp.headers.add_header("Connection", "keep-alive")
|
||||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||||
return resp
|
||||
try:
|
||||
for answer in agent_completion(tenant_id, agent_id, **req):
|
||||
return get_result(data=answer)
|
||||
except Exception as e:
|
||||
return get_error_data_result(str(e))
|
||||
|
||||
|
||||
@manager.route('/chats/<chat_id>/sessions', methods=['GET']) # noqa: F821
|
||||
@ -174,11 +198,12 @@ def list_session(tenant_id, chat_id):
|
||||
page_number = int(request.args.get("page", 1))
|
||||
items_per_page = int(request.args.get("page_size", 30))
|
||||
orderby = request.args.get("orderby", "create_time")
|
||||
user_id = request.args.get("user_id")
|
||||
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
|
||||
desc = False
|
||||
else:
|
||||
desc = True
|
||||
convs = ConversationService.get_list(chat_id, page_number, items_per_page, orderby, desc, id, name)
|
||||
convs = ConversationService.get_list(chat_id, page_number, items_per_page, orderby, desc, id, name, user_id)
|
||||
if not convs:
|
||||
return get_result(data=[])
|
||||
for conv in convs:
|
||||
@ -199,17 +224,15 @@ def list_session(tenant_id, chat_id):
|
||||
chunks = conv["reference"][chunk_num]["chunks"]
|
||||
for chunk in chunks:
|
||||
new_chunk = {
|
||||
"id": chunk["chunk_id"],
|
||||
"content": chunk["content_with_weight"],
|
||||
"document_id": chunk["doc_id"],
|
||||
"document_name": chunk["docnm_kwd"],
|
||||
"dataset_id": chunk["kb_id"],
|
||||
"image_id": chunk.get("image_id", ""),
|
||||
"similarity": chunk["similarity"],
|
||||
"vector_similarity": chunk["vector_similarity"],
|
||||
"term_similarity": chunk["term_similarity"],
|
||||
"positions": chunk["positions"],
|
||||
"id": chunk.get("chunk_id", chunk.get("id")),
|
||||
"content": chunk.get("content_with_weight", chunk.get("content")),
|
||||
"document_id": chunk.get("doc_id", chunk.get("document_id")),
|
||||
"document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
|
||||
"dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
|
||||
"image_id": chunk.get("image_id", chunk.get("img_id")),
|
||||
"positions": chunk.get("positions", chunk.get("position_int")),
|
||||
}
|
||||
|
||||
chunk_list.append(new_chunk)
|
||||
chunk_num += 1
|
||||
messages[message_num]["reference"] = chunk_list
|
||||
@ -224,8 +247,6 @@ def list_agent_session(tenant_id, agent_id):
|
||||
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
||||
return get_error_data_result(message=f"You don't own the agent {agent_id}.")
|
||||
id = request.args.get("id")
|
||||
if not API4ConversationService.query(id=id, user_id=tenant_id):
|
||||
return get_error_data_result(f"You don't own the session {id}")
|
||||
page_number = int(request.args.get("page", 1))
|
||||
items_per_page = int(request.args.get("page_size", 30))
|
||||
orderby = request.args.get("orderby", "update_time")
|
||||
@ -254,16 +275,13 @@ def list_agent_session(tenant_id, agent_id):
|
||||
chunks = conv["reference"][chunk_num]["chunks"]
|
||||
for chunk in chunks:
|
||||
new_chunk = {
|
||||
"id": chunk["chunk_id"],
|
||||
"content": chunk["content"],
|
||||
"document_id": chunk["doc_id"],
|
||||
"document_name": chunk["docnm_kwd"],
|
||||
"dataset_id": chunk["kb_id"],
|
||||
"image_id": chunk.get("image_id", ""),
|
||||
"similarity": chunk["similarity"],
|
||||
"vector_similarity": chunk["vector_similarity"],
|
||||
"term_similarity": chunk["term_similarity"],
|
||||
"positions": chunk["positions"],
|
||||
"id": chunk.get("chunk_id", chunk.get("id")),
|
||||
"content": chunk.get("content_with_weight", chunk.get("content")),
|
||||
"document_id": chunk.get("doc_id", chunk.get("document_id")),
|
||||
"document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
|
||||
"dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
|
||||
"image_id": chunk.get("image_id", chunk.get("img_id")),
|
||||
"positions": chunk.get("positions", chunk.get("position_int")),
|
||||
}
|
||||
chunk_list.append(new_chunk)
|
||||
chunk_num += 1
|
||||
@ -429,5 +447,3 @@ def agent_bot_completions(agent_id):
|
||||
|
||||
for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
|
||||
return get_result(data=answer)
|
||||
|
||||
|
||||
|
||||
@ -31,7 +31,6 @@ from peewee import (
|
||||
)
|
||||
from playhouse.pool import PooledMySQLDatabase, PooledPostgresqlDatabase
|
||||
|
||||
|
||||
from api.db import SerializedType, ParserType
|
||||
from api import settings
|
||||
from api import utils
|
||||
@ -926,6 +925,7 @@ class Conversation(DataBaseModel):
|
||||
name = CharField(max_length=255, null=True, help_text="converastion name", index=True)
|
||||
message = JSONField(null=True)
|
||||
reference = JSONField(null=True, default=[])
|
||||
user_id = CharField(max_length=255, null=True, help_text="user_id", index=True)
|
||||
|
||||
class Meta:
|
||||
db_table = "conversation"
|
||||
@ -1070,13 +1070,13 @@ def migrate_db():
|
||||
pass
|
||||
try:
|
||||
migrate(
|
||||
migrator.add_column("tenant_llm","max_tokens",IntegerField(default=8192,index=True))
|
||||
migrator.add_column("tenant_llm", "max_tokens", IntegerField(default=8192, index=True))
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
migrate(
|
||||
migrator.add_column("api_4_conversation","dsl",JSONField(null=True, default={}))
|
||||
migrator.add_column("api_4_conversation", "dsl", JSONField(null=True, default={}))
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
@ -1105,3 +1105,10 @@ def migrate_db():
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
migrate(
|
||||
migrator.add_column("conversation", "user_id",
|
||||
CharField(max_length=255, null=True, help_text="user_id", index=True))
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
@ -41,11 +41,14 @@ class API4ConversationService(CommonService):
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_list(cls,dialog_id, tenant_id,
|
||||
page_number, items_per_page, orderby, desc, id):
|
||||
sessions = cls.model.select().where(cls.model.dialog_id ==dialog_id)
|
||||
def get_list(cls, dialog_id, tenant_id,
|
||||
page_number, items_per_page,
|
||||
orderby, desc, id, user_id=None):
|
||||
sessions = cls.model.select().where(cls.model.dialog_id == dialog_id)
|
||||
if id:
|
||||
sessions = sessions.where(cls.model.id == id)
|
||||
if user_id:
|
||||
sessions = sessions.where(cls.model.user_id == user_id)
|
||||
if desc:
|
||||
sessions = sessions.order_by(cls.model.getter_by(orderby).desc())
|
||||
else:
|
||||
|
||||
@ -74,21 +74,32 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
|
||||
else:
|
||||
if "value" in ele:
|
||||
ele.pop("value")
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
temp_dsl = cvs.dsl
|
||||
UserCanvasService.update_by_id(agent_id, cvs.to_dict())
|
||||
else:
|
||||
temp_dsl = json.loads(cvs.dsl)
|
||||
session_id = get_uuid()
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
session_id=get_uuid()
|
||||
conv = {
|
||||
"id": session_id,
|
||||
"dialog_id": cvs.id,
|
||||
"user_id": kwargs.get("user_id", ""),
|
||||
"user_id": kwargs.get("usr_id", "") if isinstance(kwargs, dict) else "",
|
||||
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
|
||||
"source": "agent",
|
||||
"dsl": temp_dsl
|
||||
"dsl": cvs.dsl
|
||||
}
|
||||
API4ConversationService.save(**conv)
|
||||
conv = API4Conversation(**conv)
|
||||
if query:
|
||||
yield "data:" + json.dumps({"code": 0,
|
||||
"message": "",
|
||||
"data": {
|
||||
"session_id": session_id,
|
||||
"answer": canvas.get_prologue(),
|
||||
"reference": [],
|
||||
"param": canvas.get_preset_param()
|
||||
}
|
||||
},
|
||||
ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||||
return
|
||||
else:
|
||||
conv = API4Conversation(**conv)
|
||||
else:
|
||||
e, conv = API4ConversationService.get_by_id(session_id)
|
||||
assert e, "Session not found!"
|
||||
|
||||
@ -28,12 +28,14 @@ class ConversationService(CommonService):
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_list(cls,dialog_id,page_number, items_per_page, orderby, desc, id , name):
|
||||
sessions = cls.model.select().where(cls.model.dialog_id ==dialog_id)
|
||||
def get_list(cls, dialog_id, page_number, items_per_page, orderby, desc, id, name, user_id=None):
|
||||
sessions = cls.model.select().where(cls.model.dialog_id == dialog_id)
|
||||
if id:
|
||||
sessions = sessions.where(cls.model.id == id)
|
||||
if name:
|
||||
sessions = sessions.where(cls.model.name == name)
|
||||
if user_id:
|
||||
sessions = sessions.where(cls.model.user_id == user_id)
|
||||
if desc:
|
||||
sessions = sessions.order_by(cls.model.getter_by(orderby).desc())
|
||||
else:
|
||||
@ -52,15 +54,16 @@ def structure_answer(conv, ans, message_id, session_id):
|
||||
|
||||
def get_value(d, k1, k2):
|
||||
return d.get(k1, d.get(k2))
|
||||
|
||||
chunk_list = [{
|
||||
"id": get_value(chunk, "chunk_id", "id"),
|
||||
"content": get_value(chunk, "content", "content_with_weight"),
|
||||
"document_id": get_value(chunk, "doc_id", "document_id"),
|
||||
"document_name": get_value(chunk, "docnm_kwd", "document_name"),
|
||||
"dataset_id": get_value(chunk, "kb_id", "dataset_id"),
|
||||
"image_id": get_value(chunk, "image_id", "img_id"),
|
||||
"positions": get_value(chunk, "positions", "position_int"),
|
||||
} for chunk in reference.get("chunks", [])]
|
||||
"id": get_value(chunk, "chunk_id", "id"),
|
||||
"content": get_value(chunk, "content", "content_with_weight"),
|
||||
"document_id": get_value(chunk, "doc_id", "document_id"),
|
||||
"document_name": get_value(chunk, "docnm_kwd", "document_name"),
|
||||
"dataset_id": get_value(chunk, "kb_id", "dataset_id"),
|
||||
"image_id": get_value(chunk, "image_id", "img_id"),
|
||||
"positions": get_value(chunk, "positions", "position_int"),
|
||||
} for chunk in reference.get("chunks", [])]
|
||||
|
||||
reference["chunks"] = chunk_list
|
||||
ans["id"] = message_id
|
||||
@ -88,10 +91,11 @@ def completion(tenant_id, chat_id, question, name="New session", session_id=None
|
||||
if not session_id:
|
||||
session_id = get_uuid()
|
||||
conv = {
|
||||
"id":session_id ,
|
||||
"id": session_id,
|
||||
"dialog_id": chat_id,
|
||||
"name": name,
|
||||
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}]
|
||||
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
|
||||
"user_id": kwargs.get("user_id", "")
|
||||
}
|
||||
ConversationService.save(**conv)
|
||||
yield "data:" + json.dumps({"code": 0, "message": "",
|
||||
@ -226,4 +230,3 @@ def iframe_completion(dialog_id, question, session_id=None, stream=True, **kwarg
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
break
|
||||
yield answer
|
||||
|
||||
|
||||
@ -23,7 +23,7 @@ from copy import deepcopy
|
||||
from timeit import default_timer as timer
|
||||
import datetime
|
||||
from datetime import timedelta
|
||||
from api.db import LLMType, ParserType,StatusEnum
|
||||
from api.db import LLMType, ParserType, StatusEnum
|
||||
from api.db.db_models import Dialog, DB
|
||||
from api.db.services.common_service import CommonService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
@ -41,14 +41,14 @@ class DialogService(CommonService):
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_list(cls, tenant_id,
|
||||
page_number, items_per_page, orderby, desc, id , name):
|
||||
page_number, items_per_page, orderby, desc, id, name):
|
||||
chats = cls.model.select()
|
||||
if id:
|
||||
chats = chats.where(cls.model.id == id)
|
||||
if name:
|
||||
chats = chats.where(cls.model.name == name)
|
||||
chats = chats.where(
|
||||
(cls.model.tenant_id == tenant_id)
|
||||
(cls.model.tenant_id == tenant_id)
|
||||
& (cls.model.status == StatusEnum.VALID.value)
|
||||
)
|
||||
if desc:
|
||||
@ -124,7 +124,7 @@ def kb_prompt(kbinfos, max_tokens):
|
||||
for i, ck in enumerate(kbinfos["chunks"]):
|
||||
if i >= chunks_num:
|
||||
break
|
||||
doc2chunks["docnm_kwd"].append(ck["content_with_weight"])
|
||||
doc2chunks[ck["docnm_kwd"]].append(ck["content_with_weight"])
|
||||
|
||||
knowledges = []
|
||||
for nm, chunks in doc2chunks.items():
|
||||
@ -137,25 +137,37 @@ def kb_prompt(kbinfos, max_tokens):
|
||||
|
||||
def chat(dialog, messages, stream=True, **kwargs):
|
||||
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
|
||||
st = timer()
|
||||
llm_id, fid = TenantLLMService.split_model_name_and_factory(dialog.llm_id)
|
||||
llm = LLMService.query(llm_name=llm_id) if not fid else LLMService.query(llm_name=llm_id, fid=fid)
|
||||
|
||||
chat_start_ts = timer()
|
||||
|
||||
# Get llm model name and model provider name
|
||||
llm_id, model_provider = TenantLLMService.split_model_name_and_factory(dialog.llm_id)
|
||||
|
||||
# Get llm model instance by model and provide name
|
||||
llm = LLMService.query(llm_name=llm_id) if not model_provider else LLMService.query(llm_name=llm_id, fid=model_provider)
|
||||
|
||||
if not llm:
|
||||
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id) if not fid else \
|
||||
TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id, llm_factory=fid)
|
||||
# Model name is provided by tenant, but not system built-in
|
||||
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id) if not model_provider else \
|
||||
TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id, llm_factory=model_provider)
|
||||
if not llm:
|
||||
raise LookupError("LLM(%s) not found" % dialog.llm_id)
|
||||
max_tokens = 8192
|
||||
else:
|
||||
max_tokens = llm[0].max_tokens
|
||||
|
||||
check_llm_ts = timer()
|
||||
|
||||
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
|
||||
embd_nms = list(set([kb.embd_id for kb in kbs]))
|
||||
if len(embd_nms) != 1:
|
||||
embedding_list = list(set([kb.embd_id for kb in kbs]))
|
||||
if len(embedding_list) != 1:
|
||||
yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
|
||||
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
|
||||
|
||||
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
retr = settings.retrievaler if not is_kg else settings.kg_retrievaler
|
||||
embedding_model_name = embedding_list[0]
|
||||
|
||||
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
|
||||
|
||||
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
|
||||
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
|
||||
@ -165,15 +177,21 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
if "doc_ids" in m:
|
||||
attachments.extend(m["doc_ids"])
|
||||
|
||||
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
|
||||
create_retriever_ts = timer()
|
||||
|
||||
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embedding_model_name)
|
||||
if not embd_mdl:
|
||||
raise LookupError("Embedding model(%s) not found" % embd_nms[0])
|
||||
raise LookupError("Embedding model(%s) not found" % embedding_model_name)
|
||||
|
||||
bind_embedding_ts = timer()
|
||||
|
||||
if llm_id2llm_type(dialog.llm_id) == "image2text":
|
||||
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
|
||||
else:
|
||||
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
|
||||
|
||||
bind_llm_ts = timer()
|
||||
|
||||
prompt_config = dialog.prompt_config
|
||||
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
|
||||
tts_mdl = None
|
||||
@ -200,32 +218,35 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
|
||||
else:
|
||||
questions = questions[-1:]
|
||||
refineQ_tm = timer()
|
||||
keyword_tm = timer()
|
||||
|
||||
refine_question_ts = timer()
|
||||
|
||||
rerank_mdl = None
|
||||
if dialog.rerank_id:
|
||||
rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
|
||||
|
||||
for _ in range(len(questions) // 2):
|
||||
questions.append(questions[-1])
|
||||
bind_reranker_ts = timer()
|
||||
generate_keyword_ts = bind_reranker_ts
|
||||
|
||||
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
|
||||
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
|
||||
else:
|
||||
if prompt_config.get("keyword", False):
|
||||
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
|
||||
keyword_tm = timer()
|
||||
generate_keyword_ts = timer()
|
||||
|
||||
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
|
||||
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
|
||||
dialog.similarity_threshold,
|
||||
dialog.vector_similarity_weight,
|
||||
doc_ids=attachments,
|
||||
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
|
||||
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
|
||||
dialog.similarity_threshold,
|
||||
dialog.vector_similarity_weight,
|
||||
doc_ids=attachments,
|
||||
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
|
||||
|
||||
retrieval_ts = timer()
|
||||
|
||||
knowledges = kb_prompt(kbinfos, max_tokens)
|
||||
logging.debug(
|
||||
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
|
||||
retrieval_tm = timer()
|
||||
|
||||
if not knowledges and prompt_config.get("empty_response"):
|
||||
empty_res = prompt_config["empty_response"]
|
||||
@ -249,17 +270,20 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
max_tokens - used_token_count)
|
||||
|
||||
def decorate_answer(answer):
|
||||
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_tm
|
||||
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts
|
||||
|
||||
finish_chat_ts = timer()
|
||||
|
||||
refs = []
|
||||
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
|
||||
answer, idx = retr.insert_citations(answer,
|
||||
[ck["content_ltks"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
[ck["vector"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
embd_mdl,
|
||||
tkweight=1 - dialog.vector_similarity_weight,
|
||||
vtweight=dialog.vector_similarity_weight)
|
||||
answer, idx = retriever.insert_citations(answer,
|
||||
[ck["content_ltks"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
[ck["vector"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
embd_mdl,
|
||||
tkweight=1 - dialog.vector_similarity_weight,
|
||||
vtweight=dialog.vector_similarity_weight)
|
||||
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
|
||||
recall_docs = [
|
||||
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
|
||||
@ -274,10 +298,20 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
|
||||
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
|
||||
answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
|
||||
done_tm = timer()
|
||||
prompt += "\n\n### Elapsed\n - Refine Question: %.1f ms\n - Keywords: %.1f ms\n - Retrieval: %.1f ms\n - LLM: %.1f ms" % (
|
||||
(refineQ_tm - st) * 1000, (keyword_tm - refineQ_tm) * 1000, (retrieval_tm - keyword_tm) * 1000,
|
||||
(done_tm - retrieval_tm) * 1000)
|
||||
finish_chat_ts = timer()
|
||||
|
||||
total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
|
||||
check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
|
||||
create_retriever_time_cost = (create_retriever_ts - check_llm_ts) * 1000
|
||||
bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000
|
||||
bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000
|
||||
refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000
|
||||
bind_reranker_time_cost = (bind_reranker_ts - refine_question_ts) * 1000
|
||||
generate_keyword_time_cost = (generate_keyword_ts - bind_reranker_ts) * 1000
|
||||
retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000
|
||||
generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
|
||||
|
||||
prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms"
|
||||
return {"answer": answer, "reference": refs, "prompt": prompt}
|
||||
|
||||
if stream:
|
||||
@ -304,15 +338,15 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
|
||||
|
||||
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
|
||||
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
|
||||
user_promt = """
|
||||
表名:{};
|
||||
数据库表字段说明如下:
|
||||
sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
|
||||
user_prompt = """
|
||||
Table name: {};
|
||||
Table of database fields are as follows:
|
||||
{}
|
||||
|
||||
问题如下:
|
||||
Question are as follows:
|
||||
{}
|
||||
请写出SQL, 且只要SQL,不要有其他说明及文字。
|
||||
Please write the SQL, only SQL, without any other explanations or text.
|
||||
""".format(
|
||||
index_name(tenant_id),
|
||||
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
|
||||
@ -321,10 +355,10 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
|
||||
tried_times = 0
|
||||
|
||||
def get_table():
|
||||
nonlocal sys_prompt, user_promt, question, tried_times
|
||||
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
|
||||
nonlocal sys_prompt, user_prompt, question, tried_times
|
||||
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {
|
||||
"temperature": 0.06})
|
||||
logging.debug(f"{question} ==> {user_promt} get SQL: {sql}")
|
||||
logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
|
||||
sql = re.sub(r"[\r\n]+", " ", sql.lower())
|
||||
sql = re.sub(r".*select ", "select ", sql.lower())
|
||||
sql = re.sub(r" +", " ", sql)
|
||||
@ -352,21 +386,23 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
|
||||
if tbl is None:
|
||||
return None
|
||||
if tbl.get("error") and tried_times <= 2:
|
||||
user_promt = """
|
||||
表名:{};
|
||||
数据库表字段说明如下:
|
||||
user_prompt = """
|
||||
Table name: {};
|
||||
Table of database fields are as follows:
|
||||
{}
|
||||
|
||||
Question are as follows:
|
||||
{}
|
||||
Please write the SQL, only SQL, without any other explanations or text.
|
||||
|
||||
|
||||
The SQL error you provided last time is as follows:
|
||||
{}
|
||||
|
||||
问题如下:
|
||||
Error issued by database as follows:
|
||||
{}
|
||||
|
||||
你上一次给出的错误SQL如下:
|
||||
{}
|
||||
|
||||
后台报错如下:
|
||||
{}
|
||||
|
||||
请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。
|
||||
Please correct the error and write SQL again, only SQL, without any other explanations or text.
|
||||
""".format(
|
||||
index_name(tenant_id),
|
||||
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
|
||||
@ -381,21 +417,21 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
|
||||
|
||||
docid_idx = set([ii for ii, c in enumerate(
|
||||
tbl["columns"]) if c["name"] == "doc_id"])
|
||||
docnm_idx = set([ii for ii, c in enumerate(
|
||||
doc_name_idx = set([ii for ii, c in enumerate(
|
||||
tbl["columns"]) if c["name"] == "docnm_kwd"])
|
||||
clmn_idx = [ii for ii in range(
|
||||
len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
|
||||
column_idx = [ii for ii in range(
|
||||
len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
|
||||
|
||||
# compose markdown table
|
||||
clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
|
||||
tbl["columns"][i]["name"])) for i in
|
||||
clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
|
||||
# compose Markdown table
|
||||
columns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
|
||||
tbl["columns"][i]["name"])) for i in
|
||||
column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
|
||||
|
||||
line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
|
||||
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + \
|
||||
("|------|" if docid_idx and docid_idx else "")
|
||||
|
||||
rows = ["|" +
|
||||
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
|
||||
"|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") +
|
||||
"|" for r in tbl["rows"]]
|
||||
rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
|
||||
if quota:
|
||||
@ -404,24 +440,24 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
|
||||
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
|
||||
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
|
||||
|
||||
if not docid_idx or not docnm_idx:
|
||||
if not docid_idx or not doc_name_idx:
|
||||
logging.warning("SQL missing field: " + sql)
|
||||
return {
|
||||
"answer": "\n".join([clmns, line, rows]),
|
||||
"answer": "\n".join([columns, line, rows]),
|
||||
"reference": {"chunks": [], "doc_aggs": []},
|
||||
"prompt": sys_prompt
|
||||
}
|
||||
|
||||
docid_idx = list(docid_idx)[0]
|
||||
docnm_idx = list(docnm_idx)[0]
|
||||
doc_name_idx = list(doc_name_idx)[0]
|
||||
doc_aggs = {}
|
||||
for r in tbl["rows"]:
|
||||
if r[docid_idx] not in doc_aggs:
|
||||
doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
|
||||
doc_aggs[r[docid_idx]] = {"doc_name": r[doc_name_idx], "count": 0}
|
||||
doc_aggs[r[docid_idx]]["count"] += 1
|
||||
return {
|
||||
"answer": "\n".join([clmns, line, rows]),
|
||||
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
|
||||
"answer": "\n".join([columns, line, rows]),
|
||||
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
|
||||
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
|
||||
doc_aggs.items()]},
|
||||
"prompt": sys_prompt
|
||||
@ -492,7 +528,7 @@ Requirements:
|
||||
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
|
||||
if isinstance(kwd, tuple):
|
||||
kwd = kwd[0]
|
||||
if kwd.find("**ERROR**") >=0:
|
||||
if kwd.find("**ERROR**") >= 0:
|
||||
return ""
|
||||
return kwd
|
||||
|
||||
@ -605,16 +641,16 @@ def tts(tts_mdl, text):
|
||||
|
||||
def ask(question, kb_ids, tenant_id):
|
||||
kbs = KnowledgebaseService.get_by_ids(kb_ids)
|
||||
embd_nms = list(set([kb.embd_id for kb in kbs]))
|
||||
embedding_list = list(set([kb.embd_id for kb in kbs]))
|
||||
|
||||
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
retr = settings.retrievaler if not is_kg else settings.kg_retrievaler
|
||||
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
|
||||
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_nms[0])
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
||||
max_tokens = chat_mdl.max_length
|
||||
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
|
||||
kbinfos = retr.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False)
|
||||
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False)
|
||||
knowledges = kb_prompt(kbinfos, max_tokens)
|
||||
prompt = """
|
||||
Role: You're a smart assistant. Your name is Miss R.
|
||||
@ -636,14 +672,14 @@ def ask(question, kb_ids, tenant_id):
|
||||
|
||||
def decorate_answer(answer):
|
||||
nonlocal knowledges, kbinfos, prompt
|
||||
answer, idx = retr.insert_citations(answer,
|
||||
[ck["content_ltks"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
[ck["vector"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
embd_mdl,
|
||||
tkweight=0.7,
|
||||
vtweight=0.3)
|
||||
answer, idx = retriever.insert_citations(answer,
|
||||
[ck["content_ltks"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
[ck["vector"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
embd_mdl,
|
||||
tkweight=0.7,
|
||||
vtweight=0.3)
|
||||
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
|
||||
recall_docs = [
|
||||
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
|
||||
@ -664,4 +700,3 @@ def ask(question, kb_ids, tenant_id):
|
||||
answer = ans
|
||||
yield {"answer": answer, "reference": {}}
|
||||
yield decorate_answer(answer)
|
||||
|
||||
|
||||
@ -345,6 +345,8 @@ class FileService(CommonService):
|
||||
MAX_FILE_NUM_PER_USER = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
|
||||
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(kb.tenant_id) >= MAX_FILE_NUM_PER_USER:
|
||||
raise RuntimeError("Exceed the maximum file number of a free user!")
|
||||
if len(file.filename) >= 128:
|
||||
raise RuntimeError("Exceed the maximum length of file name!")
|
||||
|
||||
filename = duplicate_name(
|
||||
DocumentService.query,
|
||||
|
||||
@ -72,10 +72,12 @@ class TenantLLMService(CommonService):
|
||||
return model_name, None
|
||||
if len(arr) > 2:
|
||||
return "@".join(arr[0:-1]), arr[-1]
|
||||
|
||||
# model name must be xxx@yyy
|
||||
try:
|
||||
fact = json.load(open(os.path.join(get_project_base_directory(), "conf/llm_factories.json"), "r"))["factory_llm_infos"]
|
||||
fact = set([f["name"] for f in fact])
|
||||
if arr[-1] not in fact:
|
||||
model_factories = json.load(open(os.path.join(get_project_base_directory(), "conf/llm_factories.json"), "r"))["factory_llm_infos"]
|
||||
model_providers = set([f["name"] for f in model_factories])
|
||||
if arr[-1] not in model_providers:
|
||||
return model_name, None
|
||||
return arr[0], arr[-1]
|
||||
except Exception as e:
|
||||
@ -113,11 +115,11 @@ class TenantLLMService(CommonService):
|
||||
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
|
||||
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
|
||||
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
|
||||
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": mdlnm, "api_base": ""}
|
||||
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
|
||||
if not model_config:
|
||||
if mdlnm == "flag-embedding":
|
||||
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",
|
||||
"llm_name": llm_name, "api_base": ""}
|
||||
"llm_name": llm_name, "api_base": ""}
|
||||
else:
|
||||
if not mdlnm:
|
||||
raise LookupError(f"Type of {llm_type} model is not set.")
|
||||
@ -200,8 +202,8 @@ class TenantLLMService(CommonService):
|
||||
return num
|
||||
else:
|
||||
tenant_llm = tenant_llms[0]
|
||||
num = cls.model.update(used_tokens=tenant_llm.used_tokens + used_tokens)\
|
||||
.where(cls.model.tenant_id == tenant_id, cls.model.llm_factory == tenant_llm.llm_factory, cls.model.llm_name == llm_name)\
|
||||
num = cls.model.update(used_tokens=tenant_llm.used_tokens + used_tokens) \
|
||||
.where(cls.model.tenant_id == tenant_id, cls.model.llm_factory == tenant_llm.llm_factory, cls.model.llm_name == llm_name) \
|
||||
.execute()
|
||||
except Exception:
|
||||
logging.exception("TenantLLMService.increase_usage got exception")
|
||||
@ -231,7 +233,7 @@ class LLMBundle(object):
|
||||
for lm in LLMService.query(llm_name=llm_name):
|
||||
self.max_length = lm.max_tokens
|
||||
break
|
||||
|
||||
|
||||
def encode(self, texts: list):
|
||||
embeddings, used_tokens = self.mdl.encode(texts)
|
||||
if not TenantLLMService.increase_usage(
|
||||
@ -274,11 +276,11 @@ class LLMBundle(object):
|
||||
|
||||
def tts(self, text):
|
||||
for chunk in self.mdl.tts(text):
|
||||
if isinstance(chunk,int):
|
||||
if isinstance(chunk, int):
|
||||
if not TenantLLMService.increase_usage(
|
||||
self.tenant_id, self.llm_type, chunk, self.llm_name):
|
||||
logging.error(
|
||||
"LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
|
||||
self.tenant_id, self.llm_type, chunk, self.llm_name):
|
||||
logging.error(
|
||||
"LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
|
||||
return
|
||||
yield chunk
|
||||
|
||||
@ -287,7 +289,8 @@ class LLMBundle(object):
|
||||
if isinstance(txt, int) and not TenantLLMService.increase_usage(
|
||||
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
|
||||
logging.error(
|
||||
"LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
|
||||
"LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name,
|
||||
used_tokens))
|
||||
return txt
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
@ -296,6 +299,7 @@ class LLMBundle(object):
|
||||
if not TenantLLMService.increase_usage(
|
||||
self.tenant_id, self.llm_type, txt, self.llm_name):
|
||||
logging.error(
|
||||
"LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
|
||||
"LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name,
|
||||
txt))
|
||||
return
|
||||
yield txt
|
||||
|
||||
@ -17,6 +17,7 @@ import os
|
||||
import random
|
||||
import xxhash
|
||||
import bisect
|
||||
from datetime import datetime
|
||||
|
||||
from api.db.db_utils import bulk_insert_into_db
|
||||
from deepdoc.parser import PdfParser
|
||||
@ -84,7 +85,7 @@ class TaskService(CommonService):
|
||||
if not docs:
|
||||
return None
|
||||
|
||||
msg = "\nTask has been received."
|
||||
msg = f"\n{datetime.now().strftime('%H:%M:%S')} Task has been received."
|
||||
prog = random.random() / 10.0
|
||||
if docs[0]["retry_count"] >= 3:
|
||||
msg = "\nERROR: Task is abandoned after 3 times attempts."
|
||||
@ -204,7 +205,7 @@ def queue_tasks(doc: dict, bucket: str, name: str):
|
||||
def new_task():
|
||||
return {"id": get_uuid(), "doc_id": doc["id"], "progress": 0.0, "from_page": 0, "to_page": 100000000}
|
||||
|
||||
tsks = []
|
||||
parse_task_array = []
|
||||
|
||||
if doc["type"] == FileType.PDF.value:
|
||||
file_bin = STORAGE_IMPL.get(bucket, name)
|
||||
@ -224,7 +225,7 @@ def queue_tasks(doc: dict, bucket: str, name: str):
|
||||
task = new_task()
|
||||
task["from_page"] = p
|
||||
task["to_page"] = min(p + page_size, e)
|
||||
tsks.append(task)
|
||||
parse_task_array.append(task)
|
||||
|
||||
elif doc["parser_id"] == "table":
|
||||
file_bin = STORAGE_IMPL.get(bucket, name)
|
||||
@ -233,12 +234,12 @@ def queue_tasks(doc: dict, bucket: str, name: str):
|
||||
task = new_task()
|
||||
task["from_page"] = i
|
||||
task["to_page"] = min(i + 3000, rn)
|
||||
tsks.append(task)
|
||||
parse_task_array.append(task)
|
||||
else:
|
||||
tsks.append(new_task())
|
||||
parse_task_array.append(new_task())
|
||||
|
||||
chunking_config = DocumentService.get_chunking_config(doc["id"])
|
||||
for task in tsks:
|
||||
for task in parse_task_array:
|
||||
hasher = xxhash.xxh64()
|
||||
for field in sorted(chunking_config.keys()):
|
||||
hasher.update(str(chunking_config[field]).encode("utf-8"))
|
||||
@ -251,7 +252,7 @@ def queue_tasks(doc: dict, bucket: str, name: str):
|
||||
prev_tasks = TaskService.get_tasks(doc["id"])
|
||||
ck_num = 0
|
||||
if prev_tasks:
|
||||
for task in tsks:
|
||||
for task in parse_task_array:
|
||||
ck_num += reuse_prev_task_chunks(task, prev_tasks, chunking_config)
|
||||
TaskService.filter_delete([Task.doc_id == doc["id"]])
|
||||
chunk_ids = []
|
||||
@ -263,13 +264,13 @@ def queue_tasks(doc: dict, bucket: str, name: str):
|
||||
chunking_config["kb_id"])
|
||||
DocumentService.update_by_id(doc["id"], {"chunk_num": ck_num})
|
||||
|
||||
bulk_insert_into_db(Task, tsks, True)
|
||||
bulk_insert_into_db(Task, parse_task_array, True)
|
||||
DocumentService.begin2parse(doc["id"])
|
||||
|
||||
tsks = [task for task in tsks if task["progress"] < 1.0]
|
||||
for t in tsks:
|
||||
unfinished_task_array = [task for task in parse_task_array if task["progress"] < 1.0]
|
||||
for unfinished_task in unfinished_task_array:
|
||||
assert REDIS_CONN.queue_product(
|
||||
SVR_QUEUE_NAME, message=t
|
||||
SVR_QUEUE_NAME, message=unfinished_task
|
||||
), "Can't access Redis. Please check the Redis' status."
|
||||
|
||||
|
||||
|
||||
@ -24,6 +24,7 @@ import time
|
||||
import uuid
|
||||
import requests
|
||||
import logging
|
||||
import copy
|
||||
from enum import Enum, IntEnum
|
||||
import importlib
|
||||
from Cryptodome.PublicKey import RSA
|
||||
@ -65,6 +66,10 @@ CONFIGS = read_config()
|
||||
def show_configs():
|
||||
msg = f"Current configs, from {conf_realpath(SERVICE_CONF)}:"
|
||||
for k, v in CONFIGS.items():
|
||||
if isinstance(v, dict):
|
||||
if "password" in v:
|
||||
v = copy.deepcopy(v)
|
||||
v["password"] = "*" * 8
|
||||
msg += f"\n\t{k}: {v}"
|
||||
logging.info(msg)
|
||||
|
||||
|
||||
@ -283,7 +283,10 @@ def construct_error_response(e):
|
||||
def token_required(func):
|
||||
@wraps(func)
|
||||
def decorated_function(*args, **kwargs):
|
||||
authorization_list=flask_request.headers.get('Authorization').split()
|
||||
authorization_str=flask_request.headers.get('Authorization')
|
||||
if not authorization_str:
|
||||
return get_json_result(data=False,message="`Authorization` can't be empty")
|
||||
authorization_list=authorization_str.split()
|
||||
if len(authorization_list) < 2:
|
||||
return get_json_result(data=False,message="Please check your authorization format.")
|
||||
token = authorization_list[1]
|
||||
|
||||
@ -952,6 +952,12 @@
|
||||
"max_tokens": 30720,
|
||||
"model_type": "chat"
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.0-flash-exp",
|
||||
"tags": "LLM,CHAT,1024K",
|
||||
"max_tokens": 1048576,
|
||||
"model_type": "chat"
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-1.0-pro-vision-latest",
|
||||
"tags": "LLM,IMAGE2TEXT,12K",
|
||||
@ -1008,6 +1014,18 @@
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat"
|
||||
},
|
||||
{
|
||||
"llm_name": "llama-3.3-70b-versatile",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat"
|
||||
},
|
||||
{
|
||||
"llm_name": "llama-3.3-70b-specdec",
|
||||
"tags": "LLM,CHAT,8k",
|
||||
"max_tokens": 8192,
|
||||
"model_type": "chat"
|
||||
},
|
||||
{
|
||||
"llm_name": "mixtral-8x7b-32768",
|
||||
"tags": "LLM,CHAT,5k",
|
||||
|
||||
@ -90,7 +90,7 @@ class RAGFlowExcelParser:
|
||||
for sheetname in wb.sheetnames:
|
||||
ws = wb[sheetname]
|
||||
total += len(list(ws.rows))
|
||||
return total
|
||||
return total
|
||||
|
||||
if fnm.split(".")[-1].lower() in ["csv", "txt"]:
|
||||
encoding = find_codec(binary)
|
||||
|
||||
@ -10,7 +10,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import logging
|
||||
from io import BytesIO
|
||||
from pptx import Presentation
|
||||
|
||||
@ -53,9 +53,12 @@ class RAGFlowPptParser(object):
|
||||
texts = []
|
||||
for shape in sorted(
|
||||
slide.shapes, key=lambda x: ((x.top if x.top is not None else 0) // 10, x.left)):
|
||||
txt = self.__extract(shape)
|
||||
if txt:
|
||||
texts.append(txt)
|
||||
try:
|
||||
txt = self.__extract(shape)
|
||||
if txt:
|
||||
texts.append(txt)
|
||||
except Exception as e:
|
||||
logging.exception(e)
|
||||
txts.append("\n".join(texts))
|
||||
|
||||
return txts
|
||||
|
||||
@ -26,6 +26,7 @@ from api.utils.file_utils import get_project_base_directory
|
||||
from .operators import * # noqa: F403
|
||||
from .operators import preprocess
|
||||
|
||||
|
||||
class Recognizer(object):
|
||||
def __init__(self, label_list, task_name, model_dir=None):
|
||||
"""
|
||||
@ -144,11 +145,11 @@ class Recognizer(object):
|
||||
return 0
|
||||
x0_ = max(b["x0"], x0)
|
||||
x1_ = min(b["x1"], x1)
|
||||
assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
|
||||
assert x0_ <= x1_, "Bbox mismatch! T:{},B:{},X0:{},X1:{} ==> {}".format(
|
||||
tp, btm, x0, x1, b)
|
||||
tp_ = max(b["top"], tp)
|
||||
btm_ = min(b["bottom"], btm)
|
||||
assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
|
||||
assert tp_ <= btm_, "Bbox mismatch! T:{},B:{},X0:{},X1:{} => {}".format(
|
||||
tp, btm, x0, x1, b)
|
||||
ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
|
||||
x0 != 0 and btm - tp != 0 else 0
|
||||
|
||||
@ -52,7 +52,7 @@ MYSQL_DBNAME=rag_flow
|
||||
# allowing EXTERNAL access to the MySQL database running inside the Docker container.
|
||||
MYSQL_PORT=5455
|
||||
|
||||
# The hostname where the MySQL service is exposed
|
||||
# The hostname where the MinIO service is exposed
|
||||
MINIO_HOST=minio
|
||||
# The port used to expose the MinIO console interface to the host machine,
|
||||
# allowing EXTERNAL access to the web-based console running inside the Docker container.
|
||||
|
||||
@ -39,7 +39,7 @@ services:
|
||||
container_name: ragflow-infinity
|
||||
profiles:
|
||||
- infinity
|
||||
image: infiniflow/infinity:v0.5.0
|
||||
image: infiniflow/infinity:v0.5.2
|
||||
volumes:
|
||||
- infinity_data:/var/infinity
|
||||
- ./infinity_conf.toml:/infinity_conf.toml
|
||||
|
||||
@ -185,7 +185,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
|
||||
3. Use the pre-built Docker images and start up the server:
|
||||
|
||||
:::tip NOTE
|
||||
The command below downloads the `v0.15.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download an RAGFlow edition different from `v0.14.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1` for the full edition `v0.14.1`.
|
||||
The command below downloads the `v0.15.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download an RAGFlow edition different from `v0.15.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.0` for the full edition `v0.15.0`.
|
||||
:::
|
||||
|
||||
```bash
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -141,3 +141,4 @@ def add_community_info2graph(graph: nx.Graph, nodes: list[str], community_title)
|
||||
if "communities" not in graph.nodes[n]:
|
||||
graph.nodes[n]["communities"] = []
|
||||
graph.nodes[n]["communities"].append(community_title)
|
||||
graph.nodes[n]["communities"] = list(set(graph.nodes[n]["communities"]))
|
||||
|
||||
@ -101,7 +101,7 @@ def get_embed_cache(llmnm, txt):
|
||||
bin = REDIS_CONN.get(k)
|
||||
if not bin:
|
||||
return
|
||||
return np.array(json.loads(bin.decode("utf-8")))
|
||||
return np.array(json.loads(bin))
|
||||
|
||||
|
||||
def set_embed_cache(llmnm, txt, arr):
|
||||
|
||||
352
poetry.lock
generated
352
poetry.lock
generated
@ -1,4 +1,4 @@
|
||||
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.5 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "accelerate"
|
||||
@ -44,87 +44,87 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "aiohttp"
|
||||
version = "3.11.10"
|
||||
version = "3.11.11"
|
||||
description = "Async http client/server framework (asyncio)"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cbad88a61fa743c5d283ad501b01c153820734118b65aee2bd7dbb735475ce0d"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:80886dac673ceaef499de2f393fc80bb4481a129e6cb29e624a12e3296cc088f"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:61b9bae80ed1f338c42f57c16918853dc51775fb5cb61da70d590de14d8b5fb4"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e2e576caec5c6a6b93f41626c9c02fc87cd91538b81a3670b2e04452a63def6"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02c13415b5732fb6ee7ff64583a5e6ed1c57aa68f17d2bda79c04888dfdc2769"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4cfce37f31f20800a6a6620ce2cdd6737b82e42e06e6e9bd1b36f546feb3c44f"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3bbbfff4c679c64e6e23cb213f57cc2c9165c9a65d63717108a644eb5a7398df"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:49c7dbbc1a559ae14fc48387a115b7d4bbc84b4a2c3b9299c31696953c2a5219"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:68386d78743e6570f054fe7949d6cb37ef2b672b4d3405ce91fafa996f7d9b4d"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9ef405356ba989fb57f84cac66f7b0260772836191ccefbb987f414bcd2979d9"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:5d6958671b296febe7f5f859bea581a21c1d05430d1bbdcf2b393599b1cdce77"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:99b7920e7165be5a9e9a3a7f1b680f06f68ff0d0328ff4079e5163990d046767"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0dc49f42422163efb7e6f1df2636fe3db72713f6cd94688e339dbe33fe06d61d"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-win32.whl", hash = "sha256:40d1c7a7f750b5648642586ba7206999650208dbe5afbcc5284bcec6579c9b91"},
|
||||
{file = "aiohttp-3.11.10-cp310-cp310-win_amd64.whl", hash = "sha256:68ff6f48b51bd78ea92b31079817aff539f6c8fc80b6b8d6ca347d7c02384e33"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:77c4aa15a89847b9891abf97f3d4048f3c2d667e00f8a623c89ad2dccee6771b"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:909af95a72cedbefe5596f0bdf3055740f96c1a4baa0dd11fd74ca4de0b4e3f1"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:386fbe79863eb564e9f3615b959e28b222259da0c48fd1be5929ac838bc65683"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3de34936eb1a647aa919655ff8d38b618e9f6b7f250cc19a57a4bf7fd2062b6d"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0c9527819b29cd2b9f52033e7fb9ff08073df49b4799c89cb5754624ecd98299"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65a96e3e03300b41f261bbfd40dfdbf1c301e87eab7cd61c054b1f2e7c89b9e8"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98f5635f7b74bcd4f6f72fcd85bea2154b323a9f05226a80bc7398d0c90763b0"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:03b6002e20938fc6ee0918c81d9e776bebccc84690e2b03ed132331cca065ee5"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6362cc6c23c08d18ddbf0e8c4d5159b5df74fea1a5278ff4f2c79aed3f4e9f46"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3691ed7726fef54e928fe26344d930c0c8575bc968c3e239c2e1a04bd8cf7838"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:31d5093d3acd02b31c649d3a69bb072d539d4c7659b87caa4f6d2bcf57c2fa2b"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:8b3cf2dc0f0690a33f2d2b2cb15db87a65f1c609f53c37e226f84edb08d10f52"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:fbbaea811a2bba171197b08eea288b9402faa2bab2ba0858eecdd0a4105753a3"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-win32.whl", hash = "sha256:4b2c7ac59c5698a7a8207ba72d9e9c15b0fc484a560be0788b31312c2c5504e4"},
|
||||
{file = "aiohttp-3.11.10-cp311-cp311-win_amd64.whl", hash = "sha256:974d3a2cce5fcfa32f06b13ccc8f20c6ad9c51802bb7f829eae8a1845c4019ec"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:b78f053a7ecfc35f0451d961dacdc671f4bcbc2f58241a7c820e9d82559844cf"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:ab7485222db0959a87fbe8125e233b5a6f01f4400785b36e8a7878170d8c3138"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cf14627232dfa8730453752e9cdc210966490992234d77ff90bc8dc0dce361d5"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:076bc454a7e6fd646bc82ea7f98296be0b1219b5e3ef8a488afbdd8e81fbac50"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:482cafb7dc886bebeb6c9ba7925e03591a62ab34298ee70d3dd47ba966370d2c"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf3d1a519a324af764a46da4115bdbd566b3c73fb793ffb97f9111dbc684fc4d"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24213ba85a419103e641e55c27dc7ff03536c4873470c2478cce3311ba1eee7b"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b99acd4730ad1b196bfb03ee0803e4adac371ae8efa7e1cbc820200fc5ded109"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:14cdb5a9570be5a04eec2ace174a48ae85833c2aadc86de68f55541f66ce42ab"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:7e97d622cb083e86f18317282084bc9fbf261801b0192c34fe4b1febd9f7ae69"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:012f176945af138abc10c4a48743327a92b4ca9adc7a0e078077cdb5dbab7be0"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44224d815853962f48fe124748227773acd9686eba6dc102578defd6fc99e8d9"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c87bf31b7fdab94ae3adbe4a48e711bfc5f89d21cf4c197e75561def39e223bc"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-win32.whl", hash = "sha256:06a8e2ee1cbac16fe61e51e0b0c269400e781b13bcfc33f5425912391a542985"},
|
||||
{file = "aiohttp-3.11.10-cp312-cp312-win_amd64.whl", hash = "sha256:be2b516f56ea883a3e14dda17059716593526e10fb6303189aaf5503937db408"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8cc5203b817b748adccb07f36390feb730b1bc5f56683445bfe924fc270b8816"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:5ef359ebc6949e3a34c65ce20230fae70920714367c63afd80ea0c2702902ccf"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:9bca390cb247dbfaec3c664326e034ef23882c3f3bfa5fbf0b56cad0320aaca5"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:811f23b3351ca532af598405db1093f018edf81368e689d1b508c57dcc6b6a32"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddf5f7d877615f6a1e75971bfa5ac88609af3b74796ff3e06879e8422729fd01"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6ab29b8a0beb6f8eaf1e5049252cfe74adbaafd39ba91e10f18caeb0e99ffb34"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c49a76c1038c2dd116fa443eba26bbb8e6c37e924e2513574856de3b6516be99"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f3dc0e330575f5b134918976a645e79adf333c0a1439dcf6899a80776c9ab39"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:efb15a17a12497685304b2d976cb4939e55137df7b09fa53f1b6a023f01fcb4e"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:db1d0b28fcb7f1d35600150c3e4b490775251dea70f894bf15c678fdd84eda6a"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:15fccaf62a4889527539ecb86834084ecf6e9ea70588efde86e8bc775e0e7542"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:593c114a2221444f30749cc5e5f4012488f56bd14de2af44fe23e1e9894a9c60"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7852bbcb4d0d2f0c4d583f40c3bc750ee033265d80598d0f9cb6f372baa6b836"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-win32.whl", hash = "sha256:65e55ca7debae8faaffee0ebb4b47a51b4075f01e9b641c31e554fd376595c6c"},
|
||||
{file = "aiohttp-3.11.10-cp313-cp313-win_amd64.whl", hash = "sha256:beb39a6d60a709ae3fb3516a1581777e7e8b76933bb88c8f4420d875bb0267c6"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0580f2e12de2138f34debcd5d88894786453a76e98febaf3e8fe5db62d01c9bf"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a55d2ad345684e7c3dd2c20d2f9572e9e1d5446d57200ff630e6ede7612e307f"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04814571cb72d65a6899db6099e377ed00710bf2e3eafd2985166f2918beaf59"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e44a9a3c053b90c6f09b1bb4edd880959f5328cf63052503f892c41ea786d99f"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:502a1464ccbc800b4b1995b302efaf426e8763fadf185e933c2931df7db9a199"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:613e5169f8ae77b1933e42e418a95931fb4867b2991fc311430b15901ed67079"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cca22a61b7fe45da8fc73c3443150c3608750bbe27641fc7558ec5117b27fdf"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:86a5dfcc39309470bd7b68c591d84056d195428d5d2e0b5ccadfbaf25b026ebc"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:77ae58586930ee6b2b6f696c82cf8e78c8016ec4795c53e36718365f6959dc82"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:78153314f26d5abef3239b4a9af20c229c6f3ecb97d4c1c01b22c4f87669820c"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:98283b94cc0e11c73acaf1c9698dea80c830ca476492c0fe2622bd931f34b487"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:53bf2097e05c2accc166c142a2090e4c6fd86581bde3fd9b2d3f9e93dda66ac1"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:c5532f0441fc09c119e1dca18fbc0687e64fbeb45aa4d6a87211ceaee50a74c4"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-win32.whl", hash = "sha256:47ad15a65fb41c570cd0ad9a9ff8012489e68176e7207ec7b82a0940dddfd8be"},
|
||||
{file = "aiohttp-3.11.10-cp39-cp39-win_amd64.whl", hash = "sha256:c6b9e6d7e41656d78e37ce754813fa44b455c3d0d0dced2a047def7dc5570b74"},
|
||||
{file = "aiohttp-3.11.10.tar.gz", hash = "sha256:b1fc6b45010a8d0ff9e88f9f2418c6fd408c99c211257334aff41597ebece42e"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a60804bff28662cbcf340a4d61598891f12eea3a66af48ecfdc975ceec21e3c8"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4b4fa1cb5f270fb3eab079536b764ad740bb749ce69a94d4ec30ceee1b5940d5"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:731468f555656767cda219ab42e033355fe48c85fbe3ba83a349631541715ba2"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb23d8bb86282b342481cad4370ea0853a39e4a32a0042bb52ca6bdde132df43"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f047569d655f81cb70ea5be942ee5d4421b6219c3f05d131f64088c73bb0917f"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd7659baae9ccf94ae5fe8bfaa2c7bc2e94d24611528395ce88d009107e00c6d"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af01e42ad87ae24932138f154105e88da13ce7d202a6de93fafdafb2883a00ef"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5854be2f3e5a729800bac57a8d76af464e160f19676ab6aea74bde18ad19d438"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6526e5fb4e14f4bbf30411216780c9967c20c5a55f2f51d3abd6de68320cc2f3"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:85992ee30a31835fc482468637b3e5bd085fa8fe9392ba0bdcbdc1ef5e9e3c55"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:88a12ad8ccf325a8a5ed80e6d7c3bdc247d66175afedbe104ee2aaca72960d8e"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:0a6d3fbf2232e3a08c41eca81ae4f1dff3d8f1a30bae415ebe0af2d2458b8a33"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84a585799c58b795573c7fa9b84c455adf3e1d72f19a2bf498b54a95ae0d194c"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-win32.whl", hash = "sha256:bfde76a8f430cf5c5584553adf9926534352251d379dcb266ad2b93c54a29745"},
|
||||
{file = "aiohttp-3.11.11-cp310-cp310-win_amd64.whl", hash = "sha256:0fd82b8e9c383af11d2b26f27a478640b6b83d669440c0a71481f7c865a51da9"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ba74ec819177af1ef7f59063c6d35a214a8fde6f987f7661f4f0eecc468a8f76"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4af57160800b7a815f3fe0eba9b46bf28aafc195555f1824555fa2cfab6c1538"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ffa336210cf9cd8ed117011085817d00abe4c08f99968deef0013ea283547204"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81b8fe282183e4a3c7a1b72f5ade1094ed1c6345a8f153506d114af5bf8accd9"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3af41686ccec6a0f2bdc66686dc0f403c41ac2089f80e2214a0f82d001052c03"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70d1f9dde0e5dd9e292a6d4d00058737052b01f3532f69c0c65818dac26dc287"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:249cc6912405917344192b9f9ea5cd5b139d49e0d2f5c7f70bdfaf6b4dbf3a2e"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0eb98d90b6690827dcc84c246811feeb4e1eea683c0eac6caed7549be9c84665"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ec82bf1fda6cecce7f7b915f9196601a1bd1a3079796b76d16ae4cce6d0ef89b"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:9fd46ce0845cfe28f108888b3ab17abff84ff695e01e73657eec3f96d72eef34"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:bd176afcf8f5d2aed50c3647d4925d0db0579d96f75a31e77cbaf67d8a87742d"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:ec2aa89305006fba9ffb98970db6c8221541be7bee4c1d027421d6f6df7d1ce2"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:92cde43018a2e17d48bb09c79e4d4cb0e236de5063ce897a5e40ac7cb4878773"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-win32.whl", hash = "sha256:aba807f9569455cba566882c8938f1a549f205ee43c27b126e5450dc9f83cc62"},
|
||||
{file = "aiohttp-3.11.11-cp311-cp311-win_amd64.whl", hash = "sha256:ae545f31489548c87b0cced5755cfe5a5308d00407000e72c4fa30b19c3220ac"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:e595c591a48bbc295ebf47cb91aebf9bd32f3ff76749ecf282ea7f9f6bb73886"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:3ea1b59dc06396b0b424740a10a0a63974c725b1c64736ff788a3689d36c02d2"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8811f3f098a78ffa16e0ea36dffd577eb031aea797cbdba81be039a4169e242c"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7227b87a355ce1f4bf83bfae4399b1f5bb42e0259cb9405824bd03d2f4336a"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d40f9da8cabbf295d3a9dae1295c69975b86d941bc20f0a087f0477fa0a66231"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ffb3dc385f6bb1568aa974fe65da84723210e5d9707e360e9ecb51f59406cd2e"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8f5f7515f3552d899c61202d99dcb17d6e3b0de777900405611cd747cecd1b8"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3499c7ffbfd9c6a3d8d6a2b01c26639da7e43d47c7b4f788016226b1e711caa8"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8e2bf8029dbf0810c7bfbc3e594b51c4cc9101fbffb583a3923aea184724203c"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b6212a60e5c482ef90f2d788835387070a88d52cf6241d3916733c9176d39eab"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d119fafe7b634dbfa25a8c597718e69a930e4847f0b88e172744be24515140da"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:6fba278063559acc730abf49845d0e9a9e1ba74f85f0ee6efd5803f08b285853"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:92fc484e34b733704ad77210c7957679c5c3877bd1e6b6d74b185e9320cc716e"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-win32.whl", hash = "sha256:9f5b3c1ed63c8fa937a920b6c1bec78b74ee09593b3f5b979ab2ae5ef60d7600"},
|
||||
{file = "aiohttp-3.11.11-cp312-cp312-win_amd64.whl", hash = "sha256:1e69966ea6ef0c14ee53ef7a3d68b564cc408121ea56c0caa2dc918c1b2f553d"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:541d823548ab69d13d23730a06f97460f4238ad2e5ed966aaf850d7c369782d9"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:929f3ed33743a49ab127c58c3e0a827de0664bfcda566108989a14068f820194"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0882c2820fd0132240edbb4a51eb8ceb6eef8181db9ad5291ab3332e0d71df5f"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b63de12e44935d5aca7ed7ed98a255a11e5cb47f83a9fded7a5e41c40277d104"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa54f8ef31d23c506910c21163f22b124facb573bff73930735cf9fe38bf7dff"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a344d5dc18074e3872777b62f5f7d584ae4344cd6006c17ba12103759d407af3"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b7fb429ab1aafa1f48578eb315ca45bd46e9c37de11fe45c7f5f4138091e2f1"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c341c7d868750e31961d6d8e60ff040fb9d3d3a46d77fd85e1ab8e76c3e9a5c4"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ed9ee95614a71e87f1a70bc81603f6c6760128b140bc4030abe6abaa988f1c3d"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:de8d38f1c2810fa2a4f1d995a2e9c70bb8737b18da04ac2afbf3971f65781d87"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:a9b7371665d4f00deb8f32208c7c5e652059b0fda41cf6dbcac6114a041f1cc2"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:620598717fce1b3bd14dd09947ea53e1ad510317c85dda2c9c65b622edc96b12"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:bf8d9bfee991d8acc72d060d53860f356e07a50f0e0d09a8dfedea1c554dd0d5"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-win32.whl", hash = "sha256:9d73ee3725b7a737ad86c2eac5c57a4a97793d9f442599bea5ec67ac9f4bdc3d"},
|
||||
{file = "aiohttp-3.11.11-cp313-cp313-win_amd64.whl", hash = "sha256:c7a06301c2fb096bdb0bd25fe2011531c1453b9f2c163c8031600ec73af1cc99"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3e23419d832d969f659c208557de4a123e30a10d26e1e14b73431d3c13444c2e"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:21fef42317cf02e05d3b09c028712e1d73a9606f02467fd803f7c1f39cc59add"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1f21bb8d0235fc10c09ce1d11ffbd40fc50d3f08a89e4cf3a0c503dc2562247a"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1642eceeaa5ab6c9b6dfeaaa626ae314d808188ab23ae196a34c9d97efb68350"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2170816e34e10f2fd120f603e951630f8a112e1be3b60963a1f159f5699059a6"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8be8508d110d93061197fd2d6a74f7401f73b6d12f8822bbcd6d74f2b55d71b1"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4eed954b161e6b9b65f6be446ed448ed3921763cc432053ceb606f89d793927e"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6c9af134da4bc9b3bd3e6a70072509f295d10ee60c697826225b60b9959acdd"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:44167fc6a763d534a6908bdb2592269b4bf30a03239bcb1654781adf5e49caf1"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:479b8c6ebd12aedfe64563b85920525d05d394b85f166b7873c8bde6da612f9c"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:10b4ff0ad793d98605958089fabfa350e8e62bd5d40aa65cdc69d6785859f94e"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:b540bd67cfb54e6f0865ceccd9979687210d7ed1a1cc8c01f8e67e2f1e883d28"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:1dac54e8ce2ed83b1f6b1a54005c87dfed139cf3f777fdc8afc76e7841101226"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-win32.whl", hash = "sha256:568c1236b2fde93b7720f95a890741854c1200fba4a3471ff48b2934d2d93fd3"},
|
||||
{file = "aiohttp-3.11.11-cp39-cp39-win_amd64.whl", hash = "sha256:943a8b052e54dfd6439fd7989f67fc6a7f2138d0a2cf0a7de5f18aa4fe7eb3b1"},
|
||||
{file = "aiohttp-3.11.11.tar.gz", hash = "sha256:bb49c7f1e6ebf3821a42d81d494f538107610c3a705987f53068546b0e90303e"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -196,13 +196,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "akshare"
|
||||
version = "1.15.49"
|
||||
version = "1.15.53"
|
||||
description = "AKShare is an elegant and simple financial data interface library for Python, built for human beings!"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "akshare-1.15.49-py3-none-any.whl", hash = "sha256:b1bbcdc0e8fbdcd751210e93ba93ff4cf4eec1bbd7707fcb455b9c9724c5c2d8"},
|
||||
{file = "akshare-1.15.49.tar.gz", hash = "sha256:ae0e400f8c61b2258363c92ec9aacf00f232b9017c8b0a9ada02a6ed3a809a4b"},
|
||||
{file = "akshare-1.15.53-py3-none-any.whl", hash = "sha256:f19c951d20f967c7fa95f95ae64d8534b71bffac7c69442e9046e0e668d64591"},
|
||||
{file = "akshare-1.15.53.tar.gz", hash = "sha256:8f55fe3a8d1fe1eb7d8489e1c865c95df924850b358a90760c10a9ee53dea928"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -565,13 +565,13 @@ dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"]
|
||||
|
||||
[[package]]
|
||||
name = "bce-python-sdk"
|
||||
version = "0.9.23"
|
||||
version = "0.9.25"
|
||||
description = "BCE SDK for python"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, <4"
|
||||
files = [
|
||||
{file = "bce_python_sdk-0.9.23-py3-none-any.whl", hash = "sha256:8debe21a040e00060f6044877d594765ed7b18bc765c6bf16b878bca864140a3"},
|
||||
{file = "bce_python_sdk-0.9.23.tar.gz", hash = "sha256:19739fed5cd0725356fc5ffa2acbdd8fb23f2a81edb91db21a03174551d0cf41"},
|
||||
{file = "bce_python_sdk-0.9.25-py3-none-any.whl", hash = "sha256:cd1ab4c887e163adba6bfb3cd40465a365e5f4255705a015b0cdbe768e649877"},
|
||||
{file = "bce_python_sdk-0.9.25.tar.gz", hash = "sha256:93a0623fbb1bf3a58b4f2d7bdbd799a3b342a538f0c72950c77168e431470e86"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -636,12 +636,12 @@ lxml = ["lxml"]
|
||||
|
||||
[[package]]
|
||||
name = "bibtexparser"
|
||||
version = "1.4.2"
|
||||
version = "1.4.3"
|
||||
description = "Bibtex parser for python 3"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "bibtexparser-1.4.2.tar.gz", hash = "sha256:dd5d54a1ec6d27b6485ce2f6b9aa514b183fb2b8d4bf5f19333a906eedaf8eaa"},
|
||||
{file = "bibtexparser-1.4.3.tar.gz", hash = "sha256:a9c7ded64bc137720e4df0b1b7f12734edc1361185f1c9097048ff7c35af2b8f"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -1213,13 +1213,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "click"
|
||||
version = "8.1.7"
|
||||
version = "8.1.8"
|
||||
description = "Composable command line interface toolkit"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
|
||||
{file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
|
||||
{file = "click-8.1.8-py3-none-any.whl", hash = "sha256:63c132bbbed01578a06712a2d1f497bb62d9c1c0d329b7903a866228027263b2"},
|
||||
{file = "click-8.1.8.tar.gz", hash = "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -1993,42 +1993,42 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "fastavro"
|
||||
version = "1.9.7"
|
||||
version = "1.10.0"
|
||||
description = "Fast read/write of AVRO files"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "fastavro-1.9.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cc811fb4f7b5ae95f969cda910241ceacf82e53014c7c7224df6f6e0ca97f52f"},
|
||||
{file = "fastavro-1.9.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb8749e419a85f251bf1ac87d463311874972554d25d4a0b19f6bdc56036d7cf"},
|
||||
{file = "fastavro-1.9.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b2f9bafa167cb4d1c3dd17565cb5bf3d8c0759e42620280d1760f1e778e07fc"},
|
||||
{file = "fastavro-1.9.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e87d04b235b29f7774d226b120da2ca4e60b9e6fdf6747daef7f13f218b3517a"},
|
||||
{file = "fastavro-1.9.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b525c363e267ed11810aaad8fbdbd1c3bd8837d05f7360977d72a65ab8c6e1fa"},
|
||||
{file = "fastavro-1.9.7-cp310-cp310-win_amd64.whl", hash = "sha256:6312fa99deecc319820216b5e1b1bd2d7ebb7d6f221373c74acfddaee64e8e60"},
|
||||
{file = "fastavro-1.9.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ec8499dc276c2d2ef0a68c0f1ad11782b2b956a921790a36bf4c18df2b8d4020"},
|
||||
{file = "fastavro-1.9.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76d9d96f98052615ab465c63ba8b76ed59baf2e3341b7b169058db104cbe2aa0"},
|
||||
{file = "fastavro-1.9.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:919f3549e07a8a8645a2146f23905955c35264ac809f6c2ac18142bc5b9b6022"},
|
||||
{file = "fastavro-1.9.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:9de1fa832a4d9016724cd6facab8034dc90d820b71a5d57c7e9830ffe90f31e4"},
|
||||
{file = "fastavro-1.9.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1d09227d1f48f13281bd5ceac958650805aef9a4ef4f95810128c1f9be1df736"},
|
||||
{file = "fastavro-1.9.7-cp311-cp311-win_amd64.whl", hash = "sha256:2db993ae6cdc63e25eadf9f93c9e8036f9b097a3e61d19dca42536dcc5c4d8b3"},
|
||||
{file = "fastavro-1.9.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4e1289b731214a7315884c74b2ec058b6e84380ce9b18b8af5d387e64b18fc44"},
|
||||
{file = "fastavro-1.9.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eac69666270a76a3a1d0444f39752061195e79e146271a568777048ffbd91a27"},
|
||||
{file = "fastavro-1.9.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9be089be8c00f68e343bbc64ca6d9a13e5e5b0ba8aa52bcb231a762484fb270e"},
|
||||
{file = "fastavro-1.9.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d576eccfd60a18ffa028259500df67d338b93562c6700e10ef68bbd88e499731"},
|
||||
{file = "fastavro-1.9.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ee9bf23c157bd7dcc91ea2c700fa3bd924d9ec198bb428ff0b47fa37fe160659"},
|
||||
{file = "fastavro-1.9.7-cp312-cp312-win_amd64.whl", hash = "sha256:b6b2ccdc78f6afc18c52e403ee68c00478da12142815c1bd8a00973138a166d0"},
|
||||
{file = "fastavro-1.9.7-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:7313def3aea3dacface0a8b83f6d66e49a311149aa925c89184a06c1ef99785d"},
|
||||
{file = "fastavro-1.9.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:536f5644737ad21d18af97d909dba099b9e7118c237be7e4bd087c7abde7e4f0"},
|
||||
{file = "fastavro-1.9.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2af559f30383b79cf7d020a6b644c42ffaed3595f775fe8f3d7f80b1c43dfdc5"},
|
||||
{file = "fastavro-1.9.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:edc28ab305e3c424de5ac5eb87b48d1e07eddb6aa08ef5948fcda33cc4d995ce"},
|
||||
{file = "fastavro-1.9.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ec2e96bdabd58427fe683329b3d79f42c7b4f4ff6b3644664a345a655ac2c0a1"},
|
||||
{file = "fastavro-1.9.7-cp38-cp38-win_amd64.whl", hash = "sha256:3b683693c8a85ede496ebebe115be5d7870c150986e34a0442a20d88d7771224"},
|
||||
{file = "fastavro-1.9.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:58f76a5c9a312fbd37b84e49d08eb23094d36e10d43bc5df5187bc04af463feb"},
|
||||
{file = "fastavro-1.9.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56304401d2f4f69f5b498bdd1552c13ef9a644d522d5de0dc1d789cf82f47f73"},
|
||||
{file = "fastavro-1.9.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2fcce036c6aa06269fc6a0428050fcb6255189997f5e1a728fc461e8b9d3e26b"},
|
||||
{file = "fastavro-1.9.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:17de68aae8c2525f5631d80f2b447a53395cdc49134f51b0329a5497277fc2d2"},
|
||||
{file = "fastavro-1.9.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7c911366c625d0a997eafe0aa83ffbc6fd00d8fd4543cb39a97c6f3b8120ea87"},
|
||||
{file = "fastavro-1.9.7-cp39-cp39-win_amd64.whl", hash = "sha256:912283ed48578a103f523817fdf0c19b1755cea9b4a6387b73c79ecb8f8f84fc"},
|
||||
{file = "fastavro-1.9.7.tar.gz", hash = "sha256:13e11c6cb28626da85290933027cd419ce3f9ab8e45410ef24ce6b89d20a1f6c"},
|
||||
{file = "fastavro-1.10.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1a9fe0672d2caf0fe54e3be659b13de3cad25a267f2073d6f4b9f8862acc31eb"},
|
||||
{file = "fastavro-1.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86dd0410770e0c99363788f0584523709d85e57bb457372ec5c285a482c17fe6"},
|
||||
{file = "fastavro-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:190e80dc7d77d03a6a8597a026146b32a0bbe45e3487ab4904dc8c1bebecb26d"},
|
||||
{file = "fastavro-1.10.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:bf570d63be9155c3fdc415f60a49c171548334b70fff0679a184b69c29b6bc61"},
|
||||
{file = "fastavro-1.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e07abb6798e95dccecaec316265e35a018b523d1f3944ad396d0a93cb95e0a08"},
|
||||
{file = "fastavro-1.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:37203097ed11d0b8fd3c004904748777d730cafd26e278167ea602eebdef8eb2"},
|
||||
{file = "fastavro-1.10.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d183c075f527ab695a27ae75f210d4a86bce660cda2f85ae84d5606efc15ef50"},
|
||||
{file = "fastavro-1.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7a95a2c0639bffd7c079b59e9a796bfc3a9acd78acff7088f7c54ade24e4a77"},
|
||||
{file = "fastavro-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a678153b5da1b024a32ec3f611b2e7afd24deac588cb51dd1b0019935191a6d"},
|
||||
{file = "fastavro-1.10.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:67a597a5cfea4dddcf8b49eaf8c2b5ffee7fda15b578849185bc690ec0cd0d8f"},
|
||||
{file = "fastavro-1.10.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1fd689724760b17f69565d8a4e7785ed79becd451d1c99263c40cb2d6491f1d4"},
|
||||
{file = "fastavro-1.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:4f949d463f9ac4221128a51e4e34e2562f401e5925adcadfd28637a73df6c2d8"},
|
||||
{file = "fastavro-1.10.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:cfe57cb0d72f304bd0dcc5a3208ca6a7363a9ae76f3073307d095c9d053b29d4"},
|
||||
{file = "fastavro-1.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:74e517440c824cb65fb29d3e3903a9406f4d7c75490cef47e55c4c82cdc66270"},
|
||||
{file = "fastavro-1.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:203c17d44cadde76e8eecb30f2d1b4f33eb478877552d71f049265dc6f2ecd10"},
|
||||
{file = "fastavro-1.10.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6575be7f2b5f94023b5a4e766b0251924945ad55e9a96672dc523656d17fe251"},
|
||||
{file = "fastavro-1.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fe471deb675ed2f01ee2aac958fbf8ebb13ea00fa4ce7f87e57710a0bc592208"},
|
||||
{file = "fastavro-1.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:567ff515f2a5d26d9674b31c95477f3e6022ec206124c62169bc2ffaf0889089"},
|
||||
{file = "fastavro-1.10.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:82263af0adfddb39c85f9517d736e1e940fe506dfcc35bc9ab9f85e0fa9236d8"},
|
||||
{file = "fastavro-1.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:566c193109ff0ff84f1072a165b7106c4f96050078a4e6ac7391f81ca1ef3efa"},
|
||||
{file = "fastavro-1.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e400d2e55d068404d9fea7c5021f8b999c6f9d9afa1d1f3652ec92c105ffcbdd"},
|
||||
{file = "fastavro-1.10.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:9b8227497f71565270f9249fc9af32a93644ca683a0167cfe66d203845c3a038"},
|
||||
{file = "fastavro-1.10.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8e62d04c65461b30ac6d314e4197ad666371e97ae8cb2c16f971d802f6c7f514"},
|
||||
{file = "fastavro-1.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:86baf8c9740ab570d0d4d18517da71626fe9be4d1142bea684db52bd5adb078f"},
|
||||
{file = "fastavro-1.10.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5bccbb6f8e9e5b834cca964f0e6ebc27ebe65319d3940b0b397751a470f45612"},
|
||||
{file = "fastavro-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0132f6b0b53f61a0a508a577f64beb5de1a5e068a9b4c0e1df6e3b66568eec4"},
|
||||
{file = "fastavro-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca37a363b711202c6071a6d4787e68e15fa3ab108261058c4aae853c582339af"},
|
||||
{file = "fastavro-1.10.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:cf38cecdd67ca9bd92e6e9ba34a30db6343e7a3bedf171753ee78f8bd9f8a670"},
|
||||
{file = "fastavro-1.10.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:f4dd10e0ed42982122d20cdf1a88aa50ee09e5a9cd9b39abdffb1aa4f5b76435"},
|
||||
{file = "fastavro-1.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:aaef147dc14dd2d7823246178fd06fc5e477460e070dc6d9e07dd8193a6bc93c"},
|
||||
{file = "fastavro-1.10.0.tar.gz", hash = "sha256:47bf41ac6d52cdfe4a3da88c75a802321321b37b663a900d12765101a5d6886f"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
@ -2282,13 +2282,13 @@ sqlalchemy = ["flask-sqlalchemy (>=3.0.5)"]
|
||||
|
||||
[[package]]
|
||||
name = "flatbuffers"
|
||||
version = "24.3.25"
|
||||
version = "24.12.23"
|
||||
description = "The FlatBuffers serialization format for Python"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "flatbuffers-24.3.25-py2.py3-none-any.whl", hash = "sha256:8dbdec58f935f3765e4f7f3cf635ac3a77f83568138d6a2311f524ec96364812"},
|
||||
{file = "flatbuffers-24.3.25.tar.gz", hash = "sha256:de2ec5b203f21441716617f38443e0a8ebf3d25bf0d9c0bb0ce68fa00ad546a4"},
|
||||
{file = "flatbuffers-24.12.23-py2.py3-none-any.whl", hash = "sha256:c418e0d48890f4142b92fd3e343e73a48f194e1f80075ddcc5793779b3585444"},
|
||||
{file = "flatbuffers-24.12.23.tar.gz", hash = "sha256:2910b0bc6ae9b6db78dd2b18d0b7a0709ba240fb5585f286a3a2b30785c22dac"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@ -2643,13 +2643,13 @@ grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0.dev0)"]
|
||||
|
||||
[[package]]
|
||||
name = "google-api-python-client"
|
||||
version = "2.155.0"
|
||||
version = "2.156.0"
|
||||
description = "Google API Client Library for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "google_api_python_client-2.155.0-py2.py3-none-any.whl", hash = "sha256:83fe9b5aa4160899079d7c93a37be306546a17e6686e2549bcc9584f1a229747"},
|
||||
{file = "google_api_python_client-2.155.0.tar.gz", hash = "sha256:25529f89f0d13abcf3c05c089c423fb2858ac16e0b3727543393468d0d7af67c"},
|
||||
{file = "google_api_python_client-2.156.0-py2.py3-none-any.whl", hash = "sha256:6352185c505e1f311f11b0b96c1b636dcb0fec82cd04b80ac5a671ac4dcab339"},
|
||||
{file = "google_api_python_client-2.156.0.tar.gz", hash = "sha256:b809c111ded61716a9c1c7936e6899053f13bae3defcdfda904bd2ca68065b9c"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -3678,12 +3678,12 @@ vision = ["colpali-engine (>=0.3.1,<0.4.0)", "pillow", "timm", "torchvision"]
|
||||
|
||||
[[package]]
|
||||
name = "infinity-sdk"
|
||||
version = "0.5.0"
|
||||
version = "0.5.2"
|
||||
description = "infinity"
|
||||
optional = false
|
||||
python-versions = ">=3.10"
|
||||
files = [
|
||||
{file = "infinity_sdk-0.5.0-py3-none-any.whl", hash = "sha256:ac88dfe5984b45bb11cadd46567552e16dd5a7fb336e164c2e3faf63c20394ca"},
|
||||
{file = "infinity_sdk-0.5.2-py3-none-any.whl", hash = "sha256:fb45ea3e7eaf834ba05fc233c23b075fce5b89f330500d53a92c417270193800"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -3794,13 +3794,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "jinja2"
|
||||
version = "3.1.4"
|
||||
version = "3.1.5"
|
||||
description = "A very fast and expressive template engine."
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"},
|
||||
{file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"},
|
||||
{file = "jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb"},
|
||||
{file = "jinja2-3.1.5.tar.gz", hash = "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -6268,32 +6268,32 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "psutil"
|
||||
version = "6.1.0"
|
||||
version = "6.1.1"
|
||||
description = "Cross-platform lib for process and system monitoring in Python."
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
|
||||
files = [
|
||||
{file = "psutil-6.1.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ff34df86226c0227c52f38b919213157588a678d049688eded74c76c8ba4a5d0"},
|
||||
{file = "psutil-6.1.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:c0e0c00aa18ca2d3b2b991643b799a15fc8f0563d2ebb6040f64ce8dc027b942"},
|
||||
{file = "psutil-6.1.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:000d1d1ebd634b4efb383f4034437384e44a6d455260aaee2eca1e9c1b55f047"},
|
||||
{file = "psutil-6.1.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:5cd2bcdc75b452ba2e10f0e8ecc0b57b827dd5d7aaffbc6821b2a9a242823a76"},
|
||||
{file = "psutil-6.1.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:045f00a43c737f960d273a83973b2511430d61f283a44c96bf13a6e829ba8fdc"},
|
||||
{file = "psutil-6.1.0-cp27-none-win32.whl", hash = "sha256:9118f27452b70bb1d9ab3198c1f626c2499384935aaf55388211ad982611407e"},
|
||||
{file = "psutil-6.1.0-cp27-none-win_amd64.whl", hash = "sha256:a8506f6119cff7015678e2bce904a4da21025cc70ad283a53b099e7620061d85"},
|
||||
{file = "psutil-6.1.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6e2dcd475ce8b80522e51d923d10c7871e45f20918e027ab682f94f1c6351688"},
|
||||
{file = "psutil-6.1.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0895b8414afafc526712c498bd9de2b063deaac4021a3b3c34566283464aff8e"},
|
||||
{file = "psutil-6.1.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dcbfce5d89f1d1f2546a2090f4fcf87c7f669d1d90aacb7d7582addece9fb38"},
|
||||
{file = "psutil-6.1.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:498c6979f9c6637ebc3a73b3f87f9eb1ec24e1ce53a7c5173b8508981614a90b"},
|
||||
{file = "psutil-6.1.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d905186d647b16755a800e7263d43df08b790d709d575105d419f8b6ef65423a"},
|
||||
{file = "psutil-6.1.0-cp36-cp36m-win32.whl", hash = "sha256:6d3fbbc8d23fcdcb500d2c9f94e07b1342df8ed71b948a2649b5cb060a7c94ca"},
|
||||
{file = "psutil-6.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:1209036fbd0421afde505a4879dee3b2fd7b1e14fee81c0069807adcbbcca747"},
|
||||
{file = "psutil-6.1.0-cp37-abi3-win32.whl", hash = "sha256:1ad45a1f5d0b608253b11508f80940985d1d0c8f6111b5cb637533a0e6ddc13e"},
|
||||
{file = "psutil-6.1.0-cp37-abi3-win_amd64.whl", hash = "sha256:a8fb3752b491d246034fa4d279ff076501588ce8cbcdbb62c32fd7a377d996be"},
|
||||
{file = "psutil-6.1.0.tar.gz", hash = "sha256:353815f59a7f64cdaca1c0307ee13558a0512f6db064e92fe833784f08539c7a"},
|
||||
{file = "psutil-6.1.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:9ccc4316f24409159897799b83004cb1e24f9819b0dcf9c0b68bdcb6cefee6a8"},
|
||||
{file = "psutil-6.1.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ca9609c77ea3b8481ab005da74ed894035936223422dc591d6772b147421f777"},
|
||||
{file = "psutil-6.1.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:8df0178ba8a9e5bc84fed9cfa61d54601b371fbec5c8eebad27575f1e105c0d4"},
|
||||
{file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:1924e659d6c19c647e763e78670a05dbb7feaf44a0e9c94bf9e14dfc6ba50468"},
|
||||
{file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:018aeae2af92d943fdf1da6b58665124897cfc94faa2ca92098838f83e1b1bca"},
|
||||
{file = "psutil-6.1.1-cp27-none-win32.whl", hash = "sha256:6d4281f5bbca041e2292be3380ec56a9413b790579b8e593b1784499d0005dac"},
|
||||
{file = "psutil-6.1.1-cp27-none-win_amd64.whl", hash = "sha256:c777eb75bb33c47377c9af68f30e9f11bc78e0f07fbf907be4a5d70b2fe5f030"},
|
||||
{file = "psutil-6.1.1-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:fc0ed7fe2231a444fc219b9c42d0376e0a9a1a72f16c5cfa0f68d19f1a0663e8"},
|
||||
{file = "psutil-6.1.1-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bdd4eab935276290ad3cb718e9809412895ca6b5b334f5a9111ee6d9aff9377"},
|
||||
{file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6e06c20c05fe95a3d7302d74e7097756d4ba1247975ad6905441ae1b5b66003"},
|
||||
{file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97f7cb9921fbec4904f522d972f0c0e1f4fabbdd4e0287813b21215074a0f160"},
|
||||
{file = "psutil-6.1.1-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33431e84fee02bc84ea36d9e2c4a6d395d479c9dd9bba2376c1f6ee8f3a4e0b3"},
|
||||
{file = "psutil-6.1.1-cp36-cp36m-win32.whl", hash = "sha256:384636b1a64b47814437d1173be1427a7c83681b17a450bfc309a1953e329603"},
|
||||
{file = "psutil-6.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:8be07491f6ebe1a693f17d4f11e69d0dc1811fa082736500f649f79df7735303"},
|
||||
{file = "psutil-6.1.1-cp37-abi3-win32.whl", hash = "sha256:eaa912e0b11848c4d9279a93d7e2783df352b082f40111e078388701fd479e53"},
|
||||
{file = "psutil-6.1.1-cp37-abi3-win_amd64.whl", hash = "sha256:f35cfccb065fff93529d2afb4a2e89e363fe63ca1e4a5da22b603a85833c2649"},
|
||||
{file = "psutil-6.1.1.tar.gz", hash = "sha256:cf8496728c18f2d0b45198f06895be52f36611711746b7f30c464b422b50e2f5"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
dev = ["black", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest-cov", "requests", "rstcheck", "ruff", "sphinx", "sphinx-rtd-theme", "toml-sort", "twine", "virtualenv", "wheel"]
|
||||
dev = ["abi3audit", "black", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest-cov", "requests", "rstcheck", "ruff", "sphinx", "sphinx-rtd-theme", "toml-sort", "twine", "virtualenv", "vulture", "wheel"]
|
||||
test = ["enum34", "futures", "ipaddress", "mock (==1.0.1)", "pytest (==4.6.11)", "pytest-xdist", "setuptools", "unittest2"]
|
||||
|
||||
[[package]]
|
||||
@ -7024,24 +7024,24 @@ image = ["Pillow"]
|
||||
|
||||
[[package]]
|
||||
name = "pypdfium2"
|
||||
version = "4.30.0"
|
||||
version = "4.30.1"
|
||||
description = "Python bindings to PDFium"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
python-versions = ">= 3.6"
|
||||
files = [
|
||||
{file = "pypdfium2-4.30.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:b33ceded0b6ff5b2b93bc1fe0ad4b71aa6b7e7bd5875f1ca0cdfb6ba6ac01aab"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:4e55689f4b06e2d2406203e771f78789bd4f190731b5d57383d05cf611d829de"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e6e50f5ce7f65a40a33d7c9edc39f23140c57e37144c2d6d9e9262a2a854854"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3d0dd3ecaffd0b6dbda3da663220e705cb563918249bda26058c6036752ba3a2"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cc3bf29b0db8c76cdfaac1ec1cde8edf211a7de7390fbf8934ad2aa9b4d6dfad"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1f78d2189e0ddf9ac2b7a9b9bd4f0c66f54d1389ff6c17e9fd9dc034d06eb3f"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:5eda3641a2da7a7a0b2f4dbd71d706401a656fea521b6b6faa0675b15d31a163"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-musllinux_1_1_i686.whl", hash = "sha256:0dfa61421b5eb68e1188b0b2231e7ba35735aef2d867d86e48ee6cab6975195e"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:f33bd79e7a09d5f7acca3b0b69ff6c8a488869a7fab48fdf400fec6e20b9c8be"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-win32.whl", hash = "sha256:ee2410f15d576d976c2ab2558c93d392a25fb9f6635e8dd0a8a3a5241b275e0e"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-win_amd64.whl", hash = "sha256:90dbb2ac07be53219f56be09961eb95cf2473f834d01a42d901d13ccfad64b4c"},
|
||||
{file = "pypdfium2-4.30.0-py3-none-win_arm64.whl", hash = "sha256:119b2969a6d6b1e8d55e99caaf05290294f2d0fe49c12a3f17102d01c441bd29"},
|
||||
{file = "pypdfium2-4.30.0.tar.gz", hash = "sha256:48b5b7e5566665bc1015b9d69c1ebabe21f6aee468b509531c3c8318eeee2e16"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:e07c47633732cc18d890bb7e965ad28a9c5a932e548acb928596f86be2e5ae37"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-macosx_11_0_arm64.whl", hash = "sha256:5ea2d44e96d361123b67b00f527017aa9c847c871b5714e013c01c3eb36a79fe"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1de7a3a36803171b3f66911131046d65a732f9e7834438191cb58235e6163c4e"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b8a4231efb13170354f568c722d6540b8d5b476b08825586d48ef70c40d16e03"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f434a4934e8244aa95343ffcf24e9ad9f120dbb4785f631bb40a88c39292493"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f454032a0bc7681900170f67d8711b3942824531e765f91c2f5ce7937f999794"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:bbf9130a72370ee9d602e39949b902db669a2a1c24746a91e5586eb829055d9f"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-musllinux_1_1_i686.whl", hash = "sha256:5cb52884b1583b96e94fd78542c63bb42e06df5e8f9e52f8f31f5ad5a1e53367"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:1a9e372bd4867ff223cc8c338e33fe11055dad12f22885950fc27646cc8d9122"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-win32.whl", hash = "sha256:421f1cf205e213e07c1f2934905779547f4f4a2ff2f59dde29da3d511d3fc806"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-win_amd64.whl", hash = "sha256:598a7f20264ab5113853cba6d86c4566e4356cad037d7d1f849c8c9021007e05"},
|
||||
{file = "pypdfium2-4.30.1-py3-none-win_arm64.whl", hash = "sha256:c2b6d63f6d425d9416c08d2511822b54b8e3ac38e639fc41164b1d75584b3a8c"},
|
||||
{file = "pypdfium2-4.30.1.tar.gz", hash = "sha256:5f5c7c6d03598e107d974f66b220a49436aceb191da34cda5f692be098a814ce"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@ -9294,13 +9294,13 @@ tbb = ["tbb (>=2019.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "unlzw3"
|
||||
version = "0.2.2"
|
||||
version = "0.2.3"
|
||||
description = "Pure Python decompression module for .Z files compressed using Unix compress utility"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "unlzw3-0.2.2-py3-none-any.whl", hash = "sha256:f2a40fbd2a3c9648745227e5d269a851dbed7802999db4654d358a40a5d61c2f"},
|
||||
{file = "unlzw3-0.2.2.tar.gz", hash = "sha256:d037a9b6823d1a455d6de1e0258af8c0f5dbf40aba3b19cc514448e78da77062"},
|
||||
{file = "unlzw3-0.2.3-py3-none-any.whl", hash = "sha256:7760fb4f3afa1225623944c061991d89a061f7fb78665dbc4cddfdb562bb4a8b"},
|
||||
{file = "unlzw3-0.2.3.tar.gz", hash = "sha256:ede5d928c792fff9da406f20334f9739693327f448f383ae1df1774627197bbb"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
@ -9320,13 +9320,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "urllib3"
|
||||
version = "2.2.3"
|
||||
version = "2.3.0"
|
||||
description = "HTTP library with thread-safe connection pooling, file post, and more."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"},
|
||||
{file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"},
|
||||
{file = "urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df"},
|
||||
{file = "urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -10150,4 +10150,4 @@ cffi = ["cffi (>=1.11)"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.10,<3.13"
|
||||
content-hash = "4c592934d67923be94f92704ac2cd646f8f7a7f59c4a94707677f4be29c5a7b1"
|
||||
content-hash = "fea9a86cc56c010942cd40789eb68be585721e777f069bf3158b0df98fb521df"
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "ragflow"
|
||||
version = "0.15.0"
|
||||
version = "0.15.1"
|
||||
description = "[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data."
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
license = "https://github.com/infiniflow/ragflow/blob/main/LICENSE"
|
||||
@ -48,7 +48,7 @@ hanziconv = "0.3.2"
|
||||
html-text = "0.6.2"
|
||||
httpx = "0.27.0"
|
||||
huggingface-hub = "^0.25.0"
|
||||
infinity-sdk = "0.5.0"
|
||||
infinity-sdk = "0.5.2"
|
||||
infinity-emb = "^0.0.66"
|
||||
itsdangerous = "2.1.2"
|
||||
markdown = "3.6"
|
||||
|
||||
@ -66,6 +66,8 @@ class Excel(ExcelParser):
|
||||
continue
|
||||
data.append(row)
|
||||
done += 1
|
||||
if np.array(data).size == 0:
|
||||
continue
|
||||
res.append(pd.DataFrame(np.array(data), columns=headers))
|
||||
|
||||
callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (
|
||||
|
||||
@ -47,6 +47,7 @@ class Base(ABC):
|
||||
|
||||
class DefaultEmbedding(Base):
|
||||
_model = None
|
||||
_model_name = ""
|
||||
_model_lock = threading.Lock()
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
"""
|
||||
@ -60,15 +61,16 @@ class DefaultEmbedding(Base):
|
||||
^_-
|
||||
|
||||
"""
|
||||
if not settings.LIGHTEN and not DefaultEmbedding._model:
|
||||
if not settings.LIGHTEN:
|
||||
with DefaultEmbedding._model_lock:
|
||||
from FlagEmbedding import FlagModel
|
||||
import torch
|
||||
if not DefaultEmbedding._model:
|
||||
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
|
||||
try:
|
||||
DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=torch.cuda.is_available())
|
||||
DefaultEmbedding._model_name = model_name
|
||||
except Exception:
|
||||
model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
|
||||
local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
|
||||
@ -77,6 +79,7 @@ class DefaultEmbedding(Base):
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=torch.cuda.is_available())
|
||||
self._model = DefaultEmbedding._model
|
||||
self._model_name = DefaultEmbedding._model_name
|
||||
|
||||
def encode(self, texts: list):
|
||||
batch_size = 16
|
||||
@ -248,9 +251,8 @@ class OllamaEmbed(Base):
|
||||
return np.array(res["embedding"]), 128
|
||||
|
||||
|
||||
class FastEmbed(Base):
|
||||
_model = None
|
||||
|
||||
class FastEmbed(DefaultEmbedding):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
key: str | None = None,
|
||||
@ -259,9 +261,21 @@ class FastEmbed(Base):
|
||||
threads: int | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
if not settings.LIGHTEN and not FastEmbed._model:
|
||||
from fastembed import TextEmbedding
|
||||
self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
||||
if not settings.LIGHTEN:
|
||||
with FastEmbed._model_lock:
|
||||
from fastembed import TextEmbedding
|
||||
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
|
||||
try:
|
||||
DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
||||
DefaultEmbedding._model_name = model_name
|
||||
except Exception:
|
||||
cache_dir = snapshot_download(repo_id="BAAI/bge-small-en-v1.5",
|
||||
local_dir=os.path.join(get_home_cache_dir(),
|
||||
re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
|
||||
local_dir_use_symlinks=False)
|
||||
DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
||||
self._model = DefaultEmbedding._model
|
||||
self._model_name = model_name
|
||||
|
||||
def encode(self, texts: list):
|
||||
# Using the internal tokenizer to encode the texts and get the total
|
||||
|
||||
@ -422,10 +422,12 @@ class VoyageRerank(Base):
|
||||
self.model_name = model_name
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
rank = np.zeros(len(texts), dtype=float)
|
||||
if not texts:
|
||||
return rank, 0
|
||||
res = self.client.rerank(
|
||||
query=query, documents=texts, model=self.model_name, top_k=len(texts)
|
||||
)
|
||||
rank = np.zeros(len(texts), dtype=float)
|
||||
for r in res.results:
|
||||
rank[r.index] = r.relevance_score
|
||||
return rank, res.total_tokens
|
||||
|
||||
@ -70,7 +70,7 @@ class Dealer:
|
||||
pg = int(req.get("page", 1)) - 1
|
||||
topk = int(req.get("topk", 1024))
|
||||
ps = int(req.get("size", topk))
|
||||
offset, limit = pg * ps, (pg + 1) * ps
|
||||
offset, limit = pg * ps, ps
|
||||
|
||||
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", "position_int",
|
||||
"doc_id", "page_num_int", "top_int", "create_timestamp_flt", "knowledge_graph_kwd", "question_kwd", "question_tks",
|
||||
@ -313,7 +313,7 @@ class Dealer:
|
||||
ranks["total"] = sres.total
|
||||
|
||||
if page <= RERANK_PAGE_LIMIT:
|
||||
if rerank_mdl:
|
||||
if rerank_mdl and sres.total > 0:
|
||||
sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
|
||||
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
|
||||
else:
|
||||
@ -380,6 +380,13 @@ class Dealer:
|
||||
|
||||
def chunk_list(self, doc_id: str, tenant_id: str, kb_ids: list[str], max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
|
||||
condition = {"doc_id": doc_id}
|
||||
res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), 0, max_count, index_name(tenant_id), kb_ids)
|
||||
dict_chunks = self.dataStore.getFields(res, fields)
|
||||
return dict_chunks.values()
|
||||
res = []
|
||||
bs = 128
|
||||
for p in range(0, max_count, bs):
|
||||
es_res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), p, bs, index_name(tenant_id), kb_ids)
|
||||
dict_chunks = self.dataStore.getFields(es_res, fields)
|
||||
if dict_chunks:
|
||||
res.extend(dict_chunks.values())
|
||||
if len(dict_chunks.values()) < bs:
|
||||
break
|
||||
return res
|
||||
|
||||
@ -83,7 +83,7 @@ FACTORY = {
|
||||
|
||||
CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
|
||||
PAYLOAD: Payload | None = None
|
||||
BOOT_AT = datetime.now().isoformat()
|
||||
BOOT_AT = datetime.now().astimezone().isoformat(timespec="milliseconds")
|
||||
PENDING_TASKS = 0
|
||||
LAG_TASKS = 0
|
||||
|
||||
@ -116,6 +116,8 @@ def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing...
|
||||
if to_page > 0:
|
||||
if msg:
|
||||
msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
|
||||
if msg:
|
||||
msg = datetime.now().strftime("%H:%M:%S") + " " + msg
|
||||
d = {"progress_msg": msg}
|
||||
if prog is not None:
|
||||
d["progress"] = prog
|
||||
@ -550,7 +552,7 @@ def report_status():
|
||||
with mt_lock:
|
||||
heartbeat = json.dumps({
|
||||
"name": CONSUMER_NAME,
|
||||
"now": now.isoformat(),
|
||||
"now": now.astimezone().isoformat(timespec="milliseconds"),
|
||||
"boot_at": BOOT_AT,
|
||||
"pending": PENDING_TASKS,
|
||||
"lag": LAG_TASKS,
|
||||
|
||||
@ -196,7 +196,7 @@ class ESConnection(DocStoreConnection):
|
||||
s = s.sort(*orders)
|
||||
|
||||
if limit > 0:
|
||||
s = s[offset:limit]
|
||||
s = s[offset:offset+limit]
|
||||
q = s.to_dict()
|
||||
logger.debug(f"ESConnection.search {str(indexNames)} query: " + json.dumps(q))
|
||||
|
||||
|
||||
@ -3,6 +3,7 @@ import os
|
||||
import re
|
||||
import json
|
||||
import time
|
||||
import copy
|
||||
import infinity
|
||||
from infinity.common import ConflictType, InfinityException, SortType
|
||||
from infinity.index import IndexInfo, IndexType
|
||||
@ -57,8 +58,11 @@ def concat_dataframes(df_list: list[pl.DataFrame], selectFields: list[str]) -> p
|
||||
if df_list:
|
||||
return pl.concat(df_list)
|
||||
schema = dict()
|
||||
for fieldnm in selectFields:
|
||||
schema[fieldnm] = str
|
||||
for field_name in selectFields:
|
||||
if field_name == 'score()': # Workaround: fix schema is changed to score()
|
||||
schema['SCORE'] = str
|
||||
else:
|
||||
schema[field_name] = str
|
||||
return pl.DataFrame(schema=schema)
|
||||
|
||||
@singleton
|
||||
@ -138,7 +142,6 @@ class InfinityConnection(DocStoreConnection):
|
||||
def health(self) -> dict:
|
||||
"""
|
||||
Return the health status of the database.
|
||||
TODO: Infinity-sdk provides health() to wrap `show global variables` and `show tables`
|
||||
"""
|
||||
inf_conn = self.connPool.get_conn()
|
||||
res = inf_conn.show_current_node()
|
||||
@ -247,9 +250,12 @@ class InfinityConnection(DocStoreConnection):
|
||||
db_instance = inf_conn.get_database(self.dbName)
|
||||
df_list = list()
|
||||
table_list = list()
|
||||
for essential_field in ["id", "score()", "pagerank_fea"]:
|
||||
for essential_field in ["id"]:
|
||||
if essential_field not in selectFields:
|
||||
selectFields.append(essential_field)
|
||||
if matchExprs:
|
||||
for essential_field in ["score()", "pagerank_fea"]:
|
||||
selectFields.append(essential_field)
|
||||
|
||||
# Prepare expressions common to all tables
|
||||
filter_cond = None
|
||||
@ -337,7 +343,8 @@ class InfinityConnection(DocStoreConnection):
|
||||
df_list.append(kb_res)
|
||||
self.connPool.release_conn(inf_conn)
|
||||
res = concat_dataframes(df_list, selectFields)
|
||||
res = res.sort(pl.col("SCORE") + pl.col("pagerank_fea"), descending=True, maintain_order=True)
|
||||
if matchExprs:
|
||||
res = res.sort(pl.col("SCORE") + pl.col("pagerank_fea"), descending=True, maintain_order=True)
|
||||
res = res.limit(limit)
|
||||
logger.debug(f"INFINITY search final result: {str(res)}")
|
||||
return res, total_hits_count
|
||||
@ -386,7 +393,8 @@ class InfinityConnection(DocStoreConnection):
|
||||
self.createIdx(indexName, knowledgebaseId, vector_size)
|
||||
table_instance = db_instance.get_table(table_name)
|
||||
|
||||
for d in documents:
|
||||
docs = copy.deepcopy(documents)
|
||||
for d in docs:
|
||||
assert "_id" not in d
|
||||
assert "id" in d
|
||||
for k, v in d.items():
|
||||
@ -400,17 +408,17 @@ class InfinityConnection(DocStoreConnection):
|
||||
assert isinstance(v, list)
|
||||
arr = [num for row in v for num in row]
|
||||
d[k] = "_".join(f"{num:08x}" for num in arr)
|
||||
elif k in ["page_num_int", "top_int", "position_int"]:
|
||||
elif k in ["page_num_int", "top_int"]:
|
||||
assert isinstance(v, list)
|
||||
d[k] = "_".join(f"{num:08x}" for num in v)
|
||||
ids = ["'{}'".format(d["id"]) for d in documents]
|
||||
ids = ["'{}'".format(d["id"]) for d in docs]
|
||||
str_ids = ", ".join(ids)
|
||||
str_filter = f"id IN ({str_ids})"
|
||||
table_instance.delete(str_filter)
|
||||
# for doc in documents:
|
||||
# logger.info(f"insert position_int: {doc['position_int']}")
|
||||
# logger.info(f"InfinityConnection.insert {json.dumps(documents)}")
|
||||
table_instance.insert(documents)
|
||||
table_instance.insert(docs)
|
||||
self.connPool.release_conn(inf_conn)
|
||||
logger.debug(f"INFINITY inserted into {table_name} {str_ids}.")
|
||||
return []
|
||||
@ -504,7 +512,7 @@ class InfinityConnection(DocStoreConnection):
|
||||
assert isinstance(v, str)
|
||||
if v:
|
||||
arr = [int(hex_val, 16) for hex_val in v.split('_')]
|
||||
v = [arr[i:i + 4] for i in range(0, len(arr), 4)]
|
||||
v = [arr[i:i + 5] for i in range(0, len(arr), 5)]
|
||||
else:
|
||||
v = []
|
||||
elif fieldnm in ["page_num_int", "top_int"]:
|
||||
|
||||
@ -1,20 +1,21 @@
|
||||
import logging
|
||||
import boto3
|
||||
import os
|
||||
from botocore.exceptions import ClientError
|
||||
from botocore.client import Config
|
||||
import time
|
||||
from io import BytesIO
|
||||
from rag.utils import singleton
|
||||
from rag import settings
|
||||
|
||||
@singleton
|
||||
class RAGFlowS3(object):
|
||||
def __init__(self):
|
||||
self.conn = None
|
||||
self.endpoint = os.getenv('ENDPOINT', None)
|
||||
self.access_key = os.getenv('ACCESS_KEY', None)
|
||||
self.secret_key = os.getenv('SECRET_KEY', None)
|
||||
self.region = os.getenv('REGION', None)
|
||||
self.s3_config = settings.S3
|
||||
self.endpoint = self.s3_config.get('endpoint', None)
|
||||
self.access_key = self.s3_config.get('access_key', None)
|
||||
self.secret_key = self.s3_config.get('secret_key', None)
|
||||
self.region = self.s3_config.get('region', None)
|
||||
self.__open__()
|
||||
|
||||
def __open__(self):
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "ragflow-sdk"
|
||||
version = "0.15.0"
|
||||
version = "0.15.1"
|
||||
description = "Python client sdk of [RAGFlow](https://github.com/infiniflow/ragflow). RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding."
|
||||
authors = ["Zhichang Yu <yuzhichang@gmail.com>"]
|
||||
license = "Apache License, Version 2.0"
|
||||
|
||||
@ -1,7 +1,6 @@
|
||||
from .base import Base
|
||||
from .session import Session,Message
|
||||
from .session import Session
|
||||
import requests
|
||||
import json
|
||||
|
||||
|
||||
class Agent(Base):
|
||||
@ -52,8 +51,8 @@ class Agent(Base):
|
||||
super().__init__(rag,res_dict)
|
||||
|
||||
@staticmethod
|
||||
def create_session(id,rag) -> Session:
|
||||
res = requests.post(f"{rag.api_url}/agents/{id}/sessions",headers={"Authorization": f"Bearer {rag.user_key}"},json={})
|
||||
def create_session(id,rag,**kwargs) -> Session:
|
||||
res = requests.post(f"{rag.api_url}/agents/{id}/sessions",headers={"Authorization": f"Bearer {rag.user_key}"},json=kwargs)
|
||||
res = res.json()
|
||||
if res.get("code") == 0:
|
||||
return Session(rag,res.get("data"))
|
||||
@ -74,30 +73,3 @@ class Agent(Base):
|
||||
result_list.append(temp_agent)
|
||||
return result_list
|
||||
raise Exception(res.get("message"))
|
||||
|
||||
@staticmethod
|
||||
def ask(agent_id,rag,stream=True,**kwargs):
|
||||
url = f"{rag.api_url}/agents/{agent_id}/completions"
|
||||
headers = {"Authorization": f"Bearer {rag.user_key}"}
|
||||
res = requests.post(url=url, headers=headers, json=kwargs,stream=stream)
|
||||
for line in res.iter_lines():
|
||||
line = line.decode("utf-8")
|
||||
if line.startswith("{"):
|
||||
json_data = json.loads(line)
|
||||
raise Exception(json_data["message"])
|
||||
if line.startswith("data:"):
|
||||
json_data = json.loads(line[5:])
|
||||
if json_data["data"] is not True:
|
||||
if json_data["data"].get("running_status"):
|
||||
continue
|
||||
answer = json_data["data"]["answer"]
|
||||
reference = json_data["data"]["reference"]
|
||||
temp_dict = {
|
||||
"content": answer,
|
||||
"role": "assistant"
|
||||
}
|
||||
if "chunks" in reference:
|
||||
chunks = reference["chunks"]
|
||||
temp_dict["reference"] = chunks
|
||||
message = Message(rag, temp_dict)
|
||||
yield message
|
||||
|
||||
@ -17,38 +17,40 @@ class Session(Base):
|
||||
self.__session_type = "agent"
|
||||
super().__init__(rag, res_dict)
|
||||
|
||||
def ask(self, question,stream=True):
|
||||
def ask(self, question="",stream=True,**kwargs):
|
||||
if self.__session_type == "agent":
|
||||
res=self._ask_agent(question,stream)
|
||||
elif self.__session_type == "chat":
|
||||
res=self._ask_chat(question,stream)
|
||||
res=self._ask_chat(question,stream,**kwargs)
|
||||
for line in res.iter_lines():
|
||||
line = line.decode("utf-8")
|
||||
if line.startswith("{"):
|
||||
json_data = json.loads(line)
|
||||
raise Exception(json_data["message"])
|
||||
if line.startswith("data:"):
|
||||
json_data = json.loads(line[5:])
|
||||
if json_data["data"] is not True:
|
||||
if json_data["data"].get("running_status"):
|
||||
continue
|
||||
answer = json_data["data"]["answer"]
|
||||
reference = json_data["data"]["reference"]
|
||||
temp_dict = {
|
||||
"content": answer,
|
||||
"role": "assistant"
|
||||
}
|
||||
if "chunks" in reference:
|
||||
chunks = reference["chunks"]
|
||||
temp_dict["reference"] = chunks
|
||||
message = Message(self.rag, temp_dict)
|
||||
yield message
|
||||
if not line.startswith("data:"):
|
||||
continue
|
||||
json_data = json.loads(line[5:])
|
||||
if json_data["data"] is True or json_data["data"].get("running_status"):
|
||||
continue
|
||||
answer = json_data["data"]["answer"]
|
||||
reference = json_data["data"].get("reference", {})
|
||||
temp_dict = {
|
||||
"content": answer,
|
||||
"role": "assistant"
|
||||
}
|
||||
if reference and "chunks" in reference:
|
||||
chunks = reference["chunks"]
|
||||
temp_dict["reference"] = chunks
|
||||
message = Message(self.rag, temp_dict)
|
||||
yield message
|
||||
|
||||
|
||||
def _ask_chat(self, question: str, stream: bool):
|
||||
def _ask_chat(self, question: str, stream: bool,**kwargs):
|
||||
json_data={"question": question, "stream": True,"session_id":self.id}
|
||||
json_data.update(kwargs)
|
||||
res = self.post(f"/chats/{self.chat_id}/completions",
|
||||
{"question": question, "stream": True,"session_id":self.id}, stream=stream)
|
||||
json_data, stream=stream)
|
||||
return res
|
||||
|
||||
def _ask_agent(self,question:str,stream:bool):
|
||||
res = self.post(f"/agents/{self.agent_id}/completions",
|
||||
{"question": question, "stream": True,"session_id":self.id}, stream=stream)
|
||||
@ -68,4 +70,4 @@ class Message(Base):
|
||||
self.role = "assistant"
|
||||
self.prompt = None
|
||||
self.id = None
|
||||
super().__init__(rag, res_dict)
|
||||
super().__init__(rag, res_dict)
|
||||
|
||||
@ -1,22 +1,100 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="32px" height="32px" viewBox="0 0 32 32" enable-background="new 0 0 32 32" xml:space="preserve"> <image id="image0" width="32" height="32" x="0" y="0"
|
||||
xlink:href="
|
||||
AAB1MAAA6mAAADqYAAAXcJy6UTwAAAEdUExURQAAAFiD5FuD5FuC5lqC5lqC5lqC5lqC5lqC5lqB
|
||||
5lqC5lqC5lqC5lqC5lyB41qC5lqC5VqC5lqC5lqC5VqC5lqC5mGH532c64yo7niZ68PS9vX3/f3+
|
||||
/////16F57HE8/z9/rHD88XT9v7+/+Ho+q/D85aw77DD88TT9vH1/Zew712F5vz8/niZ6sLR9o6p
|
||||
7miN6PT3/WCH5/7//7zM9WyP6Xyc642o7pav7/D0/Yqm7fr7/puz8Hqa61+G597m+q3B8trj+e/z
|
||||
/Xub6/P2/aC38GSK6F2E5n+e7GeG14uQrnSKyN6pT/mxMPKvOIWPtdKlXfixMXWKx9ji+YWPtNKl
|
||||
XLadfcPR9u/z/GCG5+OrSWOF24yo7Xyb62SF2qIeFM0AAAAVdFJOUwAAACWKxePy+gJr9PNqAv0l
|
||||
+Ilq+Vbt7JYAAAABYktHRB3rA3GRAAAAB3RJTUUH6AkYCCg6OzwI7gAAAYhJREFUOMuFU/tDwVAU
|
||||
vh5DIsI1zEFtjCGPUN4qFJqi0kP1//8Z3ck2w+b75Z5z7ncf55zvIIRMFitlszuwBg67jbJaTIjg
|
||||
yHmMdeByn5DzTg/WhcdtQhYXNoDLi6zYEFZEGRMoZNt0g3QoRAc3IzZkV51whIkCRJlIWI3ZkZJ/
|
||||
LJ6ANRJnMTl6ipT9cwCWS6ZSPMcCpBWGQogDZISsZGWFDAC/TQgnIEPLQToDufwWIQKsoH5NYOFC
|
||||
SwgywJH76UJx5WY5KJU1BDoKSbIULplKVfJ5iNY0hCuAa7IUGYB6gxgpgNA+Aq6QKjRb7Y6wTVg/
|
||||
gav1VaW6vZvbu32fxLjRBOgPhiRyr5NmC/oPo/FEyXinUG0YjB7F6ZNuqTvd4VgUxecdQiwtNYtP
|
||||
CT08mYribC4T1HbzuVUGLxi/vs3EhdzuDcHk30tEMB+fxJwvvpZrwWgkV659h37+81v+riVHYUNQ
|
||||
h2TvQ95Dg2M2HD2/WRpe3Ttc/hNpvM1eafwD2r0AGX+fl5z/Az9LZaYvSaPqAAAAJXRFWHRkYXRl
|
||||
OmNyZWF0ZQAyMDI0LTA5LTI0VDA4OjQwOjU4KzAwOjAwH6ZUgwAAACV0RVh0ZGF0ZTptb2RpZnkA
|
||||
MjAyNC0wOS0yNFQwODo0MDo1OCswMDowMG777D8AAAAodEVYdGRhdGU6dGltZXN0YW1wADIwMjQt
|
||||
MDktMjRUMDg6NDA6NTgrMDA6MDA57s3gAAAAAElFTkSuQmCC" />
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
|
||||
width="100%" viewBox="0 0 225 225" enable-background="new 0 0 225 225" xml:space="preserve">
|
||||
<path fill="#4E77E1" opacity="1.000000" stroke="none"
|
||||
d="
|
||||
M126.000000,226.000000
|
||||
C84.000000,226.000000 42.500004,226.000000 1.000005,226.000000
|
||||
C1.000004,151.000000 1.000004,76.000015 1.000002,1.000016
|
||||
C75.999992,1.000010 150.999985,1.000010 225.999969,1.000005
|
||||
C225.999985,75.999985 225.999985,150.999969 226.000000,225.999969
|
||||
C192.833328,226.000000 159.666672,226.000000 126.000000,226.000000
|
||||
M126.451942,195.953262
|
||||
C130.111862,195.104523 133.771774,194.255798 136.877396,193.535599
|
||||
C134.804596,185.717453 132.910065,178.571671 131.019653,171.441498
|
||||
C88.774292,183.966232 54.862122,153.211212 51.077278,120.135582
|
||||
C47.432079,88.280296 70.430069,51.832520 113.189255,52.050751
|
||||
C127.914680,52.125908 140.978256,57.197155 151.874985,67.052521
|
||||
C171.891449,85.156082 176.767548,107.700661 170.048309,132.396515
|
||||
C177.698883,134.775635 184.710709,136.956116 191.865250,139.180969
|
||||
C196.303452,126.220093 197.254868,112.574364 194.890625,98.718338
|
||||
C187.718872,56.687061 148.770157,22.798378 100.686371,29.494141
|
||||
C51.300331,36.371246 20.288342,80.451393 29.162020,129.355713
|
||||
C32.443077,147.438171 41.506237,162.500519 54.837860,175.155014
|
||||
C68.121231,187.763702 84.540428,194.016388 101.891159,197.384567
|
||||
C109.416885,198.845474 117.659668,196.612610 126.451942,195.953262
|
||||
M126.769096,161.530502
|
||||
C128.346542,163.576706 129.923981,165.622894 132.019836,168.341553
|
||||
C135.908264,148.561630 147.028412,136.956192 166.648529,133.501755
|
||||
C162.191055,129.496307 157.879639,126.613861 152.068741,125.976753
|
||||
C149.571976,125.702995 146.736313,124.190811 144.967133,122.359650
|
||||
C137.319489,114.444107 128.581635,108.167656 118.242104,104.523796
|
||||
C111.828415,102.263481 105.044189,101.054550 97.718941,99.194038
|
||||
C98.285645,115.676163 104.039955,128.549362 114.112762,139.226562
|
||||
C119.788513,145.242874 125.469147,150.751068 125.481583,159.708054
|
||||
C125.482162,160.124649 125.997719,160.540512 126.769096,161.530502
|
||||
M183.951691,168.486954
|
||||
C183.679153,167.184875 183.441574,165.874313 183.128418,164.582077
|
||||
C181.090988,156.174911 173.332703,150.429123 165.132767,151.236694
|
||||
C156.368698,152.099823 149.725143,158.958099 149.215408,167.668503
|
||||
C148.733948,175.895798 154.725494,183.192413 163.139450,185.291412
|
||||
C170.199677,187.052689 177.230988,189.050415 184.080154,191.490662
|
||||
C188.021027,192.894745 191.574341,195.386597 194.378754,196.892868
|
||||
C191.058304,188.033127 187.549881,178.671844 183.951691,168.486954
|
||||
z"/>
|
||||
<path fill="#FDFEFE" opacity="1.000000" stroke="none"
|
||||
d="
|
||||
M126.014343,196.005386
|
||||
C117.659668,196.612610 109.416885,198.845474 101.891159,197.384567
|
||||
C84.540428,194.016388 68.121231,187.763702 54.837860,175.155014
|
||||
C41.506237,162.500519 32.443077,147.438171 29.162020,129.355713
|
||||
C20.288342,80.451393 51.300331,36.371246 100.686371,29.494141
|
||||
C148.770157,22.798378 187.718872,56.687061 194.890625,98.718338
|
||||
C197.254868,112.574364 196.303452,126.220093 191.865250,139.180969
|
||||
C184.710709,136.956116 177.698883,134.775635 170.048309,132.396515
|
||||
C176.767548,107.700661 171.891449,85.156082 151.874985,67.052521
|
||||
C140.978256,57.197155 127.914680,52.125908 113.189255,52.050751
|
||||
C70.430069,51.832520 47.432079,88.280296 51.077278,120.135582
|
||||
C54.862122,153.211212 88.774292,183.966232 131.019653,171.441498
|
||||
C132.910065,178.571671 134.804596,185.717453 136.877396,193.535599
|
||||
C133.771774,194.255798 130.111862,195.104523 126.014343,196.005386
|
||||
z"/>
|
||||
<path fill="#FCFDFE" opacity="1.000000" stroke="none"
|
||||
d="
|
||||
M126.521263,161.243622
|
||||
C125.997719,160.540512 125.482162,160.124649 125.481583,159.708054
|
||||
C125.469147,150.751068 119.788513,145.242874 114.112762,139.226562
|
||||
C104.039955,128.549362 98.285645,115.676163 97.718941,99.194038
|
||||
C105.044189,101.054550 111.828415,102.263481 118.242104,104.523796
|
||||
C128.581635,108.167656 137.319489,114.444107 144.967133,122.359650
|
||||
C146.736313,124.190811 149.571976,125.702995 152.068741,125.976753
|
||||
C157.879639,126.613861 162.191055,129.496307 166.648529,133.501755
|
||||
C147.028412,136.956192 135.908264,148.561630 132.019836,168.341553
|
||||
C129.923981,165.622894 128.346542,163.576706 126.521263,161.243622
|
||||
M118.577805,132.147232
|
||||
C122.717079,133.828918 126.714119,132.836227 128.478516,129.128738
|
||||
C129.756729,126.442894 129.689621,122.369713 128.640198,119.492226
|
||||
C126.915466,114.763100 121.885849,116.091606 118.496376,116.719200
|
||||
C116.469025,117.094604 114.263878,120.366257 113.488678,122.771225
|
||||
C112.230156,126.675621 114.443306,129.761383 118.577805,132.147232
|
||||
z"/>
|
||||
<path fill="#F8B031" opacity="1.000000" stroke="none"
|
||||
d="
|
||||
M183.996582,168.898773
|
||||
C187.549881,178.671844 191.058304,188.033127 194.378754,196.892868
|
||||
C191.574341,195.386597 188.021027,192.894745 184.080154,191.490662
|
||||
C177.230988,189.050415 170.199677,187.052689 163.139450,185.291412
|
||||
C154.725494,183.192413 148.733948,175.895798 149.215408,167.668503
|
||||
C149.725143,158.958099 156.368698,152.099823 165.132767,151.236694
|
||||
C173.332703,150.429123 181.090988,156.174911 183.128418,164.582077
|
||||
C183.441574,165.874313 183.679153,167.184875 183.996582,168.898773
|
||||
z"/>
|
||||
<path fill="#5079E1" opacity="1.000000" stroke="none"
|
||||
d="
|
||||
M118.221985,132.004547
|
||||
C114.443306,129.761383 112.230156,126.675621 113.488678,122.771225
|
||||
C114.263878,120.366257 116.469025,117.094604 118.496376,116.719200
|
||||
C121.885849,116.091606 126.915466,114.763100 128.640198,119.492226
|
||||
C129.689621,122.369713 129.756729,126.442894 128.478516,129.128738
|
||||
C126.714119,132.836227 122.717079,133.828918 118.221985,132.004547
|
||||
z"/>
|
||||
</svg>
|
||||
|
||||
|
Before Width: | Height: | Size: 1.8 KiB After Width: | Height: | Size: 5.6 KiB |
@ -340,6 +340,7 @@ export const useUpdateNextConversation = () => {
|
||||
});
|
||||
if (data.code === 0) {
|
||||
queryClient.invalidateQueries({ queryKey: ['fetchConversationList'] });
|
||||
message.success(i18n.t(`message.modified`));
|
||||
}
|
||||
return data;
|
||||
},
|
||||
|
||||
@ -248,4 +248,14 @@ export const useSelectTestingResult = (): ITestingResult => {
|
||||
total: 0,
|
||||
}) as ITestingResult;
|
||||
};
|
||||
|
||||
export const useSelectIsTestingSuccess = () => {
|
||||
const status = useMutationState({
|
||||
filters: { mutationKey: ['testChunk'] },
|
||||
select: (mutation) => {
|
||||
return mutation.state.status;
|
||||
},
|
||||
});
|
||||
return status.at(-1) === 'success';
|
||||
};
|
||||
//#endregion
|
||||
|
||||
@ -36,6 +36,7 @@ export default {
|
||||
vietnamese: 'Tiếng việt',
|
||||
spanish: 'Tiếng Tây Ban Nha',
|
||||
japanese: 'Tiếng Nhật',
|
||||
embedIntoSite: 'Nhúng vào trang web',
|
||||
},
|
||||
login: {
|
||||
login: 'Đăng nhập',
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import { isEmpty } from 'lodash';
|
||||
import { v4 as uuid } from 'uuid';
|
||||
|
||||
class KeyGenerator {
|
||||
idx = 0;
|
||||
@ -64,16 +65,22 @@ export const isDataExist = (data: any) => {
|
||||
|
||||
export const buildNodesAndCombos = (nodes: any[]) => {
|
||||
const combos: any[] = [];
|
||||
const nextNodes = nodes.map((x) => {
|
||||
nodes.forEach((x) => {
|
||||
const combo = Array.isArray(x?.communities) ? x.communities[0] : undefined;
|
||||
if (combo && combos.every((y) => y.id !== combo)) {
|
||||
if (combo && combos.every((y) => y.data.label !== combo)) {
|
||||
combos.push({
|
||||
id: combo,
|
||||
id: uuid(),
|
||||
data: {
|
||||
label: combo,
|
||||
},
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
const nextNodes = nodes.map((x) => {
|
||||
return {
|
||||
...x,
|
||||
combo,
|
||||
combo: combos.find((y) => y.data.label === x.id)?.id,
|
||||
};
|
||||
});
|
||||
|
||||
|
||||
@ -5,6 +5,7 @@ import { ITestingChunk } from '@/interfaces/database/knowledge';
|
||||
import {
|
||||
Card,
|
||||
Collapse,
|
||||
Empty,
|
||||
Flex,
|
||||
Pagination,
|
||||
PaginationProps,
|
||||
@ -14,7 +15,10 @@ import {
|
||||
import camelCase from 'lodash/camelCase';
|
||||
import SelectFiles from './select-files';
|
||||
|
||||
import { useSelectTestingResult } from '@/hooks/knowledge-hooks';
|
||||
import {
|
||||
useSelectIsTestingSuccess,
|
||||
useSelectTestingResult,
|
||||
} from '@/hooks/knowledge-hooks';
|
||||
import { useGetPaginationWithRouter } from '@/hooks/logic-hooks';
|
||||
import { useCallback, useState } from 'react';
|
||||
import styles from './index.less';
|
||||
@ -50,6 +54,7 @@ const TestingResult = ({ handleTesting }: IProps) => {
|
||||
const { documents, chunks, total } = useSelectTestingResult();
|
||||
const { t } = useTranslate('knowledgeDetails');
|
||||
const { pagination, setPagination } = useGetPaginationWithRouter();
|
||||
const isSuccess = useSelectIsTestingSuccess();
|
||||
|
||||
const onChange: PaginationProps['onChange'] = (pageNumber, pageSize) => {
|
||||
pagination.onChange?.(pageNumber, pageSize);
|
||||
@ -105,26 +110,30 @@ const TestingResult = ({ handleTesting }: IProps) => {
|
||||
flex={1}
|
||||
className={styles.selectFilesCollapse}
|
||||
>
|
||||
{chunks?.map((x) => (
|
||||
<Card key={x.chunk_id} title={<ChunkTitle item={x}></ChunkTitle>}>
|
||||
<Flex gap={'middle'}>
|
||||
{x.img_id && (
|
||||
<Popover
|
||||
placement="left"
|
||||
content={
|
||||
<Image
|
||||
id={x.img_id}
|
||||
className={styles.imagePreview}
|
||||
></Image>
|
||||
}
|
||||
>
|
||||
<Image id={x.img_id} className={styles.image}></Image>
|
||||
</Popover>
|
||||
)}
|
||||
<div>{x.content_with_weight}</div>
|
||||
</Flex>
|
||||
</Card>
|
||||
))}
|
||||
{isSuccess && chunks.length > 0 ? (
|
||||
chunks?.map((x) => (
|
||||
<Card key={x.chunk_id} title={<ChunkTitle item={x}></ChunkTitle>}>
|
||||
<Flex gap={'middle'}>
|
||||
{x.img_id && (
|
||||
<Popover
|
||||
placement="left"
|
||||
content={
|
||||
<Image
|
||||
id={x.img_id}
|
||||
className={styles.imagePreview}
|
||||
></Image>
|
||||
}
|
||||
>
|
||||
<Image id={x.img_id} className={styles.image}></Image>
|
||||
</Popover>
|
||||
)}
|
||||
<div>{x.content_with_weight}</div>
|
||||
</Flex>
|
||||
</Card>
|
||||
))
|
||||
) : isSuccess && chunks.length === 0 ? (
|
||||
<Empty></Empty>
|
||||
) : null}
|
||||
</Flex>
|
||||
<Pagination
|
||||
{...pagination}
|
||||
|
||||
@ -535,7 +535,6 @@ export const useRenameConversation = () => {
|
||||
const onConversationRenameOk = useCallback(
|
||||
async (name: string) => {
|
||||
const ret = await updateConversation({
|
||||
...conversation,
|
||||
conversation_id: conversation.id,
|
||||
name,
|
||||
is_new: false,
|
||||
|
||||
@ -1,241 +0,0 @@
|
||||
const nodes = [
|
||||
{
|
||||
type: '"ORGANIZATION"',
|
||||
description:
|
||||
'"厦门象屿是一家公司,其营业收入和市场占有率在2018年至2022年间有所变化。"',
|
||||
source_id: '0',
|
||||
id: '"厦门象屿"',
|
||||
},
|
||||
{
|
||||
type: '"EVENT"',
|
||||
description:
|
||||
'"2018年是一个时间点,标志着厦门象屿营业收入和市场占有率的记录开始。"',
|
||||
source_id: '0',
|
||||
entity_type: '"EVENT"',
|
||||
id: '"2018"',
|
||||
},
|
||||
{
|
||||
type: '"EVENT"',
|
||||
description:
|
||||
'"2019年是一个时间点,厦门象屿的营业收入和市场占有率在此期间有所变化。"',
|
||||
source_id: '0',
|
||||
entity_type: '"EVENT"',
|
||||
id: '"2019"',
|
||||
},
|
||||
{
|
||||
type: '"EVENT"',
|
||||
description:
|
||||
'"2020年是一个时间点,厦门象屿的营业收入和市场占有率在此期间有所变化。"',
|
||||
source_id: '0',
|
||||
entity_type: '"EVENT"',
|
||||
id: '"2020"',
|
||||
},
|
||||
{
|
||||
type: '"EVENT"',
|
||||
description:
|
||||
'"2021年是一个时间点,厦门象屿的营业收入和市场占有率在此期间有所变化。"',
|
||||
source_id: '0',
|
||||
entity_type: '"EVENT"',
|
||||
id: '"2021"',
|
||||
},
|
||||
{
|
||||
type: '"EVENT"',
|
||||
description:
|
||||
'"2022年是一个时间点,厦门象屿的营业收入和市场占有率在此期间有所变化。"',
|
||||
source_id: '0',
|
||||
entity_type: '"EVENT"',
|
||||
id: '"2022"',
|
||||
},
|
||||
{
|
||||
type: '"ORGANIZATION"',
|
||||
description:
|
||||
'"厦门象屿股份有限公司是一家公司,中文简称为厦门象屿,外文名称为Xiamen Xiangyu Co.,Ltd.,外文名称缩写为Xiangyu,法定代表人为邓启东。"',
|
||||
source_id: '1',
|
||||
id: '"厦门象屿股份有限公司"',
|
||||
},
|
||||
{
|
||||
type: '"PERSON"',
|
||||
description: '"邓启东是厦门象屿股份有限公司的法定代表人。"',
|
||||
source_id: '1',
|
||||
entity_type: '"PERSON"',
|
||||
id: '"邓启东"',
|
||||
},
|
||||
{
|
||||
type: '"GEO"',
|
||||
description: '"厦门是一个地理位置,与厦门象屿股份有限公司相关。"',
|
||||
source_id: '1',
|
||||
entity_type: '"GEO"',
|
||||
id: '"厦门"',
|
||||
},
|
||||
{
|
||||
type: '"PERSON"',
|
||||
description:
|
||||
'"廖杰 is the Board Secretary, responsible for handling board-related matters and communications."',
|
||||
source_id: '2',
|
||||
id: '"廖杰"',
|
||||
},
|
||||
{
|
||||
type: '"PERSON"',
|
||||
description:
|
||||
'"史经洋 is the Securities Affairs Representative, responsible for handling securities-related matters and communications."',
|
||||
source_id: '2',
|
||||
entity_type: '"PERSON"',
|
||||
id: '"史经洋"',
|
||||
},
|
||||
{
|
||||
type: '"GEO"',
|
||||
description:
|
||||
'"A geographic location in Xiamen, specifically in the Free Trade Zone, where the company\'s office is situated."',
|
||||
source_id: '2',
|
||||
entity_type: '"GEO"',
|
||||
id: '"厦门市湖里区自由贸易试验区厦门片区"',
|
||||
},
|
||||
{
|
||||
type: '"GEO"',
|
||||
description:
|
||||
'"The building where the company\'s office is located, situated at Xiangyu Road, Xiamen."',
|
||||
source_id: '2',
|
||||
entity_type: '"GEO"',
|
||||
id: '"象屿集团大厦"',
|
||||
},
|
||||
{
|
||||
type: '"EVENT"',
|
||||
description:
|
||||
'"Refers to the year 2021, used for comparing financial metrics with the year 2022."',
|
||||
source_id: '3',
|
||||
id: '"2021年"',
|
||||
},
|
||||
{
|
||||
type: '"EVENT"',
|
||||
description:
|
||||
'"Refers to the year 2022, used for presenting current financial metrics and comparing them with the year 2021."',
|
||||
source_id: '3',
|
||||
entity_type: '"EVENT"',
|
||||
id: '"2022年"',
|
||||
},
|
||||
{
|
||||
type: '"EVENT"',
|
||||
description:
|
||||
'"Indicates the focus on key financial metrics in the table, such as weighted averages and percentages."',
|
||||
source_id: '3',
|
||||
entity_type: '"EVENT"',
|
||||
id: '"主要财务指标"',
|
||||
},
|
||||
].map(({ type, ...x }) => ({ ...x }));
|
||||
|
||||
const edges = [
|
||||
{
|
||||
weight: 2.0,
|
||||
description: '"厦门象屿在2018年的营业收入和市场占有率被记录。"',
|
||||
source_id: '0',
|
||||
source: '"厦门象屿"',
|
||||
target: '"2018"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description: '"厦门象屿在2019年的营业收入和市场占有率有所变化。"',
|
||||
source_id: '0',
|
||||
source: '"厦门象屿"',
|
||||
target: '"2019"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description: '"厦门象屿在2020年的营业收入和市场占有率有所变化。"',
|
||||
source_id: '0',
|
||||
source: '"厦门象屿"',
|
||||
target: '"2020"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description: '"厦门象屿在2021年的营业收入和市场占有率有所变化。"',
|
||||
source_id: '0',
|
||||
source: '"厦门象屿"',
|
||||
target: '"2021"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description: '"厦门象屿在2022年的营业收入和市场占有率有所变化。"',
|
||||
source_id: '0',
|
||||
source: '"厦门象屿"',
|
||||
target: '"2022"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description: '"厦门象屿股份有限公司的法定代表人是邓启东。"',
|
||||
source_id: '1',
|
||||
source: '"厦门象屿股份有限公司"',
|
||||
target: '"邓启东"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description: '"厦门象屿股份有限公司位于厦门。"',
|
||||
source_id: '1',
|
||||
source: '"厦门象屿股份有限公司"',
|
||||
target: '"厦门"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description:
|
||||
'"廖杰\'s office is located in the Xiangyu Group Building, indicating his workplace."',
|
||||
source_id: '2',
|
||||
source: '"廖杰"',
|
||||
target: '"象屿集团大厦"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description:
|
||||
'"廖杰 works in the Xiamen Free Trade Zone, a specific area within Xiamen."',
|
||||
source_id: '2',
|
||||
source: '"廖杰"',
|
||||
target: '"厦门市湖里区自由贸易试验区厦门片区"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description:
|
||||
'"史经洋\'s office is also located in the Xiangyu Group Building, indicating his workplace."',
|
||||
source_id: '2',
|
||||
source: '"史经洋"',
|
||||
target: '"象屿集团大厦"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description:
|
||||
'"史经洋 works in the Xiamen Free Trade Zone, a specific area within Xiamen."',
|
||||
source_id: '2',
|
||||
source: '"史经洋"',
|
||||
target: '"厦门市湖里区自由贸易试验区厦门片区"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description:
|
||||
'"The years 2021 and 2022 are related as they are used for comparing financial metrics, showing changes and adjustments over time."',
|
||||
source_id: '3',
|
||||
source: '"2021年"',
|
||||
target: '"2022年"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description:
|
||||
'"The \'主要财务指标\' is related to the year 2021 as it provides the basis for financial comparisons and adjustments."',
|
||||
source_id: '3',
|
||||
source: '"2021年"',
|
||||
target: '"主要财务指标"',
|
||||
},
|
||||
{
|
||||
weight: 2.0,
|
||||
description:
|
||||
'"The \'主要财务指标\' is related to the year 2022 as it presents the current financial metrics and their changes compared to 2021."',
|
||||
source_id: '3',
|
||||
source: '"2022年"',
|
||||
target: '"主要财务指标"',
|
||||
},
|
||||
];
|
||||
|
||||
export const graphData = {
|
||||
directed: false,
|
||||
multigraph: false,
|
||||
graph: {},
|
||||
nodes,
|
||||
edges,
|
||||
combos: [],
|
||||
};
|
||||
@ -1,4 +0,0 @@
|
||||
.container {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
@ -1,3 +0,0 @@
|
||||
import InputWithUpload from './input-upload';
|
||||
|
||||
export default InputWithUpload;
|
||||
@ -1,59 +0,0 @@
|
||||
import { Authorization } from '@/constants/authorization';
|
||||
import { getAuthorization } from '@/utils/authorization-util';
|
||||
import { PlusOutlined } from '@ant-design/icons';
|
||||
import type { UploadFile, UploadProps } from 'antd';
|
||||
import { Image, Input, Upload } from 'antd';
|
||||
import { useState } from 'react';
|
||||
|
||||
const InputWithUpload = () => {
|
||||
const [previewOpen, setPreviewOpen] = useState(false);
|
||||
const [previewImage, setPreviewImage] = useState('');
|
||||
const [fileList, setFileList] = useState<UploadFile[]>([]);
|
||||
|
||||
const handleChange: UploadProps['onChange'] = ({ fileList: newFileList }) =>
|
||||
setFileList(newFileList);
|
||||
|
||||
const uploadButton = (
|
||||
<button style={{ border: 0, background: 'none' }} type="button">
|
||||
<PlusOutlined />
|
||||
<div style={{ marginTop: 8 }}>Upload</div>
|
||||
</button>
|
||||
);
|
||||
return (
|
||||
<>
|
||||
<Input placeholder="Basic usage"></Input>
|
||||
<Upload
|
||||
action="/v1/document/upload_and_parse"
|
||||
listType="picture-card"
|
||||
fileList={fileList}
|
||||
onChange={handleChange}
|
||||
multiple
|
||||
headers={{ [Authorization]: getAuthorization() }}
|
||||
data={{ conversation_id: '9e9f7d2453e511efb18efa163e197198' }}
|
||||
method="post"
|
||||
>
|
||||
{fileList.length >= 8 ? null : uploadButton}
|
||||
</Upload>
|
||||
{previewImage && (
|
||||
<Image
|
||||
wrapperStyle={{ display: 'none' }}
|
||||
preview={{
|
||||
visible: previewOpen,
|
||||
onVisibleChange: (visible) => setPreviewOpen(visible),
|
||||
afterOpenChange: (visible) => !visible && setPreviewImage(''),
|
||||
}}
|
||||
src={previewImage}
|
||||
/>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
export default () => {
|
||||
return (
|
||||
<section style={{ height: 500, width: 400 }}>
|
||||
<div style={{ height: 200 }}></div>
|
||||
<InputWithUpload></InputWithUpload>
|
||||
</section>
|
||||
);
|
||||
};
|
||||
@ -1,37 +0,0 @@
|
||||
import { useEffect, useRef } from 'react';
|
||||
import { ForceGraph2D } from 'react-force-graph';
|
||||
import { graphData } from './constant';
|
||||
|
||||
const Next = () => {
|
||||
const graphRef = useRef<ForceGraph2D>();
|
||||
|
||||
useEffect(() => {
|
||||
graphRef.current.d3Force('cluster');
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<div>
|
||||
<ForceGraph2D
|
||||
ref={graphRef}
|
||||
graphData={graphData}
|
||||
nodeAutoColorBy={'type'}
|
||||
nodeLabel={(node) => {
|
||||
return node.id;
|
||||
}}
|
||||
// nodeVal={(node) => {
|
||||
// return <div>xxx</div>;
|
||||
// }}
|
||||
// nodeVal={(node) => 100 / (node.level + 1)}
|
||||
linkAutoColorBy={'type'}
|
||||
nodeCanvasObjectMode={() => 'after'}
|
||||
nodeCanvasObject={(node, ctx) => {
|
||||
console.info(ctx);
|
||||
return ctx.canvas;
|
||||
}}
|
||||
// nodeVal={'id'}
|
||||
/>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export default Next;
|
||||
@ -1,55 +0,0 @@
|
||||
class KeyGenerator {
|
||||
idx = 0;
|
||||
chars: string[] = [];
|
||||
constructor() {
|
||||
const chars = Array(26)
|
||||
.fill(1)
|
||||
.map((x, idx) => String.fromCharCode(97 + idx)); // 26 char
|
||||
this.chars = chars;
|
||||
}
|
||||
generateKey() {
|
||||
const key = this.chars[this.idx];
|
||||
this.idx++;
|
||||
return key;
|
||||
}
|
||||
}
|
||||
|
||||
// Classify nodes based on edge relationships
|
||||
export class Converter {
|
||||
keyGenerator;
|
||||
dict: Record<string, string> = {}; // key is node id, value is combo
|
||||
constructor() {
|
||||
this.keyGenerator = new KeyGenerator();
|
||||
}
|
||||
buildDict(edges: { source: string; target: string }[]) {
|
||||
edges.forEach((x) => {
|
||||
if (this.dict[x.source] && !this.dict[x.target]) {
|
||||
this.dict[x.target] = this.dict[x.source];
|
||||
} else if (!this.dict[x.source] && this.dict[x.target]) {
|
||||
this.dict[x.source] = this.dict[x.target];
|
||||
} else if (!this.dict[x.source] && !this.dict[x.target]) {
|
||||
this.dict[x.source] = this.dict[x.target] =
|
||||
this.keyGenerator.generateKey();
|
||||
}
|
||||
});
|
||||
return this.dict;
|
||||
}
|
||||
buildNodesAndCombos(nodes: any[], edges: any[]) {
|
||||
this.buildDict(edges);
|
||||
const nextNodes = nodes.map((x) => ({ ...x, combo: this.dict[x.id] }));
|
||||
|
||||
const combos = Object.values(this.dict).reduce<any[]>((pre, cur) => {
|
||||
if (pre.every((x) => x.id !== cur)) {
|
||||
pre.push({
|
||||
id: cur,
|
||||
data: {
|
||||
label: `Combo ${cur}`,
|
||||
},
|
||||
});
|
||||
}
|
||||
return pre;
|
||||
}, []);
|
||||
|
||||
return { nodes: nextNodes, combos };
|
||||
}
|
||||
}
|
||||
@ -129,11 +129,6 @@ const routes = [
|
||||
component: '@/pages/document-viewer',
|
||||
layout: false,
|
||||
},
|
||||
{
|
||||
path: 'force',
|
||||
component: '@/pages/force-graph',
|
||||
layout: false,
|
||||
},
|
||||
{
|
||||
path: '/*',
|
||||
component: '@/pages/404',
|
||||
|
||||
Reference in New Issue
Block a user