Compare commits

..

214 Commits

Author SHA1 Message Date
49494d4e3c Update version number for poetry (#3637)
### What problem does this PR solve?



### Type of change

- [x] Refactoring
2024-11-25 17:57:08 +08:00
3839d8abc7 Updated FAQ and Upgrade guide (#3636)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-25 17:29:56 +08:00
d8b150a34c Add support for folder deletion (#3635)
### What problem does this PR solve?

Add support for folder deletion.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-25 16:59:43 +08:00
4454b33e51 Feat: Add PricingCard component #3221 (#3634)
### What problem does this PR solve?

Feat: Add PricingCard component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-25 16:21:47 +08:00
ce6b4c0e05 Fix a bug in completions (#3632)
### What problem does this PR solve?

Fix a bug in completions

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-25 16:21:28 +08:00
ddf01e0450 Fix missing info in README and config error (#3633)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-25 15:53:29 +08:00
86e48179a1 Fix bugs in api (#3624)
### What problem does this PR solve?

#3488

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-25 15:25:48 +08:00
b2c33b4df7 DOC: Added health check and team management (#3630)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-25 14:31:01 +08:00
9348616659 Handle infinity empty response (#3627)
### What problem does this PR solve?

Handle infinity empty response. Close #3623
Show version in docker build log

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-25 14:09:42 +08:00
a0e9b62de5 Feat: Add TeamManagement component #3221 (#3626)
### What problem does this PR solve?

Feat: Add TeamManagement component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-25 12:21:37 +08:00
7874aaaf60 doc:rewrite some confusing statement (#3607)
rewrite some confusing statement to improve user experience
2024-11-25 11:57:31 +08:00
08ead81dde Bump infinity to v0.5.0-dev5 (#3520)
### What problem does this PR solve?

Bump infinity to v0.5.0-dev5

### Type of change

- [x] Refactoring
2024-11-25 11:53:58 +08:00
e5af18d5ea Update docs for v0.14.0 (#3625)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2024-11-25 11:37:56 +08:00
609236f5c1 Let 'One' applicable for tables in docx (#3619)
### What problem does this PR solve?

#3598

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Performance Improvement
2024-11-25 09:57:54 +08:00
6a3f9bc32a Restore version info to v0.13.0 (#3605)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2024-11-23 17:06:22 +08:00
934d6d9ad1 Update quickstart.mdx (#3603)
### What problem does this PR solve?

Fixed typo from RAGFlow_IMAGE to RAGFlOW_IMAGE

### Type of change

- [X] Documentation Update
2024-11-23 15:27:13 +08:00
875096384b when qwen rerank model not return ok, raise exception to notice user (#3593)
### What problem does this PR solve?

When calling the Qwen rerank model, if the model does not return
correctly, an exception should be raised to notify the user, rather than
simply returning a value of 0, as this would be confusing to the user.
### Type of change          

- [x] New Feature (non-breaking change which adds functionality)
2024-11-22 22:34:34 +08:00
a10c2f2eff Fix: Solve the problem of model files in the image being soft links pointing to a non-existent address. #3584 (#3586)
### What problem does this PR solve?

Fix: Solve the problem of model files in the image being soft links
pointing to a non-existent address. #3584

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-22 21:54:39 +08:00
646ac1f2b4 Improved image build instructions (#3580)
### What problem does this PR solve?

Improved arm64 image build instructions

### Type of change

- [x] Documentation Update
- [x] Refactoring
2024-11-22 20:24:32 +08:00
8872aed512 Feat: Modify the prompt text for deleting team members #2834 (#3599)
### What problem does this PR solve?
Feat: Modify the prompt text for deleting team members #2834

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-22 18:50:53 +08:00
55692e4da6 Feat: Capitalize the first letter of the team's role #2834 (#3597)
### What problem does this PR solve?

Feat: Capitalize the first letter of the team's role #2834

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-22 18:19:34 +08:00
6314d3c727 Updates for readme (#3595)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2024-11-22 16:47:45 +08:00
06b9256972 Feat: remove useSetLlmSetting from GenerateForm #3591 (#3592)
### What problem does this PR solve?

Feat: remove useSetLlmSetting from GenerateForm #3591

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-22 16:31:44 +08:00
cc219ff648 Fix agent session API (#3589)
### What problem does this PR solve?

#3585
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-22 16:19:00 +08:00
ee33bf71eb Feat: Add ProfileSetting page #3221 (#3588)
### What problem does this PR solve?

Feat: Add ProfileSetting page  #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-22 15:11:38 +08:00
ee7fd71fdc Add an agent template: SEO bloger (#3582)
### What problem does this PR solve?

#3560

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-22 13:12:05 +08:00
d56f52eef8 Fix agent api invokation issue (#3581)
### What problem does this PR solve?

#3570 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-22 12:37:27 +08:00
9f3141804f Fix chunk enable/disable issue (#3579)
### What problem does this PR solve?

#3576

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-22 12:25:42 +08:00
60a3e1a8dc Update Docker .env (#3576)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2024-11-22 12:03:46 +08:00
9541d7e7bc Added TRACE_MALLOC_DELTA and TRACE_MALLOC_FULL (#3555)
### What problem does this PR solve?

Added TRACE_MALLOC_DELTA and TRACE_MALLOC_FULL to debug task_executor.py
heap. Relates to #3518

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-22 12:00:25 +08:00
811c49d7a2 Updated obsolete faqs (#3575)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2024-11-22 11:11:06 +08:00
482c1b59c8 Check tika.parser return result (#3564)
### What problem does this PR solve?

Check tika.parser return result. Close #3229

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2024-11-22 11:05:06 +08:00
691ea287c2 Added RAGFlow image version into bug report template (#3561)
### What problem does this PR solve?

Add RAGFlow image version into bug report template

### Type of change

- [x] Other (please describe):
2024-11-22 10:50:13 +08:00
b87d14492f Revert "Updated obsolete faqs (#3554)" (#3573)
This reverts commit 13ff463845.

### What problem does this PR solve?


### Type of change

- [x] Other (please describe):
2024-11-22 10:42:10 +08:00
cc5960b88e Vietnamese language support on web (#3549)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2024-11-21 18:43:08 +08:00
ee50f78d99 Add component 'Template' (#3562)
### What problem does this PR solve?

#3560

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-21 18:26:22 +08:00
193b08a3ed Fix: Limit node version #3547 (#3563)
### What problem does this PR solve?

Fix: Limit node version #3547

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-21 18:14:22 +08:00
3a3e23d8d9 Feat: Add Template operator #3556 (#3559)
### What problem does this PR solve?

Feat: Add Template operator #3560

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-21 18:05:31 +08:00
30f111edb3 Fixs for translation agent (#3557)
### What problem does this PR solve?

#3556 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2024-11-21 16:22:25 +08:00
d47ee88454 Feat: When saving the canvas, other dls parameters passed from the backend are spliced ​​into the dsl parameters #3355 (#3558)
### What problem does this PR solve?

Feat: When saving the canvas, other dls parameters passed from the
backend are spliced ​​into the dsl parameters #3355
#3556

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-21 16:21:54 +08:00
13ff463845 Updated obsolete faqs (#3554)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2024-11-21 16:15:37 +08:00
bf9ebda3c8 Add tests for frontend API (#3552)
### What problem does this PR solve?

Add tests for frontend API

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-21 15:39:25 +08:00
85dd9fde43 Fix a bug in agent api (#3551)
### What problem does this PR solve?

Fix a bug in agent api
#3539

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-21 12:45:22 +08:00
c7c8b3812f Add test for document (#3548)
### What problem does this PR solve?

Add test for document

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-21 12:02:26 +08:00
0ac6dc8f8c Cut down the attempt times of ES (#3550)
### What problem does this PR solve?

#3541
### Type of change


- [x] Refactoring
- [x] Performance Improvement
2024-11-21 11:37:45 +08:00
58a2200b80 Fix: search issue for graphrag (#3546)
### What problem does this PR solve?

#3538

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-21 11:13:29 +08:00
e10b0e6b60 Fix: Inaccurate description (#3540)
### What problem does this PR solve?

Correction of inaccurate front-end description.

![image](https://github.com/user-attachments/assets/4a7330b5-1384-4092-825d-56675fb5799c)

![image](https://github.com/user-attachments/assets/b3737912-4f5a-4928-a629-404a4fa4da6e)

### Type of change

- [x] Refactoring
2024-11-21 10:09:20 +08:00
d9c882399d Ensure LIGHTEN work (#3542)
### What problem does this PR solve?
#3531

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-21 09:56:28 +08:00
8930bfcff8 Fix bugs (#3535)
### What problem does this PR solve?

1. system monitor icon and text missing
2. Team knowledge base can't be search

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-20 20:55:42 +08:00
9b9afa9d6e Feat: Display the input parameters of begin in the output result table #3355 (#3534)
### What problem does this PR solve?

Feat: Display the input parameters of begin in the output result table
#3355

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-20 20:55:31 +08:00
362db857d0 New: a new interpretor based on Andrew Ng theory. (#3532)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-20 20:55:22 +08:00
541272eb99 Fix: authorization issue (#3530)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-20 20:55:10 +08:00
5b44b99cfd Removed beartype (#3528)
### What problem does this PR solve?

The beartype configuration of
main(64f50992e0) is:
```
from beartype import BeartypeConf
from beartype.claw import beartype_all  # <-- you didn't sign up for this
beartype_all(conf=BeartypeConf(violation_type=UserWarning))    # <-- emit warnings from all code
```

ragflow_server failed at a third-party package:

```
(ragflow-py3.10) zhichyu@iris:~/github.com/infiniflow/ragflow$ rm -rf logs/* && bash docker/launch_backend_service.sh 
Starting task_executor.py for task 0 (Attempt 1)
Starting ragflow_server.py (Attempt 1)
Traceback (most recent call last):
  File "/home/zhichyu/github.com/infiniflow/ragflow/api/ragflow_server.py", line 22, in <module>
    from api.utils.log_utils import initRootLogger
  File "/home/zhichyu/github.com/infiniflow/ragflow/api/utils/__init__.py", line 25, in <module>
    import requests
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/requests/__init__.py", line 43, in <module>
    import urllib3
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/__init__.py", line 15, in <module>
    from ._base_connection import _TYPE_BODY
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/_base_connection.py", line 5, in <module>
    from .util.connection import _TYPE_SOCKET_OPTIONS
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/__init__.py", line 4, in <module>
    from .connection import is_connection_dropped
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/connection.py", line 7, in <module>
    from .timeout import _DEFAULT_TIMEOUT, _TYPE_TIMEOUT
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/timeout.py", line 20, in <module>
    _DEFAULT_TIMEOUT: Final[_TYPE_DEFAULT] = _TYPE_DEFAULT.token
NameError: name 'Final' is not defined
Traceback (most recent call last):
  File "/home/zhichyu/github.com/infiniflow/ragflow/rag/svr/task_executor.py", line 22, in <module>
    from api.utils.log_utils import initRootLogger
  File "/home/zhichyu/github.com/infiniflow/ragflow/api/utils/__init__.py", line 25, in <module>
    import requests
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/requests/__init__.py", line 43, in <module>
    import urllib3
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/__init__.py", line 15, in <module>
    from ._base_connection import _TYPE_BODY
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/_base_connection.py", line 5, in <module>
    from .util.connection import _TYPE_SOCKET_OPTIONS
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/__init__.py", line 4, in <module>
    from .connection import is_connection_dropped
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/connection.py", line 7, in <module>
    from .timeout import _DEFAULT_TIMEOUT, _TYPE_TIMEOUT
  File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/timeout.py", line 20, in <module>
    _DEFAULT_TIMEOUT: Final[_TYPE_DEFAULT] = _TYPE_DEFAULT.token
NameError: name 'Final' is not defined
```

This third-package is out of our control. I have to remove beartype
entirely.


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-20 20:54:57 +08:00
6be7901df2 Warning instead of exception on type mismatch (#3523)
### What problem does this PR solve?

Warning instead of exception on type mismatch.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-20 20:54:42 +08:00
4d42bcd517 Feat: merge the begin operator's url and file into one field #3355 (#3521)
### What problem does this PR solve?

Feat: merge the begin operator's url and file into one field #3355
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-20 20:54:27 +08:00
9b4c2868bd Fix set_output type hint (#3516)
### What problem does this PR solve?

Fix set_output type hint

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-20 20:54:09 +08:00
d02a2b131a Fix: potential risk (#3515)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-11-20 20:53:58 +08:00
81c7b6afc5 Make spark model robuster to model name (#3514)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-20 20:53:44 +08:00
cad341e794 Added kb_id filter to knn. Fix #3458 (#3513)
### What problem does this PR solve?

Added kb_id filter to knn. Fix #3458

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-20 20:53:30 +08:00
e559cebcdc fix: keyerror issue (#3512)
### What problem does this PR solve?

#3511

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-20 20:53:20 +08:00
8b4407a68c feat: Add Datasets component to home page #3221 (#3508)
### What problem does this PR solve?

feat: Add Datasets component to home page #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-20 20:53:07 +08:00
289034f36e smooth term weight (#3510)
### What problem does this PR solve?

#3499

### Type of change

- [x] Performance Improvement
2024-11-20 20:52:51 +08:00
17a7ea42eb fix synonym bug (#3506)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-20 20:52:36 +08:00
2044bb0039 Fix bugs (#3502)
### What problem does this PR solve?

1. Remove unused code
2. Fix type mismatch, in nlp search and infinity search interface
3. Fix chunk list, get all chunks of this user.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-20 20:52:23 +08:00
c4f2464935 fix: laws.py added missing import logging (#3501)
### What problem does this PR solve?

_Choosing Laws Chunk Method results in an error when parsing a document.
The error is caused by a missing import in the `laws.py` file._

```
Traceback (most recent call last):
  File "/ragflow/rag/svr/task_executor.py", line 445, in handle_task
    do_handle_task(task)
  File "/ragflow/rag/svr/task_executor.py", line 384, in do_handle_task
    cks = build(r)
          ^^^^^^^^
  File "/ragflow/rag/svr/task_executor.py", line 196, in build
    cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/ragflow/rag/app/laws.py", line 161, in chunk
    for txt, poss in pdf_parser(filename if not binary else binary,
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/ragflow/rag/app/laws.py", line 124, in __call__
    logging.debug("layouts:".format(
    ^^^^^^^
NameError: name 'logging' is not defined. Did you forget to import 'logging'

```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: Michal Masrna <m.marna1@gmail.com>
2024-11-20 20:52:05 +08:00
bcb6f7168f [bug]import typing.cast for leiden.py (#3493)
### What problem does this PR solve?

leiden alg throws exception for lack func cast definition

### Type of change

- Bug Fix (non-breaking change which fixes an issue)
2024-11-19 18:42:30 +08:00
361cff34fc add input variables to begin component (#3498)
### What problem does this PR solve?

#3355 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-19 18:41:48 +08:00
0cd5b64c3b Changed requirement to python 3.10 (#3496)
### What problem does this PR solve?

Changed requirement to python 3.10.
Changed image base to Ubuntu 22.04 since it contains python 3.10.

### Type of change

- [x] Refactoring
2024-11-19 18:25:04 +08:00
16fbe9920d feat: Stream the greetings of the agent dialogue #3355 (#3490)
### What problem does this PR solve?

feat: Stream the greetings of the agent dialogue #3355

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-19 15:14:35 +08:00
e4280be5e5 minor (#3483)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2024-11-19 14:59:21 +08:00
d42362deb6 Add api for sessions and add max_tokens for tenant_llm (#3472)
### What problem does this PR solve?

Add api for sessions and add max_tokens for tenant_llm

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-19 14:51:33 +08:00
883fafde72 Fix elasticsearch status display (#3487)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-19 14:40:58 +08:00
568322aeaf fix(rag): fix error in viewing document chunk and cannot start task_executor server (#3481)
### What problem does this PR solve?

1. Fix error in viewing document chunk

<img width="1677" alt="Pasted Graphic"
src="https://github.com/user-attachments/assets/acd84cde-f38c-4190-b135-5e5139ae2613">

Viewing document chunk details in a BeartypeCallHintParamViolation
error.

Traceback (most recent call last):
File "ragflow/.venv/lib/python3.12/site-packages/flask/app.py", line
880, in full_dispatch_request
    rv = self.dispatch_request()
         ^^^^^^^^^^^^^^^^^^^^^^^
File "ragflow/.venv/lib/python3.12/site-packages/flask/app.py", line
865, in dispatch_request
return self.ensure_sync(self.view_functions[rule.endpoint])(**view_args)
# type: ignore[no-any-return]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "ragflow/.venv/lib/python3.12/site-packages/flask_login/utils.py",
line 290, in decorated_view
    return current_app.ensure_sync(func)(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "ragflow/api/apps/chunk_app.py", line 311, in knowledge_graph
sres = settings.retrievaler.search(req, search.index_name(tenant_id),
kb_ids)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "<@beartype(rag.nlp.search.Dealer.search) at 0x3381fd800>", line
39, in search
beartype.roar.BeartypeCallHintParamViolation: Method
rag.nlp.search.Dealer.search() parameter
idx_names='ragflow_0e1e67f431d711ef98fc00155d29195d' violates type hint
list[str], as str 'ragflow_0e1e67f431d711ef98fc00155d29195d' not
instance of list.
2024-11-19 11:30:29,817 ERROR 91013 Method
rag.nlp.search.Dealer.search() parameter
idx_names='ragflow_0e1e67f431d711ef98fc00155d29195d' violates type hint
list[str], as str 'ragflow_0e1e67f431d711ef98fc00155d29195d' not
instance of list.
Traceback (most recent call last):
  File "ragflow/api/apps/chunk_app.py", line 60, in list_chunk
sres = settings.retrievaler.search(query, search.index_name(tenant_id),
kb_ids, highlight=True)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "<@beartype(rag.nlp.search.Dealer.search) at 0x3381fd800>", line
39, in search
beartype.roar.BeartypeCallHintParamViolation: Method
rag.nlp.search.Dealer.search() parameter
idx_names='ragflow_0e1e67f431d711ef98fc00155d29195d' violates type hint
list[str], as str 'ragflow_0e1e67f431d711ef98fc00155d29195d' not
instance of list.


because in nlp/search.py,the idx_names is only list

<img width="1098" alt="Pasted Graphic 2"
src="https://github.com/user-attachments/assets/4998cb1e-94bc-470b-b2f4-41ecb5b08f8a">

but the DocStoreConnection.search method accept list or str
<img width="1175" alt="Pasted Graphic 3"
src="https://github.com/user-attachments/assets/ee918b4a-87a5-42c9-a6d2-d0db0884b875">


and his implements also list and str
es_conn.py

<img width="1121" alt="Pasted Graphic 4"
src="https://github.com/user-attachments/assets/3e6dc030-0a0d-416c-8fd4-0b4cfd576f8c">

infinity_conn.py

<img width="1221" alt="Pasted Graphic 5"
src="https://github.com/user-attachments/assets/44edac2b-6b81-45b0-a3fc-cb1c63219015">

2. Fix cannot star task_executor server with Unresolved reference
'Mapping'
<img width="1283" alt="Pasted Graphic 6"
src="https://github.com/user-attachments/assets/421f17b8-d0a5-46d3-bc4d-d05dc9dfc934">

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2024-11-19 14:36:10 +08:00
31decadd8e feat: Let the top navigation bar open in a tab when you right click on it #3018 (#3486)
### What problem does this PR solve?

feat: Let the top navigation bar open in a tab when you right click on
it #3018

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-19 14:20:00 +08:00
dec9b3e540 Fix logs. Use dict.pop instead of del. Close #3473 (#3484)
### What problem does this PR solve?

Fix logs. Use dict.pop instead of del.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-19 14:15:25 +08:00
d0f94a42ff Refactor ragflow server (#3482)
### What problem does this PR solve?

1. Fix document error
2. Move start server out of if __main__ branch.

### Type of change

- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-19 12:31:20 +08:00
ed0d47fc8a feat: "Open link in new tab" doesn't work for profile image #3018 (#3480)
### What problem does this PR solve?

feat:  "Open link in new tab" doesn't work for profile image #3018

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-19 11:40:59 +08:00
aa9a16e073 Fix document error (#3456)
### What problem does this PR solve?

1. Update README.md
2. Fix error description in docker/.env

### Type of change

- [x] Documentation Update

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-19 11:31:11 +08:00
eef84a86bf feat: Disable clicking the Next button while uploading files in RunDrawer #3355 (#3477)
### What problem does this PR solve?

feat: Disable clicking the Next button while uploading files in
RunDrawer #3355

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-19 11:03:39 +08:00
ed72d1100b minor format updates (#3471)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-18 19:19:28 +08:00
f4e9dae33a Updated upgrade guide to avoid confusion (#3469)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-18 19:07:05 +08:00
50f7b7e0a3 feat: Capture task executor null value exception #3409 (#3468)
### What problem does this PR solve?

feat: Capture task executor null value exception #3409

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-18 19:06:52 +08:00
01c2712941 feat: Display task executor tooltip with json-view #3409 (#3467)
### What problem does this PR solve?

feat: Display task executor  tooltip with json-view #3409

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-18 18:36:18 +08:00
4413683898 Introduced beartype (#3460)
### What problem does this PR solve?

Introduced [beartype](https://github.com/beartype/beartype) for runtime
type-checking.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-18 17:38:17 +08:00
3824c1fec0 feat: Show task_executor heartbeat #3409 (#3461)
### What problem does this PR solve?

feat: Show task_executor heartbeat #3409
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-18 17:23:49 +08:00
4b3eeaa6ef Added LocalAI support for rerank models (#3446)
### What problem does this PR solve?

Hi there!
LocalAI added support of rerank models
https://localai.io/features/reranker/

I've implemented LocalAIRerank class (typically copied it from
OpenAI_APIRerank class).
Also, LocalAI model response with 500 error code if len of "documents"
is less than 2 in similarity check.
So I've added the second "document" on RERANK model connection check in
`api/apps/llm_app.py`.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-18 12:05:52 +08:00
70cd5c1599 Remove unused code (#3448)
### What problem does this PR solve?

1. Remove unused code.
2. Move some codes from settings to constants

### Type of change

- [x] Refactoring

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-18 12:05:38 +08:00
f9643adc43 Adjusted heartbeat format (#3459)
### What problem does this PR solve?

Adjusted heartbeat format

### Type of change

- [x] Refactoring
2024-11-18 12:03:28 +08:00
7b9e0723d6 build(deps): bump cross-spawn from 7.0.3 to 7.0.5 in /web (#3455)
Bumps [cross-spawn](https://github.com/moxystudio/node-cross-spawn) from
7.0.3 to 7.0.5.
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/moxystudio/node-cross-spawn/blob/master/CHANGELOG.md">cross-spawn's
changelog</a>.</em></p>
<blockquote>
<h3><a
href="https://github.com/moxystudio/node-cross-spawn/compare/v7.0.4...v7.0.5">7.0.5</a>
(2024-11-07)</h3>
<h3>Bug Fixes</h3>
<ul>
<li>fix escaping bug introduced by backtracking (<a
href="640d391fde">640d391</a>)</li>
</ul>
<h3><a
href="https://github.com/moxystudio/node-cross-spawn/compare/v7.0.3...v7.0.4">7.0.4</a>
(2024-11-07)</h3>
<h3>Bug Fixes</h3>
<ul>
<li>disable regexp backtracking (<a
href="https://redirect.github.com/moxystudio/node-cross-spawn/issues/160">#160</a>)
(<a
href="5ff3a07d9a">5ff3a07</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="085268352d"><code>0852683</code></a>
chore(release): 7.0.5</li>
<li><a
href="640d391fde"><code>640d391</code></a>
fix: fix escaping bug introduced by backtracking</li>
<li><a
href="bff0c87c8b"><code>bff0c87</code></a>
chore: remove codecov</li>
<li><a
href="a7c6abc6fe"><code>a7c6abc</code></a>
chore: replace travis with github workflows</li>
<li><a
href="9b9246e096"><code>9b9246e</code></a>
chore(release): 7.0.4</li>
<li><a
href="5ff3a07d9a"><code>5ff3a07</code></a>
fix: disable regexp backtracking (<a
href="https://redirect.github.com/moxystudio/node-cross-spawn/issues/160">#160</a>)</li>
<li><a
href="9521e2da94"><code>9521e2d</code></a>
chore: fix tests in recent node js versions</li>
<li><a
href="97ded399e9"><code>97ded39</code></a>
chore: convert package lock</li>
<li><a
href="d52b6b9da4"><code>d52b6b9</code></a>
chore: remove unused argument (<a
href="https://redirect.github.com/moxystudio/node-cross-spawn/issues/156">#156</a>)</li>
<li><a
href="5d843849e1"><code>5d84384</code></a>
chore: add travis jobs on ppc64le (<a
href="https://redirect.github.com/moxystudio/node-cross-spawn/issues/142">#142</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/moxystudio/node-cross-spawn/compare/v7.0.3...v7.0.5">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=cross-spawn&package-manager=npm_and_yarn&previous-version=7.0.3&new-version=7.0.5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the
[Security Alerts
page](https://github.com/infiniflow/ragflow/network/alerts).

</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-11-18 11:19:44 +08:00
a1d01a1b2f enlarge the default token length of RAPTOR summarization (#3454)
### What problem does this PR solve?

#3426

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-18 10:15:26 +08:00
dc05f43eee Minor: Fixed a broken link (#3451)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-16 20:22:53 +08:00
77bdeb32bd Added current task into task executor's hearbeat (#3444)
### What problem does this PR solve?

Added current task into task executor's hearbeat

### Type of change

- [x] Refactoring
2024-11-15 22:55:41 +08:00
af18217d78 feat: Add banner #3221 (#3442)
### What problem does this PR solve?

feat: Add banner #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-15 19:18:23 +08:00
4ed5ca2666 handle_task catch all exception (#3441)
### What problem does this PR solve?

handle_task catch all exception
Report heartbeats

### Type of change

- [x] Refactoring
2024-11-15 18:51:09 +08:00
1e90a1bf36 Move settings initialization after module init phase (#3438)
### What problem does this PR solve?

1. Module init won't connect database any more.
2. Config in settings need to be used with settings.CONFIG_NAME

### Type of change

- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-15 17:30:56 +08:00
ac033b62cf fix tika-server issue (#3439)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-15 16:57:01 +08:00
cb3b9d7ada refine the message of queuing a task (#3437)
### What problem does this PR solve?



### Type of change

- [x] Refactoring
2024-11-15 15:59:54 +08:00
ca9e97d2f2 Enlarge the term weight difference (#3435)
### What problem does this PR solve?


### Type of change

- [x] Performance Improvement
2024-11-15 15:41:50 +08:00
6d451dbe06 Updated retrieval testing UI (#3433)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-15 15:17:34 +08:00
e0659a4f0e feat: Add RunDrawer #3355 (#3434)
### What problem does this PR solve?

feat: Translation test run form #3355
feat: Wrap QueryTable with Collapse #3355
feat: If the required fields are not filled in, the submit button will
be grayed out. #3355
feat: Add RunDrawer #3355

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-15 15:17:23 +08:00
a854bc22d1 Rework task executor heartbeat (#3430)
### What problem does this PR solve?

Rework task executor heartbeat, and print in console.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2024-11-15 14:43:55 +08:00
48e060aa53 rm es query escape chars (#3428)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-15 13:19:07 +08:00
47abfc32d4 Remove unused settings (#3427)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-15 13:18:16 +08:00
a1ba228bc2 fix: empty token bug (#3424)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-15 10:33:03 +08:00
996c94a8e7 Move clk100k_base tokenizer to docker image (#3411)
### What problem does this PR solve?

Move the tiktoken of cl100k_base into docker image

issue: #3338 

### Type of change

- [x] Refactoring

Signed-off-by: jinhai <haijin.chn@gmail.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-15 10:18:40 +08:00
220aaddc62 fix: synonym bug (#3423)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-15 10:14:51 +08:00
6878d23a57 Print configs when startup RAGFlow server (#3414)
### What problem does this PR solve?

Print configs at the RAGFlow startup phase.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

```
2024-11-14 21:27:53,090 INFO     962231 Current configs, from /home/weilongma/Documents/development/ragflow/conf/service_conf.yaml:
2024-11-14 21:27:53,090 INFO     962231 ragflow: {'host': '0.0.0.0', 'http_port': 9380}
2024-11-14 21:27:53,090 INFO     962231 mysql: {'name': 'rag_flow', 'user': 'root', 'password': 'infini_rag_flow', 'host': 'mysql', 'port': 5455, 'max_connections': 100, 'stale_timeout': 30}
2024-11-14 21:27:53,090 INFO     962231 minio: {'user': 'rag_flow', 'password': 'infini_rag_flow', 'host': 'minio:9000'}
2024-11-14 21:27:53,090 INFO     962231 es: {'hosts': 'http://es01:1200', 'username': 'elastic', 'password': 'infini_rag_flow'}
2024-11-14 21:27:53,090 INFO     962231 redis: {'db': 1, 'password': 'infini_rag_flow', 'host': 'redis:6379'}
```

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-15 09:29:40 +08:00
df9d054551 Updated descriptions of agent APIs (#3407)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2024-11-14 18:44:37 +08:00
30c1f7ee29 make variables access robuster (#3406)
### What problem does this PR solve?


### Type of change

- [x] Performance Improvement
2024-11-14 18:28:41 +08:00
e4c4fdabbd Update version display on web UI (#3405)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Refactoring

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2024-11-14 17:51:21 +08:00
30f6421760 Use consistent log file names, introduced initLogger (#3403)
### What problem does this PR solve?

Use consistent log file names, introduced initLogger

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2024-11-14 17:13:48 +08:00
ab4384e011 Updates on parsing progress, including more detailed time cost inform… (#3402)
### What problem does this PR solve?

#3401 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-14 16:28:10 +08:00
201bbef7c0 Print version when RAGFlow server startup (#3393)
### What problem does this PR solve?

Print version when RAGFlow server startup

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-14 15:51:30 +08:00
95d21e5d9f fix: standardize property name from 'chat' to 'chat_id' (#3383)
### What problem does this PR solve?

This PR addresses the inconsistency in property naming within the
codebase by renaming the 'chat' property to 'chat_id' in the session.py
file. This change aims to align the naming convention with other parts
of the application that refer to chat identifiers as 'chat_id', thereby
improving code clarity and maintainability.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-14 15:49:03 +08:00
c5368c7745 resolve halt while starting up (#3397)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-14 13:20:17 +08:00
0657a09e2c Update llm_factories.json (#3396)
### What problem does this PR solve?
Added: Claude-3-5-sonnet-20241022 version. 

### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2024-11-14 13:00:16 +08:00
4caf932808 fix bug about fetching knowledge graph (#3394)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-14 12:29:15 +08:00
400fc3f5e9 Add enviroment validation at server startup phase (#3388)
### What problem does this PR solve?

1. Validate the Python version should >= 3.11
2. Download nltk data

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Refactoring

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
Co-authored-by: jinhai <haijin.chn@gmail.com>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
2024-11-14 11:01:08 +08:00
e44e3a67b0 adapt to lower case cohere (#3392)
### What problem does this PR solve?

#3384

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-14 10:18:25 +08:00
9d395ab74e Added doc for switching elasticsearch to infinity (#3370)
### What problem does this PR solve?

Added doc for switching elasticsearch to infinity

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2024-11-14 00:08:55 +08:00
83c6b1f308 set DLA active for KG (#3386)
### What problem does this PR solve?

### Type of change


- [x] Refactoring
2024-11-13 16:59:19 +08:00
7ab9715b0e refine the error message (#3382)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-11-13 16:20:59 +08:00
632b23486f Fix the value issue of anthropic (#3351)
### What problem does this PR solve?

This pull request fixes the issue mentioned in
https://github.com/infiniflow/ragflow/issues/3263.

1. response should be parsed as dict, prevent the following code from
failing to take values:
ans = response["content"][0]["text"]
2. API Model ```claude-instant-1.2``` has retired (by
[model-deprecations](https://docs.anthropic.com/en/docs/resources/model-deprecations)),
it will trigger errors in the code, so I deleted it from the
conf/llm_factories.json file and updated the latest API Model
```claude-3-5-sonnet-20241022```



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: chenhaodong <chenhaodong@ctrlvideo.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-13 16:13:52 +08:00
ccf189cb7f mv service_conf.yaml to conf/ and fix: add 'answer' as a parameter to 'generate' (#3379)
### What problem does this PR solve?
#3373

### Type of change

- [x] Refactoring
- [x] Bug fix
2024-11-13 15:56:40 +08:00
1fe9a2e6fd feat: Add input parameter to begin operator #3355 (#3375)
### What problem does this PR solve?

feat: Add input parameter to begin operator #3355

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-13 14:54:10 +08:00
9fc092a911 Updated RAGFlow's dataset configuration UI (#3376)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2024-11-13 14:45:55 +08:00
fa54cd5f5c exstract model dir from model‘s full name (#3368)
### What problem does this PR solve?

When model’s group name contains 0-9,we can't find downloaded
model,because we do not correctly exstract model dir's name from model‘s
full name

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: 王志鹏 <zhipeng3.wang@midea.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-13 14:10:16 +08:00
667d0e5537 Turn the relative date in question to absolute date (#3372)
### What problem does this PR solve?


### Type of change

- [x] Performance Improvement
2024-11-13 13:49:18 +08:00
91332fa0f8 Refine english synonym (#3371)
### What problem does this PR solve?

#3361

### Type of change

- [x] Performance Improvement
2024-11-13 12:58:37 +08:00
0c95a3382b Dynamically create the service_conf.yaml file by replacing environment variables from .env (#3341)
### What problem does this PR solve?

This pull request implements the feature mentioned in #3322. 

Instead of manually having to edit the `service_conf.yaml` file when
changes have been made to `.env` and mapping it into the docker
container at runtime, a template file is used and the values replaced by
the environment variables from the `.env` file when the container is
started.
 

### Type of change

- [X] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
2024-11-12 22:56:53 +08:00
7274420ecd Updated RAGFlow UI (#3362)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-12 19:56:56 +08:00
a2a5631da4 Rework logging (#3358)
Unified all log files into one.

### What problem does this PR solve?

Unified all log files into one.

### Type of change

- [x] Refactoring
2024-11-12 17:35:13 +08:00
567a7563e7 Fix bugs in api and add examples (#3353)
### What problem does this PR solve?

Fix bugs in api.
Add simple examples for api.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-12 17:14:33 +08:00
62a9afd382 Change launch backend script to handle errors gracefully (#3334)
### What problem does this PR solve?

The `launch_backend_service.sh` script enters infinite loops for both
the task executors and the backend server. When an error occurs in any
of these processes, the script continuously restarts them without
properly handling termination signals. This behavior causes the script
to even ignore interrupts, leading to persistent error messages and
making it difficult to exit the script gracefully.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

### Explanation of Modifications

1. **Signal Trapping with `trap`:** 
- The `trap cleanup SIGINT SIGTERM` line ensures that when a `SIGINT` or
`SIGTERM` signal is received, the cleanup function is invoked.
- The `cleanup` function sets the `STOP` flag to `true`, iterates
through all child process IDs stored in the `PIDS` array, and sends a
`kill` signal to each process to terminate them gracefully.
2. **Retry Limits:**
- Introduced a `MAX_RETRIES` variable to limit the number of restart
attempts for both `task_executor.py` and `ragflow_server.py`
- The loops now check if the retry count has reached the maximum limit.
If so, they invoke the `cleanup` function to terminate all processes and
exit the script.
3. **Process Tracking with `PIDS` Array:**
- After launching each background process (`task_exe` and `run_server`),
their Process IDs (PIDs) are stored in the `PIDS` array.
- This allows the `cleanup` function to terminate all child processes
effectively when needed.
4. **Graceful Shutdown:**
- When the `cleanup` function is called, it iterates over all child PIDs
and sends a termination signal (`kill`) to each, ensuring that all
subprocesses are stopped before the script exits.
5. **Logging Enhancements:**
- Added `echo` statements to provide clearer logs about the state of
each process, including attempts, successes, failures, and retries.
6. **Exit on Successful Completion:**
- If `ragflow_server.py` or a `task_executor.py` process exits with a
success code (0), the loop breaks, preventing unnecessary retries.

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-12 15:51:38 +08:00
aa68d3b8db fix: Cannot copy and paste text on agent page #3356 (#3357)
### What problem does this PR solve?

fix: Cannot copy and paste text on agent page #3356

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-12 15:49:45 +08:00
784ae896d1 add dependencies of chrome (#3352)
### What problem does this PR solve?



### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2024-11-12 15:49:33 +08:00
f4c52371ab Integration with Infinity (#2894)
### What problem does this PR solve?

Integration with Infinity

- Replaced ELASTICSEARCH with dataStoreConn
- Renamed deleteByQuery with delete
- Renamed bulk to upsertBulk
- getHighlight, getAggregation
- Fix KGSearch.search
- Moved Dealer.sql_retrieval to es_conn.py


### Type of change

- [x] Refactoring
2024-11-12 14:59:41 +08:00
00b6000b76 feat: Disable automatic saving of agent during running agent #3349 (#3350)
### What problem does this PR solve?

feat: Disable automatic saving of agent during running agent #3349

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-12 12:47:36 +08:00
db23d62827 feat: Add background colors such as inverse-strong #3221 (#3346)
### What problem does this PR solve?

feat: Add background colors such as inverse-strong #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-12 11:29:48 +08:00
70ea6661ed add new models for zhipu-ai (#3348)
### What problem does this PR solve?

#3345

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-12 11:27:43 +08:00
a01fceb328 feat: updates all readme to have a link to redirect to new locale (#3339)
### What problem does this PR solve?

Updates all readme to have a link to redirect to README_id.md for
documentation in Bahasa Indonesia

### Type of change

- [x] Documentation Update
2024-11-12 09:26:14 +08:00
e9e98ea093 feat: documentation updates to support Bahasa Indonesia (#3315)
### What problem does this PR solve?

Add Readme docs in Indonesia's native language (Bahasa Indonesia) for
ragflow

### Type of change

- [x] Documentation Update
2024-11-11 19:33:23 +08:00
528646a958 feat: Add custom background color #3221 (#3336)
### What problem does this PR solve?

feat: Add custom background color #3221

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-11 19:29:56 +08:00
8536335e63 Miscellaneous edits to RAGFlow's UI (#3337)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2024-11-11 19:29:34 +08:00
88072b1e90 fix: double brace issue (#3328)
### What problem does this PR solve?

#3299

### Type of change

- [x] Performance Improvement
2024-11-11 12:07:02 +08:00
34d1daac67 fix: Anthropic param error (#3327)
### What problem does this PR solve?

#3263

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-11 11:54:14 +08:00
3faae0b2c2 trival (#3325)
### What problem does this PR solve?



### Type of change


- [x] Performance Improvement
2024-11-11 10:39:49 +08:00
5e5a35191e fix benchmark issue (#3324)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-11 10:14:30 +08:00
7c486ee3f9 Fix typo (#3319)
### What problem does this PR solve?

Fix typo

### Type of change

- [x] Refactoring
2024-11-11 09:36:39 +08:00
20d686737a feat: Switch the login page to the registration component by changing the routing parameters #3221 (#3307)
### What problem does this PR solve?
feat: Switch the login page to the registration component by changing
the routing parameters #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-08 19:47:22 +08:00
85047e7e36 Added configuration guideline (#3309)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-08 19:46:18 +08:00
ac64e35a45 feat: Translate autosaved #3301 (#3304)
### What problem does this PR solve?

[_Briefly describe what this PR aims to solve. Include background
context that will help reviewers understand the purpose of the
PR._](feat: Translate autosaved #3301)

### Type of change


- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-08 18:27:42 +08:00
004487cca0 fix term weight issue (#3306)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-08 18:25:23 +08:00
74d1eeb4d3 feat: Automatically save agent page data #3301 (#3302)
### What problem does this PR solve?

feat: Automatically save agent page data #3301

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-08 17:28:11 +08:00
464a4d6ead Added env. MACOS (#3297)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-08 16:50:35 +08:00
3d3913419b Updated .env and Docker README (#3295)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2024-11-08 16:31:52 +08:00
63f7d3bae2 feat: Support shortcut keys to copy nodes #3283 (#3293)
### What problem does this PR solve?

feat: Support shortcut keys to copy nodes #3283

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-08 15:50:01 +08:00
8b6e272197 fix: term weight issue (#3294)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-08 15:49:44 +08:00
5205bdab24 feat: Modify the name of the answer operator #1739 (#3288)
### What problem does this PR solve?
feat: Modify the name of the answer operator #1739

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-08 13:56:43 +08:00
37d4708880 Archivo ts con la traducción para el idioma español (#3274)
¿Qué problema resuelve este PR?
Archivo TS para la traducción al idioma español
Este archivo TS es un archivo de traducción que se utiliza para
proporcionar soporte multilingüe en las aplicaciones. Al agregar la
traducción al español, se facilita el cambio del idioma de la interfaz
de usuario para los usuarios hispanohablantes.

Tipo de cambio
- [x] Nueva funcionalidad (cambio no disruptivo que agrega una nueva
característica)

### What problem does this PR solve?

This TS file is a translation file used to provide multilingual support
in applications. By adding the Spanish translation, it facilitates
changing the user interface language for Spanish-speaking users._

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-08 13:44:03 +08:00
d88f0d43ea make language judgement robuster (#3287)
### What problem does this PR solve?



### Type of change

- [x] Performance Improvement
2024-11-08 12:48:11 +08:00
a2153d61ce feat: Support shortcut keys to delete nodes #3283 (#3284)
### What problem does this PR solve?
feat: Support shortcut keys to delete nodes #3283

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-08 12:07:26 +08:00
f16ef57979 fix switch bug (#3280)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-08 10:08:57 +08:00
ff2bbb487f fix index of range (#3279)
### What problem does this PR solve?

#3273

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-08 09:58:11 +08:00
416efbe7e8 Updated Docker README (#3272)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2024-11-08 09:22:40 +08:00
9c6cc20356 Fix:#3230 When parsing a docx file using the Book parsing method, to_page is always -1, resulting in a block count of 0 even if parsing is successful (#3249)
### What problem does this PR solve?

When parsing a docx file using the Book parsing method, to_page is
always -1, resulting in a block count of 0 even if parsing is successful

Fix:#3230

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2024-11-08 09:21:42 +08:00
7c0d28b62d Refactored Docker README (#3269)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2024-11-07 19:38:50 +08:00
48ab6d7a45 Update authorization for team (#3262)
### What problem does this PR solve?

Update authorization for team.
#3253 #3233
### Type of change

- [x] Refactoring

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-07 19:26:03 +08:00
96b5d2b3a9 fix: The name of the copy operator is displayed the same as before ##3265 (#3266)
### What problem does this PR solve?

fix: The name of the copy operator is displayed the same as before
##3265

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-07 17:53:31 +08:00
f45c29360c New locale for Bahasa Indonesia support (#3255)
### What problem does this PR solve?
Add native translation in locales for Bahasa Indonesia to support new
local language

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-07 17:53:19 +08:00
cdcbe6c2b3 Fixed broken links (#3256)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-07 14:12:32 +08:00
5038552ed9 fix: improve embedding model validation logic for dataset operations (#3235)
What problem does this PR solve?
When creating or updating datasets with custom embedding models (e.g.,
Ollama), the validation logic was too restrictive and prevented valid
models from being used. The previous implementation would reject valid
custom models if they weren't in the predefined list, even when they
existed in TenantLLMService.

Changes:
- Simplify and improve the embedding model validation flow in
create/update endpoints
- Check TenantLLMService for custom models before rejecting
- Make validation logic more consistent between create and update
operations

### What problem does this PR solve?

This fix allows users to successfully create and update datasets with
custom embedding models while maintaining proper validation checks.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
Co-authored-by: liuhua <10215101452@stu.ecnu.edu.cn>
2024-11-07 10:36:28 +08:00
1b3e39dd12 fix ci issue (#3245)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-06 19:32:30 +08:00
fbcc0bb408 accelerate tokenize (#3244)
### What problem does this PR solve?


### Type of change

- [x] Performance Improvement
2024-11-06 18:54:41 +08:00
d3bb5e9f3d feat: Display input parameters on operator nodes #3240 (#3241)
### What problem does this PR solve?
feat: Display input parameters on operator nodes #3240


### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-06 18:48:05 +08:00
4097912d59 add inputs to display to every components (#3242)
### What problem does this PR solve?

#3240

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-06 18:47:53 +08:00
f3aaa0d453 Add sdk for Agent API (#3220)
### What problem does this PR solve?

Add sdk for Agent API

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-06 18:03:45 +08:00
0dff64f6ad fix: TypeError: only length-1 arrays can be converted to Python scalars (#3211)
### What problem does this PR solve?
fix "TypeError: only length-1 arrays can be converted to Python scalars"
while using cohere embedding model.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)


![image](https://github.com/user-attachments/assets/2c21a69f-cd76-4d25-b320-058964812db8)
2024-11-06 11:15:00 +08:00
601a128cd3 feat: Add next login page with shadcn/ui #3221 (#3231)
### What problem does this PR solve?

feat: Add next login page with shadcn/ui  #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2024-11-06 11:13:04 +08:00
af74bf01c0 Editorial updates to Docker README (#3223)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-06 09:43:54 +08:00
a418a343d1 doc updates (#3216)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2024-11-05 16:41:43 +08:00
ab6e6019a7 Added a list of supported models (#3214)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
2024-11-05 15:21:37 +08:00
13053172cb fix: Fixed the issue of api markdown document display being messy #2346 (#3212)
### What problem does this PR solve?

fix: Fixed the issue of api markdown document display being messy #2346

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-05 15:00:07 +08:00
38ebf6b2c0 Remove dead code (#3210)
### What problem does this PR solve?

Remove dead code

### Type of change

- [x] Refactoring
2024-11-05 14:34:49 +08:00
a7bf4ca8fc Fix bugs in API (#3204)
### What problem does this PR solve?

Fix bugs in API

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-05 14:07:31 +08:00
7e89be5ed1 feat: add qwen 2.5 models for silicon flow (#3203)
### What problem does this PR solve?

add qwen 2.5 models for silicon flow

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
2024-11-05 13:58:29 +08:00
b7b30c4b57 add keyword extraction time elapsed to the little lamp. (#3207)
### What problem does this PR solve?



### Type of change

- [x] Refactoring
2024-11-05 13:39:50 +08:00
55953819c1 accelerate term weight calculation (#3206)
### What problem does this PR solve?



### Type of change

- [x] Performance Improvement
2024-11-05 13:11:26 +08:00
677f02c2a7 rm unused file (#3205)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2024-11-05 11:56:09 +08:00
185c6a0c71 Unified API response json schema (#3170)
### What problem does this PR solve?

Unified API response json schema

### Type of change

- [x] Refactoring
2024-11-05 11:02:31 +08:00
339639a9db add assistant to canvas chat history (#3201)
### What problem does this PR solve?

#3185

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-05 10:04:31 +08:00
18ae8a4091 raise exception if embedding model not found (#3199)
### What problem does this PR solve?

#3173 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-05 09:29:01 +08:00
cbca7dfce6 fix bugs in test (#3196)
### What problem does this PR solve?

fix bugs in test

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
2024-11-04 20:03:14 +08:00
a9344e6838 Docs update for upgrading DLA models (#3198)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2024-11-04 20:02:40 +08:00
aa733b1ea4 update poetry.lock (#3197)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-04 19:18:08 +08:00
8305632852 add agent completion API (#3192)
### What problem does this PR solve?

#3105

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-04 17:20:16 +08:00
57f23e0808 feat: Add agent interface document link to agent page #3189 (#3190)
### What problem does this PR solve?

feat: Add agent interface document link to agent page #3189

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-04 17:04:35 +08:00
16b6a78c1e feat: Add tooltip to clean_html item #2908 (#3183)
### What problem does this PR solve?

feat: Add tooltip to clean_html item #2908

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2024-11-04 15:36:57 +08:00
dd1146ec64 feat: docs for api endpoints to generate openapi specification (#3109)
### What problem does this PR solve?

**Added openapi specification for API routes. This creates swagger UI
similar to FastAPI to better use the API.**
Using python package `flasgger`

### Type of change
- [x] New Feature (non-breaking change which adds functionality)

Not all routes are included since this is a work in progress.

Docs can be accessed on: `{host}:{port}/apidocs`
2024-11-04 15:35:36 +08:00
07c453500b set default LLM to new registered user (#3180)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-04 15:03:07 +08:00
3e4fc12d30 Updated instructions on upgrading to RAGFlow dev (#3175)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-04 13:21:29 +08:00
285fd6ae14 feat: Proxy the SDK address to the backend #3166 (#3171)
### What problem does this PR solve?

feat: Proxy the SDK address to the backend #3166

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-04 11:37:19 +08:00
8d9238db14 fix es search parameter error (#3169)
### What problem does this PR solve?

#3151

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-04 09:53:41 +08:00
c06e765a5b Added tika jar into image to avoid downloading (#3167)
### What problem does this PR solve?

Added tika jar into image to avoid downloading. Close #3017

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-03 00:20:26 +08:00
c7ea7e9974 Added jdk to happify tika (#3165)
### What problem does this PR solve?

Added jdk to happify tika(https://pypi.org/project/tika/). The image
size become ~400MB bigger. Close #2886

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-02 22:21:17 +08:00
37d71dfa90 Replaced redis with Valkey (#3164)
### What problem does this PR solve?

Replaced redis with Valkey. Close #3070

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2024-11-02 20:05:12 +08:00
44ad9a6cd7 Add test for API (#3134)
### What problem does this PR solve?

Add test for API

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
2024-11-01 22:59:17 +08:00
7eafccf78a Updated descriptions for knowledge graph (#3154)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2024-11-01 18:57:58 +08:00
b42d24575c Updated an obsolete response (#3152)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
2024-11-01 18:00:15 +08:00
3963aaa23e feat: Add DynamicInputVariable to RetrievalForm #1739 (#3112)
### What problem does this PR solve?

feat: Add DynamicInputVariable to RetrievalForm #1739
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-11-01 13:31:48 +08:00
33e5e5db5b Update gif for readme and add input param to every components (#3145)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2024-11-01 13:31:34 +08:00
039cde7893 Updated obsolete screenshot. (#3141)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] Documentation Update
2024-10-31 19:21:34 +08:00
fa9d76224b Changed version to 0.13.0 (#3140)
### What problem does this PR solve?

Changed version to 0.13.0

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [x] Other (please describe):
2024-10-31 19:11:09 +08:00
35a451c024 Updated screenshots for Starting an AI chat (#3139)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2024-10-31 19:10:49 +08:00
414 changed files with 26024 additions and 8549 deletions

View File

@ -15,16 +15,16 @@ body:
value: "Please provide the following information to help us understand the issue."
- type: input
attributes:
label: Branch name
description: Enter the name of the branch where you encountered the issue.
placeholder: e.g., main
label: RAGFlow workspace code commit ID
description: Enter the commit ID associated with the issue.
placeholder: e.g., 26d3480e
validations:
required: true
- type: input
attributes:
label: Commit ID
description: Enter the commit ID associated with the issue.
placeholder: e.g., c3b2a1
label: RAGFlow image version
description: Enter the image version(shown in RAGFlow UI, `System` page) associated with the issue.
placeholder: e.g., 26d3480e(v0.13.0~174)
validations:
required: true
- type: textarea

View File

@ -42,19 +42,23 @@ jobs:
- name: Ensure workspace ownership
run: echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
# https://github.com/actions/checkout/issues/1781
- name: Check out code
uses: actions/checkout@v4
with:
fetch-depth: 0
fetch-tags: true
- name: Build ragflow:dev-slim
run: |
RUNNER_WORKSPACE_PREFIX=${RUNNER_WORKSPACE_PREFIX:-$HOME}
cp -r ${RUNNER_WORKSPACE_PREFIX}/huggingface.co ${RUNNER_WORKSPACE_PREFIX}/nltk_data ${RUNNER_WORKSPACE_PREFIX}/libssl*.deb .
sudo docker pull ubuntu:24.04
sudo docker build -f Dockerfile.slim -t infiniflow/ragflow:dev-slim .
cp -r ${RUNNER_WORKSPACE_PREFIX}/huggingface.co ${RUNNER_WORKSPACE_PREFIX}/nltk_data ${RUNNER_WORKSPACE_PREFIX}/libssl*.deb ${RUNNER_WORKSPACE_PREFIX}/tika-server*.jar* ${RUNNER_WORKSPACE_PREFIX}/chrome* ${RUNNER_WORKSPACE_PREFIX}/cl100k_base.tiktoken .
sudo docker pull ubuntu:22.04
sudo docker build --progress=plain -f Dockerfile.slim -t infiniflow/ragflow:dev-slim .
- name: Build ragflow:dev
run: |
sudo docker build -f Dockerfile -t infiniflow/ragflow:dev .
sudo docker build --progress=plain -f Dockerfile -t infiniflow/ragflow:dev .
- name: Start ragflow:dev-slim
run: |
@ -70,7 +74,7 @@ jobs:
echo "RAGFLOW_IMAGE=infiniflow/ragflow:dev" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Run tests
- name: Run sdk tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
@ -78,9 +82,49 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test && pytest t_dataset.py t_chat.py t_session.py
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
- name: Run frontend api tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
- name: Stop ragflow:dev
if: always() # always run this step even if previous steps failed
run: |
sudo docker compose -f docker/docker-compose.yml down -v
- name: Start ragflow:dev
run: |
sudo DOC_ENGINE=infinity docker compose -f docker/docker-compose.yml up -d
- name: Run sdk tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_sdk_api && pytest -s --tb=short get_email.py t_dataset.py t_chat.py t_session.py t_document.py t_chunk.py
- name: Run frontend api tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && poetry install && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
- name: Stop ragflow:dev
if: always() # always run this step even if previous steps failed
run: |
sudo DOC_ENGINE=infinity docker compose -f docker/docker-compose.yml down -v

View File

@ -1,8 +1,8 @@
# base stage
FROM ubuntu:24.04 AS base
FROM ubuntu:22.04 AS base
USER root
SHELL ["/bin/bash", "-c"]
ARG ARCH=amd64
ENV LIGHTEN=0
WORKDIR /ragflow
@ -13,29 +13,45 @@ RUN rm -f /etc/apt/apt.conf.d/docker-clean \
RUN --mount=type=cache,id=ragflow_base_apt,target=/var/cache/apt,sharing=locked \
apt update && apt-get --no-install-recommends install -y ca-certificates
# If you download Python modules too slow, you can use a pip mirror site to speed up apt and poetry
RUN sed -i 's|http://archive.ubuntu.com|https://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list.d/ubuntu.sources
ENV POETRY_PYPI_MIRROR_URL=https://pypi.tuna.tsinghua.edu.cn/simple/
# Setup apt mirror site
RUN sed -i 's|http://archive.ubuntu.com|https://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list
RUN --mount=type=cache,id=ragflow_base_apt,target=/var/cache/apt,sharing=locked \
apt update && apt install -y curl libpython3-dev nginx libglib2.0-0 libglx-mesa0 pkg-config libicu-dev libgdiplus python3-pip python3-poetry \
&& pip3 install --user --break-system-packages poetry-plugin-pypi-mirror --index-url https://pypi.tuna.tsinghua.edu.cn/simple/ \
apt update && DEBIAN_FRONTEND=noninteractive apt install -y curl libpython3-dev nginx libglib2.0-0 libglx-mesa0 pkg-config libicu-dev libgdiplus default-jdk python3-pip pipx \
libatk-bridge2.0-0 libgtk-4-1 libnss3 xdg-utils unzip libgbm-dev wget git \
&& rm -rf /var/lib/apt/lists/*
RUN pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && pip3 config set global.trusted-host "pypi.tuna.tsinghua.edu.cn mirrors.pku.edu.cn" && pip3 config set global.extra-index-url "https://mirrors.pku.edu.cn/pypi/web/simple" \
&& pipx install poetry \
&& /root/.local/bin/poetry self add poetry-plugin-pypi-mirror
# https://forum.aspose.com/t/aspose-slides-for-net-no-usable-version-of-libssl-found-with-linux-server/271344/13
# aspose-slides on linux/arm64 is unavailable
RUN --mount=type=bind,source=libssl1.1_1.1.1f-1ubuntu2_amd64.deb,target=/root/libssl1.1_1.1.1f-1ubuntu2_amd64.deb \
if [ "${ARCH}" = "amd64" ]; then \
--mount=type=bind,source=libssl1.1_1.1.1f-1ubuntu2_arm64.deb,target=/root/libssl1.1_1.1.1f-1ubuntu2_arm64.deb \
if [ "$(uname -m)" = "x86_64" ]; then \
dpkg -i /root/libssl1.1_1.1.1f-1ubuntu2_amd64.deb; \
elif [ "$(uname -m)" = "aarch64" ]; then \
dpkg -i /root/libssl1.1_1.1.1f-1ubuntu2_arm64.deb; \
fi
ENV PYTHONDONTWRITEBYTECODE=1 DOTNET_SYSTEM_GLOBALIZATION_INVARIANT=1
ENV PATH=/root/.local/bin:$PATH
# Configure Poetry
ENV POETRY_NO_INTERACTION=1
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
ENV POETRY_VIRTUALENVS_CREATE=true
ENV POETRY_REQUESTS_TIMEOUT=15
ENV POETRY_PYPI_MIRROR_URL=https://pypi.tuna.tsinghua.edu.cn/simple/
# nodejs 12.22 on Ubuntu 22.04 is too old
RUN --mount=type=cache,id=ragflow_base_apt,target=/var/cache/apt,sharing=locked \
curl -fsSL https://deb.nodesource.com/setup_20.x | bash - && \
apt purge -y nodejs npm && \
apt autoremove && \
apt update && \
apt install -y nodejs cargo && \
rm -rf /var/lib/apt/lists/*
# builder stage
FROM base AS builder
@ -43,23 +59,38 @@ USER root
WORKDIR /ragflow
RUN --mount=type=cache,id=ragflow_builder_apt,target=/var/cache/apt,sharing=locked \
apt update && apt install -y nodejs npm cargo && \
rm -rf /var/lib/apt/lists/*
COPY .git /ragflow/.git
RUN current_commit=$(git rev-parse --short HEAD); \
last_tag=$(git describe --tags --abbrev=0); \
commit_count=$(git rev-list --count "$last_tag..HEAD"); \
version_info=""; \
if [ "$commit_count" -eq 0 ]; then \
version_info=$last_tag; \
else \
version_info="$current_commit($last_tag~$commit_count)"; \
fi; \
if [ "$LIGHTEN" == "1" ]; then \
version_info="$version_info slim"; \
else \
version_info="$version_info full"; \
fi; \
echo "RAGFlow version: $version_info"; \
echo $version_info > /ragflow/VERSION
COPY web web
COPY docs docs
RUN --mount=type=cache,id=ragflow_builder_npm,target=/root/.npm,sharing=locked \
cd web && npm i --force && npm run build
cd web && npm install --force && npm run build
# install dependencies from poetry.lock file
COPY pyproject.toml poetry.toml poetry.lock ./
RUN --mount=type=cache,id=ragflow_builder_poetry,target=/root/.cache/pypoetry,sharing=locked \
if [ "$LIGHTEN" -eq 0 ]; then \
poetry install --sync --no-root --with=full; \
if [ "$LIGHTEN" == "1" ]; then \
poetry install --no-root; \
else \
poetry install --sync --no-root; \
poetry install --no-root --with=full; \
fi
# production stage
@ -68,6 +99,8 @@ USER root
WORKDIR /ragflow
COPY --from=builder /ragflow/VERSION /ragflow/VERSION
# Install python packages' dependencies
# cv2 requires libGL.so.1
RUN --mount=type=cache,id=ragflow_production_apt,target=/var/cache/apt,sharing=locked \
@ -101,6 +134,25 @@ RUN --mount=type=bind,source=huggingface.co,target=/huggingface.co \
# Copy nltk data downloaded via download_deps.py
COPY nltk_data /root/nltk_data
# https://github.com/chrismattmann/tika-python
# This is the only way to run python-tika without internet access. Without this set, the default is to check the tika version and pull latest every time from Apache.
COPY tika-server-standard-3.0.0.jar /ragflow/tika-server-standard.jar
COPY tika-server-standard-3.0.0.jar.md5 /ragflow/tika-server-standard.jar.md5
ENV TIKA_SERVER_JAR="file:///ragflow/tika-server-standard.jar"
# Copy cl100k_base
COPY cl100k_base.tiktoken /ragflow/9b5ad71b2ce5302211f9c61530b329a4922fc6a4
# Add dependencies of selenium
RUN --mount=type=bind,source=chrome-linux64-121-0-6167-85,target=/chrome-linux64.zip \
unzip /chrome-linux64.zip && \
mv chrome-linux64 /opt/chrome && \
ln -s /opt/chrome/chrome /usr/local/bin/
RUN --mount=type=bind,source=chromedriver-linux64-121-0-6167-85,target=/chromedriver-linux64.zip \
unzip -j /chromedriver-linux64.zip chromedriver-linux64/chromedriver && \
mv chromedriver /usr/local/bin/ && \
rm -f /usr/bin/google-chrome
# Copy compiled web pages
COPY --from=builder /ragflow/web/dist /ragflow/web/dist
@ -111,6 +163,7 @@ ENV PATH="${VIRTUAL_ENV}/bin:${PATH}"
ENV PYTHONPATH=/ragflow/
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template
COPY docker/entrypoint.sh ./entrypoint.sh
RUN chmod +x ./entrypoint.sh

View File

@ -53,6 +53,7 @@ RUN conda run -n py11 python -m nltk.downloader wordnet
ENV PYTHONPATH=/ragflow/
ENV HF_ENDPOINT=https://hf-mirror.com
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template
ADD docker/entrypoint.sh ./entrypoint.sh
RUN chmod +x ./entrypoint.sh

View File

@ -1,8 +1,8 @@
# base stage
FROM ubuntu:24.04 AS base
FROM ubuntu:22.04 AS base
USER root
SHELL ["/bin/bash", "-c"]
ARG ARCH=amd64
ENV LIGHTEN=1
WORKDIR /ragflow
@ -13,28 +13,45 @@ RUN rm -f /etc/apt/apt.conf.d/docker-clean \
RUN --mount=type=cache,id=ragflow_base_apt,target=/var/cache/apt,sharing=locked \
apt update && apt-get --no-install-recommends install -y ca-certificates
# If you download Python modules too slow, you can use a pip mirror site to speed up apt and poetry
RUN sed -i 's|http://archive.ubuntu.com|https://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list.d/ubuntu.sources
ENV POETRY_PYPI_MIRROR_URL=https://pypi.tuna.tsinghua.edu.cn/simple/
# Setup apt mirror site
RUN sed -i 's|http://archive.ubuntu.com|https://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list
RUN --mount=type=cache,id=ragflow_base_apt,target=/var/cache/apt,sharing=locked \
apt update && apt install -y curl libpython3-dev nginx libglib2.0-0 libglx-mesa0 pkg-config libicu-dev libgdiplus python3-pip python3-poetry \
&& pip3 install --user --break-system-packages poetry-plugin-pypi-mirror --index-url https://pypi.tuna.tsinghua.edu.cn/simple/ \
apt update && DEBIAN_FRONTEND=noninteractive apt install -y curl libpython3-dev nginx libglib2.0-0 libglx-mesa0 pkg-config libicu-dev libgdiplus default-jdk python3-pip pipx \
libatk-bridge2.0-0 libgtk-4-1 libnss3 xdg-utils unzip libgbm-dev wget git \
&& rm -rf /var/lib/apt/lists/*
RUN pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && pip3 config set global.trusted-host "pypi.tuna.tsinghua.edu.cn mirrors.pku.edu.cn" && pip3 config set global.extra-index-url "https://mirrors.pku.edu.cn/pypi/web/simple" \
&& pipx install poetry \
&& /root/.local/bin/poetry self add poetry-plugin-pypi-mirror
# https://forum.aspose.com/t/aspose-slides-for-net-no-usable-version-of-libssl-found-with-linux-server/271344/13
# aspose-slides on linux/arm64 is unavailable
RUN if [ "${ARCH}" = "amd64" ]; then \
curl -o libssl1.deb http://archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb && dpkg -i libssl1.deb && rm -f libssl1.deb; \
RUN --mount=type=bind,source=libssl1.1_1.1.1f-1ubuntu2_amd64.deb,target=/root/libssl1.1_1.1.1f-1ubuntu2_amd64.deb \
--mount=type=bind,source=libssl1.1_1.1.1f-1ubuntu2_arm64.deb,target=/root/libssl1.1_1.1.1f-1ubuntu2_arm64.deb \
if [ "$(uname -m)" = "x86_64" ]; then \
dpkg -i /root/libssl1.1_1.1.1f-1ubuntu2_amd64.deb; \
elif [ "$(uname -m)" = "aarch64" ]; then \
dpkg -i /root/libssl1.1_1.1.1f-1ubuntu2_arm64.deb; \
fi
ENV PYTHONDONTWRITEBYTECODE=1 DOTNET_SYSTEM_GLOBALIZATION_INVARIANT=1
ENV PATH=/root/.local/bin:$PATH
# Configure Poetry
ENV POETRY_NO_INTERACTION=1
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
ENV POETRY_VIRTUALENVS_CREATE=true
ENV POETRY_REQUESTS_TIMEOUT=15
ENV POETRY_PYPI_MIRROR_URL=https://pypi.tuna.tsinghua.edu.cn/simple/
# nodejs 12.22 on Ubuntu 22.04 is too old
RUN --mount=type=cache,id=ragflow_base_apt,target=/var/cache/apt,sharing=locked \
curl -fsSL https://deb.nodesource.com/setup_20.x | bash - && \
apt purge -y nodejs npm && \
apt autoremove && \
apt update && \
apt install -y nodejs cargo && \
rm -rf /var/lib/apt/lists/*
# builder stage
FROM base AS builder
@ -42,23 +59,38 @@ USER root
WORKDIR /ragflow
RUN --mount=type=cache,id=ragflow_builder_apt,target=/var/cache/apt,sharing=locked \
apt update && apt install -y nodejs npm cargo && \
rm -rf /var/lib/apt/lists/*
COPY .git /ragflow/.git
RUN current_commit=$(git rev-parse --short HEAD); \
last_tag=$(git describe --tags --abbrev=0); \
commit_count=$(git rev-list --count "$last_tag..HEAD"); \
version_info=""; \
if [ "$commit_count" -eq 0 ]; then \
version_info=$last_tag; \
else \
version_info="$current_commit($last_tag~$commit_count)"; \
fi; \
if [ "$LIGHTEN" == "1" ]; then \
version_info="$version_info slim"; \
else \
version_info="$version_info full"; \
fi; \
echo "RAGFlow version: $version_info"; \
echo $version_info > /ragflow/VERSION
COPY web web
COPY docs docs
RUN --mount=type=cache,id=ragflow_builder_npm,target=/root/.npm,sharing=locked \
cd web && npm i && npm run build
cd web && npm install --force && npm run build
# install dependencies from poetry.lock file
COPY pyproject.toml poetry.toml poetry.lock ./
RUN --mount=type=cache,id=ragflow_builder_poetry,target=/root/.cache/pypoetry,sharing=locked \
if [ "$LIGHTEN" -eq 0 ]; then \
poetry install --sync --no-root --with=full; \
if [ "$LIGHTEN" == "1" ]; then \
poetry install --no-root; \
else \
poetry install --sync --no-root; \
poetry install --no-root --with=full; \
fi
# production stage
@ -67,6 +99,8 @@ USER root
WORKDIR /ragflow
COPY --from=builder /ragflow/VERSION /ragflow/VERSION
# Install python packages' dependencies
# cv2 requires libGL.so.1
RUN --mount=type=cache,id=ragflow_production_apt,target=/var/cache/apt,sharing=locked \
@ -93,6 +127,25 @@ RUN --mount=type=bind,source=huggingface.co,target=/huggingface.co \
# Copy nltk data downloaded via download_deps.py
COPY nltk_data /root/nltk_data
# https://github.com/chrismattmann/tika-python
# This is the only way to run python-tika without internet access. Without this set, the default is to check the tika version and pull latest every time from Apache.
COPY tika-server-standard-3.0.0.jar /ragflow/tika-server-standard.jar
COPY tika-server-standard-3.0.0.jar.md5 /ragflow/tika-server-standard.jar.md5
ENV TIKA_SERVER_JAR="file:///ragflow/tika-server-standard.jar"
# Copy cl100k_base
COPY cl100k_base.tiktoken /ragflow/9b5ad71b2ce5302211f9c61530b329a4922fc6a4
# Add dependencies of selenium
RUN --mount=type=bind,source=chrome-linux64-121-0-6167-85,target=/chrome-linux64.zip \
unzip /chrome-linux64.zip && \
mv chrome-linux64 /opt/chrome && \
ln -s /opt/chrome/chrome /usr/local/bin/
RUN --mount=type=bind,source=chromedriver-linux64-121-0-6167-85,target=/chromedriver-linux64.zip \
unzip -j /chromedriver-linux64.zip chromedriver-linux64/chromedriver && \
mv chromedriver /usr/local/bin/ && \
rm -f /usr/bin/google-chrome
# Copy compiled web pages
COPY --from=builder /ragflow/web/dist /ragflow/web/dist
@ -103,6 +156,7 @@ ENV PATH="${VIRTUAL_ENV}/bin:${PATH}"
ENV PYTHONPATH=/ragflow/
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template
COPY docker/entrypoint.sh ./entrypoint.sh
RUN chmod +x ./entrypoint.sh

View File

@ -8,7 +8,8 @@
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a>
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
</p>
<p align="center">
@ -19,7 +20,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.13.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.13.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -69,14 +70,14 @@ data.
Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/infiniflow/ragflow/assets/12318111/b083d173-dadc-4ea9-bdeb-180d7df514eb" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 Latest Updates
- 2024-09-29 Optimizes multi-round conversations.
- 2024-11-22 Adds more variables to Agent.
- 2024-11-01 Adds keyword extraction and related question generation to the parsed chunks to improve the accuracy of retrieval.
- 2024-09-13 Adds search mode for knowledge base Q&A.
- 2024-09-09 Adds a medical consultant agent template.
- 2024-08-22 Support text to SQL statements through RAG.
- 2024-08-02 Supports GraphRAG inspired by [graphrag](https://github.com/microsoft/graphrag) and mind map.
@ -174,15 +175,15 @@ releases! 🌟
$ docker compose -f docker-compose.yml up -d
```
> - To download a RAGFlow slim Docker image of a specific version, update the `RAGFlow_IMAGE` variable in *
*docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0-slim`. After
> - To download a RAGFlow slim Docker image of a specific version, update the `RAGFLOW_IMAGE` variable in *
*docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`. After
making this change, rerun the command above to initiate the download.
> - To download the dev version of RAGFlow Docker image *including* embedding models and Python libraries, update the
`RAGFlow_IMAGE` variable in **docker/.env** to `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. After making this change,
`RAGFLOW_IMAGE` variable in **docker/.env** to `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. After making this change,
rerun the command above to initiate the download.
> - To download a specific version of RAGFlow Docker image *including* embedding models and Python libraries, update
the `RAGFlow_IMAGE` variable in **docker/.env** to your desired version. For example,
`RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0`. After making this change, rerun the command above to initiate the
the `RAGFLOW_IMAGE` variable in **docker/.env** to your desired version. For example,
`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`. After making this change, rerun the command above to initiate the
download.
> **NOTE:** A RAGFlow Docker image that includes embedding models and Python libraries is approximately 9GB in size
@ -209,13 +210,13 @@ releases! 🌟
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network abnormal`
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anormal`
error because, at that moment, your RAGFlow may not be fully initialized.
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default
HTTP serving port `80` can be omitted when using the default configurations.
6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update
6. In [service_conf.yaml.template](./docker/service_conf.yaml.template), select the desired LLM factory in `user_default_llm` and update
the `API_KEY` field with the corresponding API key.
> See [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) for more information.
@ -228,17 +229,11 @@ When it comes to system configurations, you will need to manage the following fi
- [.env](./docker/.env): Keeps the fundamental setups for the system, such as `SVR_HTTP_PORT`, `MYSQL_PASSWORD`, and
`MINIO_PASSWORD`.
- [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services.
- [docker-compose.yml](./docker/docker-compose.yml): The system relies
on [docker-compose.yml](./docker/docker-compose.yml) to start up.
You must ensure that changes to the [.env](./docker/.env) file are in line with what are in
the [service_conf.yaml](./docker/service_conf.yaml) file.
- [service_conf.yaml.template](./docker/service_conf.yaml.template): Configures the back-end services. The environment variables in this file will be automatically populated when the Docker container starts. Any environment variables set within the Docker container will be available for use, allowing you to customize service behavior based on the deployment environment.
- [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up.
> The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service
> configurations, and you are REQUIRED to ensure that all environment settings listed in
> the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in
> the [service_conf.yaml](./docker/service_conf.yaml) file.
> configurations which can be used as `${ENV_VARS}` in the [service_conf.yaml.template](./docker/service_conf.yaml.template) file.
To update the default HTTP serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80`
to `<YOUR_SERVING_PORT>:80`.
@ -249,6 +244,27 @@ Updates to the above configurations require a reboot of all containers to take e
> $ docker compose -f docker/docker-compose.yml up -d
> ```
### Switch doc engine from Elasticsearch to Infinity
RAGFlow uses Elasticsearch by default for storing full text and vectors. To switch to [Infinity](https://github.com/infiniflow/infinity/), follow these steps:
1. Stop all running containers:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
2. Set `DOC_ENGINE` in **docker/.env** to `infinity`.
3. Start the containers:
```bash
$ docker compose -f docker/docker-compose.yml up -d
```
> [!WARNING]
> Switching to Infinity on a Linux/arm64 machine is not yet officially supported.
## 🔧 Build a Docker image without embedding models
This image is approximately 1 GB in size and relies on external LLM and embedding services.
@ -285,7 +301,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:dev .
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
~/.local/bin/poetry install --sync --no-root --with=full # install RAGFlow dependent python modules
```
3. Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
@ -293,11 +309,11 @@ docker build -f Dockerfile -t infiniflow/ragflow:dev .
docker compose -f docker/docker-compose-base.yml up -d
```
Add the following line to `/etc/hosts` to resolve all hosts specified in **docker/service_conf.yaml** to `127.0.0.1`:
Add the following line to `/etc/hosts` to resolve all hosts specified in **docker/.env** to `127.0.0.1`:
```
127.0.0.1 es01 mysql minio redis
127.0.0.1 es01 infinity mysql minio redis
```
In **docker/service_conf.yaml**, update mysql port to `5455` and es port to `1200`, as specified in **docker/.env**.
In **docker/service_conf.yaml.template**, update mysql port to `5455` and es port to `1200`, as specified in **docker/.env**.
4. If you cannot access HuggingFace, set the `HF_ENDPOINT` environment variable to use a mirror site:

341
README_id.md Normal file
View File

@ -0,0 +1,341 @@
<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="520" alt="Logo ragflow">
</a>
</div>
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
</p>
<p align="center">
<a href="https://x.com/intent/follow?screen_name=infiniflowai" target="_blank">
<img src="https://img.shields.io/twitter/follow/infiniflow?logo=X&color=%20%23f5f5f5" alt="Ikuti di X (Twitter)">
</a>
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
</a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/Lisensi-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="Lisensi">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Dokumentasi</a> |
<a href="https://github.com/infiniflow/ragflow/issues/162">Peta Jalan</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary></b>📕 Daftar Isi</b></summary>
- 💡 [Apa Itu RAGFlow?](#-apa-itu-ragflow)
- 🎮 [Demo](#-demo)
- 📌 [Pembaruan Terbaru](#-pembaruan-terbaru)
- 🌟 [Fitur Utama](#-fitur-utama)
- 🔎 [Arsitektur Sistem](#-arsitektur-sistem)
- 🎬 [Mulai](#-mulai)
- 🔧 [Konfigurasi](#-konfigurasi)
- 🔧 [Membangun Image Docker tanpa Model Embedding](#-membangun-image-docker-tanpa-model-embedding)
- 🔧 [Membangun Image Docker dengan Model Embedding](#-membangun-image-docker-dengan-model-embedding)
- 🔨 [Meluncurkan aplikasi dari Sumber untuk Pengembangan](#-meluncurkan-aplikasi-dari-sumber-untuk-pengembangan)
- 📚 [Dokumentasi](#-dokumentasi)
- 📜 [Peta Jalan](#-peta-jalan)
- 🏄 [Komunitas](#-komunitas)
- 🙌 [Kontribusi](#-kontribusi)
</details>
## 💡 Apa Itu RAGFlow?
[RAGFlow](https://ragflow.io/) adalah mesin RAG (Retrieval-Augmented Generation) open-source berbasis pemahaman dokumen yang mendalam. Platform ini menyediakan alur kerja RAG yang efisien untuk bisnis dengan berbagai skala, menggabungkan LLM (Large Language Models) untuk menyediakan kemampuan tanya-jawab yang benar dan didukung oleh referensi dari data terstruktur kompleks.
## 🎮 Demo
Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 Pembaruan Terbaru
- 22-11-2024 Peningkatan definisi dan penggunaan variabel di Agen.
- 2024-11-01: Penambahan ekstraksi kata kunci dan pembuatan pertanyaan terkait untuk meningkatkan akurasi pengambilan.
- 2024-09-13: Penambahan mode pencarian untuk Q&A basis pengetahuan.
- 2024-08-22: Dukungan untuk teks ke pernyataan SQL melalui RAG.
- 2024-08-02: Dukungan GraphRAG yang terinspirasi oleh [graphrag](https://github.com/microsoft/graphrag) dan mind map.
## 🎉 Tetap Terkini
⭐️ Star repositori kami untuk tetap mendapat informasi tentang fitur baru dan peningkatan menarik! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 Fitur Utama
### 🍭 **"Kualitas Masuk, Kualitas Keluar"**
- Ekstraksi pengetahuan berbasis pemahaman dokumen mendalam dari data tidak terstruktur dengan format yang rumit.
- Menemukan "jarum di tumpukan data" dengan token yang hampir tidak terbatas.
### 🍱 **Pemotongan Berbasis Template**
- Cerdas dan dapat dijelaskan.
- Banyak pilihan template yang tersedia.
### 🌱 **Referensi yang Didasarkan pada Data untuk Mengurangi Hallusinasi**
- Visualisasi pemotongan teks memungkinkan intervensi manusia.
- Tampilan cepat referensi kunci dan referensi yang dapat dilacak untuk mendukung jawaban yang didasarkan pada fakta.
### 🍔 **Kompatibilitas dengan Sumber Data Heterogen**
- Mendukung Word, slide, excel, txt, gambar, salinan hasil scan, data terstruktur, halaman web, dan banyak lagi.
### 🛀 **Alur Kerja RAG yang Otomatis dan Mudah**
- Orkestrasi RAG yang ramping untuk bisnis kecil dan besar.
- LLM yang dapat dikonfigurasi serta model embedding.
- Peringkat ulang berpasangan dengan beberapa pengambilan ulang.
- API intuitif untuk integrasi yang mudah dengan bisnis.
## 🔎 Arsitektur Sistem
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>
## 🎬 Mulai
### 📝 Prasyarat
- CPU >= 4 inti
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
### 🚀 Menjalankan Server
1. Pastikan `vm.max_map_count` >= 262144:
> Untuk memeriksa nilai `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Jika nilainya kurang dari 262144, setel ulang `vm.max_map_count` ke setidaknya 262144:
>
> ```bash
> # Dalam contoh ini, kita atur menjadi 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> Perubahan ini akan hilang setelah sistem direboot. Untuk membuat perubahan ini permanen, tambahkan atau perbarui nilai
`vm.max_map_count` di **/etc/sysctl.conf**:
>
> ```bash
> vm.max_map_count=262144
> ```
2. Clone repositori:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Bangun image Docker pre-built dan jalankan server:
> Perintah di bawah ini akan mengunduh versi dev dari Docker image RAGFlow slim (`dev-slim`). Image RAGFlow slim
tidak termasuk model embedding atau library Python dan berukuran sekitar 1GB.
```bash
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
> - Untuk mengunduh versi tertentu dari image Docker RAGFlow slim, perbarui variabel `RAGFlow_IMAGE` di *
*docker/.env** sesuai dengan versi yang diinginkan. Misalnya, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`.
Setelah mengubah ini, jalankan ulang perintah di atas untuk memulai unduhan.
> - Untuk mengunduh versi dev dari image Docker RAGFlow *termasuk* model embedding dan library Python, perbarui
variabel `RAGFlow_IMAGE` di **docker/.env** menjadi `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. Setelah mengubah ini,
jalankan ulang perintah di atas untuk memulai unduhan.
> - Untuk mengunduh versi tertentu dari image Docker RAGFlow *termasuk* model embedding dan library Python, perbarui
variabel `RAGFlow_IMAGE` di **docker/.env** sesuai dengan versi yang diinginkan. Misalnya,
`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`. Setelah mengubah ini, jalankan ulang perintah di atas untuk memulai unduhan.
> **CATATAN:** Image Docker RAGFlow yang mencakup model embedding dan library Python berukuran sekitar 9GB
dan mungkin memerlukan waktu lebih lama untuk dimuat.
4. Periksa status server setelah server aktif dan berjalan:
```bash
$ docker logs -f ragflow-server
```
_Output berikut menandakan bahwa sistem berhasil diluncurkan:_
```bash
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network anormal`
karena RAGFlow mungkin belum sepenuhnya siap.
5. Buka browser web Anda, masukkan alamat IP server Anda, dan login ke RAGFlow.
> Dengan pengaturan default, Anda hanya perlu memasukkan `http://IP_DEVICE_ANDA` (**tanpa** nomor port) karena
port HTTP default `80` bisa dihilangkan saat menggunakan konfigurasi default.
6. Dalam [service_conf.yaml](./docker/service_conf.yaml), pilih LLM factory yang diinginkan di `user_default_llm` dan perbarui
bidang `API_KEY` dengan kunci API yang sesuai.
> Lihat [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) untuk informasi lebih lanjut.
_Sistem telah siap digunakan!_
## 🔧 Konfigurasi
Untuk konfigurasi sistem, Anda perlu mengelola file-file berikut:
- [.env](./docker/.env): Menyimpan pengaturan dasar sistem, seperti `SVR_HTTP_PORT`, `MYSQL_PASSWORD`, dan
`MINIO_PASSWORD`.
- [service_conf.yaml](./docker/service_conf.yaml): Mengonfigurasi aplikasi backend.
- [docker-compose.yml](./docker/docker-compose.yml): Sistem ini bergantung pada [docker-compose.yml](./docker/docker-compose.yml) untuk memulai.
Anda harus memastikan bahwa perubahan pada file [.env](./docker/.env) sesuai dengan yang ada di file [service_conf.yaml](./docker/service_conf.yaml).
> File [./docker/README](./docker/README.md) menyediakan penjelasan detail tentang pengaturan lingkungan dan konfigurasi aplikasi,
> dan Anda DIWAJIBKAN memastikan bahwa semua pengaturan lingkungan yang tercantum di
> [./docker/README](./docker/README.md) selaras dengan konfigurasi yang sesuai di
> [service_conf.yaml](./docker/service_conf.yaml).
Untuk memperbarui port HTTP default (80), buka [docker-compose.yml](./docker/docker-compose.yml) dan ubah `80:80`
menjadi `<YOUR_SERVING_PORT>:80`.
Pembaruan konfigurasi ini memerlukan reboot semua kontainer agar efektif:
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> ```
## 🔧 Membangun Docker Image tanpa Model Embedding
Image ini berukuran sekitar 1 GB dan bergantung pada aplikasi LLM eksternal dan embedding.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
pip3 install huggingface-hub nltk
python3 download_deps.py
docker build -f Dockerfile.slim -t infiniflow/ragflow:dev-slim .
```
## 🔧 Membangun Docker Image Termasuk Model Embedding
Image ini berukuran sekitar 9 GB. Karena sudah termasuk model embedding, ia hanya bergantung pada aplikasi LLM eksternal.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
pip3 install huggingface-hub nltk
python3 download_deps.py
docker build -f Dockerfile -t infiniflow/ragflow:dev .
```
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal Poetry, atau lewati langkah ini jika sudah terinstal:
```bash
curl -sSL https://install.python-poetry.org | python3 -
```
2. Clone kode sumber dan instal dependensi Python:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
~/.local/bin/poetry install --sync --no-root # install modul python RAGFlow
```
3. Jalankan aplikasi yang diperlukan (MinIO, Elasticsearch, Redis, dan MySQL) menggunakan Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Tambahkan baris berikut ke `/etc/hosts` untuk memetakan semua host yang ditentukan di **docker/service_conf.yaml** ke `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
```
Di **docker/service_conf.yaml**, perbarui port mysql ke `5455` dan es ke `1200`, sesuai dengan yang ditentukan di **docker/.env**.
4. Jika Anda tidak dapat mengakses HuggingFace, atur variabel lingkungan `HF_ENDPOINT` untuk menggunakan situs mirror:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. Jalankan aplikasi backend:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. Instal dependensi frontend:
```bash
cd web
npm install --force
```
7. Konfigurasikan frontend untuk memperbarui `proxy.target` di **.umirc.ts** menjadi `http://127.0.0.1:9380`:
8. Jalankan aplikasi frontend:
```bash
npm run dev
```
_Output berikut menandakan bahwa sistem berhasil diluncurkan:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
## 📚 Dokumentasi
- [Quickstart](https://ragflow.io/docs/dev/)
- [Panduan Pengguna](https://ragflow.io/docs/dev/category/guides)
- [Referensi](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
Lihat [Roadmap RAGFlow 2024](https://github.com/infiniflow/ragflow/issues/162)
## 🏄 Komunitas
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 Kontribusi
RAGFlow berkembang melalui kolaborasi open-source. Dalam semangat ini, kami menerima kontribusi dari komunitas.
Jika Anda ingin berpartisipasi, tinjau terlebih dahulu [Panduan Kontribusi](./CONTRIBUTING.md).

View File

@ -8,7 +8,8 @@
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a>
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
</p>
<p align="center">
@ -19,7 +20,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.13.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.13.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -47,15 +48,15 @@
デモをお試しください:[https://demo.ragflow.io](https://demo.ragflow.io)。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/infiniflow/ragflow/assets/12318111/b083d173-dadc-4ea9-bdeb-180d7df514eb" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 最新情報
- 2024-09-29 マルチラウンドダイアログを最適化
- 2024-11-22 エージェントでの変数の定義と使用法を改善しました
- 2024-11-01 再現の精度を向上させるために、解析されたチャンクにキーワード抽出と関連質問の生成を追加しました。
- 2024-09-13 ナレッジベース Q&A の検索モードを追加しました。
- 2024-09-09 エージェントに医療相談テンプレートを追加しました。
- 2024-08-22 RAG を介して SQL ステートメントへのテキストをサポートします。
- 2024-08-02 [graphrag](https://github.com/microsoft/graphrag) からインスピレーションを得た GraphRAG とマインド マップをサポートします。
@ -147,9 +148,9 @@
$ docker compose -f docker-compose.yml up -d
```
> - 特定のバージョンのRAGFlow slim Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
> - 特定のバージョンのRAGFlow slim Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
> - RAGFlowの埋め込みモデルとPythonライブラリを含む開発版Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を`RAGFLOW_IMAGE=infiniflow/ragflow:dev`に更新します。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
> - 特定のバージョンのRAGFlow Dockerイメージ埋め込みモデルとPythonライブラリを含むをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
> - 特定のバージョンのRAGFlow Dockerイメージ埋め込みモデルとPythonライブラリを含むをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
> **NOTE:** 埋め込みモデルとPythonライブラリを含むRAGFlow Dockerイメージのサイズは約9GBであり、読み込みにかなりの時間がかかる場合があります。
@ -203,6 +204,23 @@
> $ docker compose -f docker/docker-compose.yml up -d
> ```
### Elasticsearch から Infinity にドキュメントエンジンを切り替えます
RAGFlow はデフォルトで Elasticsearch を使用して全文とベクトルを保存します。Infinityに切り替えhttps://github.com/infiniflow/infinity/)、次の手順に従います。
1. 実行中のすべてのコンテナを停止するには:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
2. **docker/.env** の「DOC _ ENGINE」を「infinity」に設定します。
3. 起動コンテナ:
```bash
$ docker compose -f docker/docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。
## 🔧 ソースコードでDockerイメージを作成埋め込みモデルなし
この Docker イメージのサイズは約 1GB で、外部の大モデルと埋め込みサービスに依存しています。
@ -249,7 +267,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:dev .
`/etc/hosts` に以下の行を追加して、**docker/service_conf.yaml** に指定されたすべてのホストを `127.0.0.1` に解決します:
```
127.0.0.1 es01 mysql minio redis
127.0.0.1 es01 infinity mysql minio redis
```
**docker/service_conf.yaml** で mysql のポートを `5455` に、es のポートを `1200` に更新します(**docker/.env** に指定された通り).

View File

@ -9,6 +9,7 @@
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
</p>
<p align="center">
@ -19,7 +20,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.13.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.13.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -49,18 +50,18 @@
데모를 [https://demo.ragflow.io](https://demo.ragflow.io)에서 실행해 보세요.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/infiniflow/ragflow/assets/12318111/b083d173-dadc-4ea9-bdeb-180d7df514eb" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 업데이트
- 2024-09-29 다단계 대화를 최적화합니다.
- 2024-11-22 에이전트의 변수 정의 및 사용을 개선했습니다.
- 2024-11-01 파싱된 청크에 키워드 추출 및 관련 질문 생성을 추가하여 재현율을 향상시킵니다.
- 2024-09-13 지식베이스 Q&A 검색 모드를 추가합니다.
- 2024-09-09 Agent에 의료상담 템플릿을 추가하였습니다.
- 2024-08-22 RAG를 통해 SQL 문에 텍스트를 지원합니다.
- 2024-08-02: [graphrag](https://github.com/microsoft/graphrag)와 마인드맵에서 영감을 받은 GraphRAG를 지원합니다.
@ -151,9 +152,9 @@
$ docker compose -f docker-compose.yml up -d
```
> - 특정 버전의 RAGFlow slim Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0-slim`으로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
> - 특정 버전의 RAGFlow slim Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`으로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
> - RAGFlow의 임베딩 모델과 Python 라이브러리를 포함한 개발 버전 Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 `RAGFLOW_IMAGE=infiniflow/ragflow:dev`로 업데이트하세요. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
> - 특정 버전의 RAGFlow Docker 이미지를 임베딩 모델과 Python 라이브러리를 포함하여 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0` 로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
> - 특정 버전의 RAGFlow Docker 이미지를 임베딩 모델과 Python 라이브러리를 포함하여 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0` 로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
> **NOTE:** 임베딩 모델과 Python 라이브러리를 포함한 RAGFlow Docker 이미지의 크기는 약 9GB이며, 로드하는 데 상당히 오랜 시간이 걸릴 수 있습니다.
@ -178,7 +179,7 @@
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 만약 확인 단계를 건너뛰고 바로 RAGFlow에 로그인하면, RAGFlow가 완전히 초기화되지 않았기 때문에 브라우저에서 `network abnormal` 오류가 발생할 수 있습니다.
> 만약 확인 단계를 건너뛰고 바로 RAGFlow에 로그인하면, RAGFlow가 완전히 초기화되지 않았기 때문에 브라우저에서 `network anormal` 오류가 발생할 수 있습니다.
5. 웹 브라우저에 서버의 IP 주소를 입력하고 RAGFlow에 로그인하세요.
> 기본 설정을 사용할 경우, `http://IP_OF_YOUR_MACHINE`만 입력하면 됩니다 (포트 번호는 제외). 기본 HTTP 서비스 포트 `80`은 기본 구성으로 사용할 때 생략할 수 있습니다.
@ -207,6 +208,21 @@
> $ docker compose -f docker/docker-compose.yml up -d
> ```
### Elasticsearch 에서 Infinity 로 문서 엔진 전환
RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및 벡터를 저장합니다. [Infinity]로 전환(https://github.com/infiniflow/infinity/), 다음 절차를 따르십시오.
1. 실행 중인 모든 컨테이너를 중지합니다.
```bash
$docker compose-f docker/docker-compose.yml down-v
```
2. **docker/.env**의 "DOC_ENGINE" 을 "infinity" 로 설정합니다.
3. 컨테이너 부팅:
```bash
$docker compose-f docker/docker-compose.yml up-d
```
> [!WARNING]
> Linux/arm64 시스템에서 Infinity로 전환하는 것은 공식적으로 지원되지 않습니다.
## 🔧 소스 코드로 Docker 이미지를 컴파일합니다(임베딩 모델 포함하지 않음)
이 Docker 이미지의 크기는 약 1GB이며, 외부 대형 모델과 임베딩 서비스에 의존합니다.
@ -253,7 +269,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:dev .
`/etc/hosts` 에 다음 줄을 추가하여 **docker/service_conf.yaml** 에 지정된 모든 호스트를 `127.0.0.1` 로 해결합니다:
```
127.0.0.1 es01 mysql minio redis
127.0.0.1 es01 infinity mysql minio redis
```
**docker/service_conf.yaml** 에서 mysql 포트를 `5455` 로, es 포트를 `1200` 으로 업데이트합니다( **docker/.env** 에 지정된 대로).

View File

@ -8,7 +8,8 @@
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a>
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
</p>
<p align="center">
@ -19,7 +20,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.13.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.13.0">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -47,15 +48,15 @@
请登录网址 [https://demo.ragflow.io](https://demo.ragflow.io) 试用 demo。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/infiniflow/ragflow/assets/12318111/b083d173-dadc-4ea9-bdeb-180d7df514eb" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 近期更新
- 2024-09-29 优化多轮对话.
- 2024-11-22 完善了 Agent 中的变量定义和使用。
- 2024-11-01 对解析后的 chunk 加入关键词抽取和相关问题生成以提高召回的准确度。
- 2024-09-13 增加知识库问答搜索模式。
- 2024-09-09 在 Agent 中加入医疗问诊模板。
- 2024-08-22 支持用 RAG 技术实现从自然语言到 SQL 语句的转换。
- 2024-08-02 支持 GraphRAG 启发于 [graphrag](https://github.com/microsoft/graphrag) 和思维导图。
@ -148,9 +149,9 @@
$ docker compose -f docker-compose.yml up -d
```
> - 如果你想下载并运行特定版本的 RAGFlow slim Docker 镜像,请在 **docker/.env** 文件中找到 `RAGFLOW_IMAGE` 变量,将其改为对应版本。例如 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0-slim`,然后再运行上述命令。
> - 如果你想下载并运行特定版本的 RAGFlow slim Docker 镜像,请在 **docker/.env** 文件中找到 `RAGFLOW_IMAGE` 变量,将其改为对应版本。例如 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`,然后再运行上述命令。
> - 如果您想安装内置 embedding 模型和 Python 库的 dev 版本的 Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:dev`。
> - 如果您想安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0`。修改后,再运行上面的命令。
> - 如果您想安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`。修改后,再运行上面的命令。
> **注意:** 安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像大小约 9 GB可能需要更长时间下载请耐心等待。
4. 服务器启动成功后再次确认服务器状态:
@ -173,7 +174,7 @@
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 如果您跳过这一步系统确认步骤就登录 RAGFlow你的浏览器有可能会提示 `network abnormal` 或 `网络异常`,因为 RAGFlow 可能并未完全启动成功。
> 如果您跳过这一步系统确认步骤就登录 RAGFlow你的浏览器有可能会提示 `network anormal` 或 `网络异常`,因为 RAGFlow 可能并未完全启动成功。
5. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。
> 上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80
@ -205,6 +206,28 @@
> $ docker compose -f docker-compose.yml up -d
> ```
### 把文档引擎从 Elasticsearch 切换成为 Infinity
RAGFlow 默认使用 Elasticsearch 存储文本和向量数据. 如果要切换为 [Infinity](https://github.com/infiniflow/infinity/), 可以按照下面步骤进行:
1. 停止所有容器运行:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
2. 设置 **docker/.env** 目录中的 `DOC_ENGINE` 为 `infinity`.
3. 启动容器:
```bash
$ docker compose -f docker/docker-compose.yml up -d
```
> [!WARNING]
> Infinity 目前官方并未正式支持在 Linux/arm64 架构下的机器上运行.
## 🔧 源码编译 Docker 镜像(不含 embedding 模型)
本 Docker 镜像大小约 1 GB 左右并且依赖外部的大模型和 embedding 服务。
@ -251,7 +274,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:dev .
在 `/etc/hosts` 中添加以下代码,将 **docker/service_conf.yaml** 文件中的所有 host 地址都解析为 `127.0.0.1`
```
127.0.0.1 es01 mysql minio redis
127.0.0.1 es01 infinity mysql minio redis
```
在文件 **docker/service_conf.yaml** 中,对照 **docker/.env** 的配置将 mysql 端口更新为 `5455`es 端口更新为 `1200`。

View File

@ -13,19 +13,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import importlib
import logging
import json
import traceback
from abc import ABC
from copy import deepcopy
from functools import partial
import pandas as pd
from agent.component import component_class
from agent.component.base import ComponentBase
from agent.settings import flow_logger, DEBUG
class Canvas(ABC):
"""
@ -162,8 +156,12 @@ class Canvas(ABC):
self.components[k]["obj"].reset()
self._embed_id = ""
def get_compnent_name(self, cid):
for n in self.dsl["graph"]["nodes"]:
if cid == n["id"]: return n["data"]["name"]
return ""
def run(self, **kwargs):
ans = ""
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
@ -173,10 +171,10 @@ class Canvas(ABC):
ans = ComponentBase.be_output(str(e))
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
assert isinstance(ans, partial)
return ans
self.history.append(("assistant", ans.to_dict("records")))
return ans
for an in ans():
yield an
else: yield ans
return
if not self.path:
self.components["begin"]["obj"].run(self.history, **kwargs)
@ -184,6 +182,8 @@ class Canvas(ABC):
self.path.append([])
ran = -1
waiting = []
without_dependent_checking = []
def prepare2run(cpns):
nonlocal ran, ans
@ -193,18 +193,22 @@ class Canvas(ABC):
if cpn.component_name == "Answer":
self.answer.append(c)
else:
if DEBUG: print("RUN: ", c)
if cpn.component_name == "Generate":
logging.debug(f"Canvas.prepare2run: {c}")
if c not in without_dependent_checking:
cpids = cpn.get_dependent_components()
if any([c not in self.path[-1] for c in cpids]):
if any([cc not in self.path[-1] for cc in cpids]):
if c not in waiting: waiting.append(c)
continue
yield "*'{}'* is running...🕞".format(self.get_compnent_name(c))
ans = cpn.run(self.history, **kwargs)
self.path[-1].append(c)
ran += 1
prepare2run(self.components[self.path[-2][-1]]["downstream"])
for m in prepare2run(self.components[self.path[-2][-1]]["downstream"]):
yield {"content": m, "running_status": True}
while 0 <= ran < len(self.path[-1]):
if DEBUG: print(ran, self.path)
logging.debug(f"Canvas.run: {ran} {self.path}")
cpn_id = self.path[-1][ran]
cpn = self.get_component(cpn_id)
if not cpn["downstream"]: break
@ -217,27 +221,26 @@ class Canvas(ABC):
assert switch_out in self.components, \
"{}'s output: {} not valid.".format(cpn_id, switch_out)
try:
prepare2run([switch_out])
for m in prepare2run([switch_out]):
yield {"content": m, "running_status": True}
except Exception as e:
for p in [c for p in self.path for c in p][::-1]:
if p.lower().find("answer") >= 0:
self.get_component(p)["obj"].set_exception(e)
prepare2run([p])
break
traceback.print_exc()
break
yield {"content": "*Exception*: {}".format(e), "running_status": True}
logging.exception("Canvas.run got exception")
continue
try:
prepare2run(cpn["downstream"])
for m in prepare2run(cpn["downstream"]):
yield {"content": m, "running_status": True}
except Exception as e:
for p in [c for p in self.path for c in p][::-1]:
if p.lower().find("answer") >= 0:
self.get_component(p)["obj"].set_exception(e)
prepare2run([p])
break
traceback.print_exc()
break
yield {"content": "*Exception*: {}".format(e), "running_status": True}
logging.exception("Canvas.run got exception")
if ran >= len(self.path[-1]) and waiting:
without_dependent_checking = waiting
waiting = []
for m in prepare2run(without_dependent_checking):
yield {"content": m, "running_status": True}
ran -= 1
if self.answer:
cpn_id = self.answer[0]
@ -246,11 +249,13 @@ class Canvas(ABC):
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
assert isinstance(ans, partial)
return ans
for an in ans():
yield an
else:
yield ans
self.history.append(("assistant", ans.to_dict("records")))
return ans
else:
raise Exception("The dialog flow has no way to interact with you. Please add an 'Interact' component to the end of the flow.")
def get_component(self, cpn_id):
return self.components[cpn_id]
@ -261,8 +266,10 @@ class Canvas(ABC):
def get_history(self, window_size):
convs = []
for role, obj in self.history[window_size * -1:]:
convs.append({"role": role, "content": (obj if role == "user" else
'\n'.join([str(s) for s in pd.DataFrame(obj)['content']]))})
if isinstance(obj, list) and obj and all([isinstance(o, dict) for o in obj]):
convs.append({"role": role, "content": '\n'.join([str(s.get("content", "")) for s in obj])})
else:
convs.append({"role": role, "content": str(obj)})
return convs
def add_user_input(self, question):

View File

@ -30,6 +30,7 @@ from .tushare import TuShare, TuShareParam
from .akshare import AkShare, AkShareParam
from .crawler import Crawler, CrawlerParam
from .invoke import Invoke, InvokeParam
from .template import Template, TemplateParam
def component_class(class_name):

View File

@ -13,13 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import arxiv
import pandas as pd
from agent.settings import DEBUG
from agent.component.base import ComponentBase, ComponentParamBase
class ArXivParam(ComponentParamBase):
"""
Define the ArXiv component parameters.
@ -65,5 +64,5 @@ class ArXiv(ComponentBase, ABC):
return ArXiv.be_output("")
df = pd.DataFrame(arxiv_res)
if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
logging.debug(f"df: {str(df)}")
return df

View File

@ -13,13 +13,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
import logging
from abc import ABC
from functools import partial
import pandas as pd
import requests
import re
from agent.settings import DEBUG
from agent.component.base import ComponentBase, ComponentParamBase
@ -64,6 +62,6 @@ class Baidu(ComponentBase, ABC):
return Baidu.be_output("")
df = pd.DataFrame(baidu_res)
if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
logging.debug(f"df: {str(df)}")
return df

View File

@ -17,14 +17,13 @@ from abc import ABC
import builtins
import json
import os
from copy import deepcopy
import logging
from functools import partial
from typing import List, Dict, Tuple, Union
from typing import Tuple, Union
import pandas as pd
from agent import settings
from agent.settings import flow_logger, DEBUG
_FEEDED_DEPRECATED_PARAMS = "_feeded_deprecated_params"
_DEPRECATED_PARAMS = "_deprecated_params"
@ -36,6 +35,8 @@ class ComponentParamBase(ABC):
def __init__(self):
self.output_var_name = "output"
self.message_history_window_size = 22
self.query = []
self.inputs = []
def set_name(self, name: str):
self._name = name
@ -81,7 +82,6 @@ class ComponentParamBase(ABC):
return {name: True for name in self.get_feeded_deprecated_params()}
def __str__(self):
return json.dumps(self.as_dict(), ensure_ascii=False)
def as_dict(self):
@ -359,13 +359,13 @@ class ComponentParamBase(ABC):
def _warn_deprecated_param(self, param_name, descr):
if self._deprecated_params_set.get(param_name):
flow_logger.warning(
logging.warning(
f"{descr} {param_name} is deprecated and ignored in this version."
)
def _warn_to_deprecate_param(self, param_name, descr, new_param):
if self._deprecated_params_set.get(param_name):
flow_logger.warning(
logging.warning(
f"{descr} {param_name} will be deprecated in future release; "
f"please use {new_param} instead."
)
@ -385,10 +385,14 @@ class ComponentBase(ABC):
"""
return """{{
"component_name": "{}",
"params": {}
"params": {},
"output": {},
"inputs": {}
}}""".format(self.component_name,
self._param
)
self._param,
json.dumps(json.loads(str(self._param)).get("output", {}), ensure_ascii=False),
json.dumps(json.loads(str(self._param)).get("inputs", []), ensure_ascii=False)
)
def __init__(self, canvas, id, param: ComponentParamBase):
self._canvas = canvas
@ -396,8 +400,15 @@ class ComponentBase(ABC):
self._param = param
self._param.check()
def get_dependent_components(self):
cpnts = set([para["component_id"].split("@")[0] for para in self._param.query \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
return list(cpnts)
def run(self, history, **kwargs):
flow_logger.info("{}, history: {}, kwargs: {}".format(self, json.dumps(history, ensure_ascii=False),
logging.debug("{}, history: {}, kwargs: {}".format(self, json.dumps(history, ensure_ascii=False),
json.dumps(kwargs, ensure_ascii=False)))
try:
res = self._run(history, **kwargs)
@ -431,48 +442,85 @@ class ComponentBase(ABC):
def reset(self):
setattr(self._param, self._param.output_var_name, None)
self._param.inputs = []
def set_output(self, v: pd.DataFrame):
def set_output(self, v: partial | pd.DataFrame):
setattr(self._param, self._param.output_var_name, v)
def get_input(self):
upstream_outs = []
reversed_cpnts = []
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
if DEBUG: print(self.component_name, reversed_cpnts[::-1])
if self._param.query:
self._param.inputs = []
outs = []
for q in self._param.query:
if q["component_id"]:
if q["component_id"].split("@")[0].lower().find("begin") >= 0:
cpn_id, key = q["component_id"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
outs.append(pd.DataFrame([{"content": p.get("value", "")}]))
self._param.inputs.append({"component_id": q["component_id"],
"content": p.get("value", "")})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
self._param.inputs.append({"component_id": q["component_id"],
"content": "\n".join(
[str(d["content"]) for d in outs[-1].to_dict('records')])})
elif q["value"]:
self._param.inputs.append({"component_id": None, "content": q["value"]})
outs.append(pd.DataFrame([{"content": q["value"]}]))
if outs:
df = pd.concat(outs, ignore_index=True)
if "content" in df: df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
return df
upstream_outs = []
for u in reversed_cpnts[::-1]:
if self.get_component_name(u) in ["switch", "concentrator"]: continue
if self.component_name.lower() == "generate" and self.get_component_name(u) == "retrieval":
o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
if o is not None:
o["component_id"] = u
upstream_outs.append(o)
continue
if u not in self._canvas.get_component(self._id)["upstream"]: continue
#if self.component_name.lower()!="answer" and u not in self._canvas.get_component(self._id)["upstream"]: continue
if self.component_name.lower().find("switch") < 0 \
and self.get_component_name(u) in ["relevant", "categorize"]:
continue
if u.lower().find("answer") >= 0:
for r, c in self._canvas.history[::-1]:
if r == "user":
upstream_outs.append(pd.DataFrame([{"content": c}]))
upstream_outs.append(pd.DataFrame([{"content": c, "component_id": u}]))
break
break
if self.component_name.lower().find("answer") >= 0 and self.get_component_name(u) in ["relevant"]:
continue
o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
if o is not None:
o["component_id"] = u
upstream_outs.append(o)
break
if upstream_outs:
df = pd.concat(upstream_outs, ignore_index=True)
if "content" in df:
df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
return df
return pd.DataFrame(self._canvas.get_history(3)[-1:])
assert upstream_outs, "Can't inference the where the component input is. Please identify whose output is this component's input."
df = pd.concat(upstream_outs, ignore_index=True)
if "content" in df:
df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
self._param.inputs = []
for _, r in df.iterrows():
self._param.inputs.append({"component_id": r["component_id"], "content": r["content"]})
return df
def get_stream_input(self):
reversed_cpnts = []

View File

@ -13,13 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import requests
import pandas as pd
from agent.settings import DEBUG
from agent.component.base import ComponentBase, ComponentParamBase
class BingParam(ComponentParamBase):
"""
Define the Bing component parameters.
@ -81,5 +80,5 @@ class Bing(ComponentBase, ABC):
return Bing.be_output("")
df = pd.DataFrame(bing_res)
if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
logging.debug(f"df: {str(df)}")
return df

View File

@ -13,11 +13,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from agent.component import GenerateParam, Generate
from agent.settings import DEBUG
class CategorizeParam(GenerateParam):
@ -34,7 +34,7 @@ class CategorizeParam(GenerateParam):
super().check()
self.check_empty(self.category_description, "[Categorize] Category examples")
for k, v in self.category_description.items():
if not k: raise ValueError(f"[Categorize] Category name can not be empty!")
if not k: raise ValueError("[Categorize] Category name can not be empty!")
if not v.get("to"): raise ValueError(f"[Categorize] 'To' of category {k} can not be empty!")
def get_prompt(self):
@ -77,7 +77,7 @@ class Categorize(Generate, ABC):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": input}],
self._param.gen_conf())
if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::", input)
logging.debug(f"input: {input}, answer: {str(ans)}")
for c in self._param.category_description.keys():
if ans.lower().find(c.lower()) >= 0:
return Categorize.be_output(self._param.category_description[c]["to"])

View File

@ -1,75 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from agent.component.base import ComponentBase, ComponentParamBase
class CiteParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.cite_sources = []
def check(self):
self.check_empty(self.cite_source, "Please specify where you want to cite from.")
class Cite(ComponentBase, ABC):
component_name = "Cite"
def _run(self, history, **kwargs):
input = "\n- ".join(self.get_input()["content"])
sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source]
query = []
for role, cnt in history[::-1][:self._param.message_history_window_size]:
if role != "user":continue
query.append(cnt)
query = "\n".join(query)
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
if not kbs:
raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl)
if not kbinfos["chunks"]: return pd.DataFrame()
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
return df

View File

@ -13,10 +13,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from duckduckgo_search import DDGS
import pandas as pd
from agent.settings import DEBUG
from agent.component.base import ComponentBase, ComponentParamBase
@ -62,5 +62,5 @@ class DuckDuckGo(ComponentBase, ABC):
return DuckDuckGo.be_output("")
df = pd.DataFrame(duck_res)
if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
logging.debug("df: {df}")
return df

View File

@ -19,7 +19,7 @@ import pandas as pd
from api.db import LLMType
from api.db.services.dialog_service import message_fit_in
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
@ -63,18 +63,22 @@ class Generate(ComponentBase):
component_name = "Generate"
def get_dependent_components(self):
cpnts = [para["component_id"] for para in self._param.parameters]
return cpnts
cpnts = set([para["component_id"].split("@")[0] for para in self._param.parameters \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
return list(cpnts)
def set_cite(self, retrieval_res, answer):
retrieval_res = retrieval_res.dropna(subset=["vector", "content_ltks"]).reset_index(drop=True)
if "empty_response" in retrieval_res.columns:
retrieval_res["empty_response"].fillna("", inplace=True)
answer, idx = retrievaler.insert_citations(answer, [ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
[ck["vector"] for _, ck in retrieval_res.iterrows()],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()), tkweight=0.7,
vtweight=0.3)
answer, idx = settings.retrievaler.insert_citations(answer,
[ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
[ck["vector"] for _, ck in retrieval_res.iterrows()],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()), tkweight=0.7,
vtweight=0.3)
doc_ids = set([])
recall_docs = []
for i in idx:
@ -101,22 +105,53 @@ class Generate(ComponentBase):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
prompt = self._param.prompt
retrieval_res = self.get_input()
input = (" - "+"\n - ".join([c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
retrieval_res = []
self._param.inputs = []
for para in self._param.parameters:
cpn = self._canvas.get_component(para["component_id"])["obj"]
if not para.get("component_id"): continue
component_id = para["component_id"].split("@")[0]
if para["component_id"].lower().find("@") >= 0:
cpn_id, key = para["component_id"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
kwargs[para["key"]] = p.get("value", "")
self._param.inputs.append(
{"component_id": para["component_id"], "content": kwargs[para["key"]]})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
kwargs[para["key"]] = self._canvas.get_history(1)[0]["content"]
hist = self._canvas.get_history(1)
if hist:
hist = hist[0]["content"]
else:
hist = ""
kwargs[para["key"]] = hist
continue
_, out = cpn.output(allow_partial=False)
if "content" not in out.columns:
kwargs[para["key"]] = "Nothing"
kwargs[para["key"]] = ""
else:
if cpn.component_name.lower() == "retrieval":
retrieval_res.append(out)
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
if retrieval_res:
retrieval_res = pd.concat(retrieval_res, ignore_index=True)
else: retrieval_res = pd.DataFrame([])
kwargs["input"] = input
for n, v in kwargs.items():
prompt = re.sub(r"\{%s\}" % re.escape(n), re.escape(str(v)), prompt)
prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)
if not self._param.inputs and prompt.find("{input}") >= 0:
retrieval_res = self.get_input()
input = (" - " + "\n - ".join(
[c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
prompt = re.sub(r"\{input\}", re.escape(input), prompt)
downstreams = self._canvas.get_component(self._id)["downstream"]
if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
@ -129,7 +164,9 @@ class Generate(ComponentBase):
return pd.DataFrame([res])
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1: msg.append({"role": "user", "content": ""})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2: msg.append({"role": "user", "content": ""})
ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
@ -148,7 +185,9 @@ class Generate(ComponentBase):
return
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1: msg.append({"role": "user", "content": ""})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2: msg.append({"role": "user", "content": ""})
answer = ""
for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
res = {"content": ans, "reference": []}

View File

@ -13,10 +13,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
import requests
from agent.settings import DEBUG
from agent.component.base import ComponentBase, ComponentParamBase
@ -57,5 +57,5 @@ class GitHub(ComponentBase, ABC):
return GitHub.be_output("")
df = pd.DataFrame(github_res)
if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
logging.debug(f"df: {df}")
return df

View File

@ -13,10 +13,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from serpapi import GoogleSearch
import pandas as pd
from agent.settings import DEBUG
from agent.component.base import ComponentBase, ComponentParamBase
@ -85,12 +85,12 @@ class Google(ComponentBase, ABC):
"hl": self._param.language, "num": self._param.top_n})
google_res = [{"content": '<a href="' + i["link"] + '">' + i["title"] + '</a> ' + i["snippet"]} for i in
client.get_dict()["organic_results"]]
except Exception as e:
except Exception:
return Google.be_output("**ERROR**: Existing Unavailable Parameters!")
if not google_res:
return Google.be_output("")
df = pd.DataFrame(google_res)
if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
logging.debug(f"df: {df}")
return df

View File

@ -13,9 +13,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from agent.settings import DEBUG
from agent.component.base import ComponentBase, ComponentParamBase
from scholarly import scholarly
@ -58,13 +58,13 @@ class GoogleScholar(ComponentBase, ABC):
'pub_url'] + '"></a> ' + "\n author: " + ",".join(pub['bib']['author']) + '\n Abstract: ' + pub[
'bib'].get('abstract', 'no abstract')})
except StopIteration or Exception as e:
print("**ERROR** " + str(e))
except StopIteration or Exception:
logging.exception("GoogleScholar")
break
if not scholar_res:
return GoogleScholar.be_output("")
df = pd.DataFrame(scholar_res)
if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
logging.debug(f"df: {df}")
return df

View File

@ -51,6 +51,9 @@ class Invoke(ComponentBase, ABC):
for para in self._param.variables:
if para.get("component_id"):
cpn = self._canvas.get_component(para["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
args[para["key"]] = self._canvas.get_history(1)[0]["content"]
continue
_, out = cpn.output(allow_partial=False)
args[para["key"]] = "\n".join(out["content"])
else:

View File

@ -13,12 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from agent.component import GenerateParam, Generate
from agent.settings import DEBUG
class KeywordExtractParam(GenerateParam):
@ -50,16 +50,13 @@ class KeywordExtract(Generate, ABC):
component_name = "KeywordExtract"
def _run(self, history, **kwargs):
q = ""
for r, c in self._canvas.history[::-1]:
if r == "user":
q += c
break
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": query}],
self._param.gen_conf())
ans = re.sub(r".*keyword:", "", ans).strip()
if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::")
logging.debug(f"ans: {ans}")
return KeywordExtract.be_output(ans)

View File

@ -13,12 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from Bio import Entrez
import re
import pandas as pd
import xml.etree.ElementTree as ET
from agent.settings import DEBUG
from agent.component.base import ComponentBase, ComponentParamBase
@ -65,5 +65,5 @@ class PubMed(ComponentBase, ABC):
return PubMed.be_output("")
df = pd.DataFrame(pubmed_res)
if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
logging.debug(f"df: {df}")
return df

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
@ -70,7 +71,7 @@ class Relevant(Generate, ABC):
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}],
self._param.gen_conf())
print(ans, ":::::::::::::::::::::::::::::::::")
logging.debug(ans)
if ans.lower().find("yes") >= 0:
return Relevant.be_output(self._param.yes)
if ans.lower().find("no") >= 0:

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
@ -20,7 +21,7 @@ import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
@ -66,7 +67,7 @@ class Retrieval(ComponentBase, ABC):
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl)
@ -80,7 +81,7 @@ class Retrieval(ComponentBase, ABC):
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", query, df)
logging.debug("{} {}".format(query, df))
return df

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
@ -104,7 +105,7 @@ class RewriteQuestion(Generate, ABC):
self._canvas.history.pop()
self._canvas.history.append(("user", ans))
print(ans, ":::::::::::::::::::::::::::::::::")
logging.debug(ans)
return RewriteQuestion.be_output(ans)

View File

@ -47,13 +47,35 @@ class SwitchParam(ComponentParamBase):
class Switch(ComponentBase, ABC):
component_name = "Switch"
def get_dependent_components(self):
res = []
for cond in self._param.conditions:
for item in cond["items"]:
if not item["cpn_id"]: continue
if item["cpn_id"].find("begin") >= 0:
continue
cid = item["cpn_id"].split("@")[0]
res.append(cid)
return list(set(res))
def _run(self, history, **kwargs):
for cond in self._param.conditions:
res = []
for item in cond["items"]:
out = self._canvas.get_component(item["cpn_id"])["obj"].output()[1]
cpn_input = "" if "content" not in out.columns else " ".join(out["content"])
res.append(self.process_operator(cpn_input, item["operator"], item["value"]))
if not item["cpn_id"]:continue
cid = item["cpn_id"].split("@")[0]
if item["cpn_id"].find("@") > 0:
cpn_id, key = item["cpn_id"].split("@")
for p in self._canvas.get_component(cid)["obj"]._param.query:
if p["key"] == key:
res.append(self.process_operator(p.get("value",""), item["operator"], item.get("value", "")))
break
else:
out = self._canvas.get_component(cid)["obj"].output()[1]
cpn_input = "" if "content" not in out.columns else " ".join([str(s) for s in out["content"]])
res.append(self.process_operator(cpn_input, item["operator"], item.get("value", "")))
if cond["logical_operator"] != "and" and any(res):
return Switch.be_output(cond["to"])

View File

@ -0,0 +1,85 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from agent.component.base import ComponentBase, ComponentParamBase
class TemplateParam(ComponentParamBase):
"""
Define the Generate component parameters.
"""
def __init__(self):
super().__init__()
self.content = ""
self.parameters = []
def check(self):
self.check_empty(self.content, "[Template] Content")
return True
class Template(ComponentBase):
component_name = "Template"
def get_dependent_components(self):
cpnts = set([para["component_id"].split("@")[0] for para in self._param.parameters \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
return list(cpnts)
def _run(self, history, **kwargs):
content = self._param.content
self._param.inputs = []
for para in self._param.parameters:
if not para.get("component_id"): continue
component_id = para["component_id"].split("@")[0]
if para["component_id"].lower().find("@") >= 0:
cpn_id, key = para["component_id"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
kwargs[para["key"]] = p.get("value", "")
self._param.inputs.append(
{"component_id": para["component_id"], "content": kwargs[para["key"]]})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
if hist:
hist = hist[0]["content"]
else:
hist = ""
kwargs[para["key"]] = hist
continue
_, out = cpn.output(allow_partial=False)
if "content" not in out.columns:
kwargs[para["key"]] = ""
else:
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
for n, v in kwargs.items():
content = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), content)
return Template.be_output(content)

View File

@ -13,12 +13,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
import logging
from abc import ABC
from functools import partial
import wikipedia
import pandas as pd
from agent.settings import DEBUG
from agent.component.base import ComponentBase, ComponentParamBase
@ -65,5 +63,5 @@ class Wikipedia(ComponentBase, ABC):
return Wikipedia.be_output("")
df = pd.DataFrame(wiki_res)
if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
logging.debug(f"df: {df}")
return df

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
@ -74,8 +75,8 @@ class YahooFinance(ComponentBase, ABC):
{"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
if self._param.news:
yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
except Exception as e:
print("**ERROR** " + str(e))
except Exception:
logging.exception("YahooFinance got exception")
if not yohoo_res:
return YahooFinance.be_output("")

View File

@ -13,22 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Logger
import os
from api.utils.file_utils import get_project_base_directory
from api.utils.log_utils import LoggerFactory, getLogger
DEBUG = 0
LoggerFactory.set_directory(
os.path.join(
get_project_base_directory(),
"logs",
"flow"))
# {CRITICAL: 50, FATAL:50, ERROR:40, WARNING:30, WARN:30, INFO:20, DEBUG:10, NOTSET:0}
LoggerFactory.LEVEL = 30
flow_logger = getLogger("flow")
database_logger = getLogger("database")
FLOAT_ZERO = 1e-8
PARAM_MAXDEPTH = 5

View File

@ -152,7 +152,8 @@
"Generate:ToughLawsCheat",
"Generate:KindCarrotsSit",
"Generate:DirtyToolsTrain",
"Generate:FluffyPillowsGrow"
"Generate:FluffyPillowsGrow",
"Generate:ProudEarsWorry"
]
},
"Retrieval:ShaggyRadiosRetire": {
@ -212,7 +213,9 @@
"top_p": 0.3
}
},
"downstream": [],
"downstream": [
"Answer:TwentyMugsDeny"
],
"upstream": [
"categorize:0"
]
@ -331,9 +334,9 @@
"message_history_window_size": 12,
"parameters": [
{
"component_id": "Retrieval:ColdEelsArrive",
"id": "5166a107-e859-4c71-99a2-3a216c775347",
"key": "jd",
"component_id": "Retrieval:ColdEelsArrive"
"key": "jd"
}
],
"presence_penalty": 0.4,
@ -1266,9 +1269,9 @@
"parameter": "Precise",
"parameters": [
{
"component_id": "Retrieval:ColdEelsArrive",
"id": "5166a107-e859-4c71-99a2-3a216c775347",
"key": "jd",
"component_id": "Retrieval:ColdEelsArrive"
"key": "jd"
}
],
"presencePenaltyEnabled": true,
@ -1541,6 +1544,19 @@
"target": "Answer:TwentyMugsDeny",
"targetHandle": "c",
"type": "buttonEdge"
},
{
"type": "buttonEdge",
"markerEnd": "logo",
"style": {
"strokeWidth": 2,
"stroke": "rgb(202 197 245)"
},
"source": "Generate:ProudEarsWorry",
"sourceHandle": "b",
"target": "Answer:TwentyMugsDeny",
"targetHandle": "c",
"id": "reactflow__edge-Generate:ProudEarsWorryb-Answer:TwentyMugsDenyc"
}
]
},

File diff suppressed because one or more lines are too long

View File

@ -1,7 +1,7 @@
{
"id": 8,
"title": "Intelligent investment advisor",
"description": "An intelligent investment advisor that can answer your financial questions based on real-time domestic financial data and financial information.",
"description": "An intelligent investment advisor that answers your financial questions using real-time domestic financial data.",
"canvas_type": "chatbot",
"dsl": {
"answer": [],

View File

@ -1,7 +1,7 @@
{
"id": 7,
"title": "Medical consultation",
"description": "Medical Consultation Assistant, can provide you with some professional consultation suggestions for your reference. Please note that the content provided by the medical assistant is for reference only and may not be authentic or available. Knowledge Base Content Reference: <a href = 'https://huggingface.co/datasets/InfiniFlow/medical_QA/tree/main'> Medical Knowledge Base Reference</a>",
"description": "A consultant that offers medical suggestions using an internal QA dataset and PubMed search results. Note that this agent's answers are for reference only and may not be valid. The dataset can be found at https://huggingface.co/datasets/InfiniFlow/medical_QA/tree/main",
"canvas_type": "chatbot",
"dsl": {
"answer": [],

File diff suppressed because one or more lines are too long

View File

@ -13,14 +13,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import sys
import logging
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from flask import Blueprint, Flask
from werkzeug.wrappers.request import Request
from flask_cors import CORS
from flasgger import Swagger
from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
from api.db import StatusEnum
from api.db.db_models import close_connection
@ -29,32 +31,60 @@ from api.utils import CustomJSONEncoder, commands
from flask_session import Session
from flask_login import LoginManager
from api.settings import SECRET_KEY, stat_logger
from api.settings import API_VERSION, access_logger
from api import settings
from api.utils.api_utils import server_error_response
from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
from api.constants import API_VERSION
__all__ = ['app']
logger = logging.getLogger('flask.app')
for h in access_logger.handlers:
logger.addHandler(h)
__all__ = ["app"]
Request.json = property(lambda self: self.get_json(force=True, silent=True))
app = Flask(__name__)
CORS(app, supports_credentials=True,max_age=2592000)
# Add this at the beginning of your file to configure Swagger UI
swagger_config = {
"headers": [],
"specs": [
{
"endpoint": "apispec",
"route": "/apispec.json",
"rule_filter": lambda rule: True, # Include all endpoints
"model_filter": lambda tag: True, # Include all models
}
],
"static_url_path": "/flasgger_static",
"swagger_ui": True,
"specs_route": "/apidocs/",
}
swagger = Swagger(
app,
config=swagger_config,
template={
"swagger": "2.0",
"info": {
"title": "RAGFlow API",
"description": "",
"version": "1.0.0",
},
"securityDefinitions": {
"ApiKeyAuth": {"type": "apiKey", "name": "Authorization", "in": "header"}
},
},
)
CORS(app, supports_credentials=True, max_age=2592000)
app.url_map.strict_slashes = False
app.json_encoder = CustomJSONEncoder
app.errorhandler(Exception)(server_error_response)
## convince for dev and debug
#app.config["LOGIN_DISABLED"] = True
# app.config["LOGIN_DISABLED"] = True
app.config["SESSION_PERMANENT"] = False
app.config["SESSION_TYPE"] = "filesystem"
app.config['MAX_CONTENT_LENGTH'] = int(os.environ.get("MAX_CONTENT_LENGTH", 128 * 1024 * 1024))
app.config["MAX_CONTENT_LENGTH"] = int(
os.environ.get("MAX_CONTENT_LENGTH", 128 * 1024 * 1024)
)
Session(app)
login_manager = LoginManager()
@ -64,17 +94,23 @@ commands.register_commands(app)
def search_pages_path(pages_dir):
app_path_list = [path for path in pages_dir.glob('*_app.py') if not path.name.startswith('.')]
api_path_list = [path for path in pages_dir.glob('*sdk/*.py') if not path.name.startswith('.')]
app_path_list = [
path for path in pages_dir.glob("*_app.py") if not path.name.startswith(".")
]
api_path_list = [
path for path in pages_dir.glob("*sdk/*.py") if not path.name.startswith(".")
]
app_path_list.extend(api_path_list)
return app_path_list
def register_page(page_path):
path = f'{page_path}'
path = f"{page_path}"
page_name = page_path.stem.rstrip('_app')
module_name = '.'.join(page_path.parts[page_path.parts.index('api'):-1] + (page_name,))
page_name = page_path.stem.rstrip("_app")
module_name = ".".join(
page_path.parts[page_path.parts.index("api"): -1] + (page_name,)
)
spec = spec_from_file_location(module_name, page_path)
page = module_from_spec(spec)
@ -82,8 +118,10 @@ def register_page(page_path):
page.manager = Blueprint(page_name, module_name)
sys.modules[module_name] = page
spec.loader.exec_module(page)
page_name = getattr(page, 'page_name', page_name)
url_prefix = f'/api/{API_VERSION}' if "/sdk/" in path else f'/{API_VERSION}/{page_name}'
page_name = getattr(page, "page_name", page_name)
url_prefix = (
f"/api/{API_VERSION}" if "/sdk/" in path else f"/{API_VERSION}/{page_name}"
)
app.register_blueprint(page.manager, url_prefix=url_prefix)
return url_prefix
@ -91,31 +129,31 @@ def register_page(page_path):
pages_dir = [
Path(__file__).parent,
Path(__file__).parent.parent / 'api' / 'apps',
Path(__file__).parent.parent / 'api' / 'apps' / 'sdk',
Path(__file__).parent.parent / "api" / "apps",
Path(__file__).parent.parent / "api" / "apps" / "sdk",
]
client_urls_prefix = [
register_page(path)
for dir in pages_dir
for path in search_pages_path(dir)
register_page(path) for dir in pages_dir for path in search_pages_path(dir)
]
@login_manager.request_loader
def load_user(web_request):
jwt = Serializer(secret_key=SECRET_KEY)
jwt = Serializer(secret_key=settings.SECRET_KEY)
authorization = web_request.headers.get("Authorization")
if authorization:
try:
access_token = str(jwt.loads(authorization))
user = UserService.query(access_token=access_token, status=StatusEnum.VALID.value)
user = UserService.query(
access_token=access_token, status=StatusEnum.VALID.value
)
if user:
return user[0]
else:
return None
except Exception as e:
stat_logger.exception(e)
except Exception:
logging.exception("load_user got exception")
return None
else:
return None
@ -123,4 +161,4 @@ def load_user(web_request):
@app.teardown_request
def _db_close(exc):
close_connection()
close_connection()

View File

@ -32,7 +32,7 @@ from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import queue_tasks, TaskService
from api.db.services.user_service import UserTenantService
from api.settings import RetCode, retrievaler
from api import settings
from api.utils import get_uuid, current_timestamp, datetime_format
from api.utils.api_utils import server_error_response, get_data_error_result, get_json_result, validate_request, \
generate_confirmation_token
@ -52,7 +52,7 @@ def new_token():
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
obj = {"tenant_id": tenant_id, "token": generate_confirmation_token(tenant_id),
@ -68,7 +68,7 @@ def new_token():
obj["dialog_id"] = req["dialog_id"]
if not APITokenService.save(**obj):
return get_data_error_result(retmsg="Fail to new a dialog!")
return get_data_error_result(message="Fail to new a dialog!")
return get_json_result(data=obj)
except Exception as e:
@ -81,7 +81,7 @@ def token_list():
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
id = request.args["dialog_id"] if "dialog_id" in request.args else request.args["canvas_id"]
objs = APITokenService.query(tenant_id=tenants[0].tenant_id, dialog_id=id)
@ -110,7 +110,7 @@ def stats():
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
objs = API4ConversationService.stats(
tenants[0].tenant_id,
request.args.get(
@ -141,7 +141,7 @@ def set_conversation():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
try:
if objs[0].source == "agent":
@ -163,7 +163,7 @@ def set_conversation():
else:
e, dia = DialogService.get_by_id(objs[0].dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found")
return get_data_error_result(message="Dialog not found")
conv = {
"id": get_uuid(),
"dialog_id": dia.id,
@ -183,11 +183,11 @@ def completion():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
return get_data_error_result(message="Conversation not found!")
if "quote" not in req: req["quote"] = False
msg = []
@ -257,19 +257,20 @@ def completion():
ans = {"answer": ans["content"], "reference": ans.get("reference", [])}
fillin_conv(ans)
rename_field(ans)
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans},
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans},
ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(sse(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
@ -289,12 +290,12 @@ def completion():
API4ConversationService.append_message(conv.id, conv.to_dict())
rename_field(result)
return get_json_result(data=result)
#******************For dialog******************
# ******************For dialog******************
conv.message.append(msg[-1])
e, dia = DialogService.get_by_id(conv.dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")
return get_data_error_result(message="Dialog not found!")
del req["conversation_id"]
del req["messages"]
@ -309,14 +310,14 @@ def completion():
for ans in chat(dia, msg, True, **req):
fillin_conv(ans)
rename_field(ans)
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans},
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans},
ensure_ascii=False) + "\n\n"
API4ConversationService.append_message(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
if req.get("stream", True):
resp = Response(stream(), mimetype="text/event-stream")
@ -325,7 +326,7 @@ def completion():
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
answer = None
for ans in chat(dia, msg, **req):
answer = ans
@ -346,18 +347,18 @@ def get(conversation_id):
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, conv = API4ConversationService.get_by_id(conversation_id)
if not e:
return get_data_error_result(retmsg="Conversation not found!")
return get_data_error_result(message="Conversation not found!")
conv = conv.to_dict()
if token != APIToken.query(dialog_id=conv['dialog_id'])[0].token:
return get_json_result(data=False, retmsg='Token is not valid for this conversation_id!"',
retcode=RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Token is not valid for this conversation_id!"',
code=settings.RetCode.AUTHENTICATION_ERROR)
for referenct_i in conv['reference']:
if referenct_i is None or len(referenct_i) == 0:
continue
@ -377,7 +378,7 @@ def upload():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
kb_name = request.form.get("kb_name").strip()
tenant_id = objs[0].tenant_id
@ -386,19 +387,19 @@ def upload():
e, kb = KnowledgebaseService.get_by_name(kb_name, tenant_id)
if not e:
return get_data_error_result(
retmsg="Can't find this knowledgebase!")
message="Can't find this knowledgebase!")
kb_id = kb.id
except Exception as e:
return server_error_response(e)
if 'file' not in request.files:
return get_json_result(
data=False, retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
file = request.files['file']
if file.filename == '':
return get_json_result(
data=False, retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
@ -409,7 +410,7 @@ def upload():
try:
if DocumentService.get_doc_count(kb.tenant_id) >= int(os.environ.get('MAX_FILE_NUM_PER_USER', 8192)):
return get_data_error_result(
retmsg="Exceed the maximum file number of a free user!")
message="Exceed the maximum file number of a free user!")
filename = duplicate_name(
DocumentService.query,
@ -418,7 +419,7 @@ def upload():
filetype = filename_type(filename)
if not filetype:
return get_data_error_result(
retmsg="This type of file has not been supported yet!")
message="This type of file has not been supported yet!")
location = filename
while STORAGE_IMPL.obj_exist(kb_id, location):
@ -467,7 +468,7 @@ def upload():
# if str(req["run"]) == TaskStatus.CANCEL.value:
tenant_id = DocumentService.get_tenant_id(doc["id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
# e, doc = DocumentService.get_by_id(doc["id"])
TaskService.filter_delete([Task.doc_id == doc["id"]])
@ -489,17 +490,17 @@ def upload_parse():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
if 'file' not in request.files:
return get_json_result(
data=False, retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
doc_ids = doc_upload_and_parse(request.form.get("conversation_id"), file_objs, objs[0].tenant_id)
return get_json_result(data=doc_ids)
@ -512,7 +513,7 @@ def list_chunks():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
@ -526,15 +527,16 @@ def list_chunks():
doc_id = req['doc_id']
else:
return get_json_result(
data=False, retmsg="Can't find doc_name or doc_id"
data=False, message="Can't find doc_name or doc_id"
)
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
res = retrievaler.chunk_list(doc_id=doc_id, tenant_id=tenant_id)
res = settings.retrievaler.chunk_list(doc_id, tenant_id, kb_ids)
res = [
{
"content": res_item["content_with_weight"],
"doc_name": res_item["docnm_kwd"],
"img_id": res_item["img_id"]
"image_id": res_item["img_id"]
} for res_item in res
]
@ -551,7 +553,7 @@ def list_kb_docs():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
tenant_id = objs[0].tenant_id
@ -561,7 +563,7 @@ def list_kb_docs():
e, kb = KnowledgebaseService.get_by_name(kb_name, tenant_id)
if not e:
return get_data_error_result(
retmsg="Can't find this knowledgebase!")
message="Can't find this knowledgebase!")
kb_id = kb.id
except Exception as e:
@ -583,6 +585,7 @@ def list_kb_docs():
except Exception as e:
return server_error_response(e)
@manager.route('/document/infos', methods=['POST'])
@validate_request("doc_ids")
def docinfos():
@ -590,7 +593,7 @@ def docinfos():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
doc_ids = req["doc_ids"]
docs = DocumentService.get_by_ids(doc_ids)
@ -604,7 +607,7 @@ def document_rm():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
tenant_id = objs[0].tenant_id
req = request.json
@ -616,7 +619,7 @@ def document_rm():
if not doc_ids:
return get_json_result(
data=False, retmsg="Can't find doc_names or doc_ids"
data=False, message="Can't find doc_names or doc_ids"
)
except Exception as e:
@ -631,16 +634,16 @@ def document_rm():
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
@ -651,7 +654,7 @@ def document_rm():
errors += str(e)
if errors:
return get_json_result(data=False, retmsg=errors, retcode=RetCode.SERVER_ERROR)
return get_json_result(data=False, message=errors, code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=True)
@ -666,11 +669,11 @@ def completion_faq():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
return get_data_error_result(message="Conversation not found!")
if "quote" not in req: req["quote"] = True
msg = []
@ -751,7 +754,7 @@ def completion_faq():
conv.message.append(msg[-1])
e, dia = DialogService.get_by_id(conv.dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")
return get_data_error_result(message="Dialog not found!")
del req["conversation_id"]
if not conv.reference:
@ -803,10 +806,10 @@ def retrieval():
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Token is not valid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
kb_ids = req.get("kb_id",[])
kb_ids = req.get("kb_id", [])
doc_ids = req.get("doc_ids", [])
question = req.get("question")
page = int(req.get("page", 1))
@ -820,26 +823,26 @@ def retrieval():
embd_nms = list(set([kb.embd_id for kb in kbs]))
if len(embd_nms) != 1:
return get_json_result(
data=False, retmsg='Knowledge bases use different embedding models or does not exist."', retcode=RetCode.AUTHENTICATION_ERROR)
data=False, message='Knowledge bases use different embedding models or does not exist."',
code=settings.RetCode.AUTHENTICATION_ERROR)
embd_mdl = TenantLLMService.model_instance(
kbs[0].tenant_id, LLMType.EMBEDDING.value, llm_name=kbs[0].embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = TenantLLMService.model_instance(
kbs[0].tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
kbs[0].tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kbs[0].tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
ranks = retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)
ranks = settings.retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)
for c in ranks["chunks"]:
if "vector" in c:
del c["vector"]
c.pop("vector", None)
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!',
retcode=RetCode.DATA_ERROR)
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
return server_error_response(e)

View File

@ -13,7 +13,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import json
import traceback
from functools import partial
from flask import request, Response
from flask_login import login_required, current_user
@ -46,8 +48,8 @@ def rm():
for i in request.json["canvas_ids"]:
if not UserCanvasService.query(user_id=current_user.id,id=i):
return get_json_result(
data=False, retmsg=f'Only owner of canvas authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
UserCanvasService.delete_by_id(i)
return get_json_result(data=True)
@ -66,12 +68,12 @@ def save():
return server_error_response(ValueError("Duplicated title."))
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
return get_data_error_result(retmsg="Fail to save canvas.")
return get_data_error_result(message="Fail to save canvas.")
else:
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
return get_json_result(
data=False, retmsg=f'Only owner of canvas authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
return get_json_result(data=req)
@ -81,7 +83,7 @@ def save():
def get(canvas_id):
e, c = UserCanvasService.get_by_id(canvas_id)
if not e:
return get_data_error_result(retmsg="canvas not found.")
return get_data_error_result(message="canvas not found.")
return get_json_result(data=c.to_dict())
@ -93,11 +95,11 @@ def run():
stream = req.get("stream", True)
e, cvs = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(retmsg="canvas not found.")
return get_data_error_result(message="canvas not found.")
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
return get_json_result(
data=False, retmsg=f'Only owner of canvas authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
@ -108,40 +110,40 @@ def run():
canvas = Canvas(cvs.dsl, current_user.id)
if "message" in req:
canvas.messages.append({"role": "user", "content": req["message"], "id": message_id})
if len([m for m in canvas.messages if m["role"] == "user"]) > 1:
#ten = TenantService.get_info_by(current_user.id)[0]
#req["message"] = full_question(ten["tenant_id"], ten["llm_id"], canvas.messages)
pass
canvas.add_user_input(req["message"])
answer = canvas.run(stream=stream)
print(canvas)
except Exception as e:
return server_error_response(e)
assert answer is not None, "Nothing. Is it over?"
if stream:
assert isinstance(answer, partial), "Nothing. Is it over?"
def sse():
nonlocal answer, cvs
try:
for ans in answer():
for ans in canvas.run(stream=True):
if ans.get("running_status"):
yield "data:" + json.dumps({"code": 0, "message": "",
"data": {"answer": ans["content"],
"running_status": True}},
ensure_ascii=False) + "\n\n"
continue
for k in ans.keys():
final_ans[k] = ans[k]
ans = {"answer": ans["content"], "reference": ans.get("reference", [])}
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
traceback.print_exc()
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(sse(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
@ -150,13 +152,15 @@ def run():
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
return get_json_result(data={"answer": final_ans["content"], "reference": final_ans.get("reference", [])})
for answer in canvas.run(stream=False):
if answer.get("running_status"): continue
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
return get_json_result(data={"answer": final_ans["content"], "reference": final_ans.get("reference", [])})
@manager.route('/reset', methods=['POST'])
@ -167,11 +171,11 @@ def reset():
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(retmsg="canvas not found.")
return get_data_error_result(message="canvas not found.")
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
return get_json_result(
data=False, retmsg=f'Only owner of canvas authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas.reset()

View File

@ -15,16 +15,13 @@
#
import datetime
import json
import traceback
from flask import request
from flask_login import login_required, current_user
from elasticsearch_dsl import Q
from api.db.services.dialog_service import keyword_extraction
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import search, rag_tokenizer
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils import rmSpace
from api.db import LLMType, ParserType
from api.db.services.knowledgebase_service import KnowledgebaseService
@ -32,7 +29,7 @@ from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db.services.document_service import DocumentService
from api.settings import RetCode, retrievaler, kg_retrievaler
from api import settings
from api.utils.api_utils import get_json_result
import hashlib
import re
@ -50,16 +47,17 @@ def list_chunk():
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
}
if "available_int" in req:
query["available_int"] = int(req["available_int"])
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
for id in sres.ids:
d = {
@ -70,22 +68,18 @@ def list_chunk():
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"image_id": sres.field[id].get("img_id", ""),
"available_int": sres.field[id].get("available_int", 1),
"positions": sres.field[id].get("position_int", "").split("\t")
"positions": json.loads(sres.field[id].get("position_list", "[]")),
}
if len(d["positions"]) % 5 == 0:
poss = []
for i in range(0, len(d["positions"]), 5):
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
d["positions"] = poss
assert isinstance(d["positions"], list)
assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
res["chunks"].append(d)
return get_json_result(data=res)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, retmsg=f'No chunk found!',
retcode=RetCode.DATA_ERROR)
return get_json_result(data=False, message='No chunk found!',
code=settings.RetCode.DATA_ERROR)
return server_error_response(e)
@ -96,27 +90,25 @@ def get():
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
res = ELASTICSEARCH.get(
chunk_id, search.index_name(
tenants[0].tenant_id))
if not res.get("found"):
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
if chunk is None:
return server_error_response("Chunk not found")
id = res["_id"]
res = res["_source"]
res["chunk_id"] = id
k = []
for n in res.keys():
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
k.append(n)
for n in k:
del res[n]
del chunk[n]
return get_json_result(data=res)
return get_json_result(data=chunk)
except Exception as e:
if str(e).find("NotFoundError") >= 0:
return get_json_result(data=False, retmsg=f'Chunk not found!',
retcode=RetCode.DATA_ERROR)
return get_json_result(data=False, message='Chunk not found!',
code=settings.RetCode.DATA_ERROR)
return server_error_response(e)
@ -139,14 +131,14 @@ def set():
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
if doc.parser_id == ParserType.QA:
arr = [
@ -155,7 +147,7 @@ def set():
req["content_with_weight"]) if len(t) > 1]
if len(arr) != 2:
return get_data_error_result(
retmsg="Q&A must be separated by TAB/ENTER key.")
message="Q&A must be separated by TAB/ENTER key.")
q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
d = beAdoc(d, arr[0], arr[1], not any(
[rag_tokenizer.is_chinese(t) for t in q + a]))
@ -163,7 +155,7 @@ def set():
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -175,12 +167,15 @@ def set():
def switch():
req = request.json
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
search.index_name(tenant_id)):
return get_data_error_result(retmsg="Index updating failure")
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
for cid in req["chunk_ids"]:
if not settings.docStoreConn.update({"id": cid},
{"available_int": int(req["available_int"])},
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
doc.kb_id):
return get_data_error_result(message="Index updating failure")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -192,12 +187,11 @@ def switch():
def rm():
req = request.json
try:
if not ELASTICSEARCH.deleteByQuery(
Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)):
return get_data_error_result(retmsg="Index updating failure")
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
if not settings.docStoreConn.delete({"id": req["chunk_ids"]}, search.index_name(current_user.id), doc.kb_id):
return get_data_error_result(message="Index updating failure")
deleted_chunk_ids = req["chunk_ids"]
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
@ -225,14 +219,14 @@ def create():
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
d["kb_id"] = [doc.kb_id]
d["docnm_kwd"] = doc.name
d["doc_id"] = doc.id
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
@ -240,7 +234,7 @@ def create():
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, c, 1, 0)
@ -257,28 +251,31 @@ def retrieval_test():
page = int(req.get("page", 1))
size = int(req.get("size", 30))
question = req["question"]
kb_id = req["kb_id"]
if isinstance(kb_id, str): kb_id = [kb_id]
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))
tenant_ids = []
try:
tenants = UserTenantService.query(user_id=current_user.id)
for kid in kb_id:
for kb_id in kb_ids:
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kid):
tenant_id=tenant.tenant_id, id=kb_id):
tenant_ids.append(tenant.tenant_id)
break
else:
return get_json_result(
data=False, retmsg=f'Only owner of knowledgebase authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id[0])
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_data_error_result(retmsg="Knowledgebase not found!")
return get_data_error_result(message="Knowledgebase not found!")
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
@ -290,19 +287,18 @@ def retrieval_test():
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_id, page, size,
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"))
for c in ranks["chunks"]:
if "vector" in c:
del c["vector"]
c.pop("vector", None)
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!',
retcode=RetCode.DATA_ERROR)
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
return server_error_response(e)
@ -310,18 +306,19 @@ def retrieval_test():
@login_required
def knowledge_graph():
doc_id = request.args["doc_id"]
tenant_id = DocumentService.get_tenant_id(doc_id)
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
req = {
"doc_ids":[doc_id],
"doc_ids": [doc_id],
"knowledge_graph_kwd": ["graph", "mind_map"]
}
tenant_id = DocumentService.get_tenant_id(doc_id)
sres = retrievaler.search(req, search.index_name(tenant_id))
sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
obj = {"graph": {}, "mind_map": {}}
for id in sres.ids[:2]:
ty = sres.field[id]["knowledge_graph_kwd"]
try:
content_json = json.loads(sres.field[id]["content_with_weight"])
except Exception as e:
except Exception:
continue
if ty == 'mind_map':
@ -344,4 +341,3 @@ def knowledge_graph():
obj[ty] = content_json
return get_json_result(data=obj)

View File

@ -25,7 +25,7 @@ from api.db import LLMType
from api.db.services.dialog_service import DialogService, ConversationService, chat, ask
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle, TenantService, TenantLLMService
from api.settings import RetCode, retrievaler
from api import settings
from api.utils.api_utils import get_json_result
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from graphrag.mind_map_extractor import MindMapExtractor
@ -42,11 +42,11 @@ def set_conversation():
del req["conversation_id"]
try:
if not ConversationService.update_by_id(conv_id, req):
return get_data_error_result(retmsg="Conversation not found!")
return get_data_error_result(message="Conversation not found!")
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(
retmsg="Fail to update a conversation!")
message="Fail to update a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
@ -55,7 +55,7 @@ def set_conversation():
try:
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(retmsg="Dialog not found")
return get_data_error_result(message="Dialog not found")
conv = {
"id": conv_id,
"dialog_id": req["dialog_id"],
@ -65,7 +65,7 @@ def set_conversation():
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
if not e:
return get_data_error_result(retmsg="Fail to new a conversation!")
return get_data_error_result(message="Fail to new a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
@ -79,15 +79,15 @@ def get():
try:
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(retmsg="Conversation not found!")
return get_data_error_result(message="Conversation not found!")
tenants = UserTenantService.query(user_id=current_user.id)
for tenant in tenants:
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
break
else:
return get_json_result(
data=False, retmsg=f'Only owner of conversation authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of conversation authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
@ -102,15 +102,15 @@ def rm():
for cid in conv_ids:
exist, conv = ConversationService.get_by_id(cid)
if not exist:
return get_data_error_result(retmsg="Conversation not found!")
return get_data_error_result(message="Conversation not found!")
tenants = UserTenantService.query(user_id=current_user.id)
for tenant in tenants:
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
break
else:
return get_json_result(
data=False, retmsg=f'Only owner of conversation authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of conversation authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
ConversationService.delete_by_id(cid)
return get_json_result(data=True)
except Exception as e:
@ -124,8 +124,8 @@ def list_convsersation():
try:
if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
return get_json_result(
data=False, retmsg=f'Only owner of dialog authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of dialog authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
convs = ConversationService.query(
dialog_id=dialog_id,
order_by=ConversationService.model.create_time,
@ -152,11 +152,11 @@ def completion():
try:
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
return get_data_error_result(message="Conversation not found!")
conv.message = deepcopy(req["messages"])
e, dia = DialogService.get_by_id(conv.dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")
return get_data_error_result(message="Dialog not found!")
del req["conversation_id"]
del req["messages"]
@ -180,14 +180,14 @@ def completion():
try:
for ans in chat(dia, msg, True, **req):
fillin_conv(ans)
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e:
traceback.print_exc()
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
if req.get("stream", True):
resp = Response(stream(), mimetype="text/event-stream")
@ -217,11 +217,11 @@ def tts():
tenants = TenantService.get_info_by(current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
tts_id = tenants[0]["tts_id"]
if not tts_id:
return get_data_error_result(retmsg="No default TTS model is set")
return get_data_error_result(message="No default TTS model is set")
tts_mdl = LLMBundle(tenants[0]["tenant_id"], LLMType.TTS, tts_id)
@ -231,7 +231,7 @@ def tts():
for chunk in tts_mdl.tts(txt):
yield chunk
except Exception as e:
yield ("data:" + json.dumps({"retcode": 500, "retmsg": str(e),
yield ("data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e)}},
ensure_ascii=False)).encode('utf-8')
@ -250,7 +250,7 @@ def delete_msg():
req = request.json
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
return get_data_error_result(message="Conversation not found!")
conv = conv.to_dict()
for i, msg in enumerate(conv["message"]):
@ -273,7 +273,7 @@ def thumbup():
req = request.json
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
return get_data_error_result(message="Conversation not found!")
up_down = req.get("set")
feedback = req.get("feedback", "")
conv = conv.to_dict()
@ -297,16 +297,17 @@ def thumbup():
def ask_about():
req = request.json
uid = current_user.id
def stream():
nonlocal req, uid
try:
for ans in ask(req["question"], req["kb_ids"], uid):
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
@ -324,13 +325,13 @@ def mindmap():
kb_ids = req["kb_ids"]
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_data_error_result(retmsg="Knowledgebase not found!")
return get_data_error_result(message="Knowledgebase not found!")
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
ranks = retrievaler.retrieval(req["question"], embd_mdl, kb.tenant_id, kb_ids, 1, 12,
0.3, 0.3, aggs=False)
ranks = settings.retrievaler.retrieval(req["question"], embd_mdl, kb.tenant_id, kb_ids, 1, 12,
0.3, 0.3, aggs=False)
mindmap = MindMapExtractor(chat_mdl)
mind_map = mindmap([c["content_with_weight"] for c in ranks["chunks"]]).output
if "error" in mind_map:

View File

@ -20,7 +20,7 @@ from api.db.services.dialog_service import DialogService
from api.db import StatusEnum
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService, UserTenantService
from api.settings import RetCode
from api import settings
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.utils.api_utils import get_json_result
@ -68,17 +68,17 @@ def set_dialog():
continue
if prompt_config["system"].find("{%s}" % p["key"]) < 0:
return get_data_error_result(
retmsg="Parameter '{}' is not used".format(p["key"]))
message="Parameter '{}' is not used".format(p["key"]))
try:
e, tenant = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
llm_id = req.get("llm_id", tenant.llm_id)
if not dialog_id:
if not req.get("kb_ids"):
return get_data_error_result(
retmsg="Fail! Please select knowledgebase!")
message="Fail! Please select knowledgebase!")
dia = {
"id": get_uuid(),
"tenant_id": current_user.id,
@ -96,20 +96,20 @@ def set_dialog():
"icon": icon
}
if not DialogService.save(**dia):
return get_data_error_result(retmsg="Fail to new a dialog!")
return get_data_error_result(message="Fail to new a dialog!")
e, dia = DialogService.get_by_id(dia["id"])
if not e:
return get_data_error_result(retmsg="Fail to new a dialog!")
return get_data_error_result(message="Fail to new a dialog!")
return get_json_result(data=dia.to_json())
else:
del req["dialog_id"]
if "kb_names" in req:
del req["kb_names"]
if not DialogService.update_by_id(dialog_id, req):
return get_data_error_result(retmsg="Dialog not found!")
return get_data_error_result(message="Dialog not found!")
e, dia = DialogService.get_by_id(dialog_id)
if not e:
return get_data_error_result(retmsg="Fail to update a dialog!")
return get_data_error_result(message="Fail to update a dialog!")
dia = dia.to_dict()
dia["kb_ids"], dia["kb_names"] = get_kb_names(dia["kb_ids"])
return get_json_result(data=dia)
@ -124,7 +124,7 @@ def get():
try:
e, dia = DialogService.get_by_id(dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")
return get_data_error_result(message="Dialog not found!")
dia = dia.to_dict()
dia["kb_ids"], dia["kb_names"] = get_kb_names(dia["kb_ids"])
return get_json_result(data=dia)
@ -174,8 +174,8 @@ def rm():
break
else:
return get_json_result(
data=False, retmsg=f'Only owner of dialog authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of dialog authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
dialog_list.append({"id": id,"status":StatusEnum.INVALID.value})
DialogService.update_many_by_id(dialog_list)
return get_json_result(data=True)

View File

@ -13,11 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License
#
import json
import os.path
import pathlib
import re
import flask
from elasticsearch_dsl import Q
from flask import request
from flask_login import login_required, current_user
@ -26,20 +27,20 @@ from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.task_service import TaskService, queue_tasks
from api.db.services.user_service import UserTenantService
from deepdoc.parser.html_parser import RAGFlowHtmlParser
from rag.nlp import search
from rag.utils.es_conn import ELASTICSEARCH
from api.db.services import duplicate_name
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.db import FileType, TaskStatus, ParserType, FileSource
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.settings import RetCode
from api import settings
from api.utils.api_utils import get_json_result
from rag.utils.storage_factory import STORAGE_IMPL
from api.utils.file_utils import filename_type, thumbnail
from api.utils.file_utils import filename_type, thumbnail, get_project_base_directory
from api.utils.web_utils import html2pdf, is_valid_url
from api.contants import IMG_BASE64_PREFIX
from api.constants import IMG_BASE64_PREFIX
@manager.route('/upload', methods=['POST'])
@ -49,16 +50,16 @@ def upload():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(
data=False, retmsg='Lack of "KB ID"', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
if 'file' not in request.files:
return get_json_result(
data=False, retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
@ -67,7 +68,7 @@ def upload():
err, _ = FileService.upload_document(kb, file_objs, current_user.id)
if err:
return get_json_result(
data=False, retmsg="\n".join(err), retcode=RetCode.SERVER_ERROR)
data=False, message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=True)
@ -78,12 +79,12 @@ def web_crawl():
kb_id = request.form.get("kb_id")
if not kb_id:
return get_json_result(
data=False, retmsg='Lack of "KB ID"', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
name = request.form.get("name")
url = request.form.get("url")
if not is_valid_url(url):
return get_json_result(
data=False, retmsg='The URL format is invalid', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='The URL format is invalid', code=settings.RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
@ -145,17 +146,17 @@ def create():
kb_id = req["kb_id"]
if not kb_id:
return get_json_result(
data=False, retmsg='Lack of "KB ID"', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
try:
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return get_data_error_result(
retmsg="Can't find this knowledgebase!")
message="Can't find this knowledgebase!")
if DocumentService.query(name=req["name"], kb_id=kb_id):
return get_data_error_result(
retmsg="Duplicated document name in the same knowledgebase.")
message="Duplicated document name in the same knowledgebase.")
doc = DocumentService.insert({
"id": get_uuid(),
@ -179,7 +180,7 @@ def list_docs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(
data=False, retmsg='Lack of "KB ID"', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
tenants = UserTenantService.query(user_id=current_user.id)
for tenant in tenants:
if KnowledgebaseService.query(
@ -187,8 +188,8 @@ def list_docs():
break
else:
return get_json_result(
data=False, retmsg=f'Only owner of knowledgebase authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
@ -217,20 +218,20 @@ def docinfos():
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(
data=False,
retmsg='No authorization.',
retcode=RetCode.AUTHENTICATION_ERROR
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
docs = DocumentService.get_by_ids(doc_ids)
return get_json_result(data=list(docs.dicts()))
@manager.route('/thumbnails', methods=['GET'])
#@login_required
# @login_required
def thumbnails():
doc_ids = request.args.get("doc_ids").split(",")
if not doc_ids:
return get_json_result(
data=False, retmsg='Lack of "Document ID"', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='Lack of "Document ID"', code=settings.RetCode.ARGUMENT_ERROR)
try:
docs = DocumentService.get_thumbnails(doc_ids)
@ -252,41 +253,32 @@ def change_status():
if str(req["status"]) not in ["0", "1"]:
return get_json_result(
data=False,
retmsg='"Status" must be either 0 or 1!',
retcode=RetCode.ARGUMENT_ERROR)
message='"Status" must be either 0 or 1!',
code=settings.RetCode.ARGUMENT_ERROR)
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
retmsg='No authorization.',
retcode=RetCode.AUTHENTICATION_ERROR)
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
if not e:
return get_data_error_result(
retmsg="Can't find this knowledgebase!")
message="Can't find this knowledgebase!")
if not DocumentService.update_by_id(
req["doc_id"], {"status": str(req["status"])}):
return get_data_error_result(
retmsg="Database error (Document update)!")
message="Database error (Document update)!")
if str(req["status"]) == "0":
ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=req["doc_id"]),
scripts="ctx._source.available_int=0;",
idxnm=search.index_name(
kb.tenant_id)
)
else:
ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=req["doc_id"]),
scripts="ctx._source.available_int=1;",
idxnm=search.index_name(
kb.tenant_id)
)
status = int(req["status"])
settings.docStoreConn.update({"doc_id": req["doc_id"]}, {"available_int": status},
search.index_name(kb.tenant_id), doc.kb_id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -304,8 +296,8 @@ def rm():
if not DocumentService.accessible4deletion(doc_id, current_user.id):
return get_json_result(
data=False,
retmsg='No authorization.',
retcode=RetCode.AUTHENTICATION_ERROR
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
root_folder = FileService.get_root_folder(current_user.id)
@ -316,16 +308,16 @@ def rm():
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
@ -336,7 +328,7 @@ def rm():
errors += str(e)
if errors:
return get_json_result(data=False, retmsg=errors, retcode=RetCode.SERVER_ERROR)
return get_json_result(data=False, message=errors, code=settings.RetCode.SERVER_ERROR)
return get_json_result(data=True)
@ -350,8 +342,8 @@ def run():
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(
data=False,
retmsg='No authorization.',
retcode=RetCode.AUTHENTICATION_ERROR
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
try:
for id in req["doc_ids"]:
@ -364,9 +356,12 @@ def run():
# if str(req["run"]) == TaskStatus.CANCEL.value:
tenant_id = DocumentService.get_tenant_id(id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
return get_data_error_result(message="Tenant not found!")
e, doc = DocumentService.get_by_id(id)
if not e:
return get_data_error_result(message="Document not found!")
if settings.docStoreConn.indexExist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), doc.kb_id)
if str(req["run"]) == TaskStatus.RUNNING.value:
TaskService.filter_delete([Task.doc_id == id])
@ -389,28 +384,28 @@ def rename():
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
retmsg='No authorization.',
retcode=RetCode.AUTHENTICATION_ERROR
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
doc.name.lower()).suffix:
return get_json_result(
data=False,
retmsg="The extension of file can't be changed",
retcode=RetCode.ARGUMENT_ERROR)
message="The extension of file can't be changed",
code=settings.RetCode.ARGUMENT_ERROR)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_data_error_result(
retmsg="Duplicated document name in the same knowledgebase.")
message="Duplicated document name in the same knowledgebase.")
if not DocumentService.update_by_id(
req["doc_id"], {"name": req["name"]}):
return get_data_error_result(
retmsg="Database error (Document rename)!")
message="Database error (Document rename)!")
informs = File2DocumentService.get_by_document_id(req["doc_id"])
if informs:
@ -428,7 +423,7 @@ def get(doc_id):
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
response = flask.make_response(STORAGE_IMPL.get(b, n))
@ -456,13 +451,13 @@ def change_parser():
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(
data=False,
retmsg='No authorization.',
retcode=RetCode.AUTHENTICATION_ERROR
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
if doc.parser_id.lower() == req["parser_id"].lower():
if "parser_config" in req:
if req["parser_config"] == doc.parser_config:
@ -473,25 +468,25 @@ def change_parser():
if ((doc.type == FileType.VISUAL and req["parser_id"] != "picture")
or (re.search(
r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation")):
return get_data_error_result(retmsg="Not supported yet!")
return get_data_error_result(message="Not supported yet!")
e = DocumentService.update_by_id(doc.id,
{"parser_id": req["parser_id"], "progress": 0, "progress_msg": "",
"run": TaskStatus.UNSTART.value})
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1,
doc.process_duation * -1)
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
return get_data_error_result(message="Tenant not found!")
if settings.docStoreConn.indexExist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
return get_json_result(data=True)
except Exception as e:
@ -516,14 +511,74 @@ def get_image(image_id):
def upload_and_parse():
if 'file' not in request.files:
return get_json_result(
data=False, retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
doc_ids = doc_upload_and_parse(request.form.get("conversation_id"), file_objs, current_user.id)
return get_json_result(data=doc_ids)
@manager.route('/parse', methods=['POST'])
@login_required
def parse():
url = request.json.get("url") if request.json else ""
if url:
if not is_valid_url(url):
return get_json_result(
data=False, message='The URL format is invalid', code=settings.RetCode.ARGUMENT_ERROR)
download_path = os.path.join(get_project_base_directory(), "logs/downloads")
os.makedirs(download_path, exist_ok=True)
from seleniumwire.webdriver import Chrome, ChromeOptions
options = ChromeOptions()
options.add_argument('--headless')
options.add_argument('--disable-gpu')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
options.add_experimental_option('prefs', {
'download.default_directory': download_path,
'download.prompt_for_download': False,
'download.directory_upgrade': True,
'safebrowsing.enabled': True
})
driver = Chrome(options=options)
driver.get(url)
res_headers = [r.response.headers for r in driver.requests]
if len(res_headers) > 1:
sections = RAGFlowHtmlParser().parser_txt(driver.page_source)
driver.quit()
return get_json_result(data="\n".join(sections))
class File:
filename: str
filepath: str
def __init__(self, filename, filepath):
self.filename = filename
self.filepath = filepath
def read(self):
with open(self.filepath, "rb") as f:
return f.read()
r = re.search(r"filename=\"([^\"]+)\"", str(res_headers))
if not r or not r.group(1):
return get_json_result(
data=False, message="Can't not identify downloaded file", code=settings.RetCode.ARGUMENT_ERROR)
f = File(r.group(1), os.path.join(download_path, r.group(1)))
txt = FileService.parse_docs([f], current_user.id)
return get_json_result(data=txt)
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
txt = FileService.parse_docs(file_objs, current_user.id)
return get_json_result(data=txt)

View File

@ -13,9 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License
#
from elasticsearch_dsl import Q
from api.db.db_models import File2Document
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
@ -26,10 +24,8 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
from api.utils import get_uuid
from api.db import FileType
from api.db.services.document_service import DocumentService
from api.settings import RetCode
from api import settings
from api.utils.api_utils import get_json_result
from rag.nlp import search
from rag.utils.es_conn import ELASTICSEARCH
@manager.route('/convert', methods=['POST'])
@ -54,13 +50,13 @@ def convert():
doc_id = inform.document_id
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
message="Database error (Document removal)!")
File2DocumentService.delete_by_file_id(id)
# insert
@ -68,11 +64,11 @@ def convert():
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return get_data_error_result(
retmsg="Can't find this knowledgebase!")
message="Can't find this knowledgebase!")
e, file = FileService.get_by_id(id)
if not e:
return get_data_error_result(
retmsg="Can't find this file!")
message="Can't find this file!")
doc = DocumentService.insert({
"id": get_uuid(),
@ -104,26 +100,26 @@ def rm():
file_ids = req["file_ids"]
if not file_ids:
return get_json_result(
data=False, retmsg='Lack of "Files ID"', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='Lack of "Files ID"', code=settings.RetCode.ARGUMENT_ERROR)
try:
for file_id in file_ids:
informs = File2DocumentService.get_by_file_id(file_id)
if not informs:
return get_data_error_result(retmsg="Inform not found!")
return get_data_error_result(message="Inform not found!")
for inform in informs:
if not inform:
return get_data_error_result(retmsg="Inform not found!")
return get_data_error_result(message="Inform not found!")
File2DocumentService.delete_by_file_id(file_id)
doc_id = inform.document_id
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
message="Database error (Document removal)!")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -18,7 +18,6 @@ import pathlib
import re
import flask
from elasticsearch_dsl import Q
from flask import request
from flask_login import login_required, current_user
@ -29,11 +28,9 @@ from api.utils import get_uuid
from api.db import FileType, FileSource
from api.db.services import duplicate_name
from api.db.services.file_service import FileService
from api.settings import RetCode
from api import settings
from api.utils.api_utils import get_json_result
from api.utils.file_utils import filename_type
from rag.nlp import search
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.storage_factory import STORAGE_IMPL
@ -49,24 +46,24 @@ def upload():
if 'file' not in request.files:
return get_json_result(
data=False, retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
file_res = []
try:
for file_obj in file_objs:
e, file = FileService.get_by_id(pf_id)
if not e:
return get_data_error_result(
retmsg="Can't find this folder!")
message="Can't find this folder!")
MAX_FILE_NUM_PER_USER = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(current_user.id) >= MAX_FILE_NUM_PER_USER:
return get_data_error_result(
retmsg="Exceed the maximum file number of a free user!")
message="Exceed the maximum file number of a free user!")
# split file name path
if not file_obj.filename:
@ -85,13 +82,13 @@ def upload():
if file_len != len_id_list:
e, file = FileService.get_by_id(file_id_list[len_id_list - 1])
if not e:
return get_data_error_result(retmsg="Folder not found!")
return get_data_error_result(message="Folder not found!")
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names,
len_id_list)
else:
e, file = FileService.get_by_id(file_id_list[len_id_list - 2])
if not e:
return get_data_error_result(retmsg="Folder not found!")
return get_data_error_result(message="Folder not found!")
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names,
len_id_list)
@ -137,10 +134,10 @@ def create():
try:
if not FileService.is_parent_folder_exist(pf_id):
return get_json_result(
data=False, retmsg="Parent Folder Doesn't Exist!", retcode=RetCode.OPERATING_ERROR)
data=False, message="Parent Folder Doesn't Exist!", code=settings.RetCode.OPERATING_ERROR)
if FileService.query(name=req["name"], parent_id=pf_id):
return get_data_error_result(
retmsg="Duplicated folder name in the same folder.")
message="Duplicated folder name in the same folder.")
if input_file_type == FileType.FOLDER.value:
file_type = FileType.FOLDER.value
@ -181,14 +178,14 @@ def list_files():
try:
e, file = FileService.get_by_id(pf_id)
if not e:
return get_data_error_result(retmsg="Folder not found!")
return get_data_error_result(message="Folder not found!")
files, total = FileService.get_by_pf_id(
current_user.id, pf_id, page_number, items_per_page, orderby, desc, keywords)
parent_folder = FileService.get_parent_folder(pf_id)
if not FileService.get_parent_folder(pf_id):
return get_json_result(retmsg="File not found!")
return get_json_result(message="File not found!")
return get_json_result(data={"total": total, "files": files, "parent_folder": parent_folder.to_json()})
except Exception as e:
@ -212,7 +209,7 @@ def get_parent_folder():
try:
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(retmsg="Folder not found!")
return get_data_error_result(message="Folder not found!")
parent_folder = FileService.get_parent_folder(file_id)
return get_json_result(data={"parent_folder": parent_folder.to_json()})
@ -227,7 +224,7 @@ def get_all_parent_folders():
try:
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(retmsg="Folder not found!")
return get_data_error_result(message="Folder not found!")
parent_folders = FileService.get_all_parent_folders(file_id)
parent_folders_res = []
@ -248,9 +245,9 @@ def rm():
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(retmsg="File or Folder not found!")
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
if file.source_type == FileSource.KNOWLEDGEBASE:
continue
@ -259,13 +256,13 @@ def rm():
for inner_file_id in file_id_list:
e, file = FileService.get_by_id(inner_file_id)
if not e:
return get_data_error_result(retmsg="File not found!")
return get_data_error_result(message="File not found!")
STORAGE_IMPL.rm(file.parent_id, file.location)
FileService.delete_folder_by_pf_id(current_user.id, file_id)
else:
if not FileService.delete(file):
return get_data_error_result(
retmsg="Database error (File removal)!")
message="Database error (File removal)!")
# delete file2document
informs = File2DocumentService.get_by_file_id(file_id)
@ -273,13 +270,13 @@ def rm():
doc_id = inform.document_id
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
message="Database error (Document removal)!")
File2DocumentService.delete_by_file_id(file_id)
return get_json_result(data=True)
@ -295,30 +292,30 @@ def rename():
try:
e, file = FileService.get_by_id(req["file_id"])
if not e:
return get_data_error_result(retmsg="File not found!")
return get_data_error_result(message="File not found!")
if file.type != FileType.FOLDER.value \
and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
file.name.lower()).suffix:
return get_json_result(
data=False,
retmsg="The extension of file can't be changed",
retcode=RetCode.ARGUMENT_ERROR)
message="The extension of file can't be changed",
code=settings.RetCode.ARGUMENT_ERROR)
for file in FileService.query(name=req["name"], pf_id=file.parent_id):
if file.name == req["name"]:
return get_data_error_result(
retmsg="Duplicated file name in the same folder.")
message="Duplicated file name in the same folder.")
if not FileService.update_by_id(
req["file_id"], {"name": req["name"]}):
return get_data_error_result(
retmsg="Database error (File rename)!")
message="Database error (File rename)!")
informs = File2DocumentService.get_by_file_id(req["file_id"])
if informs:
if not DocumentService.update_by_id(
informs[0].document_id, {"name": req["name"]}):
return get_data_error_result(
retmsg="Database error (Document rename)!")
message="Database error (Document rename)!")
return get_json_result(data=True)
except Exception as e:
@ -331,7 +328,7 @@ def get(file_id):
try:
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(retmsg="Document not found!")
return get_data_error_result(message="Document not found!")
b, n = File2DocumentService.get_storage_address(file_id=file_id)
response = flask.make_response(STORAGE_IMPL.get(b, n))
ext = re.search(r"\.([^.]+)$", file.name)
@ -359,12 +356,12 @@ def move():
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(retmsg="File or Folder not found!")
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
fe, _ = FileService.get_by_id(parent_id)
if not fe:
return get_data_error_result(retmsg="Parent Folder not found!")
return get_data_error_result(message="Parent Folder not found!")
FileService.move_file(file_ids, parent_id)
return get_json_result(data=True)
except Exception as e:

View File

@ -26,8 +26,9 @@ from api.utils import get_uuid
from api.db import StatusEnum, FileSource
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.db_models import File
from api.settings import RetCode
from api.utils.api_utils import get_json_result
from api import settings
from rag.nlp import search
@manager.route('/create', methods=['post'])
@ -47,7 +48,7 @@ def create():
req["created_by"] = current_user.id
e, t = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(retmsg="Tenant not found.")
return get_data_error_result(message="Tenant not found.")
req["embd_id"] = t.embd_id
if not KnowledgebaseService.save(**req):
return get_data_error_result()
@ -65,24 +66,24 @@ def update():
if not KnowledgebaseService.accessible4deletion(req["kb_id"], current_user.id):
return get_json_result(
data=False,
retmsg='No authorization.',
retcode=RetCode.AUTHENTICATION_ERROR
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
try:
if not KnowledgebaseService.query(
created_by=current_user.id, id=req["kb_id"]):
return get_json_result(
data=False, retmsg=f'Only owner of knowledgebase authorized for this operation.', retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of knowledgebase authorized for this operation.', code=settings.RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(req["kb_id"])
if not e:
return get_data_error_result(
retmsg="Can't find this knowledgebase!")
message="Can't find this knowledgebase!")
if req["name"].lower() != kb.name.lower() \
and len(KnowledgebaseService.query(name=req["name"], tenant_id=current_user.id, status=StatusEnum.VALID.value)) > 1:
return get_data_error_result(
retmsg="Duplicated knowledgebase name.")
message="Duplicated knowledgebase name.")
del req["kb_id"]
if not KnowledgebaseService.update_by_id(kb.id, req):
@ -91,7 +92,7 @@ def update():
e, kb = KnowledgebaseService.get_by_id(kb.id)
if not e:
return get_data_error_result(
retmsg="Database error (Knowledgebase rename)!")
message="Database error (Knowledgebase rename)!")
return get_json_result(data=kb.to_json())
except Exception as e:
@ -110,12 +111,12 @@ def detail():
break
else:
return get_json_result(
data=False, retmsg=f'Only owner of knowledgebase authorized for this operation.',
retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
kb = KnowledgebaseService.get_detail(kb_id)
if not kb:
return get_data_error_result(
retmsg="Can't find this knowledgebase!")
message="Can't find this knowledgebase!")
return get_json_result(data=kb)
except Exception as e:
return server_error_response(e)
@ -145,27 +146,29 @@ def rm():
if not KnowledgebaseService.accessible4deletion(req["kb_id"], current_user.id):
return get_json_result(
data=False,
retmsg='No authorization.',
retcode=RetCode.AUTHENTICATION_ERROR
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
try:
kbs = KnowledgebaseService.query(
created_by=current_user.id, id=req["kb_id"])
if not kbs:
return get_json_result(
data=False, retmsg=f'Only owner of knowledgebase authorized for this operation.', retcode=RetCode.OPERATING_ERROR)
data=False, message='Only owner of knowledgebase authorized for this operation.', code=settings.RetCode.OPERATING_ERROR)
for doc in DocumentService.query(kb_id=req["kb_id"]):
if not DocumentService.remove_document(doc, kbs[0].tenant_id):
return get_data_error_result(
retmsg="Database error (Document removal)!")
message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
File2DocumentService.delete_by_document_id(doc.id)
if not KnowledgebaseService.delete_by_id(req["kb_id"]):
return get_data_error_result(
retmsg="Database error (Knowledgebase removal)!")
message="Database error (Knowledgebase removal)!")
settings.docStoreConn.delete({"kb_id": req["kb_id"]}, search.index_name(kbs[0].tenant_id), req["kb_id"])
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -13,12 +13,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import json
from flask import request
from flask_login import login_required, current_user
from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
from api.settings import LIGHTEN
from api import settings
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db import StatusEnum, LLMType
from api.db.db_models import TenantLLM
@ -73,9 +74,9 @@ def set_api_key():
mdl = ChatModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
{"temperature": 0.9,'max_tokens':50})
if m.find("**ERROR**") >=0:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
{"temperature": 0.9, 'max_tokens': 50})
if m.find("**ERROR**") >= 0:
raise Exception(m)
chat_passed = True
except Exception as e:
@ -89,7 +90,7 @@ def set_api_key():
if len(arr) == 0 or tc == 0:
raise Exception("Fail")
rerank_passed = True
print(f'passed model rerank{llm.llm_name}',flush=True)
logging.debug(f'passed model rerank {llm.llm_name}')
except Exception as e:
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
e)
@ -98,7 +99,7 @@ def set_api_key():
break
if msg:
return get_data_error_result(retmsg=msg)
return get_data_error_result(message=msg)
llm_config = {
"api_key": req["api_key"],
@ -109,6 +110,7 @@ def set_api_key():
llm_config[n] = req[n]
for llm in LLMService.query(fid=factory):
llm_config["max_tokens"]=llm.max_tokens
if not TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id,
TenantLLM.llm_factory == factory,
@ -120,7 +122,8 @@ def set_api_key():
llm_name=llm.llm_name,
model_type=llm.model_type,
api_key=llm_config["api_key"],
api_base=llm_config["api_base"]
api_base=llm_config["api_base"],
max_tokens=llm_config["max_tokens"]
)
return get_json_result(data=True)
@ -157,23 +160,23 @@ def add_llm():
api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
elif factory == "LocalAI":
llm_name = req["llm_name"]+"___LocalAI"
llm_name = req["llm_name"] + "___LocalAI"
api_key = "xxxxxxxxxxxxxxx"
elif factory == "HuggingFace":
llm_name = req["llm_name"]+"___HuggingFace"
llm_name = req["llm_name"] + "___HuggingFace"
api_key = "xxxxxxxxxxxxxxx"
elif factory == "OpenAI-API-Compatible":
llm_name = req["llm_name"]+"___OpenAI-API"
api_key = req.get("api_key","xxxxxxxxxxxxxxx")
llm_name = req["llm_name"] + "___OpenAI-API"
api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
elif factory =="XunFei Spark":
elif factory == "XunFei Spark":
llm_name = req["llm_name"]
if req["model_type"] == "chat":
api_key = req.get("spark_api_password", "xxxxxxxxxxxxxxx")
elif req["model_type"] == "tts":
api_key = apikey_json(["spark_app_id", "spark_api_secret","spark_api_key"])
api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
elif factory == "BaiduYiyan":
llm_name = req["llm_name"]
@ -201,14 +204,15 @@ def add_llm():
"model_type": req["model_type"],
"llm_name": llm_name,
"api_base": req.get("api_base", ""),
"api_key": api_key
"api_key": api_key,
"max_tokens": req.get("max_tokens")
}
msg = ""
if llm["model_type"] == LLMType.EMBEDDING.value:
mdl = EmbeddingModel[factory](
key=llm['api_key'],
model_name=llm["llm_name"],
model_name=llm["llm_name"],
base_url=llm["api_base"])
try:
arr, tc = mdl.encode(["Test if the api key is available"])
@ -224,7 +228,7 @@ def add_llm():
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
"temperature": 0.9})
"temperature": 0.9})
if not tc:
raise Exception(m)
except Exception as e:
@ -232,12 +236,12 @@ def add_llm():
e)
elif llm["model_type"] == LLMType.RERANK:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=llm["llm_name"],
key=llm["api_key"],
model_name=llm["llm_name"],
base_url=llm["api_base"]
)
try:
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0 or tc == 0:
raise Exception("Not known.")
except Exception as e:
@ -245,8 +249,8 @@ def add_llm():
e)
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
mdl = CvModel[factory](
key=llm["api_key"],
model_name=llm["llm_name"],
key=llm["api_key"],
model_name=llm["llm_name"],
base_url=llm["api_base"]
)
try:
@ -278,10 +282,11 @@ def add_llm():
pass
if msg:
return get_data_error_result(retmsg=msg)
return get_data_error_result(message=msg)
if not TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory,
TenantLLM.llm_name == llm["llm_name"]], llm):
TenantLLMService.save(**llm)
return get_json_result(data=True)
@ -293,7 +298,8 @@ def add_llm():
def delete_llm():
req = request.json
TenantLLMService.filter_delete(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"],
TenantLLM.llm_name == req["llm_name"]])
return get_json_result(data=True)
@ -303,7 +309,7 @@ def delete_llm():
def delete_factory():
req = request.json
TenantLLMService.filter_delete(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
return get_json_result(data=True)
@ -331,8 +337,8 @@ def my_llms():
@manager.route('/list', methods=['GET'])
@login_required
def list_app():
self_deploied = ["Youdao","FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
weighted = ["Youdao","FastEmbed", "BAAI"] if LIGHTEN != 0 else []
self_deploied = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
model_type = request.args.get("model_type")
try:
objs = TenantLLMService.query(tenant_id=current_user.id)
@ -343,15 +349,15 @@ def list_app():
for m in llms:
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deploied
llm_set = set([m["llm_name"]+"@"+m["fid"] for m in llms])
llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
for o in objs:
if not o.api_key:continue
if o.llm_name+"@"+o.llm_factory in llm_set:continue
if not o.api_key: continue
if o.llm_name + "@" + o.llm_factory in llm_set: continue
llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
res = {}
for m in llms:
if model_type and m["model_type"].find(model_type)<0:
if model_type and m["model_type"].find(model_type) < 0:
continue
if m["fid"] not in res:
res[m["fid"]] = []
@ -359,4 +365,4 @@ def list_app():
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)
return server_error_response(e)

View File

@ -14,7 +14,7 @@
# limitations under the License.
#
from flask import request
from api.settings import RetCode
from api import settings
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
@ -32,18 +32,19 @@ def create(tenant_id):
req=request.json
ids= req.get("dataset_ids")
if not ids:
return get_error_data_result(retmsg="`dataset_ids` is required")
return get_error_data_result(message="`dataset_ids` is required")
for kb_id in ids:
kbs = KnowledgebaseService.query(id=kb_id,tenant_id=tenant_id)
kbs = KnowledgebaseService.accessible(kb_id=kb_id,user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kb=kbs[0]
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_count = list(set([kb.embd_id for kb in kbs]))
if len(embd_count) != 1:
return get_result(retmsg='Datasets use different embedding models."',retcode=RetCode.AUTHENTICATION_ERROR)
return get_result(message='Datasets use different embedding models."',code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
# llm
llm = req.get("llm")
@ -55,7 +56,7 @@ def create(tenant_id):
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
return get_error_data_result(retmsg="Tenant not found!")
return get_error_data_result(message="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
@ -86,12 +87,12 @@ def create(tenant_id):
if not req.get("llm_id"):
req["llm_id"] = tenant.llm_id
if not req.get("name"):
return get_error_data_result(retmsg="`name` is required.")
return get_error_data_result(message="`name` is required.")
if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(retmsg="Duplicated chat name in creating chat.")
return get_error_data_result(message="Duplicated chat name in creating chat.")
# tenant_id
if req.get("tenant_id"):
return get_error_data_result(retmsg="`tenant_id` must not be provided.")
return get_error_data_result(message="`tenant_id` must not be provided.")
req["tenant_id"] = tenant_id
# prompt more parameter
default_prompt = {
@ -110,21 +111,21 @@ def create(tenant_id):
req['prompt_config'] = {}
for key in key_list_2:
temp = req['prompt_config'].get(key)
if not temp:
if (not temp and key == 'system') or (key not in req["prompt_config"]):
req['prompt_config'][key] = default_prompt[key]
for p in req['prompt_config']["parameters"]:
if p["optional"]:
continue
if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(
retmsg="Parameter '{}' is not used".format(p["key"]))
message="Parameter '{}' is not used".format(p["key"]))
# save
if not DialogService.save(**req):
return get_error_data_result(retmsg="Fail to new a chat!")
return get_error_data_result(message="Fail to new a chat!")
# response
e, res = DialogService.get_by_id(req["id"])
if not e:
return get_error_data_result(retmsg="Fail to new a chat!")
return get_error_data_result(message="Fail to new a chat!")
res = res.to_json()
renamed_dict = {}
for key, value in res["prompt_config"].items():
@ -150,7 +151,7 @@ def create(tenant_id):
@token_required
def update(tenant_id,chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(retmsg='You do not own the chat')
return get_error_data_result(message='You do not own the chat')
req =request.json
ids = req.get("dataset_ids")
if "show_quotation" in req:
@ -160,9 +161,10 @@ def update(tenant_id,chat_id):
return get_error_data_result("`datasets` can't be empty")
if ids:
for kb_id in ids:
kbs = KnowledgebaseService.query(id=kb_id, tenant_id=tenant_id)
kbs = KnowledgebaseService.accessible(kb_id=chat_id, user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
@ -170,8 +172,8 @@ def update(tenant_id,chat_id):
embd_count=list(set([kb.embd_id for kb in kbs]))
if len(embd_count) != 1 :
return get_result(
retmsg='Datasets use different embedding models."',
retcode=RetCode.AUTHENTICATION_ERROR)
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
llm = req.get("llm")
if llm:
@ -182,7 +184,7 @@ def update(tenant_id,chat_id):
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
return get_error_data_result(retmsg="Tenant not found!")
return get_error_data_result(message="Tenant not found!")
if req.get("rerank_model"):
if not TenantLLMService.query(tenant_id=tenant_id,llm_name=req.get("rerank_model"),model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_model')} doesn't exist")
@ -207,18 +209,18 @@ def update(tenant_id,chat_id):
res = res.to_json()
if "name" in req:
if not req.get("name"):
return get_error_data_result(retmsg="`name` is not empty.")
return get_error_data_result(message="`name` is not empty.")
if req["name"].lower() != res["name"].lower() \
and len(
DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
return get_error_data_result(retmsg="Duplicated chat name in updating dataset.")
return get_error_data_result(message="Duplicated chat name in updating dataset.")
if "prompt_config" in req:
res["prompt_config"].update(req["prompt_config"])
for p in res["prompt_config"]["parameters"]:
if p["optional"]:
continue
if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(retmsg="Parameter '{}' is not used".format(p["key"]))
return get_error_data_result(message="Parameter '{}' is not used".format(p["key"]))
if "llm_setting" in req:
res["llm_setting"].update(req["llm_setting"])
req["prompt_config"] = res["prompt_config"]
@ -229,7 +231,7 @@ def update(tenant_id,chat_id):
if "dataset_ids" in req:
req.pop("dataset_ids")
if not DialogService.update_by_id(chat_id, req):
return get_error_data_result(retmsg="Chat not found!")
return get_error_data_result(message="Chat not found!")
return get_result()
@ -250,7 +252,7 @@ def delete(tenant_id):
id_list=ids
for id in id_list:
if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
return get_error_data_result(retmsg=f"You don't own the chat {id}")
return get_error_data_result(message=f"You don't own the chat {id}")
temp_dict = {"status": StatusEnum.INVALID.value}
DialogService.update_by_id(id, temp_dict)
return get_result()
@ -260,11 +262,11 @@ def delete(tenant_id):
def list_chat(tenant_id):
id = request.args.get("id")
name = request.args.get("name")
chat = DialogService.query(id=id,name=name,status=StatusEnum.VALID.value)
chat = DialogService.query(id=id,name=name,status=StatusEnum.VALID.value,tenant_id=tenant_id)
if not chat:
return get_error_data_result(retmsg="The chat doesn't exist")
return get_error_data_result(message="The chat doesn't exist")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 1024))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
desc = False
@ -302,10 +304,10 @@ def list_chat(tenant_id):
for kb_id in res["kb_ids"]:
kb = KnowledgebaseService.query(id=kb_id)
if not kb :
return get_error_data_result(retmsg=f"Don't exist the kb {kb_id}")
return get_error_data_result(message=f"Don't exist the kb {kb_id}")
kb_list.append(kb[0].to_json())
del res["kb_ids"]
res["datasets"] = kb_list
res["avatar"] = res.pop("icon")
list_assts.append(res)
return get_result(data=list_assts)
return get_result(data=list_assts)

View File

@ -1,232 +1,531 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request
from api.db import StatusEnum, FileSource
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService,LLMService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_result, token_required, get_error_data_result, valid,get_parser_config
@manager.route('/datasets', methods=['POST'])
@token_required
def create(tenant_id):
req = request.json
e, t = TenantService.get_by_id(tenant_id)
permission = req.get("permission")
language = req.get("language")
chunk_method = req.get("chunk_method")
parser_config = req.get("parser_config")
valid_permission = ["me", "team"]
valid_language =["Chinese", "English"]
valid_chunk_method = ["naive","manual","qa","table","paper","book","laws","presentation","picture","one","knowledge_graph","email"]
check_validation=valid(permission,valid_permission,language,valid_language,chunk_method,valid_chunk_method)
if check_validation:
return check_validation
req["parser_config"]=get_parser_config(chunk_method,parser_config)
if "tenant_id" in req:
return get_error_data_result(
retmsg="`tenant_id` must not be provided")
if "chunk_count" in req or "document_count" in req:
return get_error_data_result(retmsg="`chunk_count` or `document_count` must not be provided")
if "name" not in req:
return get_error_data_result(
retmsg="`name` is not empty!")
req['id'] = get_uuid()
req["name"] = req["name"].strip()
if req["name"] == "":
return get_error_data_result(
retmsg="`name` is not empty string!")
if KnowledgebaseService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(
retmsg="Duplicated dataset name in creating dataset.")
req["tenant_id"] = req['created_by'] = tenant_id
if not req.get("embedding_model"):
req['embedding_model'] = t.embd_id
else:
valid_embedding_models=["BAAI/bge-large-zh-v1.5","BAAI/bge-base-en-v1.5","BAAI/bge-large-en-v1.5","BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5","jinaai/jina-embeddings-v2-base-en","jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5","sentence-transformers/all-MiniLM-L6-v2","text-embedding-v2",
"text-embedding-v3","maidalun1020/bce-embedding-base_v1"]
embd_model=LLMService.query(llm_name=req["embedding_model"],model_type="embedding")
if not embd_model:
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model")):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model"
}
mapped_keys = {new_key: req[old_key] for new_key, old_key in key_mapping.items() if old_key in req}
req.update(mapped_keys)
if not KnowledgebaseService.save(**req):
return get_error_data_result(retmsg="Create dataset error.(Database error)")
renamed_data = {}
e, k = KnowledgebaseService.get_by_id(req["id"])
for key, value in k.to_dict().items():
new_key = key_mapping.get(key, key)
renamed_data[new_key] = value
return get_result(data=renamed_data)
@manager.route('/datasets', methods=['DELETE'])
@token_required
def delete(tenant_id):
req = request.json
if not req:
ids=None
else:
ids=req.get("ids")
if not ids:
id_list = []
kbs=KnowledgebaseService.query(tenant_id=tenant_id)
for kb in kbs:
id_list.append(kb.id)
else:
id_list=ids
for id in id_list:
kbs = KnowledgebaseService.query(id=id, tenant_id=tenant_id)
if not kbs:
return get_error_data_result(retmsg=f"You don't own the dataset {id}")
for doc in DocumentService.query(kb_id=id):
if not DocumentService.remove_document(doc, tenant_id):
return get_error_data_result(
retmsg="Remove document error.(Database error)")
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc.id)
if not KnowledgebaseService.delete_by_id(id):
return get_error_data_result(
retmsg="Delete dataset error.(Database error)")
return get_result(retcode=RetCode.SUCCESS)
@manager.route('/datasets/<dataset_id>', methods=['PUT'])
@token_required
def update(tenant_id,dataset_id):
if not KnowledgebaseService.query(id=dataset_id,tenant_id=tenant_id):
return get_error_data_result(retmsg="You don't own the dataset")
req = request.json
e, t = TenantService.get_by_id(tenant_id)
invalid_keys = {"id", "embd_id", "chunk_num", "doc_num", "parser_id"}
if any(key in req for key in invalid_keys):
return get_error_data_result(retmsg="The input parameters are invalid.")
permission = req.get("permission")
language = req.get("language")
chunk_method = req.get("chunk_method")
parser_config = req.get("parser_config")
valid_permission = ["me", "team"]
valid_language = ["Chinese", "English"]
valid_chunk_method = ["naive", "manual", "qa", "table", "paper", "book", "laws", "presentation", "picture", "one",
"knowledge_graph", "email"]
check_validation = valid(permission, valid_permission, language, valid_language, chunk_method, valid_chunk_method)
if check_validation:
return check_validation
if "tenant_id" in req:
if req["tenant_id"] != tenant_id:
return get_error_data_result(
retmsg="Can't change `tenant_id`.")
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if "parser_config" in req:
temp_dict=kb.parser_config
temp_dict.update(req["parser_config"])
req["parser_config"] = temp_dict
if "chunk_count" in req:
if req["chunk_count"] != kb.chunk_num:
return get_error_data_result(
retmsg="Can't change `chunk_count`.")
req.pop("chunk_count")
if "document_count" in req:
if req['document_count'] != kb.doc_num:
return get_error_data_result(
retmsg="Can't change `document_count`.")
req.pop("document_count")
if "chunk_method" in req:
if kb.chunk_num != 0 and req['chunk_method'] != kb.parser_id:
return get_error_data_result(
retmsg="If `chunk_count` is not 0, `chunk_method` is not changeable.")
req['parser_id'] = req.pop('chunk_method')
if req['parser_id'] != kb.parser_id:
if not req.get("parser_config"):
req["parser_config"] = get_parser_config(chunk_method, parser_config)
if "embedding_model" in req:
if kb.chunk_num != 0 and req['embedding_model'] != kb.embd_id:
return get_error_data_result(
retmsg="If `chunk_count` is not 0, `embedding_model` is not changeable.")
if not req.get("embedding_model"):
return get_error_data_result("`embedding_model` can't be empty")
valid_embedding_models=["BAAI/bge-large-zh-v1.5","BAAI/bge-base-en-v1.5","BAAI/bge-large-en-v1.5","BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5","jinaai/jina-embeddings-v2-base-en","jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5","sentence-transformers/all-MiniLM-L6-v2","text-embedding-v2",
"text-embedding-v3","maidalun1020/bce-embedding-base_v1"]
embd_model=LLMService.query(llm_name=req["embedding_model"],model_type="embedding")
if not embd_model:
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model")):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
req['embd_id'] = req.pop('embedding_model')
if "name" in req:
req["name"] = req["name"].strip()
if req["name"].lower() != kb.name.lower() \
and len(KnowledgebaseService.query(name=req["name"], tenant_id=tenant_id,
status=StatusEnum.VALID.value)) > 0:
return get_error_data_result(
retmsg="Duplicated dataset name in updating dataset.")
if not KnowledgebaseService.update_by_id(kb.id, req):
return get_error_data_result(retmsg="Update dataset error.(Database error)")
return get_result(retcode=RetCode.SUCCESS)
@manager.route('/datasets', methods=['GET'])
@token_required
def list(tenant_id):
id = request.args.get("id")
name = request.args.get("name")
kbs = KnowledgebaseService.query(id=id,name=name,status=1)
if not kbs:
return get_error_data_result(retmsg="The dataset doesn't exist")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 1024))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false" :
desc = False
else:
desc = True
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
kbs = KnowledgebaseService.get_list(
[m["tenant_id"] for m in tenants], tenant_id, page_number, items_per_page, orderby, desc, id, name)
renamed_list = []
for kb in kbs:
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model"
}
renamed_data = {}
for key, value in kb.items():
new_key = key_mapping.get(key, key)
renamed_data[new_key] = value
renamed_list.append(renamed_data)
return get_result(data=renamed_list)
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request
from api.db import StatusEnum, FileSource
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService, LLMService
from api.db.services.user_service import TenantService
from api import settings
from api.utils import get_uuid
from api.utils.api_utils import (
get_result,
token_required,
get_error_data_result,
valid,
get_parser_config,
)
@manager.route("/datasets", methods=["POST"])
@token_required
def create(tenant_id):
"""
Create a new dataset.
---
tags:
- Datasets
security:
- ApiKeyAuth: []
parameters:
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: body
name: body
description: Dataset creation parameters.
required: true
schema:
type: object
required:
- name
properties:
name:
type: string
description: Name of the dataset.
permission:
type: string
enum: ['me', 'team']
description: Dataset permission.
language:
type: string
enum: ['Chinese', 'English']
description: Language of the dataset.
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email"]
description: Chunking method.
parser_config:
type: object
description: Parser configuration.
responses:
200:
description: Successful operation.
schema:
type: object
properties:
data:
type: object
"""
req = request.json
e, t = TenantService.get_by_id(tenant_id)
permission = req.get("permission")
language = req.get("language")
chunk_method = req.get("chunk_method")
parser_config = req.get("parser_config")
valid_permission = ["me", "team"]
valid_language = ["Chinese", "English"]
valid_chunk_method = [
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
]
check_validation = valid(
permission,
valid_permission,
language,
valid_language,
chunk_method,
valid_chunk_method,
)
if check_validation:
return check_validation
req["parser_config"] = get_parser_config(chunk_method, parser_config)
if "tenant_id" in req:
return get_error_data_result(message="`tenant_id` must not be provided")
if "chunk_count" in req or "document_count" in req:
return get_error_data_result(
message="`chunk_count` or `document_count` must not be provided"
)
if "name" not in req:
return get_error_data_result(message="`name` is not empty!")
req["id"] = get_uuid()
req["name"] = req["name"].strip()
if req["name"] == "":
return get_error_data_result(message="`name` is not empty string!")
if KnowledgebaseService.query(
name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value
):
return get_error_data_result(
message="Duplicated dataset name in creating dataset."
)
req["tenant_id"] = req["created_by"] = tenant_id
if not req.get("embedding_model"):
req["embedding_model"] = t.embd_id
else:
valid_embedding_models = [
"BAAI/bge-large-zh-v1.5",
"BAAI/bge-base-en-v1.5",
"BAAI/bge-large-en-v1.5",
"BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5",
"jinaai/jina-embeddings-v2-base-en",
"jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5",
"sentence-transformers/all-MiniLM-L6-v2",
"text-embedding-v2",
"text-embedding-v3",
"maidalun1020/bce-embedding-base_v1",
]
embd_model = LLMService.query(
llm_name=req["embedding_model"], model_type="embedding"
)
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding",llm_name=req.get("embedding_model"),):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
if not embd_model:
embd_model=TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model"))
if not embd_model:
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model",
}
mapped_keys = {
new_key: req[old_key]
for new_key, old_key in key_mapping.items()
if old_key in req
}
req.update(mapped_keys)
if not KnowledgebaseService.save(**req):
return get_error_data_result(message="Create dataset error.(Database error)")
renamed_data = {}
e, k = KnowledgebaseService.get_by_id(req["id"])
for key, value in k.to_dict().items():
new_key = key_mapping.get(key, key)
renamed_data[new_key] = value
return get_result(data=renamed_data)
@manager.route("/datasets", methods=["DELETE"])
@token_required
def delete(tenant_id):
"""
Delete datasets.
---
tags:
- Datasets
security:
- ApiKeyAuth: []
parameters:
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: body
name: body
description: Dataset deletion parameters.
required: true
schema:
type: object
properties:
ids:
type: array
items:
type: string
description: List of dataset IDs to delete.
responses:
200:
description: Successful operation.
schema:
type: object
"""
req = request.json
if not req:
ids = None
else:
ids = req.get("ids")
if not ids:
id_list = []
kbs = KnowledgebaseService.query(tenant_id=tenant_id)
for kb in kbs:
id_list.append(kb.id)
else:
id_list = ids
for id in id_list:
kbs = KnowledgebaseService.query(id=id, tenant_id=tenant_id)
if not kbs:
return get_error_data_result(message=f"You don't own the dataset {id}")
for doc in DocumentService.query(kb_id=id):
if not DocumentService.remove_document(doc, tenant_id):
return get_error_data_result(
message="Remove document error.(Database error)"
)
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete(
[
File.source_type == FileSource.KNOWLEDGEBASE,
File.id == f2d[0].file_id,
]
)
FileService.filter_delete(
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
File2DocumentService.delete_by_document_id(doc.id)
if not KnowledgebaseService.delete_by_id(id):
return get_error_data_result(message="Delete dataset error.(Database error)")
return get_result(code=settings.RetCode.SUCCESS)
@manager.route("/datasets/<dataset_id>", methods=["PUT"])
@token_required
def update(tenant_id, dataset_id):
"""
Update a dataset.
---
tags:
- Datasets
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset to update.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: body
name: body
description: Dataset update parameters.
required: true
schema:
type: object
properties:
name:
type: string
description: New name of the dataset.
permission:
type: string
enum: ['me', 'team']
description: Updated permission.
language:
type: string
enum: ['Chinese', 'English']
description: Updated language.
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email"]
description: Updated chunking method.
parser_config:
type: object
description: Updated parser configuration.
responses:
200:
description: Successful operation.
schema:
type: object
"""
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message="You don't own the dataset")
req = request.json
e, t = TenantService.get_by_id(tenant_id)
invalid_keys = {"id", "embd_id", "chunk_num", "doc_num", "parser_id"}
if any(key in req for key in invalid_keys):
return get_error_data_result(message="The input parameters are invalid.")
permission = req.get("permission")
language = req.get("language")
chunk_method = req.get("chunk_method")
parser_config = req.get("parser_config")
valid_permission = ["me", "team"]
valid_language = ["Chinese", "English"]
valid_chunk_method = [
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
]
check_validation = valid(
permission,
valid_permission,
language,
valid_language,
chunk_method,
valid_chunk_method,
)
if check_validation:
return check_validation
if "tenant_id" in req:
if req["tenant_id"] != tenant_id:
return get_error_data_result(message="Can't change `tenant_id`.")
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if "parser_config" in req:
temp_dict = kb.parser_config
temp_dict.update(req["parser_config"])
req["parser_config"] = temp_dict
if "chunk_count" in req:
if req["chunk_count"] != kb.chunk_num:
return get_error_data_result(message="Can't change `chunk_count`.")
req.pop("chunk_count")
if "document_count" in req:
if req["document_count"] != kb.doc_num:
return get_error_data_result(message="Can't change `document_count`.")
req.pop("document_count")
if "chunk_method" in req:
if kb.chunk_num != 0 and req["chunk_method"] != kb.parser_id:
return get_error_data_result(
message="If `chunk_count` is not 0, `chunk_method` is not changeable."
)
req["parser_id"] = req.pop("chunk_method")
if req["parser_id"] != kb.parser_id:
if not req.get("parser_config"):
req["parser_config"] = get_parser_config(chunk_method, parser_config)
if "embedding_model" in req:
if kb.chunk_num != 0 and req["embedding_model"] != kb.embd_id:
return get_error_data_result(
message="If `chunk_count` is not 0, `embedding_model` is not changeable."
)
if not req.get("embedding_model"):
return get_error_data_result("`embedding_model` can't be empty")
valid_embedding_models = [
"BAAI/bge-large-zh-v1.5",
"BAAI/bge-base-en-v1.5",
"BAAI/bge-large-en-v1.5",
"BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5",
"jinaai/jina-embeddings-v2-base-en",
"jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5",
"sentence-transformers/all-MiniLM-L6-v2",
"text-embedding-v2",
"text-embedding-v3",
"maidalun1020/bce-embedding-base_v1",
]
embd_model = LLMService.query(
llm_name=req["embedding_model"], model_type="embedding"
)
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding",llm_name=req.get("embedding_model"),):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
if not embd_model:
embd_model=TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model"))
if not embd_model:
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
req["embd_id"] = req.pop("embedding_model")
if "name" in req:
req["name"] = req["name"].strip()
if (
req["name"].lower() != kb.name.lower()
and len(
KnowledgebaseService.query(
name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value
)
)
> 0
):
return get_error_data_result(
message="Duplicated dataset name in updating dataset."
)
if not KnowledgebaseService.update_by_id(kb.id, req):
return get_error_data_result(message="Update dataset error.(Database error)")
return get_result(code=settings.RetCode.SUCCESS)
@manager.route("/datasets", methods=["GET"])
@token_required
def list(tenant_id):
"""
List datasets.
---
tags:
- Datasets
security:
- ApiKeyAuth: []
parameters:
- in: query
name: id
type: string
required: false
description: Dataset ID to filter.
- in: query
name: name
type: string
required: false
description: Dataset name to filter.
- in: query
name: page
type: integer
required: false
default: 1
description: Page number.
- in: query
name: page_size
type: integer
required: false
default: 1024
description: Number of items per page.
- in: query
name: orderby
type: string
required: false
default: "create_time"
description: Field to order by.
- in: query
name: desc
type: boolean
required: false
default: true
description: Order in descending.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Successful operation.
schema:
type: array
items:
type: object
"""
id = request.args.get("id")
name = request.args.get("name")
if id:
kbs = KnowledgebaseService.get_kb_by_id(id,tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {id}")
if name:
kbs = KnowledgebaseService.get_kb_by_name(name,tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {name}")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
desc = False
else:
desc = True
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
kbs = KnowledgebaseService.get_list(
[m["tenant_id"] for m in tenants],
tenant_id,
page_number,
items_per_page,
orderby,
desc,
id,
name,
)
renamed_list = []
for kb in kbs:
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model",
}
renamed_data = {}
for key, value in kb.items():
new_key = key_mapping.get(key, key)
renamed_data[new_key] = value
renamed_list.append(renamed_data)
return get_result(data=renamed_list)

View File

@ -18,7 +18,7 @@ from flask import request, jsonify
from api.db import LLMType, ParserType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler, kg_retrievaler, RetCode
from api import settings
from api.utils.api_utils import validate_request, build_error_result, apikey_required
@ -37,14 +37,14 @@ def retrieval(tenant_id):
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return build_error_result(error_msg="Knowledgebase not found!", retcode=RetCode.NOT_FOUND)
return build_error_result(message="Knowledgebase not found!", code=settings.RetCode.NOT_FOUND)
if kb.tenant_id != tenant_id:
return build_error_result(error_msg="Knowledgebase not found!", retcode=RetCode.NOT_FOUND)
return build_error_result(message="Knowledgebase not found!", code=settings.RetCode.NOT_FOUND)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(
question,
embd_mdl,
@ -58,8 +58,7 @@ def retrieval(tenant_id):
)
records = []
for c in ranks["chunks"]:
if "vector" in c:
del c["vector"]
c.pop("vector", None)
records.append({
"content": c["content_ltks"],
"score": c["similarity"],
@ -71,7 +70,7 @@ def retrieval(tenant_id):
except Exception as e:
if str(e).find("not_found") > 0:
return build_error_result(
error_msg=f'No chunk found! Check the chunk status please!',
retcode=RetCode.NOT_FOUND
message='No chunk found! Check the chunk status please!',
code=settings.RetCode.NOT_FOUND
)
return build_error_result(error_msg=str(e), retcode=RetCode.SERVER_ERROR)
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)

File diff suppressed because it is too large Load Diff

View File

@ -1,237 +1,531 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from uuid import uuid4
from flask import request, Response
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService, ConversationService, chat
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result
from api.utils.api_utils import get_result, token_required
@manager.route('/chats/<chat_id>/sessions', methods=['POST'])
@token_required
def create(tenant_id,chat_id):
req = request.json
req["dialog_id"] = chat_id
dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
if not dia:
return get_error_data_result(retmsg="You do not own the assistant")
conv = {
"id": get_uuid(),
"dialog_id": req["dialog_id"],
"name": req.get("name", "New session"),
"message": [{"role": "assistant", "content": "Hi! I am your assistantcan I help you?"}]
}
if not conv.get("name"):
return get_error_data_result(retmsg="`name` can not be empty.")
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
if not e:
return get_error_data_result(retmsg="Fail to create a session!")
conv = conv.to_dict()
conv['messages'] = conv.pop("message")
conv["chat_id"] = conv.pop("dialog_id")
del conv["reference"]
return get_result(data=conv)
@manager.route('/chats/<chat_id>/sessions/<session_id>', methods=['PUT'])
@token_required
def update(tenant_id,chat_id,session_id):
req = request.json
req["dialog_id"] = chat_id
conv_id = session_id
conv = ConversationService.query(id=conv_id,dialog_id=chat_id)
if not conv:
return get_error_data_result(retmsg="Session does not exist")
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(retmsg="You do not own the session")
if "message" in req or "messages" in req:
return get_error_data_result(retmsg="`message` can not be change")
if "reference" in req:
return get_error_data_result(retmsg="`reference` can not be change")
if "name" in req and not req.get("name"):
return get_error_data_result(retmsg="`name` can not be empty.")
if not ConversationService.update_by_id(conv_id, req):
return get_error_data_result(retmsg="Session updates error")
return get_result()
@manager.route('/chats/<chat_id>/completions', methods=['POST'])
@token_required
def completion(tenant_id,chat_id):
req = request.json
if not req.get("session_id"):
conv = {
"id": get_uuid(),
"dialog_id": chat_id,
"name": req.get("name", "New session"),
"message": [{"role": "assistant", "content": "Hi! I am your assistantcan I help you?"}]
}
if not conv.get("name"):
return get_error_data_result(retmsg="`name` can not be empty.")
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
session_id=conv.id
else:
session_id = req.get("session_id")
if not req.get("question"):
return get_error_data_result(retmsg="Please input your question.")
conv = ConversationService.query(id=session_id,dialog_id=chat_id)
if not conv:
return get_error_data_result(retmsg="Session does not exist")
conv = conv[0]
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(retmsg="You do not own the chat")
msg = []
question = {
"content": req.get("question"),
"role": "user",
"id": str(uuid4())
}
conv.message.append(question)
for m in conv.message:
if m["role"] == "system": continue
if m["role"] == "assistant" and not msg: continue
msg.append(m)
message_id = msg[-1].get("id")
e, dia = DialogService.get_by_id(conv.dialog_id)
if not conv.reference:
conv.reference = []
conv.message.append({"role": "assistant", "content": "", "id": message_id})
conv.reference.append({"chunks": [], "doc_aggs": []})
def fillin_conv(ans):
nonlocal conv, message_id
if not conv.reference:
conv.reference.append(ans["reference"])
else:
conv.reference[-1] = ans["reference"]
conv.message[-1] = {"role": "assistant", "content": ans["answer"],
"id": message_id, "prompt": ans.get("prompt", "")}
ans["id"] = message_id
ans["session_id"]=session_id
def stream():
nonlocal dia, msg, req, conv
try:
for ans in chat(dia, msg, **req):
fillin_conv(ans)
yield "data:" + json.dumps({"code": 0, "data": ans}, ensure_ascii=False) + "\n\n"
ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e),"reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "data": True}, ensure_ascii=False) + "\n\n"
if req.get("stream", True):
resp = Response(stream(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
else:
answer = None
for ans in chat(dia, msg, **req):
answer = ans
fillin_conv(ans)
ConversationService.update_by_id(conv.id, conv.to_dict())
break
return get_result(data=answer)
@manager.route('/chats/<chat_id>/sessions', methods=['GET'])
@token_required
def list(chat_id,tenant_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(retmsg=f"You don't own the assistant {chat_id}.")
id = request.args.get("id")
name = request.args.get("name")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 1024))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
desc = False
else:
desc = True
convs = ConversationService.get_list(chat_id,page_number,items_per_page,orderby,desc,id,name)
if not convs:
return get_result(data=[])
for conv in convs:
conv['messages'] = conv.pop("message")
infos = conv["messages"]
for info in infos:
if "prompt" in info:
info.pop("prompt")
conv["chat"] = conv.pop("dialog_id")
if conv["reference"]:
messages = conv["messages"]
message_num = 0
chunk_num = 0
while message_num < len(messages):
if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = []
if "chunks" in conv["reference"][chunk_num]:
chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks:
new_chunk = {
"id": chunk["chunk_id"],
"content": chunk["content_with_weight"],
"document_id": chunk["doc_id"],
"document_name": chunk["docnm_kwd"],
"dataset_id": chunk["kb_id"],
"image_id": chunk["img_id"],
"similarity": chunk["similarity"],
"vector_similarity": chunk["vector_similarity"],
"term_similarity": chunk["term_similarity"],
"positions": chunk["positions"],
}
chunk_list.append(new_chunk)
chunk_num += 1
messages[message_num]["reference"] = chunk_list
message_num += 1
del conv["reference"]
return get_result(data=convs)
@manager.route('/chats/<chat_id>/sessions', methods=["DELETE"])
@token_required
def delete(tenant_id,chat_id):
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(retmsg="You don't own the chat")
req = request.json
convs = ConversationService.query(dialog_id=chat_id)
if not req:
ids = None
else:
ids=req.get("ids")
if not ids:
conv_list = []
for conv in convs:
conv_list.append(conv.id)
else:
conv_list=ids
for id in conv_list:
conv = ConversationService.query(id=id,dialog_id=chat_id)
if not conv:
return get_error_data_result(retmsg="The chat doesn't own the session")
ConversationService.delete_by_id(id)
return get_result()
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import json
from copy import deepcopy
from uuid import uuid4
from api.db import LLMType
from flask import request, Response
from api.db.services.dialog_service import ask
from agent.canvas import Canvas
from api.db import StatusEnum
from api.db.db_models import API4Conversation
from api.db.services.api_service import API4ConversationService
from api.db.services.canvas_service import UserCanvasService
from api.db.services.dialog_service import DialogService, ConversationService, chat
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result
from api.utils.api_utils import get_result, token_required
from api.db.services.llm_service import LLMBundle
@manager.route('/chats/<chat_id>/sessions', methods=['POST'])
@token_required
def create(tenant_id,chat_id):
req = request.json
req["dialog_id"] = chat_id
dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
if not dia:
return get_error_data_result(message="You do not own the assistant.")
conv = {
"id": get_uuid(),
"dialog_id": req["dialog_id"],
"name": req.get("name", "New session"),
"message": [{"role": "assistant", "content": "Hi! I am your assistantcan I help you?"}]
}
if not conv.get("name"):
return get_error_data_result(message="`name` can not be empty.")
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
if not e:
return get_error_data_result(message="Fail to create a session!")
conv = conv.to_dict()
conv['messages'] = conv.pop("message")
conv["chat_id"] = conv.pop("dialog_id")
del conv["reference"]
return get_result(data=conv)
@manager.route('/agents/<agent_id>/sessions', methods=['POST'])
@token_required
def create_agent_session(tenant_id, agent_id):
req = request.json
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
return get_error_data_result("Agent not found.")
if cvs.user_id != tenant_id:
return get_error_data_result(message="You do not own the agent.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
canvas = Canvas(cvs.dsl, tenant_id)
conv = {
"id": get_uuid(),
"dialog_id": cvs.id,
"user_id": req.get("usr_id","") if isinstance(req, dict) else "",
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
"source": "agent"
}
API4ConversationService.save(**conv)
conv["agent_id"] = conv.pop("dialog_id")
return get_result(data=conv)
@manager.route('/chats/<chat_id>/sessions/<session_id>', methods=['PUT'])
@token_required
def update(tenant_id,chat_id,session_id):
req = request.json
req["dialog_id"] = chat_id
conv_id = session_id
conv = ConversationService.query(id=conv_id,dialog_id=chat_id)
if not conv:
return get_error_data_result(message="Session does not exist")
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(message="You do not own the session")
if "message" in req or "messages" in req:
return get_error_data_result(message="`message` can not be change")
if "reference" in req:
return get_error_data_result(message="`reference` can not be change")
if "name" in req and not req.get("name"):
return get_error_data_result(message="`name` can not be empty.")
if not ConversationService.update_by_id(conv_id, req):
return get_error_data_result(message="Session updates error")
return get_result()
@manager.route('/chats/<chat_id>/completions', methods=['POST'])
@token_required
def completion(tenant_id, chat_id):
req = request.json
if not req.get("session_id"):
conv = {
"id": get_uuid(),
"dialog_id": chat_id,
"name": req.get("name", "New session"),
"message": [{"role": "assistant", "content": "Hi! I am your assistantcan I help you?"}]
}
if not conv.get("name"):
return get_error_data_result(message="`name` can not be empty.")
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
session_id=conv.id
else:
session_id = req.get("session_id")
if not req.get("question"):
return get_error_data_result(message="Please input your question.")
conv = ConversationService.query(id=session_id,dialog_id=chat_id)
if not conv:
return get_error_data_result(message="Session does not exist")
conv = conv[0]
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(message="You do not own the chat")
msg = []
question = {
"content": req.get("question"),
"role": "user",
"id": str(uuid4())
}
conv.message.append(question)
for m in conv.message:
if m["role"] == "system": continue
if m["role"] == "assistant" and not msg: continue
msg.append(m)
message_id = msg[-1].get("id")
e, dia = DialogService.get_by_id(conv.dialog_id)
if not conv.reference:
conv.reference = []
conv.message.append({"role": "assistant", "content": "", "id": message_id})
conv.reference.append({"chunks": [], "doc_aggs": []})
def fillin_conv(ans):
reference = ans["reference"]
temp_reference = deepcopy(ans["reference"])
nonlocal conv, message_id
if not conv.reference:
conv.reference.append(temp_reference)
else:
conv.reference[-1] = temp_reference
conv.message[-1] = {"role": "assistant", "content": ans["answer"],
"id": message_id, "prompt": ans.get("prompt", "")}
if "chunks" in reference:
chunks = reference.get("chunks")
chunk_list = []
for chunk in chunks:
new_chunk = {
"id": chunk["chunk_id"],
"content": chunk["content_with_weight"],
"document_id": chunk["doc_id"],
"document_name": chunk["docnm_kwd"],
"dataset_id": chunk["kb_id"],
"image_id": chunk.get("image_id", ""),
"similarity": chunk["similarity"],
"vector_similarity": chunk["vector_similarity"],
"term_similarity": chunk["term_similarity"],
"positions": chunk.get("positions", []),
}
chunk_list.append(new_chunk)
reference["chunks"] = chunk_list
ans["id"] = message_id
ans["session_id"]=session_id
def stream():
nonlocal dia, msg, req, conv
try:
for ans in chat(dia, msg, **req):
fillin_conv(ans)
yield "data:" + json.dumps({"code": 0, "data": ans}, ensure_ascii=False) + "\n\n"
ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e),"reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "data": True}, ensure_ascii=False) + "\n\n"
if req.get("stream", True):
resp = Response(stream(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
else:
answer = None
for ans in chat(dia, msg, **req):
answer = ans
fillin_conv(ans)
ConversationService.update_by_id(conv.id, conv.to_dict())
break
return get_result(data=answer)
@manager.route('/agents/<agent_id>/completions', methods=['POST'])
@token_required
def agent_completion(tenant_id, agent_id):
req = request.json
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
return get_error_data_result("Agent not found.")
if cvs.user_id != tenant_id:
return get_error_data_result(message="You do not own the agent.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
canvas = Canvas(cvs.dsl, tenant_id)
if not req.get("session_id"):
session_id = get_uuid()
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": req.get("user_id",""),
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
"source": "agent"
}
API4ConversationService.save(**conv)
conv = API4Conversation(**conv)
else:
session_id = req.get("session_id")
e, conv = API4ConversationService.get_by_id(req["session_id"])
if not e:
return get_error_data_result(message="Session not found!")
messages = conv.message
question = req.get("question")
if not question:
return get_error_data_result("`question` is required.")
question={
"role":"user",
"content":question,
"id": str(uuid4())
}
messages.append(question)
msg = []
for m in messages:
if m["role"] == "system":
continue
if m["role"] == "assistant" and not msg:
continue
msg.append(m)
if not msg[-1].get("id"): msg[-1]["id"] = get_uuid()
message_id = msg[-1]["id"]
if "quote" not in req: req["quote"] = False
stream = req.get("stream", True)
def fillin_conv(ans):
reference = ans["reference"]
temp_reference = deepcopy(ans["reference"])
nonlocal conv, message_id
if not conv.reference:
conv.reference.append(temp_reference)
else:
conv.reference[-1] = temp_reference
conv.message[-1] = {"role": "assistant", "content": ans["answer"], "id": message_id}
if "chunks" in reference:
chunks = reference.get("chunks")
chunk_list = []
for chunk in chunks:
new_chunk = {
"id": chunk["chunk_id"],
"content": chunk["content_with_weight"],
"document_id": chunk["doc_id"],
"document_name": chunk["docnm_kwd"],
"dataset_id": chunk["kb_id"],
"image_id": chunk["image_id"],
"similarity": chunk["similarity"],
"vector_similarity": chunk["vector_similarity"],
"term_similarity": chunk["term_similarity"],
"positions": chunk["positions"],
}
chunk_list.append(new_chunk)
reference["chunks"] = chunk_list
ans["id"] = message_id
ans["session_id"] = session_id
def rename_field(ans):
reference = ans['reference']
if not isinstance(reference, dict):
return
for chunk_i in reference.get('chunks', []):
if 'docnm_kwd' in chunk_i:
chunk_i['doc_name'] = chunk_i['docnm_kwd']
chunk_i.pop('docnm_kwd')
conv.message.append(msg[-1])
if not conv.reference:
conv.reference = []
conv.message.append({"role": "assistant", "content": "", "id": message_id})
conv.reference.append({"chunks": [], "doc_aggs": []})
final_ans = {"reference": [], "content": ""}
canvas.messages.append(msg[-1])
canvas.add_user_input(msg[-1]["content"])
if stream:
def sse():
nonlocal answer, cvs
try:
for ans in canvas.run(stream=True):
if ans.get("running_status"):
yield "data:" + json.dumps({"code": 0, "message": "",
"data": {"answer": ans["content"],
"running_status": True}},
ensure_ascii=False) + "\n\n"
continue
for k in ans.keys():
final_ans[k] = ans[k]
ans = {"answer": ans["content"], "reference": ans.get("reference", [])}
fillin_conv(ans)
rename_field(ans)
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans},
ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
except Exception as e:
cvs.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(sse(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
for answer in canvas.run(stream=False):
if answer.get("running_status"): continue
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
result = {"answer": final_ans["content"], "reference": final_ans.get("reference", [])}
fillin_conv(result)
API4ConversationService.append_message(conv.id, conv.to_dict())
rename_field(result)
return get_result(data=result)
@manager.route('/chats/<chat_id>/sessions', methods=['GET'])
@token_required
def list_session(chat_id,tenant_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(message=f"You don't own the assistant {chat_id}.")
id = request.args.get("id")
name = request.args.get("name")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
desc = False
else:
desc = True
convs = ConversationService.get_list(chat_id,page_number,items_per_page,orderby,desc,id,name)
if not convs:
return get_result(data=[])
for conv in convs:
conv['messages'] = conv.pop("message")
infos = conv["messages"]
for info in infos:
if "prompt" in info:
info.pop("prompt")
conv["chat_id"] = conv.pop("dialog_id")
if conv["reference"]:
messages = conv["messages"]
message_num = 0
chunk_num = 0
while message_num < len(messages):
if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = []
if "chunks" in conv["reference"][chunk_num]:
chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks:
new_chunk = {
"id": chunk["chunk_id"],
"content": chunk["content_with_weight"],
"document_id": chunk["doc_id"],
"document_name": chunk["docnm_kwd"],
"dataset_id": chunk["kb_id"],
"image_id": chunk["image_id"],
"similarity": chunk["similarity"],
"vector_similarity": chunk["vector_similarity"],
"term_similarity": chunk["term_similarity"],
"positions": chunk["positions"],
}
chunk_list.append(new_chunk)
chunk_num += 1
messages[message_num]["reference"] = chunk_list
message_num += 1
del conv["reference"]
return get_result(data=convs)
@manager.route('/chats/<chat_id>/sessions', methods=["DELETE"])
@token_required
def delete(tenant_id,chat_id):
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(message="You don't own the chat")
req = request.json
convs = ConversationService.query(dialog_id=chat_id)
if not req:
ids = None
else:
ids=req.get("ids")
if not ids:
conv_list = []
for conv in convs:
conv_list.append(conv.id)
else:
conv_list=ids
for id in conv_list:
conv = ConversationService.query(id=id,dialog_id=chat_id)
if not conv:
return get_error_data_result(message="The chat doesn't own the session")
ConversationService.delete_by_id(id)
return get_result()
@manager.route('/sessions/ask', methods=['POST'])
@token_required
def ask_about(tenant_id):
req = request.json
if not req.get("question"):
return get_error_data_result("`question` is required.")
if not req.get("dataset_ids"):
return get_error_data_result("`dataset_ids` is required.")
if not isinstance(req.get("dataset_ids"),list):
return get_error_data_result("`dataset_ids` should be a list.")
req["kb_ids"]=req.pop("dataset_ids")
for kb_id in req["kb_ids"]:
if not KnowledgebaseService.accessible(kb_id,tenant_id):
return get_error_data_result(f"You don't own the dataset {kb_id}.")
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
uid = tenant_id
def stream():
nonlocal req, uid
try:
for ans in ask(req["question"], req["kb_ids"], uid):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
@manager.route('/sessions/related_questions', methods=['POST'])
@token_required
def related_questions(tenant_id):
req = request.json
if not req.get("question"):
return get_error_data_result("`question` is required.")
question = req["question"]
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
prompt = """
Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
Instructions:
- Based on the keywords provided by the user, generate 5-10 related search terms.
- Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
- Use common, general terms as much as possible, avoiding obscure words or technical jargon.
- Keep the term length between 2-4 words, concise and clear.
- DO NOT translate, use the language of the original keywords.
### Example:
Keywords: Chinese football
Related search terms:
1. Current status of Chinese football
2. Reform of Chinese football
3. Youth training of Chinese football
4. Chinese football in the Asian Cup
5. Chinese football in the World Cup
Reason:
- When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
- Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
Keywords: {question}
Related search terms:
"""}], {"temperature": 0.9})
return get_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])

View File

@ -13,8 +13,9 @@
# See the License for the specific language governing permissions and
# limitations under the License
#
import json
import logging
from datetime import datetime
import json
from flask_login import login_required, current_user
@ -22,110 +23,237 @@ from api.db.db_models import APIToken
from api.db.services.api_service import APITokenService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import UserTenantService
from api.settings import DATABASE_TYPE
from api import settings
from api.utils import current_timestamp, datetime_format
from api.utils.api_utils import get_json_result, get_data_error_result, server_error_response, \
generate_confirmation_token, request, validate_request
from api.versions import get_rag_version
from rag.utils.es_conn import ELASTICSEARCH
from api.utils.api_utils import (
get_json_result,
get_data_error_result,
server_error_response,
generate_confirmation_token,
)
from api.versions import get_ragflow_version
from rag.utils.storage_factory import STORAGE_IMPL, STORAGE_IMPL_TYPE
from timeit import default_timer as timer
from rag.utils.redis_conn import REDIS_CONN
@manager.route('/version', methods=['GET'])
@manager.route("/version", methods=["GET"])
@login_required
def version():
return get_json_result(data=get_rag_version())
"""
Get the current version of the application.
---
tags:
- System
security:
- ApiKeyAuth: []
responses:
200:
description: Version retrieved successfully.
schema:
type: object
properties:
version:
type: string
description: Version number.
"""
return get_json_result(data=get_ragflow_version())
@manager.route('/status', methods=['GET'])
@manager.route("/status", methods=["GET"])
@login_required
def status():
"""
Get the system status.
---
tags:
- System
security:
- ApiKeyAuth: []
responses:
200:
description: System is operational.
schema:
type: object
properties:
es:
type: object
description: Elasticsearch status.
storage:
type: object
description: Storage status.
database:
type: object
description: Database status.
503:
description: Service unavailable.
schema:
type: object
properties:
error:
type: string
description: Error message.
"""
res = {}
st = timer()
try:
res["es"] = ELASTICSEARCH.health()
res["es"]["elapsed"] = "{:.1f}".format((timer() - st)*1000.)
res["doc_engine"] = settings.docStoreConn.health()
res["doc_engine"]["elapsed"] = "{:.1f}".format((timer() - st) * 1000.0)
except Exception as e:
res["es"] = {"status": "red", "elapsed": "{:.1f}".format((timer() - st)*1000.), "error": str(e)}
res["doc_engine"] = {
"type": "unknown",
"status": "red",
"elapsed": "{:.1f}".format((timer() - st) * 1000.0),
"error": str(e),
}
st = timer()
try:
STORAGE_IMPL.health()
res["storage"] = {"storage": STORAGE_IMPL_TYPE.lower(), "status": "green", "elapsed": "{:.1f}".format((timer() - st)*1000.)}
res["storage"] = {
"storage": STORAGE_IMPL_TYPE.lower(),
"status": "green",
"elapsed": "{:.1f}".format((timer() - st) * 1000.0),
}
except Exception as e:
res["storage"] = {"storage": STORAGE_IMPL_TYPE.lower(), "status": "red", "elapsed": "{:.1f}".format((timer() - st)*1000.), "error": str(e)}
res["storage"] = {
"storage": STORAGE_IMPL_TYPE.lower(),
"status": "red",
"elapsed": "{:.1f}".format((timer() - st) * 1000.0),
"error": str(e),
}
st = timer()
try:
KnowledgebaseService.get_by_id("x")
res["database"] = {"database": DATABASE_TYPE.lower(), "status": "green", "elapsed": "{:.1f}".format((timer() - st)*1000.)}
res["database"] = {
"database": settings.DATABASE_TYPE.lower(),
"status": "green",
"elapsed": "{:.1f}".format((timer() - st) * 1000.0),
}
except Exception as e:
res["database"] = {"database": DATABASE_TYPE.lower(), "status": "red", "elapsed": "{:.1f}".format((timer() - st)*1000.), "error": str(e)}
res["database"] = {
"database": settings.DATABASE_TYPE.lower(),
"status": "red",
"elapsed": "{:.1f}".format((timer() - st) * 1000.0),
"error": str(e),
}
st = timer()
try:
if not REDIS_CONN.health():
raise Exception("Lost connection!")
res["redis"] = {"status": "green", "elapsed": "{:.1f}".format((timer() - st)*1000.)}
res["redis"] = {
"status": "green",
"elapsed": "{:.1f}".format((timer() - st) * 1000.0),
}
except Exception as e:
res["redis"] = {"status": "red", "elapsed": "{:.1f}".format((timer() - st)*1000.), "error": str(e)}
res["redis"] = {
"status": "red",
"elapsed": "{:.1f}".format((timer() - st) * 1000.0),
"error": str(e),
}
task_executor_heartbeats = {}
try:
v = REDIS_CONN.get("TASKEXE")
if not v:
raise Exception("No task executor running!")
obj = json.loads(v)
color = "green"
for id in obj.keys():
arr = obj[id]
if len(arr) == 1:
obj[id] = [0]
else:
obj[id] = [arr[i+1]-arr[i] for i in range(len(arr)-1)]
elapsed = max(obj[id])
if elapsed > 50: color = "yellow"
if elapsed > 120: color = "red"
res["task_executor"] = {"status": color, "elapsed": obj}
except Exception as e:
res["task_executor"] = {"status": "red", "error": str(e)}
task_executors = REDIS_CONN.smembers("TASKEXE")
now = datetime.now().timestamp()
for task_executor_id in task_executors:
heartbeats = REDIS_CONN.zrangebyscore(task_executor_id, now - 60*30, now)
heartbeats = [json.loads(heartbeat) for heartbeat in heartbeats]
task_executor_heartbeats[task_executor_id] = heartbeats
except Exception:
logging.exception("get task executor heartbeats failed!")
res["task_executor_heartbeats"] = task_executor_heartbeats
return get_json_result(data=res)
@manager.route('/new_token', methods=['POST'])
@manager.route("/new_token", methods=["POST"])
@login_required
def new_token():
"""
Generate a new API token.
---
tags:
- API Tokens
security:
- ApiKeyAuth: []
parameters:
- in: query
name: name
type: string
required: false
description: Name of the token.
responses:
200:
description: Token generated successfully.
schema:
type: object
properties:
token:
type: string
description: The generated API token.
"""
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
obj = {"tenant_id": tenant_id, "token": generate_confirmation_token(tenant_id),
"create_time": current_timestamp(),
"create_date": datetime_format(datetime.now()),
"update_time": None,
"update_date": None
}
obj = {
"tenant_id": tenant_id,
"token": generate_confirmation_token(tenant_id),
"create_time": current_timestamp(),
"create_date": datetime_format(datetime.now()),
"update_time": None,
"update_date": None,
}
if not APITokenService.save(**obj):
return get_data_error_result(retmsg="Fail to new a dialog!")
return get_data_error_result(message="Fail to new a dialog!")
return get_json_result(data=obj)
except Exception as e:
return server_error_response(e)
@manager.route('/token_list', methods=['GET'])
@manager.route("/token_list", methods=["GET"])
@login_required
def token_list():
"""
List all API tokens for the current user.
---
tags:
- API Tokens
security:
- ApiKeyAuth: []
responses:
200:
description: List of API tokens.
schema:
type: object
properties:
tokens:
type: array
items:
type: object
properties:
token:
type: string
description: The API token.
name:
type: string
description: Name of the token.
create_time:
type: string
description: Token creation time.
"""
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
objs = APITokenService.query(tenant_id=tenants[0].tenant_id)
return get_json_result(data=[o.to_dict() for o in objs])
@ -133,9 +261,33 @@ def token_list():
return server_error_response(e)
@manager.route('/token/<token>', methods=['DELETE'])
@manager.route("/token/<token>", methods=["DELETE"])
@login_required
def rm(token):
"""
Remove an API token.
---
tags:
- API Tokens
security:
- ApiKeyAuth: []
parameters:
- in: path
name: token
type: string
required: true
description: The API token to remove.
responses:
200:
description: Token removed successfully.
schema:
type: object
properties:
success:
type: boolean
description: Deletion status.
"""
APITokenService.filter_delete(
[APIToken.tenant_id == current_user.id, APIToken.token == token])
return get_json_result(data=True)
[APIToken.tenant_id == current_user.id, APIToken.token == token]
)
return get_json_result(data=True)

View File

@ -17,6 +17,7 @@
from flask import request
from flask_login import login_required, current_user
from api import settings
from api.db import UserTenantRole, StatusEnum
from api.db.db_models import UserTenant
from api.db.services.user_service import UserTenantService, UserService
@ -28,6 +29,12 @@ from api.utils.api_utils import get_json_result, validate_request, server_error_
@manager.route("/<tenant_id>/user/list", methods=["GET"])
@login_required
def user_list(tenant_id):
if current_user.id != tenant_id:
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR)
try:
users = UserTenantService.get_by_tenant_id(tenant_id)
for u in users:
@ -41,17 +48,23 @@ def user_list(tenant_id):
@login_required
@validate_request("email")
def create(tenant_id):
if current_user.id != tenant_id:
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
usrs = UserService.query(email=req["email"])
if not usrs:
return get_data_error_result(retmsg="User not found.")
return get_data_error_result(message="User not found.")
user_id = usrs[0].id
user_tenants = UserTenantService.query(user_id=user_id, tenant_id=tenant_id)
if user_tenants:
if user_tenants[0].status == UserTenantRole.NORMAL.value:
return get_data_error_result(retmsg="This user is in the team already.")
return get_data_error_result(retmsg="Invitation notification is sent.")
return get_data_error_result(message="This user is in the team already.")
return get_data_error_result(message="Invitation notification is sent.")
UserTenantService.save(
id=get_uuid(),
@ -70,6 +83,12 @@ def create(tenant_id):
@manager.route('/<tenant_id>/user/<user_id>', methods=['DELETE'])
@login_required
def rm(tenant_id, user_id):
if current_user.id != tenant_id and current_user.id != user_id:
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR)
try:
UserTenantService.filter_delete([UserTenant.tenant_id == tenant_id, UserTenant.user_id == user_id])
return get_json_result(data=True)

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import json
import re
from datetime import datetime
@ -23,65 +24,127 @@ from flask_login import login_required, current_user, login_user, logout_user
from api.db.db_models import TenantLLM
from api.db.services.llm_service import TenantLLMService, LLMService
from api.utils.api_utils import server_error_response, validate_request, get_data_error_result
from api.utils import get_uuid, get_format_time, decrypt, download_img, current_timestamp, datetime_format
from api.db import UserTenantRole, LLMType, FileType
from api.settings import RetCode, GITHUB_OAUTH, FEISHU_OAUTH, CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, \
API_KEY, \
LLM_FACTORY, LLM_BASE_URL, RERANK_MDL
from api.utils.api_utils import (
server_error_response,
validate_request,
get_data_error_result,
)
from api.utils import (
get_uuid,
get_format_time,
decrypt,
download_img,
current_timestamp,
datetime_format,
)
from api.db import UserTenantRole, FileType
from api import settings
from api.db.services.user_service import UserService, TenantService, UserTenantService
from api.db.services.file_service import FileService
from api.settings import stat_logger
from api.utils.api_utils import get_json_result, construct_response
@manager.route('/login', methods=['POST', 'GET'])
@manager.route("/login", methods=["POST", "GET"])
def login():
"""
User login endpoint.
---
tags:
- User
parameters:
- in: body
name: body
description: Login credentials.
required: true
schema:
type: object
properties:
email:
type: string
description: User email.
password:
type: string
description: User password.
responses:
200:
description: Login successful.
schema:
type: object
401:
description: Authentication failed.
schema:
type: object
"""
if not request.json:
return get_json_result(data=False,
retcode=RetCode.AUTHENTICATION_ERROR,
retmsg='Unauthorized!')
return get_json_result(
data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="Unauthorized!"
)
email = request.json.get('email', "")
email = request.json.get("email", "")
users = UserService.query(email=email)
if not users:
return get_json_result(data=False,
retcode=RetCode.AUTHENTICATION_ERROR,
retmsg=f'Email: {email} is not registered!')
return get_json_result(
data=False,
code=settings.RetCode.AUTHENTICATION_ERROR,
message=f"Email: {email} is not registered!",
)
password = request.json.get('password')
password = request.json.get("password")
try:
password = decrypt(password)
except BaseException:
return get_json_result(data=False,
retcode=RetCode.SERVER_ERROR,
retmsg='Fail to crypt password')
return get_json_result(
data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password"
)
user = UserService.query_user(email, password)
if user:
response_data = user.to_json()
user.access_token = get_uuid()
login_user(user)
user.update_time = current_timestamp(),
user.update_date = datetime_format(datetime.now()),
user.update_time = (current_timestamp(),)
user.update_date = (datetime_format(datetime.now()),)
user.save()
msg = "Welcome back!"
return construct_response(data=response_data, auth=user.get_id(), retmsg=msg)
return construct_response(data=response_data, auth=user.get_id(), message=msg)
else:
return get_json_result(data=False,
retcode=RetCode.AUTHENTICATION_ERROR,
retmsg='Email and password do not match!')
return get_json_result(
data=False,
code=settings.RetCode.AUTHENTICATION_ERROR,
message="Email and password do not match!",
)
@manager.route('/github_callback', methods=['GET'])
@manager.route("/github_callback", methods=["GET"])
def github_callback():
"""
GitHub OAuth callback endpoint.
---
tags:
- OAuth
parameters:
- in: query
name: code
type: string
required: true
description: Authorization code from GitHub.
responses:
200:
description: Authentication successful.
schema:
type: object
"""
import requests
res = requests.post(GITHUB_OAUTH.get("url"),
data={
"client_id": GITHUB_OAUTH.get("client_id"),
"client_secret": GITHUB_OAUTH.get("secret_key"),
"code": request.args.get('code')},
headers={"Accept": "application/json"})
res = requests.post(
settings.GITHUB_OAUTH.get("url"),
data={
"client_id": settings.GITHUB_OAUTH.get("client_id"),
"client_secret": settings.GITHUB_OAUTH.get("secret_key"),
"code": request.args.get("code"),
},
headers={"Accept": "application/json"},
)
res = res.json()
if "error" in res:
return redirect("/?error=%s" % res["error_description"])
@ -101,21 +164,24 @@ def github_callback():
try:
avatar = download_img(user_info["avatar_url"])
except Exception as e:
stat_logger.exception(e)
logging.exception(e)
avatar = ""
users = user_register(user_id, {
"access_token": session["access_token"],
"email": email_address,
"avatar": avatar,
"nickname": user_info["login"],
"login_channel": "github",
"last_login_time": get_format_time(),
"is_superuser": False,
})
users = user_register(
user_id,
{
"access_token": session["access_token"],
"email": email_address,
"avatar": avatar,
"nickname": user_info["login"],
"login_channel": "github",
"last_login_time": get_format_time(),
"is_superuser": False,
},
)
if not users:
raise Exception(f'Fail to register {email_address}.')
raise Exception(f"Fail to register {email_address}.")
if len(users) > 1:
raise Exception(f'Same email: {email_address} exists!')
raise Exception(f"Same email: {email_address} exists!")
# Try to log in
user = users[0]
@ -123,7 +189,7 @@ def github_callback():
return redirect("/?auth=%s" % user.get_id())
except Exception as e:
rollback_user_registration(user_id)
stat_logger.exception(e)
logging.exception(e)
return redirect("/?error=%s" % str(e))
# User has already registered, try to log in
@ -134,30 +200,56 @@ def github_callback():
return redirect("/?auth=%s" % user.get_id())
@manager.route('/feishu_callback', methods=['GET'])
@manager.route("/feishu_callback", methods=["GET"])
def feishu_callback():
"""
Feishu OAuth callback endpoint.
---
tags:
- OAuth
parameters:
- in: query
name: code
type: string
required: true
description: Authorization code from Feishu.
responses:
200:
description: Authentication successful.
schema:
type: object
"""
import requests
app_access_token_res = requests.post(FEISHU_OAUTH.get("app_access_token_url"),
data=json.dumps({
"app_id": FEISHU_OAUTH.get("app_id"),
"app_secret": FEISHU_OAUTH.get("app_secret")
}),
headers={"Content-Type": "application/json; charset=utf-8"})
app_access_token_res = requests.post(
settings.FEISHU_OAUTH.get("app_access_token_url"),
data=json.dumps(
{
"app_id": settings.FEISHU_OAUTH.get("app_id"),
"app_secret": settings.FEISHU_OAUTH.get("app_secret"),
}
),
headers={"Content-Type": "application/json; charset=utf-8"},
)
app_access_token_res = app_access_token_res.json()
if app_access_token_res['code'] != 0:
if app_access_token_res["code"] != 0:
return redirect("/?error=%s" % app_access_token_res)
res = requests.post(FEISHU_OAUTH.get("user_access_token_url"),
data=json.dumps({
"grant_type": FEISHU_OAUTH.get("grant_type"),
"code": request.args.get('code')
}),
headers={
"Content-Type": "application/json; charset=utf-8",
'Authorization': f"Bearer {app_access_token_res['app_access_token']}"
})
res = requests.post(
settings.FEISHU_OAUTH.get("user_access_token_url"),
data=json.dumps(
{
"grant_type": settings.FEISHU_OAUTH.get("grant_type"),
"code": request.args.get("code"),
}
),
headers={
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {app_access_token_res['app_access_token']}",
},
)
res = res.json()
if res['code'] != 0:
if res["code"] != 0:
return redirect("/?error=%s" % res["message"])
if "contact:user.email:readonly" not in res["data"]["scope"].split(" "):
@ -174,21 +266,24 @@ def feishu_callback():
try:
avatar = download_img(user_info["avatar_url"])
except Exception as e:
stat_logger.exception(e)
logging.exception(e)
avatar = ""
users = user_register(user_id, {
"access_token": session["access_token"],
"email": email_address,
"avatar": avatar,
"nickname": user_info["en_name"],
"login_channel": "feishu",
"last_login_time": get_format_time(),
"is_superuser": False,
})
users = user_register(
user_id,
{
"access_token": session["access_token"],
"email": email_address,
"avatar": avatar,
"nickname": user_info["en_name"],
"login_channel": "feishu",
"last_login_time": get_format_time(),
"is_superuser": False,
},
)
if not users:
raise Exception(f'Fail to register {email_address}.')
raise Exception(f"Fail to register {email_address}.")
if len(users) > 1:
raise Exception(f'Same email: {email_address} exists!')
raise Exception(f"Same email: {email_address} exists!")
# Try to log in
user = users[0]
@ -196,7 +291,7 @@ def feishu_callback():
return redirect("/?auth=%s" % user.get_id())
except Exception as e:
rollback_user_registration(user_id)
stat_logger.exception(e)
logging.exception(e)
return redirect("/?error=%s" % str(e))
# User has already registered, try to log in
@ -209,11 +304,14 @@ def feishu_callback():
def user_info_from_feishu(access_token):
import requests
headers = {"Content-Type": "application/json; charset=utf-8",
'Authorization': f"Bearer {access_token}"}
headers = {
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {access_token}",
}
res = requests.get(
f"https://open.feishu.cn/open-apis/authen/v1/user_info",
headers=headers)
"https://open.feishu.cn/open-apis/authen/v1/user_info", headers=headers
)
user_info = res.json()["data"]
user_info["email"] = None if user_info.get("email") == "" else user_info["email"]
return user_info
@ -221,24 +319,38 @@ def user_info_from_feishu(access_token):
def user_info_from_github(access_token):
import requests
headers = {"Accept": "application/json",
'Authorization': f"token {access_token}"}
headers = {"Accept": "application/json", "Authorization": f"token {access_token}"}
res = requests.get(
f"https://api.github.com/user?access_token={access_token}",
headers=headers)
f"https://api.github.com/user?access_token={access_token}", headers=headers
)
user_info = res.json()
email_info = requests.get(
f"https://api.github.com/user/emails?access_token={access_token}",
headers=headers).json()
headers=headers,
).json()
user_info["email"] = next(
(email for email in email_info if email['primary'] == True),
None)["email"]
(email for email in email_info if email["primary"] == True), None
)["email"]
return user_info
@manager.route("/logout", methods=['GET'])
@manager.route("/logout", methods=["GET"])
@login_required
def log_out():
"""
User logout endpoint.
---
tags:
- User
security:
- ApiKeyAuth: []
responses:
200:
description: Logout successful.
schema:
type: object
"""
current_user.access_token = ""
current_user.save()
logout_user()
@ -248,20 +360,62 @@ def log_out():
@manager.route("/setting", methods=["POST"])
@login_required
def setting_user():
"""
Update user settings.
---
tags:
- User
security:
- ApiKeyAuth: []
parameters:
- in: body
name: body
description: User settings to update.
required: true
schema:
type: object
properties:
nickname:
type: string
description: New nickname.
email:
type: string
description: New email.
responses:
200:
description: Settings updated successfully.
schema:
type: object
"""
update_dict = {}
request_data = request.json
if request_data.get("password"):
new_password = request_data.get("new_password")
if not check_password_hash(
current_user.password, decrypt(request_data["password"])):
return get_json_result(data=False, retcode=RetCode.AUTHENTICATION_ERROR, retmsg='Password error!')
current_user.password, decrypt(request_data["password"])
):
return get_json_result(
data=False,
code=settings.RetCode.AUTHENTICATION_ERROR,
message="Password error!",
)
if new_password:
update_dict["password"] = generate_password_hash(decrypt(new_password))
for k in request_data.keys():
if k in ["password", "new_password", "email", "status", "is_superuser", "login_channel", "is_anonymous",
"is_active", "is_authenticated", "last_login_time"]:
if k in [
"password",
"new_password",
"email",
"status",
"is_superuser",
"login_channel",
"is_anonymous",
"is_active",
"is_authenticated",
"last_login_time",
]:
continue
update_dict[k] = request_data[k]
@ -269,34 +423,59 @@ def setting_user():
UserService.update_by_id(current_user.id, update_dict)
return get_json_result(data=True)
except Exception as e:
stat_logger.exception(e)
return get_json_result(data=False, retmsg='Update failure!', retcode=RetCode.EXCEPTION_ERROR)
logging.exception(e)
return get_json_result(
data=False, message="Update failure!", code=settings.RetCode.EXCEPTION_ERROR
)
@manager.route("/info", methods=["GET"])
@login_required
def user_profile():
"""
Get user profile information.
---
tags:
- User
security:
- ApiKeyAuth: []
responses:
200:
description: User profile retrieved successfully.
schema:
type: object
properties:
id:
type: string
description: User ID.
nickname:
type: string
description: User nickname.
email:
type: string
description: User email.
"""
return get_json_result(data=current_user.to_dict())
def rollback_user_registration(user_id):
try:
UserService.delete_by_id(user_id)
except Exception as e:
except Exception:
pass
try:
TenantService.delete_by_id(user_id)
except Exception as e:
except Exception:
pass
try:
u = UserTenantService.query(tenant_id=user_id)
if u:
UserTenantService.delete_by_id(u[0].id)
except Exception as e:
except Exception:
pass
try:
TenantLLM.delete().where(TenantLLM.tenant_id == user_id).execute()
except Exception as e:
except Exception:
pass
@ -305,18 +484,18 @@ def user_register(user_id, user):
tenant = {
"id": user_id,
"name": user["nickname"] + "s Kingdom",
"llm_id": CHAT_MDL,
"embd_id": EMBEDDING_MDL,
"asr_id": ASR_MDL,
"parser_ids": PARSERS,
"img2txt_id": IMAGE2TEXT_MDL,
"rerank_id": RERANK_MDL
"llm_id": settings.CHAT_MDL,
"embd_id": settings.EMBEDDING_MDL,
"asr_id": settings.ASR_MDL,
"parser_ids": settings.PARSERS,
"img2txt_id": settings.IMAGE2TEXT_MDL,
"rerank_id": settings.RERANK_MDL,
}
usr_tenant = {
"tenant_id": user_id,
"user_id": user_id,
"invited_by": user_id,
"role": UserTenantRole.OWNER
"role": UserTenantRole.OWNER,
}
file_id = get_uuid()
file = {
@ -330,14 +509,18 @@ def user_register(user_id, user):
"location": "",
}
tenant_llm = []
for llm in LLMService.query(fid=LLM_FACTORY):
tenant_llm.append({"tenant_id": user_id,
"llm_factory": LLM_FACTORY,
"llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": API_KEY,
"api_base": LLM_BASE_URL
})
for llm in LLMService.query(fid=settings.LLM_FACTORY):
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": settings.LLM_FACTORY,
"llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": settings.API_KEY,
"api_base": settings.LLM_BASE_URL,
"max_tokens": llm.max_tokens if llm.max_tokens else 8192
}
)
if not UserService.save(**user):
return
@ -351,21 +534,52 @@ def user_register(user_id, user):
@manager.route("/register", methods=["POST"])
@validate_request("nickname", "email", "password")
def user_add():
"""
Register a new user.
---
tags:
- User
parameters:
- in: body
name: body
description: Registration details.
required: true
schema:
type: object
properties:
nickname:
type: string
description: User nickname.
email:
type: string
description: User email.
password:
type: string
description: User password.
responses:
200:
description: Registration successful.
schema:
type: object
"""
req = request.json
email_address = req["email"]
# Validate the email address
if not re.match(r"^[\w\._-]+@([\w_-]+\.)+[\w-]{2,5}$", email_address):
return get_json_result(data=False,
retmsg=f'Invalid email address: {email_address}!',
retcode=RetCode.OPERATING_ERROR)
return get_json_result(
data=False,
message=f"Invalid email address: {email_address}!",
code=settings.RetCode.OPERATING_ERROR,
)
# Check if the email address is already used
if UserService.query(email=email_address):
return get_json_result(
data=False,
retmsg=f'Email: {email_address} has already registered!',
retcode=RetCode.OPERATING_ERROR)
message=f"Email: {email_address} has already registered!",
code=settings.RetCode.OPERATING_ERROR,
)
# Construct user info data
nickname = req["nickname"]
@ -383,29 +597,59 @@ def user_add():
try:
users = user_register(user_id, user_dict)
if not users:
raise Exception(f'Fail to register {email_address}.')
raise Exception(f"Fail to register {email_address}.")
if len(users) > 1:
raise Exception(f'Same email: {email_address} exists!')
raise Exception(f"Same email: {email_address} exists!")
user = users[0]
login_user(user)
return construct_response(data=user.to_json(),
auth=user.get_id(),
retmsg=f"{nickname}, welcome aboard!")
return construct_response(
data=user.to_json(),
auth=user.get_id(),
message=f"{nickname}, welcome aboard!",
)
except Exception as e:
rollback_user_registration(user_id)
stat_logger.exception(e)
return get_json_result(data=False,
retmsg=f'User registration failure, error: {str(e)}',
retcode=RetCode.EXCEPTION_ERROR)
logging.exception(e)
return get_json_result(
data=False,
message=f"User registration failure, error: {str(e)}",
code=settings.RetCode.EXCEPTION_ERROR,
)
@manager.route("/tenant_info", methods=["GET"])
@login_required
def tenant_info():
"""
Get tenant information.
---
tags:
- Tenant
security:
- ApiKeyAuth: []
responses:
200:
description: Tenant information retrieved successfully.
schema:
type: object
properties:
tenant_id:
type: string
description: Tenant ID.
name:
type: string
description: Tenant name.
llm_id:
type: string
description: LLM ID.
embd_id:
type: string
description: Embedding model ID.
"""
try:
tenants = TenantService.get_info_by(current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
return get_data_error_result(message="Tenant not found!")
return get_json_result(data=tenants[0])
except Exception as e:
return server_error_response(e)
@ -415,10 +659,45 @@ def tenant_info():
@login_required
@validate_request("tenant_id", "asr_id", "embd_id", "img2txt_id", "llm_id")
def set_tenant_info():
"""
Update tenant information.
---
tags:
- Tenant
security:
- ApiKeyAuth: []
parameters:
- in: body
name: body
description: Tenant information to update.
required: true
schema:
type: object
properties:
tenant_id:
type: string
description: Tenant ID.
llm_id:
type: string
description: LLM ID.
embd_id:
type: string
description: Embedding model ID.
asr_id:
type: string
description: ASR model ID.
img2txt_id:
type: string
description: Image to Text model ID.
responses:
200:
description: Tenant information updated successfully.
schema:
type: object
"""
req = request.json
try:
tid = req["tenant_id"]
del req["tenant_id"]
tid = req.pop("tenant_id")
TenantService.update_by_id(tid, req)
return get_json_result(data=True)
except Exception as e:

View File

@ -15,4 +15,11 @@
NAME_LENGTH_LIMIT = 2 ** 10
IMG_BASE64_PREFIX = 'data:image/png;base64,'
IMG_BASE64_PREFIX = 'data:image/png;base64,'
SERVICE_CONF = "service_conf.yaml"
API_VERSION = "v1"
RAG_FLOW_SERVICE_NAME = "ragflow"
REQUEST_WAIT_SEC = 2
REQUEST_MAX_WAIT_SEC = 300

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import inspect
import os
import sys
@ -29,12 +30,11 @@ from peewee import (
Field, Model, Metadata
)
from playhouse.pool import PooledMySQLDatabase, PooledPostgresqlDatabase
from api.db import SerializedType, ParserType
from api.settings import DATABASE, stat_logger, SECRET_KEY, DATABASE_TYPE
from api.utils.log_utils import getLogger
from api import utils
LOGGER = getLogger()
from api.db import SerializedType, ParserType
from api import settings
from api import utils
def singleton(cls, *args, **kw):
@ -65,7 +65,7 @@ class TextFieldType(Enum):
class LongTextField(TextField):
field_type = TextFieldType[DATABASE_TYPE.upper()].value
field_type = TextFieldType[settings.DATABASE_TYPE.upper()].value
class JSONField(LongTextField):
@ -272,6 +272,7 @@ class JsonSerializedField(SerializedField):
super(JsonSerializedField, self).__init__(serialized_type=SerializedType.JSON, object_hook=object_hook,
object_pairs_hook=object_pairs_hook, **kwargs)
class PooledDatabase(Enum):
MYSQL = PooledMySQLDatabase
POSTGRES = PooledPostgresqlDatabase
@ -285,10 +286,11 @@ class DatabaseMigrator(Enum):
@singleton
class BaseDataBase:
def __init__(self):
database_config = DATABASE.copy()
database_config = settings.DATABASE.copy()
db_name = database_config.pop("name")
self.database_connection = PooledDatabase[DATABASE_TYPE.upper()].value(db_name, **database_config)
stat_logger.info('init database on cluster mode successfully')
self.database_connection = PooledDatabase[settings.DATABASE_TYPE.upper()].value(db_name, **database_config)
logging.info('init database on cluster mode successfully')
class PostgresDatabaseLock:
def __init__(self, lock_name, timeout=10, db=None):
@ -334,6 +336,7 @@ class PostgresDatabaseLock:
return magic
class MysqlDatabaseLock:
def __init__(self, lock_name, timeout=10, db=None):
self.lock_name = lock_name
@ -388,7 +391,7 @@ class DatabaseLock(Enum):
DB = BaseDataBase().database_connection
DB.lock = DatabaseLock[DATABASE_TYPE.upper()].value
DB.lock = DatabaseLock[settings.DATABASE_TYPE.upper()].value
def close_connection():
@ -396,7 +399,7 @@ def close_connection():
if DB:
DB.close_stale(age=30)
except Exception as e:
LOGGER.exception(e)
logging.exception(e)
class DataBaseModel(BaseModel):
@ -412,15 +415,15 @@ def init_database_tables(alter_fields=[]):
for name, obj in members:
if obj != DataBaseModel and issubclass(obj, DataBaseModel):
table_objs.append(obj)
LOGGER.info(f"start create table {obj.__name__}")
logging.debug(f"start create table {obj.__name__}")
try:
obj.create_table()
LOGGER.info(f"create table success: {obj.__name__}")
logging.debug(f"create table success: {obj.__name__}")
except Exception as e:
LOGGER.exception(e)
logging.exception(e)
create_failed_list.append(obj.__name__)
if create_failed_list:
LOGGER.info(f"create tables failed: {create_failed_list}")
logging.error(f"create tables failed: {create_failed_list}")
raise Exception(f"create tables failed: {create_failed_list}")
migrate_db()
@ -470,7 +473,7 @@ class User(DataBaseModel, UserMixin):
status = CharField(
max_length=1,
null=True,
help_text="is it validate(0: wasted1: validate)",
help_text="is it validate(0: wasted, 1: validate)",
default="1",
index=True)
is_superuser = BooleanField(null=True, help_text="is root", default=False, index=True)
@ -479,7 +482,7 @@ class User(DataBaseModel, UserMixin):
return self.email
def get_id(self):
jwt = Serializer(secret_key=SECRET_KEY)
jwt = Serializer(secret_key=settings.SECRET_KEY)
return jwt.dumps(str(self.access_token))
class Meta:
@ -525,7 +528,7 @@ class Tenant(DataBaseModel):
status = CharField(
max_length=1,
null=True,
help_text="is it validate(0: wasted1: validate)",
help_text="is it validate(0: wasted, 1: validate)",
default="1",
index=True)
@ -542,7 +545,7 @@ class UserTenant(DataBaseModel):
status = CharField(
max_length=1,
null=True,
help_text="is it validate(0: wasted1: validate)",
help_text="is it validate(0: wasted, 1: validate)",
default="1",
index=True)
@ -559,7 +562,7 @@ class InvitationCode(DataBaseModel):
status = CharField(
max_length=1,
null=True,
help_text="is it validate(0: wasted1: validate)",
help_text="is it validate(0: wasted, 1: validate)",
default="1",
index=True)
@ -582,7 +585,7 @@ class LLMFactories(DataBaseModel):
status = CharField(
max_length=1,
null=True,
help_text="is it validate(0: wasted1: validate)",
help_text="is it validate(0: wasted, 1: validate)",
default="1",
index=True)
@ -616,7 +619,7 @@ class LLM(DataBaseModel):
status = CharField(
max_length=1,
null=True,
help_text="is it validate(0: wasted1: validate)",
help_text="is it validate(0: wasted, 1: validate)",
default="1",
index=True)
@ -648,7 +651,7 @@ class TenantLLM(DataBaseModel):
index=True)
api_key = CharField(max_length=1024, null=True, help_text="API KEY", index=True)
api_base = CharField(max_length=255, null=True, help_text="API Base")
max_tokens = IntegerField(default=8192, index=True)
used_tokens = IntegerField(default=0, index=True)
def __str__(self):
@ -703,7 +706,7 @@ class Knowledgebase(DataBaseModel):
status = CharField(
max_length=1,
null=True,
help_text="is it validate(0: wasted1: validate)",
help_text="is it validate(0: wasted, 1: validate)",
default="1",
index=True)
@ -767,7 +770,7 @@ class Document(DataBaseModel):
status = CharField(
max_length=1,
null=True,
help_text="is it validate(0: wasted1: validate)",
help_text="is it validate(0: wasted, 1: validate)",
default="1",
index=True)
@ -840,7 +843,7 @@ class Task(DataBaseModel):
doc_id = CharField(max_length=32, null=False, index=True)
from_page = IntegerField(default=0)
to_page = IntegerField(default=-1)
to_page = IntegerField(default=100000000)
begin_at = DateTimeField(null=True, index=True)
process_duation = FloatField(default=0)
@ -879,8 +882,10 @@ class Dialog(DataBaseModel):
default="simple",
help_text="simple|advanced",
index=True)
prompt_config = JSONField(null=False, default={"system": "", "prologue": "Hi! I'm your assistant, what can I do for you?",
"parameters": [], "empty_response": "Sorry! No relevant content was found in the knowledge base!"})
prompt_config = JSONField(null=False,
default={"system": "", "prologue": "Hi! I'm your assistant, what can I do for you?",
"parameters": [],
"empty_response": "Sorry! No relevant content was found in the knowledge base!"})
similarity_threshold = FloatField(default=0.2)
vector_similarity_weight = FloatField(default=0.3)
@ -894,7 +899,7 @@ class Dialog(DataBaseModel):
null=False,
default="1",
help_text="it needs to insert reference index into answer or not")
rerank_id = CharField(
max_length=128,
null=False,
@ -904,7 +909,7 @@ class Dialog(DataBaseModel):
status = CharField(
max_length=1,
null=True,
help_text="is it validate(0: wasted1: validate)",
help_text="is it validate(0: wasted, 1: validate)",
default="1",
index=True)
@ -980,14 +985,14 @@ class CanvasTemplate(DataBaseModel):
def migrate_db():
with DB.transaction():
migrator = DatabaseMigrator[DATABASE_TYPE.upper()].value(DB)
migrator = DatabaseMigrator[settings.DATABASE_TYPE.upper()].value(DB)
try:
migrate(
migrator.add_column('file', 'source_type', CharField(max_length=128, null=False, default="",
help_text="where dose this document come from",
index=True))
)
except Exception as e:
except Exception:
pass
try:
migrate(
@ -996,7 +1001,7 @@ def migrate_db():
help_text="default rerank model ID"))
)
except Exception as e:
except Exception:
pass
try:
migrate(
@ -1004,59 +1009,64 @@ def migrate_db():
help_text="default rerank model ID"))
)
except Exception as e:
except Exception:
pass
try:
migrate(
migrator.add_column('dialog', 'top_k', IntegerField(default=1024))
)
except Exception as e:
except Exception:
pass
try:
migrate(
migrator.alter_column_type('tenant_llm', 'api_key',
CharField(max_length=1024, null=True, help_text="API KEY", index=True))
)
except Exception as e:
except Exception:
pass
try:
migrate(
migrator.add_column('api_token', 'source',
CharField(max_length=16, null=True, help_text="none|agent|dialog", index=True))
)
except Exception as e:
except Exception:
pass
try:
migrate(
migrator.add_column("tenant","tts_id",
CharField(max_length=256,null=True,help_text="default tts model ID",index=True))
migrator.add_column("tenant", "tts_id",
CharField(max_length=256, null=True, help_text="default tts model ID", index=True))
)
except Exception as e:
except Exception:
pass
try:
migrate(
migrator.add_column('api_4_conversation', 'source',
CharField(max_length=16, null=True, help_text="none|agent|dialog", index=True))
)
except Exception as e:
except Exception:
pass
try:
DB.execute_sql('ALTER TABLE llm DROP PRIMARY KEY;')
DB.execute_sql('ALTER TABLE llm ADD PRIMARY KEY (llm_name,fid);')
except Exception as e:
except Exception:
pass
try:
migrate(
migrator.add_column('task', 'retry_count', IntegerField(default=0))
)
except Exception as e:
except Exception:
pass
try:
migrate(
migrator.alter_column_type('api_token', 'dialog_id',
CharField(max_length=32, null=True, index=True))
)
except Exception as e:
except Exception:
pass
try:
migrate(
migrator.add_column("tenant_llm","max_tokens",IntegerField(default=8192,index=True))
)
except Exception:
pass

View File

@ -15,19 +15,12 @@
#
import operator
from functools import reduce
from typing import Dict, Type, Union
from playhouse.pool import PooledMySQLDatabase
from api.utils import current_timestamp, timestamp_to_date
from api.db.db_models import DB, DataBaseModel
from api.db.runtime_config import RuntimeConfig
from api.utils.log_utils import getLogger
from enum import Enum
LOGGER = getLogger()
@DB.connection_context()
@ -93,7 +86,7 @@ supported_operators = {
def query_dict2expression(
model: Type[DataBaseModel], query: Dict[str, Union[bool, int, str, list, tuple]]):
model: type[DataBaseModel], query: dict[str, bool | int | str | list | tuple]):
expression = []
for field, value in query.items():
@ -111,8 +104,8 @@ def query_dict2expression(
return reduce(operator.iand, expression)
def query_db(model: Type[DataBaseModel], limit: int = 0, offset: int = 0,
query: dict = None, order_by: Union[str, list, tuple] = None):
def query_db(model: type[DataBaseModel], limit: int = 0, offset: int = 0,
query: dict = None, order_by: str | list | tuple | None = None):
data = model.select()
if query:
data = data.where(query_dict2expression(model, query))

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import base64
import json
import os
@ -28,7 +29,7 @@ from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
from api.db.services.user_service import TenantService, UserTenantService
from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL
from api import settings
from api.utils.file_utils import get_project_base_directory
@ -50,11 +51,11 @@ def init_superuser():
tenant = {
"id": user_info["id"],
"name": user_info["nickname"] + "s Kingdom",
"llm_id": CHAT_MDL,
"embd_id": EMBEDDING_MDL,
"asr_id": ASR_MDL,
"parser_ids": PARSERS,
"img2txt_id": IMAGE2TEXT_MDL
"llm_id": settings.CHAT_MDL,
"embd_id": settings.EMBEDDING_MDL,
"asr_id": settings.ASR_MDL,
"parser_ids": settings.PARSERS,
"img2txt_id": settings.IMAGE2TEXT_MDL
}
usr_tenant = {
"tenant_id": user_info["id"],
@ -63,42 +64,43 @@ def init_superuser():
"role": UserTenantRole.OWNER
}
tenant_llm = []
for llm in LLMService.query(fid=LLM_FACTORY):
for llm in LLMService.query(fid=settings.LLM_FACTORY):
tenant_llm.append(
{"tenant_id": user_info["id"], "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type,
"api_key": API_KEY, "api_base": LLM_BASE_URL})
{"tenant_id": user_info["id"], "llm_factory": settings.LLM_FACTORY, "llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": settings.API_KEY, "api_base": settings.LLM_BASE_URL})
if not UserService.save(**user_info):
print("\033[93m【ERROR】\033[0mcan't init admin.")
logging.error("can't init admin.")
return
TenantService.insert(**tenant)
UserTenantService.insert(**usr_tenant)
TenantLLMService.insert_many(tenant_llm)
print(
"【INFO】Super user initialized. \033[93memail: admin@ragflow.io, password: admin\033[0m. Changing the password after logining is strongly recomanded.")
logging.info(
"Super user initialized. email: admin@ragflow.io, password: admin. Changing the password after login is strongly recommended.")
chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
msg = chat_mdl.chat(system="", history=[
{"role": "user", "content": "Hello!"}], gen_conf={})
{"role": "user", "content": "Hello!"}], gen_conf={})
if msg.find("ERROR: ") == 0:
print(
"\33[91m【ERROR】\33[0m: ",
logging.error(
"'{}' dosen't work. {}".format(
tenant["llm_id"],
msg))
embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
v, c = embd_mdl.encode(["Hello!"])
if c == 0:
print(
"\33[91m【ERROR】\33[0m:",
" '{}' dosen't work!".format(
logging.error(
"'{}' dosen't work!".format(
tenant["embd_id"]))
def init_llm_factory():
try:
LLMService.filter_delete([(LLM.fid == "MiniMax" or LLM.fid == "Minimax")])
except Exception as e:
LLMService.filter_delete([(LLM.fid == "cohere")])
LLMFactoriesService.filter_delete([LLMFactories.name == "cohere"])
except Exception:
pass
factory_llm_infos = json.load(
@ -111,14 +113,14 @@ def init_llm_factory():
llm_infos = factory_llm_info.pop("llm")
try:
LLMFactoriesService.save(**factory_llm_info)
except Exception as e:
except Exception:
pass
LLMService.filter_delete([LLM.fid == factory_llm_info["name"]])
for llm_info in llm_infos:
llm_info["fid"] = factory_llm_info["name"]
try:
LLMService.save(**llm_info)
except Exception as e:
except Exception:
pass
LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
@ -129,6 +131,7 @@ def init_llm_factory():
LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
LLMService.filter_delete([LLMService.model.fid == "QAnything"])
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "cohere"], {"llm_factory": "Cohere"})
TenantService.filter_update([1 == 1], {
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email"})
## insert openai two embedding models to the current openai user.
@ -145,7 +148,7 @@ def init_llm_factory():
row = deepcopy(row)
row["llm_name"] = "text-embedding-3-large"
TenantLLMService.save(**row)
except Exception as e:
except Exception:
pass
break
for kb_id in KnowledgebaseService.get_all_ids():
@ -169,20 +172,19 @@ def add_graph_templates():
CanvasTemplateService.save(**cnvs)
except:
CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
except Exception as e:
print("Add graph templates error: ", e)
print("------------", flush=True)
except Exception:
logging.exception("Add graph templates error: ")
def init_web_data():
start_time = time.time()
init_llm_factory()
#if not UserService.get_all().count():
# if not UserService.get_all().count():
# init_superuser()
add_graph_templates()
print("init web data success:{}".format(time.time() - start_time))
logging.info("init web data success:{}".format(time.time() - start_time))
if __name__ == '__main__':

View File

@ -1,21 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import operator
import time
import typing
from api.utils.log_utils import sql_logger
import peewee

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.versions import get_versions
from api.versions import get_ragflow_version
from .reload_config_base import ReloadConfigBase
@ -35,7 +35,7 @@ class RuntimeConfig(ReloadConfigBase):
@classmethod
def init_env(cls):
cls.ENV.update(get_versions())
cls.ENV.update({"version": get_ragflow_version()})
@classmethod
def load_config_manager(cls):

View File

@ -22,5 +22,6 @@ from api.db.services.common_service import CommonService
class CanvasTemplateService(CommonService):
model = CanvasTemplate
class UserCanvasService(CommonService):
model = UserCanvas

View File

@ -13,20 +13,21 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import binascii
import os
import json
import re
from copy import deepcopy
from timeit import default_timer as timer
import datetime
from datetime import timedelta
from api.db import LLMType, ParserType,StatusEnum
from api.db.db_models import Dialog, Conversation,DB
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.settings import chat_logger, retrievaler, kg_retrievaler
from api import settings
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
@ -97,7 +98,8 @@ def message_fit_in(msg, max_length=4000):
return c, msg
msg_ = [m for m in msg[:-1] if m["role"] == "system"]
msg_.append(msg[-1])
if len(msg) > 1:
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:
@ -151,7 +153,7 @@ def chat(dialog, messages, stream=True, **kwargs):
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
retr = retrievaler if not is_kg else kg_retrievaler
retr = settings.retrievaler if not is_kg else settings.kg_retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
@ -162,6 +164,9 @@ def chat(dialog, messages, stream=True, **kwargs):
attachments.extend(m["doc_ids"])
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
if not embd_mdl:
raise LookupError("Embedding model(%s) not found" % embd_nms[0])
if llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
@ -174,7 +179,7 @@ def chat(dialog, messages, stream=True, **kwargs):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
# try to use sql if field mapping is good to go
if field_map:
chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
if ans:
yield ans
@ -193,6 +198,8 @@ def chat(dialog, messages, stream=True, **kwargs):
questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
else:
questions = questions[-1:]
refineQ_tm = timer()
keyword_tm = timer()
rerank_mdl = None
if dialog.rerank_id:
@ -205,6 +212,7 @@ def chat(dialog, messages, stream=True, **kwargs):
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
keyword_tm = timer()
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
@ -213,7 +221,7 @@ def chat(dialog, messages, stream=True, **kwargs):
doc_ids=attachments,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
chat_logger.info(
logging.debug(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
retrieval_tm = timer()
@ -264,7 +272,9 @@ def chat(dialog, messages, stream=True, **kwargs):
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
done_tm = timer()
prompt += "\n\n### Elapsed\n - Retrieval: %.1f ms\n - LLM: %.1f ms"%((retrieval_tm-st)*1000, (done_tm-st)*1000)
prompt += "\n\n### Elapsed\n - Refine Question: %.1f ms\n - Keywords: %.1f ms\n - Retrieval: %.1f ms\n - LLM: %.1f ms" % (
(refineQ_tm - st) * 1000, (keyword_tm - refineQ_tm) * 1000, (retrieval_tm - keyword_tm) * 1000,
(done_tm - retrieval_tm) * 1000)
return {"answer": answer, "reference": refs, "prompt": prompt}
if stream:
@ -283,7 +293,7 @@ def chat(dialog, messages, stream=True, **kwargs):
yield decorate_answer(answer)
else:
answer = chat_mdl.chat(prompt, msg[1:], gen_conf)
chat_logger.info("User: {}|Assistant: {}".format(
logging.debug("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
res = decorate_answer(answer)
res["audio_binary"] = tts(tts_mdl, answer)
@ -311,8 +321,7 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
nonlocal sys_prompt, user_promt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
"temperature": 0.06})
print(user_promt, sql)
chat_logger.info(f"{question}”==>{user_promt} get SQL: {sql}")
logging.debug(f"{question} ==> {user_promt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
@ -332,11 +341,9 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
print(f"{question} get SQL(refined): {sql}")
chat_logger.info(f"{question}” get SQL(refined): {sql}")
logging.debug(f"{question} get SQL(refined): {sql}")
tried_times += 1
return retrievaler.sql_retrieval(sql, format="json"), sql
return settings.retrievaler.sql_retrieval(sql, format="json"), sql
tbl, sql = get_table()
if tbl is None:
@ -363,10 +370,9 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
question, sql, tbl["error"]
)
tbl, sql = get_table()
chat_logger.info("TRY it again: {}".format(sql))
logging.debug("TRY it again: {}".format(sql))
chat_logger.info("GET table: {}".format(tbl))
print(tbl)
logging.debug("GET table: {}".format(tbl))
if tbl.get("error") or len(tbl["rows"]) == 0:
return None
@ -388,6 +394,7 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else:
@ -395,7 +402,7 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
if not docid_idx or not docnm_idx:
chat_logger.warning("SQL missing field: " + sql)
logging.warning("SQL missing field: " + sql)
return {
"answer": "\n".join([clmns, line, rows]),
"reference": {"chunks": [], "doc_aggs": []},
@ -520,9 +527,16 @@ def full_question(tenant_id, llm_id, messages):
if m["role"] not in ["user", "assistant"]: continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conv = "\n".join(conv)
today = datetime.date.today().isoformat()
yesterday = (datetime.date.today() - timedelta(days=1)).isoformat()
tomorrow = (datetime.date.today() + timedelta(days=1)).isoformat()
prompt = f"""
Role: A helpful assistant
Task: Generate a full user question that would follow the conversation.
Task and steps:
1. Generate a full user question that would follow the conversation.
2. If the user's question involves relative date, you need to convert it into absolute date based on the current date, which is {today}. For example: 'yesterday' would be converted to {yesterday}.
Requirements & Restrictions:
- Text generated MUST be in the same language of the original user's question.
- If the user's latest question is completely, don't do anything, just return the original question.
@ -551,6 +565,14 @@ User: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
------------
# Example 3
## Conversation
USER: What's the weather today in London?
ASSISTANT: Cloudy.
USER: What's about tomorrow in Rochester?
###############
Output: What's the weather in Rochester on {tomorrow}?
######################
# Real Data
@ -572,16 +594,17 @@ def tts(tts_mdl, text):
def ask(question, kb_ids, tenant_id):
kbs = KnowledgebaseService.get_by_ids(kb_ids)
tenant_ids = [kb.tenant_id for kb in kbs]
embd_nms = list(set([kb.embd_id for kb in kbs]))
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
retr = retrievaler if not is_kg else kg_retrievaler
retr = settings.retrievaler if not is_kg else settings.kg_retrievaler
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_nms[0])
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
max_tokens = chat_mdl.max_length
kbinfos = retr.retrieval(question, embd_mdl, tenant_id, kb_ids, 1, 12, 0.1, 0.3, aggs=False)
kbinfos = retr.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
used_token_count = 0

View File

@ -13,27 +13,23 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import hashlib
import json
import os
import random
import re
import traceback
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from datetime import datetime
from io import BytesIO
from elasticsearch_dsl import Q
from peewee import fn
from api.db.db_utils import bulk_insert_into_db
from api.settings import stat_logger
from api import settings
from api.utils import current_timestamp, get_format_time, get_uuid
from api.utils.file_utils import get_project_base_directory
from graphrag.mind_map_extractor import MindMapExtractor
from rag.settings import SVR_QUEUE_NAME
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.storage_factory import STORAGE_IMPL
from rag.nlp import search, rag_tokenizer
@ -52,11 +48,15 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def get_list(cls, kb_id, page_number, items_per_page,
orderby, desc, keywords, id):
docs =cls.model.select().where(cls.model.kb_id==kb_id)
orderby, desc, keywords, id, name):
docs = cls.model.select().where(cls.model.kb_id == kb_id)
if id:
docs = docs.where(
cls.model.id== id )
cls.model.id == id)
if name:
docs = docs.where(
cls.model.name == name
)
if keywords:
docs = docs.where(
fn.LOWER(cls.model.name).contains(keywords.lower())
@ -70,7 +70,6 @@ class DocumentService(CommonService):
count = docs.count()
return list(docs.dicts()), count
@classmethod
@DB.connection_context()
def get_by_kb_id(cls, kb_id, page_number, items_per_page,
@ -92,35 +91,6 @@ class DocumentService(CommonService):
return list(docs.dicts()), count
@classmethod
@DB.connection_context()
def list_documents_in_dataset(cls, dataset_id, offset, count, order_by, descend, keywords):
if keywords:
docs = cls.model.select().where(
(cls.model.kb_id == dataset_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
else:
docs = cls.model.select().where(cls.model.kb_id == dataset_id)
total = docs.count()
if descend == 'True':
docs = docs.order_by(cls.model.getter_by(order_by).desc())
if descend == 'False':
docs = docs.order_by(cls.model.getter_by(order_by).asc())
docs = list(docs.dicts())
docs_length = len(docs)
if offset < 0 or offset > docs_length:
raise IndexError("Offset is out of the valid range.")
if count == -1:
return docs[offset:], total
return docs[offset:offset + count], total
@classmethod
@DB.connection_context()
def insert(cls, doc):
@ -138,8 +108,7 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def remove_document(cls, doc, tenant_id):
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
cls.clear_chunk_num(doc.id)
return cls.delete_by_id(doc.id)
@ -162,26 +131,27 @@ class DocumentService(CommonService):
cls.model.update_time]
docs = cls.model.select(*fields) \
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id)) \
.where(
cls.model.status == StatusEnum.VALID.value,
~(cls.model.type == FileType.VIRTUAL.value),
cls.model.progress == 0,
cls.model.update_time >= current_timestamp() - 1000 * 600,
cls.model.run == TaskStatus.RUNNING.value)\
cls.model.status == StatusEnum.VALID.value,
~(cls.model.type == FileType.VIRTUAL.value),
cls.model.progress == 0,
cls.model.update_time >= current_timestamp() - 1000 * 600,
cls.model.run == TaskStatus.RUNNING.value) \
.order_by(cls.model.update_time.asc())
return list(docs.dicts())
@classmethod
@DB.connection_context()
def get_unfinished_docs(cls):
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg, cls.model.run]
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg,
cls.model.run]
docs = cls.model.select(*fields) \
.where(
cls.model.status == StatusEnum.VALID.value,
~(cls.model.type == FileType.VIRTUAL.value),
cls.model.progress < 1,
cls.model.progress > 0)
cls.model.status == StatusEnum.VALID.value,
~(cls.model.type == FileType.VIRTUAL.value),
cls.model.progress < 1,
cls.model.progress > 0)
return list(docs.dicts())
@classmethod
@ -196,12 +166,12 @@ class DocumentService(CommonService):
"Document not found which is supposed to be there")
num = Knowledgebase.update(
token_num=Knowledgebase.token_num +
token_num,
token_num,
chunk_num=Knowledgebase.chunk_num +
chunk_num).where(
chunk_num).where(
Knowledgebase.id == kb_id).execute()
return num
@classmethod
@DB.connection_context()
def decrement_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
@ -214,13 +184,13 @@ class DocumentService(CommonService):
"Document not found which is supposed to be there")
num = Knowledgebase.update(
token_num=Knowledgebase.token_num -
token_num,
token_num,
chunk_num=Knowledgebase.chunk_num -
chunk_num
chunk_num
).where(
Knowledgebase.id == kb_id).execute()
return num
@classmethod
@DB.connection_context()
def clear_chunk_num(cls, doc_id):
@ -229,10 +199,10 @@ class DocumentService(CommonService):
num = Knowledgebase.update(
token_num=Knowledgebase.token_num -
doc.token_num,
doc.token_num,
chunk_num=Knowledgebase.chunk_num -
doc.chunk_num,
doc_num=Knowledgebase.doc_num-1
doc.chunk_num,
doc_num=Knowledgebase.doc_num - 1
).where(
Knowledgebase.id == doc.kb_id).execute()
return num
@ -243,13 +213,22 @@ class DocumentService(CommonService):
docs = cls.model.select(
Knowledgebase.tenant_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
return
return docs[0]["tenant_id"]
@classmethod
@DB.connection_context()
def get_knowledgebase_id(cls, doc_id):
docs = cls.model.select(cls.model.kb_id).where(cls.model.id == doc_id)
docs = docs.dicts()
if not docs:
return
return docs[0]["kb_id"]
@classmethod
@DB.connection_context()
def get_tenant_id_by_name(cls, name):
@ -270,8 +249,8 @@ class DocumentService(CommonService):
cls.model.id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)
).join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == doc_id, UserTenant.user_id == user_id).paginate(0, 1)
).join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == doc_id, UserTenant.user_id == user_id).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
@ -284,7 +263,7 @@ class DocumentService(CommonService):
cls.model.id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)
).where(cls.model.id == doc_id, Knowledgebase.created_by == user_id).paginate(0, 1)
).where(cls.model.id == doc_id, Knowledgebase.created_by == user_id).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
@ -296,13 +275,13 @@ class DocumentService(CommonService):
docs = cls.model.select(
Knowledgebase.embd_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
return
return docs[0]["embd_id"]
@classmethod
@DB.connection_context()
def get_doc_id_by_doc_name(cls, doc_name):
@ -338,6 +317,7 @@ class DocumentService(CommonService):
dfs_update(old[k], v)
else:
old[k] = v
dfs_update(d.parser_config, config)
cls.update_by_id(id, {"parser_config": d.parser_config})
@ -354,7 +334,7 @@ class DocumentService(CommonService):
def begin2parse(cls, docid):
cls.update_by_id(
docid, {"progress": random.random() * 1 / 100.,
"progress_msg": "Task dispatched...",
"progress_msg": "Task is queued...",
"process_begin_at": get_format_time()
})
@ -372,7 +352,7 @@ class DocumentService(CommonService):
finished = True
bad = 0
e, doc = DocumentService.get_by_id(d["id"])
status = doc.run#TaskStatus.RUNNING.value
status = doc.run # TaskStatus.RUNNING.value
for t in tsks:
if 0 <= t.progress < 1:
finished = False
@ -386,9 +366,10 @@ class DocumentService(CommonService):
prg = -1
status = TaskStatus.FAIL.value
elif finished:
if d["parser_config"].get("raptor", {}).get("use_raptor") and d["progress_msg"].lower().find(" raptor")<0:
if d["parser_config"].get("raptor", {}).get("use_raptor") and d["progress_msg"].lower().find(
" raptor") < 0:
queue_raptor_tasks(d)
prg = 0.98 * len(tsks)/(len(tsks)+1)
prg = 0.98 * len(tsks) / (len(tsks) + 1)
msg.append("------ RAPTOR -------")
else:
status = TaskStatus.DONE.value
@ -406,7 +387,7 @@ class DocumentService(CommonService):
cls.update_by_id(d["id"], info)
except Exception as e:
if str(e).find("'0'") < 0:
stat_logger.error("fetch task exception:" + str(e))
logging.exception("fetch task exception")
@classmethod
@DB.connection_context()
@ -414,14 +395,13 @@ class DocumentService(CommonService):
return len(cls.model.select(cls.model.id).where(
cls.model.kb_id == kb_id).dicts())
@classmethod
@DB.connection_context()
def do_cancel(cls, doc_id):
try:
_, doc = DocumentService.get_by_id(doc_id)
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
except Exception as e:
except Exception:
pass
return False
@ -434,7 +414,7 @@ def queue_raptor_tasks(doc):
"doc_id": doc["id"],
"from_page": 0,
"to_page": -1,
"progress_msg": "Start to do RAPTOR (Recursive Abstractive Processing For Tree-Organized Retrieval)."
"progress_msg": "Start to do RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval)."
}
task = new_task()
@ -462,11 +442,6 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
if not e:
raise LookupError("Can't find this knowledgebase!")
idxnm = search.index_name(kb.tenant_id)
if not ELASTICSEARCH.indexExist(idxnm):
ELASTICSEARCH.createIdx(idxnm, json.load(
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
err, files = FileService.upload_document(kb, file_objs, user_id)
@ -510,7 +485,7 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
md5 = hashlib.md5()
md5.update((ck["content_with_weight"] +
str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["id"] = md5.hexdigest()
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.now().timestamp()
if not d.get("image"):
@ -523,9 +498,9 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
else:
d["image"].save(output_buffer, format='JPEG')
STORAGE_IMPL.put(kb.id, d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(kb.id, d["_id"])
del d["image"]
STORAGE_IMPL.put(kb.id, d["id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(kb.id, d["id"])
d.pop("image", None)
docs.append(d)
parser_ids = {d["id"]: d["parser_id"] for d, _ in files}
@ -544,6 +519,9 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
token_counts[doc_id] += c
return vects
idxnm = search.index_name(kb.tenant_id)
try_create_idx = True
_, tenant = TenantService.get_by_id(kb.tenant_id)
llm_bdl = LLMBundle(kb.tenant_id, LLMType.CHAT, tenant.llm_id)
for doc_id in docids:
@ -566,7 +544,7 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
"knowledge_graph_kwd": "mind_map"
})
except Exception as e:
stat_logger.error("Mind map generation error:", traceback.format_exc())
logging.exception("Mind map generation error")
vects = embedding(doc_id, [c["content_with_weight"] for c in cks])
assert len(cks) == len(vects)
@ -574,9 +552,13 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
v = vects[i]
d["q_%d_vec" % len(v)] = v
for b in range(0, len(cks), es_bulk_size):
ELASTICSEARCH.bulk(cks[b:b + es_bulk_size], idxnm)
if try_create_idx:
if not settings.docStoreConn.indexExist(idxnm, kb_id):
settings.docStoreConn.createIdx(idxnm, kb_id, len(vects[0]))
try_create_idx = False
settings.docStoreConn.insert(cks[b:b + es_bulk_size], idxnm, kb_id)
DocumentService.increment_chunk_num(
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
return [d["id"] for d,_ in files]
return [d["id"] for d, _ in files]

View File

@ -13,8 +13,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
import os
from concurrent.futures import ThreadPoolExecutor
from flask_login import current_user
from peewee import fn
@ -272,8 +275,8 @@ class FileService(CommonService):
cls.delete_folder_by_pf_id(user_id, file.id)
return cls.model.delete().where((cls.model.tenant_id == user_id)
& (cls.model.id == folder_id)).execute(),
except Exception as e:
print(e)
except Exception:
logging.exception("delete_folder_by_pf_id")
raise RuntimeError("Database error (File retrieval)!")
@classmethod
@ -321,8 +324,8 @@ class FileService(CommonService):
def move_file(cls, file_ids, folder_id):
try:
cls.filter_update((cls.model.id << file_ids, ), { 'parent_id': folder_id })
except Exception as e:
print(e)
except Exception:
logging.exception("move_file")
raise RuntimeError("Database error (File move)!")
@classmethod
@ -384,6 +387,41 @@ class FileService(CommonService):
return err, files
@staticmethod
def parse_docs(file_objs, user_id):
from rag.app import presentation, picture, naive, audio, email
def dummy(prog=None, msg=""):
pass
FACTORY = {
ParserType.PRESENTATION.value: presentation,
ParserType.PICTURE.value: picture,
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email
}
parser_config = {"chunk_token_num": 16096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
exe = ThreadPoolExecutor(max_workers=12)
threads = []
for file in file_objs:
kwargs = {
"lang": "English",
"callback": dummy,
"parser_config": parser_config,
"from_page": 0,
"to_page": 100000,
"tenant_id": user_id
}
filetype = filename_type(file.filename)
blob = file.read()
threads.append(exe.submit(FACTORY.get(FileService.get_parser(filetype, file.filename, ""), naive).chunk, file.filename, blob, **kwargs))
res = []
for th in threads:
res.append("\n".join([ck["content_with_weight"] for ck in th.result()]))
return "\n\n".join(res)
@staticmethod
def get_parser(doc_type, filename, default):
if doc_type == FileType.VISUAL:

View File

@ -68,28 +68,13 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_by_tenant_ids_by_offset(cls, joined_tenant_ids, user_id, offset, count, orderby, desc):
kbs = cls.model.select().where(
((cls.model.tenant_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.tenant_id == user_id))
& (cls.model.status == StatusEnum.VALID.value)
)
if desc:
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
else:
kbs = kbs.order_by(cls.model.getter_by(orderby).asc())
kbs = list(kbs.dicts())
kbs_length = len(kbs)
if offset < 0 or offset > kbs_length:
raise IndexError("Offset is out of the valid range.")
if count == -1:
return kbs[offset:]
return kbs[offset:offset + count]
def get_kb_ids(cls, tenant_id):
fields = [
cls.model.id,
]
kbs = cls.model.select(*fields).where(cls.model.tenant_id == tenant_id)
kb_ids = [kb.id for kb in kbs]
return kb_ids
@classmethod
@DB.connection_context()
@ -204,6 +189,22 @@ class KnowledgebaseService(CommonService):
return False
return True
@classmethod
@DB.connection_context()
def get_kb_by_id(cls, kb_id, user_id):
kbs = cls.model.select().join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == kb_id, UserTenant.user_id == user_id).paginate(0, 1)
kbs = kbs.dicts()
return list(kbs)
@classmethod
@DB.connection_context()
def get_kb_by_name(cls, kb_name, user_id):
kbs = cls.model.select().join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.name == kb_name, UserTenant.user_id == user_id).paginate(0, 1)
kbs = kbs.dicts()
return list(kbs)
@classmethod
@DB.connection_context()
def accessible4deletion(cls, kb_id, user_id):

View File

@ -13,8 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from api.db.services.user_service import TenantService
from api.settings import database_logger
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel, Seq2txtModel, TTSModel
from api.db import LLMType
from api.db.db_models import DB
@ -209,40 +209,40 @@ class LLMBundle(object):
emd, used_tokens = self.mdl.encode(texts, batch_size)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
logging.error(
"LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
return emd, used_tokens
def encode_queries(self, query: str):
emd, used_tokens = self.mdl.encode_queries(query)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
logging.error(
"LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
return emd, used_tokens
def similarity(self, query: str, texts: list):
sim, used_tokens = self.mdl.similarity(query, texts)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
logging.error(
"LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
return sim, used_tokens
def describe(self, image, max_tokens=300):
txt, used_tokens = self.mdl.describe(image, max_tokens)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
logging.error(
"LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
return txt
def transcription(self, audio):
txt, used_tokens = self.mdl.transcription(audio)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
logging.error(
"LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
return txt
def tts(self, text):
@ -250,8 +250,8 @@ class LLMBundle(object):
if isinstance(chunk,int):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, chunk, self.llm_name):
database_logger.error(
"Can't update token usage for {}/TTS".format(self.tenant_id))
logging.error(
"LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
return
yield chunk
@ -259,8 +259,8 @@ class LLMBundle(object):
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
if isinstance(txt, int) and not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
database_logger.error(
"Can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
logging.error(
"LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
return txt
def chat_streamly(self, system, history, gen_conf):
@ -268,7 +268,7 @@ class LLMBundle(object):
if isinstance(txt, int):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, txt, self.llm_name):
database_logger.error(
"Can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
logging.error(
"LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
return
yield txt

View File

@ -36,7 +36,7 @@ class TaskService(CommonService):
@classmethod
@DB.connection_context()
def get_tasks(cls, task_id):
def get_task(cls, task_id):
fields = [
cls.model.id,
cls.model.doc_id,
@ -63,7 +63,7 @@ class TaskService(CommonService):
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id)) \
.where(cls.model.id == task_id)
docs = list(docs.dicts())
if not docs: return []
if not docs: return None
msg = "\nTask has been received."
prog = random.random() / 10.
@ -77,9 +77,9 @@ class TaskService(CommonService):
).where(
cls.model.id == docs[0]["id"]).execute()
if docs[0]["retry_count"] >= 3: return []
if docs[0]["retry_count"] >= 3: return None
return docs
return docs[0]
@classmethod
@DB.connection_context()
@ -108,7 +108,7 @@ class TaskService(CommonService):
task = cls.model.get_by_id(id)
_, doc = DocumentService.get_by_id(task.doc_id)
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
except Exception as e:
except Exception:
pass
return False

View File

@ -14,7 +14,21 @@
# limitations under the License.
#
# from beartype import BeartypeConf
# from beartype.claw import beartype_all # <-- you didn't sign up for this
# beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
import logging
from api.utils.log_utils import initRootLogger
initRootLogger("ragflow_server")
for module in ["pdfminer"]:
module_logger = logging.getLogger(module)
module_logger.setLevel(logging.WARNING)
for module in ["peewee"]:
module_logger = logging.getLogger(module)
module_logger.handlers.clear()
module_logger.propagate = True
import os
import signal
import sys
@ -23,17 +37,16 @@ import traceback
from concurrent.futures import ThreadPoolExecutor
from werkzeug.serving import run_simple
from api import settings
from api.apps import app
from api.db.runtime_config import RuntimeConfig
from api.db.services.document_service import DocumentService
from api.settings import (
HOST, HTTP_PORT, access_logger, database_logger, stat_logger,
)
from api import utils
from api.db.db_models import init_database_tables as init_web_db
from api.db.init_data import init_web_data
from api.versions import get_versions
from api.versions import get_ragflow_version
from api.utils import show_configs
def update_progress():
@ -41,59 +54,67 @@ def update_progress():
time.sleep(3)
try:
DocumentService.update_progress()
except Exception as e:
stat_logger.error("update_progress exception:" + str(e))
except Exception:
logging.exception("update_progress exception")
if __name__ == '__main__':
print(r"""
logging.info(r"""
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
""", flush=True)
stat_logger.info(
""")
logging.info(
f'RAGFlow version: {get_ragflow_version()}'
)
logging.info(
f'project base: {utils.file_utils.get_project_base_directory()}'
)
show_configs()
settings.init_settings()
# init db
init_web_db()
init_web_data()
# init runtime config
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--version', default=False, help="rag flow version", action='store_true')
parser.add_argument('--debug', default=False, help="debug mode", action='store_true')
parser.add_argument(
"--version", default=False, help="RAGFlow version", action="store_true"
)
parser.add_argument(
"--debug", default=False, help="debug mode", action="store_true"
)
args = parser.parse_args()
if args.version:
print(get_versions())
print(get_ragflow_version())
sys.exit(0)
RuntimeConfig.DEBUG = args.debug
if RuntimeConfig.DEBUG:
stat_logger.info("run on debug mode")
logging.info("run on debug mode")
RuntimeConfig.init_env()
RuntimeConfig.init_config(JOB_SERVER_HOST=HOST, HTTP_PORT=HTTP_PORT)
RuntimeConfig.init_config(JOB_SERVER_HOST=settings.HOST_IP, HTTP_PORT=settings.HOST_PORT)
peewee_logger = logging.getLogger('peewee')
peewee_logger.propagate = False
# rag_arch.common.log.ROpenHandler
peewee_logger.addHandler(database_logger.handlers[0])
peewee_logger.setLevel(database_logger.level)
thr = ThreadPoolExecutor(max_workers=1)
thr.submit(update_progress)
thread = ThreadPoolExecutor(max_workers=1)
thread.submit(update_progress)
# start http server
try:
stat_logger.info("RAG Flow http server start...")
werkzeug_logger = logging.getLogger("werkzeug")
for h in access_logger.handlers:
werkzeug_logger.addHandler(h)
run_simple(hostname=HOST, port=HTTP_PORT, application=app, threaded=True, use_reloader=RuntimeConfig.DEBUG, use_debugger=RuntimeConfig.DEBUG)
logging.info("RAGFlow HTTP server start...")
run_simple(
hostname=settings.HOST_IP,
port=settings.HOST_PORT,
application=app,
threaded=True,
use_reloader=RuntimeConfig.DEBUG,
use_debugger=RuntimeConfig.DEBUG,
)
except Exception:
traceback.print_exc()
os.kill(os.getpid(), signal.SIGKILL)
os.kill(os.getpid(), signal.SIGKILL)

View File

@ -16,197 +16,162 @@
import os
from datetime import date
from enum import IntEnum, Enum
from api.utils.file_utils import get_project_base_directory
from api.utils.log_utils import LoggerFactory, getLogger
import rag.utils.es_conn
import rag.utils.infinity_conn
# Logger
LoggerFactory.set_directory(
os.path.join(
get_project_base_directory(),
"logs",
"api"))
# {CRITICAL: 50, FATAL:50, ERROR:40, WARNING:30, WARN:30, INFO:20, DEBUG:10, NOTSET:0}
LoggerFactory.LEVEL = 30
stat_logger = getLogger("stat")
access_logger = getLogger("access")
database_logger = getLogger("database")
chat_logger = getLogger("chat")
from rag.utils.es_conn import ELASTICSEARCH
import rag.utils
from rag.nlp import search
from graphrag import search as kg_search
from api.utils import get_base_config, decrypt_database_config
from api.constants import RAG_FLOW_SERVICE_NAME
API_VERSION = "v1"
RAG_FLOW_SERVICE_NAME = "ragflow"
SERVER_MODULE = "rag_flow_server.py"
TEMP_DIRECTORY = os.path.join(get_project_base_directory(), "temp")
RAG_FLOW_CONF_PATH = os.path.join(get_project_base_directory(), "conf")
LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
SUBPROCESS_STD_LOG_NAME = "std.log"
ERROR_REPORT = True
ERROR_REPORT_WITH_PATH = False
MAX_TIMESTAMP_INTERVAL = 60
SESSION_VALID_PERIOD = 7 * 24 * 60 * 60
REQUEST_TRY_TIMES = 3
REQUEST_WAIT_SEC = 2
REQUEST_MAX_WAIT_SEC = 300
USE_REGISTRY = get_base_config("use_registry")
LLM = get_base_config("user_default_llm", {})
LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
LLM_BASE_URL = LLM.get("base_url")
if not LIGHTEN:
default_llm = {
"Tongyi-Qianwen": {
"chat_model": "qwen-plus",
"embedding_model": "text-embedding-v2",
"image2text_model": "qwen-vl-max",
"asr_model": "paraformer-realtime-8k-v1",
},
"OpenAI": {
"chat_model": "gpt-3.5-turbo",
"embedding_model": "text-embedding-ada-002",
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"Azure-OpenAI": {
"chat_model": "gpt-35-turbo",
"embedding_model": "text-embedding-ada-002",
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"ZHIPU-AI": {
"chat_model": "glm-3-turbo",
"embedding_model": "embedding-2",
"image2text_model": "glm-4v",
"asr_model": "",
},
"Ollama": {
"chat_model": "qwen-14B-chat",
"embedding_model": "flag-embedding",
"image2text_model": "",
"asr_model": "",
},
"Moonshot": {
"chat_model": "moonshot-v1-8k",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"DeepSeek": {
"chat_model": "deepseek-chat",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"VolcEngine": {
"chat_model": "",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"BAAI": {
"chat_model": "",
"embedding_model": "BAAI/bge-large-zh-v1.5",
"image2text_model": "",
"asr_model": "",
"rerank_model": "BAAI/bge-reranker-v2-m3",
}
}
CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"]
EMBEDDING_MDL = default_llm["BAAI"]["embedding_model"]
RERANK_MDL = default_llm["BAAI"]["rerank_model"]
ASR_MDL = default_llm[LLM_FACTORY]["asr_model"]
IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"]
else:
CHAT_MDL = EMBEDDING_MDL = RERANK_MDL = ASR_MDL = IMAGE2TEXT_MDL = ""
API_KEY = LLM.get("api_key", "")
PARSERS = LLM.get(
"parsers",
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email")
# distribution
DEPENDENT_DISTRIBUTION = get_base_config("dependent_distribution", False)
RAG_FLOW_UPDATE_CHECK = False
HOST = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
HTTP_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")
SECRET_KEY = get_base_config(
RAG_FLOW_SERVICE_NAME,
{}).get("secret_key", str(date.today()))
TOKEN_EXPIRE_IN = get_base_config(
RAG_FLOW_SERVICE_NAME, {}).get(
"token_expires_in", 3600)
NGINX_HOST = get_base_config(
RAG_FLOW_SERVICE_NAME, {}).get(
"nginx", {}).get("host") or HOST
NGINX_HTTP_PORT = get_base_config(
RAG_FLOW_SERVICE_NAME, {}).get(
"nginx", {}).get("http_port") or HTTP_PORT
RANDOM_INSTANCE_ID = get_base_config(
RAG_FLOW_SERVICE_NAME, {}).get(
"random_instance_id", False)
PROXY = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("proxy")
PROXY_PROTOCOL = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("protocol")
LLM = None
LLM_FACTORY = None
LLM_BASE_URL = None
CHAT_MDL = ""
EMBEDDING_MDL = ""
RERANK_MDL = ""
ASR_MDL = ""
IMAGE2TEXT_MDL = ""
API_KEY = None
PARSERS = None
HOST_IP = None
HOST_PORT = None
SECRET_KEY = None
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
# Switch
# upload
UPLOAD_DATA_FROM_CLIENT = True
# authentication
AUTHENTICATION_CONF = get_base_config("authentication", {})
AUTHENTICATION_CONF = None
# client
CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get(
"client", {}).get(
CLIENT_AUTHENTICATION = None
HTTP_APP_KEY = None
GITHUB_OAUTH = None
FEISHU_OAUTH = None
DOC_ENGINE = None
docStoreConn = None
retrievaler = None
kg_retrievaler = None
def init_settings():
global LLM, LLM_FACTORY, LLM_BASE_URL, LIGHTEN, DATABASE_TYPE, DATABASE
LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
LLM = get_base_config("user_default_llm", {})
LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
LLM_BASE_URL = LLM.get("base_url")
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
if not LIGHTEN:
default_llm = {
"Tongyi-Qianwen": {
"chat_model": "qwen-plus",
"embedding_model": "text-embedding-v2",
"image2text_model": "qwen-vl-max",
"asr_model": "paraformer-realtime-8k-v1",
},
"OpenAI": {
"chat_model": "gpt-3.5-turbo",
"embedding_model": "text-embedding-ada-002",
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"Azure-OpenAI": {
"chat_model": "gpt-35-turbo",
"embedding_model": "text-embedding-ada-002",
"image2text_model": "gpt-4-vision-preview",
"asr_model": "whisper-1",
},
"ZHIPU-AI": {
"chat_model": "glm-3-turbo",
"embedding_model": "embedding-2",
"image2text_model": "glm-4v",
"asr_model": "",
},
"Ollama": {
"chat_model": "qwen-14B-chat",
"embedding_model": "flag-embedding",
"image2text_model": "",
"asr_model": "",
},
"Moonshot": {
"chat_model": "moonshot-v1-8k",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"DeepSeek": {
"chat_model": "deepseek-chat",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"VolcEngine": {
"chat_model": "",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
},
"BAAI": {
"chat_model": "",
"embedding_model": "BAAI/bge-large-zh-v1.5",
"image2text_model": "",
"asr_model": "",
"rerank_model": "BAAI/bge-reranker-v2-m3",
}
}
if LLM_FACTORY:
CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"] + f"@{LLM_FACTORY}"
ASR_MDL = default_llm[LLM_FACTORY]["asr_model"] + f"@{LLM_FACTORY}"
IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"] + f"@{LLM_FACTORY}"
EMBEDDING_MDL = default_llm["BAAI"]["embedding_model"] + "@BAAI"
RERANK_MDL = default_llm["BAAI"]["rerank_model"] + "@BAAI"
global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
API_KEY = LLM.get("api_key", "")
PARSERS = LLM.get(
"parsers",
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email")
HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")
SECRET_KEY = get_base_config(
RAG_FLOW_SERVICE_NAME,
{}).get("secret_key", str(date.today()))
global AUTHENTICATION_CONF, CLIENT_AUTHENTICATION, HTTP_APP_KEY, GITHUB_OAUTH, FEISHU_OAUTH
# authentication
AUTHENTICATION_CONF = get_base_config("authentication", {})
# client
CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get(
"client", {}).get(
"switch", False)
HTTP_APP_KEY = AUTHENTICATION_CONF.get("client", {}).get("http_app_key")
GITHUB_OAUTH = get_base_config("oauth", {}).get("github")
FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")
WECHAT_OAUTH = get_base_config("oauth", {}).get("wechat")
HTTP_APP_KEY = AUTHENTICATION_CONF.get("client", {}).get("http_app_key")
GITHUB_OAUTH = get_base_config("oauth", {}).get("github")
FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")
# site
SITE_AUTHENTICATION = AUTHENTICATION_CONF.get("site", {}).get("switch", False)
global DOC_ENGINE, docStoreConn, retrievaler, kg_retrievaler
DOC_ENGINE = os.environ.get('DOC_ENGINE', "elasticsearch")
if DOC_ENGINE == "elasticsearch":
docStoreConn = rag.utils.es_conn.ESConnection()
elif DOC_ENGINE == "infinity":
docStoreConn = rag.utils.infinity_conn.InfinityConnection()
else:
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
# permission
PERMISSION_CONF = get_base_config("permission", {})
PERMISSION_SWITCH = PERMISSION_CONF.get("switch")
COMPONENT_PERMISSION = PERMISSION_CONF.get("component")
DATASET_PERMISSION = PERMISSION_CONF.get("dataset")
HOOK_MODULE = get_base_config("hook_module")
HOOK_SERVER_NAME = get_base_config("hook_server_name")
ENABLE_MODEL_STORE = get_base_config('enable_model_store', False)
# authentication
USE_AUTHENTICATION = False
USE_DATA_AUTHENTICATION = False
AUTOMATIC_AUTHORIZATION_OUTPUT_DATA = True
USE_DEFAULT_TIMEOUT = False
AUTHENTICATION_DEFAULT_TIMEOUT = 7 * 24 * 60 * 60 # s
PRIVILEGE_COMMAND_WHITELIST = []
CHECK_NODES_IDENTITY = False
retrievaler = search.Dealer(ELASTICSEARCH)
kg_retrievaler = kg_search.KGSearch(ELASTICSEARCH)
retrievaler = search.Dealer(docStoreConn)
kg_retrievaler = kg_search.KGSearch(docStoreConn)
class CustomEnum(Enum):
@ -227,16 +192,6 @@ class CustomEnum(Enum):
return [member.name for member in cls.__members__.values()]
class PythonDependenceName(CustomEnum):
Rag_Source_Code = "python"
Python_Env = "miniconda"
class ModelStorage(CustomEnum):
REDIS = "redis"
MYSQL = "mysql"
class RetCode(IntEnum, CustomEnum):
SUCCESS = 0
NOT_EFFECTIVE = 10

View File

@ -23,56 +23,64 @@ import socket
import time
import uuid
import requests
import logging
from enum import Enum, IntEnum
import importlib
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from filelock import FileLock
from api.constants import SERVICE_CONF
from . import file_utils
SERVICE_CONF = "service_conf.yaml"
def conf_realpath(conf_name):
conf_path = f"conf/{conf_name}"
return os.path.join(file_utils.get_project_base_directory(), conf_path)
def get_base_config(key, default=None, conf_name=SERVICE_CONF) -> dict:
def read_config(conf_name=SERVICE_CONF):
local_config = {}
local_path = conf_realpath(f'local.{conf_name}')
if default is None:
default = os.environ.get(key.upper())
# load local config file
if os.path.exists(local_path):
local_config = file_utils.load_yaml_conf(local_path)
if not isinstance(local_config, dict):
raise ValueError(f'Invalid config file: "{local_path}".')
if key is not None and key in local_config:
return local_config[key]
global_config_path = conf_realpath(conf_name)
global_config = file_utils.load_yaml_conf(global_config_path)
config_path = conf_realpath(conf_name)
config = file_utils.load_yaml_conf(config_path)
if not isinstance(global_config, dict):
raise ValueError(f'Invalid config file: "{global_config_path}".')
if not isinstance(config, dict):
raise ValueError(f'Invalid config file: "{config_path}".')
global_config.update(local_config)
return global_config
config.update(local_config)
return config.get(key, default) if key is not None else config
CONFIGS = read_config()
def show_configs():
msg = f"Current configs, from {conf_realpath(SERVICE_CONF)}:"
for k, v in CONFIGS.items():
msg += f"\n\t{k}: {v}"
logging.info(msg)
def get_base_config(key, default=None):
if key is None:
return None
if default is None:
default = os.environ.get(key.upper())
return CONFIGS.get(key, default)
use_deserialize_safe_module = get_base_config(
'use_deserialize_safe_module', False)
class CoordinationCommunicationProtocol(object):
HTTP = "http"
GRPC = "grpc"
class BaseType:
def to_dict(self):
return dict([(k.lstrip("_"), v) for k, v in self.__dict__.items()])
@ -98,6 +106,7 @@ class BaseType:
data = obj
return {"type": obj.__class__.__name__,
"data": data, "module": module}
return _dict(self)
@ -245,7 +254,7 @@ def get_lan_ip():
try:
ip = get_interface_ip(ifname)
break
except IOError as e:
except IOError:
pass
return ip or ''
@ -342,8 +351,8 @@ def download_img(url):
return ""
response = requests.get(url)
return "data:" + \
response.headers.get('Content-Type', 'image/jpg') + ";" + \
"base64," + base64.b64encode(response.content).decode("utf-8")
response.headers.get('Content-Type', 'image/jpg') + ";" + \
"base64," + base64.b64encode(response.content).decode("utf-8")
def delta_seconds(date_string: str):

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import functools
import json
import random
@ -33,13 +34,12 @@ from itsdangerous import URLSafeTimedSerializer
from werkzeug.http import HTTP_STATUS_CODES
from api.db.db_models import APIToken
from api.settings import (
REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC,
stat_logger, CLIENT_AUTHENTICATION, HTTP_APP_KEY, SECRET_KEY
)
from api.settings import RetCode
from api import settings
from api import settings
from api.utils import CustomJSONEncoder, get_uuid
from api.utils import json_dumps
from api.constants import REQUEST_WAIT_SEC, REQUEST_MAX_WAIT_SEC
requests.models.complexjson.dumps = functools.partial(
json.dumps, cls=CustomJSONEncoder)
@ -58,13 +58,13 @@ def request(**kwargs):
{}).items()}
prepped = requests.Request(**kwargs).prepare()
if CLIENT_AUTHENTICATION and HTTP_APP_KEY and SECRET_KEY:
if settings.CLIENT_AUTHENTICATION and settings.HTTP_APP_KEY and settings.SECRET_KEY:
timestamp = str(round(time() * 1000))
nonce = str(uuid1())
signature = b64encode(HMAC(SECRET_KEY.encode('ascii'), b'\n'.join([
signature = b64encode(HMAC(settings.SECRET_KEY.encode('ascii'), b'\n'.join([
timestamp.encode('ascii'),
nonce.encode('ascii'),
HTTP_APP_KEY.encode('ascii'),
settings.HTTP_APP_KEY.encode('ascii'),
prepped.path_url.encode('ascii'),
prepped.body if kwargs.get('json') else b'',
urlencode(
@ -78,7 +78,7 @@ def request(**kwargs):
prepped.headers.update({
'TIMESTAMP': timestamp,
'NONCE': nonce,
'APP-KEY': HTTP_APP_KEY,
'APP-KEY': settings.HTTP_APP_KEY,
'SIGNATURE': signature,
})
@ -97,19 +97,19 @@ def get_exponential_backoff_interval(retries, full_jitter=False):
return max(0, countdown)
def get_data_error_result(retcode=RetCode.DATA_ERROR,
retmsg='Sorry! Data missing!'):
def get_data_error_result(code=settings.RetCode.DATA_ERROR,
message='Sorry! Data missing!'):
import re
result_dict = {
"retcode": retcode,
"retmsg": re.sub(
"code": code,
"message": re.sub(
r"rag",
"seceum",
retmsg,
message,
flags=re.IGNORECASE)}
response = {}
for key, value in result_dict.items():
if value is None and key != "retcode":
if value is None and key != "code":
continue
else:
response[key] = value
@ -117,29 +117,25 @@ def get_data_error_result(retcode=RetCode.DATA_ERROR,
def server_error_response(e):
stat_logger.exception(e)
logging.exception(e)
try:
if e.code == 401:
return get_json_result(retcode=401, retmsg=repr(e))
return get_json_result(code=401, message=repr(e))
except BaseException:
pass
if len(e.args) > 1:
return get_json_result(
retcode=RetCode.EXCEPTION_ERROR, retmsg=repr(e.args[0]), data=e.args[1])
if repr(e).find("index_not_found_exception") >= 0:
return get_json_result(retcode=RetCode.EXCEPTION_ERROR,
retmsg="No chunk found, please upload file and parse it.")
return get_json_result(retcode=RetCode.EXCEPTION_ERROR, retmsg=repr(e))
code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
def error_response(response_code, retmsg=None):
if retmsg is None:
retmsg = HTTP_STATUS_CODES.get(response_code, 'Unknown Error')
def error_response(response_code, message=None):
if message is None:
message = HTTP_STATUS_CODES.get(response_code, 'Unknown Error')
return Response(json.dumps({
'retmsg': retmsg,
'retcode': response_code,
'message': message,
'code': response_code,
}), status=response_code, mimetype='application/json')
@ -171,7 +167,7 @@ def validate_request(*args, **kwargs):
error_string += "required argument values: {}".format(
",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
return get_json_result(
retcode=RetCode.ARGUMENT_ERROR, retmsg=error_string)
code=settings.RetCode.ARGUMENT_ERROR, message=error_string)
return func(*_args, **_kwargs)
return decorated_function
@ -196,8 +192,8 @@ def send_file_in_mem(data, filename):
return send_file(f, as_attachment=True, attachment_filename=filename)
def get_json_result(retcode=RetCode.SUCCESS, retmsg='success', data=None):
response = {"retcode": retcode, "retmsg": retmsg, "data": data}
def get_json_result(code=settings.RetCode.SUCCESS, message='success', data=None):
response = {"code": code, "message": message, "data": data}
return jsonify(response)
def apikey_required(func):
@ -207,7 +203,7 @@ def apikey_required(func):
objs = APIToken.query(token=token)
if not objs:
return build_error_result(
error_msg='API-KEY is invalid!', retcode=RetCode.FORBIDDEN
message='API-KEY is invalid!', code=settings.RetCode.FORBIDDEN
)
kwargs['tenant_id'] = objs[0].tenant_id
return func(*args, **kwargs)
@ -215,19 +211,19 @@ def apikey_required(func):
return decorated_function
def build_error_result(retcode=RetCode.FORBIDDEN, error_msg='success'):
response = {"error_code": retcode, "error_msg": error_msg}
def build_error_result(code=settings.RetCode.FORBIDDEN, message='success'):
response = {"code": code, "message": message}
response = jsonify(response)
response.status_code = retcode
response.status_code = code
return response
def construct_response(retcode=RetCode.SUCCESS,
retmsg='success', data=None, auth=None):
result_dict = {"retcode": retcode, "retmsg": retmsg, "data": data}
def construct_response(code=settings.RetCode.SUCCESS,
message='success', data=None, auth=None):
result_dict = {"code": code, "message": message, "data": data}
response_dict = {}
for key, value in result_dict.items():
if value is None and key != "retcode":
if value is None and key != "code":
continue
else:
response_dict[key] = value
@ -242,7 +238,7 @@ def construct_response(retcode=RetCode.SUCCESS,
return response
def construct_result(code=RetCode.DATA_ERROR, message='data is missing'):
def construct_result(code=settings.RetCode.DATA_ERROR, message='data is missing'):
import re
result_dict = {"code": code, "message": re.sub(r"rag", "seceum", message, flags=re.IGNORECASE)}
response = {}
@ -254,7 +250,7 @@ def construct_result(code=RetCode.DATA_ERROR, message='data is missing'):
return jsonify(response)
def construct_json_result(code=RetCode.SUCCESS, message='success', data=None):
def construct_json_result(code=settings.RetCode.SUCCESS, message='success', data=None):
if data is None:
return jsonify({"code": code, "message": message})
else:
@ -262,29 +258,28 @@ def construct_json_result(code=RetCode.SUCCESS, message='success', data=None):
def construct_error_response(e):
stat_logger.exception(e)
logging.exception(e)
try:
if e.code == 401:
return construct_json_result(code=RetCode.UNAUTHORIZED, message=repr(e))
return construct_json_result(code=settings.RetCode.UNAUTHORIZED, message=repr(e))
except BaseException:
pass
if len(e.args) > 1:
return construct_json_result(code=RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
if repr(e).find("index_not_found_exception") >= 0:
return construct_json_result(code=RetCode.EXCEPTION_ERROR,
message="No chunk found, please upload file and parse it.")
return construct_json_result(code=RetCode.EXCEPTION_ERROR, message=repr(e))
return construct_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
return construct_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
def token_required(func):
@wraps(func)
def decorated_function(*args, **kwargs):
token = flask_request.headers.get('Authorization').split()[1]
authorization_list=flask_request.headers.get('Authorization').split()
if len(authorization_list) < 2:
return get_json_result(data=False,message="Please check your authorization format.")
token = authorization_list[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!', retcode=RetCode.AUTHENTICATION_ERROR
data=False, message='Token is not valid!', code=settings.RetCode.AUTHENTICATION_ERROR
)
kwargs['tenant_id'] = objs[0].tenant_id
return func(*args, **kwargs)
@ -292,26 +287,26 @@ def token_required(func):
return decorated_function
def get_result(retcode=RetCode.SUCCESS, retmsg='error', data=None):
if retcode == 0:
def get_result(code=settings.RetCode.SUCCESS, message="", data=None):
if code == 0:
if data is not None:
response = {"code": retcode, "data": data}
response = {"code": code, "data": data}
else:
response = {"code": retcode}
response = {"code": code}
else:
response = {"code": retcode, "message": retmsg}
response = {"code": code, "message": message}
return jsonify(response)
def get_error_data_result(retmsg='Sorry! Data missing!', retcode=RetCode.DATA_ERROR,
def get_error_data_result(message='Sorry! Data missing!', code=settings.RetCode.DATA_ERROR,
):
import re
result_dict = {
"code": retcode,
"code": code,
"message": re.sub(
r"rag",
"seceum",
retmsg,
message,
flags=re.IGNORECASE)}
response = {}
for key, value in result_dict.items():

View File

@ -25,7 +25,7 @@ from cachetools import LRUCache, cached
from ruamel.yaml import YAML
from api.db import FileType
from api.contants import IMG_BASE64_PREFIX
from api.constants import IMG_BASE64_PREFIX
PROJECT_BASE = os.getenv("RAG_PROJECT_BASE") or os.getenv("RAG_DEPLOY_BASE")
RAG_BASE = os.getenv("RAG_BASE")
@ -71,7 +71,7 @@ def get_home_cache_dir():
dir = os.path.join(os.path.expanduser('~'), ".ragflow")
try:
os.mkdir(dir)
except OSError as error:
except OSError:
pass
return dir
@ -193,7 +193,7 @@ def thumbnail_img(filename, blob):
presentation.slides[0].get_thumbnail(0.03, 0.03).save(
buffered, drawing.imaging.ImageFormat.png)
return buffered.getvalue()
except Exception as e:
except Exception:
pass
return None

View File

@ -14,300 +14,41 @@
# limitations under the License.
#
import os
import typing
import traceback
import os.path
import logging
import inspect
from logging.handlers import TimedRotatingFileHandler
from threading import RLock
from logging.handlers import RotatingFileHandler
from api.utils import file_utils
def get_project_base_directory():
PROJECT_BASE = os.path.abspath(
os.path.join(
os.path.dirname(os.path.realpath(__file__)),
os.pardir,
os.pardir,
)
)
return PROJECT_BASE
def initRootLogger(logfile_basename: str, log_level: int = logging.INFO, log_format: str = "%(asctime)-15s %(levelname)-8s %(process)d %(message)s"):
logger = logging.getLogger()
if logger.hasHandlers():
return
class LoggerFactory(object):
TYPE = "FILE"
LOG_FORMAT = "[%(levelname)s] [%(asctime)s] [%(module)s.%(funcName)s] [line:%(lineno)d]: %(message)s"
logging.basicConfig(format=LOG_FORMAT)
LEVEL = logging.DEBUG
logger_dict = {}
global_handler_dict = {}
log_path = os.path.abspath(os.path.join(get_project_base_directory(), "logs", f"{logfile_basename}.log"))
LOG_DIR = None
PARENT_LOG_DIR = None
log_share = True
os.makedirs(os.path.dirname(log_path), exist_ok=True)
logger.setLevel(log_level)
formatter = logging.Formatter(log_format)
append_to_parent_log = None
handler1 = RotatingFileHandler(log_path, maxBytes=10*1024*1024, backupCount=5)
handler1.setLevel(log_level)
handler1.setFormatter(formatter)
logger.addHandler(handler1)
lock = RLock()
# CRITICAL = 50
# FATAL = CRITICAL
# ERROR = 40
# WARNING = 30
# WARN = WARNING
# INFO = 20
# DEBUG = 10
# NOTSET = 0
levels = (10, 20, 30, 40)
schedule_logger_dict = {}
handler2 = logging.StreamHandler()
handler2.setLevel(log_level)
handler2.setFormatter(formatter)
logger.addHandler(handler2)
@staticmethod
def set_directory(directory=None, parent_log_dir=None,
append_to_parent_log=None, force=False):
if parent_log_dir:
LoggerFactory.PARENT_LOG_DIR = parent_log_dir
if append_to_parent_log:
LoggerFactory.append_to_parent_log = append_to_parent_log
with LoggerFactory.lock:
if not directory:
directory = file_utils.get_project_base_directory("logs")
if not LoggerFactory.LOG_DIR or force:
LoggerFactory.LOG_DIR = directory
if LoggerFactory.log_share:
oldmask = os.umask(000)
os.makedirs(LoggerFactory.LOG_DIR, exist_ok=True)
os.umask(oldmask)
else:
os.makedirs(LoggerFactory.LOG_DIR, exist_ok=True)
for loggerName, ghandler in LoggerFactory.global_handler_dict.items():
for className, (logger,
handler) in LoggerFactory.logger_dict.items():
logger.removeHandler(ghandler)
ghandler.close()
LoggerFactory.global_handler_dict = {}
for className, (logger,
handler) in LoggerFactory.logger_dict.items():
logger.removeHandler(handler)
_handler = None
if handler:
handler.close()
if className != "default":
_handler = LoggerFactory.get_handler(className)
logger.addHandler(_handler)
LoggerFactory.assemble_global_handler(logger)
LoggerFactory.logger_dict[className] = logger, _handler
@staticmethod
def new_logger(name):
logger = logging.getLogger(name)
logger.propagate = False
logger.setLevel(LoggerFactory.LEVEL)
return logger
@staticmethod
def get_logger(class_name=None):
with LoggerFactory.lock:
if class_name in LoggerFactory.logger_dict.keys():
logger, handler = LoggerFactory.logger_dict[class_name]
if not logger:
logger, handler = LoggerFactory.init_logger(class_name)
else:
logger, handler = LoggerFactory.init_logger(class_name)
return logger
@staticmethod
def get_global_handler(logger_name, level=None, log_dir=None):
if not LoggerFactory.LOG_DIR:
return logging.StreamHandler()
if log_dir:
logger_name_key = logger_name + "_" + log_dir
else:
logger_name_key = logger_name + "_" + LoggerFactory.LOG_DIR
# if loggerName not in LoggerFactory.globalHandlerDict:
if logger_name_key not in LoggerFactory.global_handler_dict:
with LoggerFactory.lock:
if logger_name_key not in LoggerFactory.global_handler_dict:
handler = LoggerFactory.get_handler(
logger_name, level, log_dir)
LoggerFactory.global_handler_dict[logger_name_key] = handler
return LoggerFactory.global_handler_dict[logger_name_key]
@staticmethod
def get_handler(class_name, level=None, log_dir=None,
log_type=None, job_id=None):
if not log_type:
if not LoggerFactory.LOG_DIR or not class_name:
return logging.StreamHandler()
# return Diy_StreamHandler()
if not log_dir:
log_file = os.path.join(
LoggerFactory.LOG_DIR,
"{}.log".format(class_name))
else:
log_file = os.path.join(log_dir, "{}.log".format(class_name))
else:
log_file = os.path.join(log_dir, "rag_flow_{}.log".format(
log_type) if level == LoggerFactory.LEVEL else 'rag_flow_{}_error.log'.format(log_type))
os.makedirs(os.path.dirname(log_file), exist_ok=True)
if LoggerFactory.log_share:
handler = ROpenHandler(log_file,
when='D',
interval=1,
backupCount=14,
delay=True)
else:
handler = TimedRotatingFileHandler(log_file,
when='D',
interval=1,
backupCount=14,
delay=True)
if level:
handler.level = level
return handler
@staticmethod
def init_logger(class_name):
with LoggerFactory.lock:
logger = LoggerFactory.new_logger(class_name)
handler = None
if class_name:
handler = LoggerFactory.get_handler(class_name)
logger.addHandler(handler)
LoggerFactory.logger_dict[class_name] = logger, handler
else:
LoggerFactory.logger_dict["default"] = logger, handler
LoggerFactory.assemble_global_handler(logger)
return logger, handler
@staticmethod
def assemble_global_handler(logger):
if LoggerFactory.LOG_DIR:
for level in LoggerFactory.levels:
if level >= LoggerFactory.LEVEL:
level_logger_name = logging._levelToName[level]
logger.addHandler(
LoggerFactory.get_global_handler(
level_logger_name, level))
if LoggerFactory.append_to_parent_log and LoggerFactory.PARENT_LOG_DIR:
for level in LoggerFactory.levels:
if level >= LoggerFactory.LEVEL:
level_logger_name = logging._levelToName[level]
logger.addHandler(
LoggerFactory.get_global_handler(level_logger_name, level, LoggerFactory.PARENT_LOG_DIR))
def setDirectory(directory=None):
LoggerFactory.set_directory(directory)
def setLevel(level):
LoggerFactory.LEVEL = level
def getLogger(className=None, useLevelFile=False):
if className is None:
frame = inspect.stack()[1]
module = inspect.getmodule(frame[0])
className = 'stat'
return LoggerFactory.get_logger(className)
def exception_to_trace_string(ex):
return "".join(traceback.TracebackException.from_exception(ex).format())
class ROpenHandler(TimedRotatingFileHandler):
def _open(self):
prevumask = os.umask(000)
rtv = TimedRotatingFileHandler._open(self)
os.umask(prevumask)
return rtv
def sql_logger(job_id='', log_type='sql'):
key = job_id + log_type
if key in LoggerFactory.schedule_logger_dict.keys():
return LoggerFactory.schedule_logger_dict[key]
return get_job_logger(job_id=job_id, log_type=log_type)
def ready_log(msg, job=None, task=None, role=None, party_id=None, detail=None):
prefix, suffix = base_msg(job, task, role, party_id, detail)
return f"{prefix}{msg} ready{suffix}"
def start_log(msg, job=None, task=None, role=None, party_id=None, detail=None):
prefix, suffix = base_msg(job, task, role, party_id, detail)
return f"{prefix}start to {msg}{suffix}"
def successful_log(msg, job=None, task=None, role=None,
party_id=None, detail=None):
prefix, suffix = base_msg(job, task, role, party_id, detail)
return f"{prefix}{msg} successfully{suffix}"
def warning_log(msg, job=None, task=None, role=None,
party_id=None, detail=None):
prefix, suffix = base_msg(job, task, role, party_id, detail)
return f"{prefix}{msg} is not effective{suffix}"
def failed_log(msg, job=None, task=None, role=None,
party_id=None, detail=None):
prefix, suffix = base_msg(job, task, role, party_id, detail)
return f"{prefix}failed to {msg}{suffix}"
def base_msg(job=None, task=None, role: str = None,
party_id: typing.Union[str, int] = None, detail=None):
if detail:
detail_msg = f" detail: \n{detail}"
else:
detail_msg = ""
if task is not None:
return f"task {task.f_task_id} {task.f_task_version} ", f" on {task.f_role} {task.f_party_id}{detail_msg}"
elif job is not None:
return "", f" on {job.f_role} {job.f_party_id}{detail_msg}"
elif role and party_id:
return "", f" on {role} {party_id}{detail_msg}"
else:
return "", f"{detail_msg}"
def exception_to_trace_string(ex):
return "".join(traceback.TracebackException.from_exception(ex).format())
def get_logger_base_dir():
job_log_dir = file_utils.get_rag_flow_directory('logs')
return job_log_dir
def get_job_logger(job_id, log_type):
rag_flow_log_dir = file_utils.get_rag_flow_directory('logs', 'rag_flow')
job_log_dir = file_utils.get_rag_flow_directory('logs', job_id)
if not job_id:
log_dirs = [rag_flow_log_dir]
else:
if log_type == 'audit':
log_dirs = [job_log_dir, rag_flow_log_dir]
else:
log_dirs = [job_log_dir]
if LoggerFactory.log_share:
oldmask = os.umask(000)
os.makedirs(job_log_dir, exist_ok=True)
os.makedirs(rag_flow_log_dir, exist_ok=True)
os.umask(oldmask)
else:
os.makedirs(job_log_dir, exist_ok=True)
os.makedirs(rag_flow_log_dir, exist_ok=True)
logger = LoggerFactory.new_logger(f"{job_id}_{log_type}")
for job_log_dir in log_dirs:
handler = LoggerFactory.get_handler(class_name=None, level=LoggerFactory.LEVEL,
log_dir=job_log_dir, log_type=log_type, job_id=job_id)
error_handler = LoggerFactory.get_handler(
class_name=None,
level=logging.ERROR,
log_dir=job_log_dir,
log_type=log_type,
job_id=job_id)
logger.addHandler(handler)
logger.addHandler(error_handler)
with LoggerFactory.lock:
LoggerFactory.schedule_logger_dict[job_id + log_type] = logger
return logger
logging.captureWarnings(True)
msg = f"{logfile_basename} log path: {log_path}"
logger.info(msg)

View File

@ -77,4 +77,4 @@ def __get_pdf_from_html(
def is_valid_url(url: str) -> bool:
return bool(re.match(r"(https?|ftp|file)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]", url))
return bool(re.match(r"(https?)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]", url))

49
api/validation.py Normal file
View File

@ -0,0 +1,49 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import sys
def python_version_validation():
# Check python version
required_python_version = (3, 10)
if sys.version_info < required_python_version:
logging.info(
f"Required Python: >= {required_python_version[0]}.{required_python_version[1]}. Current Python version: {sys.version_info[0]}.{sys.version_info[1]}."
)
sys.exit(1)
else:
logging.info(f"Python version: {sys.version_info[0]}.{sys.version_info[1]}")
python_version_validation()
# Download nltk data
def download_nltk_data():
import nltk
nltk.download('wordnet', halt_on_error=False, quiet=True)
nltk.download('punkt_tab', halt_on_error=False, quiet=True)
try:
from multiprocessing import Pool
pool = Pool(processes=1)
thread = pool.apply_async(download_nltk_data)
binary = thread.get(timeout=60)
except Exception as e:
print('\x1b[6;37;41m WARNING \x1b[0m' + "Downloading NLTK data failure.", flush=True)

View File

@ -13,14 +13,57 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import dotenv
import typing
import os
import subprocess
RAGFLOW_VERSION_INFO = "unknown"
def get_versions() -> typing.Mapping[str, typing.Any]:
dotenv.load_dotenv(dotenv.find_dotenv())
return dotenv.dotenv_values()
def get_ragflow_version() -> str:
global RAGFLOW_VERSION_INFO
if RAGFLOW_VERSION_INFO != "unknown":
return RAGFLOW_VERSION_INFO
version_path = os.path.abspath(
os.path.join(
os.path.dirname(os.path.realpath(__file__)), os.pardir, "VERSION"
)
)
if os.path.exists(version_path):
with open(version_path, "r") as f:
RAGFLOW_VERSION_INFO = f.read().strip()
else:
RAGFLOW_VERSION_INFO = get_closest_tag_and_count()
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
RAGFLOW_VERSION_INFO += " slim" if LIGHTEN == 1 else " full"
return RAGFLOW_VERSION_INFO
def get_rag_version() -> typing.Optional[str]:
return get_versions().get("RAGFLOW_IMAGE", "infiniflow/ragflow:dev").split(":")[-1]
def get_closest_tag_and_count():
try:
# Get the current commit hash
commit_id = (
subprocess.check_output(["git", "rev-parse", "--short", "HEAD"])
.strip()
.decode("utf-8")
)
# Get the closest tag
closest_tag = (
subprocess.check_output(["git", "describe", "--tags", "--abbrev=0"])
.strip()
.decode("utf-8")
)
# Get the commit count since the closest tag
process = subprocess.Popen(
["git", "rev-list", "--count", f"{closest_tag}..HEAD"],
stdout=subprocess.PIPE,
)
commits_count, _ = process.communicate()
commits_count = int(commits_count.strip())
if commits_count == 0:
return closest_tag
else:
return f"{commit_id}({closest_tag}~{commits_count})"
except Exception:
return "unknown"

View File

@ -0,0 +1,26 @@
{
"id": {"type": "varchar", "default": ""},
"doc_id": {"type": "varchar", "default": ""},
"kb_id": {"type": "varchar", "default": ""},
"create_time": {"type": "varchar", "default": ""},
"create_timestamp_flt": {"type": "float", "default": 0.0},
"img_id": {"type": "varchar", "default": ""},
"docnm_kwd": {"type": "varchar", "default": ""},
"title_tks": {"type": "varchar", "default": ""},
"title_sm_tks": {"type": "varchar", "default": ""},
"name_kwd": {"type": "varchar", "default": ""},
"important_kwd": {"type": "varchar", "default": ""},
"important_tks": {"type": "varchar", "default": ""},
"content_with_weight": {"type": "varchar", "default": ""},
"content_ltks": {"type": "varchar", "default": ""},
"content_sm_ltks": {"type": "varchar", "default": ""},
"page_num_list": {"type": "varchar", "default": ""},
"top_list": {"type": "varchar", "default": ""},
"position_list": {"type": "varchar", "default": ""},
"weight_int": {"type": "integer", "default": 0},
"weight_flt": {"type": "float", "default": 0.0},
"rank_int": {"type": "integer", "default": 0},
"available_int": {"type": "integer", "default": 1},
"knowledge_graph_kwd": {"type": "varchar", "default": ""},
"entities_kwd": {"type": "varchar", "default": ""}
}

View File

@ -3,7 +3,7 @@
{
"name": "OpenAI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"tags": "LLM,TEXT EMBEDDING,TTS,TEXT RE-RANK,SPEECH2TEXT,MODERATION",
"status": "1",
"llm": [
{
@ -89,7 +89,7 @@
{
"name": "Tongyi-Qianwen",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,SPEECH2TEXT,MODERATION",
"tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,TTS,SPEECH2TEXT,MODERATION",
"status": "1",
"llm": [
{
@ -160,6 +160,18 @@
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
"llm": [
{
"llm_name": "glm-4-plus",
"tags": "LLM,CHAT,",
"max_tokens": 128000,
"model_type": "chat"
},
{
"llm_name": "glm-4-0520",
"tags": "LLM,CHAT,",
"max_tokens": 128000,
"model_type": "chat"
},
{
"llm_name": "glm-4",
"tags": "LLM,CHAT,",
@ -184,6 +196,12 @@
"max_tokens": 128000,
"model_type": "chat"
},
{
"llm_name": "glm-4-flashx",
"tags": "LLM,CHAT,",
"max_tokens": 128000,
"model_type": "chat"
},
{
"llm_name": "glm-4-long",
"tags": "LLM,CHAT,",
@ -334,7 +352,7 @@
{
"name": "Xinference",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION,TEXT RE-RANK",
"tags": "LLM,TEXT EMBEDDING,TTS,SPEECH2TEXT,MODERATION,TEXT RE-RANK",
"status": "1",
"llm": []
},
@ -640,7 +658,7 @@
"llm_name": "gpt-4o",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat,image2text"
"model_type": "image2text"
},
{
"llm_name": "gpt-3.5-turbo",
@ -1299,7 +1317,7 @@
"llm": []
},
{
"name": "cohere",
"name": "Cohere",
"logo": "",
"tags": "LLM,TEXT EMBEDDING, TEXT RE-RANK",
"status": "1",
@ -2017,6 +2035,60 @@
"max_tokens": 32768,
"model_type": "chat"
},
{
"llm_name": "Qwen/Qwen2.5-72B-Instruct-128K",
"tags": "LLM,CHAT,128k",
"max_tokens": 131072,
"model_type": "chat"
},
{
"llm_name": "Qwen/Qwen2.5-72B-Instruct",
"tags": "LLM,CHAT,32k",
"max_tokens": 32768,
"model_type": "chat"
},
{
"llm_name": "Qwen/Qwen2.5-7B-Instruct",
"tags": "LLM,CHAT,32k",
"max_tokens": 32768,
"model_type": "chat"
},
{
"llm_name": "Qwen/Qwen2.5-14B-Instruct",
"tags": "LLM,CHAT,32k",
"max_tokens": 32768,
"model_type": "chat"
},
{
"llm_name": "Qwen/Qwen2.5-32B-Instruct",
"tags": "LLM,CHAT,32k",
"max_tokens": 32768,
"model_type": "chat"
},
{
"llm_name": "Qwen/Qwen2.5-Math-72B-Instruct",
"tags": "LLM,CHAT,Math,4k",
"max_tokens": 4096,
"model_type": "chat"
},
{
"llm_name": "Qwen/Qwen2.5-Coder-7B-Instruct",
"tags": "LLM,CHAT,FIM,Coder,32k",
"max_tokens": 32768,
"model_type": "chat"
},
{
"llm_name": "Pro/Qwen/Qwen2.5-7B-Instruct",
"tags": "LLM,CHAT,32k",
"max_tokens": 32768,
"model_type": "chat"
},
{
"llm_name": "Pro/Qwen/Qwen2.5-Coder-7B-Instruct",
"tags": "LLM,CHAT,FIM,Coder,32k",
"max_tokens": 32768,
"model_type": "chat"
},
{
"llm_name": "01-ai/Yi-1.5-34B-Chat-16K",
"tags": "LLM,CHAT,16k",
@ -2231,7 +2303,7 @@
{
"name": "XunFei Spark",
"logo": "",
"tags": "LLM",
"tags": "LLM,TTS",
"status": "1",
"llm": []
},
@ -2268,6 +2340,12 @@
"max_tokens": 204800,
"model_type": "chat"
},
{
"llm_name": "claude-3-5-sonnet-20241022",
"tags": "LLM,CHAT,200k",
"max_tokens": 204800,
"model_type": "chat"
},
{
"llm_name": "claude-3-opus-20240229",
"tags": "LLM,CHAT,200k",
@ -2299,8 +2377,8 @@
"model_type": "chat"
},
{
"llm_name": "claude-instant-1.2",
"tags": "LLM,CHAT,100k",
"llm_name": "claude-3-5-sonnet-20241022",
"tags": "LLM,CHAT,200k",
"max_tokens": 102400,
"model_type": "chat"
}
@ -2376,11 +2454,11 @@
"llm": []
},
{
"name": "HuggingFace",
"logo": "",
"tags": "TEXT EMBEDDING",
"status": "1",
"llm": []
}
"name": "HuggingFace",
"logo": "",
"tags": "TEXT EMBEDDING",
"status": "1",
"llm": []
}
]
}

View File

@ -1,200 +1,203 @@
{
{
"settings": {
"index": {
"number_of_shards": 2,
"number_of_replicas": 0,
"refresh_interval" : "1000ms"
"refresh_interval": "1000ms"
},
"similarity": {
"scripted_sim": {
"type": "scripted",
"script": {
"source": "double idf = Math.log(1+(field.docCount-term.docFreq+0.5)/(term.docFreq + 0.5))/Math.log(1+((field.docCount-0.5)/1.5)); return query.boost * idf * Math.min(doc.freq, 1);"
}
"scripted_sim": {
"type": "scripted",
"script": {
"source": "double idf = Math.log(1+(field.docCount-term.docFreq+0.5)/(term.docFreq + 0.5))/Math.log(1+((field.docCount-0.5)/1.5)); return query.boost * idf * Math.min(doc.freq, 1);"
}
}
}
},
"mappings": {
"properties": {
"lat_lon": {"type": "geo_point", "store":"true"}
},
"date_detection": "true",
"dynamic_templates": [
{
"int": {
"match": "*_int",
"mapping": {
"type": "integer",
"store": "true"
}
"properties": {
"lat_lon": {
"type": "geo_point",
"store": "true"
}
},
"date_detection": "true",
"dynamic_templates": [
{
"int": {
"match": "*_int",
"mapping": {
"type": "integer",
"store": "true"
}
},
{
"ulong": {
"match": "*_ulong",
"mapping": {
"type": "unsigned_long",
"store": "true"
}
}
},
{
"long": {
"match": "*_long",
"mapping": {
"type": "long",
"store": "true"
}
}
},
{
"short": {
"match": "*_short",
"mapping": {
"type": "short",
"store": "true"
}
}
},
{
"numeric": {
"match": "*_flt",
"mapping": {
"type": "float",
"store": true
}
}
},
{
"tks": {
"match": "*_tks",
"mapping": {
"type": "text",
"similarity": "scripted_sim",
"analyzer": "whitespace",
"store": true
}
}
},
{
"ltks":{
"match": "*_ltks",
"mapping": {
"type": "text",
"analyzer": "whitespace",
"store": true
}
}
},
{
"kwd": {
"match_pattern": "regex",
"match": "^(.*_(kwd|id|ids|uid|uids)|uid)$",
"mapping": {
"type": "keyword",
"similarity": "boolean",
"store": true
}
}
},
{
"dt": {
"match_pattern": "regex",
"match": "^.*(_dt|_time|_at)$",
"mapping": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||yyyy-MM-dd_HH:mm:ss",
"store": true
}
}
},
{
"nested": {
"match": "*_nst",
"mapping": {
"type": "nested"
}
}
},
{
"object": {
"match": "*_obj",
"mapping": {
"type": "object",
"dynamic": "true"
}
}
},
{
"string": {
"match": "*_with_weight",
"mapping": {
"type": "text",
"index": "false",
"store": true
}
}
},
{
"string": {
"match": "*_fea",
"mapping": {
"type": "rank_feature"
}
}
},
{
"dense_vector": {
"match": "*_512_vec",
"mapping": {
"type": "dense_vector",
"index": true,
"similarity": "cosine",
"dims": 512
}
}
},
{
"dense_vector": {
"match": "*_768_vec",
"mapping": {
"type": "dense_vector",
"index": true,
"similarity": "cosine",
"dims": 768
}
}
},
{
"dense_vector": {
"match": "*_1024_vec",
"mapping": {
"type": "dense_vector",
"index": true,
"similarity": "cosine",
"dims": 1024
}
}
},
{
"dense_vector": {
"match": "*_1536_vec",
"mapping": {
"type": "dense_vector",
"index": true,
"similarity": "cosine",
"dims": 1536
}
}
},
{
"binary": {
"match": "*_bin",
"mapping": {
"type": "binary"
}
}
}
]
}
}
},
{
"ulong": {
"match": "*_ulong",
"mapping": {
"type": "unsigned_long",
"store": "true"
}
}
},
{
"long": {
"match": "*_long",
"mapping": {
"type": "long",
"store": "true"
}
}
},
{
"short": {
"match": "*_short",
"mapping": {
"type": "short",
"store": "true"
}
}
},
{
"numeric": {
"match": "*_flt",
"mapping": {
"type": "float",
"store": true
}
}
},
{
"tks": {
"match": "*_tks",
"mapping": {
"type": "text",
"similarity": "scripted_sim",
"analyzer": "whitespace",
"store": true
}
}
},
{
"ltks": {
"match": "*_ltks",
"mapping": {
"type": "text",
"analyzer": "whitespace",
"store": true
}
}
},
{
"kwd": {
"match_pattern": "regex",
"match": "^(.*_(kwd|id|ids|uid|uids)|uid)$",
"mapping": {
"type": "keyword",
"similarity": "boolean",
"store": true
}
}
},
{
"dt": {
"match_pattern": "regex",
"match": "^.*(_dt|_time|_at)$",
"mapping": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||yyyy-MM-dd_HH:mm:ss",
"store": true
}
}
},
{
"nested": {
"match": "*_nst",
"mapping": {
"type": "nested"
}
}
},
{
"object": {
"match": "*_obj",
"mapping": {
"type": "object",
"dynamic": "true"
}
}
},
{
"string": {
"match": "*_(with_weight|list)$",
"mapping": {
"type": "text",
"index": "false",
"store": true
}
}
},
{
"string": {
"match": "*_fea",
"mapping": {
"type": "rank_feature"
}
}
},
{
"dense_vector": {
"match": "*_512_vec",
"mapping": {
"type": "dense_vector",
"index": true,
"similarity": "cosine",
"dims": 512
}
}
},
{
"dense_vector": {
"match": "*_768_vec",
"mapping": {
"type": "dense_vector",
"index": true,
"similarity": "cosine",
"dims": 768
}
}
},
{
"dense_vector": {
"match": "*_1024_vec",
"mapping": {
"type": "dense_vector",
"index": true,
"similarity": "cosine",
"dims": 1024
}
}
},
{
"dense_vector": {
"match": "*_1536_vec",
"mapping": {
"type": "dense_vector",
"index": true,
"similarity": "cosine",
"dims": 1536
}
}
},
{
"binary": {
"match": "*_bin",
"mapping": {
"type": "binary"
}
}
}
]
}
}

View File

@ -1 +0,0 @@
../docker/service_conf.yaml

77
conf/service_conf.yaml Normal file
View File

@ -0,0 +1,77 @@
ragflow:
host: 0.0.0.0
http_port: 9380
mysql:
name: 'rag_flow'
user: 'root'
password: 'infini_rag_flow'
host: 'mysql'
port: 5455
max_connections: 100
stale_timeout: 30
minio:
user: 'rag_flow'
password: 'infini_rag_flow'
host: 'minio:9000'
es:
hosts: 'http://es01:1200'
username: 'elastic'
password: 'infini_rag_flow'
infinity:
uri: 'infinity:23817'
db_name: 'default_db'
redis:
db: 1
password: 'infini_rag_flow'
host: 'redis:6379'
# postgres:
# name: 'rag_flow'
# user: 'rag_flow'
# password: 'infini_rag_flow'
# host: 'postgres'
# port: 5432
# max_connections: 100
# stale_timeout: 30
# s3:
# endpoint: 'endpoint'
# access_key: 'access_key'
# secret_key: 'secret_key'
# region: 'region'
# azure:
# auth_type: 'sas'
# container_url: 'container_url'
# sas_token: 'sas_token'
# azure:
# auth_type: 'spn'
# account_url: 'account_url'
# client_id: 'client_id'
# secret: 'secret'
# tenant_id: 'tenant_id'
# container_name: 'container_name'
# user_default_llm:
# factory: 'Tongyi-Qianwen'
# api_key: 'sk-xxxxxxxxxxxxx'
# base_url: ''
# oauth:
# github:
# client_id: xxxxxxxxxxxxxxxxxxxxxxxxx
# secret_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
# url: https://github.com/login/oauth/access_token
# feishu:
# app_id: cli_xxxxxxxxxxxxxxxxxxx
# app_secret: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
# app_access_token_url: https://open.feishu.cn/open-apis/auth/v3/app_access_token/internal
# user_access_token_url: https://open.feishu.cn/open-apis/authen/v1/oidc/access_token
# grant_type: 'authorization_code'
# authentication:
# client:
# switch: false
# http_app_key:
# http_secret_key:
# site:
# switch: false
# permission:
# switch: false
# component: false
# dataset: false

View File

@ -110,7 +110,7 @@ class RAGFlowDocxParser:
return lines
return ["\n".join(lines)]
def __call__(self, fnm, from_page=0, to_page=100000):
def __call__(self, fnm, from_page=0, to_page=100000000):
self.doc = Document(fnm) if isinstance(
fnm, str) else Document(BytesIO(fnm))
pn = 0 # parsed page
@ -130,7 +130,7 @@ class RAGFlowDocxParser:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
secs.append(("".join(runs_within_single_paragraph), p.style.name)) # then concat run.text as part of the paragraph
secs.append(("".join(runs_within_single_paragraph), p.style.name if hasattr(p.style, 'name') else '')) # then concat run.text as part of the paragraph
tbls = [self.__extract_table_content(tb) for tb in self.doc.tables]
return secs, tbls

View File

@ -3,12 +3,11 @@
# from https://github.com/langchain-ai/langchain/blob/master/libs/text-splitters/langchain_text_splitters/json.py
import json
from typing import Any, Dict, List, Optional
from typing import Any
from rag.nlp import find_codec
class RAGFlowJsonParser:
def __init__(
self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
self, max_chunk_size: int = 2000, min_chunk_size: int | None = None
):
super().__init__()
self.max_chunk_size = max_chunk_size * 2
@ -27,12 +26,12 @@ class RAGFlowJsonParser:
return sections
@staticmethod
def _json_size(data: Dict) -> int:
def _json_size(data: dict) -> int:
"""Calculate the size of the serialized JSON object."""
return len(json.dumps(data, ensure_ascii=False))
@staticmethod
def _set_nested_dict(d: Dict, path: List[str], value: Any) -> None:
def _set_nested_dict(d: dict, path: list[str], value: Any) -> None:
"""Set a value in a nested dictionary based on the given path."""
for key in path[:-1]:
d = d.setdefault(key, {})
@ -54,10 +53,10 @@ class RAGFlowJsonParser:
def _json_split(
self,
data: Dict[str, Any],
current_path: Optional[List[str]] = None,
chunks: Optional[List[Dict]] = None,
) -> List[Dict]:
data: dict[str, Any],
current_path: list[str] | None,
chunks: list[dict] | None,
) -> list[dict]:
"""
Split json into maximum size dictionaries while preserving structure.
"""
@ -87,9 +86,9 @@ class RAGFlowJsonParser:
def split_json(
self,
json_data: Dict[str, Any],
json_data: dict[str, Any],
convert_lists: bool = False,
) -> List[Dict]:
) -> list[dict]:
"""Splits JSON into a list of JSON chunks"""
if convert_lists:
@ -104,10 +103,10 @@ class RAGFlowJsonParser:
def split_text(
self,
json_data: Dict[str, Any],
json_data: dict[str, Any],
convert_lists: bool = False,
ensure_ascii: bool = True,
) -> List[str]:
) -> list[str]:
"""Splits JSON into a list of JSON formatted strings"""
chunks = self.split_json(json_data=json_data, convert_lists=convert_lists)

View File

@ -11,6 +11,7 @@
# limitations under the License.
#
import logging
import os
import random
@ -18,22 +19,18 @@ import xgboost as xgb
from io import BytesIO
import re
import pdfplumber
import logging
from PIL import Image, ImageDraw
from PIL import Image
import numpy as np
from timeit import default_timer as timer
from pypdf import PdfReader as pdf2_read
from api.settings import LIGHTEN
from api import settings
from api.utils.file_utils import get_project_base_directory
from deepdoc.vision import OCR, Recognizer, LayoutRecognizer, TableStructureRecognizer
from rag.nlp import rag_tokenizer
from copy import deepcopy
from huggingface_hub import snapshot_download
logging.getLogger("pdfminer").setLevel(logging.WARNING)
class RAGFlowPdfParser:
def __init__(self):
self.ocr = OCR()
@ -44,20 +41,20 @@ class RAGFlowPdfParser:
self.tbl_det = TableStructureRecognizer()
self.updown_cnt_mdl = xgb.Booster()
if not LIGHTEN:
if not settings.LIGHTEN:
try:
import torch
if torch.cuda.is_available():
self.updown_cnt_mdl.set_param({"device": "cuda"})
except Exception as e:
logging.error(str(e))
except Exception:
logging.exception("RAGFlowPdfParser __init__")
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
self.updown_cnt_mdl.load_model(os.path.join(
model_dir, "updown_concat_xgb.model"))
except Exception as e:
except Exception:
model_dir = snapshot_download(
repo_id="InfiniFlow/text_concat_xgb_v1.0",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
@ -187,7 +184,7 @@ class RAGFlowPdfParser:
return True
def _table_transformer_job(self, ZM):
logging.info("Table processing...")
logging.debug("Table processing...")
imgs, pos = [], []
tbcnt = [0]
MARGIN = 10
@ -425,12 +422,12 @@ class RAGFlowPdfParser:
detach_feats = [b["x1"] < b_["x0"],
b["x0"] > b_["x1"]]
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
print(
logging.debug("{} {} {} {}".format(
b["text"],
b_["text"],
any(feats),
any(concatting_feats),
any(detach_feats))
))
i += 1
continue
# merge up and down
@ -760,7 +757,7 @@ class RAGFlowPdfParser:
if ii is not None:
b = louts[ii]
else:
logging.warn(
logging.warning(
f"Missing layout match: {pn + 1},%s" %
(bxs[0].get(
"layoutno", "")))
@ -919,7 +916,7 @@ class RAGFlowPdfParser:
dfs(boxes[0], 0)
else:
logging.debug("WASTE: " + boxes[0]["text"])
except Exception as e:
except Exception:
pass
boxes.pop(0)
mw = np.mean(widths)
@ -938,8 +935,8 @@ class RAGFlowPdfParser:
pdf = pdfplumber.open(
fnm) if not binary else pdfplumber.open(BytesIO(binary))
return len(pdf.pages)
except Exception as e:
logging.error(str(e))
except Exception:
logging.exception("total_page_number")
def __images__(self, fnm, zoomin=3, page_from=0,
page_to=299, callback=None):
@ -962,8 +959,8 @@ class RAGFlowPdfParser:
self.page_chars = [[{**c, 'top': c['top'], 'bottom': c['bottom']} for c in page.dedupe_chars().chars if self._has_color(c)] for page in
self.pdf.pages[page_from:page_to]]
self.total_page = len(self.pdf.pages)
except Exception as e:
logging.error(str(e))
except Exception:
logging.exception("RAGFlowPdfParser __images__")
self.outlines = []
try:
@ -981,9 +978,9 @@ class RAGFlowPdfParser:
except Exception as e:
logging.warning(f"Outlines exception: {e}")
if not self.outlines:
logging.warning(f"Miss outlines")
logging.warning("Miss outlines")
logging.info("Images converted.")
logging.debug("Images converted.")
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(
random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in
range(len(self.page_chars))]
@ -1023,7 +1020,7 @@ class RAGFlowPdfParser:
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}",
"".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
logging.info("Is it English:", self.is_english)
logging.debug("Is it English:", self.is_english)
self.page_cum_height = np.cumsum(self.page_cum_height)
assert len(self.page_cum_height) == len(self.page_images) + 1
@ -1162,10 +1159,10 @@ class PlainParser(object):
dfs(a, depth + 1)
dfs(outlines, 0)
except Exception as e:
logging.warning(f"Outlines exception: {e}")
except Exception:
logging.exception("Outlines exception")
if not self.outlines:
logging.warning(f"Miss outlines")
logging.warning("Miss outlines")
return [(l, "") for l in lines], []

View File

@ -11,10 +11,15 @@
# limitations under the License.
#
import re,json,os
import logging
import re
import json
import os
import pandas as pd
from rag.nlp import rag_tokenizer
from . import regions
current_file_path = os.path.dirname(os.path.abspath(__file__))
GOODS = pd.read_csv(os.path.join(current_file_path, "res/corp_baike_len.csv"), sep="\t", header=0).fillna(0)
GOODS["cid"] = GOODS["cid"].astype(str)
@ -27,7 +32,7 @@ def baike(cid, default_v=0):
global GOODS
try:
return GOODS.loc[str(cid), "len"]
except Exception as e:
except Exception:
pass
return default_v
@ -65,7 +70,8 @@ def rmNoise(n):
GOOD_CORP = set([corpNorm(rmNoise(c), False) for c in GOOD_CORP])
for c,v in CORP_TAG.items():
cc = corpNorm(rmNoise(c), False)
if not cc: print (c)
if not cc:
logging.debug(c)
CORP_TAG = {corpNorm(rmNoise(c), False):v for c,v in CORP_TAG.items()}
def is_good(nm):

View File

@ -10,9 +10,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re, copy, time, datetime, demjson3, \
traceback, signal
import logging
import re
import copy
import time
import datetime
import demjson3
import traceback
import signal
import numpy as np
from deepdoc.parser.resume.entities import degrees, schools, corporations
from rag.nlp import rag_tokenizer, surname
@ -79,7 +84,7 @@ def forEdu(cv):
y, m, d = getYMD(dt)
st_dt.append(str(y))
e["start_dt_kwd"] = str(y)
except Exception as e:
except Exception:
pass
r = schools.select(n.get("school_name", ""))
@ -158,7 +163,7 @@ def forEdu(cv):
y, m, d = getYMD(edu_end_dt)
cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
except Exception as e:
print("EXCEPTION: ", e, edu_end_dt, cv.get("work_exp_flt"))
logging.exception("forEdu {} {} {}".format(e, edu_end_dt, cv.get("work_exp_flt")))
if sch:
cv["school_name_kwd"] = sch
if (len(cv.get("degree_kwd", [])) >= 1 and "本科" in cv["degree_kwd"]) \
@ -233,7 +238,7 @@ def forWork(cv):
if type(n) == type(""):
try:
n = json_loads(n)
except Exception as e:
except Exception:
continue
if n.get("start_time") and (not work_st_tm or n["start_time"] < work_st_tm): work_st_tm = n["start_time"]
@ -269,8 +274,8 @@ def forWork(cv):
try:
duas.append((datetime.datetime.strptime(ed, "%Y-%m-%d") - datetime.datetime.strptime(st, "%Y-%m-%d")).days)
except Exception as e:
print("kkkkkkkkkkkkkkkkkkkk", n.get("start_time"), n.get("end_time"))
except Exception:
logging.exception("forWork {} {}".format(n.get("start_time"), n.get("end_time")))
if n.get("scale"):
r = re.search(r"^([0-9]+)", str(n["scale"]))
@ -327,7 +332,7 @@ def forWork(cv):
y, m, d = getYMD(work_st_tm)
cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
except Exception as e:
print("EXCEPTION: ", e, work_st_tm, cv.get("work_exp_flt"))
logging.exception("forWork {} {} {}".format(e, work_st_tm, cv.get("work_exp_flt")))
cv["job_num_int"] = 0
if duas:
@ -457,8 +462,8 @@ def parse(cv):
t = k[:-4]
cv[f"{t}_kwd"] = nms
cv[f"{t}_tks"] = rag_tokenizer.tokenize(" ".join(nms))
except Exception as e:
print("【EXCEPTION】:", str(traceback.format_exc()), cv[k])
except Exception:
logging.exception("parse {} {}".format(str(traceback.format_exc()), cv[k]))
cv[k] = []
# tokenize fields
@ -524,7 +529,7 @@ def parse(cv):
if not y: y = "2012"
if not m: m = "01"
if not d: d = "01"
cv["updated_at_dt"] = f"%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
cv["updated_at_dt"] = "%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
# long text tokenize
if cv.get("responsibilities"): cv["responsibilities_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(cv["responsibilities"]))
@ -556,10 +561,10 @@ def parse(cv):
cv["work_exp_flt"] = (time.time() - int(int(cv["work_start_time"]) / 1000)) / 3600. / 24. / 365.
elif re.match(r"[0-9]{4}[^0-9]", str(cv["work_start_time"])):
y, m, d = getYMD(str(cv["work_start_time"]))
cv["work_start_dt"] = f"%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
cv["work_start_dt"] = "%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
cv["work_exp_flt"] = int(str(datetime.date.today())[0:4]) - int(y)
except Exception as e:
print("【EXCEPTION】", e, "==>", cv.get("work_start_time"))
logging.exception("parse {} ==> {}".format(e, cv.get("work_start_time")))
if "work_exp_flt" not in cv and cv.get("work_experience", 0): cv["work_exp_flt"] = int(cv["work_experience"]) / 12.
keys = list(cv.keys())
@ -574,7 +579,7 @@ def parse(cv):
cv["tob_resume_id"] = str(cv["tob_resume_id"])
cv["id"] = cv["tob_resume_id"]
print("CCCCCCCCCCCCCCC")
logging.debug("CCCCCCCCCCCCCCC")
return dealWithInt64(cv)
@ -589,4 +594,3 @@ def dealWithInt64(d):
if isinstance(d, np.integer): d = int(d)
return d

View File

@ -10,6 +10,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from deepdoc.parser.utils import get_text
from rag.nlp import num_tokens_from_string
@ -29,8 +31,6 @@ class RAGFlowTxtParser:
def add_chunk(t):
nonlocal cks, tk_nums, delimiter
tnum = num_tokens_from_string(t)
if tnum < 8:
pos = ""
if tk_nums[-1] > chunk_token_num:
cks.append(t)
tk_nums.append(tnum)
@ -38,15 +38,19 @@ class RAGFlowTxtParser:
cks[-1] += t
tk_nums[-1] += tnum
s, e = 0, 1
while e < len(txt):
if txt[e] in delimiter:
add_chunk(txt[s: e + 1])
s = e + 1
e = s + 1
else:
e += 1
if s < e:
add_chunk(txt[s: e + 1])
dels = []
s = 0
for m in re.finditer(r"`([^`]+)`", delimiter, re.I):
f, t = m.span()
dels.append(m.group(1))
dels.extend(list(delimiter[s: f]))
s = t
if s < len(delimiter):
dels.extend(list(delimiter[s:]))
dels = [re.escape(d) for d in delimiter if d]
dels = [d for d in dels if d]
dels = "|".join(dels)
secs = re.split(r"(%s)" % dels, txt)
for sec in secs: add_chunk(sec)
return [[c,""] for c in cks]
return [[c, ""] for c in cks]

View File

@ -14,6 +14,7 @@
# limitations under the License.
#
import logging
import sys
import six
import cv2
@ -402,7 +403,7 @@ class DetResizeForTest(object):
return None, (None, None)
img = cv2.resize(img, (int(resize_w), int(resize_h)))
except BaseException:
print(img.shape, resize_w, resize_h)
logging.exception("{} {} {}".format(img.shape, resize_w, resize_h))
sys.exit(0)
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
@ -452,7 +453,6 @@ class E2EResizeForTest(object):
return data
def resize_image_for_totaltext(self, im, max_side_len=512):
h, w, _ = im.shape
resize_w = w
resize_h = h

View File

@ -11,6 +11,7 @@
# limitations under the License.
#
import logging
import os
from copy import deepcopy
@ -439,7 +440,7 @@ class Recognizer(object):
end_index = min((i + 1) * batch_size, len(imgs))
batch_image_list = imgs[start_index:end_index]
inputs = self.preprocess(batch_image_list)
print("preprocess")
logging.debug("preprocess")
for ins in inputs:
bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr)
res.append(bb)

View File

@ -11,6 +11,7 @@
# limitations under the License.
#
import logging
import os
import PIL
from PIL import ImageDraw
@ -24,7 +25,7 @@ def save_results(image_list, results, labels, output_dir='output/', threshold=0.
out_path = os.path.join(output_dir, f"{idx}.jpg")
im.save(out_path, quality=95)
print("save result to: " + out_path)
logging.debug("save result to: " + out_path)
def draw_box(im, result, lables, threshold=0.5):

View File

@ -10,7 +10,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os, sys
import logging
import os
import sys
sys.path.insert(
0,
os.path.abspath(
@ -56,7 +59,7 @@ def main(args):
} for t in lyt]
img = draw_box(images[i], lyt, labels, float(args.threshold))
img.save(outputs[i], quality=95)
print("save result to: " + outputs[i])
logging.info("save result to: " + outputs[i])
def get_table_html(img, tb_cpns, ocr):

View File

@ -38,7 +38,7 @@ class TableStructureRecognizer(Recognizer):
super().__init__(self.labels, "tsr", os.path.join(
get_project_base_directory(),
"rag/res/deepdoc"))
except Exception as e:
except Exception:
super().__init__(self.labels, "tsr", snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False))

View File

@ -1,75 +1,135 @@
# Version of Elastic products
# The type of doc engine to use.
# Available options:
# - `elasticsearch` (default)
# - `infinity` (https://github.com/infiniflow/infinity)
DOC_ENGINE=${DOC_ENGINE:-elasticsearch}
# ------------------------------
# docker env var for specifying vector db type at startup
# (based on the vector db type, the corresponding docker
# compose profile will be used)
# ------------------------------
COMPOSE_PROFILES=${DOC_ENGINE}
# The version of Elasticsearch.
STACK_VERSION=8.11.3
# Port to expose Elasticsearch HTTP API to the host
# The hostname where the Elasticsearch service is exposed
ES_HOST=es01
# The port used to expose the Elasticsearch service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
ES_PORT=1200
# Set the Elasticsearch password
# The password for Elasticsearch.
# When updated, you must revise the `es.password` entry in service_conf.yaml accordingly.
ELASTIC_PASSWORD=infini_rag_flow
# Port to expose Kibana to the host
# The port used to expose the Kibana service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
KIBANA_PORT=6601
KIBANA_USER=rag_flow
KIBANA_PASSWORD=infini_rag_flow
# Update according to the available host memory (in bytes)
# The maximum amount of the memory, in bytes, that a specific Docker container can use while running.
# Update it according to the available memory in the host machine.
MEM_LIMIT=8073741824
# The hostname where the Infinity service is exposed
INFINITY_HOST=infinity
# Port to expose Infinity API to the host
INFINITY_THRIFT_PORT=23817
INFINITY_HTTP_PORT=23820
INFINITY_PSQL_PORT=5432
# The password for MySQL.
# When updated, you must revise the `mysql.password` entry in service_conf.yaml.
MYSQL_PASSWORD=infini_rag_flow
# The hostname where the MySQL service is exposed
MYSQL_HOST=mysql
# The database of the MySQL service to use
MYSQL_DBNAME=rag_flow
# The port used to expose the MySQL service to the host machine,
# allowing EXTERNAL access to the MySQL database running inside the Docker container.
MYSQL_PORT=5455
# Port to expose minio to the host
# The hostname where the MySQL service is exposed
MINIO_HOST=minio
# The port used to expose the MinIO console interface to the host machine,
# allowing EXTERNAL access to the web-based console running inside the Docker container.
MINIO_CONSOLE_PORT=9001
# The port used to expose the MinIO API service to the host machine,
# allowing EXTERNAL access to the MinIO object storage service running inside the Docker container.
MINIO_PORT=9000
# The username for MinIO.
# When updated, you must revise the `minio.user` entry in service_conf.yaml accordingly.
MINIO_USER=rag_flow
# The password for MinIO.
# When updated, you must revise the `minio.password` entry in service_conf.yaml accordingly.
MINIO_PASSWORD=infini_rag_flow
# The hostname where the Redis service is exposed
REDIS_HOST=redis
# The port used to expose the Redis service to the host machine,
# allowing EXTERNAL access to the Redis service running inside the Docker container.
REDIS_PORT=6379
# The password for Redis.
# When updated, you must revise the `redis.password` entry in service_conf.yaml accordingly.
REDIS_PASSWORD=infini_rag_flow
# The port used to expose RAGFlow's HTTP API service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
SVR_HTTP_PORT=9380
# the Docker image for the slim version
# The RAGFlow Docker image to download.
# Defaults to the dev-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:dev-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:dev
#
# The Docker image of the dev edition includes:
# - Built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - BAAI/bge-reranker-v2-m3
# - maidalun1020/bce-embedding-base_v1
# - maidalun1020/bce-reranker-base_v1
# - Embedding models that will be downloaded once you select them in the RAGFlow UI:
# - BAAI/bge-base-en-v1.5
# - BAAI/bge-large-en-v1.5
# - BAAI/bge-small-en-v1.5
# - BAAI/bge-small-zh-v1.5
# - jinaai/jina-embeddings-v2-base-en
# - jinaai/jina-embeddings-v2-small-en
# - nomic-ai/nomic-embed-text-v1.5
# - sentence-transformers/all-MiniLM-L6-v2
#
#
# If you cannot download the RAGFlow Docker image, try uncommenting either of the following hub.docker.com mirrors:
# If you cannot download the RAGFlow Docker image:
#
# - For the `dev-slim` edition, uncomment either of the following:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:dev-slim
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:dev-slim
# To download the RAGFlow Docker image with embedding models, modify the line above as follows:
# RAGFLOW_IMAGE=infiniflow/ragflow:dev
# This Docker image includes the following four models:
# - BAAI/bge-large-zh-v1.5
# - BAAI/bge-reranker-v2-m3
# - maidalun1020/bce-embedding-base_v1
# - maidalun1020/bce-reranker-base_v1
# And the following models will be downloaded if you select them in the RAGFlow UI.
# - BAAI/bge-base-en-v1.5
# - BAAI/bge-large-en-v1.5
# - BAAI/bge-small-en-v1.5
# - BAAI/bge-small-zh-v1.5
# - jinaai/jina-embeddings-v2-base-en
# - jinaai/jina-embeddings-v2-small-en
# - nomic-ai/nomic-embed-text-v1.5
# - sentence-transformers/all-MiniLM-L6-v2
# If you cannot download the RAGFlow Docker image, try uncommenting either of the following hub.docker.com mirrors:
#
# - For the `dev` edition, uncomment either of the following:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:dev
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:dev
# The local time zone.
TIMEZONE='Asia/Shanghai'
# If you cannot download the RAGFlow Docker image, try uncommenting the following huggingface.co mirror:
# Uncomment the following line if you have limited access to huggingface.co:
# HF_ENDPOINT=https://hf-mirror.com
######## OS setup for ES ###########
# sysctl vm.max_map_count
# sudo sysctl -w vm.max_map_count=262144
# Note that this change is not permanent and will be reset after a system reboot.
# To make your change permanent, update /etc/sysctl.conf by:
# Adding or modifying the following line:
# vm.max_map_count=262144
# Optimizations for MacOS
# Uncomment the following line if your OS is MacOS:
# MACOS=1
# The maximum file size for each uploaded file, in bytes.
# You can uncomment this line and update the value if you wish to change 128M file size limit
# MAX_CONTENT_LENGTH=134217728

View File

@ -1,80 +1,162 @@
# README
# Docker Environment Variable
<details open>
<summary></b>📗 Table of Contents</b></summary>
Look into [.env](./.env), there're some important variables.
- 🐳 [Docker Compose](#-docker-compose)
- 🐬 [Docker environment variables](#-docker-environment-variables)
- 🐋 [Service configuration](#-service-configuration)
## MYSQL_PASSWORD
The mysql password could be changed by this variable. But you need to change *mysql.password* in [service_conf.yaml](./service_conf.yaml) at the same time.
</details>
## 🐳 Docker Compose
## MYSQL_PORT
It refers to exported port number of mysql docker container, it's useful if you want to access the database outside the docker containers.
- **docker-compose.yml**
Sets up environment for RAGFlow and its dependencies.
- **docker-compose-base.yml**
Sets up environment for RAGFlow's base services: Elasticsearch, MySQL, MinIO, and Redis.
## MINIO_USER
It refers to user name of [Mino](https://github.com/minio/minio). The modification should be synchronous updating at minio.user of [service_conf.yaml](./service_conf.yaml).
## 🐬 Docker environment variables
## MINIO_PASSWORD
It refers to user password of [Mino](https://github.com/minio/minio). The modification should be synchronous updating at minio.password of [service_conf.yaml](./service_conf.yaml).
The [.env](./.env) file contains important environment variables for Docker.
### Elasticsearch
## SVR_HTTP_PORT
It refers to The API server serving port.
- `STACK_VERSION`
The version of Elasticsearch. Defaults to `8.11.3`
- `ES_PORT`
The port used to expose the Elasticsearch service to the host machine, allowing **external** access to the service running inside the Docker container. Defaults to `1200`.
- `ELASTIC_PASSWORD`
The password for Elasticsearch.
### Kibana
# Service Configuration
[service_conf.yaml](./service_conf.yaml) is used by the *API server* and *task executor*. It's the most important configuration of the system.
- `KIBANA_PORT`
The port used to expose the Kibana service to the host machine, allowing **external** access to the service running inside the Docker container. Defaults to `6601`.
- `KIBANA_USER`
The username for Kibana. Defaults to `rag_flow`.
- `KIBANA_PASSWORD`
The password for Kibana. Defaults to `infini_rag_flow`.
## ragflow
### Resource management
### host
The IP address used by the API server.
- `MEM_LIMIT`
The maximum amount of the memory, in bytes, that *a specific* Docker container can use while running. Defaults to `8073741824`.
### port
The serving port of API server.
### MySQL
## mysql
- `MYSQL_PASSWORD`
The password for MySQL.
- `MYSQL_PORT`
The port used to expose the MySQL service to the host machine, allowing **external** access to the MySQL database running inside the Docker container. Defaults to `5455`.
### name
The database name in mysql used by this system.
### MinIO
### user
The database user name.
- `MINIO_CONSOLE_PORT`
The port used to expose the MinIO console interface to the host machine, allowing **external** access to the web-based console running inside the Docker container. Defaults to `9001`
- `MINIO_PORT`
The port used to expose the MinIO API service to the host machine, allowing **external** access to the MinIO object storage service running inside the Docker container. Defaults to `9000`.
- `MINIO_USER`
The username for MinIO.
- `MINIO_PASSWORD`
The password for MinIO.
### password
The database password. The modification should be synchronous updating at *MYSQL_PASSWORD* in [.env](./.env).
### Redis
### port
The serving port of mysql inside the container. The modification should be synchronous updating at [docker-compose.yml](./docker-compose.yml)
- `REDIS_PORT`
The port used to expose the Redis service to the host machine, allowing **external** access to the Redis service running inside the Docker container. Defaults to `6379`.
- `REDIS_PASSWORD`
The password for Redis.
### max_connections
The max database connection.
### RAGFlow
### stale_timeout
The timeout duration in seconds.
## minio
### user
The username of minio. The modification should be synchronous updating at *MINIO_USER* in [.env](./.env).
### password
The password of minio. The modification should be synchronous updating at *MINIO_PASSWORD* in [.env](./.env).
### host
The serving IP and port inside the docker container. This is not updating until changing the minio part in [docker-compose.yml](./docker-compose.yml)
## user_default_llm
Newly signed-up users use LLM configured by this part. Otherwise, user need to configure his own LLM in *setting*.
- `SVR_HTTP_PORT`
The port used to expose RAGFlow's HTTP API service to the host machine, allowing **external** access to the service running inside the Docker container. Defaults to `9380`.
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
### factory
The LLM suppliers. "OpenAI" "Tongyi-Qianwen", "ZHIPU-AI", "Moonshot", "DeepSeek", "Baichuan", and "VolcEngine" are supported.
- `infiniflow/ragflow:dev-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:dev`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`
- `maidalun1020/bce-embedding-base_v1`
- `maidalun1020/bce-reranker-base_v1`
- Embedding models that will be downloaded once you select them in the RAGFlow UI:
- `BAAI/bge-base-en-v1.5`
- `BAAI/bge-large-en-v1.5`
- `BAAI/bge-small-en-v1.5`
- `BAAI/bge-small-zh-v1.5`
- `jinaai/jina-embeddings-v2-base-en`
- `jinaai/jina-embeddings-v2-small-en`
- `nomic-ai/nomic-embed-text-v1.5`
- `sentence-transformers/all-MiniLM-L6-v2`
> [!TIP]
> If you cannot download the RAGFlow Docker image, try the following mirrors.
>
> - For the `dev-slim` edition:
> - `RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:dev-slim` or,
> - `RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:dev-slim`.
> - For the `dev` edition:
> - `RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:dev` or,
> - `RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:dev`.
### api_key
The corresponding API key of your assigned LLM vendor.
### Timezone
## oauth
This is OAuth configuration which allows your system using the third-party account to sign-up and sign-in to the system.
- `TIMEZONE`
The local time zone. Defaults to `'Asia/Shanghai'`.
### github
Got to [Github](https://github.com/settings/developers), register new application, the *client_id* and *secret_key* will be given.
### Hugging Face mirror site
- `HF_ENDPOINT`
The mirror site for huggingface.co. It is disabled by default. You can uncomment this line if you have limited access to the primary Hugging Face domain.
### MacOS
- `MACOS`
Optimizations for MacOS. It is disabled by default. You can uncomment this line if your OS is MacOS.
### Maximum file size
- `MAX_CONTENT_LENGTH`
The maximum file size for each uploaded file, in bytes. You can uncomment this line if you wish to change the 128M file size limit.
## 🐋 Service configuration
[service_conf.yaml](./service_conf.yaml) specifies the system-level configuration for RAGFlow and is used by its API server and task executor. In a dockerized setup, this file is automatically created based on the [service_conf.yaml.template](./service_conf.yaml.template) file (replacing all environment variables by their values).
- `ragflow`
- `host`: The API server's IP address inside the Docker container. Defaults to `0.0.0.0`.
- `port`: The API server's serving port inside the Docker container. Defaults to `9380`.
- `mysql`
- `name`: The MySQL database name. Defaults to `rag_flow`.
- `user`: The username for MySQL.
- `password`: The password for MySQL. When updated, you must revise the `MYSQL_PASSWORD` variable in [.env](./.env) accordingly.
- `port`: The MySQL serving port inside the Docker container. Defaults to `3306`.
- `max_connections`: The maximum number of concurrent connections to the MySQL database. Defaults to `100`.
- `stale_timeout`: Timeout in seconds.
- `minio`
- `user`: The username for MinIO. When updated, you must revise the `MINIO_USER` variable in [.env](./.env) accordingly.
- `password`: The password for MinIO. When updated, you must revise the `MINIO_PASSWORD` variable in [.env](./.env) accordingly.
- `host`: The MinIO serving IP *and* port inside the Docker container. Defaults to `minio:9000`.
- `oauth`
The OAuth configuration for signing up or signing in to RAGFlow using a third-party account. It is disabled by default. To enable this feature, uncomment the corresponding lines in **service_conf.yaml.template**.
- `github`: The GitHub authentication settings for your application. Visit the [Github Developer Settings page](https://github.com/settings/developers) to obtain your client_id and secret_key.
- `user_default_llm`
The default LLM to use for a new RAGFlow user. It is disabled by default. To enable this feature, uncomment the corresponding lines in **service_conf.yaml.template**.
- `factory`: The LLM supplier. Available options:
- `"OpenAI"`
- `"DeepSeek"`
- `"Moonshot"`
- `"Tongyi-Qianwen"`
- `"VolcEngine"`
- `"ZHIPU-AI"`
- `api_key`: The API key for the specified LLM. You will need to apply for your model API key online.
> [!TIP]
> If you do not set the default LLM here, configure the default LLM on the **Settings** page in the RAGFlow UI.

View File

@ -1,11 +1,14 @@
services:
es01:
container_name: ragflow-es-01
profiles:
- elasticsearch
image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}
volumes:
- esdata01:/usr/share/elasticsearch/data
ports:
- ${ES_PORT}:9200
env_file: .env
environment:
- node.name=es01
- ELASTIC_PASSWORD=${ELASTIC_PASSWORD}
@ -27,12 +30,42 @@ services:
retries: 120
networks:
- ragflow
restart: always
restart: on-failure
infinity:
container_name: ragflow-infinity
profiles:
- infinity
image: infiniflow/infinity:v0.5.0-dev5
volumes:
- infinity_data:/var/infinity
ports:
- ${INFINITY_THRIFT_PORT}:23817
- ${INFINITY_HTTP_PORT}:23820
- ${INFINITY_PSQL_PORT}:5432
env_file: .env
environment:
- TZ=${TIMEZONE}
mem_limit: ${MEM_LIMIT}
ulimits:
nofile:
soft: 500000
hard: 500000
networks:
- ragflow
healthcheck:
test: ["CMD", "curl", "http://localhost:23820/admin/node/current"]
interval: 10s
timeout: 10s
retries: 120
restart: on-failure
mysql:
# mysql:5.7 linux/arm64 image is unavailable.
image: mysql:8.0.39
container_name: ragflow-mysql
env_file: .env
environment:
- MYSQL_ROOT_PASSWORD=${MYSQL_PASSWORD}
- TZ=${TIMEZONE}
@ -55,7 +88,7 @@ services:
interval: 10s
timeout: 10s
retries: 3
restart: always
restart: on-failure
minio:
image: quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z
@ -64,6 +97,7 @@ services:
ports:
- ${MINIO_PORT}:9000
- ${MINIO_CONSOLE_PORT}:9001
env_file: .env
environment:
- MINIO_ROOT_USER=${MINIO_USER}
- MINIO_ROOT_PASSWORD=${MINIO_PASSWORD}
@ -72,25 +106,28 @@ services:
- minio_data:/data
networks:
- ragflow
restart: always
restart: on-failure
redis:
image: redis:7.2.4
image: valkey/valkey:8
container_name: ragflow-redis
command: redis-server --requirepass ${REDIS_PASSWORD} --maxmemory 128mb --maxmemory-policy allkeys-lru
env_file: .env
ports:
- ${REDIS_PORT}:6379
volumes:
- redis_data:/data
networks:
- ragflow
restart: always
restart: on-failure
volumes:
esdata01:
driver: local
infinity_data:
driver: local
mysql_data:
driver: local
minio_data:

View File

@ -16,7 +16,6 @@ services:
- 80:80
- 443:443
volumes:
- ./service_conf.yaml:/ragflow/conf/service_conf.yaml
- ./ragflow-logs:/ragflow/logs
- ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
- ./nginx/proxy.conf:/etc/nginx/proxy.conf

Some files were not shown because too many files have changed in this diff Show More