mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-23 11:36:38 +08:00
Compare commits
187 Commits
pipeline
...
e8bfda6020
| Author | SHA1 | Date | |
|---|---|---|---|
| e8bfda6020 | |||
| 34c54cd459 | |||
| 3d873d98fb | |||
| fbe25b5add | |||
| 0c6c7c8fe7 | |||
| e266f9a66f | |||
| fde6e5ab39 | |||
| 67529825e2 | |||
| 738a7d5c24 | |||
| 83ec915d51 | |||
| e535099f36 | |||
| 16b5feadb7 | |||
| 960f47c4d4 | |||
| 51139de178 | |||
| 1f5167f1ca | |||
| 578ea34b3e | |||
| 5fb3d2f55c | |||
| d99d1e3518 | |||
| 5b387b68ba | |||
| f92a45dcc4 | |||
| c4b8e4845c | |||
| 87659dcd3a | |||
| 6fd9508017 | |||
| 113851a692 | |||
| 66c69d10fe | |||
| 781d49cd0e | |||
| aaae938f54 | |||
| 9e73f799b2 | |||
| 21a62130c8 | |||
| 68e47c81d4 | |||
| f11d8af936 | |||
| 74ec734d69 | |||
| 8c75803b70 | |||
| ff4239c7cf | |||
| cf5867b146 | |||
| 77481ab3ab | |||
| 9c53b3336a | |||
| 24481f0332 | |||
| 4e6b84bb41 | |||
| 65c3f0406c | |||
| 7fb8b30cc2 | |||
| acca3640f7 | |||
| 58836d84fe | |||
| ad56137a59 | |||
| 2828e321bc | |||
| 932781ea4e | |||
| 5200711441 | |||
| c21cea2038 | |||
| 6a0f448419 | |||
| 7d2f65671f | |||
| a0d5f81098 | |||
| 52f26f4643 | |||
| 313e92dd9b | |||
| fee757eb41 | |||
| b5ddc7ca05 | |||
| 534fa60b2a | |||
| 390b2b8f26 | |||
| 0283e4098f | |||
| 2cdba3d1e6 | |||
| eb0b37d7ee | |||
| 198e52e990 | |||
| a50ccf77f9 | |||
| deaf15a08b | |||
| 0d8791936e | |||
| 5d167cd772 | |||
| f35c5ed119 | |||
| fc46d6bb87 | |||
| 8252b1c5c0 | |||
| c802a6ffdd | |||
| 9b06734ced | |||
| 6ab4c1a6e9 | |||
| f631073ac2 | |||
| 8aabc2807c | |||
| d931c33ced | |||
| f4324e89d9 | |||
| f04c9e2937 | |||
| 1fc2889f98 | |||
| ee0c38da66 | |||
| c1806e1ab2 | |||
| 66d0d44a00 | |||
| 2078d88c28 | |||
| 7734ad7fcd | |||
| 1a47e136e3 | |||
| cbf04ee470 | |||
| ef0aecea3b | |||
| dfc5fa1f4d | |||
| f341dc03b8 | |||
| 4585edc20e | |||
| dba9158f9a | |||
| 82f572ff95 | |||
| 518a00630e | |||
| aa61ae24dc | |||
| fb950079ef | |||
| aec8c15e7e | |||
| 7c620bdc69 | |||
| e7dde69584 | |||
| d6eded1959 | |||
| 80f851922a | |||
| 17757930a3 | |||
| a8883905a7 | |||
| 8426cbbd02 | |||
| 0b759f559c | |||
| 2d5d10ecbf | |||
| 954bd5a1c2 | |||
| ccb1c269e8 | |||
| 6dfb0c245c | |||
| 72d1047a8f | |||
| bece37e6c8 | |||
| 59cb0eb8bc | |||
| fc56217eb3 | |||
| 723cf9443e | |||
| bd94b5dfb5 | |||
| ef59c5bab9 | |||
| 62b7c655c5 | |||
| b0b866c8fd | |||
| 3a831d0c28 | |||
| 9e323a9351 | |||
| 7ac95b759b | |||
| daea357940 | |||
| 4aa1abd8e5 | |||
| 922b5c652d | |||
| aaa97874c6 | |||
| 193d93d820 | |||
| 4058715df7 | |||
| 3f595029d7 | |||
| e8f5a4da56 | |||
| a9472e3652 | |||
| 4dd48b60f3 | |||
| e4ab8ba2de | |||
| a1f848bfe0 | |||
| f2309ff93e | |||
| 38be53cf31 | |||
| 65a06d62d8 | |||
| 10cbbb76f8 | |||
| 1c84d1b562 | |||
| 4eb7659499 | |||
| 46a61e5aff | |||
| da82566304 | |||
| c8b79dfed4 | |||
| da80fa40bc | |||
| 94dbd4aac9 | |||
| ca9f30e1a1 | |||
| 2e4295d5ca | |||
| d11b1628a1 | |||
| 45f9f428db | |||
| 902703d145 | |||
| 7ccca2143c | |||
| 70ce02faf4 | |||
| 3f1741c8c6 | |||
| 6c24ad7966 | |||
| 4846589599 | |||
| a24547aa66 | |||
| a04c5247ab | |||
| ed6a76dcc0 | |||
| a0ccbec8bd | |||
| 4693c5382a | |||
| ff3b4d0dcd | |||
| 62d35b1b73 | |||
| 91b609447d | |||
| c353840244 | |||
| f12b9fdcd4 | |||
| 80ede65bbe | |||
| 52cf186028 | |||
| ea0f1d47a5 | |||
| 9fe7c92217 | |||
| d353f7f7f8 | |||
| f3738b06f1 | |||
| 5a8bc88147 | |||
| 04ef5b2783 | |||
| c9ea22ef69 | |||
| 152111fd9d | |||
| 86f6da2f74 | |||
| 8c00cbc87a | |||
| 41e808f4e6 | |||
| bc0281040b | |||
| 341a7b1473 | |||
| c29c395390 | |||
| a23a0f230c | |||
| 2a88ce6be1 | |||
| 664b781d62 | |||
| 65571e5254 | |||
| aa30f20730 | |||
| b9b278d441 | |||
| e1d86cfee3 | |||
| 8ebd07337f | |||
| dd584d57b0 | |||
| 3d39b96c6f |
18
.github/workflows/release.yml
vendored
18
.github/workflows/release.yml
vendored
@ -25,7 +25,7 @@ jobs:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
token: ${{ secrets.MY_GITHUB_TOKEN }} # Use the secret as an environment variable
|
||||
token: ${{ secrets.GITHUB_TOKEN }} # Use the secret as an environment variable
|
||||
fetch-depth: 0
|
||||
fetch-tags: true
|
||||
|
||||
@ -69,7 +69,7 @@ jobs:
|
||||
# https://github.com/actions/upload-release-asset has been replaced by https://github.com/softprops/action-gh-release
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
token: ${{ secrets.MY_GITHUB_TOKEN }} # Use the secret as an environment variable
|
||||
token: ${{ secrets.GITHUB_TOKEN }} # Use the secret as an environment variable
|
||||
prerelease: ${{ env.PRERELEASE }}
|
||||
tag_name: ${{ env.RELEASE_TAG }}
|
||||
# The body field does not support environment variable substitution directly.
|
||||
@ -120,3 +120,17 @@ jobs:
|
||||
packages-dir: sdk/python/dist/
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
verbose: true
|
||||
|
||||
- name: Build ragflow-cli
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
run: |
|
||||
cd admin/client && \
|
||||
uv build
|
||||
|
||||
- name: Publish client package distributions to PyPI
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
packages-dir: admin/client/dist/
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
verbose: true
|
||||
|
||||
48
.github/workflows/tests.yml
vendored
48
.github/workflows/tests.yml
vendored
@ -34,12 +34,10 @@ jobs:
|
||||
# https://github.com/hmarr/debug-action
|
||||
#- uses: hmarr/debug-action@v2
|
||||
|
||||
- name: Show who triggered this workflow
|
||||
- name: Ensure workspace ownership
|
||||
run: |
|
||||
echo "Workflow triggered by ${{ github.event_name }}"
|
||||
|
||||
- name: Ensure workspace ownership
|
||||
run: echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
|
||||
echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
|
||||
|
||||
# https://github.com/actions/checkout/issues/1781
|
||||
- name: Check out code
|
||||
@ -48,6 +46,44 @@ jobs:
|
||||
fetch-depth: 0
|
||||
fetch-tags: true
|
||||
|
||||
- name: Check workflow duplication
|
||||
if: ${{ !cancelled() && !failure() && (github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'ci')) }}
|
||||
run: |
|
||||
if [[ ${{ github.event_name }} != 'pull_request' ]]; then
|
||||
HEAD=$(git rev-parse HEAD)
|
||||
# Find a PR that introduced a given commit
|
||||
gh auth login --with-token <<< "${{ secrets.GITHUB_TOKEN }}"
|
||||
PR_NUMBER=$(gh pr list --search ${HEAD} --state merged --json number --jq .[0].number)
|
||||
echo "HEAD=${HEAD}"
|
||||
echo "PR_NUMBER=${PR_NUMBER}"
|
||||
if [[ -n ${PR_NUMBER} ]]; then
|
||||
PR_SHA_FP=${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}/PR_${PR_NUMBER}
|
||||
if [[ -f ${PR_SHA_FP} ]]; then
|
||||
read -r PR_SHA PR_RUN_ID < "${PR_SHA_FP}"
|
||||
# Calculate the hash of the current workspace content
|
||||
HEAD_SHA=$(git rev-parse HEAD^{tree})
|
||||
if [[ ${HEAD_SHA} == ${PR_SHA} ]]; then
|
||||
echo "Cancel myself since the workspace content hash is the same with PR #${PR_NUMBER} merged. See ${GITHUB_SERVER_URL}/${GITHUB_REPOSITORY}/actions/runs/${PR_RUN_ID} for details."
|
||||
gh run cancel ${GITHUB_RUN_ID}
|
||||
while true; do
|
||||
status=$(gh run view ${GITHUB_RUN_ID} --json status -q .status)
|
||||
[ "$status" = "completed" ] && break
|
||||
sleep 5
|
||||
done
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
else
|
||||
PR_NUMBER=${{ github.event.pull_request.number }}
|
||||
PR_SHA_FP=${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}/PR_${PR_NUMBER}
|
||||
# Calculate the hash of the current workspace content
|
||||
PR_SHA=$(git rev-parse HEAD^{tree})
|
||||
echo "PR #${PR_NUMBER} workspace content hash: ${PR_SHA}"
|
||||
mkdir -p ${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}
|
||||
echo "${PR_SHA} ${GITHUB_RUN_ID}" > ${PR_SHA_FP}
|
||||
fi
|
||||
|
||||
# https://github.com/astral-sh/ruff-action
|
||||
- name: Static check with Ruff
|
||||
uses: astral-sh/ruff-action@v3
|
||||
@ -59,11 +95,11 @@ jobs:
|
||||
run: |
|
||||
RUNNER_WORKSPACE_PREFIX=${RUNNER_WORKSPACE_PREFIX:-$HOME}
|
||||
sudo docker pull ubuntu:22.04
|
||||
sudo docker build --progress=plain --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
|
||||
sudo DOCKER_BUILDKIT=1 docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
|
||||
|
||||
- name: Build ragflow:nightly
|
||||
run: |
|
||||
sudo docker build --progress=plain --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
|
||||
sudo DOCKER_BUILDKIT=1 docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
|
||||
|
||||
- name: Start ragflow:nightly-slim
|
||||
run: |
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@ -149,7 +149,7 @@ out
|
||||
# Nuxt.js build / generate output
|
||||
.nuxt
|
||||
dist
|
||||
|
||||
ragflow_cli.egg-info
|
||||
# Gatsby files
|
||||
.cache/
|
||||
# Comment in the public line in if your project uses Gatsby and not Next.js
|
||||
|
||||
@ -191,6 +191,7 @@ ENV PATH="${VIRTUAL_ENV}/bin:${PATH}"
|
||||
ENV PYTHONPATH=/ragflow/
|
||||
|
||||
COPY web web
|
||||
COPY admin admin
|
||||
COPY api api
|
||||
COPY conf conf
|
||||
COPY deepdoc deepdoc
|
||||
|
||||
10
README.md
10
README.md
@ -84,8 +84,8 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Latest Updates
|
||||
|
||||
- 2025-10-15 Supports orchestrable ingestion pipeline.
|
||||
- 2025-08-08 Supports OpenAI's latest GPT-5 series models.
|
||||
- 2025-08-04 Supports new models, including Kimi K2 and Grok 4.
|
||||
- 2025-08-01 Supports agentic workflow and MCP.
|
||||
- 2025-05-23 Adds a Python/JavaScript code executor component to Agent.
|
||||
- 2025-05-05 Supports cross-language query.
|
||||
@ -341,11 +341,13 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
|
||||
5. If your operating system does not have jemalloc, please install it as follows:
|
||||
|
||||
```bash
|
||||
# ubuntu
|
||||
# Ubuntu
|
||||
sudo apt-get install libjemalloc-dev
|
||||
# centos
|
||||
# CentOS
|
||||
sudo yum install jemalloc
|
||||
# mac
|
||||
# OpenSUSE
|
||||
sudo zypper install jemalloc
|
||||
# macOS
|
||||
sudo brew install jemalloc
|
||||
```
|
||||
|
||||
|
||||
@ -80,8 +80,8 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Pembaruan Terbaru
|
||||
|
||||
- 2025-10-15 Dukungan untuk jalur data yang terorkestrasi.
|
||||
- 2025-08-08 Mendukung model seri GPT-5 terbaru dari OpenAI.
|
||||
- 2025-08-04 Mendukung model baru, termasuk Kimi K2 dan Grok 4.
|
||||
- 2025-08-01 Mendukung alur kerja agen dan MCP.
|
||||
- 2025-05-23 Menambahkan komponen pelaksana kode Python/JS ke Agen.
|
||||
- 2025-05-05 Mendukung kueri lintas bahasa.
|
||||
|
||||
@ -60,8 +60,8 @@
|
||||
|
||||
## 🔥 最新情報
|
||||
|
||||
- 2025-10-15 オーケストレーションされたデータパイプラインのサポート。
|
||||
- 2025-08-08 OpenAI の最新 GPT-5 シリーズモデルをサポートします。
|
||||
- 2025-08-04 新モデル、キミK2およびGrok 4をサポート。
|
||||
- 2025-08-01 エージェントワークフローとMCPをサポート。
|
||||
- 2025-05-23 エージェントに Python/JS コードエグゼキュータコンポーネントを追加しました。
|
||||
- 2025-05-05 言語間クエリをサポートしました。
|
||||
|
||||
@ -60,8 +60,8 @@
|
||||
|
||||
## 🔥 업데이트
|
||||
|
||||
- 2025-10-15 조정된 데이터 파이프라인 지원.
|
||||
- 2025-08-08 OpenAI의 최신 GPT-5 시리즈 모델을 지원합니다.
|
||||
- 2025-08-04 새로운 모델인 Kimi K2와 Grok 4를 포함하여 지원합니다.
|
||||
- 2025-08-01 에이전트 워크플로우와 MCP를 지원합니다.
|
||||
- 2025-05-23 Agent에 Python/JS 코드 실행기 구성 요소를 추가합니다.
|
||||
- 2025-05-05 언어 간 쿼리를 지원합니다.
|
||||
|
||||
@ -80,8 +80,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Últimas Atualizações
|
||||
|
||||
- 10-15-2025 Suporte para pipelines de dados orquestrados.
|
||||
- 08-08-2025 Suporta a mais recente série GPT-5 da OpenAI.
|
||||
- 04-08-2025 Suporta novos modelos, incluindo Kimi K2 e Grok 4.
|
||||
- 01-08-2025 Suporta fluxo de trabalho agente e MCP.
|
||||
- 23-05-2025 Adicione o componente executor de código Python/JS ao Agente.
|
||||
- 05-05-2025 Suporte a consultas entre idiomas.
|
||||
|
||||
@ -83,8 +83,8 @@
|
||||
|
||||
## 🔥 近期更新
|
||||
|
||||
- 2025-10-15 支援可編排的資料管道。
|
||||
- 2025-08-08 支援 OpenAI 最新的 GPT-5 系列模型。
|
||||
- 2025-08-04 支援 Kimi K2 和 Grok 4 等模型.
|
||||
- 2025-08-01 支援 agentic workflow 和 MCP
|
||||
- 2025-05-23 為 Agent 新增 Python/JS 程式碼執行器元件。
|
||||
- 2025-05-05 支援跨語言查詢。
|
||||
|
||||
@ -83,8 +83,8 @@
|
||||
|
||||
## 🔥 近期更新
|
||||
|
||||
- 2025-08-08 支持 OpenAI 最新的 GPT-5 系列模型.
|
||||
- 2025-08-04 新增对 Kimi K2 和 Grok 4 等模型的支持.
|
||||
- 2025-10-15 支持可编排的数据管道。
|
||||
- 2025-08-08 支持 OpenAI 最新的 GPT-5 系列模型。
|
||||
- 2025-08-01 支持 agentic workflow 和 MCP。
|
||||
- 2025-05-23 Agent 新增 Python/JS 代码执行器组件。
|
||||
- 2025-05-05 支持跨语言查询。
|
||||
|
||||
47
admin/build_cli_release.sh
Executable file
47
admin/build_cli_release.sh
Executable file
@ -0,0 +1,47 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
echo "🚀 Start building..."
|
||||
echo "================================"
|
||||
|
||||
PROJECT_NAME="ragflow-cli"
|
||||
|
||||
RELEASE_DIR="release"
|
||||
BUILD_DIR="dist"
|
||||
SOURCE_DIR="src"
|
||||
PACKAGE_DIR="ragflow_cli"
|
||||
|
||||
echo "🧹 Clean old build folder..."
|
||||
rm -rf release/
|
||||
|
||||
echo "📁 Prepare source code..."
|
||||
mkdir release/$PROJECT_NAME/$SOURCE_DIR -p
|
||||
cp pyproject.toml release/$PROJECT_NAME/pyproject.toml
|
||||
cp README.md release/$PROJECT_NAME/README.md
|
||||
|
||||
mkdir release/$PROJECT_NAME/$SOURCE_DIR/$PACKAGE_DIR -p
|
||||
cp admin_client.py release/$PROJECT_NAME/$SOURCE_DIR/$PACKAGE_DIR/admin_client.py
|
||||
|
||||
if [ -d "release/$PROJECT_NAME/$SOURCE_DIR" ]; then
|
||||
echo "✅ source dir: release/$PROJECT_NAME/$SOURCE_DIR"
|
||||
else
|
||||
echo "❌ source dir not exist: release/$PROJECT_NAME/$SOURCE_DIR"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "🔨 Make build file..."
|
||||
cd release/$PROJECT_NAME
|
||||
export PYTHONPATH=$(pwd)
|
||||
python -m build
|
||||
|
||||
echo "✅ check build result..."
|
||||
if [ -d "$BUILD_DIR" ]; then
|
||||
echo "📦 Package generated:"
|
||||
ls -la $BUILD_DIR/
|
||||
else
|
||||
echo "❌ Build Failed: $BUILD_DIR not exist."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "🎉 Build finished successfully!"
|
||||
@ -15,22 +15,48 @@ It consists of a server-side Service and a command-line client (CLI), both imple
|
||||
- **Admin Service**: A backend service that interfaces with the RAGFlow system to execute administrative operations and monitor its status.
|
||||
- **Admin CLI**: A command-line interface that allows users to connect to the Admin Service and issue commands for system management.
|
||||
|
||||
|
||||
|
||||
### Starting the Admin Service
|
||||
|
||||
1. Before start Admin Service, please make sure RAGFlow system is already started.
|
||||
#### Launching from source code
|
||||
|
||||
1. Before start Admin Service, please make sure RAGFlow system is already started.
|
||||
|
||||
2. Launch from source code:
|
||||
|
||||
```bash
|
||||
python admin/server/admin_server.py
|
||||
```
|
||||
The service will start and listen for incoming connections from the CLI on the configured port.
|
||||
|
||||
#### Using docker image
|
||||
|
||||
1. Before startup, please configure the `docker_compose.yml` file to enable admin server:
|
||||
|
||||
```bash
|
||||
command:
|
||||
- --enable-adminserver
|
||||
```
|
||||
|
||||
2. Start the containers, the service will start and listen for incoming connections from the CLI on the configured port.
|
||||
|
||||
|
||||
2. Run the service script:
|
||||
```bash
|
||||
python admin/admin_server.py
|
||||
```
|
||||
The service will start and listen for incoming connections from the CLI on the configured port.
|
||||
|
||||
### Using the Admin CLI
|
||||
|
||||
1. Ensure the Admin Service is running.
|
||||
2. Launch the CLI client:
|
||||
2. Install ragflow-cli.
|
||||
```bash
|
||||
python admin/admin_client.py -h 0.0.0.0 -p 9381
|
||||
pip install ragflow-cli
|
||||
```
|
||||
3. Launch the CLI client:
|
||||
```bash
|
||||
ragflow-cli -h 0.0.0.0 -p 9381
|
||||
```
|
||||
Enter superuser's password to login. Default password is `admin`.
|
||||
|
||||
|
||||
|
||||
## Supported Commands
|
||||
|
||||
@ -42,12 +68,7 @@ Commands are case-insensitive and must be terminated with a semicolon (`;`).
|
||||
- Lists all available services within the RAGFlow system.
|
||||
- `SHOW SERVICE <id>;`
|
||||
- Shows detailed status information for the service identified by `<id>`.
|
||||
- `STARTUP SERVICE <id>;`
|
||||
- Attempts to start the service identified by `<id>`.
|
||||
- `SHUTDOWN SERVICE <id>;`
|
||||
- Attempts to gracefully shut down the service identified by `<id>`.
|
||||
- `RESTART SERVICE <id>;`
|
||||
- Attempts to restart the service identified by `<id>`.
|
||||
|
||||
|
||||
### User Management Commands
|
||||
|
||||
@ -55,10 +76,17 @@ Commands are case-insensitive and must be terminated with a semicolon (`;`).
|
||||
- Lists all users known to the system.
|
||||
- `SHOW USER '<username>';`
|
||||
- Shows details and permissions for the specified user. The username must be enclosed in single or double quotes.
|
||||
|
||||
- `CREATE USER <username> <password>;`
|
||||
- Create user by username and password. The username and password must be enclosed in single or double quotes.
|
||||
|
||||
- `DROP USER '<username>';`
|
||||
- Removes the specified user from the system. Use with caution.
|
||||
- `ALTER USER PASSWORD '<username>' '<new_password>';`
|
||||
- Changes the password for the specified user.
|
||||
- `ALTER USER ACTIVE <username> <on/off>;`
|
||||
- Changes the user to active or inactive.
|
||||
|
||||
|
||||
### Data and Agent Commands
|
||||
|
||||
@ -1,13 +1,29 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import argparse
|
||||
import base64
|
||||
from cmd import Cmd
|
||||
|
||||
from Cryptodome.PublicKey import RSA
|
||||
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
|
||||
from typing import Dict, List, Any
|
||||
from lark import Lark, Transformer, Tree
|
||||
from lark import Lark, Transformer, Tree, Token
|
||||
import requests
|
||||
from requests.auth import HTTPBasicAuth
|
||||
from api.common.base64 import encode_to_base64
|
||||
|
||||
GRAMMAR = r"""
|
||||
start: command
|
||||
@ -84,7 +100,6 @@ NUMBER: /[0-9]+/
|
||||
%ignore WS
|
||||
"""
|
||||
|
||||
|
||||
class AdminTransformer(Transformer):
|
||||
|
||||
def start(self, items):
|
||||
@ -167,7 +182,6 @@ class AdminTransformer(Transformer):
|
||||
def meta_args(self, items):
|
||||
return items
|
||||
|
||||
|
||||
def encrypt(input_string):
|
||||
pub = '-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEArq9XTUSeYr2+N1h3Afl/z8Dse/2yD0ZGrKwx+EEEcdsBLca9Ynmx3nIB5obmLlSfmskLpBo0UACBmB5rEjBp2Q2f3AG3Hjd4B+gNCG6BDaawuDlgANIhGnaTLrIqWrrcm4EMzJOnAOI1fgzJRsOOUEfaS318Eq9OVO3apEyCCt0lOQK6PuksduOjVxtltDav+guVAA068NrPYmRNabVKRNLJpL8w4D44sfth5RvZ3q9t+6RTArpEtc5sh5ChzvqPOzKGMXW83C95TxmXqpbK6olN4RevSfVjEAgCydH6HN6OhtOQEcnrU97r9H0iZOWwbw3pVrZiUkuRD1R56Wzs2wIDAQAB\n-----END PUBLIC KEY-----'
|
||||
pub_key = RSA.importKey(pub)
|
||||
@ -175,13 +189,50 @@ def encrypt(input_string):
|
||||
cipher_text = cipher.encrypt(base64.b64encode(input_string.encode('utf-8')))
|
||||
return base64.b64encode(cipher_text).decode("utf-8")
|
||||
|
||||
def encode_to_base64(input_string):
|
||||
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
|
||||
return base64_encoded.decode('utf-8')
|
||||
|
||||
class AdminCommandParser:
|
||||
class AdminCLI(Cmd):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.parser = Lark(GRAMMAR, start='start', parser='lalr', transformer=AdminTransformer())
|
||||
self.command_history = []
|
||||
self.is_interactive = False
|
||||
self.admin_account = "admin@ragflow.io"
|
||||
self.admin_password: str = "admin"
|
||||
self.host: str = ""
|
||||
self.port: int = 0
|
||||
|
||||
def parse_command(self, command_str: str) -> Dict[str, Any]:
|
||||
intro = r"""Type "\h" for help."""
|
||||
prompt = "admin> "
|
||||
|
||||
def onecmd(self, command: str) -> bool:
|
||||
try:
|
||||
print(f"command: {command}")
|
||||
result = self.parse_command(command)
|
||||
self.execute_command(result)
|
||||
|
||||
if isinstance(result, Tree):
|
||||
return False
|
||||
|
||||
if result.get('type') == 'meta' and result.get('command') in ['q', 'quit', 'exit']:
|
||||
return True
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nUse '\\q' to quit")
|
||||
except EOFError:
|
||||
print("\nGoodbye!")
|
||||
return True
|
||||
return False
|
||||
|
||||
def emptyline(self) -> bool:
|
||||
return False
|
||||
|
||||
def default(self, line: str) -> bool:
|
||||
return self.onecmd(line)
|
||||
|
||||
def parse_command(self, command_str: str) -> dict[str, str] | Tree[Token]:
|
||||
if not command_str.strip():
|
||||
return {'type': 'empty'}
|
||||
|
||||
@ -193,16 +244,6 @@ class AdminCommandParser:
|
||||
except Exception as e:
|
||||
return {'type': 'error', 'message': f'Parse error: {str(e)}'}
|
||||
|
||||
|
||||
class AdminCLI:
|
||||
def __init__(self):
|
||||
self.parser = AdminCommandParser()
|
||||
self.is_interactive = False
|
||||
self.admin_account = "admin@ragflow.io"
|
||||
self.admin_password: str = "admin"
|
||||
self.host: str = ""
|
||||
self.port: int = 0
|
||||
|
||||
def verify_admin(self, args):
|
||||
|
||||
conn_info = self._parse_connection_args(args)
|
||||
@ -251,10 +292,25 @@ class AdminCLI:
|
||||
columns = list(data[0].keys())
|
||||
col_widths = {}
|
||||
|
||||
def get_string_width(text):
|
||||
half_width_chars = (
|
||||
" !\"#$%&'()*+,-./0123456789:;<=>?@"
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`"
|
||||
"abcdefghijklmnopqrstuvwxyz{|}~"
|
||||
"\t\n\r"
|
||||
)
|
||||
width = 0
|
||||
for char in text:
|
||||
if char in half_width_chars:
|
||||
width += 1
|
||||
else:
|
||||
width += 2
|
||||
return width
|
||||
|
||||
for col in columns:
|
||||
max_width = len(str(col))
|
||||
max_width = get_string_width(str(col))
|
||||
for item in data:
|
||||
value_len = len(str(item.get(col, '')))
|
||||
value_len = get_string_width(str(item.get(col, '')))
|
||||
if value_len > max_width:
|
||||
max_width = value_len
|
||||
col_widths[col] = max(2, max_width)
|
||||
@ -292,7 +348,7 @@ class AdminCLI:
|
||||
continue
|
||||
|
||||
print(f"command: {command}")
|
||||
result = self.parser.parse_command(command)
|
||||
result = self.parse_command(command)
|
||||
self.execute_command(result)
|
||||
|
||||
if isinstance(result, Tree):
|
||||
@ -390,6 +446,22 @@ class AdminCLI:
|
||||
service_id: int = command['number']
|
||||
print(f"Showing service: {service_id}")
|
||||
|
||||
url = f'http://{self.host}:{self.port}/api/v1/admin/services/{service_id}'
|
||||
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
|
||||
res_json = response.json()
|
||||
if response.status_code == 200:
|
||||
res_data = res_json['data']
|
||||
if res_data['alive']:
|
||||
print(f"Service {res_data['service_name']} is alive. Detail:")
|
||||
if isinstance(res_data['message'], str):
|
||||
print(res_data['message'])
|
||||
else:
|
||||
self._print_table_simple(res_data['message'])
|
||||
else:
|
||||
print(f"Service {res_data['service_name']} is down. Detail: {res_data['message']}")
|
||||
else:
|
||||
print(f"Fail to show service, code: {res_json['code']}, message: {res_json['message']}")
|
||||
|
||||
def _handle_restart_service(self, command):
|
||||
service_id: int = command['number']
|
||||
print(f"Restart service {service_id}")
|
||||
@ -563,10 +635,17 @@ def main():
|
||||
/_/ |_/_/ |_\____/_/ /_/\____/|__/|__/ /_/ |_\__,_/_/ /_/ /_/_/_/ /_/
|
||||
""")
|
||||
if cli.verify_admin(sys.argv):
|
||||
cli.run_interactive()
|
||||
cli.cmdloop()
|
||||
else:
|
||||
print(r"""
|
||||
____ ___ ______________ ___ __ _
|
||||
/ __ \/ | / ____/ ____/ /___ _ __ / | ____/ /___ ___ (_)___
|
||||
/ /_/ / /| |/ / __/ /_ / / __ \ | /| / / / /| |/ __ / __ `__ \/ / __ \
|
||||
/ _, _/ ___ / /_/ / __/ / / /_/ / |/ |/ / / ___ / /_/ / / / / / / / / / /
|
||||
/_/ |_/_/ |_\____/_/ /_/\____/|__/|__/ /_/ |_\__,_/_/ /_/ /_/_/_/ /_/
|
||||
""")
|
||||
if cli.verify_admin(sys.argv):
|
||||
cli.run_interactive()
|
||||
cli.cmdloop()
|
||||
# cli.run_single_command(sys.argv[1:])
|
||||
|
||||
|
||||
24
admin/client/pyproject.toml
Normal file
24
admin/client/pyproject.toml
Normal file
@ -0,0 +1,24 @@
|
||||
[project]
|
||||
name = "ragflow-cli"
|
||||
version = "0.21.0.dev5"
|
||||
description = "Admin Service's client of [RAGFlow](https://github.com/infiniflow/ragflow). The Admin Service provides user management and system monitoring. "
|
||||
authors = [{ name = "Lynn", email = "lynn_inf@hotmail.com" }]
|
||||
license = { text = "Apache License, Version 2.0" }
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"requests>=2.30.0,<3.0.0",
|
||||
"beartype>=0.18.5,<0.19.0",
|
||||
"pycryptodomex>=3.10.0",
|
||||
"lark>=1.1.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
test = [
|
||||
"pytest>=8.3.5",
|
||||
"requests>=2.32.3",
|
||||
"requests-toolbelt>=1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
ragflow-cli = "admin_client:main"
|
||||
24
admin/pyproject.toml
Normal file
24
admin/pyproject.toml
Normal file
@ -0,0 +1,24 @@
|
||||
[project]
|
||||
name = "ragflow-cli"
|
||||
version = "0.21.0.dev2"
|
||||
description = "Admin Service's client of [RAGFlow](https://github.com/infiniflow/ragflow). The Admin Service provides user management and system monitoring. "
|
||||
authors = [{ name = "Lynn", email = "lynn_inf@hotmail.com" }]
|
||||
license = { text = "Apache License, Version 2.0" }
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"requests>=2.30.0,<3.0.0",
|
||||
"beartype>=0.18.5,<0.19.0",
|
||||
"pycryptodomex>=3.10.0",
|
||||
"lark>=1.1.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
test = [
|
||||
"pytest>=8.3.5",
|
||||
"requests>=2.32.3",
|
||||
"requests-toolbelt>=1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
ragflow-cli = "ragflow_cli.admin_client:main"
|
||||
@ -1,15 +0,0 @@
|
||||
from flask import jsonify
|
||||
|
||||
def success_response(data=None, message="Success", code = 0):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 200
|
||||
|
||||
def error_response(message="Error", code=-1, data=None):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 400
|
||||
@ -1,3 +1,18 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import signal
|
||||
@ -1,9 +1,26 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from functools import wraps
|
||||
from flask import request, jsonify
|
||||
|
||||
from exceptions import AdminException
|
||||
from api.common.exceptions import AdminException
|
||||
from api.db.init_data import encode_to_base64
|
||||
from api.db.services import UserService
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import logging
|
||||
import threading
|
||||
from enum import Enum
|
||||
@ -32,9 +49,11 @@ class BaseConfig(BaseModel):
|
||||
host: str
|
||||
port: int
|
||||
service_type: str
|
||||
detail_func_name: str
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port, 'service_type': self.service_type}
|
||||
return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port,
|
||||
'service_type': self.service_type}
|
||||
|
||||
|
||||
class MetaConfig(BaseConfig):
|
||||
@ -209,7 +228,8 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
name: str = f'ragflow_{ragflow_count}'
|
||||
host: str = v['host']
|
||||
http_port: int = v['http_port']
|
||||
config = RAGFlowServerConfig(id=id_count, name=name, host=host, port=http_port, service_type="ragflow_server")
|
||||
config = RAGFlowServerConfig(id=id_count, name=name, host=host, port=http_port,
|
||||
service_type="ragflow_server", detail_func_name="check_ragflow_server_alive")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "es":
|
||||
@ -222,7 +242,8 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
password: str = v.get('password')
|
||||
config = ElasticsearchConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval",
|
||||
retrieval_type="elasticsearch",
|
||||
username=username, password=password)
|
||||
username=username, password=password,
|
||||
detail_func_name="get_es_cluster_stats")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
|
||||
@ -234,7 +255,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
port = int(parts[1])
|
||||
database: str = v.get('db_name', 'default_db')
|
||||
config = InfinityConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval", retrieval_type="infinity",
|
||||
db_name=database)
|
||||
db_name=database, detail_func_name="get_infinity_status")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "minio":
|
||||
@ -246,7 +267,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
user = v.get('user')
|
||||
password = v.get('password')
|
||||
config = MinioConfig(id=id_count, name=name, host=host, port=port, user=user, password=password, service_type="file_store",
|
||||
store_type="minio")
|
||||
store_type="minio", detail_func_name="check_minio_alive")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "redis":
|
||||
@ -258,7 +279,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
password = v.get('password')
|
||||
db: int = v.get('db')
|
||||
config = RedisConfig(id=id_count, name=name, host=host, port=port, password=password, database=db,
|
||||
service_type="message_queue", mq_type="redis")
|
||||
service_type="message_queue", mq_type="redis", detail_func_name="get_redis_info")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "mysql":
|
||||
@ -268,7 +289,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
username = v.get('user')
|
||||
password = v.get('password')
|
||||
config = MySQLConfig(id=id_count, name=name, host=host, port=port, username=username, password=password,
|
||||
service_type="meta_data", meta_type="mysql")
|
||||
service_type="meta_data", meta_type="mysql", detail_func_name="get_mysql_status")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "admin":
|
||||
@ -12,4 +12,4 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
#
|
||||
34
admin/server/responses.py
Normal file
34
admin/server/responses.py
Normal file
@ -0,0 +1,34 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from flask import jsonify
|
||||
|
||||
|
||||
def success_response(data=None, message="Success", code=0):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 200
|
||||
|
||||
|
||||
def error_response(message="Error", code=-1, data=None):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 400
|
||||
@ -1,9 +1,26 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from flask import Blueprint, request
|
||||
|
||||
from auth import login_verify
|
||||
from admin.server.auth import login_verify
|
||||
from responses import success_response, error_response
|
||||
from services import UserMgr, ServiceMgr, UserServiceMgr
|
||||
from exceptions import AdminException
|
||||
from api.common.exceptions import AdminException
|
||||
|
||||
admin_bp = Blueprint('admin', __name__, url_prefix='/api/v1/admin')
|
||||
|
||||
@ -42,7 +59,7 @@ def create_user():
|
||||
res = UserMgr.create_user(username, password, role)
|
||||
if res["success"]:
|
||||
user_info = res["user_info"]
|
||||
user_info.pop("password") # do not return password
|
||||
user_info.pop("password") # do not return password
|
||||
return success_response(user_info, "User created successfully")
|
||||
else:
|
||||
return error_response("create user failed")
|
||||
@ -102,6 +119,7 @@ def alter_user_activate_status(username):
|
||||
except Exception as e:
|
||||
return error_response(str(e), 500)
|
||||
|
||||
|
||||
@admin_bp.route('/users/<username>', methods=['GET'])
|
||||
@login_verify
|
||||
def get_user_details(username):
|
||||
@ -114,6 +132,7 @@ def get_user_details(username):
|
||||
except Exception as e:
|
||||
return error_response(str(e), 500)
|
||||
|
||||
|
||||
@admin_bp.route('/users/<username>/datasets', methods=['GET'])
|
||||
@login_verify
|
||||
def get_user_datasets(username):
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import re
|
||||
from werkzeug.security import check_password_hash
|
||||
from api.db import ActiveEnum
|
||||
@ -7,8 +24,11 @@ from api.db.services.canvas_service import UserCanvasService
|
||||
from api.db.services.user_service import TenantService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.utils.crypt import decrypt
|
||||
from exceptions import AdminException, UserAlreadyExistsError, UserNotFoundError
|
||||
from config import SERVICE_CONFIGS
|
||||
from api.utils import health_utils
|
||||
|
||||
from api.common.exceptions import AdminException, UserAlreadyExistsError, UserNotFoundError
|
||||
from admin.server.config import SERVICE_CONFIGS
|
||||
|
||||
|
||||
class UserMgr:
|
||||
@staticmethod
|
||||
@ -16,7 +36,8 @@ class UserMgr:
|
||||
users = UserService.get_all_users()
|
||||
result = []
|
||||
for user in users:
|
||||
result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date, 'is_active': user.is_active})
|
||||
result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date,
|
||||
'is_active': user.is_active})
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
@ -110,6 +131,7 @@ class UserMgr:
|
||||
UserService.update_user(usr.id, {"is_active": target_status})
|
||||
return f"Turn {_activate_status} user activate status successfully!"
|
||||
|
||||
|
||||
class UserServiceMgr:
|
||||
|
||||
@staticmethod
|
||||
@ -148,14 +170,24 @@ class UserServiceMgr:
|
||||
'canvas_category': r['canvas_category']
|
||||
} for r in res]
|
||||
|
||||
|
||||
class ServiceMgr:
|
||||
|
||||
@staticmethod
|
||||
def get_all_services():
|
||||
result = []
|
||||
configs = SERVICE_CONFIGS.configs
|
||||
for config in configs:
|
||||
result.append(config.to_dict())
|
||||
for service_id, config in enumerate(configs):
|
||||
config_dict = config.to_dict()
|
||||
try:
|
||||
service_detail = ServiceMgr.get_service_details(service_id)
|
||||
if service_detail['alive']:
|
||||
config_dict['status'] = 'Alive'
|
||||
else:
|
||||
config_dict['status'] = 'Timeout'
|
||||
except Exception:
|
||||
config_dict['status'] = 'Timeout'
|
||||
result.append(config_dict)
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
@ -164,7 +196,22 @@ class ServiceMgr:
|
||||
|
||||
@staticmethod
|
||||
def get_service_details(service_id: int):
|
||||
raise AdminException("get_service_details: not implemented")
|
||||
service_id = int(service_id)
|
||||
configs = SERVICE_CONFIGS.configs
|
||||
service_config_mapping = {
|
||||
c.id: {
|
||||
'name': c.name,
|
||||
'detail_func_name': c.detail_func_name
|
||||
} for c in configs
|
||||
}
|
||||
service_info = service_config_mapping.get(service_id, {})
|
||||
if not service_info:
|
||||
raise AdminException(f"Invalid service_id: {service_id}")
|
||||
|
||||
detail_func = getattr(health_utils, service_info.get('detail_func_name'))
|
||||
res = detail_func()
|
||||
res.update({'service_name': service_info.get('name')})
|
||||
return res
|
||||
|
||||
@staticmethod
|
||||
def shutdown_service(service_id: int):
|
||||
@ -203,7 +203,6 @@ class Canvas(Graph):
|
||||
self.history = []
|
||||
self.retrieval = []
|
||||
self.memory = []
|
||||
|
||||
for k in self.globals.keys():
|
||||
if isinstance(self.globals[k], str):
|
||||
self.globals[k] = ""
|
||||
@ -292,7 +291,6 @@ class Canvas(Graph):
|
||||
"thoughts": self.get_component_thoughts(self.path[i])
|
||||
})
|
||||
_run_batch(idx, to)
|
||||
|
||||
# post processing of components invocation
|
||||
for i in range(idx, to):
|
||||
cpn = self.get_component(self.path[i])
|
||||
@ -393,7 +391,6 @@ class Canvas(Graph):
|
||||
self.path = path
|
||||
yield decorate("user_inputs", {"inputs": another_inputs, "tips": tips})
|
||||
return
|
||||
|
||||
self.path = self.path[:idx]
|
||||
if not self.error:
|
||||
yield decorate("workflow_finished",
|
||||
|
||||
@ -346,3 +346,11 @@ Respond immediately with your final comprehensive answer.
|
||||
|
||||
return "Error occurred."
|
||||
|
||||
def reset(self, temp=False):
|
||||
"""
|
||||
Reset all tools if they have a reset method. This avoids errors for tools like MCPToolCallSession.
|
||||
"""
|
||||
for k, cpn in self.tools.items():
|
||||
if hasattr(cpn, "reset") and callable(cpn.reset):
|
||||
cpn.reset()
|
||||
|
||||
|
||||
@ -19,11 +19,12 @@ import os
|
||||
import re
|
||||
import time
|
||||
from abc import ABC
|
||||
|
||||
import requests
|
||||
|
||||
from agent.component.base import ComponentBase, ComponentParamBase
|
||||
from api.utils.api_utils import timeout
|
||||
from deepdoc.parser import HtmlParser
|
||||
from agent.component.base import ComponentBase, ComponentParamBase
|
||||
|
||||
|
||||
class InvokeParam(ComponentParamBase):
|
||||
@ -43,11 +44,11 @@ class InvokeParam(ComponentParamBase):
|
||||
self.datatype = "json" # New parameter to determine data posting type
|
||||
|
||||
def check(self):
|
||||
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ['get', 'post', 'put'])
|
||||
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ["get", "post", "put"])
|
||||
self.check_empty(self.url, "End point URL")
|
||||
self.check_positive_integer(self.timeout, "Timeout time in second")
|
||||
self.check_boolean(self.clean_html, "Clean HTML")
|
||||
self.check_valid_value(self.datatype.lower(), "Data post type", ['json', 'formdata']) # Check for valid datapost value
|
||||
self.check_valid_value(self.datatype.lower(), "Data post type", ["json", "formdata"]) # Check for valid datapost value
|
||||
|
||||
|
||||
class Invoke(ComponentBase, ABC):
|
||||
@ -63,6 +64,18 @@ class Invoke(ComponentBase, ABC):
|
||||
args[para["key"]] = self._canvas.get_variable_value(para["ref"])
|
||||
|
||||
url = self._param.url.strip()
|
||||
|
||||
def replace_variable(match):
|
||||
var_name = match.group(1)
|
||||
try:
|
||||
value = self._canvas.get_variable_value(var_name)
|
||||
return str(value or "")
|
||||
except Exception:
|
||||
return ""
|
||||
|
||||
# {base_url} or {component_id@variable_name}
|
||||
url = re.sub(r"\{([a-zA-Z_][a-zA-Z0-9_.@-]*)\}", replace_variable, url)
|
||||
|
||||
if url.find("http") != 0:
|
||||
url = "http://" + url
|
||||
|
||||
@ -75,52 +88,32 @@ class Invoke(ComponentBase, ABC):
|
||||
proxies = {"http": self._param.proxy, "https": self._param.proxy}
|
||||
|
||||
last_e = ""
|
||||
for _ in range(self._param.max_retries+1):
|
||||
for _ in range(self._param.max_retries + 1):
|
||||
try:
|
||||
if method == 'get':
|
||||
response = requests.get(url=url,
|
||||
params=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
if method == "get":
|
||||
response = requests.get(url=url, params=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
if self._param.clean_html:
|
||||
sections = HtmlParser()(None, response.content)
|
||||
self.set_output("result", "\n".join(sections))
|
||||
else:
|
||||
self.set_output("result", response.text)
|
||||
|
||||
if method == 'put':
|
||||
if self._param.datatype.lower() == 'json':
|
||||
response = requests.put(url=url,
|
||||
json=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
if method == "put":
|
||||
if self._param.datatype.lower() == "json":
|
||||
response = requests.put(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
else:
|
||||
response = requests.put(url=url,
|
||||
data=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
response = requests.put(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
if self._param.clean_html:
|
||||
sections = HtmlParser()(None, response.content)
|
||||
self.set_output("result", "\n".join(sections))
|
||||
else:
|
||||
self.set_output("result", response.text)
|
||||
|
||||
if method == 'post':
|
||||
if self._param.datatype.lower() == 'json':
|
||||
response = requests.post(url=url,
|
||||
json=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
if method == "post":
|
||||
if self._param.datatype.lower() == "json":
|
||||
response = requests.post(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
else:
|
||||
response = requests.post(url=url,
|
||||
data=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
response = requests.post(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
if self._param.clean_html:
|
||||
self.set_output("result", "\n".join(sections))
|
||||
else:
|
||||
|
||||
726
agent/templates/advanced_ingestion_pipeline.json
Normal file
726
agent/templates/advanced_ingestion_pipeline.json
Normal file
File diff suppressed because one or more lines are too long
493
agent/templates/chunk_summary.json
Normal file
493
agent/templates/chunk_summary.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
1172
agent/templates/stock_research_report.json
Normal file
1172
agent/templates/stock_research_report.json
Normal file
File diff suppressed because one or more lines are too long
369
agent/templates/title_chunker.json
Normal file
369
agent/templates/title_chunker.json
Normal file
File diff suppressed because one or more lines are too long
@ -156,8 +156,8 @@ class CodeExec(ToolBase, ABC):
|
||||
self.set_output("_ERROR", "construct code request error: " + str(e))
|
||||
|
||||
try:
|
||||
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
|
||||
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code)
|
||||
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
|
||||
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run, code_req: {code_req}, resp.status_code {resp.status_code}:")
|
||||
if resp.status_code != 200:
|
||||
resp.raise_for_status()
|
||||
body = resp.json()
|
||||
|
||||
@ -53,12 +53,13 @@ class ExeSQLParam(ToolParamBase):
|
||||
self.max_records = 1024
|
||||
|
||||
def check(self):
|
||||
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql', 'IBM DB2'])
|
||||
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql', 'IBM DB2', 'trino'])
|
||||
self.check_empty(self.database, "Database name")
|
||||
self.check_empty(self.username, "database username")
|
||||
self.check_empty(self.host, "IP Address")
|
||||
self.check_positive_integer(self.port, "IP Port")
|
||||
self.check_empty(self.password, "Database password")
|
||||
if self.db_type != "trino":
|
||||
self.check_empty(self.password, "Database password")
|
||||
self.check_positive_integer(self.max_records, "Maximum number of records")
|
||||
if self.database == "rag_flow":
|
||||
if self.host == "ragflow-mysql":
|
||||
@ -123,6 +124,45 @@ class ExeSQL(ToolBase, ABC):
|
||||
r'PWD=' + self._param.password
|
||||
)
|
||||
db = pyodbc.connect(conn_str)
|
||||
elif self._param.db_type == 'trino':
|
||||
try:
|
||||
import trino
|
||||
from trino.auth import BasicAuthentication
|
||||
except Exception:
|
||||
raise Exception("Missing dependency 'trino'. Please install: pip install trino")
|
||||
|
||||
def _parse_catalog_schema(db: str):
|
||||
if not db:
|
||||
return None, None
|
||||
if "." in db:
|
||||
c, s = db.split(".", 1)
|
||||
elif "/" in db:
|
||||
c, s = db.split("/", 1)
|
||||
else:
|
||||
c, s = db, "default"
|
||||
return c, s
|
||||
|
||||
catalog, schema = _parse_catalog_schema(self._param.database)
|
||||
if not catalog:
|
||||
raise Exception("For Trino, `database` must be 'catalog.schema' or at least 'catalog'.")
|
||||
|
||||
http_scheme = "https" if os.environ.get("TRINO_USE_TLS", "0") == "1" else "http"
|
||||
auth = None
|
||||
if http_scheme == "https" and self._param.password:
|
||||
auth = BasicAuthentication(self._param.username, self._param.password)
|
||||
|
||||
try:
|
||||
db = trino.dbapi.connect(
|
||||
host=self._param.host,
|
||||
port=int(self._param.port or 8080),
|
||||
user=self._param.username or "ragflow",
|
||||
catalog=catalog,
|
||||
schema=schema or "default",
|
||||
http_scheme=http_scheme,
|
||||
auth=auth
|
||||
)
|
||||
except Exception as e:
|
||||
raise Exception("Database Connection Failed! \n" + str(e))
|
||||
elif self._param.db_type == 'IBM DB2':
|
||||
import ibm_db
|
||||
conn_str = (
|
||||
|
||||
@ -85,13 +85,7 @@ class PubMed(ToolBase, ABC):
|
||||
self._retrieve_chunks(pubmedcnt.findall("PubmedArticle"),
|
||||
get_title=lambda child: child.find("MedlineCitation").find("Article").find("ArticleTitle").text,
|
||||
get_url=lambda child: "https://pubmed.ncbi.nlm.nih.gov/" + child.find("MedlineCitation").find("PMID").text,
|
||||
get_content=lambda child: child.find("MedlineCitation") \
|
||||
.find("Article") \
|
||||
.find("Abstract") \
|
||||
.find("AbstractText").text \
|
||||
if child.find("MedlineCitation")\
|
||||
.find("Article").find("Abstract") \
|
||||
else "No abstract available")
|
||||
get_content=lambda child: self._format_pubmed_content(child),)
|
||||
return self.output("formalized_content")
|
||||
except Exception as e:
|
||||
last_e = e
|
||||
@ -104,5 +98,50 @@ class PubMed(ToolBase, ABC):
|
||||
|
||||
assert False, self.output()
|
||||
|
||||
def _format_pubmed_content(self, child):
|
||||
"""Extract structured reference info from PubMed XML"""
|
||||
def safe_find(path):
|
||||
node = child
|
||||
for p in path.split("/"):
|
||||
if node is None:
|
||||
return None
|
||||
node = node.find(p)
|
||||
return node.text if node is not None and node.text else None
|
||||
|
||||
title = safe_find("MedlineCitation/Article/ArticleTitle") or "No title"
|
||||
abstract = safe_find("MedlineCitation/Article/Abstract/AbstractText") or "No abstract available"
|
||||
journal = safe_find("MedlineCitation/Article/Journal/Title") or "Unknown Journal"
|
||||
volume = safe_find("MedlineCitation/Article/Journal/JournalIssue/Volume") or "-"
|
||||
issue = safe_find("MedlineCitation/Article/Journal/JournalIssue/Issue") or "-"
|
||||
pages = safe_find("MedlineCitation/Article/Pagination/MedlinePgn") or "-"
|
||||
|
||||
# Authors
|
||||
authors = []
|
||||
for author in child.findall(".//AuthorList/Author"):
|
||||
lastname = safe_find("LastName") or ""
|
||||
forename = safe_find("ForeName") or ""
|
||||
fullname = f"{forename} {lastname}".strip()
|
||||
if fullname:
|
||||
authors.append(fullname)
|
||||
authors_str = ", ".join(authors) if authors else "Unknown Authors"
|
||||
|
||||
# DOI
|
||||
doi = None
|
||||
for eid in child.findall(".//ArticleId"):
|
||||
if eid.attrib.get("IdType") == "doi":
|
||||
doi = eid.text
|
||||
break
|
||||
|
||||
return (
|
||||
f"Title: {title}\n"
|
||||
f"Authors: {authors_str}\n"
|
||||
f"Journal: {journal}\n"
|
||||
f"Volume: {volume}\n"
|
||||
f"Issue: {issue}\n"
|
||||
f"Pages: {pages}\n"
|
||||
f"DOI: {doi or '-'}\n"
|
||||
f"Abstract: {abstract.strip()}"
|
||||
)
|
||||
|
||||
def thoughts(self) -> str:
|
||||
return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!"))
|
||||
|
||||
@ -57,6 +57,7 @@ class RetrievalParam(ToolParamBase):
|
||||
self.empty_response = ""
|
||||
self.use_kg = False
|
||||
self.cross_languages = []
|
||||
self.toc_enhance = False
|
||||
|
||||
def check(self):
|
||||
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
|
||||
@ -121,7 +122,7 @@ class Retrieval(ToolBase, ABC):
|
||||
|
||||
if kbs:
|
||||
query = re.sub(r"^user[::\s]*", "", query, flags=re.IGNORECASE)
|
||||
kbinfos = settings.retrievaler.retrieval(
|
||||
kbinfos = settings.retriever.retrieval(
|
||||
query,
|
||||
embd_mdl,
|
||||
[kb.tenant_id for kb in kbs],
|
||||
@ -134,8 +135,13 @@ class Retrieval(ToolBase, ABC):
|
||||
rerank_mdl=rerank_mdl,
|
||||
rank_feature=label_question(query, kbs),
|
||||
)
|
||||
if self._param.toc_enhance:
|
||||
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT)
|
||||
cks = settings.retriever.retrieval_by_toc(query, kbinfos["chunks"], [kb.tenant_id for kb in kbs], chat_mdl, self._param.top_n)
|
||||
if cks:
|
||||
kbinfos["chunks"] = cks
|
||||
if self._param.use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(query,
|
||||
ck = settings.kg_retriever.retrieval(query,
|
||||
[kb.tenant_id for kb in kbs],
|
||||
kb_ids,
|
||||
embd_mdl,
|
||||
@ -146,7 +152,7 @@ class Retrieval(ToolBase, ABC):
|
||||
kbinfos = {"chunks": [], "doc_aggs": []}
|
||||
|
||||
if self._param.use_kg and kbs:
|
||||
ck = settings.kg_retrievaler.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ck["content"] = ck["content_with_weight"]
|
||||
del ck["content_with_weight"]
|
||||
|
||||
@ -85,7 +85,7 @@ class SearXNG(ToolBase, ABC):
|
||||
self.set_output("formalized_content", "")
|
||||
return ""
|
||||
|
||||
searxng_url = (kwargs.get("searxng_url") or getattr(self._param, "searxng_url", "") or "").strip()
|
||||
searxng_url = (getattr(self._param, "searxng_url", "") or kwargs.get("searxng_url") or "").strip()
|
||||
# In try-run, if no URL configured, just return empty instead of raising
|
||||
if not searxng_url:
|
||||
self.set_output("formalized_content", "")
|
||||
|
||||
@ -536,7 +536,7 @@ def list_chunks():
|
||||
)
|
||||
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
||||
|
||||
res = settings.retrievaler.chunk_list(doc_id, tenant_id, kb_ids)
|
||||
res = settings.retriever.chunk_list(doc_id, tenant_id, kb_ids)
|
||||
res = [
|
||||
{
|
||||
"content": res_item["content_with_weight"],
|
||||
@ -884,7 +884,7 @@ def retrieval():
|
||||
if req.get("keyword", False):
|
||||
chat_mdl = LLMBundle(kbs[0].tenant_id, LLMType.CHAT)
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
|
||||
ranks = settings.retriever.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
|
||||
similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl, highlight= highlight,
|
||||
rank_feature=label_question(question, kbs))
|
||||
|
||||
@ -51,7 +51,7 @@ from rag.utils.redis_conn import REDIS_CONN
|
||||
@manager.route('/templates', methods=['GET']) # noqa: F821
|
||||
@login_required
|
||||
def templates():
|
||||
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.query(canvas_category=CanvasCategory.Agent)])
|
||||
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.get_all()])
|
||||
|
||||
|
||||
@manager.route('/rm', methods=['POST']) # noqa: F821
|
||||
@ -409,6 +409,49 @@ def test_db_connect():
|
||||
ibm_db.fetch_assoc(stmt)
|
||||
ibm_db.close(conn)
|
||||
return get_json_result(data="Database Connection Successful!")
|
||||
elif req["db_type"] == 'trino':
|
||||
def _parse_catalog_schema(db: str):
|
||||
if not db:
|
||||
return None, None
|
||||
if "." in db:
|
||||
c, s = db.split(".", 1)
|
||||
elif "/" in db:
|
||||
c, s = db.split("/", 1)
|
||||
else:
|
||||
c, s = db, "default"
|
||||
return c, s
|
||||
try:
|
||||
import trino
|
||||
import os
|
||||
from trino.auth import BasicAuthentication
|
||||
except Exception:
|
||||
return server_error_response("Missing dependency 'trino'. Please install: pip install trino")
|
||||
|
||||
catalog, schema = _parse_catalog_schema(req["database"])
|
||||
if not catalog:
|
||||
return server_error_response("For Trino, 'database' must be 'catalog.schema' or at least 'catalog'.")
|
||||
|
||||
http_scheme = "https" if os.environ.get("TRINO_USE_TLS", "0") == "1" else "http"
|
||||
|
||||
auth = None
|
||||
if http_scheme == "https" and req.get("password"):
|
||||
auth = BasicAuthentication(req.get("username") or "ragflow", req["password"])
|
||||
|
||||
conn = trino.dbapi.connect(
|
||||
host=req["host"],
|
||||
port=int(req["port"] or 8080),
|
||||
user=req["username"] or "ragflow",
|
||||
catalog=catalog,
|
||||
schema=schema or "default",
|
||||
http_scheme=http_scheme,
|
||||
auth=auth
|
||||
)
|
||||
cur = conn.cursor()
|
||||
cur.execute("SELECT 1")
|
||||
cur.fetchall()
|
||||
cur.close()
|
||||
conn.close()
|
||||
return get_json_result(data="Database Connection Successful!")
|
||||
else:
|
||||
return server_error_response("Unsupported database type.")
|
||||
if req["db_type"] != 'mssql':
|
||||
|
||||
@ -60,7 +60,7 @@ def list_chunk():
|
||||
}
|
||||
if "available_int" in req:
|
||||
query["available_int"] = int(req["available_int"])
|
||||
sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
|
||||
sres = settings.retriever.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
|
||||
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
@ -346,7 +346,7 @@ def retrieval_test():
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
labels = label_question(question, [kb])
|
||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
||||
ranks = settings.retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
||||
float(req.get("similarity_threshold", 0.0)),
|
||||
float(req.get("vector_similarity_weight", 0.3)),
|
||||
top,
|
||||
@ -354,7 +354,7 @@ def retrieval_test():
|
||||
rank_feature=labels
|
||||
)
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question,
|
||||
ck = settings.kg_retriever.retrieval(question,
|
||||
tenant_ids,
|
||||
kb_ids,
|
||||
embd_mdl,
|
||||
@ -384,7 +384,7 @@ def knowledge_graph():
|
||||
"doc_ids": [doc_id],
|
||||
"knowledge_graph_kwd": ["graph", "mind_map"]
|
||||
}
|
||||
sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
|
||||
sres = settings.retriever.search(req, search.index_name(tenant_id), kb_ids)
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
for id in sres.ids[:2]:
|
||||
ty = sres.field[id]["knowledge_graph_kwd"]
|
||||
|
||||
@ -24,6 +24,7 @@ from flask import request
|
||||
from flask_login import current_user, login_required
|
||||
|
||||
from api import settings
|
||||
from api.common.check_team_permission import check_kb_team_permission
|
||||
from api.constants import FILE_NAME_LEN_LIMIT, IMG_BASE64_PREFIX
|
||||
from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileSource, FileType, ParserType, TaskStatus
|
||||
from api.db.db_models import File, Task
|
||||
@ -68,8 +69,10 @@ def upload():
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
if not e:
|
||||
raise LookupError("Can't find this knowledgebase!")
|
||||
err, files = FileService.upload_document(kb, file_objs, current_user.id)
|
||||
if not check_kb_team_permission(kb, current_user.id):
|
||||
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
err, files = FileService.upload_document(kb, file_objs, current_user.id)
|
||||
if err:
|
||||
return get_json_result(data=files, message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
|
||||
|
||||
@ -94,6 +97,8 @@ def web_crawl():
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
if not e:
|
||||
raise LookupError("Can't find this knowledgebase!")
|
||||
if check_kb_team_permission(kb, current_user.id):
|
||||
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
blob = html2pdf(url)
|
||||
if not blob:
|
||||
@ -552,8 +557,8 @@ def get(doc_id):
|
||||
@login_required
|
||||
@validate_request("doc_id")
|
||||
def change_parser():
|
||||
req = request.json
|
||||
|
||||
req = request.json
|
||||
if not DocumentService.accessible(req["doc_id"], current_user.id):
|
||||
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
@ -563,7 +568,7 @@ def change_parser():
|
||||
|
||||
def reset_doc():
|
||||
nonlocal doc
|
||||
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": TaskStatus.UNSTART.value})
|
||||
e = DocumentService.update_by_id(doc.id, {"pipeline_id": req["pipeline_id"], "parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": TaskStatus.UNSTART.value})
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
if doc.token_num > 0:
|
||||
@ -577,7 +582,7 @@ def change_parser():
|
||||
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
|
||||
|
||||
try:
|
||||
if "pipeline_id" in req:
|
||||
if "pipeline_id" in req and req["pipeline_id"] != "":
|
||||
if doc.pipeline_id == req["pipeline_id"]:
|
||||
return get_json_result(data=True)
|
||||
DocumentService.update_by_id(doc.id, {"pipeline_id": req["pipeline_id"]})
|
||||
|
||||
@ -21,6 +21,7 @@ import flask
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
|
||||
from api.common.check_team_permission import check_file_team_permission
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.file2document_service import File2DocumentService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
@ -246,7 +247,7 @@ def rm():
|
||||
return get_data_error_result(message="File or Folder not found!")
|
||||
if not file.tenant_id:
|
||||
return get_data_error_result(message="Tenant not found!")
|
||||
if file.tenant_id != current_user.id:
|
||||
if not check_file_team_permission(file, current_user.id):
|
||||
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
if file.source_type == FileSource.KNOWLEDGEBASE:
|
||||
continue
|
||||
@ -294,7 +295,7 @@ def rename():
|
||||
e, file = FileService.get_by_id(req["file_id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="File not found!")
|
||||
if file.tenant_id != current_user.id:
|
||||
if not check_file_team_permission(file, current_user.id):
|
||||
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
if file.type != FileType.FOLDER.value \
|
||||
and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
|
||||
@ -332,7 +333,7 @@ def get(file_id):
|
||||
e, file = FileService.get_by_id(file_id)
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
if file.tenant_id != current_user.id:
|
||||
if not check_file_team_permission(file, current_user.id):
|
||||
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
blob = STORAGE_IMPL.get(file.parent_id, file.location)
|
||||
@ -373,7 +374,7 @@ def move():
|
||||
return get_data_error_result(message="File or Folder not found!")
|
||||
if not file.tenant_id:
|
||||
return get_data_error_result(message="Tenant not found!")
|
||||
if file.tenant_id != current_user.id:
|
||||
if not check_file_team_permission(file, current_user.id):
|
||||
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
fe, _ = FileService.get_by_id(parent_id)
|
||||
if not fe:
|
||||
|
||||
@ -36,8 +36,10 @@ from api import settings
|
||||
from rag.nlp import search
|
||||
from api.constants import DATASET_NAME_LIMIT
|
||||
from rag.settings import PAGERANK_FLD
|
||||
from rag.utils.redis_conn import REDIS_CONN
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
|
||||
@manager.route('/create', methods=['post']) # noqa: F821
|
||||
@login_required
|
||||
@validate_request("name")
|
||||
@ -186,6 +188,9 @@ def detail():
|
||||
return get_data_error_result(
|
||||
message="Can't find this knowledgebase!")
|
||||
kb["size"] = DocumentService.get_total_size_by_kb_id(kb_id=kb["id"],keywords="", run_status=[], types=[])
|
||||
for key in ["graphrag_task_finish_at", "raptor_task_finish_at", "mindmap_task_finish_at"]:
|
||||
if finish_at := kb.get(key):
|
||||
kb[key] = finish_at.strftime("%Y-%m-%d %H:%M:%S")
|
||||
return get_json_result(data=kb)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
@ -281,7 +286,7 @@ def list_tags(kb_id):
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retrievaler.all_tags(tenant["tenant_id"], [kb_id])
|
||||
tags += settings.retriever.all_tags(tenant["tenant_id"], [kb_id])
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
@ -300,7 +305,7 @@ def list_tags_from_kbs():
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retrievaler.all_tags(tenant["tenant_id"], kb_ids)
|
||||
tags += settings.retriever.all_tags(tenant["tenant_id"], kb_ids)
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
@ -361,7 +366,7 @@ def knowledge_graph(kb_id):
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
|
||||
return get_json_result(data=obj)
|
||||
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [kb_id])
|
||||
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [kb_id])
|
||||
if not len(sres.ids):
|
||||
return get_json_result(data=obj)
|
||||
|
||||
@ -759,18 +764,25 @@ def delete_kb_task():
|
||||
match pipeline_task_type:
|
||||
case PipelineTaskType.GRAPH_RAG:
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
|
||||
kb_task_id = "graphrag_task_id"
|
||||
kb_task_id_field = "graphrag_task_id"
|
||||
task_id = kb.graphrag_task_id
|
||||
kb_task_finish_at = "graphrag_task_finish_at"
|
||||
case PipelineTaskType.RAPTOR:
|
||||
kb_task_id = "raptor_task_id"
|
||||
kb_task_id_field = "raptor_task_id"
|
||||
task_id = kb.raptor_task_id
|
||||
kb_task_finish_at = "raptor_task_finish_at"
|
||||
case PipelineTaskType.MINDMAP:
|
||||
kb_task_id = "mindmap_task_id"
|
||||
kb_task_id_field = "mindmap_task_id"
|
||||
task_id = kb.mindmap_task_id
|
||||
kb_task_finish_at = "mindmap_task_finish_at"
|
||||
case _:
|
||||
return get_error_data_result(message="Internal Error: Invalid task type")
|
||||
|
||||
ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id: "", kb_task_finish_at: None})
|
||||
def cancel_task(task_id):
|
||||
REDIS_CONN.set(f"{task_id}-cancel", "x")
|
||||
cancel_task(task_id)
|
||||
|
||||
ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id_field: "", kb_task_finish_at: None})
|
||||
if not ok:
|
||||
return server_error_response(f"Internal error: cannot delete task {pipeline_task_type}")
|
||||
|
||||
|
||||
@ -1,8 +1,26 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from flask import Response
|
||||
from flask_login import login_required
|
||||
from api.utils.api_utils import get_json_result
|
||||
from plugin import GlobalPluginManager
|
||||
|
||||
|
||||
@manager.route('/llm_tools', methods=['GET']) # noqa: F821
|
||||
@login_required
|
||||
def llm_tools() -> Response:
|
||||
|
||||
@ -25,6 +25,7 @@ from api.utils.api_utils import get_data_error_result, get_error_data_result, ge
|
||||
from api.utils.api_utils import get_result
|
||||
from flask import request
|
||||
|
||||
|
||||
@manager.route('/agents', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def list_agents(tenant_id):
|
||||
@ -41,7 +42,7 @@ def list_agents(tenant_id):
|
||||
desc = False
|
||||
else:
|
||||
desc = True
|
||||
canvas = UserCanvasService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,title)
|
||||
canvas = UserCanvasService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, title)
|
||||
return get_result(data=canvas)
|
||||
|
||||
|
||||
@ -93,7 +94,7 @@ def update_agent(tenant_id: str, agent_id: str):
|
||||
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
|
||||
|
||||
req["dsl"] = json.loads(req["dsl"])
|
||||
|
||||
|
||||
if req.get("title") is not None:
|
||||
req["title"] = req["title"].strip()
|
||||
|
||||
|
||||
@ -215,7 +215,8 @@ def delete(tenant_id):
|
||||
continue
|
||||
kb_id_instance_pairs.append((kb_id, kb))
|
||||
if len(error_kb_ids) > 0:
|
||||
return get_error_permission_result(message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
|
||||
return get_error_permission_result(
|
||||
message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
|
||||
|
||||
errors = []
|
||||
success_count = 0
|
||||
@ -232,7 +233,8 @@ def delete(tenant_id):
|
||||
]
|
||||
)
|
||||
File2DocumentService.delete_by_document_id(doc.id)
|
||||
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
|
||||
FileService.filter_delete(
|
||||
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
|
||||
if not KnowledgebaseService.delete_by_id(kb_id):
|
||||
errors.append(f"Delete dataset error for {kb_id}")
|
||||
continue
|
||||
@ -329,7 +331,8 @@ def update(tenant_id, dataset_id):
|
||||
try:
|
||||
kb = KnowledgebaseService.get_or_none(id=dataset_id, tenant_id=tenant_id)
|
||||
if kb is None:
|
||||
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
|
||||
return get_error_permission_result(
|
||||
message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
|
||||
|
||||
if req.get("parser_config"):
|
||||
req["parser_config"] = deep_merge(kb.parser_config, req["parser_config"])
|
||||
@ -341,7 +344,8 @@ def update(tenant_id, dataset_id):
|
||||
del req["parser_config"]
|
||||
|
||||
if "name" in req and req["name"].lower() != kb.name.lower():
|
||||
exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)
|
||||
exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id,
|
||||
status=StatusEnum.VALID.value)
|
||||
if exists:
|
||||
return get_error_data_result(message=f"Dataset name '{req['name']}' already exists")
|
||||
|
||||
@ -349,7 +353,8 @@ def update(tenant_id, dataset_id):
|
||||
if not req["embd_id"]:
|
||||
req["embd_id"] = kb.embd_id
|
||||
if kb.chunk_num != 0 and req["embd_id"] != kb.embd_id:
|
||||
return get_error_data_result(message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
|
||||
return get_error_data_result(
|
||||
message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
|
||||
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
|
||||
if not ok:
|
||||
return err
|
||||
@ -359,10 +364,12 @@ def update(tenant_id, dataset_id):
|
||||
return get_error_argument_result(message="'pagerank' can only be set when doc_engine is elasticsearch")
|
||||
|
||||
if req["pagerank"] > 0:
|
||||
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]}, search.index_name(kb.tenant_id), kb.id)
|
||||
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
else:
|
||||
# Elasticsearch requires PAGERANK_FLD be non-zero!
|
||||
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD}, search.index_name(kb.tenant_id), kb.id)
|
||||
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
|
||||
if not KnowledgebaseService.update_by_id(kb.id, req):
|
||||
return get_error_data_result(message="Update dataset error.(Database error)")
|
||||
@ -454,7 +461,7 @@ def list_datasets(tenant_id):
|
||||
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{name}'")
|
||||
|
||||
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
|
||||
kbs = KnowledgebaseService.get_list(
|
||||
kbs, total = KnowledgebaseService.get_list(
|
||||
[m["tenant_id"] for m in tenants],
|
||||
tenant_id,
|
||||
args["page"],
|
||||
@ -468,14 +475,15 @@ def list_datasets(tenant_id):
|
||||
response_data_list = []
|
||||
for kb in kbs:
|
||||
response_data_list.append(remap_dictionary_keys(kb))
|
||||
return get_result(data=response_data_list)
|
||||
return get_result(data=response_data_list, total=total)
|
||||
except OperationalError as e:
|
||||
logging.exception(e)
|
||||
return get_error_data_result(message="Database operation failed")
|
||||
|
||||
|
||||
@manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def knowledge_graph(tenant_id,dataset_id):
|
||||
def knowledge_graph(tenant_id, dataset_id):
|
||||
if not KnowledgebaseService.accessible(dataset_id, tenant_id):
|
||||
return get_result(
|
||||
data=False,
|
||||
@ -491,7 +499,7 @@ def knowledge_graph(tenant_id,dataset_id):
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), dataset_id):
|
||||
return get_result(data=obj)
|
||||
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [dataset_id])
|
||||
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [dataset_id])
|
||||
if not len(sres.ids):
|
||||
return get_result(data=obj)
|
||||
|
||||
@ -507,14 +515,16 @@ def knowledge_graph(tenant_id,dataset_id):
|
||||
if "nodes" in obj["graph"]:
|
||||
obj["graph"]["nodes"] = sorted(obj["graph"]["nodes"], key=lambda x: x.get("pagerank", 0), reverse=True)[:256]
|
||||
if "edges" in obj["graph"]:
|
||||
node_id_set = { o["id"] for o in obj["graph"]["nodes"] }
|
||||
filtered_edges = [o for o in obj["graph"]["edges"] if o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
|
||||
node_id_set = {o["id"] for o in obj["graph"]["nodes"]}
|
||||
filtered_edges = [o for o in obj["graph"]["edges"] if
|
||||
o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
|
||||
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
|
||||
return get_result(data=obj)
|
||||
|
||||
|
||||
@manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
|
||||
@token_required
|
||||
def delete_knowledge_graph(tenant_id,dataset_id):
|
||||
def delete_knowledge_graph(tenant_id, dataset_id):
|
||||
if not KnowledgebaseService.accessible(dataset_id, tenant_id):
|
||||
return get_result(
|
||||
data=False,
|
||||
@ -522,6 +532,7 @@ def delete_knowledge_graph(tenant_id,dataset_id):
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
_, kb = KnowledgebaseService.get_by_id(dataset_id)
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), dataset_id)
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]},
|
||||
search.index_name(kb.tenant_id), dataset_id)
|
||||
|
||||
return get_result(data=True)
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
#
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -31,6 +31,89 @@ from api.db.services.dialog_service import meta_filter, convert_conditions
|
||||
@apikey_required
|
||||
@validate_request("knowledge_id", "query")
|
||||
def retrieval(tenant_id):
|
||||
"""
|
||||
Dify-compatible retrieval API
|
||||
---
|
||||
tags:
|
||||
- SDK
|
||||
security:
|
||||
- ApiKeyAuth: []
|
||||
parameters:
|
||||
- in: body
|
||||
name: body
|
||||
required: true
|
||||
schema:
|
||||
type: object
|
||||
required:
|
||||
- knowledge_id
|
||||
- query
|
||||
properties:
|
||||
knowledge_id:
|
||||
type: string
|
||||
description: Knowledge base ID
|
||||
query:
|
||||
type: string
|
||||
description: Query text
|
||||
use_kg:
|
||||
type: boolean
|
||||
description: Whether to use knowledge graph
|
||||
default: false
|
||||
retrieval_setting:
|
||||
type: object
|
||||
description: Retrieval configuration
|
||||
properties:
|
||||
score_threshold:
|
||||
type: number
|
||||
description: Similarity threshold
|
||||
default: 0.0
|
||||
top_k:
|
||||
type: integer
|
||||
description: Number of results to return
|
||||
default: 1024
|
||||
metadata_condition:
|
||||
type: object
|
||||
description: Metadata filter condition
|
||||
properties:
|
||||
conditions:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
name:
|
||||
type: string
|
||||
description: Field name
|
||||
comparison_operator:
|
||||
type: string
|
||||
description: Comparison operator
|
||||
value:
|
||||
type: string
|
||||
description: Field value
|
||||
responses:
|
||||
200:
|
||||
description: Retrieval succeeded
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
records:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
content:
|
||||
type: string
|
||||
description: Content text
|
||||
score:
|
||||
type: number
|
||||
description: Similarity score
|
||||
title:
|
||||
type: string
|
||||
description: Document title
|
||||
metadata:
|
||||
type: object
|
||||
description: Metadata info
|
||||
404:
|
||||
description: Knowledge base or document not found
|
||||
"""
|
||||
req = request.json
|
||||
question = req["query"]
|
||||
kb_id = req["knowledge_id"]
|
||||
@ -38,9 +121,9 @@ def retrieval(tenant_id):
|
||||
retrieval_setting = req.get("retrieval_setting", {})
|
||||
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
|
||||
top = int(retrieval_setting.get("top_k", 1024))
|
||||
metadata_condition = req.get("metadata_condition",{})
|
||||
metadata_condition = req.get("metadata_condition", {})
|
||||
metas = DocumentService.get_meta_by_kbs([kb_id])
|
||||
|
||||
|
||||
doc_ids = []
|
||||
try:
|
||||
|
||||
@ -50,12 +133,12 @@ def retrieval(tenant_id):
|
||||
|
||||
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
||||
print(metadata_condition)
|
||||
print("after",convert_conditions(metadata_condition))
|
||||
# print("after", convert_conditions(metadata_condition))
|
||||
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition)))
|
||||
print("doc_ids",doc_ids)
|
||||
# print("doc_ids", doc_ids)
|
||||
if not doc_ids and metadata_condition is not None:
|
||||
doc_ids = ['-999']
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question,
|
||||
embd_mdl,
|
||||
kb.tenant_id,
|
||||
@ -70,17 +153,17 @@ def retrieval(tenant_id):
|
||||
)
|
||||
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question,
|
||||
[tenant_id],
|
||||
[kb_id],
|
||||
embd_mdl,
|
||||
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(question,
|
||||
[tenant_id],
|
||||
[kb_id],
|
||||
embd_mdl,
|
||||
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ranks["chunks"].insert(0, ck)
|
||||
|
||||
records = []
|
||||
for c in ranks["chunks"]:
|
||||
e, doc = DocumentService.get_by_id( c["doc_id"])
|
||||
e, doc = DocumentService.get_by_id(c["doc_id"])
|
||||
c.pop("vector", None)
|
||||
meta = getattr(doc, 'meta_fields', {})
|
||||
meta["doc_id"] = c["doc_id"]
|
||||
@ -100,5 +183,3 @@ def retrieval(tenant_id):
|
||||
)
|
||||
logging.exception(e)
|
||||
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)
|
||||
|
||||
|
||||
|
||||
@ -458,7 +458,7 @@ def list_docs(dataset_id, tenant_id):
|
||||
required: false
|
||||
default: true
|
||||
description: Order in descending.
|
||||
- in: query
|
||||
- in: query
|
||||
name: create_time_from
|
||||
type: integer
|
||||
required: false
|
||||
@ -982,7 +982,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
|
||||
_ = Chunk(**final_chunk)
|
||||
|
||||
elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
|
||||
sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True)
|
||||
sres = settings.retriever.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True)
|
||||
res["total"] = sres.total
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
@ -1446,7 +1446,7 @@ def retrieval_test(tenant_id):
|
||||
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question,
|
||||
embd_mdl,
|
||||
tenant_ids,
|
||||
@ -1462,7 +1462,7 @@ def retrieval_test(tenant_id):
|
||||
rank_feature=label_question(question, kbs),
|
||||
)
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ranks["chunks"].insert(0, ck)
|
||||
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import pathlib
|
||||
import re
|
||||
|
||||
@ -17,7 +34,8 @@ from api.utils.api_utils import get_json_result
|
||||
from api.utils.file_utils import filename_type
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
@manager.route('/file/upload', methods=['POST']) # noqa: F821
|
||||
|
||||
@manager.route('/file/upload', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def upload(tenant_id):
|
||||
"""
|
||||
@ -44,22 +62,22 @@ def upload(tenant_id):
|
||||
type: object
|
||||
properties:
|
||||
data:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
id:
|
||||
type: string
|
||||
description: File ID
|
||||
name:
|
||||
type: string
|
||||
description: File name
|
||||
size:
|
||||
type: integer
|
||||
description: File size in bytes
|
||||
type:
|
||||
type: string
|
||||
description: File type (e.g., document, folder)
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
id:
|
||||
type: string
|
||||
description: File ID
|
||||
name:
|
||||
type: string
|
||||
description: File name
|
||||
size:
|
||||
type: integer
|
||||
description: File size in bytes
|
||||
type:
|
||||
type: string
|
||||
description: File type (e.g., document, folder)
|
||||
"""
|
||||
pf_id = request.form.get("parent_id")
|
||||
|
||||
@ -97,12 +115,14 @@ def upload(tenant_id):
|
||||
e, file = FileService.get_by_id(file_id_list[len_id_list - 1])
|
||||
if not e:
|
||||
return get_json_result(data=False, message="Folder not found!", code=404)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names, len_id_list)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names,
|
||||
len_id_list)
|
||||
else:
|
||||
e, file = FileService.get_by_id(file_id_list[len_id_list - 2])
|
||||
if not e:
|
||||
return get_json_result(data=False, message="Folder not found!", code=404)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names, len_id_list)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names,
|
||||
len_id_list)
|
||||
|
||||
filetype = filename_type(file_obj_names[file_len - 1])
|
||||
location = file_obj_names[file_len - 1]
|
||||
@ -129,7 +149,7 @@ def upload(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/create', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/create', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def create(tenant_id):
|
||||
"""
|
||||
@ -207,7 +227,7 @@ def create(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/list', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/list', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def list_files(tenant_id):
|
||||
"""
|
||||
@ -299,7 +319,7 @@ def list_files(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/root_folder', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/root_folder', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get_root_folder(tenant_id):
|
||||
"""
|
||||
@ -335,7 +355,7 @@ def get_root_folder(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/parent_folder', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/parent_folder', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get_parent_folder():
|
||||
"""
|
||||
@ -380,7 +400,7 @@ def get_parent_folder():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/all_parent_folder', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/all_parent_folder', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get_all_parent_folders(tenant_id):
|
||||
"""
|
||||
@ -428,7 +448,7 @@ def get_all_parent_folders(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/rm', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/rm', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def rm(tenant_id):
|
||||
"""
|
||||
@ -502,7 +522,7 @@ def rm(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/rename', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/rename', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def rename(tenant_id):
|
||||
"""
|
||||
@ -542,7 +562,8 @@ def rename(tenant_id):
|
||||
if not e:
|
||||
return get_json_result(message="File not found!", code=404)
|
||||
|
||||
if file.type != FileType.FOLDER.value and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(file.name.lower()).suffix:
|
||||
if file.type != FileType.FOLDER.value and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
|
||||
file.name.lower()).suffix:
|
||||
return get_json_result(data=False, message="The extension of file can't be changed", code=400)
|
||||
|
||||
for existing_file in FileService.query(name=req["name"], pf_id=file.parent_id):
|
||||
@ -562,9 +583,9 @@ def rename(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/get/<file_id>', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/get/<file_id>', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get(tenant_id,file_id):
|
||||
def get(tenant_id, file_id):
|
||||
"""
|
||||
Download a file.
|
||||
---
|
||||
@ -610,7 +631,7 @@ def get(tenant_id,file_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/mv', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/mv', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def move(tenant_id):
|
||||
"""
|
||||
@ -669,6 +690,7 @@ def move(tenant_id):
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/convert', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def convert(tenant_id):
|
||||
@ -735,4 +757,4 @@ def convert(tenant_id):
|
||||
file2documents.append(file2document.to_json())
|
||||
return get_json_result(data=file2documents)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
return server_error_response(e)
|
||||
|
||||
@ -36,7 +36,8 @@ from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.search_service import SearchService
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
|
||||
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, \
|
||||
get_result, server_error_response, token_required, validate_request
|
||||
from rag.app.tag import label_question
|
||||
from rag.prompts.template import load_prompt
|
||||
from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format
|
||||
@ -88,7 +89,8 @@ def create_agent_session(tenant_id, agent_id):
|
||||
canvas.reset()
|
||||
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
|
||||
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id,
|
||||
"message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
|
||||
API4ConversationService.save(**conv)
|
||||
conv["agent_id"] = conv.pop("dialog_id")
|
||||
return get_result(data=conv)
|
||||
@ -279,7 +281,7 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
|
||||
if reasoning_match:
|
||||
reasoning_part = reasoning_match.group(1)
|
||||
content_part = answer[reasoning_match.end() :]
|
||||
content_part = answer[reasoning_match.end():]
|
||||
else:
|
||||
reasoning_part = ""
|
||||
content_part = answer
|
||||
@ -324,7 +326,8 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
response["choices"][0]["delta"]["content"] = None
|
||||
response["choices"][0]["delta"]["reasoning_content"] = None
|
||||
response["choices"][0]["finish_reason"] = "stop"
|
||||
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
|
||||
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used,
|
||||
"total_tokens": len(prompt) + token_used}
|
||||
if need_reference:
|
||||
response["choices"][0]["delta"]["reference"] = chunks_format(last_ans.get("reference", []))
|
||||
response["choices"][0]["delta"]["final_content"] = last_ans.get("answer", "")
|
||||
@ -559,7 +562,8 @@ def list_agent_session(tenant_id, agent_id):
|
||||
desc = True
|
||||
# dsl defaults to True in all cases except for False and false
|
||||
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
|
||||
total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
|
||||
total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id,
|
||||
user_id, include_dsl)
|
||||
if not convs:
|
||||
return get_result(data=[])
|
||||
for conv in convs:
|
||||
@ -581,7 +585,8 @@ def list_agent_session(tenant_id, agent_id):
|
||||
if message_num != 0 and messages[message_num]["role"] != "user":
|
||||
chunk_list = []
|
||||
# Add boundary and type checks to prevent KeyError
|
||||
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
|
||||
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(
|
||||
conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
|
||||
chunks = conv["reference"][chunk_num]["chunks"]
|
||||
for chunk in chunks:
|
||||
# Ensure chunk is a dictionary before calling get method
|
||||
@ -639,13 +644,16 @@ def delete(tenant_id, chat_id):
|
||||
|
||||
if errors:
|
||||
if success_count > 0:
|
||||
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
return get_result(data={"success_count": success_count, "errors": errors},
|
||||
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
else:
|
||||
return get_error_data_result(message="; ".join(errors))
|
||||
|
||||
if duplicate_messages:
|
||||
if success_count > 0:
|
||||
return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
|
||||
return get_result(
|
||||
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
|
||||
data={"success_count": success_count, "errors": duplicate_messages})
|
||||
else:
|
||||
return get_error_data_result(message=";".join(duplicate_messages))
|
||||
|
||||
@ -691,13 +699,16 @@ def delete_agent_session(tenant_id, agent_id):
|
||||
|
||||
if errors:
|
||||
if success_count > 0:
|
||||
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
return get_result(data={"success_count": success_count, "errors": errors},
|
||||
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
else:
|
||||
return get_error_data_result(message="; ".join(errors))
|
||||
|
||||
if duplicate_messages:
|
||||
if success_count > 0:
|
||||
return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
|
||||
return get_result(
|
||||
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
|
||||
data={"success_count": success_count, "errors": duplicate_messages})
|
||||
else:
|
||||
return get_error_data_result(message=";".join(duplicate_messages))
|
||||
|
||||
@ -730,7 +741,9 @@ def ask_about(tenant_id):
|
||||
for ans in ask(req["question"], req["kb_ids"], uid):
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps(
|
||||
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
||||
ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||||
|
||||
resp = Response(stream(), mimetype="text/event-stream")
|
||||
@ -882,7 +895,9 @@ def begin_inputs(agent_id):
|
||||
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
|
||||
|
||||
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
|
||||
return get_result(data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"), "prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
|
||||
return get_result(
|
||||
data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"),
|
||||
"prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
|
||||
|
||||
|
||||
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
|
||||
@ -911,7 +926,9 @@ def ask_about_embedded():
|
||||
for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps(
|
||||
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
||||
ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||||
|
||||
resp = Response(stream(), mimetype="text/event-stream")
|
||||
@ -978,7 +995,8 @@ def retrieval_test_embedded():
|
||||
tenant_ids.append(tenant.tenant_id)
|
||||
break
|
||||
else:
|
||||
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
||||
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.",
|
||||
code=settings.RetCode.OPERATING_ERROR)
|
||||
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
||||
if not e:
|
||||
@ -998,11 +1016,13 @@ def retrieval_test_embedded():
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
labels = label_question(question, [kb])
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top, doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
|
||||
ranks = settings.retriever.retrieval(
|
||||
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
|
||||
)
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question, tenant_ids, kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(question, tenant_ids, kb_ids, embd_mdl,
|
||||
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ranks["chunks"].insert(0, ck)
|
||||
|
||||
@ -1013,7 +1033,8 @@ def retrieval_test_embedded():
|
||||
return get_json_result(data=ranks)
|
||||
except Exception as e:
|
||||
if str(e).find("not_found") > 0:
|
||||
return get_json_result(data=False, message="No chunk found! Check the chunk status please!", code=settings.RetCode.DATA_ERROR)
|
||||
return get_json_result(data=False, message="No chunk found! Check the chunk status please!",
|
||||
code=settings.RetCode.DATA_ERROR)
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@ -1082,7 +1103,8 @@ def detail_share_embedded():
|
||||
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
|
||||
break
|
||||
else:
|
||||
return get_json_result(data=False, message="Has no permission for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
||||
return get_json_result(data=False, message="Has no permission for this operation.",
|
||||
code=settings.RetCode.OPERATING_ERROR)
|
||||
|
||||
search = SearchService.get_detail(search_id)
|
||||
if not search:
|
||||
|
||||
@ -162,7 +162,7 @@ def status():
|
||||
task_executors = REDIS_CONN.smembers("TASKEXE")
|
||||
now = datetime.now().timestamp()
|
||||
for task_executor_id in task_executors:
|
||||
heartbeats = REDIS_CONN.zrangebyscore(task_executor_id, now - 60*30, now)
|
||||
heartbeats = REDIS_CONN.zrangebyscore(task_executor_id, now - 60 * 30, now)
|
||||
heartbeats = [json.loads(heartbeat) for heartbeat in heartbeats]
|
||||
task_executor_heartbeats[task_executor_id] = heartbeats
|
||||
except Exception:
|
||||
@ -178,6 +178,11 @@ def healthz():
|
||||
return jsonify(result), (200 if all_ok else 500)
|
||||
|
||||
|
||||
@manager.route("/ping", methods=["GET"]) # noqa: F821
|
||||
def ping():
|
||||
return "pong", 200
|
||||
|
||||
|
||||
@manager.route("/new_token", methods=["POST"]) # noqa: F821
|
||||
@login_required
|
||||
def new_token():
|
||||
@ -269,7 +274,8 @@ def token_list():
|
||||
objs = [o.to_dict() for o in objs]
|
||||
for o in objs:
|
||||
if not o["beta"]:
|
||||
o["beta"] = generate_confirmation_token(generate_confirmation_token(tenants[0].tenant_id)).replace("ragflow-", "")[:32]
|
||||
o["beta"] = generate_confirmation_token(generate_confirmation_token(tenants[0].tenant_id)).replace(
|
||||
"ragflow-", "")[:32]
|
||||
APITokenService.filter_update([APIToken.tenant_id == tenant_id, APIToken.token == o["token"]], o)
|
||||
return get_json_result(data=objs)
|
||||
except Exception as e:
|
||||
|
||||
@ -70,7 +70,8 @@ def create(tenant_id):
|
||||
return get_data_error_result(message=f"{invite_user_email} is already in the team.")
|
||||
if user_tenant_role == UserTenantRole.OWNER:
|
||||
return get_data_error_result(message=f"{invite_user_email} is the owner of the team.")
|
||||
return get_data_error_result(message=f"{invite_user_email} is in the team, but the role: {user_tenant_role} is invalid.")
|
||||
return get_data_error_result(
|
||||
message=f"{invite_user_email} is in the team, but the role: {user_tenant_role} is invalid.")
|
||||
|
||||
UserTenantService.save(
|
||||
id=get_uuid(),
|
||||
@ -132,7 +133,8 @@ def tenant_list():
|
||||
@login_required
|
||||
def agree(tenant_id):
|
||||
try:
|
||||
UserTenantService.filter_update([UserTenant.tenant_id == tenant_id, UserTenant.user_id == current_user.id], {"role": UserTenantRole.NORMAL})
|
||||
UserTenantService.filter_update([UserTenant.tenant_id == tenant_id, UserTenant.user_id == current_user.id],
|
||||
{"role": UserTenantRole.NORMAL})
|
||||
return get_json_result(data=True)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
59
api/common/check_team_permission.py
Normal file
59
api/common/check_team_permission.py
Normal file
@ -0,0 +1,59 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from api.db import TenantPermission
|
||||
from api.db.db_models import File, Knowledgebase
|
||||
from api.db.services.file_service import FileService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.user_service import TenantService
|
||||
|
||||
|
||||
def check_kb_team_permission(kb: dict | Knowledgebase, other: str) -> bool:
|
||||
kb = kb.to_dict() if isinstance(kb, Knowledgebase) else kb
|
||||
|
||||
kb_tenant_id = kb["tenant_id"]
|
||||
|
||||
if kb_tenant_id == other:
|
||||
return True
|
||||
|
||||
if kb["permission"] != TenantPermission.TEAM:
|
||||
return False
|
||||
|
||||
joined_tenants = TenantService.get_joined_tenants_by_user_id(other)
|
||||
return any(tenant["tenant_id"] == kb_tenant_id for tenant in joined_tenants)
|
||||
|
||||
|
||||
def check_file_team_permission(file: dict | File, other: str) -> bool:
|
||||
file = file.to_dict() if isinstance(file, File) else file
|
||||
|
||||
file_tenant_id = file["tenant_id"]
|
||||
if file_tenant_id == other:
|
||||
return True
|
||||
|
||||
file_id = file["id"]
|
||||
|
||||
kb_ids = [kb_info["kb_id"] for kb_info in FileService.get_kb_id_by_file_id(file_id)]
|
||||
|
||||
for kb_id in kb_ids:
|
||||
ok, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
if not ok:
|
||||
continue
|
||||
|
||||
if check_kb_team_permission(kb, other):
|
||||
return True
|
||||
|
||||
return False
|
||||
38
api/common/exceptions.py
Normal file
38
api/common/exceptions.py
Normal file
@ -0,0 +1,38 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
class AdminException(Exception):
|
||||
def __init__(self, message, code=400):
|
||||
super().__init__(message)
|
||||
self.type = "admin"
|
||||
self.code = code
|
||||
self.message = message
|
||||
|
||||
|
||||
class UserNotFoundError(AdminException):
|
||||
def __init__(self, username):
|
||||
super().__init__(f"User '{username}' not found", 404)
|
||||
|
||||
|
||||
class UserAlreadyExistsError(AdminException):
|
||||
def __init__(self, username):
|
||||
super().__init__(f"User '{username}' already exists", 409)
|
||||
|
||||
|
||||
class CannotDeleteAdminError(AdminException):
|
||||
def __init__(self):
|
||||
super().__init__("Cannot delete admin account", 403)
|
||||
@ -641,7 +641,7 @@ class TenantLLM(DataBaseModel):
|
||||
llm_factory = CharField(max_length=128, null=False, help_text="LLM factory name", index=True)
|
||||
model_type = CharField(max_length=128, null=True, help_text="LLM, Text Embedding, Image2Text, ASR", index=True)
|
||||
llm_name = CharField(max_length=128, null=True, help_text="LLM name", default="", index=True)
|
||||
api_key = CharField(max_length=2048, null=True, help_text="API KEY", index=True)
|
||||
api_key = TextField(null=True, help_text="API KEY")
|
||||
api_base = CharField(max_length=255, null=True, help_text="API Base")
|
||||
max_tokens = IntegerField(default=8192, index=True)
|
||||
used_tokens = IntegerField(default=0, index=True)
|
||||
@ -1142,4 +1142,8 @@ def migrate_db():
|
||||
migrate(migrator.add_column("knowledgebase", "mindmap_task_finish_at", CharField(null=True)))
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
migrate(migrator.alter_column_type("tenant_llm", "api_key", TextField(null=True, help_text="API KEY")))
|
||||
except Exception:
|
||||
pass
|
||||
logging.disable(logging.NOTSET)
|
||||
|
||||
@ -143,15 +143,12 @@ class UserCanvasService(CommonService):
|
||||
]
|
||||
if keywords:
|
||||
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
||||
cls.model.user_id.in_(joined_tenant_ids),
|
||||
fn.LOWER(cls.model.title).contains(keywords.lower())
|
||||
#(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id)),
|
||||
#(fn.LOWER(cls.model.title).contains(keywords.lower()))
|
||||
(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id)),
|
||||
(fn.LOWER(cls.model.title).contains(keywords.lower()))
|
||||
)
|
||||
else:
|
||||
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
||||
cls.model.user_id.in_(joined_tenant_ids)
|
||||
#(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id))
|
||||
(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id))
|
||||
)
|
||||
if canvas_category:
|
||||
agents = agents.where(cls.model.canvas_category == canvas_category)
|
||||
|
||||
@ -370,7 +370,7 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
chat_mdl.bind_tools(toolcall_session, tools)
|
||||
bind_models_ts = timer()
|
||||
|
||||
retriever = settings.retrievaler
|
||||
retriever = settings.retriever
|
||||
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
|
||||
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else []
|
||||
if "doc_ids" in messages[-1]:
|
||||
@ -466,13 +466,17 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
rerank_mdl=rerank_mdl,
|
||||
rank_feature=label_question(" ".join(questions), kbs),
|
||||
)
|
||||
if prompt_config.get("toc_enhance"):
|
||||
cks = retriever.retrieval_by_toc(" ".join(questions), kbinfos["chunks"], tenant_ids, chat_mdl, dialog.top_n)
|
||||
if cks:
|
||||
kbinfos["chunks"] = cks
|
||||
if prompt_config.get("tavily_api_key"):
|
||||
tav = Tavily(prompt_config["tavily_api_key"])
|
||||
tav_res = tav.retrieve_chunks(" ".join(questions))
|
||||
kbinfos["chunks"].extend(tav_res["chunks"])
|
||||
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
|
||||
if prompt_config.get("use_kg"):
|
||||
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
|
||||
ck = settings.kg_retriever.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
|
||||
LLMBundle(dialog.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
kbinfos["chunks"].insert(0, ck)
|
||||
@ -658,7 +662,7 @@ Please write the SQL, only SQL, without any other explanations or text.
|
||||
|
||||
logging.debug(f"{question} get SQL(refined): {sql}")
|
||||
tried_times += 1
|
||||
return settings.retrievaler.sql_retrieval(sql, format="json"), sql
|
||||
return settings.retriever.sql_retrieval(sql, format="json"), sql
|
||||
|
||||
tbl, sql = get_table()
|
||||
if tbl is None:
|
||||
@ -752,7 +756,7 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
|
||||
embedding_list = list(set([kb.embd_id for kb in kbs]))
|
||||
|
||||
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
|
||||
retriever = settings.retriever if not is_knowledge_graph else settings.kg_retriever
|
||||
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_llm_name)
|
||||
@ -848,7 +852,7 @@ def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question=question,
|
||||
embd_mdl=embd_mdl,
|
||||
tenant_ids=tenant_ids,
|
||||
|
||||
@ -379,6 +379,7 @@ class KnowledgebaseService(CommonService):
|
||||
# name: Optional name filter
|
||||
# Returns:
|
||||
# List of knowledge bases
|
||||
# Total count of knowledge bases
|
||||
kbs = cls.model.select()
|
||||
if id:
|
||||
kbs = kbs.where(cls.model.id == id)
|
||||
@ -390,14 +391,16 @@ class KnowledgebaseService(CommonService):
|
||||
cls.model.tenant_id == user_id))
|
||||
& (cls.model.status == StatusEnum.VALID.value)
|
||||
)
|
||||
|
||||
if desc:
|
||||
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
|
||||
else:
|
||||
kbs = kbs.order_by(cls.model.getter_by(orderby).asc())
|
||||
|
||||
total = kbs.count()
|
||||
kbs = kbs.paginate(page_number, items_per_page)
|
||||
|
||||
return list(kbs.dicts())
|
||||
return list(kbs.dicts()), total
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
|
||||
@ -33,7 +33,8 @@ class MCPServerService(CommonService):
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_servers(cls, tenant_id: str, id_list: list[str] | None, page_number, items_per_page, orderby, desc, keywords):
|
||||
def get_servers(cls, tenant_id: str, id_list: list[str] | None, page_number, items_per_page, orderby, desc,
|
||||
keywords):
|
||||
"""Retrieve all MCP servers associated with a tenant.
|
||||
|
||||
This method fetches all MCP servers for a given tenant, ordered by creation time.
|
||||
|
||||
@ -94,7 +94,8 @@ class SearchService(CommonService):
|
||||
query = (
|
||||
cls.model.select(*fields)
|
||||
.join(User, on=(cls.model.tenant_id == User.id))
|
||||
.where(((cls.model.tenant_id.in_(joined_tenant_ids)) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value))
|
||||
.where(((cls.model.tenant_id.in_(joined_tenant_ids)) | (cls.model.tenant_id == user_id)) & (
|
||||
cls.model.status == StatusEnum.VALID.value))
|
||||
)
|
||||
|
||||
if keywords:
|
||||
|
||||
@ -165,7 +165,7 @@ class TaskService(CommonService):
|
||||
]
|
||||
tasks = (
|
||||
cls.model.select(*fields).order_by(cls.model.from_page.asc(), cls.model.create_time.desc())
|
||||
.where(cls.model.doc_id == doc_id)
|
||||
.where(cls.model.doc_id == doc_id)
|
||||
)
|
||||
tasks = list(tasks.dicts())
|
||||
if not tasks:
|
||||
@ -205,18 +205,18 @@ class TaskService(CommonService):
|
||||
cls.model.select(
|
||||
*[Document.id, Document.kb_id, Document.location, File.parent_id]
|
||||
)
|
||||
.join(Document, on=(cls.model.doc_id == Document.id))
|
||||
.join(
|
||||
.join(Document, on=(cls.model.doc_id == Document.id))
|
||||
.join(
|
||||
File2Document,
|
||||
on=(File2Document.document_id == Document.id),
|
||||
join_type=JOIN.LEFT_OUTER,
|
||||
)
|
||||
.join(
|
||||
.join(
|
||||
File,
|
||||
on=(File2Document.file_id == File.id),
|
||||
join_type=JOIN.LEFT_OUTER,
|
||||
)
|
||||
.where(
|
||||
.where(
|
||||
Document.status == StatusEnum.VALID.value,
|
||||
Document.run == TaskStatus.RUNNING.value,
|
||||
~(Document.type == FileType.VIRTUAL.value),
|
||||
@ -294,8 +294,8 @@ class TaskService(CommonService):
|
||||
cls.model.update(progress=prog).where(
|
||||
(cls.model.id == id) &
|
||||
(
|
||||
(cls.model.progress != -1) &
|
||||
((prog == -1) | (prog > cls.model.progress))
|
||||
(cls.model.progress != -1) &
|
||||
((prog == -1) | (prog > cls.model.progress))
|
||||
)
|
||||
).execute()
|
||||
else:
|
||||
@ -343,6 +343,7 @@ def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
|
||||
- Task digests are calculated for optimization and reuse
|
||||
- Previous task chunks may be reused if available
|
||||
"""
|
||||
|
||||
def new_task():
|
||||
return {
|
||||
"id": get_uuid(),
|
||||
@ -515,7 +516,7 @@ def queue_dataflow(tenant_id:str, flow_id:str, task_id:str, doc_id:str=CANVAS_DE
|
||||
task["file"] = file
|
||||
|
||||
if not REDIS_CONN.queue_product(
|
||||
get_svr_queue_name(priority), message=task
|
||||
get_svr_queue_name(priority), message=task
|
||||
):
|
||||
return False, "Can't access Redis. Please check the Redis' status."
|
||||
|
||||
|
||||
@ -57,8 +57,10 @@ class TenantLLMService(CommonService):
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_my_llms(cls, tenant_id):
|
||||
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
|
||||
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
|
||||
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name,
|
||||
cls.model.used_tokens]
|
||||
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
|
||||
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
|
||||
|
||||
return list(objs)
|
||||
|
||||
@ -122,7 +124,8 @@ class TenantLLMService(CommonService):
|
||||
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
|
||||
if not model_config:
|
||||
if mdlnm == "flag-embedding":
|
||||
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
|
||||
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name,
|
||||
"api_base": ""}
|
||||
else:
|
||||
if not mdlnm:
|
||||
raise LookupError(f"Type of {llm_type} model is not set.")
|
||||
@ -137,27 +140,33 @@ class TenantLLMService(CommonService):
|
||||
if llm_type == LLMType.EMBEDDING.value:
|
||||
if model_config["llm_factory"] not in EmbeddingModel:
|
||||
return
|
||||
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
||||
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"],
|
||||
base_url=model_config["api_base"])
|
||||
|
||||
if llm_type == LLMType.RERANK:
|
||||
if model_config["llm_factory"] not in RerankModel:
|
||||
return
|
||||
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
||||
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"],
|
||||
base_url=model_config["api_base"])
|
||||
|
||||
if llm_type == LLMType.IMAGE2TEXT.value:
|
||||
if model_config["llm_factory"] not in CvModel:
|
||||
return
|
||||
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
|
||||
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang,
|
||||
base_url=model_config["api_base"], **kwargs)
|
||||
|
||||
if llm_type == LLMType.CHAT.value:
|
||||
if model_config["llm_factory"] not in ChatModel:
|
||||
return
|
||||
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
|
||||
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"],
|
||||
base_url=model_config["api_base"], **kwargs)
|
||||
|
||||
if llm_type == LLMType.SPEECH2TEXT:
|
||||
if model_config["llm_factory"] not in Seq2txtModel:
|
||||
return
|
||||
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
|
||||
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"],
|
||||
model_name=model_config["llm_name"], lang=lang,
|
||||
base_url=model_config["api_base"])
|
||||
if llm_type == LLMType.TTS:
|
||||
if model_config["llm_factory"] not in TTSModel:
|
||||
return
|
||||
@ -194,11 +203,14 @@ class TenantLLMService(CommonService):
|
||||
try:
|
||||
num = (
|
||||
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
|
||||
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
|
||||
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name,
|
||||
cls.model.llm_factory == llm_factory if llm_factory else True)
|
||||
.execute()
|
||||
)
|
||||
except Exception:
|
||||
logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
|
||||
logging.exception(
|
||||
"TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s",
|
||||
tenant_id, llm_name)
|
||||
return 0
|
||||
|
||||
return num
|
||||
@ -206,7 +218,9 @@ class TenantLLMService(CommonService):
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_openai_models(cls):
|
||||
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
|
||||
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"),
|
||||
~(cls.model.llm_name == "text-embedding-3-small"),
|
||||
~(cls.model.llm_name == "text-embedding-3-large")).dicts()
|
||||
return list(objs)
|
||||
|
||||
@classmethod
|
||||
@ -250,8 +264,9 @@ class LLM4Tenant:
|
||||
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
|
||||
self.langfuse = None
|
||||
if langfuse_keys:
|
||||
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
|
||||
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key,
|
||||
host=langfuse_keys.host)
|
||||
if langfuse.auth_check():
|
||||
self.langfuse = langfuse
|
||||
trace_id = self.langfuse.create_trace_id()
|
||||
self.trace_context = {"trace_id": trace_id}
|
||||
self.trace_context = {"trace_id": trace_id}
|
||||
|
||||
@ -2,22 +2,22 @@ from api.db.db_models import UserCanvasVersion, DB
|
||||
from api.db.services.common_service import CommonService
|
||||
from peewee import DoesNotExist
|
||||
|
||||
|
||||
class UserCanvasVersionService(CommonService):
|
||||
model = UserCanvasVersion
|
||||
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def list_by_canvas_id(cls, user_canvas_id):
|
||||
try:
|
||||
user_canvas_version = cls.model.select(
|
||||
*[cls.model.id,
|
||||
cls.model.create_time,
|
||||
cls.model.title,
|
||||
cls.model.create_date,
|
||||
cls.model.update_date,
|
||||
cls.model.user_canvas_id,
|
||||
cls.model.update_time]
|
||||
*[cls.model.id,
|
||||
cls.model.create_time,
|
||||
cls.model.title,
|
||||
cls.model.create_date,
|
||||
cls.model.update_date,
|
||||
cls.model.user_canvas_id,
|
||||
cls.model.update_time]
|
||||
).where(cls.model.user_canvas_id == user_canvas_id)
|
||||
return user_canvas_version
|
||||
except DoesNotExist:
|
||||
@ -46,18 +46,16 @@ class UserCanvasVersionService(CommonService):
|
||||
@DB.connection_context()
|
||||
def delete_all_versions(cls, user_canvas_id):
|
||||
try:
|
||||
user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by(cls.model.create_time.desc())
|
||||
user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by(
|
||||
cls.model.create_time.desc())
|
||||
if user_canvas_version.count() > 20:
|
||||
delete_ids = []
|
||||
for i in range(20, user_canvas_version.count()):
|
||||
delete_ids.append(user_canvas_version[i].id)
|
||||
|
||||
|
||||
cls.delete_by_ids(delete_ids)
|
||||
return True
|
||||
except DoesNotExist:
|
||||
return None
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
|
||||
|
||||
@ -315,4 +315,4 @@ class UserTenantService(CommonService):
|
||||
).first()
|
||||
return user_tenant
|
||||
except peewee.DoesNotExist:
|
||||
return None
|
||||
return None
|
||||
|
||||
@ -65,8 +65,8 @@ OAUTH_CONFIG = None
|
||||
DOC_ENGINE = None
|
||||
docStoreConn = None
|
||||
|
||||
retrievaler = None
|
||||
kg_retrievaler = None
|
||||
retriever = None
|
||||
kg_retriever = None
|
||||
|
||||
# user registration switch
|
||||
REGISTER_ENABLED = 1
|
||||
@ -174,7 +174,7 @@ def init_settings():
|
||||
|
||||
OAUTH_CONFIG = get_base_config("oauth", {})
|
||||
|
||||
global DOC_ENGINE, docStoreConn, retrievaler, kg_retrievaler
|
||||
global DOC_ENGINE, docStoreConn, retriever, kg_retriever
|
||||
DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch")
|
||||
# DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch")
|
||||
lower_case_doc_engine = DOC_ENGINE.lower()
|
||||
@ -187,10 +187,10 @@ def init_settings():
|
||||
else:
|
||||
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
|
||||
|
||||
retrievaler = search.Dealer(docStoreConn)
|
||||
retriever = search.Dealer(docStoreConn)
|
||||
from graphrag import search as kg_search
|
||||
|
||||
kg_retrievaler = kg_search.KGSearch(docStoreConn)
|
||||
kg_retriever = kg_search.KGSearch(docStoreConn)
|
||||
|
||||
if int(os.environ.get("SANDBOX_ENABLED", "0")):
|
||||
global SANDBOX_HOST
|
||||
|
||||
@ -51,15 +51,13 @@ from api import settings
|
||||
from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC
|
||||
from api.db import ActiveEnum
|
||||
from api.db.db_models import APIToken
|
||||
from api.db.services import UserService
|
||||
from api.db.services.llm_service import LLMService
|
||||
from api.db.services.tenant_llm_service import TenantLLMService
|
||||
from api.utils.json import CustomJSONEncoder, json_dumps
|
||||
from api.utils import get_uuid
|
||||
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, close_multiple_mcp_toolcall_sessions
|
||||
|
||||
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
|
||||
|
||||
|
||||
def serialize_for_json(obj):
|
||||
"""
|
||||
Recursively serialize objects to make them JSON serializable.
|
||||
@ -68,8 +66,8 @@ def serialize_for_json(obj):
|
||||
if hasattr(obj, '__dict__'):
|
||||
# For objects with __dict__, try to serialize their attributes
|
||||
try:
|
||||
return {key: serialize_for_json(value) for key, value in obj.__dict__.items()
|
||||
if not key.startswith('_')}
|
||||
return {key: serialize_for_json(value) for key, value in obj.__dict__.items()
|
||||
if not key.startswith('_')}
|
||||
except (AttributeError, TypeError):
|
||||
return str(obj)
|
||||
elif hasattr(obj, '__name__'):
|
||||
@ -85,6 +83,7 @@ def serialize_for_json(obj):
|
||||
# Fallback: convert to string representation
|
||||
return str(obj)
|
||||
|
||||
|
||||
def request(**kwargs):
|
||||
sess = requests.Session()
|
||||
stream = kwargs.pop("stream", sess.stream)
|
||||
@ -105,7 +104,8 @@ def request(**kwargs):
|
||||
settings.HTTP_APP_KEY.encode("ascii"),
|
||||
prepped.path_url.encode("ascii"),
|
||||
prepped.body if kwargs.get("json") else b"",
|
||||
urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode("ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
|
||||
urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode(
|
||||
"ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
|
||||
]
|
||||
),
|
||||
"sha1",
|
||||
@ -127,7 +127,7 @@ def request(**kwargs):
|
||||
def get_exponential_backoff_interval(retries, full_jitter=False):
|
||||
"""Calculate the exponential backoff wait time."""
|
||||
# Will be zero if factor equals 0
|
||||
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2**retries))
|
||||
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2 ** retries))
|
||||
# Full jitter according to
|
||||
# https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
|
||||
if full_jitter:
|
||||
@ -151,18 +151,21 @@ def get_data_error_result(code=settings.RetCode.DATA_ERROR, message="Sorry! Data
|
||||
def server_error_response(e):
|
||||
logging.exception(e)
|
||||
try:
|
||||
if e.code == 401:
|
||||
return get_json_result(code=401, message=repr(e))
|
||||
except BaseException:
|
||||
pass
|
||||
msg = repr(e).lower()
|
||||
if getattr(e, "code", None) == 401 or ("unauthorized" in msg) or ("401" in msg):
|
||||
return get_json_result(code=settings.RetCode.UNAUTHORIZED, message=repr(e))
|
||||
except Exception as ex:
|
||||
logging.warning(f"error checking authorization: {ex}")
|
||||
|
||||
if len(e.args) > 1:
|
||||
try:
|
||||
serialized_data = serialize_for_json(e.args[1])
|
||||
return get_json_result(code= settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data)
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data)
|
||||
except Exception:
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=None)
|
||||
if repr(e).find("index_not_found_exception") >= 0:
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.")
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR,
|
||||
message="No chunk found, please upload file and parse it.")
|
||||
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
|
||||
|
||||
@ -207,7 +210,8 @@ def validate_request(*args, **kwargs):
|
||||
if no_arguments:
|
||||
error_string += "required argument are missing: {}; ".format(",".join(no_arguments))
|
||||
if error_arguments:
|
||||
error_string += "required argument values: {}".format(",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
|
||||
error_string += "required argument values: {}".format(
|
||||
",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
|
||||
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=error_string)
|
||||
return func(*_args, **_kwargs)
|
||||
|
||||
@ -222,7 +226,8 @@ def not_allowed_parameters(*params):
|
||||
input_arguments = flask_request.json or flask_request.form.to_dict()
|
||||
for param in params:
|
||||
if param in input_arguments:
|
||||
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"Parameter {param} isn't allowed")
|
||||
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR,
|
||||
message=f"Parameter {param} isn't allowed")
|
||||
return f(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
@ -233,12 +238,14 @@ def not_allowed_parameters(*params):
|
||||
def active_required(f):
|
||||
@wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
from api.db.services import UserService
|
||||
user_id = current_user.id
|
||||
usr = UserService.filter_by_id(user_id)
|
||||
# check is_active
|
||||
if not usr or not usr.is_active == ActiveEnum.ACTIVE.value:
|
||||
return get_json_result(code=settings.RetCode.FORBIDDEN, message="User isn't active, please activate first.")
|
||||
return f(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@ -259,7 +266,7 @@ def send_file_in_mem(data, filename):
|
||||
return send_file(f, as_attachment=True, attachment_filename=filename)
|
||||
|
||||
|
||||
def get_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
|
||||
def get_json_result(code: settings.RetCode = settings.RetCode.SUCCESS, message="success", data=None):
|
||||
response = {"code": code, "message": message, "data": data}
|
||||
return jsonify(response)
|
||||
|
||||
@ -314,7 +321,7 @@ def construct_result(code=settings.RetCode.DATA_ERROR, message="data is missing"
|
||||
return jsonify(response)
|
||||
|
||||
|
||||
def construct_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
|
||||
def construct_json_result(code: settings.RetCode = settings.RetCode.SUCCESS, message="success", data=None):
|
||||
if data is None:
|
||||
return jsonify({"code": code, "message": message})
|
||||
else:
|
||||
@ -347,27 +354,39 @@ def token_required(func):
|
||||
token = authorization_list[1]
|
||||
objs = APIToken.query(token=token)
|
||||
if not objs:
|
||||
return get_json_result(data=False, message="Authentication error: API key is invalid!", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
return get_json_result(data=False, message="Authentication error: API key is invalid!",
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
kwargs["tenant_id"] = objs[0].tenant_id
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return decorated_function
|
||||
|
||||
|
||||
def get_result(code=settings.RetCode.SUCCESS, message="", data=None):
|
||||
if code == 0:
|
||||
def get_result(code=settings.RetCode.SUCCESS, message="", data=None, total=None):
|
||||
"""
|
||||
Standard API response format:
|
||||
{
|
||||
"code": 0,
|
||||
"data": [...], # List or object, backward compatible
|
||||
"total": 47, # Optional field for pagination
|
||||
"message": "..." # Error or status message
|
||||
}
|
||||
"""
|
||||
response = {"code": code}
|
||||
|
||||
if code == settings.RetCode.SUCCESS:
|
||||
if data is not None:
|
||||
response = {"code": code, "data": data}
|
||||
else:
|
||||
response = {"code": code}
|
||||
response["data"] = data
|
||||
if total is not None:
|
||||
response["total_datasets"] = total
|
||||
else:
|
||||
response = {"code": code, "message": message}
|
||||
response["message"] = message or "Error"
|
||||
|
||||
return jsonify(response)
|
||||
|
||||
|
||||
def get_error_data_result(
|
||||
message="Sorry! Data missing!",
|
||||
code=settings.RetCode.DATA_ERROR,
|
||||
message="Sorry! Data missing!",
|
||||
code=settings.RetCode.DATA_ERROR,
|
||||
):
|
||||
result_dict = {"code": code, "message": message}
|
||||
response = {}
|
||||
@ -402,7 +421,8 @@ def get_parser_config(chunk_method, parser_config):
|
||||
|
||||
# Define default configurations for each chunking method
|
||||
key_mapping = {
|
||||
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
|
||||
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC",
|
||||
"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
|
||||
"qa": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
|
||||
"tag": None,
|
||||
"resume": None,
|
||||
@ -441,16 +461,16 @@ def get_parser_config(chunk_method, parser_config):
|
||||
|
||||
|
||||
def get_data_openai(
|
||||
id=None,
|
||||
created=None,
|
||||
model=None,
|
||||
prompt_tokens=0,
|
||||
completion_tokens=0,
|
||||
content=None,
|
||||
finish_reason=None,
|
||||
object="chat.completion",
|
||||
param=None,
|
||||
stream=False
|
||||
id=None,
|
||||
created=None,
|
||||
model=None,
|
||||
prompt_tokens=0,
|
||||
completion_tokens=0,
|
||||
content=None,
|
||||
finish_reason=None,
|
||||
object="chat.completion",
|
||||
param=None,
|
||||
stream=False
|
||||
):
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
|
||||
@ -524,6 +544,8 @@ def check_duplicate_ids(ids, id_type="item"):
|
||||
|
||||
|
||||
def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, Response | None]:
|
||||
from api.db.services.llm_service import LLMService
|
||||
from api.db.services.tenant_llm_service import TenantLLMService
|
||||
"""
|
||||
Verifies availability of an embedding model for a specific tenant.
|
||||
|
||||
@ -562,7 +584,9 @@ def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, R
|
||||
in_llm_service = bool(LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding"))
|
||||
|
||||
tenant_llms = TenantLLMService.get_my_llms(tenant_id=tenant_id)
|
||||
is_tenant_model = any(llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for llm in tenant_llms)
|
||||
is_tenant_model = any(
|
||||
llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for
|
||||
llm in tenant_llms)
|
||||
|
||||
is_builtin_model = embd_id in settings.BUILTIN_EMBEDDING_MODELS
|
||||
if not (is_builtin_model or is_tenant_model or in_llm_service):
|
||||
@ -793,7 +817,9 @@ async def is_strong_enough(chat_model, embedding_model):
|
||||
_ = await trio.to_thread.run_sync(lambda: embedding_model.encode(["Are you strong enough!?"]))
|
||||
if chat_model:
|
||||
with trio.fail_after(30):
|
||||
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role": "user", "content": "Are you strong enough!?"}], {}))
|
||||
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role": "user",
|
||||
"content": "Are you strong enough!?"}],
|
||||
{}))
|
||||
if res.find("**ERROR**") >= 0:
|
||||
raise Exception(res)
|
||||
|
||||
|
||||
@ -21,3 +21,26 @@ def string_to_bytes(string):
|
||||
|
||||
def bytes_to_string(byte):
|
||||
return byte.decode(encoding="utf-8")
|
||||
|
||||
|
||||
def convert_bytes(size_in_bytes: int) -> str:
|
||||
"""
|
||||
Format size in bytes.
|
||||
"""
|
||||
if size_in_bytes == 0:
|
||||
return "0 B"
|
||||
|
||||
units = ['B', 'KB', 'MB', 'GB', 'TB', 'PB']
|
||||
i = 0
|
||||
size = float(size_in_bytes)
|
||||
|
||||
while size >= 1024 and i < len(units) - 1:
|
||||
size /= 1024
|
||||
i += 1
|
||||
|
||||
if i == 0 or size >= 100:
|
||||
return f"{size:.0f} {units[i]}"
|
||||
elif size >= 10:
|
||||
return f"{size:.1f} {units[i]}"
|
||||
else:
|
||||
return f"{size:.2f} {units[i]}"
|
||||
|
||||
@ -13,14 +13,17 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import os
|
||||
import requests
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from api import settings
|
||||
from api.db.db_models import DB
|
||||
from rag import settings as rag_settings
|
||||
from rag.utils.redis_conn import REDIS_CONN
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
from rag.utils.es_conn import ESConnection
|
||||
from rag.utils.infinity_conn import InfinityConnection
|
||||
|
||||
|
||||
def _ok_nok(ok: bool) -> str:
|
||||
@ -65,6 +68,96 @@ def check_storage() -> tuple[bool, dict]:
|
||||
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
|
||||
|
||||
|
||||
def get_es_cluster_stats() -> dict:
|
||||
doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
|
||||
if doc_engine != 'elasticsearch':
|
||||
raise Exception("Elasticsearch is not in use.")
|
||||
try:
|
||||
return {
|
||||
"alive": True,
|
||||
"message": ESConnection().get_cluster_stats()
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"alive": False,
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def get_infinity_status():
|
||||
doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
|
||||
if doc_engine != 'infinity':
|
||||
raise Exception("Infinity is not in use.")
|
||||
try:
|
||||
return {
|
||||
"alive": True,
|
||||
"message": InfinityConnection().health()
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"alive": False,
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def get_mysql_status():
|
||||
try:
|
||||
cursor = DB.execute_sql("SHOW PROCESSLIST;")
|
||||
res_rows = cursor.fetchall()
|
||||
headers = ['id', 'user', 'host', 'db', 'command', 'time', 'state', 'info']
|
||||
cursor.close()
|
||||
return {
|
||||
"alive": True,
|
||||
"message": [dict(zip(headers, r)) for r in res_rows]
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"alive": False,
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def check_minio_alive():
|
||||
start_time = timer()
|
||||
try:
|
||||
response = requests.get(f'http://{rag_settings.MINIO["host"]}/minio/health/live')
|
||||
if response.status_code == 200:
|
||||
return {'alive': True, "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
|
||||
else:
|
||||
return {'alive': False, "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
|
||||
except Exception as e:
|
||||
return {
|
||||
"alive": False,
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def get_redis_info():
|
||||
try:
|
||||
return {
|
||||
"alive": True,
|
||||
"message": REDIS_CONN.info()
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"alive": False,
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def check_ragflow_server_alive():
|
||||
start_time = timer()
|
||||
try:
|
||||
response = requests.get(f'http://{settings.HOST_IP}:{settings.HOST_PORT}/v1/system/ping')
|
||||
if response.status_code == 200:
|
||||
return {'alive': True, "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
|
||||
else:
|
||||
return {'alive': False, "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
|
||||
except Exception as e:
|
||||
return {
|
||||
"alive": False,
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def run_health_checks() -> tuple[dict, bool]:
|
||||
|
||||
@ -803,6 +803,12 @@
|
||||
"tags": "TEXT EMBEDDING",
|
||||
"max_tokens": 512,
|
||||
"model_type": "embedding"
|
||||
},
|
||||
{
|
||||
"llm_name": "glm-asr",
|
||||
"tags": "SPEECH2TEXT",
|
||||
"max_tokens": 4096,
|
||||
"model_type": "speech2text"
|
||||
}
|
||||
]
|
||||
},
|
||||
@ -2816,6 +2822,13 @@
|
||||
"tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,IMAGE2TEXT",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name":"THUDM/GLM-4.1V-9B-Thinking",
|
||||
"tags":"LLM,CHAT,IMAGE2TEXT, 64k",
|
||||
"max_tokens":64000,
|
||||
"model_type":"chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-Embedding-8B",
|
||||
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
|
||||
@ -3145,13 +3158,6 @@
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2-1.5B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-Coder-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
@ -3159,13 +3165,6 @@
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2-VL-7B-Instruct",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
@ -3533,6 +3532,13 @@
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-5-20250929",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
@ -4862,8 +4868,282 @@
|
||||
"max_tokens": 8000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "LongCat-Flash-Thinking",
|
||||
"tags": "LLM,CHAT,8000",
|
||||
"max_tokens": 8000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "DeerAPI",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "gpt-5-chat-latest",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "chatgpt-4o-latest",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-mini",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-nano",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1-mini",
|
||||
"tags": "LLM,CHAT,1M",
|
||||
"max_tokens": 1047576,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1-nano",
|
||||
"tags": "LLM,CHAT,1M",
|
||||
"max_tokens": 1047576,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1",
|
||||
"tags": "LLM,CHAT,1M",
|
||||
"max_tokens": 1047576,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4o-mini",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "o4-mini-2025-04-16",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "o3-pro-2025-06-10",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-opus-4-1-20250805",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-opus-4-1-20250805-thinking",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514-thinking",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-7-sonnet-latest",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-5-haiku-latest",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.5-pro",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.5-flash",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.5-flash-lite",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.0-flash",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-4-0709",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-3",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-3-mini",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-2-image-1212",
|
||||
"tags": "LLM,CHAT,32k,IMAGE2TEXT",
|
||||
"max_tokens": 32768,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-v3.1",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-v3",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-r1-0528",
|
||||
"tags": "LLM,CHAT,164k",
|
||||
"max_tokens": 164000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-chat",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-reasoner",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "qwen3-30b-a3b",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "qwen3-coder-plus-2025-07-22",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "text-embedding-ada-002",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "text-embedding-3-small",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "text-embedding-3-large",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "whisper-1",
|
||||
"tags": "SPEECH2TEXT",
|
||||
"max_tokens": 26214400,
|
||||
"model_type": "speech2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "tts-1",
|
||||
"tags": "TTS",
|
||||
"max_tokens": 2048,
|
||||
"model_type": "tts",
|
||||
"is_tools": false
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
@ -200,6 +200,61 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_2048_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 2048
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_4096_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 4096
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_6144_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 6144
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_8192_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 8192
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_10240_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 10240
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"binary": {
|
||||
"match": "*_bin",
|
||||
|
||||
@ -17,7 +17,6 @@
|
||||
|
||||
import re
|
||||
|
||||
import mistune
|
||||
from markdown import markdown
|
||||
|
||||
|
||||
@ -117,8 +116,6 @@ class MarkdownElementExtractor:
|
||||
def __init__(self, markdown_content):
|
||||
self.markdown_content = markdown_content
|
||||
self.lines = markdown_content.split("\n")
|
||||
self.ast_parser = mistune.create_markdown(renderer="ast")
|
||||
self.ast_nodes = self.ast_parser(markdown_content)
|
||||
|
||||
def extract_elements(self):
|
||||
"""Extract individual elements (headers, code blocks, lists, etc.)"""
|
||||
|
||||
@ -15,11 +15,13 @@
|
||||
#
|
||||
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import sys
|
||||
import threading
|
||||
from collections import Counter, defaultdict
|
||||
from copy import deepcopy
|
||||
from io import BytesIO
|
||||
from timeit import default_timer as timer
|
||||
@ -349,9 +351,78 @@ class RAGFlowPdfParser:
|
||||
self.boxes[i]["top"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||||
self.boxes[i]["bottom"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||||
|
||||
def _text_merge(self):
|
||||
def _assign_column(self, boxes, zoomin=3):
|
||||
if not boxes:
|
||||
return boxes
|
||||
|
||||
if all("col_id" in b for b in boxes):
|
||||
return boxes
|
||||
|
||||
by_page = defaultdict(list)
|
||||
for b in boxes:
|
||||
by_page[b["page_number"]].append(b)
|
||||
|
||||
page_info = {} # pg -> dict(page_w, left_edge, cand_cols)
|
||||
counter = Counter()
|
||||
|
||||
for pg, bxs in by_page.items():
|
||||
if not bxs:
|
||||
page_info[pg] = {"page_w": 1.0, "left_edge": 0.0, "cand": 1}
|
||||
counter[1] += 1
|
||||
continue
|
||||
|
||||
if hasattr(self, "page_images") and self.page_images and len(self.page_images) >= pg:
|
||||
page_w = self.page_images[pg - 1].size[0] / max(1, zoomin)
|
||||
left_edge = 0.0
|
||||
else:
|
||||
xs0 = [box["x0"] for box in bxs]
|
||||
xs1 = [box["x1"] for box in bxs]
|
||||
left_edge = float(min(xs0))
|
||||
page_w = max(1.0, float(max(xs1) - left_edge))
|
||||
|
||||
widths = [max(1.0, (box["x1"] - box["x0"])) for box in bxs]
|
||||
median_w = float(np.median(widths)) if widths else 1.0
|
||||
|
||||
raw_cols = int(page_w / max(1.0, median_w))
|
||||
|
||||
# cand = raw_cols if (raw_cols >= 2 and median_w < page_w / raw_cols * 0.8) else 1
|
||||
cand = raw_cols
|
||||
|
||||
page_info[pg] = {"page_w": page_w, "left_edge": left_edge, "cand": cand}
|
||||
counter[cand] += 1
|
||||
|
||||
logging.info(f"[Page {pg}] median_w={median_w:.2f}, page_w={page_w:.2f}, raw_cols={raw_cols}, cand={cand}")
|
||||
|
||||
global_cols = counter.most_common(1)[0][0]
|
||||
logging.info(f"Global column_num decided by majority: {global_cols}")
|
||||
|
||||
for pg, bxs in by_page.items():
|
||||
if not bxs:
|
||||
continue
|
||||
|
||||
page_w = page_info[pg]["page_w"]
|
||||
left_edge = page_info[pg]["left_edge"]
|
||||
|
||||
if global_cols == 1:
|
||||
for box in bxs:
|
||||
box["col_id"] = 0
|
||||
continue
|
||||
|
||||
for box in bxs:
|
||||
w = box["x1"] - box["x0"]
|
||||
if w >= 0.8 * page_w:
|
||||
box["col_id"] = 0
|
||||
continue
|
||||
cx = 0.5 * (box["x0"] + box["x1"])
|
||||
norm_cx = (cx - left_edge) / page_w
|
||||
norm_cx = max(0.0, min(norm_cx, 0.999999))
|
||||
box["col_id"] = int(min(global_cols - 1, norm_cx * global_cols))
|
||||
|
||||
return boxes
|
||||
|
||||
def _text_merge(self, zoomin=3):
|
||||
# merge adjusted boxes
|
||||
bxs = self.boxes
|
||||
bxs = self._assign_column(self.boxes, zoomin)
|
||||
|
||||
def end_with(b, txt):
|
||||
txt = txt.strip()
|
||||
@ -367,9 +438,15 @@ class RAGFlowPdfParser:
|
||||
while i < len(bxs) - 1:
|
||||
b = bxs[i]
|
||||
b_ = bxs[i + 1]
|
||||
|
||||
if b["page_number"] != b_["page_number"] or b.get("col_id") != b_.get("col_id"):
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
|
||||
# merge
|
||||
bxs[i]["x1"] = b_["x1"]
|
||||
@ -379,83 +456,108 @@ class RAGFlowPdfParser:
|
||||
bxs.pop(i + 1)
|
||||
continue
|
||||
i += 1
|
||||
continue
|
||||
|
||||
dis_thr = 1
|
||||
dis = b["x1"] - b_["x0"]
|
||||
if b.get("layout_type", "") != "text" or b_.get("layout_type", "") != "text":
|
||||
if end_with(b, ",") or start_with(b_, "(,"):
|
||||
dis_thr = -8
|
||||
else:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 and dis >= dis_thr and b["x1"] < b_["x1"]:
|
||||
# merge
|
||||
bxs[i]["x1"] = b_["x1"]
|
||||
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
|
||||
bxs[i]["bottom"] = (b["bottom"] + b_["bottom"]) / 2
|
||||
bxs[i]["text"] += b_["text"]
|
||||
bxs.pop(i + 1)
|
||||
continue
|
||||
i += 1
|
||||
self.boxes = bxs
|
||||
|
||||
def _naive_vertical_merge(self, zoomin=3):
|
||||
import math
|
||||
bxs = Recognizer.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
|
||||
bxs = self._assign_column(self.boxes, zoomin)
|
||||
|
||||
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
||||
if not column_width or math.isnan(column_width):
|
||||
column_width = self.mean_width[0]
|
||||
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
|
||||
if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
|
||||
logging.info("Multi-column................... {} {}".format(column_width, self.page_images[0].size[0] / zoomin / self.column_num))
|
||||
self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
|
||||
grouped = defaultdict(list)
|
||||
for b in bxs:
|
||||
grouped[(b["page_number"], b.get("col_id", 0))].append(b)
|
||||
|
||||
i = 0
|
||||
while i + 1 < len(bxs):
|
||||
b = bxs[i]
|
||||
b_ = bxs[i + 1]
|
||||
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
|
||||
bxs.pop(i)
|
||||
merged_boxes = []
|
||||
for (pg, col), bxs in grouped.items():
|
||||
bxs = sorted(bxs, key=lambda x: (x["top"], x["x0"]))
|
||||
if not bxs:
|
||||
continue
|
||||
if not b["text"].strip():
|
||||
bxs.pop(i)
|
||||
continue
|
||||
concatting_feats = [
|
||||
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
|
||||
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
|
||||
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
|
||||
]
|
||||
# features for not concating
|
||||
feats = [
|
||||
b.get("layoutno", 0) != b_.get("layoutno", 0),
|
||||
b["text"].strip()[-1] in "。?!?",
|
||||
self.is_english and b["text"].strip()[-1] in ".!?",
|
||||
b["page_number"] == b_["page_number"] and b_["top"] - b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
|
||||
b["page_number"] < b_["page_number"] and abs(b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
|
||||
]
|
||||
# split features
|
||||
detach_feats = [b["x1"] < b_["x0"], b["x0"] > b_["x1"]]
|
||||
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
|
||||
logging.debug(
|
||||
"{} {} {} {}".format(
|
||||
b["text"],
|
||||
b_["text"],
|
||||
any(feats),
|
||||
any(concatting_feats),
|
||||
|
||||
mh = self.mean_height[pg - 1] if self.mean_height else np.median([b["bottom"] - b["top"] for b in bxs]) or 10
|
||||
|
||||
i = 0
|
||||
while i + 1 < len(bxs):
|
||||
b = bxs[i]
|
||||
b_ = bxs[i + 1]
|
||||
|
||||
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
|
||||
bxs.pop(i)
|
||||
continue
|
||||
|
||||
if not b["text"].strip():
|
||||
bxs.pop(i)
|
||||
continue
|
||||
|
||||
if not b["text"].strip() or b.get("layoutno") != b_.get("layoutno"):
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if b_["top"] - b["bottom"] > mh * 1.5:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
overlap = max(0, min(b["x1"], b_["x1"]) - max(b["x0"], b_["x0"]))
|
||||
if overlap / max(1, min(b["x1"] - b["x0"], b_["x1"] - b_["x0"])) < 0.3:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
concatting_feats = [
|
||||
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
|
||||
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
|
||||
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
|
||||
]
|
||||
# features for not concating
|
||||
feats = [
|
||||
b.get("layoutno", 0) != b_.get("layoutno", 0),
|
||||
b["text"].strip()[-1] in "。?!?",
|
||||
self.is_english and b["text"].strip()[-1] in ".!?",
|
||||
b["page_number"] == b_["page_number"] and b_["top"] - b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
|
||||
b["page_number"] < b_["page_number"] and abs(b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
|
||||
]
|
||||
# split features
|
||||
detach_feats = [b["x1"] < b_["x0"], b["x0"] > b_["x1"]]
|
||||
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
|
||||
logging.debug(
|
||||
"{} {} {} {}".format(
|
||||
b["text"],
|
||||
b_["text"],
|
||||
any(feats),
|
||||
any(concatting_feats),
|
||||
)
|
||||
)
|
||||
)
|
||||
i += 1
|
||||
continue
|
||||
# merge up and down
|
||||
b["bottom"] = b_["bottom"]
|
||||
b["text"] += b_["text"]
|
||||
b["x0"] = min(b["x0"], b_["x0"])
|
||||
b["x1"] = max(b["x1"], b_["x1"])
|
||||
bxs.pop(i + 1)
|
||||
self.boxes = bxs
|
||||
i += 1
|
||||
continue
|
||||
|
||||
b["text"] = (b["text"].rstrip() + " " + b_["text"].lstrip()).strip()
|
||||
b["bottom"] = b_["bottom"]
|
||||
b["x0"] = min(b["x0"], b_["x0"])
|
||||
b["x1"] = max(b["x1"], b_["x1"])
|
||||
bxs.pop(i + 1)
|
||||
|
||||
merged_boxes.extend(bxs)
|
||||
|
||||
self.boxes = sorted(merged_boxes, key=lambda x: (x["page_number"], x.get("col_id", 0), x["top"]))
|
||||
|
||||
def _final_reading_order_merge(self, zoomin=3):
|
||||
if not self.boxes:
|
||||
return
|
||||
|
||||
self.boxes = self._assign_column(self.boxes, zoomin=zoomin)
|
||||
|
||||
pages = defaultdict(lambda: defaultdict(list))
|
||||
for b in self.boxes:
|
||||
pg = b["page_number"]
|
||||
col = b.get("col_id", 0)
|
||||
pages[pg][col].append(b)
|
||||
|
||||
for pg in pages:
|
||||
for col in pages[pg]:
|
||||
pages[pg][col].sort(key=lambda x: (x["top"], x["x0"]))
|
||||
|
||||
new_boxes = []
|
||||
for pg in sorted(pages.keys()):
|
||||
for col in sorted(pages[pg].keys()):
|
||||
new_boxes.extend(pages[pg][col])
|
||||
|
||||
self.boxes = new_boxes
|
||||
|
||||
def _concat_downward(self, concat_between_pages=True):
|
||||
self.boxes = Recognizer.sort_Y_firstly(self.boxes, 0)
|
||||
@ -997,7 +1099,7 @@ class RAGFlowPdfParser:
|
||||
self.__ocr(i + 1, img, chars, zoomin, id)
|
||||
|
||||
if callback and i % 6 == 5:
|
||||
callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
|
||||
callback((i + 1) * 0.6 / len(self.page_images))
|
||||
|
||||
async def __img_ocr_launcher():
|
||||
def __ocr_preprocess():
|
||||
@ -1048,7 +1150,7 @@ class RAGFlowPdfParser:
|
||||
|
||||
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
|
||||
start = timer()
|
||||
self.__images__(fnm, zoomin)
|
||||
self.__images__(fnm, zoomin, callback=callback)
|
||||
if callback:
|
||||
callback(0.40, "OCR finished ({:.2f}s)".format(timer() - start))
|
||||
|
||||
@ -1074,7 +1176,6 @@ class RAGFlowPdfParser:
|
||||
|
||||
def insert_table_figures(tbls_or_figs, layout_type):
|
||||
def min_rectangle_distance(rect1, rect2):
|
||||
import math
|
||||
pn1, left1, right1, top1, bottom1 = rect1
|
||||
pn2, left2, right2, top2, bottom2 = rect2
|
||||
if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1:
|
||||
@ -1091,27 +1192,39 @@ class RAGFlowPdfParser:
|
||||
dy = top1 - bottom2
|
||||
else:
|
||||
dy = 0
|
||||
return math.sqrt(dx*dx + dy*dy)# + (pn2-pn1)*10000
|
||||
return math.sqrt(dx * dx + dy * dy) # + (pn2-pn1)*10000
|
||||
|
||||
for (img, txt), poss in tbls_or_figs:
|
||||
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
|
||||
dists = [(min_rectangle_distance((pn, left, right, top+self.page_cum_height[pn], bott+self.page_cum_height[pn]), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
|
||||
dists = [
|
||||
(min_rectangle_distance((pn, left, right, top + self.page_cum_height[pn], bott + self.page_cum_height[pn]), rect), i) for i, rect in bboxes for pn, left, right, top, bott in poss
|
||||
]
|
||||
min_i = np.argmin(dists, axis=0)[0]
|
||||
min_i, rect = bboxes[dists[min_i][-1]]
|
||||
if isinstance(txt, list):
|
||||
txt = "\n".join(txt)
|
||||
pn, left, right, top, bott = poss[0]
|
||||
if self.boxes[min_i]["bottom"] < top+self.page_cum_height[pn]:
|
||||
if self.boxes[min_i]["bottom"] < top + self.page_cum_height[pn]:
|
||||
min_i += 1
|
||||
self.boxes.insert(min_i, {
|
||||
"page_number": pn+1, "x0": left, "x1": right, "top": top+self.page_cum_height[pn], "bottom": bott+self.page_cum_height[pn], "layout_type": layout_type, "text": txt, "image": img,
|
||||
"positions": [[pn+1, int(left), int(right), int(top), int(bott)]]
|
||||
})
|
||||
self.boxes.insert(
|
||||
min_i,
|
||||
{
|
||||
"page_number": pn + 1,
|
||||
"x0": left,
|
||||
"x1": right,
|
||||
"top": top + self.page_cum_height[pn],
|
||||
"bottom": bott + self.page_cum_height[pn],
|
||||
"layout_type": layout_type,
|
||||
"text": txt,
|
||||
"image": img,
|
||||
"positions": [[pn + 1, int(left), int(right), int(top), int(bott)]],
|
||||
},
|
||||
)
|
||||
|
||||
for b in self.boxes:
|
||||
b["position_tag"] = self._line_tag(b, zoomin)
|
||||
b["image"] = self.crop(b["position_tag"], zoomin)
|
||||
b["positions"] = [[pos[0][-1]+1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(b["position_tag"])]
|
||||
b["positions"] = [[pos[0][-1] + 1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(b["position_tag"])]
|
||||
|
||||
insert_table_figures(tbls, "table")
|
||||
insert_table_figures(figs, "figure")
|
||||
@ -1129,7 +1242,7 @@ class RAGFlowPdfParser:
|
||||
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
|
||||
pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t")
|
||||
left, right, top, bottom = float(left), float(right), float(top), float(bottom)
|
||||
poss.append(([int(p) - 1 for p in pn.split("-")], int(left), int(right), int(top), int(bottom)))
|
||||
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
|
||||
return poss
|
||||
|
||||
def crop(self, text, ZM=3, need_position=False):
|
||||
@ -1274,12 +1387,16 @@ class VisionParser(RAGFlowPdfParser):
|
||||
prompt=vision_llm_describe_prompt(page=pdf_page_num + 1),
|
||||
callback=callback,
|
||||
)
|
||||
|
||||
if kwargs.get("callback"):
|
||||
kwargs["callback"](idx * 1.0 / len(self.page_images), f"Processed: {idx + 1}/{len(self.page_images)}")
|
||||
|
||||
if text:
|
||||
width, height = self.page_images[idx].size
|
||||
all_docs.append((text, f"{pdf_page_num + 1} 0 {width / zoomin} 0 {height / zoomin}"))
|
||||
all_docs.append((
|
||||
text,
|
||||
f"@@{pdf_page_num + 1}\t{0.0:.1f}\t{width / zoomin:.1f}\t{0.0:.1f}\t{height / zoomin:.1f}##"
|
||||
))
|
||||
return all_docs, []
|
||||
|
||||
|
||||
|
||||
@ -84,7 +84,8 @@ def load_model(model_dir, nm, device_id: int | None = None):
|
||||
def cuda_is_available():
|
||||
try:
|
||||
import torch
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() > device_id:
|
||||
target_id = 0 if device_id is None else device_id
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() > target_id:
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
@ -100,10 +101,13 @@ def load_model(model_dir, nm, device_id: int | None = None):
|
||||
# Shrink GPU memory after execution
|
||||
run_options = ort.RunOptions()
|
||||
if cuda_is_available():
|
||||
gpu_mem_limit_mb = int(os.environ.get("OCR_GPU_MEM_LIMIT_MB", "2048"))
|
||||
arena_strategy = os.environ.get("OCR_ARENA_EXTEND_STRATEGY", "kNextPowerOfTwo")
|
||||
provider_device_id = 0 if device_id is None else device_id
|
||||
cuda_provider_options = {
|
||||
"device_id": device_id, # Use specific GPU
|
||||
"gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
|
||||
"arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
|
||||
"device_id": provider_device_id, # Use specific GPU
|
||||
"gpu_mem_limit": max(gpu_mem_limit_mb, 0) * 1024 * 1024,
|
||||
"arena_extend_strategy": arena_strategy, # gpu memory allocation strategy
|
||||
}
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
@ -111,8 +115,8 @@ def load_model(model_dir, nm, device_id: int | None = None):
|
||||
providers=['CUDAExecutionProvider'],
|
||||
provider_options=[cuda_provider_options]
|
||||
)
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(device_id))
|
||||
logging.info(f"load_model {model_file_path} uses GPU")
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(provider_device_id))
|
||||
logging.info(f"load_model {model_file_path} uses GPU (device {provider_device_id}, gpu_mem_limit={cuda_provider_options['gpu_mem_limit']}, arena_strategy={arena_strategy})")
|
||||
else:
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
|
||||
@ -37,9 +37,12 @@ OPENSEARCH_PASSWORD=infini_rag_flow_OS_01
|
||||
|
||||
# The port used to expose the Kibana service to the host machine,
|
||||
# allowing EXTERNAL access to the service running inside the Docker container.
|
||||
# To enable kibana, you need to:
|
||||
# 1. Ensure that COMPOSE_PROFILES includes kibana, for example: COMPOSE_PROFILES=${DOC_ENGINE},kibana
|
||||
# 2. Comment out or delete the following configurations of the es service in docker-compose-base.yml: xpack.security.enabled、xpack.security.http.ssl.enabled、xpack.security.transport.ssl.enabled (for details: https://www.elastic.co/docs/deploy-manage/security/self-auto-setup#stack-existing-settings-detected)
|
||||
# 3. Adjust the es.hosts in conf/service_config.yaml or docker/service_conf.yaml.template to 'https://localhost:1200'
|
||||
# 4. After the startup is successful, in the es container, execute the command to generate the kibana token: `bin/elasticsearch-create-enrollment-token -s kibana`, then you can use kibana normally
|
||||
KIBANA_PORT=6601
|
||||
KIBANA_USER=rag_flow
|
||||
KIBANA_PASSWORD=infini_rag_flow
|
||||
|
||||
# The maximum amount of the memory, in bytes, that a specific Docker container can use while running.
|
||||
# Update it according to the available memory in the host machine.
|
||||
@ -91,6 +94,7 @@ REDIS_PASSWORD=infini_rag_flow
|
||||
# The port used to expose RAGFlow's HTTP API service to the host machine,
|
||||
# allowing EXTERNAL access to the service running inside the Docker container.
|
||||
SVR_HTTP_PORT=9380
|
||||
ADMIN_SVR_HTTP_PORT=9381
|
||||
|
||||
# The RAGFlow Docker image to download.
|
||||
# Defaults to the v0.20.5-slim edition, which is the RAGFlow Docker image without embedding models.
|
||||
|
||||
@ -77,7 +77,7 @@ services:
|
||||
container_name: ragflow-infinity
|
||||
profiles:
|
||||
- infinity
|
||||
image: infiniflow/infinity:v0.6.0-dev5
|
||||
image: infiniflow/infinity:v0.6.0
|
||||
volumes:
|
||||
- infinity_data:/var/infinity
|
||||
- ./infinity_conf.toml:/infinity_conf.toml
|
||||
@ -207,6 +207,30 @@ services:
|
||||
start_period: 10s
|
||||
|
||||
|
||||
kibana:
|
||||
container_name: ragflow-kibana
|
||||
profiles:
|
||||
- kibana
|
||||
image: kibana:${STACK_VERSION}
|
||||
ports:
|
||||
- ${KIBANA_PORT-5601}:5601
|
||||
env_file: .env
|
||||
environment:
|
||||
- TZ=${TIMEZONE}
|
||||
volumes:
|
||||
- kibana_data:/usr/share/kibana/data
|
||||
depends_on:
|
||||
es01:
|
||||
condition: service_started
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:5601/api/status"]
|
||||
interval: 10s
|
||||
timeout: 10s
|
||||
retries: 120
|
||||
networks:
|
||||
- ragflow
|
||||
restart: on-failure
|
||||
|
||||
|
||||
volumes:
|
||||
esdata01:
|
||||
@ -221,6 +245,8 @@ volumes:
|
||||
driver: local
|
||||
redis_data:
|
||||
driver: local
|
||||
kibana_data:
|
||||
driver: local
|
||||
|
||||
networks:
|
||||
ragflow:
|
||||
|
||||
@ -22,9 +22,14 @@ services:
|
||||
# - --no-transport-sse-enabled # Disable legacy SSE endpoints (/sse and /messages/)
|
||||
# - --no-transport-streamable-http-enabled # Disable Streamable HTTP transport (/mcp endpoint)
|
||||
# - --no-json-response # Disable JSON response mode in Streamable HTTP transport (instead of SSE over HTTP)
|
||||
|
||||
# Example configration to start Admin server:
|
||||
# command:
|
||||
# - --enable-adminserver
|
||||
container_name: ragflow-server
|
||||
ports:
|
||||
- ${SVR_HTTP_PORT}:9380
|
||||
- ${ADMIN_SVR_HTTP_PORT}:9381
|
||||
- 80:80
|
||||
- 443:443
|
||||
- 5678:5678
|
||||
|
||||
@ -11,6 +11,7 @@ function usage() {
|
||||
echo " --disable-webserver Disables the web server (nginx + ragflow_server)."
|
||||
echo " --disable-taskexecutor Disables task executor workers."
|
||||
echo " --enable-mcpserver Enables the MCP server."
|
||||
echo " --enable-adminserver Enables the Admin server."
|
||||
echo " --consumer-no-beg=<num> Start range for consumers (if using range-based)."
|
||||
echo " --consumer-no-end=<num> End range for consumers (if using range-based)."
|
||||
echo " --workers=<num> Number of task executors to run (if range is not used)."
|
||||
@ -21,12 +22,14 @@ function usage() {
|
||||
echo " $0 --disable-webserver --consumer-no-beg=0 --consumer-no-end=5"
|
||||
echo " $0 --disable-webserver --workers=2 --host-id=myhost123"
|
||||
echo " $0 --enable-mcpserver"
|
||||
echo " $0 --enable-adminserver"
|
||||
exit 1
|
||||
}
|
||||
|
||||
ENABLE_WEBSERVER=1 # Default to enable web server
|
||||
ENABLE_TASKEXECUTOR=1 # Default to enable task executor
|
||||
ENABLE_MCP_SERVER=0
|
||||
ENABLE_ADMIN_SERVER=0 # Default close admin server
|
||||
CONSUMER_NO_BEG=0
|
||||
CONSUMER_NO_END=0
|
||||
WORKERS=1
|
||||
@ -70,6 +73,10 @@ for arg in "$@"; do
|
||||
ENABLE_MCP_SERVER=1
|
||||
shift
|
||||
;;
|
||||
--enable-adminserver)
|
||||
ENABLE_ADMIN_SERVER=1
|
||||
shift
|
||||
;;
|
||||
--mcp-host=*)
|
||||
MCP_HOST="${arg#*=}"
|
||||
shift
|
||||
@ -185,6 +192,12 @@ if [[ "${ENABLE_WEBSERVER}" -eq 1 ]]; then
|
||||
done &
|
||||
fi
|
||||
|
||||
if [[ "${ENABLE_ADMIN_SERVER}" -eq 1 ]]; then
|
||||
echo "Starting admin_server..."
|
||||
while true; do
|
||||
"$PY" admin/server/admin_server.py
|
||||
done &
|
||||
fi
|
||||
|
||||
if [[ "${ENABLE_MCP_SERVER}" -eq 1 ]]; then
|
||||
start_mcp_server
|
||||
|
||||
@ -98,7 +98,7 @@ Where:
|
||||
|
||||
- `mcp-host`: The MCP server's host address.
|
||||
- `mcp-port`: The MCP server's listening port.
|
||||
- `mcp-base_url`: The address of the running RAGFlow server.
|
||||
- `mcp-base-url`: The address of the running RAGFlow server.
|
||||
- `mcp-script-path`: The file path to the MCP server’s main script.
|
||||
- `mcp-mode`: The launch mode.
|
||||
- `self-host`: (default) self-host mode.
|
||||
|
||||
16
docs/faq.mdx
16
docs/faq.mdx
@ -40,19 +40,9 @@ Each RAGFlow release is available in two editions:
|
||||
RAGFlow offers two Docker image editions, `v0.20.5-slim` and `v0.20.5`:
|
||||
|
||||
- `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
|
||||
- Built-in embedding models:
|
||||
- `BAAI/bge-large-zh-v1.5`
|
||||
- `maidalun1020/bce-embedding-base_v1`
|
||||
- Embedding models that will be downloaded once you select them in the RAGFlow UI:
|
||||
- `BAAI/bge-base-en-v1.5`
|
||||
- `BAAI/bge-large-en-v1.5`
|
||||
- `BAAI/bge-small-en-v1.5`
|
||||
- `BAAI/bge-small-zh-v1.5`
|
||||
- `jinaai/jina-embeddings-v2-base-en`
|
||||
- `jinaai/jina-embeddings-v2-small-en`
|
||||
- `nomic-ai/nomic-embed-text-v1.5`
|
||||
- `sentence-transformers/all-MiniLM-L6-v2`
|
||||
- `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with the following built-in embedding models:
|
||||
- `BAAI/bge-large-zh-v1.5`
|
||||
- `maidalun1020/bce-embedding-base_v1`
|
||||
|
||||
---
|
||||
|
||||
|
||||
@ -21,6 +21,10 @@ Ensure that your metadata is in JSON format; otherwise, your updates will not be
|
||||
|
||||

|
||||
|
||||
## Related APIs
|
||||
|
||||
[Retrieve chunks](../../references/http_api_reference.md#retrieve-chunks)
|
||||
|
||||
## Frequently asked questions
|
||||
|
||||
### Can I set metadata for multiple documents at once?
|
||||
|
||||
383
docs/guides/manage_users_and_services.md
Normal file
383
docs/guides/manage_users_and_services.md
Normal file
@ -0,0 +1,383 @@
|
||||
---
|
||||
sidebar_position: 6
|
||||
slug: /manage_users_and_services
|
||||
---
|
||||
|
||||
|
||||
# Admin CLI and Admin Service
|
||||
|
||||
|
||||
|
||||
The Admin CLI and Admin Service form a client-server architectural suite for RAGflow system administration. The Admin CLI serves as an interactive command-line interface that receives instructions and displays execution results from the Admin Service in real-time. This duo enables real-time monitoring of system operational status, supporting visibility into RAGflow Server services and dependent components including MySQL, Elasticsearch, Redis, and MinIO. In administrator mode, they provide user management capabilities that allow viewing users and performing critical operations—such as user creation, password updates, activation status changes, and comprehensive user data deletion—even when corresponding web interface functionalities are disabled.
|
||||
|
||||
|
||||
|
||||
## Starting the Admin Service
|
||||
|
||||
### Launching from source code
|
||||
|
||||
1. Before start Admin Service, please make sure RAGFlow system is already started.
|
||||
|
||||
2. Launch from source code:
|
||||
|
||||
```bash
|
||||
python admin/server/admin_server.py
|
||||
```
|
||||
|
||||
The service will start and listen for incoming connections from the CLI on the configured port.
|
||||
|
||||
### Using docker image
|
||||
|
||||
1. Before startup, please configure the `docker_compose.yml` file to enable admin server:
|
||||
|
||||
```bash
|
||||
command:
|
||||
- --enable-adminserver
|
||||
```
|
||||
|
||||
2. Start the containers, the service will start and listen for incoming connections from the CLI on the configured port.
|
||||
|
||||
|
||||
|
||||
## Using the Admin CLI
|
||||
|
||||
1. Ensure the Admin Service is running.
|
||||
|
||||
2. Install ragflow-cli.
|
||||
|
||||
```bash
|
||||
pip install ragflow-cli
|
||||
```
|
||||
|
||||
3. Launch the CLI client:
|
||||
|
||||
```bash
|
||||
ragflow-cli -h 0.0.0.0 -p 9381
|
||||
```
|
||||
|
||||
Enter superuser's password to login. Default password is `admin`.
|
||||
|
||||
|
||||
|
||||
## Supported Commands
|
||||
|
||||
Commands are case-insensitive and must be terminated with a semicolon(;).
|
||||
|
||||
### Service manage commands
|
||||
|
||||
`LIST SERVICES;`
|
||||
|
||||
- Lists all available services within the RAGFlow system.
|
||||
|
||||
- [Example](#example-list-services)
|
||||
|
||||
`SHOW SERVICE <id>;`
|
||||
|
||||
- Shows detailed status information for the service identified by **id**.
|
||||
- [Example](#example-show-service)
|
||||
|
||||
### User Management Commands
|
||||
|
||||
`LIST USERS;`
|
||||
|
||||
- Lists all users known to the system.
|
||||
- [Example](#example-list-users)
|
||||
|
||||
`SHOW USER <username>;`
|
||||
|
||||
- Shows details and permissions for the user specified by **email**. The username must be enclosed in single or double quotes.
|
||||
- [Example](#example-show-user)
|
||||
|
||||
`CREATE USER <username> <password>;`
|
||||
|
||||
- Create user by username and password. The username and password must be enclosed in single or double quotes.
|
||||
- [Example](#example-create-user)
|
||||
|
||||
`DROP USER <username>;`
|
||||
|
||||
- Removes the specified user from the system. Use with caution.
|
||||
- [Example](#example-drop-user)
|
||||
|
||||
`ALTER USER PASSWORD <username> <new_password>;`
|
||||
|
||||
- Changes the password for the specified user.
|
||||
- [Example](#example-alter-user-password)
|
||||
|
||||
`ALTER USER ACTIVE <username> <on/off>;`
|
||||
|
||||
- Changes the user to active or inactive.
|
||||
- [Example](#example-alter-user-active)
|
||||
|
||||
### Data and Agent Commands
|
||||
|
||||
`LIST DATASETS OF <username>;`
|
||||
|
||||
- Lists the datasets associated with the specified user.
|
||||
- [Example](#example-list-datasets-of-user)
|
||||
|
||||
`LIST AGENTS OF <username>;`
|
||||
|
||||
- Lists the agents associated with the specified user.
|
||||
- [Example](#example-list-agents-of-user)
|
||||
|
||||
### Meta-Commands
|
||||
|
||||
- \? or \help
|
||||
Shows help information for the available commands.
|
||||
- \q or \quit
|
||||
Exits the CLI application.
|
||||
- [Example](#example-meta-commands)
|
||||
|
||||
### Examples
|
||||
|
||||
<span id="example-list-services"></span>
|
||||
|
||||
- List all available services.
|
||||
|
||||
```
|
||||
admin> list services;
|
||||
command: list services;
|
||||
Listing all services
|
||||
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+---------+
|
||||
| extra | host | id | name | port | service_type | status |
|
||||
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+---------+
|
||||
| {} | 0.0.0.0 | 0 | ragflow_0 | 9380 | ragflow_server | Timeout |
|
||||
| {'meta_type': 'mysql', 'password': 'infini_rag_flow', 'username': 'root'} | localhost | 1 | mysql | 5455 | meta_data | Alive |
|
||||
| {'password': 'infini_rag_flow', 'store_type': 'minio', 'user': 'rag_flow'} | localhost | 2 | minio | 9000 | file_store | Alive |
|
||||
| {'password': 'infini_rag_flow', 'retrieval_type': 'elasticsearch', 'username': 'elastic'} | localhost | 3 | elasticsearch | 1200 | retrieval | Alive |
|
||||
| {'db_name': 'default_db', 'retrieval_type': 'infinity'} | localhost | 4 | infinity | 23817 | retrieval | Timeout |
|
||||
| {'database': 1, 'mq_type': 'redis', 'password': 'infini_rag_flow'} | localhost | 5 | redis | 6379 | message_queue | Alive |
|
||||
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+---------+
|
||||
|
||||
```
|
||||
|
||||
<span id="example-show-service"></span>
|
||||
|
||||
- Show ragflow_server.
|
||||
|
||||
```
|
||||
admin> show service 0;
|
||||
command: show service 0;
|
||||
Showing service: 0
|
||||
Service ragflow_0 is alive. Detail:
|
||||
Confirm elapsed: 26.0 ms.
|
||||
```
|
||||
|
||||
- Show mysql.
|
||||
|
||||
```
|
||||
admin> show service 1;
|
||||
command: show service 1;
|
||||
Showing service: 1
|
||||
Service mysql is alive. Detail:
|
||||
+---------+----------+------------------+------+------------------+------------------------+-------+-----------------+
|
||||
| command | db | host | id | info | state | time | user |
|
||||
+---------+----------+------------------+------+------------------+------------------------+-------+-----------------+
|
||||
| Daemon | None | localhost | 5 | None | Waiting on empty queue | 16111 | event_scheduler |
|
||||
| Sleep | rag_flow | 172.18.0.1:40046 | 1610 | None | | 2 | root |
|
||||
| Query | rag_flow | 172.18.0.1:35882 | 1629 | SHOW PROCESSLIST | init | 0 | root |
|
||||
+---------+----------+------------------+------+------------------+------------------------+-------+-----------------+
|
||||
```
|
||||
|
||||
- Show minio.
|
||||
|
||||
```
|
||||
admin> show service 2;
|
||||
command: show service 2;
|
||||
Showing service: 2
|
||||
Service minio is alive. Detail:
|
||||
Confirm elapsed: 2.1 ms.
|
||||
```
|
||||
|
||||
- Show elasticsearch.
|
||||
|
||||
```
|
||||
admin> show service 3;
|
||||
command: show service 3;
|
||||
Showing service: 3
|
||||
Service elasticsearch is alive. Detail:
|
||||
+----------------+------+--------------+---------+----------------+--------------+---------------+--------------+------------------------------+----------------------------+-----------------+-------+---------------+---------+-------------+---------------------+--------+------------+--------------------+
|
||||
| cluster_name | docs | docs_deleted | indices | indices_shards | jvm_heap_max | jvm_heap_used | jvm_versions | mappings_deduplicated_fields | mappings_deduplicated_size | mappings_fields | nodes | nodes_version | os_mem | os_mem_used | os_mem_used_percent | status | store_size | total_dataset_size |
|
||||
+----------------+------+--------------+---------+----------------+--------------+---------------+--------------+------------------------------+----------------------------+-----------------+-------+---------------+---------+-------------+---------------------+--------+------------+--------------------+
|
||||
| docker-cluster | 717 | 86 | 37 | 42 | 3.76 GB | 1.74 GB | 21.0.1+12-29 | 6575 | 48.0 KB | 8521 | 1 | ['8.11.3'] | 7.52 GB | 4.55 GB | 61 | green | 4.60 MB | 4.60 MB |
|
||||
+----------------+------+--------------+---------+----------------+--------------+---------------+--------------+------------------------------+----------------------------+-----------------+-------+---------------+---------+-------------+---------------------+--------+------------+--------------------+
|
||||
```
|
||||
|
||||
- Show infinity.
|
||||
|
||||
```
|
||||
admin> show service 4;
|
||||
command: show service 4;
|
||||
Showing service: 4
|
||||
Fail to show service, code: 500, message: Infinity is not in use.
|
||||
```
|
||||
|
||||
- Show redis.
|
||||
|
||||
```
|
||||
admin> show service 5;
|
||||
command: show service 5;
|
||||
Showing service: 5
|
||||
Service redis is alive. Detail:
|
||||
+-----------------+-------------------+---------------------------+-------------------------+---------------+-------------+--------------------------+---------------------+-------------+
|
||||
| blocked_clients | connected_clients | instantaneous_ops_per_sec | mem_fragmentation_ratio | redis_version | server_mode | total_commands_processed | total_system_memory | used_memory |
|
||||
+-----------------+-------------------+---------------------------+-------------------------+---------------+-------------+--------------------------+---------------------+-------------+
|
||||
| 0 | 2 | 1 | 10.41 | 7.2.4 | standalone | 10446 | 30.84G | 1.10M |
|
||||
+-----------------+-------------------+---------------------------+-------------------------+---------------+-------------+--------------------------+---------------------+-------------+
|
||||
```
|
||||
|
||||
<span id="example-list-users"></span>
|
||||
|
||||
- List all user.
|
||||
|
||||
```
|
||||
admin> list users;
|
||||
command: list users;
|
||||
Listing all users
|
||||
+-------------------------------+----------------------+-----------+----------+
|
||||
| create_date | email | is_active | nickname |
|
||||
+-------------------------------+----------------------+-----------+----------+
|
||||
| Mon, 22 Sep 2025 10:59:04 GMT | admin@ragflow.io | 1 | admin |
|
||||
| Sun, 14 Sep 2025 17:36:27 GMT | lynn_inf@hotmail.com | 1 | Lynn |
|
||||
+-------------------------------+----------------------+-----------+----------+
|
||||
```
|
||||
|
||||
<span id="example-show-user"></span>
|
||||
|
||||
- Show specified user.
|
||||
|
||||
```
|
||||
admin> show user "admin@ragflow.io";
|
||||
command: show user "admin@ragflow.io";
|
||||
Showing user: admin@ragflow.io
|
||||
+-------------------------------+------------------+-----------+--------------+------------------+--------------+----------+-----------------+---------------+--------+-------------------------------+
|
||||
| create_date | email | is_active | is_anonymous | is_authenticated | is_superuser | language | last_login_time | login_channel | status | update_date |
|
||||
+-------------------------------+------------------+-----------+--------------+------------------+--------------+----------+-----------------+---------------+--------+-------------------------------+
|
||||
| Mon, 22 Sep 2025 10:59:04 GMT | admin@ragflow.io | 1 | 0 | 1 | True | Chinese | None | None | 1 | Mon, 22 Sep 2025 10:59:04 GMT |
|
||||
+-------------------------------+------------------+-----------+--------------+------------------+--------------+----------+-----------------+---------------+--------+-------------------------------+
|
||||
```
|
||||
|
||||
<span id="example-create-user"></span>
|
||||
|
||||
- Create new user.
|
||||
|
||||
```
|
||||
admin> create user "example@ragflow.io" "psw";
|
||||
command: create user "example@ragflow.io" "psw";
|
||||
Create user: example@ragflow.io, password: psw, role: user
|
||||
+----------------------------------+--------------------+----------------------------------+--------------+---------------+----------+
|
||||
| access_token | email | id | is_superuser | login_channel | nickname |
|
||||
+----------------------------------+--------------------+----------------------------------+--------------+---------------+----------+
|
||||
| 5cdc6d1e9df111f099b543aee592c6bf | example@ragflow.io | 5cdc6ca69df111f099b543aee592c6bf | False | password | |
|
||||
+----------------------------------+--------------------+----------------------------------+--------------+---------------+----------+
|
||||
```
|
||||
|
||||
<span id="example-alter-user-password"></span>
|
||||
|
||||
- Alter user password.
|
||||
|
||||
```
|
||||
admin> alter user password "example@ragflow.io" "newpsw";
|
||||
command: alter user password "example@ragflow.io" "newpsw";
|
||||
Alter user: example@ragflow.io, password: newpsw
|
||||
Password updated successfully!
|
||||
```
|
||||
|
||||
<span id="example-alter-user-active"></span>
|
||||
|
||||
- Alter user active, turn off.
|
||||
|
||||
```
|
||||
admin> alter user active "example@ragflow.io" off;
|
||||
command: alter user active "example@ragflow.io" off;
|
||||
Alter user example@ragflow.io activate status, turn off.
|
||||
Turn off user activate status successfully!
|
||||
```
|
||||
|
||||
<span id="example-drop-user"></span>
|
||||
|
||||
- Drop user.
|
||||
|
||||
```
|
||||
admin> Drop user "example@ragflow.io";
|
||||
command: Drop user "example@ragflow.io";
|
||||
Drop user: example@ragflow.io
|
||||
Successfully deleted user. Details:
|
||||
Start to delete owned tenant.
|
||||
- Deleted 2 tenant-LLM records.
|
||||
- Deleted 0 langfuse records.
|
||||
- Deleted 1 tenant.
|
||||
- Deleted 1 user-tenant records.
|
||||
- Deleted 1 user.
|
||||
Delete done!
|
||||
```
|
||||
|
||||
Delete user's data at the same time.
|
||||
|
||||
<span id="example-list-datasets-of-user"></span>
|
||||
|
||||
- List the specified user's dataset.
|
||||
|
||||
```
|
||||
admin> list datasets of "lynn_inf@hotmail.com";
|
||||
command: list datasets of "lynn_inf@hotmail.com";
|
||||
Listing all datasets of user: lynn_inf@hotmail.com
|
||||
+-----------+-------------------------------+---------+----------+---------------+------------+--------+-----------+-------------------------------+
|
||||
| chunk_num | create_date | doc_num | language | name | permission | status | token_num | update_date |
|
||||
+-----------+-------------------------------+---------+----------+---------------+------------+--------+-----------+-------------------------------+
|
||||
| 29 | Mon, 15 Sep 2025 11:56:59 GMT | 12 | Chinese | test_dataset | me | 1 | 12896 | Fri, 19 Sep 2025 17:50:58 GMT |
|
||||
| 4 | Sun, 28 Sep 2025 11:49:31 GMT | 6 | Chinese | dataset_share | team | 1 | 1121 | Sun, 28 Sep 2025 14:41:03 GMT |
|
||||
+-----------+-------------------------------+---------+----------+---------------+------------+--------+-----------+-------------------------------+
|
||||
```
|
||||
|
||||
<span id="example-list-agents-of-user"></span>
|
||||
|
||||
- List the specified user's agents.
|
||||
|
||||
```
|
||||
admin> list agents of "lynn_inf@hotmail.com";
|
||||
command: list agents of "lynn_inf@hotmail.com";
|
||||
Listing all agents of user: lynn_inf@hotmail.com
|
||||
+-----------------+-------------+------------+-----------------+
|
||||
| canvas_category | canvas_type | permission | title |
|
||||
+-----------------+-------------+------------+-----------------+
|
||||
| agent_canvas | None | team | research_helper |
|
||||
+-----------------+-------------+------------+-----------------+
|
||||
```
|
||||
|
||||
<span id="example-meta-commands"></span>
|
||||
|
||||
- Show help information.
|
||||
|
||||
```
|
||||
admin> \help
|
||||
command: \help
|
||||
|
||||
Commands:
|
||||
LIST SERVICES
|
||||
SHOW SERVICE <service>
|
||||
STARTUP SERVICE <service>
|
||||
SHUTDOWN SERVICE <service>
|
||||
RESTART SERVICE <service>
|
||||
LIST USERS
|
||||
SHOW USER <user>
|
||||
DROP USER <user>
|
||||
CREATE USER <user> <password>
|
||||
ALTER USER PASSWORD <user> <new_password>
|
||||
ALTER USER ACTIVE <user> <on/off>
|
||||
LIST DATASETS OF <user>
|
||||
LIST AGENTS OF <user>
|
||||
|
||||
Meta Commands:
|
||||
\?, \h, \help Show this help
|
||||
\q, \quit, \exit Quit the CLI
|
||||
```
|
||||
|
||||
- Exit
|
||||
|
||||
```
|
||||
admin> \q
|
||||
command: \q
|
||||
Goodbye!
|
||||
```
|
||||
|
||||
@ -830,7 +830,8 @@ Success:
|
||||
"update_time": 1728533243536,
|
||||
"vector_similarity_weight": 0.3
|
||||
}
|
||||
]
|
||||
],
|
||||
"total": 1
|
||||
}
|
||||
```
|
||||
|
||||
@ -1280,7 +1281,7 @@ Success:
|
||||
"update_time": 1728897061948
|
||||
}
|
||||
],
|
||||
"total": 1
|
||||
"total_datasets": 1
|
||||
}
|
||||
}
|
||||
```
|
||||
@ -1822,7 +1823,21 @@ curl --request POST \
|
||||
{
|
||||
"question": "What is advantage of ragflow?",
|
||||
"dataset_ids": ["b2a62730759d11ef987d0242ac120004"],
|
||||
"document_ids": ["77df9ef4759a11ef8bdd0242ac120004"]
|
||||
"document_ids": ["77df9ef4759a11ef8bdd0242ac120004"],
|
||||
"metadata_condition": {
|
||||
"conditions": [
|
||||
{
|
||||
"name": "author",
|
||||
"comparison_operator": "=",
|
||||
"value": "Toby"
|
||||
},
|
||||
{
|
||||
"name": "url",
|
||||
"comparison_operator": "not contains",
|
||||
"value": "amd"
|
||||
}
|
||||
]
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
@ -1857,7 +1872,25 @@ curl --request POST \
|
||||
- `"cross_languages"`: (*Body parameter*) `list[string]`
|
||||
The languages that should be translated into, in order to achieve keywords retrievals in different languages.
|
||||
- `"metadata_condition"`: (*Body parameter*), `object`
|
||||
The metadata condition for filtering chunks.
|
||||
The metadata condition used for filtering chunks:
|
||||
- `"conditions"`: (*Body parameter*), `array`
|
||||
A list of metadata filter conditions.
|
||||
- `"name"`: `string` - The metadata field name to filter by, e.g., `"author"`, `"company"`, `"url"`. Ensure this parameter before use. See [Set metadata](../guides/dataset/set_metadata.md) for details.
|
||||
- `comparison_operator`: `string` - The comparison operator. Can be one of:
|
||||
- `"contains"`
|
||||
- `"not contains"`
|
||||
- `"start with"`
|
||||
- `"empty"`
|
||||
- `"not empty"`
|
||||
- `"="`
|
||||
- `"≠"`
|
||||
- `">"`
|
||||
- `"<"`
|
||||
- `"≥"`
|
||||
- `"≤"`
|
||||
- `"value"`: `string` - The value to compare.
|
||||
|
||||
|
||||
#### Response
|
||||
|
||||
Success:
|
||||
|
||||
@ -698,6 +698,58 @@ print("Async bulk parsing initiated.")
|
||||
|
||||
---
|
||||
|
||||
### Parse documents (with document status)
|
||||
|
||||
```python
|
||||
DataSet.parse_documents(document_ids: list[str]) -> list[tuple[str, str, int, int]]
|
||||
```
|
||||
|
||||
*Asynchronously* parses documents in the current dataset.
|
||||
|
||||
This method encapsulates `async_parse_documents()`. It awaits the completion of all parsing tasks before returning detailed results, including the parsing status and statistics for each document. If a keyboard interruption occurs (e.g., `Ctrl+C`), all pending parsing tasks will be cancelled gracefully.
|
||||
|
||||
#### Parameters
|
||||
|
||||
##### document_ids: `list[str]`, *Required*
|
||||
|
||||
The IDs of the documents to parse.
|
||||
|
||||
#### Returns
|
||||
|
||||
A list of tuples with detailed parsing results:
|
||||
|
||||
```python
|
||||
[
|
||||
(document_id: str, status: str, chunk_count: int, token_count: int),
|
||||
...
|
||||
]
|
||||
```
|
||||
- `status`: The final parsing state (e.g., `success`, `failed`, `cancelled`).
|
||||
- `chunk_count`: The number of content chunks created from the document.
|
||||
- `token_count`: The total number of tokens processed.
|
||||
|
||||
---
|
||||
|
||||
#### Example
|
||||
|
||||
```python
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
dataset = rag_object.create_dataset(name="dataset_name")
|
||||
documents = dataset.list_documents(keywords="test")
|
||||
ids = [doc.id for doc in documents]
|
||||
|
||||
try:
|
||||
finished = dataset.parse_documents(ids)
|
||||
for doc_id, status, chunk_count, token_count in finished:
|
||||
print(f"Document {doc_id} parsing finished with status: {status}, chunks: {chunk_count}, tokens: {token_count}")
|
||||
except KeyboardInterrupt:
|
||||
print("\nParsing interrupted by user. All pending tasks have been cancelled.")
|
||||
except Exception as e:
|
||||
print(f"Parsing failed: {e}")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Stop parsing documents
|
||||
|
||||
```python
|
||||
|
||||
@ -33,7 +33,7 @@ A complete list of models supported by RAGFlow, which will continue to expand.
|
||||
| Jina | | :heavy_check_mark: | :heavy_check_mark: | | | |
|
||||
| LeptonAI | :heavy_check_mark: | | | | | |
|
||||
| LocalAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
|
||||
| LM-Studio | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
|
||||
| LM-Studio | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
|
||||
| MiniMax | :heavy_check_mark: | | | | | |
|
||||
| Mistral | :heavy_check_mark: | :heavy_check_mark: | | | | |
|
||||
| ModelScope | :heavy_check_mark: | | | | | |
|
||||
@ -66,6 +66,7 @@ A complete list of models supported by RAGFlow, which will continue to expand.
|
||||
| DeepInfra | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: |
|
||||
| 302.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
|
||||
| CometAPI | :heavy_check_mark: | :heavy_check_mark: | | | | |
|
||||
| DeerAPI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | :heavy_check_mark: |
|
||||
|
||||
```mdx-code-block
|
||||
</APITable>
|
||||
|
||||
@ -22,6 +22,34 @@ The embedding models included in a full edition are:
|
||||
These two embedding models are optimized specifically for English and Chinese, so performance may be compromised if you use them to embed documents in other languages.
|
||||
:::
|
||||
|
||||
## v0.21.0
|
||||
|
||||
Released on October 15, 2025.
|
||||
|
||||
### New features
|
||||
|
||||
- Orchestratable ingestion pipeline: Supports customized data ingestion and cleansing workflows, enabling users to flexibly design their data flows or directly apply the official data flow templates on the canvas.
|
||||
- GraphRAG & RAPTOR write process optimized: Replaces the automatic incremental build process with manual batch building, significantly reducing construction overhead.
|
||||
- Long-context RAG: Automatically generates document-level table of contents (TOC) structures to mitigate context loss caused by inaccurate or excessive chunking, substantially improving retrieval quality. This feature is now available via a TOC extraction template.
|
||||
- Video file parsing: Expands the system's multimodal data processing capabilities by supporting video file parsing.
|
||||
- Admin CLI: Introduces a new command-line tool for system administration, allowing users to manage and monitor RAGFlow's service status via command line.
|
||||
|
||||
### Improvements
|
||||
|
||||
- Redesigns RAGFlow's Login and Registration pages.
|
||||
- Upgrades RAGFlow's document engine Infinity to v0.6.0.
|
||||
|
||||
### Added models
|
||||
|
||||
- Tongyi Qwen 3 series
|
||||
- Claude Sonnet 4.5
|
||||
- Meituan LongCat-Flash-Thinking
|
||||
|
||||
## New agent templates
|
||||
|
||||
- Company Research Report Deep Dive Agent: Designed for financial institutions to help analysts quickly organize information, generate research reports, and make investment decisions.
|
||||
- Orchestratable Ingestion Pipeline Template: Allows users to apply this template on the canvas to rapidly establish standardized data ingestion and cleansing processes.
|
||||
|
||||
## v0.20.5
|
||||
|
||||
Released on September 10, 2025.
|
||||
@ -580,7 +608,7 @@ Released on September 30, 2024.
|
||||
|
||||
### Compatibility changes
|
||||
|
||||
From this release onwards, RAGFlow offers slim editions of its Docker images to improve the experience for users with limited Internet access. A slim edition of RAGFlow's Docker image does not include built-in BGE/BCE embedding models and has a size of about 1GB; a full edition of RAGFlow is approximately 9GB and includes both built-in embedding models and embedding models that will be downloaded once you select them in the RAGFlow UI.
|
||||
From this release onwards, RAGFlow offers slim editions of its Docker images to improve the experience for users with limited Internet access. A slim edition of RAGFlow's Docker image does not include built-in BGE/BCE embedding models and has a size of about 1GB; a full edition of RAGFlow is approximately 9GB and includes two built-in embedding models.
|
||||
|
||||
The default Docker image edition is `nightly-slim`. The following list clarifies the differences between various editions:
|
||||
|
||||
|
||||
@ -6,7 +6,6 @@
|
||||
# dependencies = [
|
||||
# "huggingface-hub",
|
||||
# "nltk",
|
||||
# "argparse",
|
||||
# ]
|
||||
# ///
|
||||
|
||||
@ -17,7 +16,7 @@ import os
|
||||
import urllib.request
|
||||
import argparse
|
||||
|
||||
def get_urls(use_china_mirrors=False) -> Union[str, list[str]]:
|
||||
def get_urls(use_china_mirrors=False) -> list[Union[str, list[str]]]:
|
||||
if use_china_mirrors:
|
||||
return [
|
||||
"http://mirrors.tuna.tsinghua.edu.cn/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb",
|
||||
|
||||
@ -60,7 +60,7 @@ class EntityResolution(Extractor):
|
||||
self._llm = llm_invoker
|
||||
self._resolution_prompt = ENTITY_RESOLUTION_PROMPT
|
||||
self._record_delimiter_key = "record_delimiter"
|
||||
self._entity_index_dilimiter_key = "entity_index_delimiter"
|
||||
self._entity_index_delimiter_key = "entity_index_delimiter"
|
||||
self._resolution_result_delimiter_key = "resolution_result_delimiter"
|
||||
self._input_text_key = "input_text"
|
||||
|
||||
@ -77,7 +77,7 @@ class EntityResolution(Extractor):
|
||||
**prompt_variables,
|
||||
self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
|
||||
or DEFAULT_RECORD_DELIMITER,
|
||||
self._entity_index_dilimiter_key: prompt_variables.get(self._entity_index_dilimiter_key)
|
||||
self._entity_index_delimiter_key: prompt_variables.get(self._entity_index_delimiter_key)
|
||||
or DEFAULT_ENTITY_INDEX_DELIMITER,
|
||||
self._resolution_result_delimiter_key: prompt_variables.get(self._resolution_result_delimiter_key)
|
||||
or DEFAULT_RESOLUTION_RESULT_DELIMITER,
|
||||
@ -185,7 +185,7 @@ class EntityResolution(Extractor):
|
||||
result = self._process_results(len(candidate_resolution_i[1]), response,
|
||||
self.prompt_variables.get(self._record_delimiter_key,
|
||||
DEFAULT_RECORD_DELIMITER),
|
||||
self.prompt_variables.get(self._entity_index_dilimiter_key,
|
||||
self.prompt_variables.get(self._entity_index_delimiter_key,
|
||||
DEFAULT_ENTITY_INDEX_DELIMITER),
|
||||
self.prompt_variables.get(self._resolution_result_delimiter_key,
|
||||
DEFAULT_RESOLUTION_RESULT_DELIMITER))
|
||||
|
||||
@ -55,7 +55,7 @@ async def run_graphrag(
|
||||
start = trio.current_time()
|
||||
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"]
|
||||
chunks = []
|
||||
for d in settings.retrievaler.chunk_list(doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"], sort_by_position=True):
|
||||
for d in settings.retriever.chunk_list(doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"], sort_by_position=True):
|
||||
chunks.append(d["content_with_weight"])
|
||||
|
||||
with trio.fail_after(max(120, len(chunks) * 60 * 10) if enable_timeout_assertion else 10000000000):
|
||||
@ -170,7 +170,7 @@ async def run_graphrag_for_kb(
|
||||
chunks = []
|
||||
current_chunk = ""
|
||||
|
||||
for d in settings.retrievaler.chunk_list(
|
||||
for d in settings.retriever.chunk_list(
|
||||
doc_id,
|
||||
tenant_id,
|
||||
[kb_id],
|
||||
|
||||
@ -62,7 +62,7 @@ async def main():
|
||||
|
||||
chunks = [
|
||||
d["content_with_weight"]
|
||||
for d in settings.retrievaler.chunk_list(
|
||||
for d in settings.retriever.chunk_list(
|
||||
args.doc_id,
|
||||
args.tenant_id,
|
||||
[kb_id],
|
||||
|
||||
@ -63,7 +63,7 @@ async def main():
|
||||
|
||||
chunks = [
|
||||
d["content_with_weight"]
|
||||
for d in settings.retrievaler.chunk_list(
|
||||
for d in settings.retriever.chunk_list(
|
||||
args.doc_id,
|
||||
args.tenant_id,
|
||||
[kb_id],
|
||||
|
||||
@ -92,10 +92,7 @@ def dict_has_keys_with_types(data: dict, expected_fields: list[tuple[str, type]]
|
||||
|
||||
def get_llm_cache(llmnm, txt, history, genconf):
|
||||
hasher = xxhash.xxh64()
|
||||
hasher.update(str(llmnm).encode("utf-8"))
|
||||
hasher.update(str(txt).encode("utf-8"))
|
||||
hasher.update(str(history).encode("utf-8"))
|
||||
hasher.update(str(genconf).encode("utf-8"))
|
||||
hasher.update((str(llmnm)+str(txt)+str(history)+str(genconf)).encode("utf-8"))
|
||||
|
||||
k = hasher.hexdigest()
|
||||
bin = REDIS_CONN.get(k)
|
||||
@ -106,11 +103,7 @@ def get_llm_cache(llmnm, txt, history, genconf):
|
||||
|
||||
def set_llm_cache(llmnm, txt, v, history, genconf):
|
||||
hasher = xxhash.xxh64()
|
||||
hasher.update(str(llmnm).encode("utf-8"))
|
||||
hasher.update(str(txt).encode("utf-8"))
|
||||
hasher.update(str(history).encode("utf-8"))
|
||||
hasher.update(str(genconf).encode("utf-8"))
|
||||
|
||||
hasher.update((str(llmnm)+str(txt)+str(history)+str(genconf)).encode("utf-8"))
|
||||
k = hasher.hexdigest()
|
||||
REDIS_CONN.set(k, v.encode("utf-8"), 24 * 3600)
|
||||
|
||||
@ -341,7 +334,7 @@ def get_relation(tenant_id, kb_id, from_ent_name, to_ent_name, size=1):
|
||||
ents = list(set(ents))
|
||||
conds = {"fields": ["content_with_weight"], "size": size, "from_entity_kwd": ents, "to_entity_kwd": ents, "knowledge_graph_kwd": ["relation"]}
|
||||
res = []
|
||||
es_res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id] if isinstance(kb_id, str) else kb_id)
|
||||
es_res = settings.retriever.search(conds, search.index_name(tenant_id), [kb_id] if isinstance(kb_id, str) else kb_id)
|
||||
for id in es_res.ids:
|
||||
try:
|
||||
if size == 1:
|
||||
@ -398,7 +391,7 @@ async def does_graph_contains(tenant_id, kb_id, doc_id):
|
||||
|
||||
async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]:
|
||||
conds = {"fields": ["source_id"], "removed_kwd": "N", "size": 1, "knowledge_graph_kwd": ["graph"]}
|
||||
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id]))
|
||||
res = await trio.to_thread.run_sync(lambda: settings.retriever.search(conds, search.index_name(tenant_id), [kb_id]))
|
||||
doc_ids = []
|
||||
if res.total == 0:
|
||||
return doc_ids
|
||||
@ -409,7 +402,7 @@ async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]:
|
||||
|
||||
async def get_graph(tenant_id, kb_id, exclude_rebuild=None):
|
||||
conds = {"fields": ["content_with_weight", "removed_kwd", "source_id"], "size": 1, "knowledge_graph_kwd": ["graph"]}
|
||||
res = await trio.to_thread.run_sync(settings.retrievaler.search, conds, search.index_name(tenant_id), [kb_id])
|
||||
res = await trio.to_thread.run_sync(settings.retriever.search, conds, search.index_name(tenant_id), [kb_id])
|
||||
if not res.total == 0:
|
||||
for id in res.ids:
|
||||
try:
|
||||
@ -562,7 +555,7 @@ def merge_tuples(list1, list2):
|
||||
|
||||
|
||||
async def get_entity_type2samples(idxnms, kb_ids: list):
|
||||
es_res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids, "size": 10000, "fields": ["content_with_weight"]}, idxnms, kb_ids))
|
||||
es_res = await trio.to_thread.run_sync(lambda: settings.retriever.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids, "size": 10000, "fields": ["content_with_weight"]}, idxnms, kb_ids))
|
||||
|
||||
res = defaultdict(list)
|
||||
for id in es_res.ids:
|
||||
|
||||
@ -96,7 +96,7 @@ ragflow:
|
||||
infinity:
|
||||
image:
|
||||
repository: infiniflow/infinity
|
||||
tag: v0.6.0-dev5
|
||||
tag: v0.6.0
|
||||
pullPolicy: IfNotPresent
|
||||
pullSecrets: []
|
||||
storage:
|
||||
|
||||
@ -46,7 +46,7 @@ dependencies = [
|
||||
"html-text==0.6.2",
|
||||
"httpx[socks]==0.27.2",
|
||||
"huggingface-hub>=0.25.0,<0.26.0",
|
||||
"infinity-sdk==0.6.0.dev5",
|
||||
"infinity-sdk==0.6.0",
|
||||
"infinity-emb>=0.0.66,<0.0.67",
|
||||
"itsdangerous==2.1.2",
|
||||
"json-repair==0.35.0",
|
||||
@ -119,7 +119,7 @@ dependencies = [
|
||||
"graspologic>=3.4.1,<4.0.0",
|
||||
"mini-racer>=0.12.4,<0.13.0",
|
||||
"pyodbc>=5.2.0,<6.0.0",
|
||||
"pyicu>=2.13.1,<3.0.0",
|
||||
"pyicu>=2.15.3,<3.0.0",
|
||||
"flasgger>=0.9.7.1,<0.10.0",
|
||||
"xxhash>=3.5.0,<4.0.0",
|
||||
"trio>=0.29.0",
|
||||
@ -133,6 +133,8 @@ dependencies = [
|
||||
"litellm>=1.74.15.post1",
|
||||
"flask-mail>=0.10.0",
|
||||
"lark>=1.2.2",
|
||||
"mammoth>=1.11.0",
|
||||
"markdownify>=1.2.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
@ -159,7 +161,7 @@ test = [
|
||||
]
|
||||
|
||||
[[tool.uv.index]]
|
||||
url = "https://mirrors.aliyun.com/pypi/simple"
|
||||
url = "https://pypi.tuna.tsinghua.edu.cn/simple"
|
||||
|
||||
[tool.setuptools]
|
||||
packages = [
|
||||
|
||||
@ -256,6 +256,49 @@ class Docx(DocxParser):
|
||||
tbls.append(((None, html), ""))
|
||||
return new_line, tbls
|
||||
|
||||
def to_markdown(self, filename=None, binary=None, inline_images: bool = True):
|
||||
"""
|
||||
This function uses mammoth, licensed under the BSD 2-Clause License.
|
||||
"""
|
||||
|
||||
import base64
|
||||
import uuid
|
||||
|
||||
import mammoth
|
||||
from markdownify import markdownify
|
||||
|
||||
docx_file = BytesIO(binary) if binary else open(filename, "rb")
|
||||
|
||||
def _convert_image_to_base64(image):
|
||||
try:
|
||||
with image.open() as image_file:
|
||||
image_bytes = image_file.read()
|
||||
encoded = base64.b64encode(image_bytes).decode("utf-8")
|
||||
base64_url = f"data:{image.content_type};base64,{encoded}"
|
||||
|
||||
alt_name = "image"
|
||||
alt_name = f"img_{uuid.uuid4().hex[:8]}"
|
||||
|
||||
return {"src": base64_url, "alt": alt_name}
|
||||
except Exception as e:
|
||||
logging.warning(f"Failed to convert image to base64: {e}")
|
||||
return {"src": "", "alt": "image"}
|
||||
|
||||
try:
|
||||
if inline_images:
|
||||
result = mammoth.convert_to_html(docx_file, convert_image=mammoth.images.img_element(_convert_image_to_base64))
|
||||
else:
|
||||
result = mammoth.convert_to_html(docx_file)
|
||||
|
||||
html = result.value
|
||||
|
||||
markdown_text = markdownify(html)
|
||||
return markdown_text
|
||||
|
||||
finally:
|
||||
if not binary:
|
||||
docx_file.close()
|
||||
|
||||
|
||||
class Pdf(PdfParser):
|
||||
def __init__(self):
|
||||
@ -285,7 +328,7 @@ class Pdf(PdfParser):
|
||||
callback(0.65, "Table analysis ({:.2f}s)".format(timer() - start))
|
||||
|
||||
start = timer()
|
||||
self._text_merge()
|
||||
self._text_merge(zoomin=zoomin)
|
||||
callback(0.67, "Text merged ({:.2f}s)".format(timer() - start))
|
||||
|
||||
if separate_tables_figures:
|
||||
@ -297,6 +340,7 @@ class Pdf(PdfParser):
|
||||
tbls = self._extract_table_figure(True, zoomin, True, True)
|
||||
self._naive_vertical_merge()
|
||||
self._concat_downward()
|
||||
self._final_reading_order_merge()
|
||||
# self._filter_forpages()
|
||||
logging.info("layouts cost: {}s".format(timer() - first_start))
|
||||
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls
|
||||
@ -512,7 +556,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
callback(0.2, "Visual model detected. Attempting to enhance figure extraction...")
|
||||
except Exception:
|
||||
vision_model = None
|
||||
|
||||
|
||||
if vision_model:
|
||||
# Process images for each section
|
||||
section_images = []
|
||||
|
||||
@ -133,14 +133,14 @@ def label_question(question, kbs):
|
||||
if tag_kb_ids:
|
||||
all_tags = get_tags_from_cache(tag_kb_ids)
|
||||
if not all_tags:
|
||||
all_tags = settings.retrievaler.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
|
||||
all_tags = settings.retriever.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
|
||||
set_tags_to_cache(tags=all_tags, kb_ids=tag_kb_ids)
|
||||
else:
|
||||
all_tags = json.loads(all_tags)
|
||||
tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids)
|
||||
if not tag_kbs:
|
||||
return tags
|
||||
tags = settings.retrievaler.tag_query(question,
|
||||
tags = settings.retriever.tag_query(question,
|
||||
list(set([kb.tenant_id for kb in tag_kbs])),
|
||||
tag_kb_ids,
|
||||
all_tags,
|
||||
|
||||
@ -52,7 +52,7 @@ class Benchmark:
|
||||
run = defaultdict(dict)
|
||||
query_list = list(qrels.keys())
|
||||
for query in query_list:
|
||||
ranks = settings.retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
|
||||
ranks = settings.retriever.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
|
||||
0.0, self.vector_similarity_weight)
|
||||
if len(ranks["chunks"]) == 0:
|
||||
print(f"deleted query: {query}")
|
||||
|
||||
@ -1,299 +0,0 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import json
|
||||
import random
|
||||
import trio
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
|
||||
from graphrag.utils import chat_limiter, get_llm_cache, set_llm_cache
|
||||
from rag.flow.base import ProcessBase, ProcessParamBase
|
||||
from rag.flow.chunker.schema import ChunkerFromUpstream
|
||||
from rag.nlp import naive_merge, naive_merge_with_images, concat_img
|
||||
from rag.prompts.prompts import keyword_extraction, question_proposal, detect_table_of_contents, \
|
||||
table_of_contents_index, toc_transformer
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
|
||||
class ChunkerParam(ProcessParamBase):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.method_options = [
|
||||
# General
|
||||
"general",
|
||||
"onetable",
|
||||
# Customer Service
|
||||
"q&a",
|
||||
"manual",
|
||||
# Recruitment
|
||||
"resume",
|
||||
# Education & Research
|
||||
"book",
|
||||
"paper",
|
||||
"laws",
|
||||
"presentation",
|
||||
"toc" # table of contents
|
||||
# Other
|
||||
# "Tag" # TODO: Other method
|
||||
]
|
||||
self.method = "general"
|
||||
self.chunk_token_size = 512
|
||||
self.delimiter = "\n"
|
||||
self.overlapped_percent = 0
|
||||
self.page_rank = 0
|
||||
self.auto_keywords = 0
|
||||
self.auto_questions = 0
|
||||
self.tag_sets = []
|
||||
self.llm_setting = {"llm_id": "", "lang": "Chinese"}
|
||||
|
||||
def check(self):
|
||||
self.check_valid_value(self.method.lower(), "Chunk method abnormal.", self.method_options)
|
||||
self.check_positive_integer(self.chunk_token_size, "Chunk token size.")
|
||||
self.check_nonnegative_number(self.page_rank, "Page rank value: (0, 10]")
|
||||
self.check_nonnegative_number(self.auto_keywords, "Auto-keyword value: (0, 10]")
|
||||
self.check_nonnegative_number(self.auto_questions, "Auto-question value: (0, 10]")
|
||||
self.check_decimal_float(self.overlapped_percent, "Overlapped percentage: [0, 1)")
|
||||
|
||||
def get_input_form(self) -> dict[str, dict]:
|
||||
return {}
|
||||
|
||||
|
||||
class Chunker(ProcessBase):
|
||||
component_name = "Chunker"
|
||||
|
||||
def _general(self, from_upstream: ChunkerFromUpstream):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to chunk via `General`.")
|
||||
if from_upstream.output_format in ["markdown", "text", "html"]:
|
||||
if from_upstream.output_format == "markdown":
|
||||
payload = from_upstream.markdown_result
|
||||
elif from_upstream.output_format == "text":
|
||||
payload = from_upstream.text_result
|
||||
else: # == "html"
|
||||
payload = from_upstream.html_result
|
||||
|
||||
if not payload:
|
||||
payload = ""
|
||||
|
||||
cks = naive_merge(
|
||||
payload,
|
||||
self._param.chunk_token_size,
|
||||
self._param.delimiter,
|
||||
self._param.overlapped_percent,
|
||||
)
|
||||
return [{"text": c} for c in cks]
|
||||
|
||||
# json
|
||||
sections, section_images = [], []
|
||||
for o in from_upstream.json_result or []:
|
||||
sections.append((o.get("text", ""), o.get("position_tag", "")))
|
||||
section_images.append(o.get("image"))
|
||||
|
||||
chunks, images = naive_merge_with_images(
|
||||
sections,
|
||||
section_images,
|
||||
self._param.chunk_token_size,
|
||||
self._param.delimiter,
|
||||
self._param.overlapped_percent,
|
||||
)
|
||||
|
||||
return [
|
||||
{
|
||||
"text": RAGFlowPdfParser.remove_tag(c),
|
||||
"image": img,
|
||||
"positions": RAGFlowPdfParser.extract_positions(c),
|
||||
}
|
||||
for c, img in zip(chunks, images)
|
||||
]
|
||||
|
||||
def _q_and_a(self, from_upstream: ChunkerFromUpstream):
|
||||
pass
|
||||
|
||||
def _resume(self, from_upstream: ChunkerFromUpstream):
|
||||
pass
|
||||
|
||||
def _manual(self, from_upstream: ChunkerFromUpstream):
|
||||
pass
|
||||
|
||||
def _table(self, from_upstream: ChunkerFromUpstream):
|
||||
pass
|
||||
|
||||
def _paper(self, from_upstream: ChunkerFromUpstream):
|
||||
pass
|
||||
|
||||
def _book(self, from_upstream: ChunkerFromUpstream):
|
||||
pass
|
||||
|
||||
def _laws(self, from_upstream: ChunkerFromUpstream):
|
||||
pass
|
||||
|
||||
def _presentation(self, from_upstream: ChunkerFromUpstream):
|
||||
pass
|
||||
|
||||
def _one(self, from_upstream: ChunkerFromUpstream):
|
||||
pass
|
||||
|
||||
def _toc(self, from_upstream: ChunkerFromUpstream):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to chunk via `ToC`.")
|
||||
if from_upstream.output_format in ["markdown", "text", "html"]:
|
||||
return
|
||||
|
||||
# json
|
||||
sections, section_images, page_1024, tc_arr = [], [], [""], [0]
|
||||
for o in from_upstream.json_result or []:
|
||||
txt = o.get("text", "")
|
||||
tc = num_tokens_from_string(txt)
|
||||
page_1024[-1] += "\n" + txt
|
||||
tc_arr[-1] += tc
|
||||
if tc_arr[-1] > 1024:
|
||||
page_1024.append("")
|
||||
tc_arr.append(0)
|
||||
sections.append((o.get("text", ""), o.get("position_tag", "")))
|
||||
section_images.append(o.get("image"))
|
||||
print(len(sections), o)
|
||||
|
||||
llm_setting = self._param.llm_setting
|
||||
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_id"], lang=llm_setting["lang"])
|
||||
self.callback(random.randint(5, 15) / 100.0, "Start to detect table of contents...")
|
||||
toc_secs = detect_table_of_contents(page_1024, chat_mdl)
|
||||
if toc_secs:
|
||||
self.callback(random.randint(25, 35) / 100.0, "Start to extract table of contents...")
|
||||
toc_arr = toc_transformer(toc_secs, chat_mdl)
|
||||
toc_arr = [it for it in toc_arr if it.get("structure")]
|
||||
print(json.dumps(toc_arr, ensure_ascii=False, indent=2), flush=True)
|
||||
self.callback(random.randint(35, 75) / 100.0, "Start to link table of contents...")
|
||||
toc_arr = table_of_contents_index(toc_arr, [t for t,_ in sections], chat_mdl)
|
||||
for i in range(len(toc_arr)-1):
|
||||
if not toc_arr[i].get("indices"):
|
||||
continue
|
||||
|
||||
for j in range(i+1, len(toc_arr)):
|
||||
if toc_arr[j].get("indices"):
|
||||
if toc_arr[j]["indices"][0] - toc_arr[i]["indices"][-1] > 1:
|
||||
toc_arr[i]["indices"].extend([x for x in range(toc_arr[i]["indices"][-1]+1, toc_arr[j]["indices"][0])])
|
||||
break
|
||||
# put all sections ahead of toc_arr[0] into it
|
||||
# for i in range(len(toc_arr)):
|
||||
# if toc_arr[i].get("indices") and toc_arr[i]["indices"][0]:
|
||||
# toc_arr[i]["indices"] = [x for x in range(toc_arr[i]["indices"][-1]+1)]
|
||||
# break
|
||||
# put all sections after toc_arr[-1] into it
|
||||
for i in range(len(toc_arr)-1, -1, -1):
|
||||
if toc_arr[i].get("indices") and toc_arr[i]["indices"][-1]:
|
||||
toc_arr[i]["indices"] = [x for x in range(toc_arr[i]["indices"][0], len(sections))]
|
||||
break
|
||||
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n", json.dumps(toc_arr, ensure_ascii=False, indent=2), flush=True)
|
||||
|
||||
chunks, images = [], []
|
||||
for it in toc_arr:
|
||||
if not it.get("indices"):
|
||||
continue
|
||||
txt = ""
|
||||
img = None
|
||||
for i in it["indices"]:
|
||||
idx = i
|
||||
txt += "\n" + sections[idx][0] + "\t" + sections[idx][1]
|
||||
if img and section_images[idx]:
|
||||
img = concat_img(img, section_images[idx])
|
||||
elif section_images[idx]:
|
||||
img = section_images[idx]
|
||||
|
||||
it["indices"] = []
|
||||
if not txt:
|
||||
continue
|
||||
it["indices"] = [len(chunks)]
|
||||
print(it, "KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK\n", txt)
|
||||
chunks.append(txt)
|
||||
images.append(img)
|
||||
self.callback(1, "Done")
|
||||
return [
|
||||
{
|
||||
"text": RAGFlowPdfParser.remove_tag(c),
|
||||
"image": img,
|
||||
"positions": RAGFlowPdfParser.extract_positions(c),
|
||||
}
|
||||
for c, img in zip(chunks, images)
|
||||
]
|
||||
|
||||
self.callback(message="No table of contents detected.")
|
||||
|
||||
|
||||
async def _invoke(self, **kwargs):
|
||||
function_map = {
|
||||
"general": self._general,
|
||||
"q&a": self._q_and_a,
|
||||
"resume": self._resume,
|
||||
"manual": self._manual,
|
||||
"table": self._table,
|
||||
"paper": self._paper,
|
||||
"book": self._book,
|
||||
"laws": self._laws,
|
||||
"presentation": self._presentation,
|
||||
"one": self._one,
|
||||
}
|
||||
|
||||
try:
|
||||
from_upstream = ChunkerFromUpstream.model_validate(kwargs)
|
||||
except Exception as e:
|
||||
self.set_output("_ERROR", f"Input error: {str(e)}")
|
||||
return
|
||||
|
||||
chunks = function_map[self._param.method](from_upstream)
|
||||
llm_setting = self._param.llm_setting
|
||||
|
||||
async def auto_keywords():
|
||||
nonlocal chunks, llm_setting
|
||||
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_id"], lang=llm_setting["lang"])
|
||||
|
||||
async def doc_keyword_extraction(chat_mdl, ck, topn):
|
||||
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "keywords", {"topn": topn})
|
||||
if not cached:
|
||||
async with chat_limiter:
|
||||
cached = await trio.to_thread.run_sync(lambda: keyword_extraction(chat_mdl, ck["text"], topn))
|
||||
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "keywords", {"topn": topn})
|
||||
if cached:
|
||||
ck["keywords"] = cached.split(",")
|
||||
|
||||
async with trio.open_nursery() as nursery:
|
||||
for ck in chunks:
|
||||
nursery.start_soon(doc_keyword_extraction, chat_mdl, ck, self._param.auto_keywords)
|
||||
|
||||
async def auto_questions():
|
||||
nonlocal chunks, llm_setting
|
||||
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_id"], lang=llm_setting["lang"])
|
||||
|
||||
async def doc_question_proposal(chat_mdl, d, topn):
|
||||
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "question", {"topn": topn})
|
||||
if not cached:
|
||||
async with chat_limiter:
|
||||
cached = await trio.to_thread.run_sync(lambda: question_proposal(chat_mdl, ck["text"], topn))
|
||||
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "question", {"topn": topn})
|
||||
if cached:
|
||||
d["questions"] = cached.split("\n")
|
||||
|
||||
async with trio.open_nursery() as nursery:
|
||||
for ck in chunks:
|
||||
nursery.start_soon(doc_question_proposal, chat_mdl, ck, self._param.auto_questions)
|
||||
|
||||
async with trio.open_nursery() as nursery:
|
||||
if self._param.auto_questions:
|
||||
nursery.start_soon(auto_questions)
|
||||
if self._param.auto_keywords:
|
||||
nursery.start_soon(auto_keywords)
|
||||
|
||||
if self._param.page_rank:
|
||||
for ck in chunks:
|
||||
ck["page_rank"] = self._param.page_rank
|
||||
|
||||
self.set_output("chunks", chunks)
|
||||
@ -1,37 +0,0 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Any, Literal
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
|
||||
class ChunkerFromUpstream(BaseModel):
|
||||
created_time: float | None = Field(default=None, alias="_created_time")
|
||||
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
|
||||
|
||||
name: str
|
||||
file: dict | None = Field(default=None)
|
||||
|
||||
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)
|
||||
|
||||
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
|
||||
markdown_result: str | None = Field(default=None, alias="markdown")
|
||||
text_result: str | None = Field(default=None, alias="text")
|
||||
html_result: list[str] | None = Field(default=None, alias="html")
|
||||
|
||||
model_config = ConfigDict(populate_by_name=True, extra="forbid")
|
||||
|
||||
# def to_dict(self, *, exclude_none: bool = True) -> dict:
|
||||
# return self.model_dump(by_alias=True, exclude_none=exclude_none)
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user