mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-04 03:25:30 +08:00
Compare commits
216 Commits
pipeline
...
43ea312144
| Author | SHA1 | Date | |
|---|---|---|---|
| 43ea312144 | |||
| ce05696d95 | |||
| 0f62bfda21 | |||
| 70ffe2b4e8 | |||
| e76db6e222 | |||
| 7b664b5a84 | |||
| 8a41057236 | |||
| 447041d265 | |||
| f0375c4acd | |||
| 8af769de41 | |||
| f808bc32ba | |||
| e8cb1d8fc4 | |||
| 4e86ee4ff9 | |||
| c99034f717 | |||
| 86b254d214 | |||
| 1c38f4cefb | |||
| 74c195cd36 | |||
| e48bec1cbf | |||
| 205a5eb9f5 | |||
| 8844826208 | |||
| 8fe4281d81 | |||
| fb1bedbd3c | |||
| 6e55b9146c | |||
| 071ea9c493 | |||
| 5037a28e4d | |||
| fdac4afd10 | |||
| 769d701f56 | |||
| 8b512cdadf | |||
| 3ae126836a | |||
| e8bfda6020 | |||
| 34c54cd459 | |||
| 3d873d98fb | |||
| fbe25b5add | |||
| 0c6c7c8fe7 | |||
| e266f9a66f | |||
| fde6e5ab39 | |||
| 67529825e2 | |||
| 738a7d5c24 | |||
| 83ec915d51 | |||
| e535099f36 | |||
| 16b5feadb7 | |||
| 960f47c4d4 | |||
| 51139de178 | |||
| 1f5167f1ca | |||
| 578ea34b3e | |||
| 5fb3d2f55c | |||
| d99d1e3518 | |||
| 5b387b68ba | |||
| f92a45dcc4 | |||
| c4b8e4845c | |||
| 87659dcd3a | |||
| 6fd9508017 | |||
| 113851a692 | |||
| 66c69d10fe | |||
| 781d49cd0e | |||
| aaae938f54 | |||
| 9e73f799b2 | |||
| 21a62130c8 | |||
| 68e47c81d4 | |||
| f11d8af936 | |||
| 74ec734d69 | |||
| 8c75803b70 | |||
| ff4239c7cf | |||
| cf5867b146 | |||
| 77481ab3ab | |||
| 9c53b3336a | |||
| 24481f0332 | |||
| 4e6b84bb41 | |||
| 65c3f0406c | |||
| 7fb8b30cc2 | |||
| acca3640f7 | |||
| 58836d84fe | |||
| ad56137a59 | |||
| 2828e321bc | |||
| 932781ea4e | |||
| 5200711441 | |||
| c21cea2038 | |||
| 6a0f448419 | |||
| 7d2f65671f | |||
| a0d5f81098 | |||
| 52f26f4643 | |||
| 313e92dd9b | |||
| fee757eb41 | |||
| b5ddc7ca05 | |||
| 534fa60b2a | |||
| 390b2b8f26 | |||
| 0283e4098f | |||
| 2cdba3d1e6 | |||
| eb0b37d7ee | |||
| 198e52e990 | |||
| a50ccf77f9 | |||
| deaf15a08b | |||
| 0d8791936e | |||
| 5d167cd772 | |||
| f35c5ed119 | |||
| fc46d6bb87 | |||
| 8252b1c5c0 | |||
| c802a6ffdd | |||
| 9b06734ced | |||
| 6ab4c1a6e9 | |||
| f631073ac2 | |||
| 8aabc2807c | |||
| d931c33ced | |||
| f4324e89d9 | |||
| f04c9e2937 | |||
| 1fc2889f98 | |||
| ee0c38da66 | |||
| c1806e1ab2 | |||
| 66d0d44a00 | |||
| 2078d88c28 | |||
| 7734ad7fcd | |||
| 1a47e136e3 | |||
| cbf04ee470 | |||
| ef0aecea3b | |||
| dfc5fa1f4d | |||
| f341dc03b8 | |||
| 4585edc20e | |||
| dba9158f9a | |||
| 82f572ff95 | |||
| 518a00630e | |||
| aa61ae24dc | |||
| fb950079ef | |||
| aec8c15e7e | |||
| 7c620bdc69 | |||
| e7dde69584 | |||
| d6eded1959 | |||
| 80f851922a | |||
| 17757930a3 | |||
| a8883905a7 | |||
| 8426cbbd02 | |||
| 0b759f559c | |||
| 2d5d10ecbf | |||
| 954bd5a1c2 | |||
| ccb1c269e8 | |||
| 6dfb0c245c | |||
| 72d1047a8f | |||
| bece37e6c8 | |||
| 59cb0eb8bc | |||
| fc56217eb3 | |||
| 723cf9443e | |||
| bd94b5dfb5 | |||
| ef59c5bab9 | |||
| 62b7c655c5 | |||
| b0b866c8fd | |||
| 3a831d0c28 | |||
| 9e323a9351 | |||
| 7ac95b759b | |||
| daea357940 | |||
| 4aa1abd8e5 | |||
| 922b5c652d | |||
| aaa97874c6 | |||
| 193d93d820 | |||
| 4058715df7 | |||
| 3f595029d7 | |||
| e8f5a4da56 | |||
| a9472e3652 | |||
| 4dd48b60f3 | |||
| e4ab8ba2de | |||
| a1f848bfe0 | |||
| f2309ff93e | |||
| 38be53cf31 | |||
| 65a06d62d8 | |||
| 10cbbb76f8 | |||
| 1c84d1b562 | |||
| 4eb7659499 | |||
| 46a61e5aff | |||
| da82566304 | |||
| c8b79dfed4 | |||
| da80fa40bc | |||
| 94dbd4aac9 | |||
| ca9f30e1a1 | |||
| 2e4295d5ca | |||
| d11b1628a1 | |||
| 45f9f428db | |||
| 902703d145 | |||
| 7ccca2143c | |||
| 70ce02faf4 | |||
| 3f1741c8c6 | |||
| 6c24ad7966 | |||
| 4846589599 | |||
| a24547aa66 | |||
| a04c5247ab | |||
| ed6a76dcc0 | |||
| a0ccbec8bd | |||
| 4693c5382a | |||
| ff3b4d0dcd | |||
| 62d35b1b73 | |||
| 91b609447d | |||
| c353840244 | |||
| f12b9fdcd4 | |||
| 80ede65bbe | |||
| 52cf186028 | |||
| ea0f1d47a5 | |||
| 9fe7c92217 | |||
| d353f7f7f8 | |||
| f3738b06f1 | |||
| 5a8bc88147 | |||
| 04ef5b2783 | |||
| c9ea22ef69 | |||
| 152111fd9d | |||
| 86f6da2f74 | |||
| 8c00cbc87a | |||
| 41e808f4e6 | |||
| bc0281040b | |||
| 341a7b1473 | |||
| c29c395390 | |||
| a23a0f230c | |||
| 2a88ce6be1 | |||
| 664b781d62 | |||
| 65571e5254 | |||
| aa30f20730 | |||
| b9b278d441 | |||
| e1d86cfee3 | |||
| 8ebd07337f | |||
| dd584d57b0 | |||
| 3d39b96c6f |
18
.github/workflows/release.yml
vendored
18
.github/workflows/release.yml
vendored
@ -25,7 +25,7 @@ jobs:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
token: ${{ secrets.MY_GITHUB_TOKEN }} # Use the secret as an environment variable
|
||||
token: ${{ secrets.GITHUB_TOKEN }} # Use the secret as an environment variable
|
||||
fetch-depth: 0
|
||||
fetch-tags: true
|
||||
|
||||
@ -69,7 +69,7 @@ jobs:
|
||||
# https://github.com/actions/upload-release-asset has been replaced by https://github.com/softprops/action-gh-release
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
token: ${{ secrets.MY_GITHUB_TOKEN }} # Use the secret as an environment variable
|
||||
token: ${{ secrets.GITHUB_TOKEN }} # Use the secret as an environment variable
|
||||
prerelease: ${{ env.PRERELEASE }}
|
||||
tag_name: ${{ env.RELEASE_TAG }}
|
||||
# The body field does not support environment variable substitution directly.
|
||||
@ -120,3 +120,17 @@ jobs:
|
||||
packages-dir: sdk/python/dist/
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
verbose: true
|
||||
|
||||
- name: Build ragflow-cli
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
run: |
|
||||
cd admin/client && \
|
||||
uv build
|
||||
|
||||
- name: Publish client package distributions to PyPI
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
packages-dir: admin/client/dist/
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
verbose: true
|
||||
|
||||
48
.github/workflows/tests.yml
vendored
48
.github/workflows/tests.yml
vendored
@ -34,12 +34,10 @@ jobs:
|
||||
# https://github.com/hmarr/debug-action
|
||||
#- uses: hmarr/debug-action@v2
|
||||
|
||||
- name: Show who triggered this workflow
|
||||
- name: Ensure workspace ownership
|
||||
run: |
|
||||
echo "Workflow triggered by ${{ github.event_name }}"
|
||||
|
||||
- name: Ensure workspace ownership
|
||||
run: echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
|
||||
echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
|
||||
|
||||
# https://github.com/actions/checkout/issues/1781
|
||||
- name: Check out code
|
||||
@ -48,6 +46,44 @@ jobs:
|
||||
fetch-depth: 0
|
||||
fetch-tags: true
|
||||
|
||||
- name: Check workflow duplication
|
||||
if: ${{ !cancelled() && !failure() && (github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'ci')) }}
|
||||
run: |
|
||||
if [[ ${{ github.event_name }} != 'pull_request' ]]; then
|
||||
HEAD=$(git rev-parse HEAD)
|
||||
# Find a PR that introduced a given commit
|
||||
gh auth login --with-token <<< "${{ secrets.GITHUB_TOKEN }}"
|
||||
PR_NUMBER=$(gh pr list --search ${HEAD} --state merged --json number --jq .[0].number)
|
||||
echo "HEAD=${HEAD}"
|
||||
echo "PR_NUMBER=${PR_NUMBER}"
|
||||
if [[ -n ${PR_NUMBER} ]]; then
|
||||
PR_SHA_FP=${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}/PR_${PR_NUMBER}
|
||||
if [[ -f ${PR_SHA_FP} ]]; then
|
||||
read -r PR_SHA PR_RUN_ID < "${PR_SHA_FP}"
|
||||
# Calculate the hash of the current workspace content
|
||||
HEAD_SHA=$(git rev-parse HEAD^{tree})
|
||||
if [[ ${HEAD_SHA} == ${PR_SHA} ]]; then
|
||||
echo "Cancel myself since the workspace content hash is the same with PR #${PR_NUMBER} merged. See ${GITHUB_SERVER_URL}/${GITHUB_REPOSITORY}/actions/runs/${PR_RUN_ID} for details."
|
||||
gh run cancel ${GITHUB_RUN_ID}
|
||||
while true; do
|
||||
status=$(gh run view ${GITHUB_RUN_ID} --json status -q .status)
|
||||
[ "$status" = "completed" ] && break
|
||||
sleep 5
|
||||
done
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
else
|
||||
PR_NUMBER=${{ github.event.pull_request.number }}
|
||||
PR_SHA_FP=${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}/PR_${PR_NUMBER}
|
||||
# Calculate the hash of the current workspace content
|
||||
PR_SHA=$(git rev-parse HEAD^{tree})
|
||||
echo "PR #${PR_NUMBER} workspace content hash: ${PR_SHA}"
|
||||
mkdir -p ${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}
|
||||
echo "${PR_SHA} ${GITHUB_RUN_ID}" > ${PR_SHA_FP}
|
||||
fi
|
||||
|
||||
# https://github.com/astral-sh/ruff-action
|
||||
- name: Static check with Ruff
|
||||
uses: astral-sh/ruff-action@v3
|
||||
@ -59,11 +95,11 @@ jobs:
|
||||
run: |
|
||||
RUNNER_WORKSPACE_PREFIX=${RUNNER_WORKSPACE_PREFIX:-$HOME}
|
||||
sudo docker pull ubuntu:22.04
|
||||
sudo docker build --progress=plain --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
|
||||
sudo DOCKER_BUILDKIT=1 docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
|
||||
|
||||
- name: Build ragflow:nightly
|
||||
run: |
|
||||
sudo docker build --progress=plain --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
|
||||
sudo DOCKER_BUILDKIT=1 docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
|
||||
|
||||
- name: Start ragflow:nightly-slim
|
||||
run: |
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@ -149,7 +149,7 @@ out
|
||||
# Nuxt.js build / generate output
|
||||
.nuxt
|
||||
dist
|
||||
|
||||
ragflow_cli.egg-info
|
||||
# Gatsby files
|
||||
.cache/
|
||||
# Comment in the public line in if your project uses Gatsby and not Next.js
|
||||
|
||||
@ -191,6 +191,7 @@ ENV PATH="${VIRTUAL_ENV}/bin:${PATH}"
|
||||
ENV PYTHONPATH=/ragflow/
|
||||
|
||||
COPY web web
|
||||
COPY admin admin
|
||||
COPY api api
|
||||
COPY conf conf
|
||||
COPY deepdoc deepdoc
|
||||
|
||||
22
README.md
22
README.md
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<a href="https://demo.ragflow.io/">
|
||||
<img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
|
||||
<img src="web/src/assets/logo-with-text.svg" width="520" alt="ragflow logo">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.21.0">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -84,8 +84,8 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Latest Updates
|
||||
|
||||
- 2025-10-15 Supports orchestrable ingestion pipeline.
|
||||
- 2025-08-08 Supports OpenAI's latest GPT-5 series models.
|
||||
- 2025-08-04 Supports new models, including Kimi K2 and Grok 4.
|
||||
- 2025-08-01 Supports agentic workflow and MCP.
|
||||
- 2025-05-23 Adds a Python/JavaScript code executor component to Agent.
|
||||
- 2025-05-05 Supports cross-language query.
|
||||
@ -135,7 +135,7 @@ releases! 🌟
|
||||
## 🔎 System Architecture
|
||||
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
|
||||
<img src="https://github.com/user-attachments/assets/31b0dd6f-ca4f-445a-9457-70cb44a381b2" width="1000"/>
|
||||
</div>
|
||||
|
||||
## 🎬 Get Started
|
||||
@ -187,7 +187,7 @@ releases! 🌟
|
||||
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
|
||||
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
|
||||
|
||||
> The command below downloads the `v0.20.5-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.5-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` for the full edition `v0.20.5`.
|
||||
> The command below downloads the `v0.21.0-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.21.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.0` for the full edition `v0.21.0`.
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -200,8 +200,8 @@ releases! 🌟
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
|-------------------|-----------------|-----------------------|--------------------------|
|
||||
| v0.20.5 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.5-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.21.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.21.0-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
@ -341,11 +341,13 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
|
||||
5. If your operating system does not have jemalloc, please install it as follows:
|
||||
|
||||
```bash
|
||||
# ubuntu
|
||||
# Ubuntu
|
||||
sudo apt-get install libjemalloc-dev
|
||||
# centos
|
||||
# CentOS
|
||||
sudo yum install jemalloc
|
||||
# mac
|
||||
# OpenSUSE
|
||||
sudo zypper install jemalloc
|
||||
# macOS
|
||||
sudo brew install jemalloc
|
||||
```
|
||||
|
||||
|
||||
14
README_id.md
14
README_id.md
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<a href="https://demo.ragflow.io/">
|
||||
<img src="web/src/assets/logo-with-text.png" width="520" alt="Logo ragflow">
|
||||
<img src="web/src/assets/logo-with-text.svg" width="520" alt="Logo ragflow">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.21.0">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
|
||||
@ -80,8 +80,8 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Pembaruan Terbaru
|
||||
|
||||
- 2025-10-15 Dukungan untuk jalur data yang terorkestrasi.
|
||||
- 2025-08-08 Mendukung model seri GPT-5 terbaru dari OpenAI.
|
||||
- 2025-08-04 Mendukung model baru, termasuk Kimi K2 dan Grok 4.
|
||||
- 2025-08-01 Mendukung alur kerja agen dan MCP.
|
||||
- 2025-05-23 Menambahkan komponen pelaksana kode Python/JS ke Agen.
|
||||
- 2025-05-05 Mendukung kueri lintas bahasa.
|
||||
@ -129,7 +129,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
## 🔎 Arsitektur Sistem
|
||||
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
|
||||
<img src="https://github.com/user-attachments/assets/31b0dd6f-ca4f-445a-9457-70cb44a381b2" width="1000"/>
|
||||
</div>
|
||||
|
||||
## 🎬 Mulai
|
||||
@ -181,7 +181,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
|
||||
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
|
||||
|
||||
> Perintah di bawah ini mengunduh edisi v0.20.5-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.5-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5 untuk edisi lengkap v0.20.5.
|
||||
> Perintah di bawah ini mengunduh edisi v0.21.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.21.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.0 untuk edisi lengkap v0.21.0.
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -194,8 +194,8 @@ $ docker compose -f docker-compose.yml up -d
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.5 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.5-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.21.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.21.0-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
14
README_ja.md
14
README_ja.md
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<a href="https://demo.ragflow.io/">
|
||||
<img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo">
|
||||
<img src="web/src/assets/logo-with-text.svg" width="350" alt="ragflow logo">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.21.0">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -60,8 +60,8 @@
|
||||
|
||||
## 🔥 最新情報
|
||||
|
||||
- 2025-10-15 オーケストレーションされたデータパイプラインのサポート。
|
||||
- 2025-08-08 OpenAI の最新 GPT-5 シリーズモデルをサポートします。
|
||||
- 2025-08-04 新モデル、キミK2およびGrok 4をサポート。
|
||||
- 2025-08-01 エージェントワークフローとMCPをサポート。
|
||||
- 2025-05-23 エージェントに Python/JS コードエグゼキュータコンポーネントを追加しました。
|
||||
- 2025-05-05 言語間クエリをサポートしました。
|
||||
@ -109,7 +109,7 @@
|
||||
## 🔎 システム構成
|
||||
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
|
||||
<img src="https://github.com/user-attachments/assets/31b0dd6f-ca4f-445a-9457-70cb44a381b2" width="1000"/>
|
||||
</div>
|
||||
|
||||
## 🎬 初期設定
|
||||
@ -160,7 +160,7 @@
|
||||
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
|
||||
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
|
||||
|
||||
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.5-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.5-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.5 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5 と設定します。
|
||||
> 以下のコマンドは、RAGFlow Docker イメージの v0.21.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.21.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.21.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.0 と設定します。
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -173,8 +173,8 @@
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.5 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.5-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.21.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.21.0-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
14
README_ko.md
14
README_ko.md
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<a href="https://demo.ragflow.io/">
|
||||
<img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
|
||||
<img src="web/src/assets/logo-with-text.svg" width="520" alt="ragflow logo">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.21.0">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -60,8 +60,8 @@
|
||||
|
||||
## 🔥 업데이트
|
||||
|
||||
- 2025-10-15 조정된 데이터 파이프라인 지원.
|
||||
- 2025-08-08 OpenAI의 최신 GPT-5 시리즈 모델을 지원합니다.
|
||||
- 2025-08-04 새로운 모델인 Kimi K2와 Grok 4를 포함하여 지원합니다.
|
||||
- 2025-08-01 에이전트 워크플로우와 MCP를 지원합니다.
|
||||
- 2025-05-23 Agent에 Python/JS 코드 실행기 구성 요소를 추가합니다.
|
||||
- 2025-05-05 언어 간 쿼리를 지원합니다.
|
||||
@ -109,7 +109,7 @@
|
||||
## 🔎 시스템 아키텍처
|
||||
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
|
||||
<img src="https://github.com/user-attachments/assets/31b0dd6f-ca4f-445a-9457-70cb44a381b2" width="1000"/>
|
||||
</div>
|
||||
|
||||
## 🎬 시작하기
|
||||
@ -160,7 +160,7 @@
|
||||
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
|
||||
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
|
||||
|
||||
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.5-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.5-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.5을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5로 설정합니다.
|
||||
> 아래 명령어는 RAGFlow Docker 이미지의 v0.21.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.21.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.21.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.0로 설정합니다.
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -173,8 +173,8 @@
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.5 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.5-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.21.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.21.0-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<a href="https://demo.ragflow.io/">
|
||||
<img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
|
||||
<img src="web/src/assets/logo-with-text.svg" width="520" alt="ragflow logo">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.21.0">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
|
||||
@ -80,8 +80,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Últimas Atualizações
|
||||
|
||||
- 10-15-2025 Suporte para pipelines de dados orquestrados.
|
||||
- 08-08-2025 Suporta a mais recente série GPT-5 da OpenAI.
|
||||
- 04-08-2025 Suporta novos modelos, incluindo Kimi K2 e Grok 4.
|
||||
- 01-08-2025 Suporta fluxo de trabalho agente e MCP.
|
||||
- 23-05-2025 Adicione o componente executor de código Python/JS ao Agente.
|
||||
- 05-05-2025 Suporte a consultas entre idiomas.
|
||||
@ -129,7 +129,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
## 🔎 Arquitetura do Sistema
|
||||
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
|
||||
<img src="https://github.com/user-attachments/assets/31b0dd6f-ca4f-445a-9457-70cb44a381b2" width="1000"/>
|
||||
</div>
|
||||
|
||||
## 🎬 Primeiros Passos
|
||||
@ -180,7 +180,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
|
||||
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
|
||||
|
||||
> O comando abaixo baixa a edição `v0.20.5-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.5-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` para a edição completa `v0.20.5`.
|
||||
> O comando abaixo baixa a edição `v0.21.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.21.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.0` para a edição completa `v0.21.0`.
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -193,8 +193,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
|
||||
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
|
||||
| v0.20.5 | ~9 | :heavy_check_mark: | Lançamento estável |
|
||||
| v0.20.5-slim | ~2 | ❌ | Lançamento estável |
|
||||
| v0.21.0 | ~9 | :heavy_check_mark: | Lançamento estável |
|
||||
| v0.21.0-slim | ~2 | ❌ | Lançamento estável |
|
||||
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
|
||||
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<a href="https://demo.ragflow.io/">
|
||||
<img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo">
|
||||
<img src="web/src/assets/logo-with-text.svg" width="350" alt="ragflow logo">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.21.0">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -83,8 +83,8 @@
|
||||
|
||||
## 🔥 近期更新
|
||||
|
||||
- 2025-10-15 支援可編排的資料管道。
|
||||
- 2025-08-08 支援 OpenAI 最新的 GPT-5 系列模型。
|
||||
- 2025-08-04 支援 Kimi K2 和 Grok 4 等模型.
|
||||
- 2025-08-01 支援 agentic workflow 和 MCP
|
||||
- 2025-05-23 為 Agent 新增 Python/JS 程式碼執行器元件。
|
||||
- 2025-05-05 支援跨語言查詢。
|
||||
@ -132,7 +132,7 @@
|
||||
## 🔎 系統架構
|
||||
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
|
||||
<img src="https://github.com/user-attachments/assets/31b0dd6f-ca4f-445a-9457-70cb44a381b2" width="1000"/>
|
||||
</div>
|
||||
|
||||
## 🎬 快速開始
|
||||
@ -183,7 +183,7 @@
|
||||
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
|
||||
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
|
||||
|
||||
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.5-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.5-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` 來下載 RAGFlow 鏡像的 `v0.20.5` 完整發行版。
|
||||
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.21.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.21.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.0` 來下載 RAGFlow 鏡像的 `v0.21.0` 完整發行版。
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -196,8 +196,8 @@
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.5 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.5-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.21.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.21.0-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
16
README_zh.md
16
README_zh.md
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<a href="https://demo.ragflow.io/">
|
||||
<img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo">
|
||||
<img src="web/src/assets/logo-with-text.svg" width="350" alt="ragflow logo">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.21.0">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -83,8 +83,8 @@
|
||||
|
||||
## 🔥 近期更新
|
||||
|
||||
- 2025-08-08 支持 OpenAI 最新的 GPT-5 系列模型.
|
||||
- 2025-08-04 新增对 Kimi K2 和 Grok 4 等模型的支持.
|
||||
- 2025-10-15 支持可编排的数据管道。
|
||||
- 2025-08-08 支持 OpenAI 最新的 GPT-5 系列模型。
|
||||
- 2025-08-01 支持 agentic workflow 和 MCP。
|
||||
- 2025-05-23 Agent 新增 Python/JS 代码执行器组件。
|
||||
- 2025-05-05 支持跨语言查询。
|
||||
@ -132,7 +132,7 @@
|
||||
## 🔎 系统架构
|
||||
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
|
||||
<img src="https://github.com/user-attachments/assets/31b0dd6f-ca4f-445a-9457-70cb44a381b2" width="1000"/>
|
||||
</div>
|
||||
|
||||
## 🎬 快速开始
|
||||
@ -183,7 +183,7 @@
|
||||
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
|
||||
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
|
||||
|
||||
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.5-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.5-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` 来下载 RAGFlow 镜像的 `v0.20.5` 完整发行版。
|
||||
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.21.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.21.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.0` 来下载 RAGFlow 镜像的 `v0.21.0` 完整发行版。
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -196,8 +196,8 @@
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.5 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.5-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.21.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.21.0-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
47
admin/build_cli_release.sh
Executable file
47
admin/build_cli_release.sh
Executable file
@ -0,0 +1,47 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
echo "🚀 Start building..."
|
||||
echo "================================"
|
||||
|
||||
PROJECT_NAME="ragflow-cli"
|
||||
|
||||
RELEASE_DIR="release"
|
||||
BUILD_DIR="dist"
|
||||
SOURCE_DIR="src"
|
||||
PACKAGE_DIR="ragflow_cli"
|
||||
|
||||
echo "🧹 Clean old build folder..."
|
||||
rm -rf release/
|
||||
|
||||
echo "📁 Prepare source code..."
|
||||
mkdir release/$PROJECT_NAME/$SOURCE_DIR -p
|
||||
cp pyproject.toml release/$PROJECT_NAME/pyproject.toml
|
||||
cp README.md release/$PROJECT_NAME/README.md
|
||||
|
||||
mkdir release/$PROJECT_NAME/$SOURCE_DIR/$PACKAGE_DIR -p
|
||||
cp admin_client.py release/$PROJECT_NAME/$SOURCE_DIR/$PACKAGE_DIR/admin_client.py
|
||||
|
||||
if [ -d "release/$PROJECT_NAME/$SOURCE_DIR" ]; then
|
||||
echo "✅ source dir: release/$PROJECT_NAME/$SOURCE_DIR"
|
||||
else
|
||||
echo "❌ source dir not exist: release/$PROJECT_NAME/$SOURCE_DIR"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "🔨 Make build file..."
|
||||
cd release/$PROJECT_NAME
|
||||
export PYTHONPATH=$(pwd)
|
||||
python -m build
|
||||
|
||||
echo "✅ check build result..."
|
||||
if [ -d "$BUILD_DIR" ]; then
|
||||
echo "📦 Package generated:"
|
||||
ls -la $BUILD_DIR/
|
||||
else
|
||||
echo "❌ Build Failed: $BUILD_DIR not exist."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "🎉 Build finished successfully!"
|
||||
@ -15,22 +15,55 @@ It consists of a server-side Service and a command-line client (CLI), both imple
|
||||
- **Admin Service**: A backend service that interfaces with the RAGFlow system to execute administrative operations and monitor its status.
|
||||
- **Admin CLI**: A command-line interface that allows users to connect to the Admin Service and issue commands for system management.
|
||||
|
||||
|
||||
|
||||
### Starting the Admin Service
|
||||
|
||||
1. Before start Admin Service, please make sure RAGFlow system is already started.
|
||||
#### Launching from source code
|
||||
|
||||
1. Before start Admin Service, please make sure RAGFlow system is already started.
|
||||
|
||||
2. Launch from source code:
|
||||
|
||||
```bash
|
||||
python admin/server/admin_server.py
|
||||
```
|
||||
The service will start and listen for incoming connections from the CLI on the configured port.
|
||||
|
||||
#### Using docker image
|
||||
|
||||
1. Before startup, please configure the `docker_compose.yml` file to enable admin server:
|
||||
|
||||
```bash
|
||||
command:
|
||||
- --enable-adminserver
|
||||
```
|
||||
|
||||
2. Start the containers, the service will start and listen for incoming connections from the CLI on the configured port.
|
||||
|
||||
|
||||
2. Run the service script:
|
||||
```bash
|
||||
python admin/admin_server.py
|
||||
```
|
||||
The service will start and listen for incoming connections from the CLI on the configured port.
|
||||
|
||||
### Using the Admin CLI
|
||||
|
||||
1. Ensure the Admin Service is running.
|
||||
2. Launch the CLI client:
|
||||
2. Install ragflow-cli.
|
||||
```bash
|
||||
python admin/admin_client.py -h 0.0.0.0 -p 9381
|
||||
pip install ragflow-cli==0.21.0
|
||||
```
|
||||
3. Launch the CLI client:
|
||||
```bash
|
||||
ragflow-cli -h 127.0.0.1 -p 9381
|
||||
```
|
||||
You will be prompted to enter the superuser's password to log in.
|
||||
The default password is admin.
|
||||
|
||||
**Parameters:**
|
||||
|
||||
- -h: RAGFlow admin server host address
|
||||
|
||||
- -p: RAGFlow admin server port
|
||||
|
||||
|
||||
|
||||
## Supported Commands
|
||||
|
||||
@ -42,12 +75,7 @@ Commands are case-insensitive and must be terminated with a semicolon (`;`).
|
||||
- Lists all available services within the RAGFlow system.
|
||||
- `SHOW SERVICE <id>;`
|
||||
- Shows detailed status information for the service identified by `<id>`.
|
||||
- `STARTUP SERVICE <id>;`
|
||||
- Attempts to start the service identified by `<id>`.
|
||||
- `SHUTDOWN SERVICE <id>;`
|
||||
- Attempts to gracefully shut down the service identified by `<id>`.
|
||||
- `RESTART SERVICE <id>;`
|
||||
- Attempts to restart the service identified by `<id>`.
|
||||
|
||||
|
||||
### User Management Commands
|
||||
|
||||
@ -55,10 +83,17 @@ Commands are case-insensitive and must be terminated with a semicolon (`;`).
|
||||
- Lists all users known to the system.
|
||||
- `SHOW USER '<username>';`
|
||||
- Shows details and permissions for the specified user. The username must be enclosed in single or double quotes.
|
||||
|
||||
- `CREATE USER <username> <password>;`
|
||||
- Create user by username and password. The username and password must be enclosed in single or double quotes.
|
||||
|
||||
- `DROP USER '<username>';`
|
||||
- Removes the specified user from the system. Use with caution.
|
||||
- `ALTER USER PASSWORD '<username>' '<new_password>';`
|
||||
- Changes the password for the specified user.
|
||||
- `ALTER USER ACTIVE <username> <on/off>;`
|
||||
- Changes the user to active or inactive.
|
||||
|
||||
|
||||
### Data and Agent Commands
|
||||
|
||||
@ -1,13 +1,29 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import argparse
|
||||
import base64
|
||||
from cmd import Cmd
|
||||
|
||||
from Cryptodome.PublicKey import RSA
|
||||
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
|
||||
from typing import Dict, List, Any
|
||||
from lark import Lark, Transformer, Tree
|
||||
from lark import Lark, Transformer, Tree, Token
|
||||
import requests
|
||||
from requests.auth import HTTPBasicAuth
|
||||
from api.common.base64 import encode_to_base64
|
||||
|
||||
GRAMMAR = r"""
|
||||
start: command
|
||||
@ -176,12 +192,55 @@ def encrypt(input_string):
|
||||
return base64.b64encode(cipher_text).decode("utf-8")
|
||||
|
||||
|
||||
class AdminCommandParser:
|
||||
def encode_to_base64(input_string):
|
||||
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
|
||||
return base64_encoded.decode('utf-8')
|
||||
|
||||
|
||||
class AdminCLI(Cmd):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.parser = Lark(GRAMMAR, start='start', parser='lalr', transformer=AdminTransformer())
|
||||
self.command_history = []
|
||||
self.is_interactive = False
|
||||
self.admin_account = "admin@ragflow.io"
|
||||
self.admin_password: str = "admin"
|
||||
self.host: str = ""
|
||||
self.port: int = 0
|
||||
|
||||
def parse_command(self, command_str: str) -> Dict[str, Any]:
|
||||
intro = r"""Type "\h" for help."""
|
||||
prompt = "admin> "
|
||||
|
||||
def onecmd(self, command: str) -> bool:
|
||||
try:
|
||||
result = self.parse_command(command)
|
||||
|
||||
if isinstance(result, dict):
|
||||
if 'type' in result and result.get('type') == 'empty':
|
||||
return False
|
||||
|
||||
self.execute_command(result)
|
||||
|
||||
if isinstance(result, Tree):
|
||||
return False
|
||||
|
||||
if result.get('type') == 'meta' and result.get('command') in ['q', 'quit', 'exit']:
|
||||
return True
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nUse '\\q' to quit")
|
||||
except EOFError:
|
||||
print("\nGoodbye!")
|
||||
return True
|
||||
return False
|
||||
|
||||
def emptyline(self) -> bool:
|
||||
return False
|
||||
|
||||
def default(self, line: str) -> bool:
|
||||
return self.onecmd(line)
|
||||
|
||||
def parse_command(self, command_str: str) -> dict[str, str] | Tree[Token]:
|
||||
if not command_str.strip():
|
||||
return {'type': 'empty'}
|
||||
|
||||
@ -193,16 +252,6 @@ class AdminCommandParser:
|
||||
except Exception as e:
|
||||
return {'type': 'error', 'message': f'Parse error: {str(e)}'}
|
||||
|
||||
|
||||
class AdminCLI:
|
||||
def __init__(self):
|
||||
self.parser = AdminCommandParser()
|
||||
self.is_interactive = False
|
||||
self.admin_account = "admin@ragflow.io"
|
||||
self.admin_password: str = "admin"
|
||||
self.host: str = ""
|
||||
self.port: int = 0
|
||||
|
||||
def verify_admin(self, args):
|
||||
|
||||
conn_info = self._parse_connection_args(args)
|
||||
@ -251,10 +300,25 @@ class AdminCLI:
|
||||
columns = list(data[0].keys())
|
||||
col_widths = {}
|
||||
|
||||
def get_string_width(text):
|
||||
half_width_chars = (
|
||||
" !\"#$%&'()*+,-./0123456789:;<=>?@"
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`"
|
||||
"abcdefghijklmnopqrstuvwxyz{|}~"
|
||||
"\t\n\r"
|
||||
)
|
||||
width = 0
|
||||
for char in text:
|
||||
if char in half_width_chars:
|
||||
width += 1
|
||||
else:
|
||||
width += 2
|
||||
return width
|
||||
|
||||
for col in columns:
|
||||
max_width = len(str(col))
|
||||
max_width = get_string_width(str(col))
|
||||
for item in data:
|
||||
value_len = len(str(item.get(col, '')))
|
||||
value_len = get_string_width(str(item.get(col, '')))
|
||||
if value_len > max_width:
|
||||
max_width = value_len
|
||||
col_widths[col] = max(2, max_width)
|
||||
@ -273,9 +337,9 @@ class AdminCLI:
|
||||
row = "|"
|
||||
for col in columns:
|
||||
value = str(item.get(col, ''))
|
||||
if len(value) > col_widths[col]:
|
||||
if get_string_width(value) > col_widths[col]:
|
||||
value = value[:col_widths[col] - 3] + "..."
|
||||
row += f" {value:<{col_widths[col]}} |"
|
||||
row += f" {value:<{col_widths[col] - (get_string_width(value) - len(value))}} |"
|
||||
print(row)
|
||||
|
||||
print(separator)
|
||||
@ -292,7 +356,7 @@ class AdminCLI:
|
||||
continue
|
||||
|
||||
print(f"command: {command}")
|
||||
result = self.parser.parse_command(command)
|
||||
result = self.parse_command(command)
|
||||
self.execute_command(result)
|
||||
|
||||
if isinstance(result, Tree):
|
||||
@ -384,12 +448,28 @@ class AdminCLI:
|
||||
if response.status_code == 200:
|
||||
self._print_table_simple(res_json['data'])
|
||||
else:
|
||||
print(f"Fail to get all users, code: {res_json['code']}, message: {res_json['message']}")
|
||||
print(f"Fail to get all services, code: {res_json['code']}, message: {res_json['message']}")
|
||||
|
||||
def _handle_show_service(self, command):
|
||||
service_id: int = command['number']
|
||||
print(f"Showing service: {service_id}")
|
||||
|
||||
url = f'http://{self.host}:{self.port}/api/v1/admin/services/{service_id}'
|
||||
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
|
||||
res_json = response.json()
|
||||
if response.status_code == 200:
|
||||
res_data = res_json['data']
|
||||
if 'status' in res_data and res_data['status'] == 'alive':
|
||||
print(f"Service {res_data['service_name']} is alive, ")
|
||||
if isinstance(res_data['message'], str):
|
||||
print(res_data['message'])
|
||||
else:
|
||||
self._print_table_simple(res_data['message'])
|
||||
else:
|
||||
print(f"Service {res_data['service_name']} is down, {res_data['message']}")
|
||||
else:
|
||||
print(f"Fail to show service, code: {res_json['code']}, message: {res_json['message']}")
|
||||
|
||||
def _handle_restart_service(self, command):
|
||||
service_id: int = command['number']
|
||||
print(f"Restart service {service_id}")
|
||||
@ -563,10 +643,17 @@ def main():
|
||||
/_/ |_/_/ |_\____/_/ /_/\____/|__/|__/ /_/ |_\__,_/_/ /_/ /_/_/_/ /_/
|
||||
""")
|
||||
if cli.verify_admin(sys.argv):
|
||||
cli.run_interactive()
|
||||
cli.cmdloop()
|
||||
else:
|
||||
print(r"""
|
||||
____ ___ ______________ ___ __ _
|
||||
/ __ \/ | / ____/ ____/ /___ _ __ / | ____/ /___ ___ (_)___
|
||||
/ /_/ / /| |/ / __/ /_ / / __ \ | /| / / / /| |/ __ / __ `__ \/ / __ \
|
||||
/ _, _/ ___ / /_/ / __/ / / /_/ / |/ |/ / / ___ / /_/ / / / / / / / / / /
|
||||
/_/ |_/_/ |_\____/_/ /_/\____/|__/|__/ /_/ |_\__,_/_/ /_/ /_/_/_/ /_/
|
||||
""")
|
||||
if cli.verify_admin(sys.argv):
|
||||
cli.run_interactive()
|
||||
cli.cmdloop()
|
||||
# cli.run_single_command(sys.argv[1:])
|
||||
|
||||
|
||||
24
admin/client/pyproject.toml
Normal file
24
admin/client/pyproject.toml
Normal file
@ -0,0 +1,24 @@
|
||||
[project]
|
||||
name = "ragflow-cli"
|
||||
version = "0.21.0"
|
||||
description = "Admin Service's client of [RAGFlow](https://github.com/infiniflow/ragflow). The Admin Service provides user management and system monitoring. "
|
||||
authors = [{ name = "Lynn", email = "lynn_inf@hotmail.com" }]
|
||||
license = { text = "Apache License, Version 2.0" }
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"requests>=2.30.0,<3.0.0",
|
||||
"beartype>=0.18.5,<0.19.0",
|
||||
"pycryptodomex>=3.10.0",
|
||||
"lark>=1.1.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
test = [
|
||||
"pytest>=8.3.5",
|
||||
"requests>=2.32.3",
|
||||
"requests-toolbelt>=1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
ragflow-cli = "admin_client:main"
|
||||
24
admin/pyproject.toml
Normal file
24
admin/pyproject.toml
Normal file
@ -0,0 +1,24 @@
|
||||
[project]
|
||||
name = "ragflow-cli"
|
||||
version = "0.21.0.dev2"
|
||||
description = "Admin Service's client of [RAGFlow](https://github.com/infiniflow/ragflow). The Admin Service provides user management and system monitoring. "
|
||||
authors = [{ name = "Lynn", email = "lynn_inf@hotmail.com" }]
|
||||
license = { text = "Apache License, Version 2.0" }
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"requests>=2.30.0,<3.0.0",
|
||||
"beartype>=0.18.5,<0.19.0",
|
||||
"pycryptodomex>=3.10.0",
|
||||
"lark>=1.1.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
test = [
|
||||
"pytest>=8.3.5",
|
||||
"requests>=2.32.3",
|
||||
"requests-toolbelt>=1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
ragflow-cli = "ragflow_cli.admin_client:main"
|
||||
@ -1,15 +0,0 @@
|
||||
from flask import jsonify
|
||||
|
||||
def success_response(data=None, message="Success", code = 0):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 200
|
||||
|
||||
def error_response(message="Error", code=-1, data=None):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 400
|
||||
@ -1,3 +1,18 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import signal
|
||||
@ -1,9 +1,26 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from functools import wraps
|
||||
from flask import request, jsonify
|
||||
|
||||
from exceptions import AdminException
|
||||
from api.common.exceptions import AdminException
|
||||
from api.db.init_data import encode_to_base64
|
||||
from api.db.services import UserService
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import logging
|
||||
import threading
|
||||
from enum import Enum
|
||||
@ -9,6 +26,8 @@ from urllib.parse import urlparse
|
||||
|
||||
|
||||
class ServiceConfigs:
|
||||
configs = dict
|
||||
|
||||
def __init__(self):
|
||||
self.configs = []
|
||||
self.lock = threading.Lock()
|
||||
@ -32,9 +51,11 @@ class BaseConfig(BaseModel):
|
||||
host: str
|
||||
port: int
|
||||
service_type: str
|
||||
detail_func_name: str
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port, 'service_type': self.service_type}
|
||||
return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port,
|
||||
'service_type': self.service_type}
|
||||
|
||||
|
||||
class MetaConfig(BaseConfig):
|
||||
@ -209,7 +230,9 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
name: str = f'ragflow_{ragflow_count}'
|
||||
host: str = v['host']
|
||||
http_port: int = v['http_port']
|
||||
config = RAGFlowServerConfig(id=id_count, name=name, host=host, port=http_port, service_type="ragflow_server")
|
||||
config = RAGFlowServerConfig(id=id_count, name=name, host=host, port=http_port,
|
||||
service_type="ragflow_server",
|
||||
detail_func_name="check_ragflow_server_alive")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "es":
|
||||
@ -222,7 +245,8 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
password: str = v.get('password')
|
||||
config = ElasticsearchConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval",
|
||||
retrieval_type="elasticsearch",
|
||||
username=username, password=password)
|
||||
username=username, password=password,
|
||||
detail_func_name="get_es_cluster_stats")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
|
||||
@ -233,8 +257,9 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
host = parts[0]
|
||||
port = int(parts[1])
|
||||
database: str = v.get('db_name', 'default_db')
|
||||
config = InfinityConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval", retrieval_type="infinity",
|
||||
db_name=database)
|
||||
config = InfinityConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval",
|
||||
retrieval_type="infinity",
|
||||
db_name=database, detail_func_name="get_infinity_status")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "minio":
|
||||
@ -245,8 +270,9 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
port = int(parts[1])
|
||||
user = v.get('user')
|
||||
password = v.get('password')
|
||||
config = MinioConfig(id=id_count, name=name, host=host, port=port, user=user, password=password, service_type="file_store",
|
||||
store_type="minio")
|
||||
config = MinioConfig(id=id_count, name=name, host=host, port=port, user=user, password=password,
|
||||
service_type="file_store",
|
||||
store_type="minio", detail_func_name="check_minio_alive")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "redis":
|
||||
@ -258,7 +284,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
password = v.get('password')
|
||||
db: int = v.get('db')
|
||||
config = RedisConfig(id=id_count, name=name, host=host, port=port, password=password, database=db,
|
||||
service_type="message_queue", mq_type="redis")
|
||||
service_type="message_queue", mq_type="redis", detail_func_name="get_redis_info")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "mysql":
|
||||
@ -268,7 +294,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
|
||||
username = v.get('user')
|
||||
password = v.get('password')
|
||||
config = MySQLConfig(id=id_count, name=name, host=host, port=port, username=username, password=password,
|
||||
service_type="meta_data", meta_type="mysql")
|
||||
service_type="meta_data", meta_type="mysql", detail_func_name="get_mysql_status")
|
||||
configurations.append(config)
|
||||
id_count += 1
|
||||
case "admin":
|
||||
@ -12,4 +12,4 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
#
|
||||
34
admin/server/responses.py
Normal file
34
admin/server/responses.py
Normal file
@ -0,0 +1,34 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from flask import jsonify
|
||||
|
||||
|
||||
def success_response(data=None, message="Success", code=0):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 200
|
||||
|
||||
|
||||
def error_response(message="Error", code=-1, data=None):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 400
|
||||
@ -1,9 +1,26 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from flask import Blueprint, request
|
||||
|
||||
from auth import login_verify
|
||||
from responses import success_response, error_response
|
||||
from services import UserMgr, ServiceMgr, UserServiceMgr
|
||||
from exceptions import AdminException
|
||||
from api.common.exceptions import AdminException
|
||||
|
||||
admin_bp = Blueprint('admin', __name__, url_prefix='/api/v1/admin')
|
||||
|
||||
@ -42,7 +59,7 @@ def create_user():
|
||||
res = UserMgr.create_user(username, password, role)
|
||||
if res["success"]:
|
||||
user_info = res["user_info"]
|
||||
user_info.pop("password") # do not return password
|
||||
user_info.pop("password") # do not return password
|
||||
return success_response(user_info, "User created successfully")
|
||||
else:
|
||||
return error_response("create user failed")
|
||||
@ -102,6 +119,7 @@ def alter_user_activate_status(username):
|
||||
except Exception as e:
|
||||
return error_response(str(e), 500)
|
||||
|
||||
|
||||
@admin_bp.route('/users/<username>', methods=['GET'])
|
||||
@login_verify
|
||||
def get_user_details(username):
|
||||
@ -114,6 +132,7 @@ def get_user_details(username):
|
||||
except Exception as e:
|
||||
return error_response(str(e), 500)
|
||||
|
||||
|
||||
@admin_bp.route('/users/<username>/datasets', methods=['GET'])
|
||||
@login_verify
|
||||
def get_user_datasets(username):
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import re
|
||||
from werkzeug.security import check_password_hash
|
||||
from api.db import ActiveEnum
|
||||
@ -7,16 +24,20 @@ from api.db.services.canvas_service import UserCanvasService
|
||||
from api.db.services.user_service import TenantService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.utils.crypt import decrypt
|
||||
from exceptions import AdminException, UserAlreadyExistsError, UserNotFoundError
|
||||
from api.utils import health_utils
|
||||
|
||||
from api.common.exceptions import AdminException, UserAlreadyExistsError, UserNotFoundError
|
||||
from config import SERVICE_CONFIGS
|
||||
|
||||
|
||||
class UserMgr:
|
||||
@staticmethod
|
||||
def get_all_users():
|
||||
users = UserService.get_all_users()
|
||||
result = []
|
||||
for user in users:
|
||||
result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date, 'is_active': user.is_active})
|
||||
result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date,
|
||||
'is_active': user.is_active})
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
@ -110,6 +131,7 @@ class UserMgr:
|
||||
UserService.update_user(usr.id, {"is_active": target_status})
|
||||
return f"Turn {_activate_status} user activate status successfully!"
|
||||
|
||||
|
||||
class UserServiceMgr:
|
||||
|
||||
@staticmethod
|
||||
@ -148,14 +170,24 @@ class UserServiceMgr:
|
||||
'canvas_category': r['canvas_category']
|
||||
} for r in res]
|
||||
|
||||
|
||||
class ServiceMgr:
|
||||
|
||||
@staticmethod
|
||||
def get_all_services():
|
||||
result = []
|
||||
configs = SERVICE_CONFIGS.configs
|
||||
for config in configs:
|
||||
result.append(config.to_dict())
|
||||
for service_id, config in enumerate(configs):
|
||||
config_dict = config.to_dict()
|
||||
try:
|
||||
service_detail = ServiceMgr.get_service_details(service_id)
|
||||
if "status" in service_detail:
|
||||
config_dict['status'] = service_detail['status']
|
||||
else:
|
||||
config_dict['status'] = 'timeout'
|
||||
except Exception:
|
||||
config_dict['status'] = 'timeout'
|
||||
result.append(config_dict)
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
@ -164,7 +196,22 @@ class ServiceMgr:
|
||||
|
||||
@staticmethod
|
||||
def get_service_details(service_id: int):
|
||||
raise AdminException("get_service_details: not implemented")
|
||||
service_id = int(service_id)
|
||||
configs = SERVICE_CONFIGS.configs
|
||||
service_config_mapping = {
|
||||
c.id: {
|
||||
'name': c.name,
|
||||
'detail_func_name': c.detail_func_name
|
||||
} for c in configs
|
||||
}
|
||||
service_info = service_config_mapping.get(service_id, {})
|
||||
if not service_info:
|
||||
raise AdminException(f"invalid service_id: {service_id}")
|
||||
|
||||
detail_func = getattr(health_utils, service_info.get('detail_func_name'))
|
||||
res = detail_func()
|
||||
res.update({'service_name': service_info.get('name')})
|
||||
return res
|
||||
|
||||
@staticmethod
|
||||
def shutdown_service(service_id: int):
|
||||
@ -203,7 +203,6 @@ class Canvas(Graph):
|
||||
self.history = []
|
||||
self.retrieval = []
|
||||
self.memory = []
|
||||
|
||||
for k in self.globals.keys():
|
||||
if isinstance(self.globals[k], str):
|
||||
self.globals[k] = ""
|
||||
@ -292,7 +291,6 @@ class Canvas(Graph):
|
||||
"thoughts": self.get_component_thoughts(self.path[i])
|
||||
})
|
||||
_run_batch(idx, to)
|
||||
|
||||
# post processing of components invocation
|
||||
for i in range(idx, to):
|
||||
cpn = self.get_component(self.path[i])
|
||||
@ -393,7 +391,6 @@ class Canvas(Graph):
|
||||
self.path = path
|
||||
yield decorate("user_inputs", {"inputs": another_inputs, "tips": tips})
|
||||
return
|
||||
|
||||
self.path = self.path[:idx]
|
||||
if not self.error:
|
||||
yield decorate("workflow_finished",
|
||||
|
||||
@ -346,3 +346,11 @@ Respond immediately with your final comprehensive answer.
|
||||
|
||||
return "Error occurred."
|
||||
|
||||
def reset(self, temp=False):
|
||||
"""
|
||||
Reset all tools if they have a reset method. This avoids errors for tools like MCPToolCallSession.
|
||||
"""
|
||||
for k, cpn in self.tools.items():
|
||||
if hasattr(cpn, "reset") and callable(cpn.reset):
|
||||
cpn.reset()
|
||||
|
||||
|
||||
@ -19,11 +19,12 @@ import os
|
||||
import re
|
||||
import time
|
||||
from abc import ABC
|
||||
|
||||
import requests
|
||||
|
||||
from agent.component.base import ComponentBase, ComponentParamBase
|
||||
from api.utils.api_utils import timeout
|
||||
from deepdoc.parser import HtmlParser
|
||||
from agent.component.base import ComponentBase, ComponentParamBase
|
||||
|
||||
|
||||
class InvokeParam(ComponentParamBase):
|
||||
@ -43,11 +44,11 @@ class InvokeParam(ComponentParamBase):
|
||||
self.datatype = "json" # New parameter to determine data posting type
|
||||
|
||||
def check(self):
|
||||
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ['get', 'post', 'put'])
|
||||
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ["get", "post", "put"])
|
||||
self.check_empty(self.url, "End point URL")
|
||||
self.check_positive_integer(self.timeout, "Timeout time in second")
|
||||
self.check_boolean(self.clean_html, "Clean HTML")
|
||||
self.check_valid_value(self.datatype.lower(), "Data post type", ['json', 'formdata']) # Check for valid datapost value
|
||||
self.check_valid_value(self.datatype.lower(), "Data post type", ["json", "formdata"]) # Check for valid datapost value
|
||||
|
||||
|
||||
class Invoke(ComponentBase, ABC):
|
||||
@ -63,6 +64,18 @@ class Invoke(ComponentBase, ABC):
|
||||
args[para["key"]] = self._canvas.get_variable_value(para["ref"])
|
||||
|
||||
url = self._param.url.strip()
|
||||
|
||||
def replace_variable(match):
|
||||
var_name = match.group(1)
|
||||
try:
|
||||
value = self._canvas.get_variable_value(var_name)
|
||||
return str(value or "")
|
||||
except Exception:
|
||||
return ""
|
||||
|
||||
# {base_url} or {component_id@variable_name}
|
||||
url = re.sub(r"\{([a-zA-Z_][a-zA-Z0-9_.@-]*)\}", replace_variable, url)
|
||||
|
||||
if url.find("http") != 0:
|
||||
url = "http://" + url
|
||||
|
||||
@ -75,52 +88,32 @@ class Invoke(ComponentBase, ABC):
|
||||
proxies = {"http": self._param.proxy, "https": self._param.proxy}
|
||||
|
||||
last_e = ""
|
||||
for _ in range(self._param.max_retries+1):
|
||||
for _ in range(self._param.max_retries + 1):
|
||||
try:
|
||||
if method == 'get':
|
||||
response = requests.get(url=url,
|
||||
params=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
if method == "get":
|
||||
response = requests.get(url=url, params=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
if self._param.clean_html:
|
||||
sections = HtmlParser()(None, response.content)
|
||||
self.set_output("result", "\n".join(sections))
|
||||
else:
|
||||
self.set_output("result", response.text)
|
||||
|
||||
if method == 'put':
|
||||
if self._param.datatype.lower() == 'json':
|
||||
response = requests.put(url=url,
|
||||
json=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
if method == "put":
|
||||
if self._param.datatype.lower() == "json":
|
||||
response = requests.put(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
else:
|
||||
response = requests.put(url=url,
|
||||
data=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
response = requests.put(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
if self._param.clean_html:
|
||||
sections = HtmlParser()(None, response.content)
|
||||
self.set_output("result", "\n".join(sections))
|
||||
else:
|
||||
self.set_output("result", response.text)
|
||||
|
||||
if method == 'post':
|
||||
if self._param.datatype.lower() == 'json':
|
||||
response = requests.post(url=url,
|
||||
json=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
if method == "post":
|
||||
if self._param.datatype.lower() == "json":
|
||||
response = requests.post(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
else:
|
||||
response = requests.post(url=url,
|
||||
data=args,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
timeout=self._param.timeout)
|
||||
response = requests.post(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
|
||||
if self._param.clean_html:
|
||||
self.set_output("result", "\n".join(sections))
|
||||
else:
|
||||
|
||||
726
agent/templates/advanced_ingestion_pipeline.json
Normal file
726
agent/templates/advanced_ingestion_pipeline.json
Normal file
File diff suppressed because one or more lines are too long
493
agent/templates/chunk_summary.json
Normal file
493
agent/templates/chunk_summary.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
1172
agent/templates/stock_research_report.json
Normal file
1172
agent/templates/stock_research_report.json
Normal file
File diff suppressed because one or more lines are too long
369
agent/templates/title_chunker.json
Normal file
369
agent/templates/title_chunker.json
Normal file
File diff suppressed because one or more lines are too long
@ -156,8 +156,8 @@ class CodeExec(ToolBase, ABC):
|
||||
self.set_output("_ERROR", "construct code request error: " + str(e))
|
||||
|
||||
try:
|
||||
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
|
||||
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code)
|
||||
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
|
||||
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run, code_req: {code_req}, resp.status_code {resp.status_code}:")
|
||||
if resp.status_code != 200:
|
||||
resp.raise_for_status()
|
||||
body = resp.json()
|
||||
|
||||
@ -53,12 +53,13 @@ class ExeSQLParam(ToolParamBase):
|
||||
self.max_records = 1024
|
||||
|
||||
def check(self):
|
||||
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql', 'IBM DB2'])
|
||||
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql', 'IBM DB2', 'trino'])
|
||||
self.check_empty(self.database, "Database name")
|
||||
self.check_empty(self.username, "database username")
|
||||
self.check_empty(self.host, "IP Address")
|
||||
self.check_positive_integer(self.port, "IP Port")
|
||||
self.check_empty(self.password, "Database password")
|
||||
if self.db_type != "trino":
|
||||
self.check_empty(self.password, "Database password")
|
||||
self.check_positive_integer(self.max_records, "Maximum number of records")
|
||||
if self.database == "rag_flow":
|
||||
if self.host == "ragflow-mysql":
|
||||
@ -123,6 +124,45 @@ class ExeSQL(ToolBase, ABC):
|
||||
r'PWD=' + self._param.password
|
||||
)
|
||||
db = pyodbc.connect(conn_str)
|
||||
elif self._param.db_type == 'trino':
|
||||
try:
|
||||
import trino
|
||||
from trino.auth import BasicAuthentication
|
||||
except Exception:
|
||||
raise Exception("Missing dependency 'trino'. Please install: pip install trino")
|
||||
|
||||
def _parse_catalog_schema(db: str):
|
||||
if not db:
|
||||
return None, None
|
||||
if "." in db:
|
||||
c, s = db.split(".", 1)
|
||||
elif "/" in db:
|
||||
c, s = db.split("/", 1)
|
||||
else:
|
||||
c, s = db, "default"
|
||||
return c, s
|
||||
|
||||
catalog, schema = _parse_catalog_schema(self._param.database)
|
||||
if not catalog:
|
||||
raise Exception("For Trino, `database` must be 'catalog.schema' or at least 'catalog'.")
|
||||
|
||||
http_scheme = "https" if os.environ.get("TRINO_USE_TLS", "0") == "1" else "http"
|
||||
auth = None
|
||||
if http_scheme == "https" and self._param.password:
|
||||
auth = BasicAuthentication(self._param.username, self._param.password)
|
||||
|
||||
try:
|
||||
db = trino.dbapi.connect(
|
||||
host=self._param.host,
|
||||
port=int(self._param.port or 8080),
|
||||
user=self._param.username or "ragflow",
|
||||
catalog=catalog,
|
||||
schema=schema or "default",
|
||||
http_scheme=http_scheme,
|
||||
auth=auth
|
||||
)
|
||||
except Exception as e:
|
||||
raise Exception("Database Connection Failed! \n" + str(e))
|
||||
elif self._param.db_type == 'IBM DB2':
|
||||
import ibm_db
|
||||
conn_str = (
|
||||
|
||||
@ -85,13 +85,7 @@ class PubMed(ToolBase, ABC):
|
||||
self._retrieve_chunks(pubmedcnt.findall("PubmedArticle"),
|
||||
get_title=lambda child: child.find("MedlineCitation").find("Article").find("ArticleTitle").text,
|
||||
get_url=lambda child: "https://pubmed.ncbi.nlm.nih.gov/" + child.find("MedlineCitation").find("PMID").text,
|
||||
get_content=lambda child: child.find("MedlineCitation") \
|
||||
.find("Article") \
|
||||
.find("Abstract") \
|
||||
.find("AbstractText").text \
|
||||
if child.find("MedlineCitation")\
|
||||
.find("Article").find("Abstract") \
|
||||
else "No abstract available")
|
||||
get_content=lambda child: self._format_pubmed_content(child),)
|
||||
return self.output("formalized_content")
|
||||
except Exception as e:
|
||||
last_e = e
|
||||
@ -104,5 +98,50 @@ class PubMed(ToolBase, ABC):
|
||||
|
||||
assert False, self.output()
|
||||
|
||||
def _format_pubmed_content(self, child):
|
||||
"""Extract structured reference info from PubMed XML"""
|
||||
def safe_find(path):
|
||||
node = child
|
||||
for p in path.split("/"):
|
||||
if node is None:
|
||||
return None
|
||||
node = node.find(p)
|
||||
return node.text if node is not None and node.text else None
|
||||
|
||||
title = safe_find("MedlineCitation/Article/ArticleTitle") or "No title"
|
||||
abstract = safe_find("MedlineCitation/Article/Abstract/AbstractText") or "No abstract available"
|
||||
journal = safe_find("MedlineCitation/Article/Journal/Title") or "Unknown Journal"
|
||||
volume = safe_find("MedlineCitation/Article/Journal/JournalIssue/Volume") or "-"
|
||||
issue = safe_find("MedlineCitation/Article/Journal/JournalIssue/Issue") or "-"
|
||||
pages = safe_find("MedlineCitation/Article/Pagination/MedlinePgn") or "-"
|
||||
|
||||
# Authors
|
||||
authors = []
|
||||
for author in child.findall(".//AuthorList/Author"):
|
||||
lastname = safe_find("LastName") or ""
|
||||
forename = safe_find("ForeName") or ""
|
||||
fullname = f"{forename} {lastname}".strip()
|
||||
if fullname:
|
||||
authors.append(fullname)
|
||||
authors_str = ", ".join(authors) if authors else "Unknown Authors"
|
||||
|
||||
# DOI
|
||||
doi = None
|
||||
for eid in child.findall(".//ArticleId"):
|
||||
if eid.attrib.get("IdType") == "doi":
|
||||
doi = eid.text
|
||||
break
|
||||
|
||||
return (
|
||||
f"Title: {title}\n"
|
||||
f"Authors: {authors_str}\n"
|
||||
f"Journal: {journal}\n"
|
||||
f"Volume: {volume}\n"
|
||||
f"Issue: {issue}\n"
|
||||
f"Pages: {pages}\n"
|
||||
f"DOI: {doi or '-'}\n"
|
||||
f"Abstract: {abstract.strip()}"
|
||||
)
|
||||
|
||||
def thoughts(self) -> str:
|
||||
return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!"))
|
||||
|
||||
@ -57,6 +57,7 @@ class RetrievalParam(ToolParamBase):
|
||||
self.empty_response = ""
|
||||
self.use_kg = False
|
||||
self.cross_languages = []
|
||||
self.toc_enhance = False
|
||||
|
||||
def check(self):
|
||||
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
|
||||
@ -121,7 +122,7 @@ class Retrieval(ToolBase, ABC):
|
||||
|
||||
if kbs:
|
||||
query = re.sub(r"^user[::\s]*", "", query, flags=re.IGNORECASE)
|
||||
kbinfos = settings.retrievaler.retrieval(
|
||||
kbinfos = settings.retriever.retrieval(
|
||||
query,
|
||||
embd_mdl,
|
||||
[kb.tenant_id for kb in kbs],
|
||||
@ -134,8 +135,13 @@ class Retrieval(ToolBase, ABC):
|
||||
rerank_mdl=rerank_mdl,
|
||||
rank_feature=label_question(query, kbs),
|
||||
)
|
||||
if self._param.toc_enhance:
|
||||
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT)
|
||||
cks = settings.retriever.retrieval_by_toc(query, kbinfos["chunks"], [kb.tenant_id for kb in kbs], chat_mdl, self._param.top_n)
|
||||
if cks:
|
||||
kbinfos["chunks"] = cks
|
||||
if self._param.use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(query,
|
||||
ck = settings.kg_retriever.retrieval(query,
|
||||
[kb.tenant_id for kb in kbs],
|
||||
kb_ids,
|
||||
embd_mdl,
|
||||
@ -146,7 +152,7 @@ class Retrieval(ToolBase, ABC):
|
||||
kbinfos = {"chunks": [], "doc_aggs": []}
|
||||
|
||||
if self._param.use_kg and kbs:
|
||||
ck = settings.kg_retrievaler.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ck["content"] = ck["content_with_weight"]
|
||||
del ck["content_with_weight"]
|
||||
|
||||
@ -85,7 +85,7 @@ class SearXNG(ToolBase, ABC):
|
||||
self.set_output("formalized_content", "")
|
||||
return ""
|
||||
|
||||
searxng_url = (kwargs.get("searxng_url") or getattr(self._param, "searxng_url", "") or "").strip()
|
||||
searxng_url = (getattr(self._param, "searxng_url", "") or kwargs.get("searxng_url") or "").strip()
|
||||
# In try-run, if no URL configured, just return empty instead of raising
|
||||
if not searxng_url:
|
||||
self.set_output("formalized_content", "")
|
||||
|
||||
@ -536,7 +536,7 @@ def list_chunks():
|
||||
)
|
||||
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
||||
|
||||
res = settings.retrievaler.chunk_list(doc_id, tenant_id, kb_ids)
|
||||
res = settings.retriever.chunk_list(doc_id, tenant_id, kb_ids)
|
||||
res = [
|
||||
{
|
||||
"content": res_item["content_with_weight"],
|
||||
@ -884,7 +884,7 @@ def retrieval():
|
||||
if req.get("keyword", False):
|
||||
chat_mdl = LLMBundle(kbs[0].tenant_id, LLMType.CHAT)
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
|
||||
ranks = settings.retriever.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
|
||||
similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl, highlight= highlight,
|
||||
rank_feature=label_question(question, kbs))
|
||||
|
||||
@ -51,7 +51,7 @@ from rag.utils.redis_conn import REDIS_CONN
|
||||
@manager.route('/templates', methods=['GET']) # noqa: F821
|
||||
@login_required
|
||||
def templates():
|
||||
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.query(canvas_category=CanvasCategory.Agent)])
|
||||
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.get_all()])
|
||||
|
||||
|
||||
@manager.route('/rm', methods=['POST']) # noqa: F821
|
||||
@ -409,6 +409,49 @@ def test_db_connect():
|
||||
ibm_db.fetch_assoc(stmt)
|
||||
ibm_db.close(conn)
|
||||
return get_json_result(data="Database Connection Successful!")
|
||||
elif req["db_type"] == 'trino':
|
||||
def _parse_catalog_schema(db: str):
|
||||
if not db:
|
||||
return None, None
|
||||
if "." in db:
|
||||
c, s = db.split(".", 1)
|
||||
elif "/" in db:
|
||||
c, s = db.split("/", 1)
|
||||
else:
|
||||
c, s = db, "default"
|
||||
return c, s
|
||||
try:
|
||||
import trino
|
||||
import os
|
||||
from trino.auth import BasicAuthentication
|
||||
except Exception:
|
||||
return server_error_response("Missing dependency 'trino'. Please install: pip install trino")
|
||||
|
||||
catalog, schema = _parse_catalog_schema(req["database"])
|
||||
if not catalog:
|
||||
return server_error_response("For Trino, 'database' must be 'catalog.schema' or at least 'catalog'.")
|
||||
|
||||
http_scheme = "https" if os.environ.get("TRINO_USE_TLS", "0") == "1" else "http"
|
||||
|
||||
auth = None
|
||||
if http_scheme == "https" and req.get("password"):
|
||||
auth = BasicAuthentication(req.get("username") or "ragflow", req["password"])
|
||||
|
||||
conn = trino.dbapi.connect(
|
||||
host=req["host"],
|
||||
port=int(req["port"] or 8080),
|
||||
user=req["username"] or "ragflow",
|
||||
catalog=catalog,
|
||||
schema=schema or "default",
|
||||
http_scheme=http_scheme,
|
||||
auth=auth
|
||||
)
|
||||
cur = conn.cursor()
|
||||
cur.execute("SELECT 1")
|
||||
cur.fetchall()
|
||||
cur.close()
|
||||
conn.close()
|
||||
return get_json_result(data="Database Connection Successful!")
|
||||
else:
|
||||
return server_error_response("Unsupported database type.")
|
||||
if req["db_type"] != 'mssql':
|
||||
|
||||
@ -60,7 +60,7 @@ def list_chunk():
|
||||
}
|
||||
if "available_int" in req:
|
||||
query["available_int"] = int(req["available_int"])
|
||||
sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
|
||||
sres = settings.retriever.search(query, search.index_name(tenant_id), kb_ids, highlight=["content_ltks"])
|
||||
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
@ -346,7 +346,7 @@ def retrieval_test():
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
labels = label_question(question, [kb])
|
||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
||||
ranks = settings.retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
||||
float(req.get("similarity_threshold", 0.0)),
|
||||
float(req.get("vector_similarity_weight", 0.3)),
|
||||
top,
|
||||
@ -354,7 +354,7 @@ def retrieval_test():
|
||||
rank_feature=labels
|
||||
)
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question,
|
||||
ck = settings.kg_retriever.retrieval(question,
|
||||
tenant_ids,
|
||||
kb_ids,
|
||||
embd_mdl,
|
||||
@ -384,7 +384,7 @@ def knowledge_graph():
|
||||
"doc_ids": [doc_id],
|
||||
"knowledge_graph_kwd": ["graph", "mind_map"]
|
||||
}
|
||||
sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
|
||||
sres = settings.retriever.search(req, search.index_name(tenant_id), kb_ids)
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
for id in sres.ids[:2]:
|
||||
ty = sres.field[id]["knowledge_graph_kwd"]
|
||||
|
||||
@ -24,6 +24,7 @@ from flask import request
|
||||
from flask_login import current_user, login_required
|
||||
|
||||
from api import settings
|
||||
from api.common.check_team_permission import check_kb_team_permission
|
||||
from api.constants import FILE_NAME_LEN_LIMIT, IMG_BASE64_PREFIX
|
||||
from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileSource, FileType, ParserType, TaskStatus
|
||||
from api.db.db_models import File, Task
|
||||
@ -68,8 +69,10 @@ def upload():
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
if not e:
|
||||
raise LookupError("Can't find this knowledgebase!")
|
||||
err, files = FileService.upload_document(kb, file_objs, current_user.id)
|
||||
if not check_kb_team_permission(kb, current_user.id):
|
||||
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
err, files = FileService.upload_document(kb, file_objs, current_user.id)
|
||||
if err:
|
||||
return get_json_result(data=files, message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
|
||||
|
||||
@ -94,6 +97,8 @@ def web_crawl():
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
if not e:
|
||||
raise LookupError("Can't find this knowledgebase!")
|
||||
if check_kb_team_permission(kb, current_user.id):
|
||||
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
blob = html2pdf(url)
|
||||
if not blob:
|
||||
@ -552,8 +557,8 @@ def get(doc_id):
|
||||
@login_required
|
||||
@validate_request("doc_id")
|
||||
def change_parser():
|
||||
req = request.json
|
||||
|
||||
req = request.json
|
||||
if not DocumentService.accessible(req["doc_id"], current_user.id):
|
||||
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
@ -563,7 +568,7 @@ def change_parser():
|
||||
|
||||
def reset_doc():
|
||||
nonlocal doc
|
||||
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": TaskStatus.UNSTART.value})
|
||||
e = DocumentService.update_by_id(doc.id, {"pipeline_id": req["pipeline_id"], "parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": TaskStatus.UNSTART.value})
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
if doc.token_num > 0:
|
||||
@ -577,7 +582,7 @@ def change_parser():
|
||||
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
|
||||
|
||||
try:
|
||||
if "pipeline_id" in req:
|
||||
if "pipeline_id" in req and req["pipeline_id"] != "":
|
||||
if doc.pipeline_id == req["pipeline_id"]:
|
||||
return get_json_result(data=True)
|
||||
DocumentService.update_by_id(doc.id, {"pipeline_id": req["pipeline_id"]})
|
||||
|
||||
@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License
|
||||
#
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
@ -21,6 +22,7 @@ import flask
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
|
||||
from api.common.check_team_permission import check_file_team_permission
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.file2document_service import File2DocumentService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
@ -233,54 +235,63 @@ def get_all_parent_folders():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/rm', methods=['POST']) # noqa: F821
|
||||
@manager.route("/rm", methods=["POST"]) # noqa: F821
|
||||
@login_required
|
||||
@validate_request("file_ids")
|
||||
def rm():
|
||||
req = request.json
|
||||
file_ids = req["file_ids"]
|
||||
|
||||
def _delete_single_file(file):
|
||||
try:
|
||||
if file.location:
|
||||
STORAGE_IMPL.rm(file.parent_id, file.location)
|
||||
except Exception:
|
||||
logging.exception(f"Fail to remove object: {file.parent_id}/{file.location}")
|
||||
|
||||
informs = File2DocumentService.get_by_file_id(file.id)
|
||||
for inform in informs:
|
||||
doc_id = inform.document_id
|
||||
e, doc = DocumentService.get_by_id(doc_id)
|
||||
if e and doc:
|
||||
tenant_id = DocumentService.get_tenant_id(doc_id)
|
||||
if tenant_id:
|
||||
DocumentService.remove_document(doc, tenant_id)
|
||||
File2DocumentService.delete_by_file_id(file.id)
|
||||
|
||||
FileService.delete(file)
|
||||
|
||||
def _delete_folder_recursive(folder, tenant_id):
|
||||
sub_files = FileService.list_all_files_by_parent_id(folder.id)
|
||||
for sub_file in sub_files:
|
||||
if sub_file.type == FileType.FOLDER.value:
|
||||
_delete_folder_recursive(sub_file, tenant_id)
|
||||
else:
|
||||
_delete_single_file(sub_file)
|
||||
|
||||
FileService.delete(folder)
|
||||
|
||||
try:
|
||||
for file_id in file_ids:
|
||||
e, file = FileService.get_by_id(file_id)
|
||||
if not e:
|
||||
if not e or not file:
|
||||
return get_data_error_result(message="File or Folder not found!")
|
||||
if not file.tenant_id:
|
||||
return get_data_error_result(message="Tenant not found!")
|
||||
if file.tenant_id != current_user.id:
|
||||
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
if not check_file_team_permission(file, current_user.id):
|
||||
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
if file.source_type == FileSource.KNOWLEDGEBASE:
|
||||
continue
|
||||
|
||||
if file.type == FileType.FOLDER.value:
|
||||
file_id_list = FileService.get_all_innermost_file_ids(file_id, [])
|
||||
for inner_file_id in file_id_list:
|
||||
e, file = FileService.get_by_id(inner_file_id)
|
||||
if not e:
|
||||
return get_data_error_result(message="File not found!")
|
||||
STORAGE_IMPL.rm(file.parent_id, file.location)
|
||||
FileService.delete_folder_by_pf_id(current_user.id, file_id)
|
||||
else:
|
||||
STORAGE_IMPL.rm(file.parent_id, file.location)
|
||||
if not FileService.delete(file):
|
||||
return get_data_error_result(
|
||||
message="Database error (File removal)!")
|
||||
_delete_folder_recursive(file, current_user.id)
|
||||
continue
|
||||
|
||||
# delete file2document
|
||||
informs = File2DocumentService.get_by_file_id(file_id)
|
||||
for inform in informs:
|
||||
doc_id = inform.document_id
|
||||
e, doc = DocumentService.get_by_id(doc_id)
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
tenant_id = DocumentService.get_tenant_id(doc_id)
|
||||
if not tenant_id:
|
||||
return get_data_error_result(message="Tenant not found!")
|
||||
if not DocumentService.remove_document(doc, tenant_id):
|
||||
return get_data_error_result(
|
||||
message="Database error (Document removal)!")
|
||||
File2DocumentService.delete_by_file_id(file_id)
|
||||
_delete_single_file(file)
|
||||
|
||||
return get_json_result(data=True)
|
||||
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
@ -294,7 +305,7 @@ def rename():
|
||||
e, file = FileService.get_by_id(req["file_id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="File not found!")
|
||||
if file.tenant_id != current_user.id:
|
||||
if not check_file_team_permission(file, current_user.id):
|
||||
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
if file.type != FileType.FOLDER.value \
|
||||
and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
|
||||
@ -332,7 +343,7 @@ def get(file_id):
|
||||
e, file = FileService.get_by_id(file_id)
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
if file.tenant_id != current_user.id:
|
||||
if not check_file_team_permission(file, current_user.id):
|
||||
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
blob = STORAGE_IMPL.get(file.parent_id, file.location)
|
||||
@ -354,31 +365,89 @@ def get(file_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/mv', methods=['POST']) # noqa: F821
|
||||
@manager.route("/mv", methods=["POST"]) # noqa: F821
|
||||
@login_required
|
||||
@validate_request("src_file_ids", "dest_file_id")
|
||||
def move():
|
||||
req = request.json
|
||||
try:
|
||||
file_ids = req["src_file_ids"]
|
||||
parent_id = req["dest_file_id"]
|
||||
dest_parent_id = req["dest_file_id"]
|
||||
|
||||
ok, dest_folder = FileService.get_by_id(dest_parent_id)
|
||||
if not ok or not dest_folder:
|
||||
return get_data_error_result(message="Parent Folder not found!")
|
||||
|
||||
files = FileService.get_by_ids(file_ids)
|
||||
files_dict = {}
|
||||
for file in files:
|
||||
files_dict[file.id] = file
|
||||
if not files:
|
||||
return get_data_error_result(message="Source files not found!")
|
||||
|
||||
files_dict = {f.id: f for f in files}
|
||||
|
||||
for file_id in file_ids:
|
||||
file = files_dict[file_id]
|
||||
file = files_dict.get(file_id)
|
||||
if not file:
|
||||
return get_data_error_result(message="File or Folder not found!")
|
||||
if not file.tenant_id:
|
||||
return get_data_error_result(message="Tenant not found!")
|
||||
if file.tenant_id != current_user.id:
|
||||
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
fe, _ = FileService.get_by_id(parent_id)
|
||||
if not fe:
|
||||
return get_data_error_result(message="Parent Folder not found!")
|
||||
FileService.move_file(file_ids, parent_id)
|
||||
if not check_file_team_permission(file, current_user.id):
|
||||
return get_json_result(
|
||||
data=False,
|
||||
message="No authorization.",
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR,
|
||||
)
|
||||
|
||||
def _move_entry_recursive(source_file_entry, dest_folder):
|
||||
if source_file_entry.type == FileType.FOLDER.value:
|
||||
existing_folder = FileService.query(name=source_file_entry.name, parent_id=dest_folder.id)
|
||||
if existing_folder:
|
||||
new_folder = existing_folder[0]
|
||||
else:
|
||||
new_folder = FileService.insert(
|
||||
{
|
||||
"id": get_uuid(),
|
||||
"parent_id": dest_folder.id,
|
||||
"tenant_id": source_file_entry.tenant_id,
|
||||
"created_by": current_user.id,
|
||||
"name": source_file_entry.name,
|
||||
"location": "",
|
||||
"size": 0,
|
||||
"type": FileType.FOLDER.value,
|
||||
}
|
||||
)
|
||||
|
||||
sub_files = FileService.list_all_files_by_parent_id(source_file_entry.id)
|
||||
for sub_file in sub_files:
|
||||
_move_entry_recursive(sub_file, new_folder)
|
||||
|
||||
FileService.delete_by_id(source_file_entry.id)
|
||||
return
|
||||
|
||||
old_parent_id = source_file_entry.parent_id
|
||||
old_location = source_file_entry.location
|
||||
filename = source_file_entry.name
|
||||
|
||||
new_location = filename
|
||||
while STORAGE_IMPL.obj_exist(dest_folder.id, new_location):
|
||||
new_location += "_"
|
||||
|
||||
try:
|
||||
STORAGE_IMPL.move(old_parent_id, old_location, dest_folder.id, new_location)
|
||||
except Exception as storage_err:
|
||||
raise RuntimeError(f"Move file failed at storage layer: {str(storage_err)}")
|
||||
|
||||
FileService.update_by_id(
|
||||
source_file_entry.id,
|
||||
{
|
||||
"parent_id": dest_folder.id,
|
||||
"location": new_location,
|
||||
},
|
||||
)
|
||||
|
||||
for file in files:
|
||||
_move_entry_recursive(file, dest_folder)
|
||||
|
||||
return get_json_result(data=True)
|
||||
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
@ -36,8 +36,10 @@ from api import settings
|
||||
from rag.nlp import search
|
||||
from api.constants import DATASET_NAME_LIMIT
|
||||
from rag.settings import PAGERANK_FLD
|
||||
from rag.utils.redis_conn import REDIS_CONN
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
|
||||
@manager.route('/create', methods=['post']) # noqa: F821
|
||||
@login_required
|
||||
@validate_request("name")
|
||||
@ -186,6 +188,9 @@ def detail():
|
||||
return get_data_error_result(
|
||||
message="Can't find this knowledgebase!")
|
||||
kb["size"] = DocumentService.get_total_size_by_kb_id(kb_id=kb["id"],keywords="", run_status=[], types=[])
|
||||
for key in ["graphrag_task_finish_at", "raptor_task_finish_at", "mindmap_task_finish_at"]:
|
||||
if finish_at := kb.get(key):
|
||||
kb[key] = finish_at.strftime("%Y-%m-%d %H:%M:%S")
|
||||
return get_json_result(data=kb)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
@ -281,7 +286,7 @@ def list_tags(kb_id):
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retrievaler.all_tags(tenant["tenant_id"], [kb_id])
|
||||
tags += settings.retriever.all_tags(tenant["tenant_id"], [kb_id])
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
@ -300,7 +305,7 @@ def list_tags_from_kbs():
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retrievaler.all_tags(tenant["tenant_id"], kb_ids)
|
||||
tags += settings.retriever.all_tags(tenant["tenant_id"], kb_ids)
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
@ -361,7 +366,7 @@ def knowledge_graph(kb_id):
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
|
||||
return get_json_result(data=obj)
|
||||
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [kb_id])
|
||||
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [kb_id])
|
||||
if not len(sres.ids):
|
||||
return get_json_result(data=obj)
|
||||
|
||||
@ -759,18 +764,25 @@ def delete_kb_task():
|
||||
match pipeline_task_type:
|
||||
case PipelineTaskType.GRAPH_RAG:
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
|
||||
kb_task_id = "graphrag_task_id"
|
||||
kb_task_id_field = "graphrag_task_id"
|
||||
task_id = kb.graphrag_task_id
|
||||
kb_task_finish_at = "graphrag_task_finish_at"
|
||||
case PipelineTaskType.RAPTOR:
|
||||
kb_task_id = "raptor_task_id"
|
||||
kb_task_id_field = "raptor_task_id"
|
||||
task_id = kb.raptor_task_id
|
||||
kb_task_finish_at = "raptor_task_finish_at"
|
||||
case PipelineTaskType.MINDMAP:
|
||||
kb_task_id = "mindmap_task_id"
|
||||
kb_task_id_field = "mindmap_task_id"
|
||||
task_id = kb.mindmap_task_id
|
||||
kb_task_finish_at = "mindmap_task_finish_at"
|
||||
case _:
|
||||
return get_error_data_result(message="Internal Error: Invalid task type")
|
||||
|
||||
ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id: "", kb_task_finish_at: None})
|
||||
def cancel_task(task_id):
|
||||
REDIS_CONN.set(f"{task_id}-cancel", "x")
|
||||
cancel_task(task_id)
|
||||
|
||||
ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id_field: "", kb_task_finish_at: None})
|
||||
if not ok:
|
||||
return server_error_response(f"Internal error: cannot delete task {pipeline_task_type}")
|
||||
|
||||
|
||||
@ -194,6 +194,9 @@ def add_llm():
|
||||
elif factory == "Azure-OpenAI":
|
||||
api_key = apikey_json(["api_key", "api_version"])
|
||||
|
||||
elif factory == "OpenRouter":
|
||||
api_key = apikey_json(["api_key", "provider_order"])
|
||||
|
||||
llm = {
|
||||
"tenant_id": current_user.id,
|
||||
"llm_factory": factory,
|
||||
|
||||
@ -1,8 +1,26 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from flask import Response
|
||||
from flask_login import login_required
|
||||
from api.utils.api_utils import get_json_result
|
||||
from plugin import GlobalPluginManager
|
||||
|
||||
|
||||
@manager.route('/llm_tools', methods=['GET']) # noqa: F821
|
||||
@login_required
|
||||
def llm_tools() -> Response:
|
||||
|
||||
@ -25,6 +25,7 @@ from api.utils.api_utils import get_data_error_result, get_error_data_result, ge
|
||||
from api.utils.api_utils import get_result
|
||||
from flask import request
|
||||
|
||||
|
||||
@manager.route('/agents', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def list_agents(tenant_id):
|
||||
@ -41,7 +42,7 @@ def list_agents(tenant_id):
|
||||
desc = False
|
||||
else:
|
||||
desc = True
|
||||
canvas = UserCanvasService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,title)
|
||||
canvas = UserCanvasService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, title)
|
||||
return get_result(data=canvas)
|
||||
|
||||
|
||||
@ -93,7 +94,7 @@ def update_agent(tenant_id: str, agent_id: str):
|
||||
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
|
||||
|
||||
req["dsl"] = json.loads(req["dsl"])
|
||||
|
||||
|
||||
if req.get("title") is not None:
|
||||
req["title"] = req["title"].strip()
|
||||
|
||||
|
||||
@ -215,7 +215,8 @@ def delete(tenant_id):
|
||||
continue
|
||||
kb_id_instance_pairs.append((kb_id, kb))
|
||||
if len(error_kb_ids) > 0:
|
||||
return get_error_permission_result(message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
|
||||
return get_error_permission_result(
|
||||
message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
|
||||
|
||||
errors = []
|
||||
success_count = 0
|
||||
@ -232,7 +233,8 @@ def delete(tenant_id):
|
||||
]
|
||||
)
|
||||
File2DocumentService.delete_by_document_id(doc.id)
|
||||
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
|
||||
FileService.filter_delete(
|
||||
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
|
||||
if not KnowledgebaseService.delete_by_id(kb_id):
|
||||
errors.append(f"Delete dataset error for {kb_id}")
|
||||
continue
|
||||
@ -329,7 +331,8 @@ def update(tenant_id, dataset_id):
|
||||
try:
|
||||
kb = KnowledgebaseService.get_or_none(id=dataset_id, tenant_id=tenant_id)
|
||||
if kb is None:
|
||||
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
|
||||
return get_error_permission_result(
|
||||
message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
|
||||
|
||||
if req.get("parser_config"):
|
||||
req["parser_config"] = deep_merge(kb.parser_config, req["parser_config"])
|
||||
@ -341,7 +344,8 @@ def update(tenant_id, dataset_id):
|
||||
del req["parser_config"]
|
||||
|
||||
if "name" in req and req["name"].lower() != kb.name.lower():
|
||||
exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)
|
||||
exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id,
|
||||
status=StatusEnum.VALID.value)
|
||||
if exists:
|
||||
return get_error_data_result(message=f"Dataset name '{req['name']}' already exists")
|
||||
|
||||
@ -349,7 +353,8 @@ def update(tenant_id, dataset_id):
|
||||
if not req["embd_id"]:
|
||||
req["embd_id"] = kb.embd_id
|
||||
if kb.chunk_num != 0 and req["embd_id"] != kb.embd_id:
|
||||
return get_error_data_result(message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
|
||||
return get_error_data_result(
|
||||
message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
|
||||
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
|
||||
if not ok:
|
||||
return err
|
||||
@ -359,10 +364,12 @@ def update(tenant_id, dataset_id):
|
||||
return get_error_argument_result(message="'pagerank' can only be set when doc_engine is elasticsearch")
|
||||
|
||||
if req["pagerank"] > 0:
|
||||
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]}, search.index_name(kb.tenant_id), kb.id)
|
||||
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
else:
|
||||
# Elasticsearch requires PAGERANK_FLD be non-zero!
|
||||
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD}, search.index_name(kb.tenant_id), kb.id)
|
||||
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
|
||||
if not KnowledgebaseService.update_by_id(kb.id, req):
|
||||
return get_error_data_result(message="Update dataset error.(Database error)")
|
||||
@ -454,7 +461,7 @@ def list_datasets(tenant_id):
|
||||
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{name}'")
|
||||
|
||||
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
|
||||
kbs = KnowledgebaseService.get_list(
|
||||
kbs, total = KnowledgebaseService.get_list(
|
||||
[m["tenant_id"] for m in tenants],
|
||||
tenant_id,
|
||||
args["page"],
|
||||
@ -468,14 +475,15 @@ def list_datasets(tenant_id):
|
||||
response_data_list = []
|
||||
for kb in kbs:
|
||||
response_data_list.append(remap_dictionary_keys(kb))
|
||||
return get_result(data=response_data_list)
|
||||
return get_result(data=response_data_list, total=total)
|
||||
except OperationalError as e:
|
||||
logging.exception(e)
|
||||
return get_error_data_result(message="Database operation failed")
|
||||
|
||||
|
||||
@manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def knowledge_graph(tenant_id,dataset_id):
|
||||
def knowledge_graph(tenant_id, dataset_id):
|
||||
if not KnowledgebaseService.accessible(dataset_id, tenant_id):
|
||||
return get_result(
|
||||
data=False,
|
||||
@ -491,7 +499,7 @@ def knowledge_graph(tenant_id,dataset_id):
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), dataset_id):
|
||||
return get_result(data=obj)
|
||||
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [dataset_id])
|
||||
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [dataset_id])
|
||||
if not len(sres.ids):
|
||||
return get_result(data=obj)
|
||||
|
||||
@ -507,14 +515,16 @@ def knowledge_graph(tenant_id,dataset_id):
|
||||
if "nodes" in obj["graph"]:
|
||||
obj["graph"]["nodes"] = sorted(obj["graph"]["nodes"], key=lambda x: x.get("pagerank", 0), reverse=True)[:256]
|
||||
if "edges" in obj["graph"]:
|
||||
node_id_set = { o["id"] for o in obj["graph"]["nodes"] }
|
||||
filtered_edges = [o for o in obj["graph"]["edges"] if o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
|
||||
node_id_set = {o["id"] for o in obj["graph"]["nodes"]}
|
||||
filtered_edges = [o for o in obj["graph"]["edges"] if
|
||||
o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
|
||||
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
|
||||
return get_result(data=obj)
|
||||
|
||||
|
||||
@manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
|
||||
@token_required
|
||||
def delete_knowledge_graph(tenant_id,dataset_id):
|
||||
def delete_knowledge_graph(tenant_id, dataset_id):
|
||||
if not KnowledgebaseService.accessible(dataset_id, tenant_id):
|
||||
return get_result(
|
||||
data=False,
|
||||
@ -522,6 +532,7 @@ def delete_knowledge_graph(tenant_id,dataset_id):
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
_, kb = KnowledgebaseService.get_by_id(dataset_id)
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), dataset_id)
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]},
|
||||
search.index_name(kb.tenant_id), dataset_id)
|
||||
|
||||
return get_result(data=True)
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
#
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -31,6 +31,89 @@ from api.db.services.dialog_service import meta_filter, convert_conditions
|
||||
@apikey_required
|
||||
@validate_request("knowledge_id", "query")
|
||||
def retrieval(tenant_id):
|
||||
"""
|
||||
Dify-compatible retrieval API
|
||||
---
|
||||
tags:
|
||||
- SDK
|
||||
security:
|
||||
- ApiKeyAuth: []
|
||||
parameters:
|
||||
- in: body
|
||||
name: body
|
||||
required: true
|
||||
schema:
|
||||
type: object
|
||||
required:
|
||||
- knowledge_id
|
||||
- query
|
||||
properties:
|
||||
knowledge_id:
|
||||
type: string
|
||||
description: Knowledge base ID
|
||||
query:
|
||||
type: string
|
||||
description: Query text
|
||||
use_kg:
|
||||
type: boolean
|
||||
description: Whether to use knowledge graph
|
||||
default: false
|
||||
retrieval_setting:
|
||||
type: object
|
||||
description: Retrieval configuration
|
||||
properties:
|
||||
score_threshold:
|
||||
type: number
|
||||
description: Similarity threshold
|
||||
default: 0.0
|
||||
top_k:
|
||||
type: integer
|
||||
description: Number of results to return
|
||||
default: 1024
|
||||
metadata_condition:
|
||||
type: object
|
||||
description: Metadata filter condition
|
||||
properties:
|
||||
conditions:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
name:
|
||||
type: string
|
||||
description: Field name
|
||||
comparison_operator:
|
||||
type: string
|
||||
description: Comparison operator
|
||||
value:
|
||||
type: string
|
||||
description: Field value
|
||||
responses:
|
||||
200:
|
||||
description: Retrieval succeeded
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
records:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
content:
|
||||
type: string
|
||||
description: Content text
|
||||
score:
|
||||
type: number
|
||||
description: Similarity score
|
||||
title:
|
||||
type: string
|
||||
description: Document title
|
||||
metadata:
|
||||
type: object
|
||||
description: Metadata info
|
||||
404:
|
||||
description: Knowledge base or document not found
|
||||
"""
|
||||
req = request.json
|
||||
question = req["query"]
|
||||
kb_id = req["knowledge_id"]
|
||||
@ -38,9 +121,9 @@ def retrieval(tenant_id):
|
||||
retrieval_setting = req.get("retrieval_setting", {})
|
||||
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
|
||||
top = int(retrieval_setting.get("top_k", 1024))
|
||||
metadata_condition = req.get("metadata_condition",{})
|
||||
metadata_condition = req.get("metadata_condition", {})
|
||||
metas = DocumentService.get_meta_by_kbs([kb_id])
|
||||
|
||||
|
||||
doc_ids = []
|
||||
try:
|
||||
|
||||
@ -50,12 +133,12 @@ def retrieval(tenant_id):
|
||||
|
||||
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
||||
print(metadata_condition)
|
||||
print("after",convert_conditions(metadata_condition))
|
||||
# print("after", convert_conditions(metadata_condition))
|
||||
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition)))
|
||||
print("doc_ids",doc_ids)
|
||||
# print("doc_ids", doc_ids)
|
||||
if not doc_ids and metadata_condition is not None:
|
||||
doc_ids = ['-999']
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question,
|
||||
embd_mdl,
|
||||
kb.tenant_id,
|
||||
@ -70,17 +153,17 @@ def retrieval(tenant_id):
|
||||
)
|
||||
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question,
|
||||
[tenant_id],
|
||||
[kb_id],
|
||||
embd_mdl,
|
||||
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(question,
|
||||
[tenant_id],
|
||||
[kb_id],
|
||||
embd_mdl,
|
||||
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ranks["chunks"].insert(0, ck)
|
||||
|
||||
records = []
|
||||
for c in ranks["chunks"]:
|
||||
e, doc = DocumentService.get_by_id( c["doc_id"])
|
||||
e, doc = DocumentService.get_by_id(c["doc_id"])
|
||||
c.pop("vector", None)
|
||||
meta = getattr(doc, 'meta_fields', {})
|
||||
meta["doc_id"] = c["doc_id"]
|
||||
@ -100,5 +183,3 @@ def retrieval(tenant_id):
|
||||
)
|
||||
logging.exception(e)
|
||||
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)
|
||||
|
||||
|
||||
|
||||
@ -458,7 +458,7 @@ def list_docs(dataset_id, tenant_id):
|
||||
required: false
|
||||
default: true
|
||||
description: Order in descending.
|
||||
- in: query
|
||||
- in: query
|
||||
name: create_time_from
|
||||
type: integer
|
||||
required: false
|
||||
@ -982,7 +982,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
|
||||
_ = Chunk(**final_chunk)
|
||||
|
||||
elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
|
||||
sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True)
|
||||
sres = settings.retriever.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True)
|
||||
res["total"] = sres.total
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
@ -1446,7 +1446,7 @@ def retrieval_test(tenant_id):
|
||||
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question,
|
||||
embd_mdl,
|
||||
tenant_ids,
|
||||
@ -1462,7 +1462,7 @@ def retrieval_test(tenant_id):
|
||||
rank_feature=label_question(question, kbs),
|
||||
)
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ranks["chunks"].insert(0, ck)
|
||||
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import pathlib
|
||||
import re
|
||||
|
||||
@ -17,7 +34,8 @@ from api.utils.api_utils import get_json_result
|
||||
from api.utils.file_utils import filename_type
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
@manager.route('/file/upload', methods=['POST']) # noqa: F821
|
||||
|
||||
@manager.route('/file/upload', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def upload(tenant_id):
|
||||
"""
|
||||
@ -44,22 +62,22 @@ def upload(tenant_id):
|
||||
type: object
|
||||
properties:
|
||||
data:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
id:
|
||||
type: string
|
||||
description: File ID
|
||||
name:
|
||||
type: string
|
||||
description: File name
|
||||
size:
|
||||
type: integer
|
||||
description: File size in bytes
|
||||
type:
|
||||
type: string
|
||||
description: File type (e.g., document, folder)
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
id:
|
||||
type: string
|
||||
description: File ID
|
||||
name:
|
||||
type: string
|
||||
description: File name
|
||||
size:
|
||||
type: integer
|
||||
description: File size in bytes
|
||||
type:
|
||||
type: string
|
||||
description: File type (e.g., document, folder)
|
||||
"""
|
||||
pf_id = request.form.get("parent_id")
|
||||
|
||||
@ -97,12 +115,14 @@ def upload(tenant_id):
|
||||
e, file = FileService.get_by_id(file_id_list[len_id_list - 1])
|
||||
if not e:
|
||||
return get_json_result(data=False, message="Folder not found!", code=404)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names, len_id_list)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names,
|
||||
len_id_list)
|
||||
else:
|
||||
e, file = FileService.get_by_id(file_id_list[len_id_list - 2])
|
||||
if not e:
|
||||
return get_json_result(data=False, message="Folder not found!", code=404)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names, len_id_list)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names,
|
||||
len_id_list)
|
||||
|
||||
filetype = filename_type(file_obj_names[file_len - 1])
|
||||
location = file_obj_names[file_len - 1]
|
||||
@ -129,7 +149,7 @@ def upload(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/create', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/create', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def create(tenant_id):
|
||||
"""
|
||||
@ -207,7 +227,7 @@ def create(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/list', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/list', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def list_files(tenant_id):
|
||||
"""
|
||||
@ -299,7 +319,7 @@ def list_files(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/root_folder', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/root_folder', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get_root_folder(tenant_id):
|
||||
"""
|
||||
@ -335,7 +355,7 @@ def get_root_folder(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/parent_folder', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/parent_folder', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get_parent_folder():
|
||||
"""
|
||||
@ -380,7 +400,7 @@ def get_parent_folder():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/all_parent_folder', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/all_parent_folder', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get_all_parent_folders(tenant_id):
|
||||
"""
|
||||
@ -428,7 +448,7 @@ def get_all_parent_folders(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/rm', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/rm', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def rm(tenant_id):
|
||||
"""
|
||||
@ -502,7 +522,7 @@ def rm(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/rename', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/rename', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def rename(tenant_id):
|
||||
"""
|
||||
@ -542,7 +562,8 @@ def rename(tenant_id):
|
||||
if not e:
|
||||
return get_json_result(message="File not found!", code=404)
|
||||
|
||||
if file.type != FileType.FOLDER.value and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(file.name.lower()).suffix:
|
||||
if file.type != FileType.FOLDER.value and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
|
||||
file.name.lower()).suffix:
|
||||
return get_json_result(data=False, message="The extension of file can't be changed", code=400)
|
||||
|
||||
for existing_file in FileService.query(name=req["name"], pf_id=file.parent_id):
|
||||
@ -562,9 +583,9 @@ def rename(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/get/<file_id>', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/get/<file_id>', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get(tenant_id,file_id):
|
||||
def get(tenant_id, file_id):
|
||||
"""
|
||||
Download a file.
|
||||
---
|
||||
@ -610,7 +631,7 @@ def get(tenant_id,file_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/mv', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/mv', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def move(tenant_id):
|
||||
"""
|
||||
@ -669,6 +690,7 @@ def move(tenant_id):
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/convert', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def convert(tenant_id):
|
||||
@ -735,4 +757,4 @@ def convert(tenant_id):
|
||||
file2documents.append(file2document.to_json())
|
||||
return get_json_result(data=file2documents)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
return server_error_response(e)
|
||||
|
||||
@ -36,7 +36,8 @@ from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.search_service import SearchService
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
|
||||
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, \
|
||||
get_result, server_error_response, token_required, validate_request
|
||||
from rag.app.tag import label_question
|
||||
from rag.prompts.template import load_prompt
|
||||
from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format
|
||||
@ -88,7 +89,8 @@ def create_agent_session(tenant_id, agent_id):
|
||||
canvas.reset()
|
||||
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
|
||||
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id,
|
||||
"message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
|
||||
API4ConversationService.save(**conv)
|
||||
conv["agent_id"] = conv.pop("dialog_id")
|
||||
return get_result(data=conv)
|
||||
@ -279,7 +281,7 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
|
||||
if reasoning_match:
|
||||
reasoning_part = reasoning_match.group(1)
|
||||
content_part = answer[reasoning_match.end() :]
|
||||
content_part = answer[reasoning_match.end():]
|
||||
else:
|
||||
reasoning_part = ""
|
||||
content_part = answer
|
||||
@ -324,7 +326,8 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
response["choices"][0]["delta"]["content"] = None
|
||||
response["choices"][0]["delta"]["reasoning_content"] = None
|
||||
response["choices"][0]["finish_reason"] = "stop"
|
||||
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
|
||||
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used,
|
||||
"total_tokens": len(prompt) + token_used}
|
||||
if need_reference:
|
||||
response["choices"][0]["delta"]["reference"] = chunks_format(last_ans.get("reference", []))
|
||||
response["choices"][0]["delta"]["final_content"] = last_ans.get("answer", "")
|
||||
@ -559,7 +562,8 @@ def list_agent_session(tenant_id, agent_id):
|
||||
desc = True
|
||||
# dsl defaults to True in all cases except for False and false
|
||||
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
|
||||
total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
|
||||
total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id,
|
||||
user_id, include_dsl)
|
||||
if not convs:
|
||||
return get_result(data=[])
|
||||
for conv in convs:
|
||||
@ -581,7 +585,8 @@ def list_agent_session(tenant_id, agent_id):
|
||||
if message_num != 0 and messages[message_num]["role"] != "user":
|
||||
chunk_list = []
|
||||
# Add boundary and type checks to prevent KeyError
|
||||
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
|
||||
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(
|
||||
conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
|
||||
chunks = conv["reference"][chunk_num]["chunks"]
|
||||
for chunk in chunks:
|
||||
# Ensure chunk is a dictionary before calling get method
|
||||
@ -639,13 +644,16 @@ def delete(tenant_id, chat_id):
|
||||
|
||||
if errors:
|
||||
if success_count > 0:
|
||||
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
return get_result(data={"success_count": success_count, "errors": errors},
|
||||
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
else:
|
||||
return get_error_data_result(message="; ".join(errors))
|
||||
|
||||
if duplicate_messages:
|
||||
if success_count > 0:
|
||||
return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
|
||||
return get_result(
|
||||
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
|
||||
data={"success_count": success_count, "errors": duplicate_messages})
|
||||
else:
|
||||
return get_error_data_result(message=";".join(duplicate_messages))
|
||||
|
||||
@ -691,13 +699,16 @@ def delete_agent_session(tenant_id, agent_id):
|
||||
|
||||
if errors:
|
||||
if success_count > 0:
|
||||
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
return get_result(data={"success_count": success_count, "errors": errors},
|
||||
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
else:
|
||||
return get_error_data_result(message="; ".join(errors))
|
||||
|
||||
if duplicate_messages:
|
||||
if success_count > 0:
|
||||
return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
|
||||
return get_result(
|
||||
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
|
||||
data={"success_count": success_count, "errors": duplicate_messages})
|
||||
else:
|
||||
return get_error_data_result(message=";".join(duplicate_messages))
|
||||
|
||||
@ -730,7 +741,9 @@ def ask_about(tenant_id):
|
||||
for ans in ask(req["question"], req["kb_ids"], uid):
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps(
|
||||
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
||||
ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||||
|
||||
resp = Response(stream(), mimetype="text/event-stream")
|
||||
@ -882,7 +895,9 @@ def begin_inputs(agent_id):
|
||||
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
|
||||
|
||||
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
|
||||
return get_result(data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"), "prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
|
||||
return get_result(
|
||||
data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"),
|
||||
"prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
|
||||
|
||||
|
||||
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
|
||||
@ -911,7 +926,9 @@ def ask_about_embedded():
|
||||
for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps(
|
||||
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
||||
ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||||
|
||||
resp = Response(stream(), mimetype="text/event-stream")
|
||||
@ -978,7 +995,8 @@ def retrieval_test_embedded():
|
||||
tenant_ids.append(tenant.tenant_id)
|
||||
break
|
||||
else:
|
||||
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
||||
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.",
|
||||
code=settings.RetCode.OPERATING_ERROR)
|
||||
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
||||
if not e:
|
||||
@ -998,11 +1016,13 @@ def retrieval_test_embedded():
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
labels = label_question(question, [kb])
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top, doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
|
||||
ranks = settings.retriever.retrieval(
|
||||
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
|
||||
)
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question, tenant_ids, kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(question, tenant_ids, kb_ids, embd_mdl,
|
||||
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ranks["chunks"].insert(0, ck)
|
||||
|
||||
@ -1013,7 +1033,8 @@ def retrieval_test_embedded():
|
||||
return get_json_result(data=ranks)
|
||||
except Exception as e:
|
||||
if str(e).find("not_found") > 0:
|
||||
return get_json_result(data=False, message="No chunk found! Check the chunk status please!", code=settings.RetCode.DATA_ERROR)
|
||||
return get_json_result(data=False, message="No chunk found! Check the chunk status please!",
|
||||
code=settings.RetCode.DATA_ERROR)
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@ -1082,7 +1103,8 @@ def detail_share_embedded():
|
||||
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
|
||||
break
|
||||
else:
|
||||
return get_json_result(data=False, message="Has no permission for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
||||
return get_json_result(data=False, message="Has no permission for this operation.",
|
||||
code=settings.RetCode.OPERATING_ERROR)
|
||||
|
||||
search = SearchService.get_detail(search_id)
|
||||
if not search:
|
||||
|
||||
@ -162,7 +162,7 @@ def status():
|
||||
task_executors = REDIS_CONN.smembers("TASKEXE")
|
||||
now = datetime.now().timestamp()
|
||||
for task_executor_id in task_executors:
|
||||
heartbeats = REDIS_CONN.zrangebyscore(task_executor_id, now - 60*30, now)
|
||||
heartbeats = REDIS_CONN.zrangebyscore(task_executor_id, now - 60 * 30, now)
|
||||
heartbeats = [json.loads(heartbeat) for heartbeat in heartbeats]
|
||||
task_executor_heartbeats[task_executor_id] = heartbeats
|
||||
except Exception:
|
||||
@ -178,6 +178,11 @@ def healthz():
|
||||
return jsonify(result), (200 if all_ok else 500)
|
||||
|
||||
|
||||
@manager.route("/ping", methods=["GET"]) # noqa: F821
|
||||
def ping():
|
||||
return "pong", 200
|
||||
|
||||
|
||||
@manager.route("/new_token", methods=["POST"]) # noqa: F821
|
||||
@login_required
|
||||
def new_token():
|
||||
@ -269,7 +274,8 @@ def token_list():
|
||||
objs = [o.to_dict() for o in objs]
|
||||
for o in objs:
|
||||
if not o["beta"]:
|
||||
o["beta"] = generate_confirmation_token(generate_confirmation_token(tenants[0].tenant_id)).replace("ragflow-", "")[:32]
|
||||
o["beta"] = generate_confirmation_token(generate_confirmation_token(tenants[0].tenant_id)).replace(
|
||||
"ragflow-", "")[:32]
|
||||
APITokenService.filter_update([APIToken.tenant_id == tenant_id, APIToken.token == o["token"]], o)
|
||||
return get_json_result(data=objs)
|
||||
except Exception as e:
|
||||
|
||||
@ -70,7 +70,8 @@ def create(tenant_id):
|
||||
return get_data_error_result(message=f"{invite_user_email} is already in the team.")
|
||||
if user_tenant_role == UserTenantRole.OWNER:
|
||||
return get_data_error_result(message=f"{invite_user_email} is the owner of the team.")
|
||||
return get_data_error_result(message=f"{invite_user_email} is in the team, but the role: {user_tenant_role} is invalid.")
|
||||
return get_data_error_result(
|
||||
message=f"{invite_user_email} is in the team, but the role: {user_tenant_role} is invalid.")
|
||||
|
||||
UserTenantService.save(
|
||||
id=get_uuid(),
|
||||
@ -132,7 +133,8 @@ def tenant_list():
|
||||
@login_required
|
||||
def agree(tenant_id):
|
||||
try:
|
||||
UserTenantService.filter_update([UserTenant.tenant_id == tenant_id, UserTenant.user_id == current_user.id], {"role": UserTenantRole.NORMAL})
|
||||
UserTenantService.filter_update([UserTenant.tenant_id == tenant_id, UserTenant.user_id == current_user.id],
|
||||
{"role": UserTenantRole.NORMAL})
|
||||
return get_json_result(data=True)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
@ -15,11 +15,14 @@
|
||||
#
|
||||
import json
|
||||
import logging
|
||||
import string
|
||||
import os
|
||||
import re
|
||||
import secrets
|
||||
import time
|
||||
from datetime import datetime
|
||||
|
||||
from flask import redirect, request, session
|
||||
from flask import redirect, request, session, Response
|
||||
from flask_login import current_user, login_required, login_user, logout_user
|
||||
from werkzeug.security import check_password_hash, generate_password_hash
|
||||
|
||||
@ -46,6 +49,19 @@ from api.utils.api_utils import (
|
||||
validate_request,
|
||||
)
|
||||
from api.utils.crypt import decrypt
|
||||
from rag.utils.redis_conn import REDIS_CONN
|
||||
from api.apps import smtp_mail_server
|
||||
from api.utils.web_utils import (
|
||||
send_email_html,
|
||||
OTP_LENGTH,
|
||||
OTP_TTL_SECONDS,
|
||||
ATTEMPT_LIMIT,
|
||||
ATTEMPT_LOCK_SECONDS,
|
||||
RESEND_COOLDOWN_SECONDS,
|
||||
otp_keys,
|
||||
hash_code,
|
||||
captcha_key,
|
||||
)
|
||||
|
||||
|
||||
@manager.route("/login", methods=["POST", "GET"]) # noqa: F821
|
||||
@ -825,3 +841,170 @@ def set_tenant_info():
|
||||
return get_json_result(data=True)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route("/forget/captcha", methods=["GET"]) # noqa: F821
|
||||
def forget_get_captcha():
|
||||
"""
|
||||
GET /forget/captcha?email=<email>
|
||||
- Generate an image captcha and cache it in Redis under key captcha:{email} with TTL = OTP_TTL_SECONDS.
|
||||
- Returns the captcha as a PNG image.
|
||||
"""
|
||||
email = (request.args.get("email") or "")
|
||||
if not email:
|
||||
return get_json_result(data=False, code=settings.RetCode.ARGUMENT_ERROR, message="email is required")
|
||||
|
||||
users = UserService.query(email=email)
|
||||
if not users:
|
||||
return get_json_result(data=False, code=settings.RetCode.DATA_ERROR, message="invalid email")
|
||||
|
||||
# Generate captcha text
|
||||
allowed = string.ascii_uppercase + string.digits
|
||||
captcha_text = "".join(secrets.choice(allowed) for _ in range(OTP_LENGTH))
|
||||
REDIS_CONN.set(captcha_key(email), captcha_text, 60) # Valid for 60 seconds
|
||||
|
||||
from captcha.image import ImageCaptcha
|
||||
image = ImageCaptcha(width=300, height=120, font_sizes=[50, 60, 70])
|
||||
img_bytes = image.generate(captcha_text).read()
|
||||
return Response(img_bytes, mimetype="image/png")
|
||||
|
||||
|
||||
@manager.route("/forget/otp", methods=["POST"]) # noqa: F821
|
||||
def forget_send_otp():
|
||||
"""
|
||||
POST /forget/otp
|
||||
- Verify the image captcha stored at captcha:{email} (case-insensitive).
|
||||
- On success, generate an email OTP (A–Z with length = OTP_LENGTH), store hash + salt (and timestamp) in Redis with TTL, reset attempts and cooldown, and send the OTP via email.
|
||||
"""
|
||||
req = request.get_json()
|
||||
email = req.get("email") or ""
|
||||
captcha = (req.get("captcha") or "").strip()
|
||||
|
||||
if not email or not captcha:
|
||||
return get_json_result(data=False, code=settings.RetCode.ARGUMENT_ERROR, message="email and captcha required")
|
||||
|
||||
users = UserService.query(email=email)
|
||||
if not users:
|
||||
return get_json_result(data=False, code=settings.RetCode.DATA_ERROR, message="invalid email")
|
||||
|
||||
stored_captcha = REDIS_CONN.get(captcha_key(email))
|
||||
if not stored_captcha:
|
||||
return get_json_result(data=False, code=settings.RetCode.NOT_EFFECTIVE, message="invalid or expired captcha")
|
||||
if (stored_captcha or "").strip().lower() != captcha.lower():
|
||||
return get_json_result(data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="invalid or expired captcha")
|
||||
|
||||
# Delete captcha to prevent reuse
|
||||
REDIS_CONN.delete(captcha_key(email))
|
||||
|
||||
k_code, k_attempts, k_last, k_lock = otp_keys(email)
|
||||
now = int(time.time())
|
||||
last_ts = REDIS_CONN.get(k_last)
|
||||
if last_ts:
|
||||
try:
|
||||
elapsed = now - int(last_ts)
|
||||
except Exception:
|
||||
elapsed = RESEND_COOLDOWN_SECONDS
|
||||
remaining = RESEND_COOLDOWN_SECONDS - elapsed
|
||||
if remaining > 0:
|
||||
return get_json_result(data=False, code=settings.RetCode.NOT_EFFECTIVE, message=f"you still have to wait {remaining} seconds")
|
||||
|
||||
# Generate OTP (uppercase letters only) and store hashed
|
||||
otp = "".join(secrets.choice(string.ascii_uppercase) for _ in range(OTP_LENGTH))
|
||||
salt = os.urandom(16)
|
||||
code_hash = hash_code(otp, salt)
|
||||
REDIS_CONN.set(k_code, f"{code_hash}:{salt.hex()}", OTP_TTL_SECONDS)
|
||||
REDIS_CONN.set(k_attempts, 0, OTP_TTL_SECONDS)
|
||||
REDIS_CONN.set(k_last, now, OTP_TTL_SECONDS)
|
||||
REDIS_CONN.delete(k_lock)
|
||||
|
||||
ttl_min = OTP_TTL_SECONDS // 60
|
||||
|
||||
if not smtp_mail_server:
|
||||
logging.warning("SMTP mail server not initialized; skip sending email.")
|
||||
else:
|
||||
try:
|
||||
send_email_html(
|
||||
subject="Your Password Reset Code",
|
||||
to_email=email,
|
||||
template_key="reset_code",
|
||||
code=otp,
|
||||
ttl_min=ttl_min,
|
||||
)
|
||||
except Exception:
|
||||
return get_json_result(data=False, code=settings.RetCode.SERVER_ERROR, message="failed to send email")
|
||||
|
||||
return get_json_result(data=True, code=settings.RetCode.SUCCESS, message="verification passed, email sent")
|
||||
|
||||
|
||||
@manager.route("/forget", methods=["POST"]) # noqa: F821
|
||||
def forget():
|
||||
"""
|
||||
POST: Verify email + OTP and reset password, then log the user in.
|
||||
Request JSON: { email, otp, new_password, confirm_new_password }
|
||||
"""
|
||||
req = request.get_json()
|
||||
email = req.get("email") or ""
|
||||
otp = (req.get("otp") or "").strip()
|
||||
new_pwd = req.get("new_password")
|
||||
new_pwd2 = req.get("confirm_new_password")
|
||||
|
||||
if not all([email, otp, new_pwd, new_pwd2]):
|
||||
return get_json_result(data=False, code=settings.RetCode.ARGUMENT_ERROR, message="email, otp and passwords are required")
|
||||
|
||||
# For reset, passwords are provided as-is (no decrypt needed)
|
||||
if new_pwd != new_pwd2:
|
||||
return get_json_result(data=False, code=settings.RetCode.ARGUMENT_ERROR, message="passwords do not match")
|
||||
|
||||
users = UserService.query(email=email)
|
||||
if not users:
|
||||
return get_json_result(data=False, code=settings.RetCode.DATA_ERROR, message="invalid email")
|
||||
|
||||
user = users[0]
|
||||
# Verify OTP from Redis
|
||||
k_code, k_attempts, k_last, k_lock = otp_keys(email)
|
||||
if REDIS_CONN.get(k_lock):
|
||||
return get_json_result(data=False, code=settings.RetCode.NOT_EFFECTIVE, message="too many attempts, try later")
|
||||
|
||||
stored = REDIS_CONN.get(k_code)
|
||||
if not stored:
|
||||
return get_json_result(data=False, code=settings.RetCode.NOT_EFFECTIVE, message="expired otp")
|
||||
|
||||
try:
|
||||
stored_hash, salt_hex = str(stored).split(":", 1)
|
||||
salt = bytes.fromhex(salt_hex)
|
||||
except Exception:
|
||||
return get_json_result(data=False, code=settings.RetCode.EXCEPTION_ERROR, message="otp storage corrupted")
|
||||
|
||||
# Case-insensitive verification: OTP generated uppercase
|
||||
calc = hash_code(otp.upper(), salt)
|
||||
if calc != stored_hash:
|
||||
# bump attempts
|
||||
try:
|
||||
attempts = int(REDIS_CONN.get(k_attempts) or 0) + 1
|
||||
except Exception:
|
||||
attempts = 1
|
||||
REDIS_CONN.set(k_attempts, attempts, OTP_TTL_SECONDS)
|
||||
if attempts >= ATTEMPT_LIMIT:
|
||||
REDIS_CONN.set(k_lock, int(time.time()), ATTEMPT_LOCK_SECONDS)
|
||||
return get_json_result(data=False, code=settings.RetCode.AUTHENTICATION_ERROR, message="expired otp")
|
||||
|
||||
# Success: consume OTP and reset password
|
||||
REDIS_CONN.delete(k_code)
|
||||
REDIS_CONN.delete(k_attempts)
|
||||
REDIS_CONN.delete(k_last)
|
||||
REDIS_CONN.delete(k_lock)
|
||||
|
||||
try:
|
||||
UserService.update_user_password(user.id, new_pwd)
|
||||
except Exception as e:
|
||||
logging.exception(e)
|
||||
return get_json_result(data=False, code=settings.RetCode.EXCEPTION_ERROR, message="failed to reset password")
|
||||
|
||||
# Auto login (reuse login flow)
|
||||
user.access_token = get_uuid()
|
||||
login_user(user)
|
||||
user.update_time = (current_timestamp(),)
|
||||
user.update_date = (datetime_format(datetime.now()),)
|
||||
user.save()
|
||||
msg = "Password reset successful. Logged in."
|
||||
return construct_response(data=user.to_json(), auth=user.get_id(), message=msg)
|
||||
|
||||
59
api/common/check_team_permission.py
Normal file
59
api/common/check_team_permission.py
Normal file
@ -0,0 +1,59 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from api.db import TenantPermission
|
||||
from api.db.db_models import File, Knowledgebase
|
||||
from api.db.services.file_service import FileService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.user_service import TenantService
|
||||
|
||||
|
||||
def check_kb_team_permission(kb: dict | Knowledgebase, other: str) -> bool:
|
||||
kb = kb.to_dict() if isinstance(kb, Knowledgebase) else kb
|
||||
|
||||
kb_tenant_id = kb["tenant_id"]
|
||||
|
||||
if kb_tenant_id == other:
|
||||
return True
|
||||
|
||||
if kb["permission"] != TenantPermission.TEAM:
|
||||
return False
|
||||
|
||||
joined_tenants = TenantService.get_joined_tenants_by_user_id(other)
|
||||
return any(tenant["tenant_id"] == kb_tenant_id for tenant in joined_tenants)
|
||||
|
||||
|
||||
def check_file_team_permission(file: dict | File, other: str) -> bool:
|
||||
file = file.to_dict() if isinstance(file, File) else file
|
||||
|
||||
file_tenant_id = file["tenant_id"]
|
||||
if file_tenant_id == other:
|
||||
return True
|
||||
|
||||
file_id = file["id"]
|
||||
|
||||
kb_ids = [kb_info["kb_id"] for kb_info in FileService.get_kb_id_by_file_id(file_id)]
|
||||
|
||||
for kb_id in kb_ids:
|
||||
ok, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
if not ok:
|
||||
continue
|
||||
|
||||
if check_kb_team_permission(kb, other):
|
||||
return True
|
||||
|
||||
return False
|
||||
38
api/common/exceptions.py
Normal file
38
api/common/exceptions.py
Normal file
@ -0,0 +1,38 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
class AdminException(Exception):
|
||||
def __init__(self, message, code=400):
|
||||
super().__init__(message)
|
||||
self.type = "admin"
|
||||
self.code = code
|
||||
self.message = message
|
||||
|
||||
|
||||
class UserNotFoundError(AdminException):
|
||||
def __init__(self, username):
|
||||
super().__init__(f"User '{username}' not found", 404)
|
||||
|
||||
|
||||
class UserAlreadyExistsError(AdminException):
|
||||
def __init__(self, username):
|
||||
super().__init__(f"User '{username}' already exists", 409)
|
||||
|
||||
|
||||
class CannotDeleteAdminError(AdminException):
|
||||
def __init__(self):
|
||||
super().__init__("Cannot delete admin account", 403)
|
||||
@ -313,9 +313,75 @@ class RetryingPooledMySQLDatabase(PooledMySQLDatabase):
|
||||
raise
|
||||
|
||||
|
||||
class RetryingPooledPostgresqlDatabase(PooledPostgresqlDatabase):
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.max_retries = kwargs.pop("max_retries", 5)
|
||||
self.retry_delay = kwargs.pop("retry_delay", 1)
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def execute_sql(self, sql, params=None, commit=True):
|
||||
for attempt in range(self.max_retries + 1):
|
||||
try:
|
||||
return super().execute_sql(sql, params, commit)
|
||||
except (OperationalError, InterfaceError) as e:
|
||||
# PostgreSQL specific error codes
|
||||
# 57P01: admin_shutdown
|
||||
# 57P02: crash_shutdown
|
||||
# 57P03: cannot_connect_now
|
||||
# 08006: connection_failure
|
||||
# 08003: connection_does_not_exist
|
||||
# 08000: connection_exception
|
||||
error_messages = ['connection', 'server closed', 'connection refused',
|
||||
'no connection to the server', 'terminating connection']
|
||||
|
||||
should_retry = any(msg in str(e).lower() for msg in error_messages)
|
||||
|
||||
if should_retry and attempt < self.max_retries:
|
||||
logging.warning(
|
||||
f"PostgreSQL connection issue (attempt {attempt+1}/{self.max_retries}): {e}"
|
||||
)
|
||||
self._handle_connection_loss()
|
||||
time.sleep(self.retry_delay * (2 ** attempt))
|
||||
else:
|
||||
logging.error(f"PostgreSQL execution failure: {e}")
|
||||
raise
|
||||
return None
|
||||
|
||||
def _handle_connection_loss(self):
|
||||
try:
|
||||
self.close()
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
self.connect()
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to reconnect to PostgreSQL: {e}")
|
||||
time.sleep(0.1)
|
||||
self.connect()
|
||||
|
||||
def begin(self):
|
||||
for attempt in range(self.max_retries + 1):
|
||||
try:
|
||||
return super().begin()
|
||||
except (OperationalError, InterfaceError) as e:
|
||||
error_messages = ['connection', 'server closed', 'connection refused',
|
||||
'no connection to the server', 'terminating connection']
|
||||
|
||||
should_retry = any(msg in str(e).lower() for msg in error_messages)
|
||||
|
||||
if should_retry and attempt < self.max_retries:
|
||||
logging.warning(
|
||||
f"PostgreSQL connection lost during transaction (attempt {attempt+1}/{self.max_retries})"
|
||||
)
|
||||
self._handle_connection_loss()
|
||||
time.sleep(self.retry_delay * (2 ** attempt))
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
class PooledDatabase(Enum):
|
||||
MYSQL = RetryingPooledMySQLDatabase
|
||||
POSTGRES = PooledPostgresqlDatabase
|
||||
POSTGRES = RetryingPooledPostgresqlDatabase
|
||||
|
||||
|
||||
class DatabaseMigrator(Enum):
|
||||
@ -641,7 +707,7 @@ class TenantLLM(DataBaseModel):
|
||||
llm_factory = CharField(max_length=128, null=False, help_text="LLM factory name", index=True)
|
||||
model_type = CharField(max_length=128, null=True, help_text="LLM, Text Embedding, Image2Text, ASR", index=True)
|
||||
llm_name = CharField(max_length=128, null=True, help_text="LLM name", default="", index=True)
|
||||
api_key = CharField(max_length=2048, null=True, help_text="API KEY", index=True)
|
||||
api_key = TextField(null=True, help_text="API KEY")
|
||||
api_base = CharField(max_length=255, null=True, help_text="API Base")
|
||||
max_tokens = IntegerField(default=8192, index=True)
|
||||
used_tokens = IntegerField(default=0, index=True)
|
||||
@ -1142,4 +1208,8 @@ def migrate_db():
|
||||
migrate(migrator.add_column("knowledgebase", "mindmap_task_finish_at", CharField(null=True)))
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
migrate(migrator.alter_column_type("tenant_llm", "api_key", TextField(null=True, help_text="API KEY")))
|
||||
except Exception:
|
||||
pass
|
||||
logging.disable(logging.NOTSET)
|
||||
|
||||
@ -143,15 +143,12 @@ class UserCanvasService(CommonService):
|
||||
]
|
||||
if keywords:
|
||||
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
||||
cls.model.user_id.in_(joined_tenant_ids),
|
||||
fn.LOWER(cls.model.title).contains(keywords.lower())
|
||||
#(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id)),
|
||||
#(fn.LOWER(cls.model.title).contains(keywords.lower()))
|
||||
(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id)),
|
||||
(fn.LOWER(cls.model.title).contains(keywords.lower()))
|
||||
)
|
||||
else:
|
||||
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
||||
cls.model.user_id.in_(joined_tenant_ids)
|
||||
#(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id))
|
||||
(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id))
|
||||
)
|
||||
if canvas_category:
|
||||
agents = agents.where(cls.model.canvas_category == canvas_category)
|
||||
|
||||
@ -370,7 +370,7 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
chat_mdl.bind_tools(toolcall_session, tools)
|
||||
bind_models_ts = timer()
|
||||
|
||||
retriever = settings.retrievaler
|
||||
retriever = settings.retriever
|
||||
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
|
||||
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else []
|
||||
if "doc_ids" in messages[-1]:
|
||||
@ -466,13 +466,17 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
rerank_mdl=rerank_mdl,
|
||||
rank_feature=label_question(" ".join(questions), kbs),
|
||||
)
|
||||
if prompt_config.get("toc_enhance"):
|
||||
cks = retriever.retrieval_by_toc(" ".join(questions), kbinfos["chunks"], tenant_ids, chat_mdl, dialog.top_n)
|
||||
if cks:
|
||||
kbinfos["chunks"] = cks
|
||||
if prompt_config.get("tavily_api_key"):
|
||||
tav = Tavily(prompt_config["tavily_api_key"])
|
||||
tav_res = tav.retrieve_chunks(" ".join(questions))
|
||||
kbinfos["chunks"].extend(tav_res["chunks"])
|
||||
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
|
||||
if prompt_config.get("use_kg"):
|
||||
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
|
||||
ck = settings.kg_retriever.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
|
||||
LLMBundle(dialog.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
kbinfos["chunks"].insert(0, ck)
|
||||
@ -658,7 +662,7 @@ Please write the SQL, only SQL, without any other explanations or text.
|
||||
|
||||
logging.debug(f"{question} get SQL(refined): {sql}")
|
||||
tried_times += 1
|
||||
return settings.retrievaler.sql_retrieval(sql, format="json"), sql
|
||||
return settings.retriever.sql_retrieval(sql, format="json"), sql
|
||||
|
||||
tbl, sql = get_table()
|
||||
if tbl is None:
|
||||
@ -752,7 +756,7 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
|
||||
embedding_list = list(set([kb.embd_id for kb in kbs]))
|
||||
|
||||
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
|
||||
retriever = settings.retriever if not is_knowledge_graph else settings.kg_retriever
|
||||
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_llm_name)
|
||||
@ -848,7 +852,7 @@ def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question=question,
|
||||
embd_mdl=embd_mdl,
|
||||
tenant_ids=tenant_ids,
|
||||
|
||||
@ -476,6 +476,16 @@ class FileService(CommonService):
|
||||
|
||||
return err, files
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def list_all_files_by_parent_id(cls, parent_id):
|
||||
try:
|
||||
files = cls.model.select().where((cls.model.parent_id == parent_id) & (cls.model.id != parent_id))
|
||||
return list(files)
|
||||
except Exception:
|
||||
logging.exception("list_by_parent_id failed")
|
||||
raise RuntimeError("Database error (list_by_parent_id)!")
|
||||
|
||||
@staticmethod
|
||||
def parse_docs(file_objs, user_id):
|
||||
exe = ThreadPoolExecutor(max_workers=12)
|
||||
|
||||
@ -379,6 +379,7 @@ class KnowledgebaseService(CommonService):
|
||||
# name: Optional name filter
|
||||
# Returns:
|
||||
# List of knowledge bases
|
||||
# Total count of knowledge bases
|
||||
kbs = cls.model.select()
|
||||
if id:
|
||||
kbs = kbs.where(cls.model.id == id)
|
||||
@ -390,14 +391,16 @@ class KnowledgebaseService(CommonService):
|
||||
cls.model.tenant_id == user_id))
|
||||
& (cls.model.status == StatusEnum.VALID.value)
|
||||
)
|
||||
|
||||
if desc:
|
||||
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
|
||||
else:
|
||||
kbs = kbs.order_by(cls.model.getter_by(orderby).asc())
|
||||
|
||||
total = kbs.count()
|
||||
kbs = kbs.paginate(page_number, items_per_page)
|
||||
|
||||
return list(kbs.dicts())
|
||||
return list(kbs.dicts()), total
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
|
||||
@ -33,7 +33,8 @@ class MCPServerService(CommonService):
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_servers(cls, tenant_id: str, id_list: list[str] | None, page_number, items_per_page, orderby, desc, keywords):
|
||||
def get_servers(cls, tenant_id: str, id_list: list[str] | None, page_number, items_per_page, orderby, desc,
|
||||
keywords):
|
||||
"""Retrieve all MCP servers associated with a tenant.
|
||||
|
||||
This method fetches all MCP servers for a given tenant, ordered by creation time.
|
||||
|
||||
@ -94,7 +94,8 @@ class SearchService(CommonService):
|
||||
query = (
|
||||
cls.model.select(*fields)
|
||||
.join(User, on=(cls.model.tenant_id == User.id))
|
||||
.where(((cls.model.tenant_id.in_(joined_tenant_ids)) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value))
|
||||
.where(((cls.model.tenant_id.in_(joined_tenant_ids)) | (cls.model.tenant_id == user_id)) & (
|
||||
cls.model.status == StatusEnum.VALID.value))
|
||||
)
|
||||
|
||||
if keywords:
|
||||
|
||||
@ -165,7 +165,7 @@ class TaskService(CommonService):
|
||||
]
|
||||
tasks = (
|
||||
cls.model.select(*fields).order_by(cls.model.from_page.asc(), cls.model.create_time.desc())
|
||||
.where(cls.model.doc_id == doc_id)
|
||||
.where(cls.model.doc_id == doc_id)
|
||||
)
|
||||
tasks = list(tasks.dicts())
|
||||
if not tasks:
|
||||
@ -205,18 +205,18 @@ class TaskService(CommonService):
|
||||
cls.model.select(
|
||||
*[Document.id, Document.kb_id, Document.location, File.parent_id]
|
||||
)
|
||||
.join(Document, on=(cls.model.doc_id == Document.id))
|
||||
.join(
|
||||
.join(Document, on=(cls.model.doc_id == Document.id))
|
||||
.join(
|
||||
File2Document,
|
||||
on=(File2Document.document_id == Document.id),
|
||||
join_type=JOIN.LEFT_OUTER,
|
||||
)
|
||||
.join(
|
||||
.join(
|
||||
File,
|
||||
on=(File2Document.file_id == File.id),
|
||||
join_type=JOIN.LEFT_OUTER,
|
||||
)
|
||||
.where(
|
||||
.where(
|
||||
Document.status == StatusEnum.VALID.value,
|
||||
Document.run == TaskStatus.RUNNING.value,
|
||||
~(Document.type == FileType.VIRTUAL.value),
|
||||
@ -294,8 +294,8 @@ class TaskService(CommonService):
|
||||
cls.model.update(progress=prog).where(
|
||||
(cls.model.id == id) &
|
||||
(
|
||||
(cls.model.progress != -1) &
|
||||
((prog == -1) | (prog > cls.model.progress))
|
||||
(cls.model.progress != -1) &
|
||||
((prog == -1) | (prog > cls.model.progress))
|
||||
)
|
||||
).execute()
|
||||
else:
|
||||
@ -343,6 +343,7 @@ def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
|
||||
- Task digests are calculated for optimization and reuse
|
||||
- Previous task chunks may be reused if available
|
||||
"""
|
||||
|
||||
def new_task():
|
||||
return {
|
||||
"id": get_uuid(),
|
||||
@ -515,7 +516,7 @@ def queue_dataflow(tenant_id:str, flow_id:str, task_id:str, doc_id:str=CANVAS_DE
|
||||
task["file"] = file
|
||||
|
||||
if not REDIS_CONN.queue_product(
|
||||
get_svr_queue_name(priority), message=task
|
||||
get_svr_queue_name(priority), message=task
|
||||
):
|
||||
return False, "Can't access Redis. Please check the Redis' status."
|
||||
|
||||
|
||||
@ -57,8 +57,10 @@ class TenantLLMService(CommonService):
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_my_llms(cls, tenant_id):
|
||||
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
|
||||
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
|
||||
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name,
|
||||
cls.model.used_tokens]
|
||||
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
|
||||
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
|
||||
|
||||
return list(objs)
|
||||
|
||||
@ -122,7 +124,8 @@ class TenantLLMService(CommonService):
|
||||
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
|
||||
if not model_config:
|
||||
if mdlnm == "flag-embedding":
|
||||
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
|
||||
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name,
|
||||
"api_base": ""}
|
||||
else:
|
||||
if not mdlnm:
|
||||
raise LookupError(f"Type of {llm_type} model is not set.")
|
||||
@ -137,27 +140,33 @@ class TenantLLMService(CommonService):
|
||||
if llm_type == LLMType.EMBEDDING.value:
|
||||
if model_config["llm_factory"] not in EmbeddingModel:
|
||||
return
|
||||
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
||||
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"],
|
||||
base_url=model_config["api_base"])
|
||||
|
||||
if llm_type == LLMType.RERANK:
|
||||
if model_config["llm_factory"] not in RerankModel:
|
||||
return
|
||||
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
||||
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"],
|
||||
base_url=model_config["api_base"])
|
||||
|
||||
if llm_type == LLMType.IMAGE2TEXT.value:
|
||||
if model_config["llm_factory"] not in CvModel:
|
||||
return
|
||||
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
|
||||
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang,
|
||||
base_url=model_config["api_base"], **kwargs)
|
||||
|
||||
if llm_type == LLMType.CHAT.value:
|
||||
if model_config["llm_factory"] not in ChatModel:
|
||||
return
|
||||
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
|
||||
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"],
|
||||
base_url=model_config["api_base"], **kwargs)
|
||||
|
||||
if llm_type == LLMType.SPEECH2TEXT:
|
||||
if model_config["llm_factory"] not in Seq2txtModel:
|
||||
return
|
||||
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
|
||||
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"],
|
||||
model_name=model_config["llm_name"], lang=lang,
|
||||
base_url=model_config["api_base"])
|
||||
if llm_type == LLMType.TTS:
|
||||
if model_config["llm_factory"] not in TTSModel:
|
||||
return
|
||||
@ -194,11 +203,14 @@ class TenantLLMService(CommonService):
|
||||
try:
|
||||
num = (
|
||||
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
|
||||
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
|
||||
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name,
|
||||
cls.model.llm_factory == llm_factory if llm_factory else True)
|
||||
.execute()
|
||||
)
|
||||
except Exception:
|
||||
logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
|
||||
logging.exception(
|
||||
"TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s",
|
||||
tenant_id, llm_name)
|
||||
return 0
|
||||
|
||||
return num
|
||||
@ -206,7 +218,9 @@ class TenantLLMService(CommonService):
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_openai_models(cls):
|
||||
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
|
||||
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"),
|
||||
~(cls.model.llm_name == "text-embedding-3-small"),
|
||||
~(cls.model.llm_name == "text-embedding-3-large")).dicts()
|
||||
return list(objs)
|
||||
|
||||
@classmethod
|
||||
@ -250,8 +264,9 @@ class LLM4Tenant:
|
||||
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
|
||||
self.langfuse = None
|
||||
if langfuse_keys:
|
||||
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
|
||||
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key,
|
||||
host=langfuse_keys.host)
|
||||
if langfuse.auth_check():
|
||||
self.langfuse = langfuse
|
||||
trace_id = self.langfuse.create_trace_id()
|
||||
self.trace_context = {"trace_id": trace_id}
|
||||
self.trace_context = {"trace_id": trace_id}
|
||||
|
||||
@ -2,22 +2,22 @@ from api.db.db_models import UserCanvasVersion, DB
|
||||
from api.db.services.common_service import CommonService
|
||||
from peewee import DoesNotExist
|
||||
|
||||
|
||||
class UserCanvasVersionService(CommonService):
|
||||
model = UserCanvasVersion
|
||||
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def list_by_canvas_id(cls, user_canvas_id):
|
||||
try:
|
||||
user_canvas_version = cls.model.select(
|
||||
*[cls.model.id,
|
||||
cls.model.create_time,
|
||||
cls.model.title,
|
||||
cls.model.create_date,
|
||||
cls.model.update_date,
|
||||
cls.model.user_canvas_id,
|
||||
cls.model.update_time]
|
||||
*[cls.model.id,
|
||||
cls.model.create_time,
|
||||
cls.model.title,
|
||||
cls.model.create_date,
|
||||
cls.model.update_date,
|
||||
cls.model.user_canvas_id,
|
||||
cls.model.update_time]
|
||||
).where(cls.model.user_canvas_id == user_canvas_id)
|
||||
return user_canvas_version
|
||||
except DoesNotExist:
|
||||
@ -46,18 +46,16 @@ class UserCanvasVersionService(CommonService):
|
||||
@DB.connection_context()
|
||||
def delete_all_versions(cls, user_canvas_id):
|
||||
try:
|
||||
user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by(cls.model.create_time.desc())
|
||||
user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by(
|
||||
cls.model.create_time.desc())
|
||||
if user_canvas_version.count() > 20:
|
||||
delete_ids = []
|
||||
for i in range(20, user_canvas_version.count()):
|
||||
delete_ids.append(user_canvas_version[i].id)
|
||||
|
||||
|
||||
cls.delete_by_ids(delete_ids)
|
||||
return True
|
||||
except DoesNotExist:
|
||||
return None
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
|
||||
|
||||
@ -315,4 +315,4 @@ class UserTenantService(CommonService):
|
||||
).first()
|
||||
return user_tenant
|
||||
except peewee.DoesNotExist:
|
||||
return None
|
||||
return None
|
||||
|
||||
@ -65,8 +65,8 @@ OAUTH_CONFIG = None
|
||||
DOC_ENGINE = None
|
||||
docStoreConn = None
|
||||
|
||||
retrievaler = None
|
||||
kg_retrievaler = None
|
||||
retriever = None
|
||||
kg_retriever = None
|
||||
|
||||
# user registration switch
|
||||
REGISTER_ENABLED = 1
|
||||
@ -174,7 +174,7 @@ def init_settings():
|
||||
|
||||
OAUTH_CONFIG = get_base_config("oauth", {})
|
||||
|
||||
global DOC_ENGINE, docStoreConn, retrievaler, kg_retrievaler
|
||||
global DOC_ENGINE, docStoreConn, retriever, kg_retriever
|
||||
DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch")
|
||||
# DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch")
|
||||
lower_case_doc_engine = DOC_ENGINE.lower()
|
||||
@ -187,10 +187,10 @@ def init_settings():
|
||||
else:
|
||||
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
|
||||
|
||||
retrievaler = search.Dealer(docStoreConn)
|
||||
retriever = search.Dealer(docStoreConn)
|
||||
from graphrag import search as kg_search
|
||||
|
||||
kg_retrievaler = kg_search.KGSearch(docStoreConn)
|
||||
kg_retriever = kg_search.KGSearch(docStoreConn)
|
||||
|
||||
if int(os.environ.get("SANDBOX_ENABLED", "0")):
|
||||
global SANDBOX_HOST
|
||||
|
||||
@ -51,15 +51,13 @@ from api import settings
|
||||
from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC
|
||||
from api.db import ActiveEnum
|
||||
from api.db.db_models import APIToken
|
||||
from api.db.services import UserService
|
||||
from api.db.services.llm_service import LLMService
|
||||
from api.db.services.tenant_llm_service import TenantLLMService
|
||||
from api.utils.json import CustomJSONEncoder, json_dumps
|
||||
from api.utils import get_uuid
|
||||
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, close_multiple_mcp_toolcall_sessions
|
||||
|
||||
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
|
||||
|
||||
|
||||
def serialize_for_json(obj):
|
||||
"""
|
||||
Recursively serialize objects to make them JSON serializable.
|
||||
@ -68,8 +66,8 @@ def serialize_for_json(obj):
|
||||
if hasattr(obj, '__dict__'):
|
||||
# For objects with __dict__, try to serialize their attributes
|
||||
try:
|
||||
return {key: serialize_for_json(value) for key, value in obj.__dict__.items()
|
||||
if not key.startswith('_')}
|
||||
return {key: serialize_for_json(value) for key, value in obj.__dict__.items()
|
||||
if not key.startswith('_')}
|
||||
except (AttributeError, TypeError):
|
||||
return str(obj)
|
||||
elif hasattr(obj, '__name__'):
|
||||
@ -85,6 +83,7 @@ def serialize_for_json(obj):
|
||||
# Fallback: convert to string representation
|
||||
return str(obj)
|
||||
|
||||
|
||||
def request(**kwargs):
|
||||
sess = requests.Session()
|
||||
stream = kwargs.pop("stream", sess.stream)
|
||||
@ -105,7 +104,8 @@ def request(**kwargs):
|
||||
settings.HTTP_APP_KEY.encode("ascii"),
|
||||
prepped.path_url.encode("ascii"),
|
||||
prepped.body if kwargs.get("json") else b"",
|
||||
urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode("ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
|
||||
urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode(
|
||||
"ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
|
||||
]
|
||||
),
|
||||
"sha1",
|
||||
@ -127,7 +127,7 @@ def request(**kwargs):
|
||||
def get_exponential_backoff_interval(retries, full_jitter=False):
|
||||
"""Calculate the exponential backoff wait time."""
|
||||
# Will be zero if factor equals 0
|
||||
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2**retries))
|
||||
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2 ** retries))
|
||||
# Full jitter according to
|
||||
# https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
|
||||
if full_jitter:
|
||||
@ -151,18 +151,21 @@ def get_data_error_result(code=settings.RetCode.DATA_ERROR, message="Sorry! Data
|
||||
def server_error_response(e):
|
||||
logging.exception(e)
|
||||
try:
|
||||
if e.code == 401:
|
||||
return get_json_result(code=401, message=repr(e))
|
||||
except BaseException:
|
||||
pass
|
||||
msg = repr(e).lower()
|
||||
if getattr(e, "code", None) == 401 or ("unauthorized" in msg) or ("401" in msg):
|
||||
return get_json_result(code=settings.RetCode.UNAUTHORIZED, message=repr(e))
|
||||
except Exception as ex:
|
||||
logging.warning(f"error checking authorization: {ex}")
|
||||
|
||||
if len(e.args) > 1:
|
||||
try:
|
||||
serialized_data = serialize_for_json(e.args[1])
|
||||
return get_json_result(code= settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data)
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data)
|
||||
except Exception:
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=None)
|
||||
if repr(e).find("index_not_found_exception") >= 0:
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.")
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR,
|
||||
message="No chunk found, please upload file and parse it.")
|
||||
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
|
||||
|
||||
@ -207,7 +210,8 @@ def validate_request(*args, **kwargs):
|
||||
if no_arguments:
|
||||
error_string += "required argument are missing: {}; ".format(",".join(no_arguments))
|
||||
if error_arguments:
|
||||
error_string += "required argument values: {}".format(",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
|
||||
error_string += "required argument values: {}".format(
|
||||
",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
|
||||
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=error_string)
|
||||
return func(*_args, **_kwargs)
|
||||
|
||||
@ -222,7 +226,8 @@ def not_allowed_parameters(*params):
|
||||
input_arguments = flask_request.json or flask_request.form.to_dict()
|
||||
for param in params:
|
||||
if param in input_arguments:
|
||||
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"Parameter {param} isn't allowed")
|
||||
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR,
|
||||
message=f"Parameter {param} isn't allowed")
|
||||
return f(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
@ -233,12 +238,14 @@ def not_allowed_parameters(*params):
|
||||
def active_required(f):
|
||||
@wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
from api.db.services import UserService
|
||||
user_id = current_user.id
|
||||
usr = UserService.filter_by_id(user_id)
|
||||
# check is_active
|
||||
if not usr or not usr.is_active == ActiveEnum.ACTIVE.value:
|
||||
return get_json_result(code=settings.RetCode.FORBIDDEN, message="User isn't active, please activate first.")
|
||||
return f(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@ -259,7 +266,7 @@ def send_file_in_mem(data, filename):
|
||||
return send_file(f, as_attachment=True, attachment_filename=filename)
|
||||
|
||||
|
||||
def get_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
|
||||
def get_json_result(code: settings.RetCode = settings.RetCode.SUCCESS, message="success", data=None):
|
||||
response = {"code": code, "message": message, "data": data}
|
||||
return jsonify(response)
|
||||
|
||||
@ -314,7 +321,7 @@ def construct_result(code=settings.RetCode.DATA_ERROR, message="data is missing"
|
||||
return jsonify(response)
|
||||
|
||||
|
||||
def construct_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
|
||||
def construct_json_result(code: settings.RetCode = settings.RetCode.SUCCESS, message="success", data=None):
|
||||
if data is None:
|
||||
return jsonify({"code": code, "message": message})
|
||||
else:
|
||||
@ -347,27 +354,39 @@ def token_required(func):
|
||||
token = authorization_list[1]
|
||||
objs = APIToken.query(token=token)
|
||||
if not objs:
|
||||
return get_json_result(data=False, message="Authentication error: API key is invalid!", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
return get_json_result(data=False, message="Authentication error: API key is invalid!",
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
kwargs["tenant_id"] = objs[0].tenant_id
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return decorated_function
|
||||
|
||||
|
||||
def get_result(code=settings.RetCode.SUCCESS, message="", data=None):
|
||||
if code == 0:
|
||||
def get_result(code=settings.RetCode.SUCCESS, message="", data=None, total=None):
|
||||
"""
|
||||
Standard API response format:
|
||||
{
|
||||
"code": 0,
|
||||
"data": [...], # List or object, backward compatible
|
||||
"total": 47, # Optional field for pagination
|
||||
"message": "..." # Error or status message
|
||||
}
|
||||
"""
|
||||
response = {"code": code}
|
||||
|
||||
if code == settings.RetCode.SUCCESS:
|
||||
if data is not None:
|
||||
response = {"code": code, "data": data}
|
||||
else:
|
||||
response = {"code": code}
|
||||
response["data"] = data
|
||||
if total is not None:
|
||||
response["total_datasets"] = total
|
||||
else:
|
||||
response = {"code": code, "message": message}
|
||||
response["message"] = message or "Error"
|
||||
|
||||
return jsonify(response)
|
||||
|
||||
|
||||
def get_error_data_result(
|
||||
message="Sorry! Data missing!",
|
||||
code=settings.RetCode.DATA_ERROR,
|
||||
message="Sorry! Data missing!",
|
||||
code=settings.RetCode.DATA_ERROR,
|
||||
):
|
||||
result_dict = {"code": code, "message": message}
|
||||
response = {}
|
||||
@ -402,7 +421,8 @@ def get_parser_config(chunk_method, parser_config):
|
||||
|
||||
# Define default configurations for each chunking method
|
||||
key_mapping = {
|
||||
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
|
||||
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC",
|
||||
"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
|
||||
"qa": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
|
||||
"tag": None,
|
||||
"resume": None,
|
||||
@ -441,16 +461,16 @@ def get_parser_config(chunk_method, parser_config):
|
||||
|
||||
|
||||
def get_data_openai(
|
||||
id=None,
|
||||
created=None,
|
||||
model=None,
|
||||
prompt_tokens=0,
|
||||
completion_tokens=0,
|
||||
content=None,
|
||||
finish_reason=None,
|
||||
object="chat.completion",
|
||||
param=None,
|
||||
stream=False
|
||||
id=None,
|
||||
created=None,
|
||||
model=None,
|
||||
prompt_tokens=0,
|
||||
completion_tokens=0,
|
||||
content=None,
|
||||
finish_reason=None,
|
||||
object="chat.completion",
|
||||
param=None,
|
||||
stream=False
|
||||
):
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
|
||||
@ -524,6 +544,8 @@ def check_duplicate_ids(ids, id_type="item"):
|
||||
|
||||
|
||||
def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, Response | None]:
|
||||
from api.db.services.llm_service import LLMService
|
||||
from api.db.services.tenant_llm_service import TenantLLMService
|
||||
"""
|
||||
Verifies availability of an embedding model for a specific tenant.
|
||||
|
||||
@ -562,7 +584,9 @@ def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, R
|
||||
in_llm_service = bool(LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding"))
|
||||
|
||||
tenant_llms = TenantLLMService.get_my_llms(tenant_id=tenant_id)
|
||||
is_tenant_model = any(llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for llm in tenant_llms)
|
||||
is_tenant_model = any(
|
||||
llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for
|
||||
llm in tenant_llms)
|
||||
|
||||
is_builtin_model = embd_id in settings.BUILTIN_EMBEDDING_MODELS
|
||||
if not (is_builtin_model or is_tenant_model or in_llm_service):
|
||||
@ -793,7 +817,9 @@ async def is_strong_enough(chat_model, embedding_model):
|
||||
_ = await trio.to_thread.run_sync(lambda: embedding_model.encode(["Are you strong enough!?"]))
|
||||
if chat_model:
|
||||
with trio.fail_after(30):
|
||||
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role": "user", "content": "Are you strong enough!?"}], {}))
|
||||
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role": "user",
|
||||
"content": "Are you strong enough!?"}],
|
||||
{}))
|
||||
if res.find("**ERROR**") >= 0:
|
||||
raise Exception(res)
|
||||
|
||||
|
||||
@ -21,3 +21,26 @@ def string_to_bytes(string):
|
||||
|
||||
def bytes_to_string(byte):
|
||||
return byte.decode(encoding="utf-8")
|
||||
|
||||
|
||||
def convert_bytes(size_in_bytes: int) -> str:
|
||||
"""
|
||||
Format size in bytes.
|
||||
"""
|
||||
if size_in_bytes == 0:
|
||||
return "0 B"
|
||||
|
||||
units = ['B', 'KB', 'MB', 'GB', 'TB', 'PB']
|
||||
i = 0
|
||||
size = float(size_in_bytes)
|
||||
|
||||
while size >= 1024 and i < len(units) - 1:
|
||||
size /= 1024
|
||||
i += 1
|
||||
|
||||
if i == 0 or size >= 100:
|
||||
return f"{size:.0f} {units[i]}"
|
||||
elif size >= 10:
|
||||
return f"{size:.1f} {units[i]}"
|
||||
else:
|
||||
return f"{size:.2f} {units[i]}"
|
||||
|
||||
25
api/utils/email_templates.py
Normal file
25
api/utils/email_templates.py
Normal file
@ -0,0 +1,25 @@
|
||||
"""
|
||||
Reusable HTML email templates and registry.
|
||||
"""
|
||||
|
||||
# Invitation email template
|
||||
INVITE_EMAIL_TMPL = """
|
||||
<p>Hi {{email}},</p>
|
||||
<p>{{inviter}} has invited you to join their team (ID: {{tenant_id}}).</p>
|
||||
<p>Click the link below to complete your registration:<br>
|
||||
<a href="{{invite_url}}">{{invite_url}}</a></p>
|
||||
<p>If you did not request this, please ignore this email.</p>
|
||||
"""
|
||||
|
||||
# Password reset code template
|
||||
RESET_CODE_EMAIL_TMPL = """
|
||||
<p>Hello,</p>
|
||||
<p>Your password reset code is: <b>{{ code }}</b></p>
|
||||
<p>This code will expire in {{ ttl_min }} minutes.</p>
|
||||
"""
|
||||
|
||||
# Template registry
|
||||
EMAIL_TEMPLATES = {
|
||||
"invite": INVITE_EMAIL_TMPL,
|
||||
"reset_code": RESET_CODE_EMAIL_TMPL,
|
||||
}
|
||||
@ -13,14 +13,17 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import os
|
||||
import requests
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from api import settings
|
||||
from api.db.db_models import DB
|
||||
from rag import settings as rag_settings
|
||||
from rag.utils.redis_conn import REDIS_CONN
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
from rag.utils.es_conn import ESConnection
|
||||
from rag.utils.infinity_conn import InfinityConnection
|
||||
|
||||
|
||||
def _ok_nok(ok: bool) -> str:
|
||||
@ -65,6 +68,96 @@ def check_storage() -> tuple[bool, dict]:
|
||||
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
|
||||
|
||||
|
||||
def get_es_cluster_stats() -> dict:
|
||||
doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
|
||||
if doc_engine != 'elasticsearch':
|
||||
raise Exception("Elasticsearch is not in use.")
|
||||
try:
|
||||
return {
|
||||
"status": "alive",
|
||||
"message": ESConnection().get_cluster_stats()
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"status": "timeout",
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def get_infinity_status():
|
||||
doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
|
||||
if doc_engine != 'infinity':
|
||||
raise Exception("Infinity is not in use.")
|
||||
try:
|
||||
return {
|
||||
"status": "alive",
|
||||
"message": InfinityConnection().health()
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"status": "timeout",
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def get_mysql_status():
|
||||
try:
|
||||
cursor = DB.execute_sql("SHOW PROCESSLIST;")
|
||||
res_rows = cursor.fetchall()
|
||||
headers = ['id', 'user', 'host', 'db', 'command', 'time', 'state', 'info']
|
||||
cursor.close()
|
||||
return {
|
||||
"status": "alive",
|
||||
"message": [dict(zip(headers, r)) for r in res_rows]
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"status": "timeout",
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def check_minio_alive():
|
||||
start_time = timer()
|
||||
try:
|
||||
response = requests.get(f'http://{rag_settings.MINIO["host"]}/minio/health/live')
|
||||
if response.status_code == 200:
|
||||
return {"status": "alive", "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
|
||||
else:
|
||||
return {"status": "timeout", "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
|
||||
except Exception as e:
|
||||
return {
|
||||
"status": "timeout",
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def get_redis_info():
|
||||
try:
|
||||
return {
|
||||
"status": "alive",
|
||||
"message": REDIS_CONN.info()
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"status": "timeout",
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def check_ragflow_server_alive():
|
||||
start_time = timer()
|
||||
try:
|
||||
response = requests.get(f'http://{settings.HOST_IP}:{settings.HOST_PORT}/v1/system/ping')
|
||||
if response.status_code == 200:
|
||||
return {"status": "alive", "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
|
||||
else:
|
||||
return {"status": "timeout", "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
|
||||
except Exception as e:
|
||||
return {
|
||||
"status": "timeout",
|
||||
"message": f"error: {str(e)}",
|
||||
}
|
||||
|
||||
|
||||
def run_health_checks() -> tuple[dict, bool]:
|
||||
@ -99,9 +192,7 @@ def run_health_checks() -> tuple[dict, bool]:
|
||||
except Exception:
|
||||
result["storage"] = "nok"
|
||||
|
||||
|
||||
all_ok = (result.get("db") == "ok") and (result.get("redis") == "ok") and (result.get("doc_engine") == "ok") and (result.get("storage") == "ok")
|
||||
all_ok = (result.get("db") == "ok") and (result.get("redis") == "ok") and (result.get("doc_engine") == "ok") and (
|
||||
result.get("storage") == "ok")
|
||||
result["status"] = "ok" if all_ok else "nok"
|
||||
return result, all_ok
|
||||
|
||||
|
||||
|
||||
@ -24,6 +24,7 @@ from urllib.parse import urlparse
|
||||
from api.apps import smtp_mail_server
|
||||
from flask_mail import Message
|
||||
from flask import render_template_string
|
||||
from api.utils.email_templates import EMAIL_TEMPLATES
|
||||
from selenium import webdriver
|
||||
from selenium.common.exceptions import TimeoutException
|
||||
from selenium.webdriver.chrome.options import Options
|
||||
@ -34,6 +35,12 @@ from selenium.webdriver.support.ui import WebDriverWait
|
||||
from webdriver_manager.chrome import ChromeDriverManager
|
||||
|
||||
|
||||
OTP_LENGTH = 8
|
||||
OTP_TTL_SECONDS = 5 * 60
|
||||
ATTEMPT_LIMIT = 5
|
||||
ATTEMPT_LOCK_SECONDS = 30 * 60
|
||||
RESEND_COOLDOWN_SECONDS = 60
|
||||
|
||||
|
||||
CONTENT_TYPE_MAP = {
|
||||
# Office
|
||||
@ -178,24 +185,49 @@ def get_float(req: dict, key: str, default: float | int = 10.0) -> float:
|
||||
return default
|
||||
|
||||
|
||||
INVITE_EMAIL_TMPL = """
|
||||
<p>Hi {{email}},</p>
|
||||
<p>{{inviter}} has invited you to join their team (ID: {{tenant_id}}).</p>
|
||||
<p>Click the link below to complete your registration:<br>
|
||||
<a href="{{invite_url}}">{{invite_url}}</a></p>
|
||||
<p>If you did not request this, please ignore this email.</p>
|
||||
"""
|
||||
def send_email_html(subject: str, to_email: str, template_key: str, **context):
|
||||
"""Generic HTML email sender using shared templates.
|
||||
template_key must exist in EMAIL_TEMPLATES.
|
||||
"""
|
||||
from api.apps import app
|
||||
tmpl = EMAIL_TEMPLATES.get(template_key)
|
||||
if not tmpl:
|
||||
raise ValueError(f"Unknown email template: {template_key}")
|
||||
with app.app_context():
|
||||
msg = Message(subject=subject, recipients=[to_email])
|
||||
msg.html = render_template_string(tmpl, **context)
|
||||
smtp_mail_server.send(msg)
|
||||
|
||||
|
||||
def send_invite_email(to_email, invite_url, tenant_id, inviter):
|
||||
from api.apps import app
|
||||
with app.app_context():
|
||||
msg = Message(subject="RAGFlow Invitation",
|
||||
recipients=[to_email])
|
||||
msg.html = render_template_string(
|
||||
INVITE_EMAIL_TMPL,
|
||||
email=to_email,
|
||||
invite_url=invite_url,
|
||||
tenant_id=tenant_id,
|
||||
inviter=inviter,
|
||||
)
|
||||
smtp_mail_server.send(msg)
|
||||
# Reuse the generic HTML sender with 'invite' template
|
||||
send_email_html(
|
||||
subject="RAGFlow Invitation",
|
||||
to_email=to_email,
|
||||
template_key="invite",
|
||||
email=to_email,
|
||||
invite_url=invite_url,
|
||||
tenant_id=tenant_id,
|
||||
inviter=inviter,
|
||||
)
|
||||
|
||||
|
||||
def otp_keys(email: str):
|
||||
email = (email or "").strip().lower()
|
||||
return (
|
||||
f"otp:{email}",
|
||||
f"otp_attempts:{email}",
|
||||
f"otp_last_sent:{email}",
|
||||
f"otp_lock:{email}",
|
||||
)
|
||||
|
||||
|
||||
def hash_code(code: str, salt: bytes) -> str:
|
||||
import hashlib
|
||||
import hmac
|
||||
return hmac.new(salt, (code or "").encode("utf-8"), hashlib.sha256).hexdigest()
|
||||
|
||||
|
||||
def captcha_key(email: str) -> str:
|
||||
return f"captcha:{email}"
|
||||
|
||||
|
||||
@ -31,7 +31,6 @@
|
||||
"entities_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
|
||||
"pagerank_fea": {"type": "integer", "default": 0},
|
||||
"tag_feas": {"type": "varchar", "default": "", "analyzer": "rankfeatures"},
|
||||
|
||||
"from_entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
|
||||
"to_entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
|
||||
"entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
|
||||
@ -39,6 +38,6 @@
|
||||
"source_id": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
|
||||
"n_hop_with_weight": {"type": "varchar", "default": ""},
|
||||
"removed_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
|
||||
|
||||
"doc_type_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"}
|
||||
"doc_type_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
|
||||
"toc_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"}
|
||||
}
|
||||
|
||||
@ -803,6 +803,12 @@
|
||||
"tags": "TEXT EMBEDDING",
|
||||
"max_tokens": 512,
|
||||
"model_type": "embedding"
|
||||
},
|
||||
{
|
||||
"llm_name": "glm-asr",
|
||||
"tags": "SPEECH2TEXT",
|
||||
"max_tokens": 4096,
|
||||
"model_type": "speech2text"
|
||||
}
|
||||
]
|
||||
},
|
||||
@ -2816,6 +2822,13 @@
|
||||
"tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,IMAGE2TEXT",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name":"THUDM/GLM-4.1V-9B-Thinking",
|
||||
"tags":"LLM,CHAT,IMAGE2TEXT, 64k",
|
||||
"max_tokens":64000,
|
||||
"model_type":"chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-Embedding-8B",
|
||||
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
|
||||
@ -3145,13 +3158,6 @@
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2-1.5B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-Coder-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
@ -3159,13 +3165,6 @@
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2-VL-7B-Instruct",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
@ -3533,6 +3532,13 @@
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-5-20250929",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
@ -4862,8 +4868,282 @@
|
||||
"max_tokens": 8000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "LongCat-Flash-Thinking",
|
||||
"tags": "LLM,CHAT,8000",
|
||||
"max_tokens": 8000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "DeerAPI",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "gpt-5-chat-latest",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "chatgpt-4o-latest",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-mini",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-nano",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1-mini",
|
||||
"tags": "LLM,CHAT,1M",
|
||||
"max_tokens": 1047576,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1-nano",
|
||||
"tags": "LLM,CHAT,1M",
|
||||
"max_tokens": 1047576,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1",
|
||||
"tags": "LLM,CHAT,1M",
|
||||
"max_tokens": 1047576,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4o-mini",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "o4-mini-2025-04-16",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "o3-pro-2025-06-10",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-opus-4-1-20250805",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-opus-4-1-20250805-thinking",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514-thinking",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-7-sonnet-latest",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-5-haiku-latest",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.5-pro",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.5-flash",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.5-flash-lite",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.0-flash",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-4-0709",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-3",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-3-mini",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-2-image-1212",
|
||||
"tags": "LLM,CHAT,32k,IMAGE2TEXT",
|
||||
"max_tokens": 32768,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-v3.1",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-v3",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-r1-0528",
|
||||
"tags": "LLM,CHAT,164k",
|
||||
"max_tokens": 164000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-chat",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-reasoner",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "qwen3-30b-a3b",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "qwen3-coder-plus-2025-07-22",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "text-embedding-ada-002",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "text-embedding-3-small",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "text-embedding-3-large",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "whisper-1",
|
||||
"tags": "SPEECH2TEXT",
|
||||
"max_tokens": 26214400,
|
||||
"model_type": "speech2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "tts-1",
|
||||
"tags": "TTS",
|
||||
"max_tokens": 2048,
|
||||
"model_type": "tts",
|
||||
"is_tools": false
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
@ -200,6 +200,61 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_2048_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 2048
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_4096_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 4096
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_6144_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 6144
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_8192_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 8192
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"knn_vector": {
|
||||
"match": "*_10240_vec",
|
||||
"mapping": {
|
||||
"type": "knn_vector",
|
||||
"index": true,
|
||||
"space_type": "cosinesimil",
|
||||
"dimension": 10240
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"binary": {
|
||||
"match": "*_bin",
|
||||
|
||||
@ -17,7 +17,6 @@
|
||||
|
||||
import re
|
||||
|
||||
import mistune
|
||||
from markdown import markdown
|
||||
|
||||
|
||||
@ -117,8 +116,6 @@ class MarkdownElementExtractor:
|
||||
def __init__(self, markdown_content):
|
||||
self.markdown_content = markdown_content
|
||||
self.lines = markdown_content.split("\n")
|
||||
self.ast_parser = mistune.create_markdown(renderer="ast")
|
||||
self.ast_nodes = self.ast_parser(markdown_content)
|
||||
|
||||
def extract_elements(self):
|
||||
"""Extract individual elements (headers, code blocks, lists, etc.)"""
|
||||
|
||||
@ -15,11 +15,13 @@
|
||||
#
|
||||
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import sys
|
||||
import threading
|
||||
from collections import Counter, defaultdict
|
||||
from copy import deepcopy
|
||||
from io import BytesIO
|
||||
from timeit import default_timer as timer
|
||||
@ -349,9 +351,78 @@ class RAGFlowPdfParser:
|
||||
self.boxes[i]["top"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||||
self.boxes[i]["bottom"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||||
|
||||
def _text_merge(self):
|
||||
def _assign_column(self, boxes, zoomin=3):
|
||||
if not boxes:
|
||||
return boxes
|
||||
|
||||
if all("col_id" in b for b in boxes):
|
||||
return boxes
|
||||
|
||||
by_page = defaultdict(list)
|
||||
for b in boxes:
|
||||
by_page[b["page_number"]].append(b)
|
||||
|
||||
page_info = {} # pg -> dict(page_w, left_edge, cand_cols)
|
||||
counter = Counter()
|
||||
|
||||
for pg, bxs in by_page.items():
|
||||
if not bxs:
|
||||
page_info[pg] = {"page_w": 1.0, "left_edge": 0.0, "cand": 1}
|
||||
counter[1] += 1
|
||||
continue
|
||||
|
||||
if hasattr(self, "page_images") and self.page_images and len(self.page_images) >= pg:
|
||||
page_w = self.page_images[pg - 1].size[0] / max(1, zoomin)
|
||||
left_edge = 0.0
|
||||
else:
|
||||
xs0 = [box["x0"] for box in bxs]
|
||||
xs1 = [box["x1"] for box in bxs]
|
||||
left_edge = float(min(xs0))
|
||||
page_w = max(1.0, float(max(xs1) - left_edge))
|
||||
|
||||
widths = [max(1.0, (box["x1"] - box["x0"])) for box in bxs]
|
||||
median_w = float(np.median(widths)) if widths else 1.0
|
||||
|
||||
raw_cols = int(page_w / max(1.0, median_w))
|
||||
|
||||
# cand = raw_cols if (raw_cols >= 2 and median_w < page_w / raw_cols * 0.8) else 1
|
||||
cand = raw_cols
|
||||
|
||||
page_info[pg] = {"page_w": page_w, "left_edge": left_edge, "cand": cand}
|
||||
counter[cand] += 1
|
||||
|
||||
logging.info(f"[Page {pg}] median_w={median_w:.2f}, page_w={page_w:.2f}, raw_cols={raw_cols}, cand={cand}")
|
||||
|
||||
global_cols = counter.most_common(1)[0][0]
|
||||
logging.info(f"Global column_num decided by majority: {global_cols}")
|
||||
|
||||
for pg, bxs in by_page.items():
|
||||
if not bxs:
|
||||
continue
|
||||
|
||||
page_w = page_info[pg]["page_w"]
|
||||
left_edge = page_info[pg]["left_edge"]
|
||||
|
||||
if global_cols == 1:
|
||||
for box in bxs:
|
||||
box["col_id"] = 0
|
||||
continue
|
||||
|
||||
for box in bxs:
|
||||
w = box["x1"] - box["x0"]
|
||||
if w >= 0.8 * page_w:
|
||||
box["col_id"] = 0
|
||||
continue
|
||||
cx = 0.5 * (box["x0"] + box["x1"])
|
||||
norm_cx = (cx - left_edge) / page_w
|
||||
norm_cx = max(0.0, min(norm_cx, 0.999999))
|
||||
box["col_id"] = int(min(global_cols - 1, norm_cx * global_cols))
|
||||
|
||||
return boxes
|
||||
|
||||
def _text_merge(self, zoomin=3):
|
||||
# merge adjusted boxes
|
||||
bxs = self.boxes
|
||||
bxs = self._assign_column(self.boxes, zoomin)
|
||||
|
||||
def end_with(b, txt):
|
||||
txt = txt.strip()
|
||||
@ -367,9 +438,15 @@ class RAGFlowPdfParser:
|
||||
while i < len(bxs) - 1:
|
||||
b = bxs[i]
|
||||
b_ = bxs[i + 1]
|
||||
|
||||
if b["page_number"] != b_["page_number"] or b.get("col_id") != b_.get("col_id"):
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
|
||||
# merge
|
||||
bxs[i]["x1"] = b_["x1"]
|
||||
@ -379,83 +456,108 @@ class RAGFlowPdfParser:
|
||||
bxs.pop(i + 1)
|
||||
continue
|
||||
i += 1
|
||||
continue
|
||||
|
||||
dis_thr = 1
|
||||
dis = b["x1"] - b_["x0"]
|
||||
if b.get("layout_type", "") != "text" or b_.get("layout_type", "") != "text":
|
||||
if end_with(b, ",") or start_with(b_, "(,"):
|
||||
dis_thr = -8
|
||||
else:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 and dis >= dis_thr and b["x1"] < b_["x1"]:
|
||||
# merge
|
||||
bxs[i]["x1"] = b_["x1"]
|
||||
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
|
||||
bxs[i]["bottom"] = (b["bottom"] + b_["bottom"]) / 2
|
||||
bxs[i]["text"] += b_["text"]
|
||||
bxs.pop(i + 1)
|
||||
continue
|
||||
i += 1
|
||||
self.boxes = bxs
|
||||
|
||||
def _naive_vertical_merge(self, zoomin=3):
|
||||
import math
|
||||
bxs = Recognizer.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
|
||||
bxs = self._assign_column(self.boxes, zoomin)
|
||||
|
||||
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
||||
if not column_width or math.isnan(column_width):
|
||||
column_width = self.mean_width[0]
|
||||
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
|
||||
if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
|
||||
logging.info("Multi-column................... {} {}".format(column_width, self.page_images[0].size[0] / zoomin / self.column_num))
|
||||
self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
|
||||
grouped = defaultdict(list)
|
||||
for b in bxs:
|
||||
grouped[(b["page_number"], b.get("col_id", 0))].append(b)
|
||||
|
||||
i = 0
|
||||
while i + 1 < len(bxs):
|
||||
b = bxs[i]
|
||||
b_ = bxs[i + 1]
|
||||
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
|
||||
bxs.pop(i)
|
||||
merged_boxes = []
|
||||
for (pg, col), bxs in grouped.items():
|
||||
bxs = sorted(bxs, key=lambda x: (x["top"], x["x0"]))
|
||||
if not bxs:
|
||||
continue
|
||||
if not b["text"].strip():
|
||||
bxs.pop(i)
|
||||
continue
|
||||
concatting_feats = [
|
||||
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
|
||||
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
|
||||
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
|
||||
]
|
||||
# features for not concating
|
||||
feats = [
|
||||
b.get("layoutno", 0) != b_.get("layoutno", 0),
|
||||
b["text"].strip()[-1] in "。?!?",
|
||||
self.is_english and b["text"].strip()[-1] in ".!?",
|
||||
b["page_number"] == b_["page_number"] and b_["top"] - b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
|
||||
b["page_number"] < b_["page_number"] and abs(b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
|
||||
]
|
||||
# split features
|
||||
detach_feats = [b["x1"] < b_["x0"], b["x0"] > b_["x1"]]
|
||||
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
|
||||
logging.debug(
|
||||
"{} {} {} {}".format(
|
||||
b["text"],
|
||||
b_["text"],
|
||||
any(feats),
|
||||
any(concatting_feats),
|
||||
|
||||
mh = self.mean_height[pg - 1] if self.mean_height else np.median([b["bottom"] - b["top"] for b in bxs]) or 10
|
||||
|
||||
i = 0
|
||||
while i + 1 < len(bxs):
|
||||
b = bxs[i]
|
||||
b_ = bxs[i + 1]
|
||||
|
||||
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
|
||||
bxs.pop(i)
|
||||
continue
|
||||
|
||||
if not b["text"].strip():
|
||||
bxs.pop(i)
|
||||
continue
|
||||
|
||||
if not b["text"].strip() or b.get("layoutno") != b_.get("layoutno"):
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if b_["top"] - b["bottom"] > mh * 1.5:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
overlap = max(0, min(b["x1"], b_["x1"]) - max(b["x0"], b_["x0"]))
|
||||
if overlap / max(1, min(b["x1"] - b["x0"], b_["x1"] - b_["x0"])) < 0.3:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
concatting_feats = [
|
||||
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
|
||||
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
|
||||
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
|
||||
]
|
||||
# features for not concating
|
||||
feats = [
|
||||
b.get("layoutno", 0) != b_.get("layoutno", 0),
|
||||
b["text"].strip()[-1] in "。?!?",
|
||||
self.is_english and b["text"].strip()[-1] in ".!?",
|
||||
b["page_number"] == b_["page_number"] and b_["top"] - b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
|
||||
b["page_number"] < b_["page_number"] and abs(b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
|
||||
]
|
||||
# split features
|
||||
detach_feats = [b["x1"] < b_["x0"], b["x0"] > b_["x1"]]
|
||||
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
|
||||
logging.debug(
|
||||
"{} {} {} {}".format(
|
||||
b["text"],
|
||||
b_["text"],
|
||||
any(feats),
|
||||
any(concatting_feats),
|
||||
)
|
||||
)
|
||||
)
|
||||
i += 1
|
||||
continue
|
||||
# merge up and down
|
||||
b["bottom"] = b_["bottom"]
|
||||
b["text"] += b_["text"]
|
||||
b["x0"] = min(b["x0"], b_["x0"])
|
||||
b["x1"] = max(b["x1"], b_["x1"])
|
||||
bxs.pop(i + 1)
|
||||
self.boxes = bxs
|
||||
i += 1
|
||||
continue
|
||||
|
||||
b["text"] = (b["text"].rstrip() + " " + b_["text"].lstrip()).strip()
|
||||
b["bottom"] = b_["bottom"]
|
||||
b["x0"] = min(b["x0"], b_["x0"])
|
||||
b["x1"] = max(b["x1"], b_["x1"])
|
||||
bxs.pop(i + 1)
|
||||
|
||||
merged_boxes.extend(bxs)
|
||||
|
||||
self.boxes = sorted(merged_boxes, key=lambda x: (x["page_number"], x.get("col_id", 0), x["top"]))
|
||||
|
||||
def _final_reading_order_merge(self, zoomin=3):
|
||||
if not self.boxes:
|
||||
return
|
||||
|
||||
self.boxes = self._assign_column(self.boxes, zoomin=zoomin)
|
||||
|
||||
pages = defaultdict(lambda: defaultdict(list))
|
||||
for b in self.boxes:
|
||||
pg = b["page_number"]
|
||||
col = b.get("col_id", 0)
|
||||
pages[pg][col].append(b)
|
||||
|
||||
for pg in pages:
|
||||
for col in pages[pg]:
|
||||
pages[pg][col].sort(key=lambda x: (x["top"], x["x0"]))
|
||||
|
||||
new_boxes = []
|
||||
for pg in sorted(pages.keys()):
|
||||
for col in sorted(pages[pg].keys()):
|
||||
new_boxes.extend(pages[pg][col])
|
||||
|
||||
self.boxes = new_boxes
|
||||
|
||||
def _concat_downward(self, concat_between_pages=True):
|
||||
self.boxes = Recognizer.sort_Y_firstly(self.boxes, 0)
|
||||
@ -997,7 +1099,7 @@ class RAGFlowPdfParser:
|
||||
self.__ocr(i + 1, img, chars, zoomin, id)
|
||||
|
||||
if callback and i % 6 == 5:
|
||||
callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
|
||||
callback((i + 1) * 0.6 / len(self.page_images))
|
||||
|
||||
async def __img_ocr_launcher():
|
||||
def __ocr_preprocess():
|
||||
@ -1048,7 +1150,7 @@ class RAGFlowPdfParser:
|
||||
|
||||
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
|
||||
start = timer()
|
||||
self.__images__(fnm, zoomin)
|
||||
self.__images__(fnm, zoomin, callback=callback)
|
||||
if callback:
|
||||
callback(0.40, "OCR finished ({:.2f}s)".format(timer() - start))
|
||||
|
||||
@ -1074,7 +1176,6 @@ class RAGFlowPdfParser:
|
||||
|
||||
def insert_table_figures(tbls_or_figs, layout_type):
|
||||
def min_rectangle_distance(rect1, rect2):
|
||||
import math
|
||||
pn1, left1, right1, top1, bottom1 = rect1
|
||||
pn2, left2, right2, top2, bottom2 = rect2
|
||||
if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1:
|
||||
@ -1091,27 +1192,39 @@ class RAGFlowPdfParser:
|
||||
dy = top1 - bottom2
|
||||
else:
|
||||
dy = 0
|
||||
return math.sqrt(dx*dx + dy*dy)# + (pn2-pn1)*10000
|
||||
return math.sqrt(dx * dx + dy * dy) # + (pn2-pn1)*10000
|
||||
|
||||
for (img, txt), poss in tbls_or_figs:
|
||||
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
|
||||
dists = [(min_rectangle_distance((pn, left, right, top+self.page_cum_height[pn], bott+self.page_cum_height[pn]), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
|
||||
dists = [
|
||||
(min_rectangle_distance((pn, left, right, top + self.page_cum_height[pn], bott + self.page_cum_height[pn]), rect), i) for i, rect in bboxes for pn, left, right, top, bott in poss
|
||||
]
|
||||
min_i = np.argmin(dists, axis=0)[0]
|
||||
min_i, rect = bboxes[dists[min_i][-1]]
|
||||
if isinstance(txt, list):
|
||||
txt = "\n".join(txt)
|
||||
pn, left, right, top, bott = poss[0]
|
||||
if self.boxes[min_i]["bottom"] < top+self.page_cum_height[pn]:
|
||||
if self.boxes[min_i]["bottom"] < top + self.page_cum_height[pn]:
|
||||
min_i += 1
|
||||
self.boxes.insert(min_i, {
|
||||
"page_number": pn+1, "x0": left, "x1": right, "top": top+self.page_cum_height[pn], "bottom": bott+self.page_cum_height[pn], "layout_type": layout_type, "text": txt, "image": img,
|
||||
"positions": [[pn+1, int(left), int(right), int(top), int(bott)]]
|
||||
})
|
||||
self.boxes.insert(
|
||||
min_i,
|
||||
{
|
||||
"page_number": pn + 1,
|
||||
"x0": left,
|
||||
"x1": right,
|
||||
"top": top + self.page_cum_height[pn],
|
||||
"bottom": bott + self.page_cum_height[pn],
|
||||
"layout_type": layout_type,
|
||||
"text": txt,
|
||||
"image": img,
|
||||
"positions": [[pn + 1, int(left), int(right), int(top), int(bott)]],
|
||||
},
|
||||
)
|
||||
|
||||
for b in self.boxes:
|
||||
b["position_tag"] = self._line_tag(b, zoomin)
|
||||
b["image"] = self.crop(b["position_tag"], zoomin)
|
||||
b["positions"] = [[pos[0][-1]+1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(b["position_tag"])]
|
||||
b["positions"] = [[pos[0][-1] + 1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(b["position_tag"])]
|
||||
|
||||
insert_table_figures(tbls, "table")
|
||||
insert_table_figures(figs, "figure")
|
||||
@ -1129,7 +1242,7 @@ class RAGFlowPdfParser:
|
||||
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
|
||||
pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t")
|
||||
left, right, top, bottom = float(left), float(right), float(top), float(bottom)
|
||||
poss.append(([int(p) - 1 for p in pn.split("-")], int(left), int(right), int(top), int(bottom)))
|
||||
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
|
||||
return poss
|
||||
|
||||
def crop(self, text, ZM=3, need_position=False):
|
||||
@ -1274,12 +1387,16 @@ class VisionParser(RAGFlowPdfParser):
|
||||
prompt=vision_llm_describe_prompt(page=pdf_page_num + 1),
|
||||
callback=callback,
|
||||
)
|
||||
|
||||
if kwargs.get("callback"):
|
||||
kwargs["callback"](idx * 1.0 / len(self.page_images), f"Processed: {idx + 1}/{len(self.page_images)}")
|
||||
|
||||
if text:
|
||||
width, height = self.page_images[idx].size
|
||||
all_docs.append((text, f"{pdf_page_num + 1} 0 {width / zoomin} 0 {height / zoomin}"))
|
||||
all_docs.append((
|
||||
text,
|
||||
f"@@{pdf_page_num + 1}\t{0.0:.1f}\t{width / zoomin:.1f}\t{0.0:.1f}\t{height / zoomin:.1f}##"
|
||||
))
|
||||
return all_docs, []
|
||||
|
||||
|
||||
|
||||
@ -84,7 +84,8 @@ def load_model(model_dir, nm, device_id: int | None = None):
|
||||
def cuda_is_available():
|
||||
try:
|
||||
import torch
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() > device_id:
|
||||
target_id = 0 if device_id is None else device_id
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() > target_id:
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
@ -100,10 +101,13 @@ def load_model(model_dir, nm, device_id: int | None = None):
|
||||
# Shrink GPU memory after execution
|
||||
run_options = ort.RunOptions()
|
||||
if cuda_is_available():
|
||||
gpu_mem_limit_mb = int(os.environ.get("OCR_GPU_MEM_LIMIT_MB", "2048"))
|
||||
arena_strategy = os.environ.get("OCR_ARENA_EXTEND_STRATEGY", "kNextPowerOfTwo")
|
||||
provider_device_id = 0 if device_id is None else device_id
|
||||
cuda_provider_options = {
|
||||
"device_id": device_id, # Use specific GPU
|
||||
"gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
|
||||
"arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
|
||||
"device_id": provider_device_id, # Use specific GPU
|
||||
"gpu_mem_limit": max(gpu_mem_limit_mb, 0) * 1024 * 1024,
|
||||
"arena_extend_strategy": arena_strategy, # gpu memory allocation strategy
|
||||
}
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
@ -111,8 +115,8 @@ def load_model(model_dir, nm, device_id: int | None = None):
|
||||
providers=['CUDAExecutionProvider'],
|
||||
provider_options=[cuda_provider_options]
|
||||
)
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(device_id))
|
||||
logging.info(f"load_model {model_file_path} uses GPU")
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(provider_device_id))
|
||||
logging.info(f"load_model {model_file_path} uses GPU (device {provider_device_id}, gpu_mem_limit={cuda_provider_options['gpu_mem_limit']}, arena_strategy={arena_strategy})")
|
||||
else:
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
|
||||
16
docker/.env
16
docker/.env
@ -37,9 +37,12 @@ OPENSEARCH_PASSWORD=infini_rag_flow_OS_01
|
||||
|
||||
# The port used to expose the Kibana service to the host machine,
|
||||
# allowing EXTERNAL access to the service running inside the Docker container.
|
||||
# To enable kibana, you need to:
|
||||
# 1. Ensure that COMPOSE_PROFILES includes kibana, for example: COMPOSE_PROFILES=${DOC_ENGINE},kibana
|
||||
# 2. Comment out or delete the following configurations of the es service in docker-compose-base.yml: xpack.security.enabled、xpack.security.http.ssl.enabled、xpack.security.transport.ssl.enabled (for details: https://www.elastic.co/docs/deploy-manage/security/self-auto-setup#stack-existing-settings-detected)
|
||||
# 3. Adjust the es.hosts in conf/service_config.yaml or docker/service_conf.yaml.template to 'https://localhost:1200'
|
||||
# 4. After the startup is successful, in the es container, execute the command to generate the kibana token: `bin/elasticsearch-create-enrollment-token -s kibana`, then you can use kibana normally
|
||||
KIBANA_PORT=6601
|
||||
KIBANA_USER=rag_flow
|
||||
KIBANA_PASSWORD=infini_rag_flow
|
||||
|
||||
# The maximum amount of the memory, in bytes, that a specific Docker container can use while running.
|
||||
# Update it according to the available memory in the host machine.
|
||||
@ -91,15 +94,16 @@ REDIS_PASSWORD=infini_rag_flow
|
||||
# The port used to expose RAGFlow's HTTP API service to the host machine,
|
||||
# allowing EXTERNAL access to the service running inside the Docker container.
|
||||
SVR_HTTP_PORT=9380
|
||||
ADMIN_SVR_HTTP_PORT=9381
|
||||
|
||||
# The RAGFlow Docker image to download.
|
||||
# Defaults to the v0.20.5-slim edition, which is the RAGFlow Docker image without embedding models.
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5-slim
|
||||
# Defaults to the v0.21.0-slim edition, which is the RAGFlow Docker image without embedding models.
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.0-slim
|
||||
#
|
||||
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
|
||||
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5
|
||||
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.0
|
||||
#
|
||||
# The Docker image of the v0.20.5 edition includes built-in embedding models:
|
||||
# The Docker image of the v0.21.0 edition includes built-in embedding models:
|
||||
# - BAAI/bge-large-zh-v1.5
|
||||
# - maidalun1020/bce-embedding-base_v1
|
||||
#
|
||||
|
||||
@ -79,8 +79,8 @@ The [.env](./.env) file contains important environment variables for Docker.
|
||||
- `RAGFLOW-IMAGE`
|
||||
The Docker image edition. Available editions:
|
||||
|
||||
- `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
|
||||
- `infiniflow/ragflow:v0.21.0-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.21.0`: The RAGFlow Docker image with embedding models including:
|
||||
- Built-in embedding models:
|
||||
- `BAAI/bge-large-zh-v1.5`
|
||||
- `maidalun1020/bce-embedding-base_v1`
|
||||
|
||||
@ -77,7 +77,7 @@ services:
|
||||
container_name: ragflow-infinity
|
||||
profiles:
|
||||
- infinity
|
||||
image: infiniflow/infinity:v0.6.0-dev5
|
||||
image: infiniflow/infinity:v0.6.0
|
||||
volumes:
|
||||
- infinity_data:/var/infinity
|
||||
- ./infinity_conf.toml:/infinity_conf.toml
|
||||
@ -207,6 +207,30 @@ services:
|
||||
start_period: 10s
|
||||
|
||||
|
||||
kibana:
|
||||
container_name: ragflow-kibana
|
||||
profiles:
|
||||
- kibana
|
||||
image: kibana:${STACK_VERSION}
|
||||
ports:
|
||||
- ${KIBANA_PORT-5601}:5601
|
||||
env_file: .env
|
||||
environment:
|
||||
- TZ=${TIMEZONE}
|
||||
volumes:
|
||||
- kibana_data:/usr/share/kibana/data
|
||||
depends_on:
|
||||
es01:
|
||||
condition: service_started
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:5601/api/status"]
|
||||
interval: 10s
|
||||
timeout: 10s
|
||||
retries: 120
|
||||
networks:
|
||||
- ragflow
|
||||
restart: on-failure
|
||||
|
||||
|
||||
volumes:
|
||||
esdata01:
|
||||
@ -221,6 +245,8 @@ volumes:
|
||||
driver: local
|
||||
redis_data:
|
||||
driver: local
|
||||
kibana_data:
|
||||
driver: local
|
||||
|
||||
networks:
|
||||
ragflow:
|
||||
|
||||
@ -22,9 +22,14 @@ services:
|
||||
# - --no-transport-sse-enabled # Disable legacy SSE endpoints (/sse and /messages/)
|
||||
# - --no-transport-streamable-http-enabled # Disable Streamable HTTP transport (/mcp endpoint)
|
||||
# - --no-json-response # Disable JSON response mode in Streamable HTTP transport (instead of SSE over HTTP)
|
||||
|
||||
# Example configration to start Admin server:
|
||||
# command:
|
||||
# - --enable-adminserver
|
||||
container_name: ragflow-server
|
||||
ports:
|
||||
- ${SVR_HTTP_PORT}:9380
|
||||
- ${ADMIN_SVR_HTTP_PORT}:9381
|
||||
- 80:80
|
||||
- 443:443
|
||||
- 5678:5678
|
||||
|
||||
@ -11,6 +11,7 @@ function usage() {
|
||||
echo " --disable-webserver Disables the web server (nginx + ragflow_server)."
|
||||
echo " --disable-taskexecutor Disables task executor workers."
|
||||
echo " --enable-mcpserver Enables the MCP server."
|
||||
echo " --enable-adminserver Enables the Admin server."
|
||||
echo " --consumer-no-beg=<num> Start range for consumers (if using range-based)."
|
||||
echo " --consumer-no-end=<num> End range for consumers (if using range-based)."
|
||||
echo " --workers=<num> Number of task executors to run (if range is not used)."
|
||||
@ -21,12 +22,14 @@ function usage() {
|
||||
echo " $0 --disable-webserver --consumer-no-beg=0 --consumer-no-end=5"
|
||||
echo " $0 --disable-webserver --workers=2 --host-id=myhost123"
|
||||
echo " $0 --enable-mcpserver"
|
||||
echo " $0 --enable-adminserver"
|
||||
exit 1
|
||||
}
|
||||
|
||||
ENABLE_WEBSERVER=1 # Default to enable web server
|
||||
ENABLE_TASKEXECUTOR=1 # Default to enable task executor
|
||||
ENABLE_MCP_SERVER=0
|
||||
ENABLE_ADMIN_SERVER=0 # Default close admin server
|
||||
CONSUMER_NO_BEG=0
|
||||
CONSUMER_NO_END=0
|
||||
WORKERS=1
|
||||
@ -70,6 +73,10 @@ for arg in "$@"; do
|
||||
ENABLE_MCP_SERVER=1
|
||||
shift
|
||||
;;
|
||||
--enable-adminserver)
|
||||
ENABLE_ADMIN_SERVER=1
|
||||
shift
|
||||
;;
|
||||
--mcp-host=*)
|
||||
MCP_HOST="${arg#*=}"
|
||||
shift
|
||||
@ -185,6 +192,12 @@ if [[ "${ENABLE_WEBSERVER}" -eq 1 ]]; then
|
||||
done &
|
||||
fi
|
||||
|
||||
if [[ "${ENABLE_ADMIN_SERVER}" -eq 1 ]]; then
|
||||
echo "Starting admin_server..."
|
||||
while true; do
|
||||
"$PY" admin/server/admin_server.py
|
||||
done &
|
||||
fi
|
||||
|
||||
if [[ "${ENABLE_MCP_SERVER}" -eq 1 ]]; then
|
||||
start_mcp_server
|
||||
|
||||
@ -99,8 +99,8 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
|
||||
- `RAGFLOW-IMAGE`
|
||||
The Docker image edition. Available editions:
|
||||
|
||||
- `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
|
||||
- `infiniflow/ragflow:v0.21.0-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.21.0`: The RAGFlow Docker image with embedding models including:
|
||||
- Built-in embedding models:
|
||||
- `BAAI/bge-large-zh-v1.5`
|
||||
- `maidalun1020/bce-embedding-base_v1`
|
||||
|
||||
@ -77,7 +77,7 @@ After building the infiniflow/ragflow:nightly-slim image, you are ready to launc
|
||||
|
||||
1. Edit Docker Compose Configuration
|
||||
|
||||
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.5-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
|
||||
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.21.0-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
|
||||
|
||||
|
||||
2. Launch the Service
|
||||
|
||||
@ -98,7 +98,7 @@ Where:
|
||||
|
||||
- `mcp-host`: The MCP server's host address.
|
||||
- `mcp-port`: The MCP server's listening port.
|
||||
- `mcp-base_url`: The address of the running RAGFlow server.
|
||||
- `mcp-base-url`: The address of the running RAGFlow server.
|
||||
- `mcp-script-path`: The file path to the MCP server’s main script.
|
||||
- `mcp-mode`: The launch mode.
|
||||
- `self-host`: (default) self-host mode.
|
||||
|
||||
24
docs/faq.mdx
24
docs/faq.mdx
@ -30,29 +30,19 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
|
||||
|
||||
Each RAGFlow release is available in two editions:
|
||||
|
||||
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.5-slim`
|
||||
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.5`
|
||||
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.21.0-slim`
|
||||
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.21.0`
|
||||
|
||||
---
|
||||
|
||||
### Which embedding models can be deployed locally?
|
||||
|
||||
RAGFlow offers two Docker image editions, `v0.20.5-slim` and `v0.20.5`:
|
||||
RAGFlow offers two Docker image editions, `v0.21.0-slim` and `v0.21.0`:
|
||||
|
||||
- `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
|
||||
- Built-in embedding models:
|
||||
- `BAAI/bge-large-zh-v1.5`
|
||||
- `maidalun1020/bce-embedding-base_v1`
|
||||
- Embedding models that will be downloaded once you select them in the RAGFlow UI:
|
||||
- `BAAI/bge-base-en-v1.5`
|
||||
- `BAAI/bge-large-en-v1.5`
|
||||
- `BAAI/bge-small-en-v1.5`
|
||||
- `BAAI/bge-small-zh-v1.5`
|
||||
- `jinaai/jina-embeddings-v2-base-en`
|
||||
- `jinaai/jina-embeddings-v2-small-en`
|
||||
- `nomic-ai/nomic-embed-text-v1.5`
|
||||
- `sentence-transformers/all-MiniLM-L6-v2`
|
||||
- `infiniflow/ragflow:v0.21.0-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.21.0`: The RAGFlow Docker image with the following built-in embedding models:
|
||||
- `BAAI/bge-large-zh-v1.5`
|
||||
- `maidalun1020/bce-embedding-base_v1`
|
||||
|
||||
---
|
||||
|
||||
|
||||
@ -9,7 +9,7 @@ The component equipped with reasoning, tool usage, and multi-agent collaboration
|
||||
|
||||
---
|
||||
|
||||
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.5 onwards, an **Agent** component is able to work independently and with the following capabilities:
|
||||
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.21.0 onwards, an **Agent** component is able to work independently and with the following capabilities:
|
||||
|
||||
- Autonomous reasoning with reflection and adjustment based on environmental feedback.
|
||||
- Use of tools or subagents to complete tasks.
|
||||
@ -147,7 +147,7 @@ An **Agent** component relies on keys (variables) to specify its data inputs. It
|
||||
|
||||
#### Advanced usage
|
||||
|
||||
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field, enabling you to customize and *override* prompts at the framework level. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
|
||||
From v0.21.0 onwards, four framework-level prompt blocks are available in the **System prompt** field, enabling you to customize and *override* prompts at the framework level. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
|
||||
|
||||
- `task_analysis` prompt block
|
||||
- This block is responsible for analyzing tasks — either a user task or a task assigned by the lead Agent when the **Agent** component is acting as a Sub-Agent.
|
||||
|
||||
@ -48,7 +48,7 @@ You start an AI conversation by creating an assistant.
|
||||
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
|
||||
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
|
||||
- If you are uncertain about the logic behind **Variable**, leave it *as-is*.
|
||||
- As of v0.20.5, if you add custom variables here, the only way you can pass in their values is to call:
|
||||
- As of v0.21.0, if you add custom variables here, the only way you can pass in their values is to call:
|
||||
- HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or
|
||||
- Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant).
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: -1
|
||||
sidebar_position: -10
|
||||
slug: /configure_knowledge_base
|
||||
---
|
||||
|
||||
@ -37,7 +37,7 @@ This section covers the following topics:
|
||||
|
||||
### Select chunking method
|
||||
|
||||
RAGFlow offers multiple chunking template to facilitate chunking files of different layouts and ensure semantic integrity. In **Chunking method**, you can choose the default template that suits the layouts and formats of your files. The following table shows the descriptions and the compatible file formats of each supported chunk template:
|
||||
RAGFlow offers multiple built-in chunking template to facilitate chunking files of different layouts and ensure semantic integrity. From the **Built-in** chunking method dropdown under **Parse type**, you can choose the default template that suits the layouts and formats of your files. The following table shows the descriptions and the compatible file formats of each supported chunk template:
|
||||
|
||||
| **Template** | Description | File format |
|
||||
|--------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|
||||
@ -54,9 +54,23 @@ RAGFlow offers multiple chunking template to facilitate chunking files of differ
|
||||
| One | Each document is chunked in its entirety (as one). | DOCX, XLSX, XLS (Excel 97-2003), PDF, TXT |
|
||||
| Tag | The dataset functions as a tag set for the others. | XLSX, CSV/TXT |
|
||||
|
||||
You can also change a file's chunking method on the **Datasets** page.
|
||||
You can also change a file's chunking method on the **Files** page.
|
||||
|
||||

|
||||

|
||||
|
||||
<details>
|
||||
<summary>From v0.21.0 onward, RAGFlow supports ingestion pipeline for customized data ingestion and cleansing workflows.</summary>
|
||||
|
||||
To use a customized data pipeline:
|
||||
|
||||
1. On the **Agent** page, click **+ Create agent** > **Create from blank**.
|
||||
2. Select **Ingestion pipeline** and name your data pipeline in the popup, then click **Save** to show the data pipeline canvas.
|
||||
3. After updating your data pipeline, click **Save** on the top right of the canvas.
|
||||
4. Navigate to the **Configuration** page of your dataset, select **Choose pipeline** in **Ingestion pipeline**.
|
||||
|
||||
*Your saved data pipeline will appear in the dropdown menu below.*
|
||||
|
||||
</details>
|
||||
|
||||
### Select embedding model
|
||||
|
||||
@ -124,7 +138,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
|
||||
|
||||
## Search for dataset
|
||||
|
||||
As of RAGFlow v0.20.5, the search feature is still in a rudimentary form, supporting only dataset search by name.
|
||||
As of RAGFlow v0.21.0, the search feature is still in a rudimentary form, supporting only dataset search by name.
|
||||
|
||||

|
||||
|
||||
|
||||
@ -53,25 +53,31 @@ Whether to enable entity resolution. You can think of this as an entity deduplic
|
||||
- (Default) Disable entity resolution.
|
||||
- Enable entity resolution. This option consumes more tokens.
|
||||
|
||||
### Community report generation
|
||||
### Community reports
|
||||
|
||||
In a knowledge graph, a community is a cluster of entities linked by relationships. You can have the LLM generate an abstract for each community, known as a community report. See [here](https://www.microsoft.com/en-us/research/blog/graphrag-improving-global-search-via-dynamic-community-selection/) for more information. This indicates whether to generate community reports:
|
||||
|
||||
- Generate community reports. This option consumes more tokens.
|
||||
- (Default) Do not generate community reports.
|
||||
|
||||
## Procedure
|
||||
## Quickstart
|
||||
|
||||
1. On the **Configuration** page of your dataset, switch on **Extract knowledge graph** or adjust its settings as needed, and click **Save** to confirm your changes.
|
||||
1. Navigate to the **Configuration** page of your dataset and update:
|
||||
|
||||
- Entity types: *Required* - Specifies the entity types in the knowledge graph to generate. You don't have to stick with the default, but you need to customize them for your documents.
|
||||
- Method: *Optional*
|
||||
- Entity resolution: *Optional*
|
||||
- Community reports: *Optional*
|
||||
*The default knowledge graph configurations for your dataset are now set.*
|
||||
|
||||
- *The default knowledge graph configurations for your dataset are now set and files uploaded from this point onward will automatically use these settings during parsing.*
|
||||
- *Files parsed before this update will retain their original knowledge graph settings.*
|
||||
2. Navigate to the **Files** page of your dataset, click the **Generate** button on the top right corner of the page, then select **Knowledge graph** from the dropdown to initiate the knowledge graph generation process.
|
||||
|
||||
2. The knowledge graph of your dataset does *not* automatically update *until* a newly uploaded file is parsed.
|
||||
*You can click the pause button in the dropdown to halt the build process when necessary.*
|
||||
|
||||
_A **Knowledge graph** entry appears under **Configuration** once a knowledge graph is created._
|
||||
3. Go back to the **Configuration** page:
|
||||
|
||||
*Once a knowledge graph is generated, the **Knowledge graph** field changes from `Not generated` to `Generated at a specific timestamp`. You can delete it by clicking the recycle bin button to the right of the field.*
|
||||
|
||||
3. Click **Knowledge graph** to view the details of the generated graph.
|
||||
4. To use the created knowledge graph, do either of the following:
|
||||
|
||||
- In the **Chat setting** panel of your chat app, switch on the **Use knowledge graph** toggle.
|
||||
@ -79,17 +85,13 @@ In a knowledge graph, a community is a cluster of entities linked by relationshi
|
||||
|
||||
## Frequently asked questions
|
||||
|
||||
### Can I have different knowledge graph settings for different files in my dataset?
|
||||
|
||||
Yes, you can. Just one graph is generated per dataset. The smaller graphs of your files will be *combined* into one big, unified graph at the end of the graph extraction process.
|
||||
|
||||
### Does the knowledge graph automatically update when I remove a related file?
|
||||
|
||||
Nope. The knowledge graph does *not* automatically update *until* a newly uploaded document is parsed.
|
||||
Nope. The knowledge graph does *not* update *until* you regenerate a knowledge graph for your dataset.
|
||||
|
||||
### How to remove a generated knowledge graph?
|
||||
|
||||
To remove the generated knowledge graph, delete all related files in your dataset. Although the **Knowledge graph** entry will still be visible, the graph has actually been deleted.
|
||||
On the **Configuration** page of your dataset, find the **Knoweledge graph** field and click the recycle bin button to the right of the field.
|
||||
|
||||
### Where is the created knowledge graph stored?
|
||||
|
||||
|
||||
@ -72,3 +72,22 @@ The maximum number of clusters to create. Defaults to 64, with a maximum limit o
|
||||
### Random seed
|
||||
|
||||
A random seed. Click **+** to change the seed value.
|
||||
|
||||
## Quickstart
|
||||
|
||||
1. Navigate to the **Configuration** page of your dataset and update:
|
||||
|
||||
- Prompt: *Optional* - We recommend that you keep it as-is until you understand the mechanism behind.
|
||||
- Max token: *Optional*
|
||||
- Threshold: *Optional*
|
||||
- Max cluster: *Optional*
|
||||
|
||||
2. Navigate to the **Files** page of your dataset, click the **Generate** button on the top right corner of the page, then select **RAPTOR** from the dropdown to initiate the RAPTOR build process.
|
||||
|
||||
*You can click the pause button in the dropdown to halt the build process when necessary.*
|
||||
|
||||
3. Go back to the **Configuration** page:
|
||||
|
||||
*The **RAPTOR** field changes from `Not generated` to `Generated at a specific timestamp` when a RAPTOR hierarchical tree structure is generated. You can delete it by clicking the recycle bin button to the right of the field.*
|
||||
|
||||
4. Once a RAPTOR hierarchical tree structure is generated, your chat assistant and **Retrieval** agent component will use it for retrieval as a default.
|
||||
|
||||
39
docs/guides/dataset/extract_table_of_contents.md
Normal file
39
docs/guides/dataset/extract_table_of_contents.md
Normal file
@ -0,0 +1,39 @@
|
||||
---
|
||||
sidebar_position: 4
|
||||
slug: /enable_table_of_contents
|
||||
---
|
||||
|
||||
# Extract table of contents
|
||||
|
||||
Extract table of contents (TOC) from documents to provide long context RAG and improve retrieval.
|
||||
|
||||
---
|
||||
|
||||
During indexing, this technique uses LLM to extract and generate chapter information, which is added to each chunk to provide sufficient global context. At the retrieval stage, it first uses the chunks matched by search, then supplements missing chunks based on the table of contents structure. This addresses issues caused by chunk fragmentation and insufficient context, improving answer quality.
|
||||
|
||||
:::danger WARNING
|
||||
Enabling TOC extraction requires significant memory, computational resources, and tokens.
|
||||
:::
|
||||
|
||||
## Prerequisites
|
||||
|
||||
The system's default chat model is used to summarize clustered content. Before proceeding, ensure that you have a chat model properly configured:
|
||||
|
||||

|
||||
|
||||
## Quickstart
|
||||
|
||||
1. Navigate to the **Configuration** page.
|
||||
|
||||
2. Enable **TOC Enhance**.
|
||||
|
||||
3. To use this technique during retrieval, do either of the following:
|
||||
|
||||
- In the **Chat setting** panel of your chat app, switch on the **TOC Enhance** toggle.
|
||||
- If you are using an agent, click the **Retrieval** agent component to specify the dataset(s) and switch on the **TOC Enhance** toggle.
|
||||
|
||||
## Frequently asked questions
|
||||
|
||||
### Will previously parsed files be searched using the TOC enhancement feature once I enable `TOC Enhance`?
|
||||
|
||||
No. Only files parsed after you enable **TOC Enhance** will be searched using the TOC enhancement feature. To apply this feature to files parsed before enabling **TOC Enhance**, you must reparse them.
|
||||
@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 1
|
||||
sidebar_position: -4
|
||||
slug: /select_pdf_parser
|
||||
---
|
||||
|
||||
@ -25,7 +25,7 @@ RAGFlow isn't one-size-fits-all. It is built for flexibility and supports deeper
|
||||
- **One**
|
||||
- To use a third-party visual model for parsing PDFs, ensure you have set a default img2txt model under **Set default models** on the **Model providers** page.
|
||||
|
||||
## Procedure
|
||||
## Quickstart
|
||||
|
||||
1. On your dataset's **Configuration** page, select a chunking method, say **General**.
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 0
|
||||
sidebar_position: -7
|
||||
slug: /set_metada
|
||||
---
|
||||
|
||||
@ -21,6 +21,10 @@ Ensure that your metadata is in JSON format; otherwise, your updates will not be
|
||||
|
||||

|
||||
|
||||
## Related APIs
|
||||
|
||||
[Retrieve chunks](../../references/http_api_reference.md#retrieve-chunks)
|
||||
|
||||
## Frequently asked questions
|
||||
|
||||
### Can I set metadata for multiple documents at once?
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 2
|
||||
sidebar_position: -2
|
||||
slug: /set_page_rank
|
||||
---
|
||||
|
||||
|
||||
@ -42,8 +42,8 @@ A tag set is *not* involved in document indexing or retrieval. Do not specify a
|
||||
:::
|
||||
|
||||
1. Click **+ Create dataset** to create a dataset.
|
||||
2. Navigate to the **Configuration** page of the created dataset and choose **Tag** as the default chunking method.
|
||||
3. Navigate to the **Dataset** page and upload and parse your table file in XLSX, CSV, or TXT formats.
|
||||
2. Navigate to the **Configuration** page of the created dataset, select **Built-in** in **Ingestion pipeline**, then choose **Tag** as the default chunking method from the **Built-in** drop-down menu.
|
||||
3. Go back to the **Files** page and upload and parse your table file in XLSX, CSV, or TXT formats.
|
||||
_A tag cloud appears under the **Tag view** section, indicating the tag set is created:_
|
||||

|
||||
4. Click the **Table** tab to view the tag frequency table:
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user