mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-02-04 01:25:07 +08:00
Compare commits
42 Commits
pipeline
...
902703d145
| Author | SHA1 | Date | |
|---|---|---|---|
| 902703d145 | |||
| 7ccca2143c | |||
| 70ce02faf4 | |||
| 3f1741c8c6 | |||
| 6c24ad7966 | |||
| 4846589599 | |||
| a24547aa66 | |||
| a04c5247ab | |||
| ed6a76dcc0 | |||
| a0ccbec8bd | |||
| 4693c5382a | |||
| ff3b4d0dcd | |||
| 62d35b1b73 | |||
| 91b609447d | |||
| c353840244 | |||
| f12b9fdcd4 | |||
| 80ede65bbe | |||
| 52cf186028 | |||
| ea0f1d47a5 | |||
| 9fe7c92217 | |||
| d353f7f7f8 | |||
| f3738b06f1 | |||
| 5a8bc88147 | |||
| 04ef5b2783 | |||
| c9ea22ef69 | |||
| 152111fd9d | |||
| 86f6da2f74 | |||
| 8c00cbc87a | |||
| 41e808f4e6 | |||
| bc0281040b | |||
| 341a7b1473 | |||
| c29c395390 | |||
| a23a0f230c | |||
| 2a88ce6be1 | |||
| 664b781d62 | |||
| 65571e5254 | |||
| aa30f20730 | |||
| b9b278d441 | |||
| e1d86cfee3 | |||
| 8ebd07337f | |||
| dd584d57b0 | |||
| 3d39b96c6f |
8
.github/workflows/release.yml
vendored
8
.github/workflows/release.yml
vendored
@ -88,7 +88,9 @@ jobs:
|
||||
with:
|
||||
context: .
|
||||
push: true
|
||||
tags: infiniflow/ragflow:${{ env.RELEASE_TAG }}
|
||||
tags: |
|
||||
infiniflow/ragflow:${{ env.RELEASE_TAG }}
|
||||
infiniflow/ragflow:latest-full
|
||||
file: Dockerfile
|
||||
platforms: linux/amd64
|
||||
|
||||
@ -98,7 +100,9 @@ jobs:
|
||||
with:
|
||||
context: .
|
||||
push: true
|
||||
tags: infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
|
||||
tags: |
|
||||
infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
|
||||
infiniflow/ragflow:latest-slim
|
||||
file: Dockerfile
|
||||
build-args: LIGHTEN=1
|
||||
platforms: linux/amd64
|
||||
|
||||
@ -83,7 +83,7 @@
|
||||
},
|
||||
"password": "20010812Yy!",
|
||||
"port": 3306,
|
||||
"sql": "Agent:WickedGoatsDivide@content",
|
||||
"sql": "{Agent:WickedGoatsDivide@content}",
|
||||
"username": "13637682833@163.com"
|
||||
}
|
||||
},
|
||||
@ -114,9 +114,7 @@
|
||||
"params": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"ed31364c727211f0bdb2bafe6e7908e6"
|
||||
],
|
||||
"kb_ids": [],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
@ -124,7 +122,7 @@
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"query": "{sys.query}",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
@ -145,9 +143,7 @@
|
||||
"params": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"0f968106727311f08357bafe6e7908e6"
|
||||
],
|
||||
"kb_ids": [],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
@ -155,7 +151,7 @@
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"query": "{sys.query}",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
@ -176,9 +172,7 @@
|
||||
"params": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"4ad1f9d0727311f0827dbafe6e7908e6"
|
||||
],
|
||||
"kb_ids": [],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
@ -186,7 +180,7 @@
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"query": "{sys.query}",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
@ -347,9 +341,7 @@
|
||||
"form": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"ed31364c727211f0bdb2bafe6e7908e6"
|
||||
],
|
||||
"kb_ids": [],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
@ -357,7 +349,7 @@
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"query": "{sys.query}",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
@ -387,9 +379,7 @@
|
||||
"form": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"0f968106727311f08357bafe6e7908e6"
|
||||
],
|
||||
"kb_ids": [],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
@ -397,7 +387,7 @@
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"query": "{sys.query}",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
@ -427,9 +417,7 @@
|
||||
"form": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"4ad1f9d0727311f0827dbafe6e7908e6"
|
||||
],
|
||||
"kb_ids": [],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
@ -437,7 +425,7 @@
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"query": "{sys.query}",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
@ -539,7 +527,7 @@
|
||||
},
|
||||
"password": "20010812Yy!",
|
||||
"port": 3306,
|
||||
"sql": "Agent:WickedGoatsDivide@content",
|
||||
"sql": "{Agent:WickedGoatsDivide@content}",
|
||||
"username": "13637682833@163.com"
|
||||
},
|
||||
"label": "ExeSQL",
|
||||
|
||||
@ -157,7 +157,7 @@ class CodeExec(ToolBase, ABC):
|
||||
|
||||
try:
|
||||
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
|
||||
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code)
|
||||
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run, code_req: {code_req}, resp.status_code {resp.status_code}:")
|
||||
if resp.status_code != 200:
|
||||
resp.raise_for_status()
|
||||
body = resp.json()
|
||||
|
||||
@ -53,7 +53,7 @@ class ExeSQLParam(ToolParamBase):
|
||||
self.max_records = 1024
|
||||
|
||||
def check(self):
|
||||
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgresql', 'mariadb', 'mssql'])
|
||||
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql'])
|
||||
self.check_empty(self.database, "Database name")
|
||||
self.check_empty(self.username, "database username")
|
||||
self.check_empty(self.host, "IP Address")
|
||||
@ -111,7 +111,7 @@ class ExeSQL(ToolBase, ABC):
|
||||
if self._param.db_type in ["mysql", "mariadb"]:
|
||||
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
|
||||
port=self._param.port, password=self._param.password)
|
||||
elif self._param.db_type == 'postgresql':
|
||||
elif self._param.db_type == 'postgres':
|
||||
db = psycopg2.connect(dbname=self._param.database, user=self._param.username, host=self._param.host,
|
||||
port=self._param.port, password=self._param.password)
|
||||
elif self._param.db_type == 'mssql':
|
||||
|
||||
@ -332,7 +332,7 @@ def test_db_connect():
|
||||
if req["db_type"] in ["mysql", "mariadb"]:
|
||||
db = MySQLDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
|
||||
password=req["password"])
|
||||
elif req["db_type"] == 'postgresql':
|
||||
elif req["db_type"] == 'postgres':
|
||||
db = PostgresqlDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
|
||||
password=req["password"])
|
||||
elif req["db_type"] == 'mssql':
|
||||
|
||||
@ -379,3 +379,19 @@ def get_meta():
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
return get_json_result(data=DocumentService.get_meta_by_kbs(kb_ids))
|
||||
|
||||
|
||||
@manager.route("/basic_info", methods=["GET"]) # noqa: F821
|
||||
@login_required
|
||||
def get_basic_info():
|
||||
kb_id = request.args.get("kb_id", "")
|
||||
if not KnowledgebaseService.accessible(kb_id, current_user.id):
|
||||
return get_json_result(
|
||||
data=False,
|
||||
message='No authorization.',
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
|
||||
basic_info = DocumentService.knowledgebase_basic_info(kb_id)
|
||||
|
||||
return get_json_result(data=basic_info)
|
||||
|
||||
@ -3,9 +3,11 @@ import re
|
||||
|
||||
import flask
|
||||
from flask import request
|
||||
from pathlib import Path
|
||||
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.file2document_service import File2DocumentService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.utils.api_utils import server_error_response, token_required
|
||||
from api.utils import get_uuid
|
||||
from api.db import FileType
|
||||
@ -666,3 +668,71 @@ def move(tenant_id):
|
||||
return get_json_result(data=True)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
@manager.route('/file/convert', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def convert(tenant_id):
|
||||
req = request.json
|
||||
kb_ids = req["kb_ids"]
|
||||
file_ids = req["file_ids"]
|
||||
file2documents = []
|
||||
|
||||
try:
|
||||
files = FileService.get_by_ids(file_ids)
|
||||
files_set = dict({file.id: file for file in files})
|
||||
for file_id in file_ids:
|
||||
file = files_set[file_id]
|
||||
if not file:
|
||||
return get_json_result(message="File not found!", code=404)
|
||||
file_ids_list = [file_id]
|
||||
if file.type == FileType.FOLDER.value:
|
||||
file_ids_list = FileService.get_all_innermost_file_ids(file_id, [])
|
||||
for id in file_ids_list:
|
||||
informs = File2DocumentService.get_by_file_id(id)
|
||||
# delete
|
||||
for inform in informs:
|
||||
doc_id = inform.document_id
|
||||
e, doc = DocumentService.get_by_id(doc_id)
|
||||
if not e:
|
||||
return get_json_result(message="Document not found!", code=404)
|
||||
tenant_id = DocumentService.get_tenant_id(doc_id)
|
||||
if not tenant_id:
|
||||
return get_json_result(message="Tenant not found!", code=404)
|
||||
if not DocumentService.remove_document(doc, tenant_id):
|
||||
return get_json_result(
|
||||
message="Database error (Document removal)!", code=404)
|
||||
File2DocumentService.delete_by_file_id(id)
|
||||
|
||||
# insert
|
||||
for kb_id in kb_ids:
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
if not e:
|
||||
return get_json_result(
|
||||
message="Can't find this knowledgebase!", code=404)
|
||||
e, file = FileService.get_by_id(id)
|
||||
if not e:
|
||||
return get_json_result(
|
||||
message="Can't find this file!", code=404)
|
||||
|
||||
doc = DocumentService.insert({
|
||||
"id": get_uuid(),
|
||||
"kb_id": kb.id,
|
||||
"parser_id": FileService.get_parser(file.type, file.name, kb.parser_id),
|
||||
"parser_config": kb.parser_config,
|
||||
"created_by": tenant_id,
|
||||
"type": file.type,
|
||||
"name": file.name,
|
||||
"suffix": Path(file.name).suffix.lstrip("."),
|
||||
"location": file.location,
|
||||
"size": file.size
|
||||
})
|
||||
file2document = File2DocumentService.insert({
|
||||
"id": get_uuid(),
|
||||
"file_id": id,
|
||||
"document_id": doc.id,
|
||||
})
|
||||
|
||||
file2documents.append(file2document.to_json())
|
||||
return get_json_result(data=file2documents)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
@ -414,7 +414,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
|
||||
tenant_id,
|
||||
agent_id,
|
||||
question,
|
||||
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
|
||||
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
|
||||
stream=True,
|
||||
**req,
|
||||
),
|
||||
@ -432,7 +432,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
|
||||
tenant_id,
|
||||
agent_id,
|
||||
question,
|
||||
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
|
||||
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
|
||||
stream=False,
|
||||
**req,
|
||||
)
|
||||
|
||||
@ -36,6 +36,8 @@ from rag.utils.storage_factory import STORAGE_IMPL, STORAGE_IMPL_TYPE
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from rag.utils.redis_conn import REDIS_CONN
|
||||
from flask import jsonify
|
||||
from api.utils.health_utils import run_health_checks
|
||||
|
||||
@manager.route("/version", methods=["GET"]) # noqa: F821
|
||||
@login_required
|
||||
@ -169,6 +171,12 @@ def status():
|
||||
return get_json_result(data=res)
|
||||
|
||||
|
||||
@manager.route("/healthz", methods=["GET"]) # noqa: F821
|
||||
def healthz():
|
||||
result, all_ok = run_health_checks()
|
||||
return jsonify(result), (200 if all_ok else 500)
|
||||
|
||||
|
||||
@manager.route("/new_token", methods=["POST"]) # noqa: F821
|
||||
@login_required
|
||||
def new_token():
|
||||
|
||||
@ -144,8 +144,9 @@ def init_llm_factory():
|
||||
except Exception:
|
||||
pass
|
||||
break
|
||||
doc_count = DocumentService.get_all_kb_doc_count()
|
||||
for kb_id in KnowledgebaseService.get_all_ids():
|
||||
KnowledgebaseService.update_document_number_in_init(kb_id=kb_id, doc_num=DocumentService.get_kb_doc_count(kb_id))
|
||||
KnowledgebaseService.update_document_number_in_init(kb_id=kb_id, doc_num=doc_count.get(kb_id, 0))
|
||||
|
||||
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ from io import BytesIO
|
||||
|
||||
import trio
|
||||
import xxhash
|
||||
from peewee import fn
|
||||
from peewee import fn, Case
|
||||
|
||||
from api import settings
|
||||
from api.constants import IMG_BASE64_PREFIX, FILE_NAME_LEN_LIMIT
|
||||
@ -660,8 +660,16 @@ class DocumentService(CommonService):
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_kb_doc_count(cls, kb_id):
|
||||
return len(cls.model.select(cls.model.id).where(
|
||||
cls.model.kb_id == kb_id).dicts())
|
||||
return cls.model.select().where(cls.model.kb_id == kb_id).count()
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_all_kb_doc_count(cls):
|
||||
result = {}
|
||||
rows = cls.model.select(cls.model.kb_id, fn.COUNT(cls.model.id).alias('count')).group_by(cls.model.kb_id)
|
||||
for row in rows:
|
||||
result[row.kb_id] = row.count
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
@ -674,6 +682,53 @@ class DocumentService(CommonService):
|
||||
return False
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def knowledgebase_basic_info(cls, kb_id: str) -> dict[str, int]:
|
||||
# cancelled: run == "2" but progress can vary
|
||||
cancelled = (
|
||||
cls.model.select(fn.COUNT(1))
|
||||
.where((cls.model.kb_id == kb_id) & (cls.model.run == TaskStatus.CANCEL))
|
||||
.scalar()
|
||||
)
|
||||
|
||||
row = (
|
||||
cls.model.select(
|
||||
# finished: progress == 1
|
||||
fn.COALESCE(fn.SUM(Case(None, [(cls.model.progress == 1, 1)], 0)), 0).alias("finished"),
|
||||
|
||||
# failed: progress == -1
|
||||
fn.COALESCE(fn.SUM(Case(None, [(cls.model.progress == -1, 1)], 0)), 0).alias("failed"),
|
||||
|
||||
# processing: 0 <= progress < 1
|
||||
fn.COALESCE(
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(((cls.model.progress == 0) | ((cls.model.progress > 0) & (cls.model.progress < 1))), 1),
|
||||
],
|
||||
0,
|
||||
)
|
||||
),
|
||||
0,
|
||||
).alias("processing"),
|
||||
)
|
||||
.where(
|
||||
(cls.model.kb_id == kb_id)
|
||||
& ((cls.model.run.is_null(True)) | (cls.model.run != TaskStatus.CANCEL))
|
||||
)
|
||||
.dicts()
|
||||
.get()
|
||||
)
|
||||
|
||||
return {
|
||||
"processing": int(row["processing"]),
|
||||
"finished": int(row["finished"]),
|
||||
"failed": int(row["failed"]),
|
||||
"cancelled": int(cancelled),
|
||||
}
|
||||
|
||||
def queue_raptor_o_graphrag_tasks(doc, ty, priority):
|
||||
chunking_config = DocumentService.get_chunking_config(doc["id"])
|
||||
hasher = xxhash.xxh64()
|
||||
@ -702,6 +757,8 @@ def queue_raptor_o_graphrag_tasks(doc, ty, priority):
|
||||
|
||||
def get_queue_length(priority):
|
||||
group_info = REDIS_CONN.queue_info(get_svr_queue_name(priority), SVR_CONSUMER_GROUP_NAME)
|
||||
if not group_info:
|
||||
return 0
|
||||
return int(group_info.get("lag", 0) or 0)
|
||||
|
||||
|
||||
@ -847,3 +904,4 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
|
||||
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
|
||||
|
||||
return [d["id"] for d, _ in files]
|
||||
|
||||
|
||||
90
api/utils/health_utils.py
Normal file
90
api/utils/health_utils.py
Normal file
@ -0,0 +1,90 @@
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from api import settings
|
||||
from api.db.db_models import DB
|
||||
from rag.utils.redis_conn import REDIS_CONN
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
|
||||
def _ok_nok(ok: bool) -> str:
|
||||
return "ok" if ok else "nok"
|
||||
|
||||
|
||||
def check_db() -> tuple[bool, dict]:
|
||||
st = timer()
|
||||
try:
|
||||
# lightweight probe; works for MySQL/Postgres
|
||||
DB.execute_sql("SELECT 1")
|
||||
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
|
||||
except Exception as e:
|
||||
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
|
||||
|
||||
|
||||
def check_redis() -> tuple[bool, dict]:
|
||||
st = timer()
|
||||
try:
|
||||
ok = bool(REDIS_CONN.health())
|
||||
return ok, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
|
||||
except Exception as e:
|
||||
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
|
||||
|
||||
|
||||
def check_doc_engine() -> tuple[bool, dict]:
|
||||
st = timer()
|
||||
try:
|
||||
meta = settings.docStoreConn.health()
|
||||
# treat any successful call as ok
|
||||
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", **(meta or {})}
|
||||
except Exception as e:
|
||||
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
|
||||
|
||||
|
||||
def check_storage() -> tuple[bool, dict]:
|
||||
st = timer()
|
||||
try:
|
||||
STORAGE_IMPL.health()
|
||||
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
|
||||
except Exception as e:
|
||||
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
|
||||
|
||||
|
||||
|
||||
|
||||
def run_health_checks() -> tuple[dict, bool]:
|
||||
result: dict[str, str | dict] = {}
|
||||
|
||||
db_ok, db_meta = check_db()
|
||||
result["db"] = _ok_nok(db_ok)
|
||||
if not db_ok:
|
||||
result.setdefault("_meta", {})["db"] = db_meta
|
||||
|
||||
try:
|
||||
redis_ok, redis_meta = check_redis()
|
||||
result["redis"] = _ok_nok(redis_ok)
|
||||
if not redis_ok:
|
||||
result.setdefault("_meta", {})["redis"] = redis_meta
|
||||
except Exception:
|
||||
result["redis"] = "nok"
|
||||
|
||||
try:
|
||||
doc_ok, doc_meta = check_doc_engine()
|
||||
result["doc_engine"] = _ok_nok(doc_ok)
|
||||
if not doc_ok:
|
||||
result.setdefault("_meta", {})["doc_engine"] = doc_meta
|
||||
except Exception:
|
||||
result["doc_engine"] = "nok"
|
||||
|
||||
try:
|
||||
sto_ok, sto_meta = check_storage()
|
||||
result["storage"] = _ok_nok(sto_ok)
|
||||
if not sto_ok:
|
||||
result.setdefault("_meta", {})["storage"] = sto_meta
|
||||
except Exception:
|
||||
result["storage"] = "nok"
|
||||
|
||||
|
||||
all_ok = (result.get("db") == "ok") and (result.get("redis") == "ok") and (result.get("doc_engine") == "ok") and (result.get("storage") == "ok")
|
||||
result["status"] = "ok" if all_ok else "nok"
|
||||
return result, all_ok
|
||||
|
||||
|
||||
@ -219,6 +219,70 @@
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "TokenPony",
|
||||
"logo": "",
|
||||
"tags": "LLM",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "qwen3-8b",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-v3-0324",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "qwen3-32b",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "kimi-k2-instruct",
|
||||
"tags": "LLM,CHAT,128K",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-r1-0528",
|
||||
"tags": "LLM,CHAT,164k",
|
||||
"max_tokens": 164000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "qwen3-coder-480b",
|
||||
"tags": "LLM,CHAT,1024k",
|
||||
"max_tokens": 1024000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "glm-4.5",
|
||||
"tags": "LLM,CHAT,131K",
|
||||
"max_tokens": 131000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-v3.1",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Tongyi-Qianwen",
|
||||
"logo": "",
|
||||
@ -625,7 +689,7 @@
|
||||
},
|
||||
{
|
||||
"llm_name": "glm-4",
|
||||
"tags":"LLM,CHAT,128K",
|
||||
"tags": "LLM,CHAT,128K",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
@ -4477,6 +4541,273 @@
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "CometAPI",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "gpt-5-chat-latest",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "chatgpt-4o-latest",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-mini",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-nano",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5",
|
||||
"tags": "LLM,CHAT,400k",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1-mini",
|
||||
"tags": "LLM,CHAT,1M",
|
||||
"max_tokens": 1047576,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1-nano",
|
||||
"tags": "LLM,CHAT,1M",
|
||||
"max_tokens": 1047576,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1",
|
||||
"tags": "LLM,CHAT,1M",
|
||||
"max_tokens": 1047576,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4o-mini",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "o4-mini-2025-04-16",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "o3-pro-2025-06-10",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-opus-4-1-20250805",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-opus-4-1-20250805-thinking",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514-thinking",
|
||||
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-7-sonnet-latest",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-5-haiku-latest",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.5-pro",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.5-flash",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.5-flash-lite",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gemini-2.0-flash",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
"max_tokens": 1000000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-4-0709",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-3",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-3-mini",
|
||||
"tags": "LLM,CHAT,131k",
|
||||
"max_tokens": 131072,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "grok-2-image-1212",
|
||||
"tags": "LLM,CHAT,32k,IMAGE2TEXT",
|
||||
"max_tokens": 32768,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-v3.1",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-v3",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-r1-0528",
|
||||
"tags": "LLM,CHAT,164k",
|
||||
"max_tokens": 164000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-chat",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-reasoner",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "qwen3-30b-a3b",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "qwen3-coder-plus-2025-07-22",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "text-embedding-ada-002",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "text-embedding-3-small",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "text-embedding-3-large",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "whisper-1",
|
||||
"tags": "SPEECH2TEXT",
|
||||
"max_tokens": 26214400,
|
||||
"model_type": "speech2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "tts-1",
|
||||
"tags": "TTS",
|
||||
"max_tokens": 2048,
|
||||
"model_type": "tts",
|
||||
"is_tools": false
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Meituan",
|
||||
"logo": "",
|
||||
@ -4493,4 +4824,4 @@
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
@ -37,7 +37,7 @@ TITLE_TAGS = {"h1": "#", "h2": "##", "h3": "###", "h4": "#####", "h5": "#####",
|
||||
|
||||
|
||||
class RAGFlowHtmlParser:
|
||||
def __call__(self, fnm, binary=None, chunk_token_num=None):
|
||||
def __call__(self, fnm, binary=None, chunk_token_num=512):
|
||||
if binary:
|
||||
encoding = find_codec(binary)
|
||||
txt = binary.decode(encoding, errors="ignore")
|
||||
|
||||
@ -34,7 +34,7 @@ from pypdf import PdfReader as pdf2_read
|
||||
|
||||
from api import settings
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from deepdoc.vision import OCR, LayoutRecognizer, Recognizer, TableStructureRecognizer
|
||||
from deepdoc.vision import OCR, AscendLayoutRecognizer, LayoutRecognizer, Recognizer, TableStructureRecognizer
|
||||
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
|
||||
from rag.nlp import rag_tokenizer
|
||||
from rag.prompts import vision_llm_describe_prompt
|
||||
@ -64,33 +64,38 @@ class RAGFlowPdfParser:
|
||||
if PARALLEL_DEVICES > 1:
|
||||
self.parallel_limiter = [trio.CapacityLimiter(1) for _ in range(PARALLEL_DEVICES)]
|
||||
|
||||
layout_recognizer_type = os.getenv("LAYOUT_RECOGNIZER_TYPE", "onnx").lower()
|
||||
if layout_recognizer_type not in ["onnx", "ascend"]:
|
||||
raise RuntimeError("Unsupported layout recognizer type.")
|
||||
|
||||
if hasattr(self, "model_speciess"):
|
||||
self.layouter = LayoutRecognizer("layout." + self.model_speciess)
|
||||
recognizer_domain = "layout." + self.model_speciess
|
||||
else:
|
||||
self.layouter = LayoutRecognizer("layout")
|
||||
recognizer_domain = "layout"
|
||||
|
||||
if layout_recognizer_type == "ascend":
|
||||
logging.debug("Using Ascend LayoutRecognizer")
|
||||
self.layouter = AscendLayoutRecognizer(recognizer_domain)
|
||||
else: # onnx
|
||||
logging.debug("Using Onnx LayoutRecognizer")
|
||||
self.layouter = LayoutRecognizer(recognizer_domain)
|
||||
self.tbl_det = TableStructureRecognizer()
|
||||
|
||||
self.updown_cnt_mdl = xgb.Booster()
|
||||
if not settings.LIGHTEN:
|
||||
try:
|
||||
import torch.cuda
|
||||
|
||||
if torch.cuda.is_available():
|
||||
self.updown_cnt_mdl.set_param({"device": "cuda"})
|
||||
except Exception:
|
||||
logging.exception("RAGFlowPdfParser __init__")
|
||||
try:
|
||||
model_dir = os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res/deepdoc")
|
||||
self.updown_cnt_mdl.load_model(os.path.join(
|
||||
model_dir, "updown_concat_xgb.model"))
|
||||
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
|
||||
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
|
||||
except Exception:
|
||||
model_dir = snapshot_download(
|
||||
repo_id="InfiniFlow/text_concat_xgb_v1.0",
|
||||
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
|
||||
local_dir_use_symlinks=False)
|
||||
self.updown_cnt_mdl.load_model(os.path.join(
|
||||
model_dir, "updown_concat_xgb.model"))
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/text_concat_xgb_v1.0", local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), local_dir_use_symlinks=False)
|
||||
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
|
||||
|
||||
self.page_from = 0
|
||||
self.column_num = 1
|
||||
@ -102,13 +107,10 @@ class RAGFlowPdfParser:
|
||||
return c["bottom"] - c["top"]
|
||||
|
||||
def _x_dis(self, a, b):
|
||||
return min(abs(a["x1"] - b["x0"]), abs(a["x0"] - b["x1"]),
|
||||
abs(a["x0"] + a["x1"] - b["x0"] - b["x1"]) / 2)
|
||||
return min(abs(a["x1"] - b["x0"]), abs(a["x0"] - b["x1"]), abs(a["x0"] + a["x1"] - b["x0"] - b["x1"]) / 2)
|
||||
|
||||
def _y_dis(
|
||||
self, a, b):
|
||||
return (
|
||||
b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
|
||||
def _y_dis(self, a, b):
|
||||
return (b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
|
||||
|
||||
def _match_proj(self, b):
|
||||
proj_patt = [
|
||||
@ -130,10 +132,7 @@ class RAGFlowPdfParser:
|
||||
LEN = 6
|
||||
tks_down = rag_tokenizer.tokenize(down["text"][:LEN]).split()
|
||||
tks_up = rag_tokenizer.tokenize(up["text"][-LEN:]).split()
|
||||
tks_all = up["text"][-LEN:].strip() \
|
||||
+ (" " if re.match(r"[a-zA-Z0-9]+",
|
||||
up["text"][-1] + down["text"][0]) else "") \
|
||||
+ down["text"][:LEN].strip()
|
||||
tks_all = up["text"][-LEN:].strip() + (" " if re.match(r"[a-zA-Z0-9]+", up["text"][-1] + down["text"][0]) else "") + down["text"][:LEN].strip()
|
||||
tks_all = rag_tokenizer.tokenize(tks_all).split()
|
||||
fea = [
|
||||
up.get("R", -1) == down.get("R", -1),
|
||||
@ -144,39 +143,30 @@ class RAGFlowPdfParser:
|
||||
down["layout_type"] == "text",
|
||||
up["layout_type"] == "table",
|
||||
down["layout_type"] == "table",
|
||||
True if re.search(
|
||||
r"([。?!;!?;+))]|[a-z]\.)$",
|
||||
up["text"]) else False,
|
||||
True if re.search(r"([。?!;!?;+))]|[a-z]\.)$", up["text"]) else False,
|
||||
True if re.search(r"[,:‘“、0-9(+-]$", up["text"]) else False,
|
||||
True if re.search(
|
||||
r"(^.?[/,?;:\],。;:’”?!》】)-])",
|
||||
down["text"]) else False,
|
||||
True if re.search(r"(^.?[/,?;:\],。;:’”?!》】)-])", down["text"]) else False,
|
||||
True if re.match(r"[\((][^\(\)()]+[)\)]$", up["text"]) else False,
|
||||
True if re.search(r"[,,][^。.]+$", up["text"]) else False,
|
||||
True if re.search(r"[,,][^。.]+$", up["text"]) else False,
|
||||
True if re.search(r"[\((][^\))]+$", up["text"])
|
||||
and re.search(r"[\))]", down["text"]) else False,
|
||||
True if re.search(r"[\((][^\))]+$", up["text"]) and re.search(r"[\))]", down["text"]) else False,
|
||||
self._match_proj(down),
|
||||
True if re.match(r"[A-Z]", down["text"]) else False,
|
||||
True if re.match(r"[A-Z]", up["text"][-1]) else False,
|
||||
True if re.match(r"[a-z0-9]", up["text"][-1]) else False,
|
||||
True if re.match(r"[0-9.%,-]+$", down["text"]) else False,
|
||||
up["text"].strip()[-2:] == down["text"].strip()[-2:] if len(up["text"].strip()
|
||||
) > 1 and len(
|
||||
down["text"].strip()) > 1 else False,
|
||||
up["text"].strip()[-2:] == down["text"].strip()[-2:] if len(up["text"].strip()) > 1 and len(down["text"].strip()) > 1 else False,
|
||||
up["x0"] > down["x1"],
|
||||
abs(self.__height(up) - self.__height(down)) / min(self.__height(up),
|
||||
self.__height(down)),
|
||||
abs(self.__height(up) - self.__height(down)) / min(self.__height(up), self.__height(down)),
|
||||
self._x_dis(up, down) / max(w, 0.000001),
|
||||
(len(up["text"]) - len(down["text"])) /
|
||||
max(len(up["text"]), len(down["text"])),
|
||||
(len(up["text"]) - len(down["text"])) / max(len(up["text"]), len(down["text"])),
|
||||
len(tks_all) - len(tks_up) - len(tks_down),
|
||||
len(tks_down) - len(tks_up),
|
||||
tks_down[-1] == tks_up[-1] if tks_down and tks_up else False,
|
||||
max(down["in_row"], up["in_row"]),
|
||||
abs(down["in_row"] - up["in_row"]),
|
||||
len(tks_down) == 1 and rag_tokenizer.tag(tks_down[0]).find("n") >= 0,
|
||||
len(tks_up) == 1 and rag_tokenizer.tag(tks_up[0]).find("n") >= 0
|
||||
len(tks_up) == 1 and rag_tokenizer.tag(tks_up[0]).find("n") >= 0,
|
||||
]
|
||||
return fea
|
||||
|
||||
@ -187,9 +177,7 @@ class RAGFlowPdfParser:
|
||||
for i in range(len(arr) - 1):
|
||||
for j in range(i, -1, -1):
|
||||
# restore the order using th
|
||||
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threshold \
|
||||
and arr[j + 1]["top"] < arr[j]["top"] \
|
||||
and arr[j + 1]["page_number"] == arr[j]["page_number"]:
|
||||
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threshold and arr[j + 1]["top"] < arr[j]["top"] and arr[j + 1]["page_number"] == arr[j]["page_number"]:
|
||||
tmp = arr[j]
|
||||
arr[j] = arr[j + 1]
|
||||
arr[j + 1] = tmp
|
||||
@ -197,8 +185,7 @@ class RAGFlowPdfParser:
|
||||
|
||||
def _has_color(self, o):
|
||||
if o.get("ncs", "") == "DeviceGray":
|
||||
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and \
|
||||
o["non_stroking_color"][0] == 1:
|
||||
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and o["non_stroking_color"][0] == 1:
|
||||
if re.match(r"[a-zT_\[\]\(\)-]+", o.get("text", "")):
|
||||
return False
|
||||
return True
|
||||
@ -216,8 +203,7 @@ class RAGFlowPdfParser:
|
||||
if not tbls:
|
||||
continue
|
||||
for tb in tbls: # for table
|
||||
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, \
|
||||
tb["x1"] + MARGIN, tb["bottom"] + MARGIN
|
||||
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, tb["x1"] + MARGIN, tb["bottom"] + MARGIN
|
||||
left *= ZM
|
||||
top *= ZM
|
||||
right *= ZM
|
||||
@ -232,14 +218,13 @@ class RAGFlowPdfParser:
|
||||
tbcnt = np.cumsum(tbcnt)
|
||||
for i in range(len(tbcnt) - 1): # for page
|
||||
pg = []
|
||||
for j, tb_items in enumerate(
|
||||
recos[tbcnt[i]: tbcnt[i + 1]]): # for table
|
||||
poss = pos[tbcnt[i]: tbcnt[i + 1]]
|
||||
for j, tb_items in enumerate(recos[tbcnt[i] : tbcnt[i + 1]]): # for table
|
||||
poss = pos[tbcnt[i] : tbcnt[i + 1]]
|
||||
for it in tb_items: # for table components
|
||||
it["x0"] = (it["x0"] + poss[j][0])
|
||||
it["x1"] = (it["x1"] + poss[j][0])
|
||||
it["top"] = (it["top"] + poss[j][1])
|
||||
it["bottom"] = (it["bottom"] + poss[j][1])
|
||||
it["x0"] = it["x0"] + poss[j][0]
|
||||
it["x1"] = it["x1"] + poss[j][0]
|
||||
it["top"] = it["top"] + poss[j][1]
|
||||
it["bottom"] = it["bottom"] + poss[j][1]
|
||||
for n in ["x0", "x1", "top", "bottom"]:
|
||||
it[n] /= ZM
|
||||
it["top"] += self.page_cum_height[i]
|
||||
@ -250,8 +235,7 @@ class RAGFlowPdfParser:
|
||||
self.tb_cpns.extend(pg)
|
||||
|
||||
def gather(kwd, fzy=10, ption=0.6):
|
||||
eles = Recognizer.sort_Y_firstly(
|
||||
[r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
|
||||
eles = Recognizer.sort_Y_firstly([r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
|
||||
eles = Recognizer.layouts_cleanup(self.boxes, eles, 5, ption)
|
||||
return Recognizer.sort_Y_firstly(eles, 0)
|
||||
|
||||
@ -259,8 +243,7 @@ class RAGFlowPdfParser:
|
||||
headers = gather(r".*header$")
|
||||
rows = gather(r".* (row|header)")
|
||||
spans = gather(r".*spanning")
|
||||
clmns = sorted([r for r in self.tb_cpns if re.match(
|
||||
r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
|
||||
clmns = sorted([r for r in self.tb_cpns if re.match(r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
|
||||
clmns = Recognizer.layouts_cleanup(self.boxes, clmns, 5, 0.5)
|
||||
for b in self.boxes:
|
||||
if b.get("layout_type", "") != "table":
|
||||
@ -271,8 +254,7 @@ class RAGFlowPdfParser:
|
||||
b["R_top"] = rows[ii]["top"]
|
||||
b["R_bott"] = rows[ii]["bottom"]
|
||||
|
||||
ii = Recognizer.find_overlapped_with_threshold(
|
||||
b, headers, thr=0.3)
|
||||
ii = Recognizer.find_overlapped_with_threshold(b, headers, thr=0.3)
|
||||
if ii is not None:
|
||||
b["H_top"] = headers[ii]["top"]
|
||||
b["H_bott"] = headers[ii]["bottom"]
|
||||
@ -305,12 +287,12 @@ class RAGFlowPdfParser:
|
||||
return
|
||||
bxs = [(line[0], line[1][0]) for line in bxs]
|
||||
bxs = Recognizer.sort_Y_firstly(
|
||||
[{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM,
|
||||
"top": b[0][1] / ZM, "text": "", "txt": t,
|
||||
"bottom": b[-1][1] / ZM,
|
||||
"chars": [],
|
||||
"page_number": pagenum} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
|
||||
self.mean_height[pagenum-1] / 3
|
||||
[
|
||||
{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM, "top": b[0][1] / ZM, "text": "", "txt": t, "bottom": b[-1][1] / ZM, "chars": [], "page_number": pagenum}
|
||||
for b, t in bxs
|
||||
if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]
|
||||
],
|
||||
self.mean_height[pagenum - 1] / 3,
|
||||
)
|
||||
|
||||
# merge chars in the same rect
|
||||
@ -321,7 +303,7 @@ class RAGFlowPdfParser:
|
||||
continue
|
||||
ch = c["bottom"] - c["top"]
|
||||
bh = bxs[ii]["bottom"] - bxs[ii]["top"]
|
||||
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != ' ':
|
||||
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != " ":
|
||||
self.lefted_chars.append(c)
|
||||
continue
|
||||
bxs[ii]["chars"].append(c)
|
||||
@ -345,8 +327,7 @@ class RAGFlowPdfParser:
|
||||
img_np = np.array(img)
|
||||
for b in bxs:
|
||||
if not b["text"]:
|
||||
left, right, top, bott = b["x0"] * ZM, b["x1"] * \
|
||||
ZM, b["top"] * ZM, b["bottom"] * ZM
|
||||
left, right, top, bott = b["x0"] * ZM, b["x1"] * ZM, b["top"] * ZM, b["bottom"] * ZM
|
||||
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
|
||||
boxes_to_reg.append(b)
|
||||
del b["txt"]
|
||||
@ -356,21 +337,17 @@ class RAGFlowPdfParser:
|
||||
del boxes_to_reg[i]["box_image"]
|
||||
logging.info(f"__ocr recognize {len(bxs)} boxes cost {timer() - start}s")
|
||||
bxs = [b for b in bxs if b["text"]]
|
||||
if self.mean_height[pagenum-1] == 0:
|
||||
self.mean_height[pagenum-1] = np.median([b["bottom"] - b["top"]
|
||||
for b in bxs])
|
||||
if self.mean_height[pagenum - 1] == 0:
|
||||
self.mean_height[pagenum - 1] = np.median([b["bottom"] - b["top"] for b in bxs])
|
||||
self.boxes.append(bxs)
|
||||
|
||||
def _layouts_rec(self, ZM, drop=True):
|
||||
assert len(self.page_images) == len(self.boxes)
|
||||
self.boxes, self.page_layout = self.layouter(
|
||||
self.page_images, self.boxes, ZM, drop=drop)
|
||||
self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM, drop=drop)
|
||||
# cumlative Y
|
||||
for i in range(len(self.boxes)):
|
||||
self.boxes[i]["top"] += \
|
||||
self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||||
self.boxes[i]["bottom"] += \
|
||||
self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||||
self.boxes[i]["top"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||||
self.boxes[i]["bottom"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||||
|
||||
def _text_merge(self):
|
||||
# merge adjusted boxes
|
||||
@ -390,12 +367,10 @@ class RAGFlowPdfParser:
|
||||
while i < len(bxs) - 1:
|
||||
b = bxs[i]
|
||||
b_ = bxs[i + 1]
|
||||
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure",
|
||||
"equation"]:
|
||||
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]:
|
||||
i += 1
|
||||
continue
|
||||
if abs(self._y_dis(b, b_)
|
||||
) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
|
||||
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
|
||||
# merge
|
||||
bxs[i]["x1"] = b_["x1"]
|
||||
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
|
||||
@ -408,16 +383,14 @@ class RAGFlowPdfParser:
|
||||
|
||||
dis_thr = 1
|
||||
dis = b["x1"] - b_["x0"]
|
||||
if b.get("layout_type", "") != "text" or b_.get(
|
||||
"layout_type", "") != "text":
|
||||
if b.get("layout_type", "") != "text" or b_.get("layout_type", "") != "text":
|
||||
if end_with(b, ",") or start_with(b_, "(,"):
|
||||
dis_thr = -8
|
||||
else:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 \
|
||||
and dis >= dis_thr and b["x1"] < b_["x1"]:
|
||||
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 and dis >= dis_thr and b["x1"] < b_["x1"]:
|
||||
# merge
|
||||
bxs[i]["x1"] = b_["x1"]
|
||||
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
|
||||
@ -429,23 +402,22 @@ class RAGFlowPdfParser:
|
||||
self.boxes = bxs
|
||||
|
||||
def _naive_vertical_merge(self, zoomin=3):
|
||||
bxs = Recognizer.sort_Y_firstly(
|
||||
self.boxes, np.median(
|
||||
self.mean_height) / 3)
|
||||
import math
|
||||
bxs = Recognizer.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
|
||||
|
||||
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
||||
if not column_width or math.isnan(column_width):
|
||||
column_width = self.mean_width[0]
|
||||
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
|
||||
if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
|
||||
logging.info("Multi-column................... {} {}".format(column_width,
|
||||
self.page_images[0].size[0] / zoomin / self.column_num))
|
||||
logging.info("Multi-column................... {} {}".format(column_width, self.page_images[0].size[0] / zoomin / self.column_num))
|
||||
self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
|
||||
|
||||
i = 0
|
||||
while i + 1 < len(bxs):
|
||||
b = bxs[i]
|
||||
b_ = bxs[i + 1]
|
||||
if b["page_number"] < b_["page_number"] and re.match(
|
||||
r"[0-9 •一—-]+$", b["text"]):
|
||||
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
|
||||
bxs.pop(i)
|
||||
continue
|
||||
if not b["text"].strip():
|
||||
@ -453,8 +425,7 @@ class RAGFlowPdfParser:
|
||||
continue
|
||||
concatting_feats = [
|
||||
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
|
||||
len(b["text"].strip()) > 1 and b["text"].strip(
|
||||
)[-2] in ",;:'\",‘“、;:",
|
||||
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
|
||||
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
|
||||
]
|
||||
# features for not concating
|
||||
@ -462,21 +433,20 @@ class RAGFlowPdfParser:
|
||||
b.get("layoutno", 0) != b_.get("layoutno", 0),
|
||||
b["text"].strip()[-1] in "。?!?",
|
||||
self.is_english and b["text"].strip()[-1] in ".!?",
|
||||
b["page_number"] == b_["page_number"] and b_["top"] -
|
||||
b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
|
||||
b["page_number"] < b_["page_number"] and abs(
|
||||
b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
|
||||
b["page_number"] == b_["page_number"] and b_["top"] - b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
|
||||
b["page_number"] < b_["page_number"] and abs(b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
|
||||
]
|
||||
# split features
|
||||
detach_feats = [b["x1"] < b_["x0"],
|
||||
b["x0"] > b_["x1"]]
|
||||
detach_feats = [b["x1"] < b_["x0"], b["x0"] > b_["x1"]]
|
||||
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
|
||||
logging.debug("{} {} {} {}".format(
|
||||
b["text"],
|
||||
b_["text"],
|
||||
any(feats),
|
||||
any(concatting_feats),
|
||||
))
|
||||
logging.debug(
|
||||
"{} {} {} {}".format(
|
||||
b["text"],
|
||||
b_["text"],
|
||||
any(feats),
|
||||
any(concatting_feats),
|
||||
)
|
||||
)
|
||||
i += 1
|
||||
continue
|
||||
# merge up and down
|
||||
@ -529,14 +499,11 @@ class RAGFlowPdfParser:
|
||||
if not concat_between_pages and down["page_number"] > up["page_number"]:
|
||||
break
|
||||
|
||||
if up.get("R", "") != down.get(
|
||||
"R", "") and up["text"][-1] != ",":
|
||||
if up.get("R", "") != down.get("R", "") and up["text"][-1] != ",":
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if re.match(r"[0-9]{2,3}/[0-9]{3}$", up["text"]) \
|
||||
or re.match(r"[0-9]{2,3}/[0-9]{3}$", down["text"]) \
|
||||
or not down["text"].strip():
|
||||
if re.match(r"[0-9]{2,3}/[0-9]{3}$", up["text"]) or re.match(r"[0-9]{2,3}/[0-9]{3}$", down["text"]) or not down["text"].strip():
|
||||
i += 1
|
||||
continue
|
||||
|
||||
@ -544,14 +511,12 @@ class RAGFlowPdfParser:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if up["x1"] < down["x0"] - 10 * \
|
||||
mw or up["x0"] > down["x1"] + 10 * mw:
|
||||
if up["x1"] < down["x0"] - 10 * mw or up["x0"] > down["x1"] + 10 * mw:
|
||||
i += 1
|
||||
continue
|
||||
|
||||
if i - dp < 5 and up.get("layout_type") == "text":
|
||||
if up.get("layoutno", "1") == down.get(
|
||||
"layoutno", "2"):
|
||||
if up.get("layoutno", "1") == down.get("layoutno", "2"):
|
||||
dfs(down, i + 1)
|
||||
boxes.pop(i)
|
||||
return
|
||||
@ -559,8 +524,7 @@ class RAGFlowPdfParser:
|
||||
continue
|
||||
|
||||
fea = self._updown_concat_features(up, down)
|
||||
if self.updown_cnt_mdl.predict(
|
||||
xgb.DMatrix([fea]))[0] <= 0.5:
|
||||
if self.updown_cnt_mdl.predict(xgb.DMatrix([fea]))[0] <= 0.5:
|
||||
i += 1
|
||||
continue
|
||||
dfs(down, i + 1)
|
||||
@ -584,16 +548,14 @@ class RAGFlowPdfParser:
|
||||
c["text"] = c["text"].strip()
|
||||
if not c["text"]:
|
||||
continue
|
||||
if t["text"] and re.match(
|
||||
r"[0-9\.a-zA-Z]+$", t["text"][-1] + c["text"][-1]):
|
||||
if t["text"] and re.match(r"[0-9\.a-zA-Z]+$", t["text"][-1] + c["text"][-1]):
|
||||
t["text"] += " "
|
||||
t["text"] += c["text"]
|
||||
t["x0"] = min(t["x0"], c["x0"])
|
||||
t["x1"] = max(t["x1"], c["x1"])
|
||||
t["page_number"] = min(t["page_number"], c["page_number"])
|
||||
t["bottom"] = c["bottom"]
|
||||
if not t["layout_type"] \
|
||||
and c["layout_type"]:
|
||||
if not t["layout_type"] and c["layout_type"]:
|
||||
t["layout_type"] = c["layout_type"]
|
||||
boxes.append(t)
|
||||
|
||||
@ -605,25 +567,20 @@ class RAGFlowPdfParser:
|
||||
findit = False
|
||||
i = 0
|
||||
while i < len(self.boxes):
|
||||
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$",
|
||||
re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
|
||||
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
|
||||
i += 1
|
||||
continue
|
||||
findit = True
|
||||
eng = re.match(
|
||||
r"[0-9a-zA-Z :'.-]{5,}",
|
||||
self.boxes[i]["text"].strip())
|
||||
eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip())
|
||||
self.boxes.pop(i)
|
||||
if i >= len(self.boxes):
|
||||
break
|
||||
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
|
||||
self.boxes[i]["text"].strip().split()[:2])
|
||||
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
|
||||
while not prefix:
|
||||
self.boxes.pop(i)
|
||||
if i >= len(self.boxes):
|
||||
break
|
||||
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
|
||||
self.boxes[i]["text"].strip().split()[:2])
|
||||
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
|
||||
self.boxes.pop(i)
|
||||
if i >= len(self.boxes) or not prefix:
|
||||
break
|
||||
@ -662,10 +619,12 @@ class RAGFlowPdfParser:
|
||||
self.boxes.pop(i + 1)
|
||||
continue
|
||||
|
||||
if b["text"].strip()[0] != b_["text"].strip()[0] \
|
||||
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm") \
|
||||
or rag_tokenizer.is_chinese(b["text"].strip()[0]) \
|
||||
or b["top"] > b_["bottom"]:
|
||||
if (
|
||||
b["text"].strip()[0] != b_["text"].strip()[0]
|
||||
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm")
|
||||
or rag_tokenizer.is_chinese(b["text"].strip()[0])
|
||||
or b["top"] > b_["bottom"]
|
||||
):
|
||||
i += 1
|
||||
continue
|
||||
b_["text"] = b["text"] + "\n" + b_["text"]
|
||||
@ -685,12 +644,8 @@ class RAGFlowPdfParser:
|
||||
if "layoutno" not in self.boxes[i]:
|
||||
i += 1
|
||||
continue
|
||||
lout_no = str(self.boxes[i]["page_number"]) + \
|
||||
"-" + str(self.boxes[i]["layoutno"])
|
||||
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption",
|
||||
"title",
|
||||
"figure caption",
|
||||
"reference"]:
|
||||
lout_no = str(self.boxes[i]["page_number"]) + "-" + str(self.boxes[i]["layoutno"])
|
||||
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption", "title", "figure caption", "reference"]:
|
||||
nomerge_lout_no.append(lst_lout_no)
|
||||
if self.boxes[i]["layout_type"] == "table":
|
||||
if re.match(r"(数据|资料|图表)*来源[:: ]", self.boxes[i]["text"]):
|
||||
@ -716,8 +671,7 @@ class RAGFlowPdfParser:
|
||||
|
||||
# merge table on different pages
|
||||
nomerge_lout_no = set(nomerge_lout_no)
|
||||
tbls = sorted([(k, bxs) for k, bxs in tables.items()],
|
||||
key=lambda x: (x[1][0]["top"], x[1][0]["x0"]))
|
||||
tbls = sorted([(k, bxs) for k, bxs in tables.items()], key=lambda x: (x[1][0]["top"], x[1][0]["x0"]))
|
||||
|
||||
i = len(tbls) - 1
|
||||
while i - 1 >= 0:
|
||||
@ -758,9 +712,7 @@ class RAGFlowPdfParser:
|
||||
if b.get("layout_type", "").find("caption") >= 0:
|
||||
continue
|
||||
y_dis = self._y_dis(c, b)
|
||||
x_dis = self._x_dis(
|
||||
c, b) if not x_overlapped(
|
||||
c, b) else 0
|
||||
x_dis = self._x_dis(c, b) if not x_overlapped(c, b) else 0
|
||||
dis = y_dis * y_dis + x_dis * x_dis
|
||||
if dis < minv:
|
||||
mink = k
|
||||
@ -774,18 +726,10 @@ class RAGFlowPdfParser:
|
||||
# continue
|
||||
if tv < fv and tk:
|
||||
tables[tk].insert(0, c)
|
||||
logging.debug(
|
||||
"TABLE:" +
|
||||
self.boxes[i]["text"] +
|
||||
"; Cap: " +
|
||||
tk)
|
||||
logging.debug("TABLE:" + self.boxes[i]["text"] + "; Cap: " + tk)
|
||||
elif fk:
|
||||
figures[fk].insert(0, c)
|
||||
logging.debug(
|
||||
"FIGURE:" +
|
||||
self.boxes[i]["text"] +
|
||||
"; Cap: " +
|
||||
tk)
|
||||
logging.debug("FIGURE:" + self.boxes[i]["text"] + "; Cap: " + tk)
|
||||
self.boxes.pop(i)
|
||||
|
||||
def cropout(bxs, ltype, poss):
|
||||
@ -794,29 +738,19 @@ class RAGFlowPdfParser:
|
||||
if len(pn) < 2:
|
||||
pn = list(pn)[0]
|
||||
ht = self.page_cum_height[pn]
|
||||
b = {
|
||||
"x0": np.min([b["x0"] for b in bxs]),
|
||||
"top": np.min([b["top"] for b in bxs]) - ht,
|
||||
"x1": np.max([b["x1"] for b in bxs]),
|
||||
"bottom": np.max([b["bottom"] for b in bxs]) - ht
|
||||
}
|
||||
b = {"x0": np.min([b["x0"] for b in bxs]), "top": np.min([b["top"] for b in bxs]) - ht, "x1": np.max([b["x1"] for b in bxs]), "bottom": np.max([b["bottom"] for b in bxs]) - ht}
|
||||
louts = [layout for layout in self.page_layout[pn] if layout["type"] == ltype]
|
||||
ii = Recognizer.find_overlapped(b, louts, naive=True)
|
||||
if ii is not None:
|
||||
b = louts[ii]
|
||||
else:
|
||||
logging.warning(
|
||||
f"Missing layout match: {pn + 1},%s" %
|
||||
(bxs[0].get(
|
||||
"layoutno", "")))
|
||||
logging.warning(f"Missing layout match: {pn + 1},%s" % (bxs[0].get("layoutno", "")))
|
||||
|
||||
left, top, right, bott = b["x0"], b["top"], b["x1"], b["bottom"]
|
||||
if right < left:
|
||||
right = left + 1
|
||||
poss.append((pn + self.page_from, left, right, top, bott))
|
||||
return self.page_images[pn] \
|
||||
.crop((left * ZM, top * ZM,
|
||||
right * ZM, bott * ZM))
|
||||
return self.page_images[pn].crop((left * ZM, top * ZM, right * ZM, bott * ZM))
|
||||
pn = {}
|
||||
for b in bxs:
|
||||
p = b["page_number"] - 1
|
||||
@ -825,10 +759,7 @@ class RAGFlowPdfParser:
|
||||
pn[p].append(b)
|
||||
pn = sorted(pn.items(), key=lambda x: x[0])
|
||||
imgs = [cropout(arr, ltype, poss) for p, arr in pn]
|
||||
pic = Image.new("RGB",
|
||||
(int(np.max([i.size[0] for i in imgs])),
|
||||
int(np.sum([m.size[1] for m in imgs]))),
|
||||
(245, 245, 245))
|
||||
pic = Image.new("RGB", (int(np.max([i.size[0] for i in imgs])), int(np.sum([m.size[1] for m in imgs]))), (245, 245, 245))
|
||||
height = 0
|
||||
for img in imgs:
|
||||
pic.paste(img, (0, int(height)))
|
||||
@ -848,30 +779,20 @@ class RAGFlowPdfParser:
|
||||
poss = []
|
||||
|
||||
if separate_tables_figures:
|
||||
figure_results.append(
|
||||
(cropout(
|
||||
bxs,
|
||||
"figure", poss),
|
||||
[txt]))
|
||||
figure_results.append((cropout(bxs, "figure", poss), [txt]))
|
||||
figure_positions.append(poss)
|
||||
else:
|
||||
res.append(
|
||||
(cropout(
|
||||
bxs,
|
||||
"figure", poss),
|
||||
[txt]))
|
||||
res.append((cropout(bxs, "figure", poss), [txt]))
|
||||
positions.append(poss)
|
||||
|
||||
for k, bxs in tables.items():
|
||||
if not bxs:
|
||||
continue
|
||||
bxs = Recognizer.sort_Y_firstly(bxs, np.mean(
|
||||
[(b["bottom"] - b["top"]) / 2 for b in bxs]))
|
||||
bxs = Recognizer.sort_Y_firstly(bxs, np.mean([(b["bottom"] - b["top"]) / 2 for b in bxs]))
|
||||
|
||||
poss = []
|
||||
|
||||
res.append((cropout(bxs, "table", poss),
|
||||
self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
|
||||
res.append((cropout(bxs, "table", poss), self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
|
||||
positions.append(poss)
|
||||
|
||||
if separate_tables_figures:
|
||||
@ -905,7 +826,7 @@ class RAGFlowPdfParser:
|
||||
(r"[0-9]+)", 10),
|
||||
(r"[\((][0-9]+[)\)]", 11),
|
||||
(r"[零一二三四五六七八九十百]+是", 12),
|
||||
(r"[⚫•➢✓]", 12)
|
||||
(r"[⚫•➢✓]", 12),
|
||||
]:
|
||||
if re.match(p, line):
|
||||
return j
|
||||
@ -924,12 +845,9 @@ class RAGFlowPdfParser:
|
||||
if pn[-1] - 1 >= page_images_cnt:
|
||||
return ""
|
||||
|
||||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
||||
.format("-".join([str(p) for p in pn]),
|
||||
bx["x0"], bx["x1"], top, bott)
|
||||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##".format("-".join([str(p) for p in pn]), bx["x0"], bx["x1"], top, bott)
|
||||
|
||||
def __filterout_scraps(self, boxes, ZM):
|
||||
|
||||
def width(b):
|
||||
return b["x1"] - b["x0"]
|
||||
|
||||
@ -939,8 +857,7 @@ class RAGFlowPdfParser:
|
||||
def usefull(b):
|
||||
if b.get("layout_type"):
|
||||
return True
|
||||
if width(
|
||||
b) > self.page_images[b["page_number"] - 1].size[0] / ZM / 3:
|
||||
if width(b) > self.page_images[b["page_number"] - 1].size[0] / ZM / 3:
|
||||
return True
|
||||
if b["bottom"] - b["top"] > self.mean_height[b["page_number"] - 1]:
|
||||
return True
|
||||
@ -952,31 +869,23 @@ class RAGFlowPdfParser:
|
||||
widths = []
|
||||
pw = self.page_images[boxes[0]["page_number"] - 1].size[0] / ZM
|
||||
mh = self.mean_height[boxes[0]["page_number"] - 1]
|
||||
mj = self.proj_match(
|
||||
boxes[0]["text"]) or boxes[0].get(
|
||||
"layout_type",
|
||||
"") == "title"
|
||||
mj = self.proj_match(boxes[0]["text"]) or boxes[0].get("layout_type", "") == "title"
|
||||
|
||||
def dfs(line, st):
|
||||
nonlocal mh, pw, lines, widths
|
||||
lines.append(line)
|
||||
widths.append(width(line))
|
||||
mmj = self.proj_match(
|
||||
line["text"]) or line.get(
|
||||
"layout_type",
|
||||
"") == "title"
|
||||
mmj = self.proj_match(line["text"]) or line.get("layout_type", "") == "title"
|
||||
for i in range(st + 1, min(st + 20, len(boxes))):
|
||||
if (boxes[i]["page_number"] - line["page_number"]) > 0:
|
||||
break
|
||||
if not mmj and self._y_dis(
|
||||
line, boxes[i]) >= 3 * mh and height(line) < 1.5 * mh:
|
||||
if not mmj and self._y_dis(line, boxes[i]) >= 3 * mh and height(line) < 1.5 * mh:
|
||||
break
|
||||
|
||||
if not usefull(boxes[i]):
|
||||
continue
|
||||
if mmj or \
|
||||
(self._x_dis(boxes[i], line) < pw / 10): \
|
||||
# and abs(width(boxes[i])-width_mean)/max(width(boxes[i]),width_mean)<0.5):
|
||||
if mmj or (self._x_dis(boxes[i], line) < pw / 10):
|
||||
# and abs(width(boxes[i])-width_mean)/max(width(boxes[i]),width_mean)<0.5):
|
||||
# concat following
|
||||
dfs(boxes[i], i)
|
||||
boxes.pop(i)
|
||||
@ -992,11 +901,9 @@ class RAGFlowPdfParser:
|
||||
boxes.pop(0)
|
||||
mw = np.mean(widths)
|
||||
if mj or mw / pw >= 0.35 or mw > 200:
|
||||
res.append(
|
||||
"\n".join([c["text"] + self._line_tag(c, ZM) for c in lines]))
|
||||
res.append("\n".join([c["text"] + self._line_tag(c, ZM) for c in lines]))
|
||||
else:
|
||||
logging.debug("REMOVED: " +
|
||||
"<<".join([c["text"] for c in lines]))
|
||||
logging.debug("REMOVED: " + "<<".join([c["text"] for c in lines]))
|
||||
|
||||
return "\n\n".join(res)
|
||||
|
||||
@ -1004,16 +911,14 @@ class RAGFlowPdfParser:
|
||||
def total_page_number(fnm, binary=None):
|
||||
try:
|
||||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||||
pdf = pdfplumber.open(
|
||||
fnm) if not binary else pdfplumber.open(BytesIO(binary))
|
||||
pdf = pdfplumber.open(fnm) if not binary else pdfplumber.open(BytesIO(binary))
|
||||
total_page = len(pdf.pages)
|
||||
pdf.close()
|
||||
return total_page
|
||||
except Exception:
|
||||
logging.exception("total_page_number")
|
||||
|
||||
def __images__(self, fnm, zoomin=3, page_from=0,
|
||||
page_to=299, callback=None):
|
||||
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
|
||||
self.lefted_chars = []
|
||||
self.mean_height = []
|
||||
self.mean_width = []
|
||||
@ -1025,10 +930,9 @@ class RAGFlowPdfParser:
|
||||
start = timer()
|
||||
try:
|
||||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||||
with (pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))) as pdf:
|
||||
with pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm)) as pdf:
|
||||
self.pdf = pdf
|
||||
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in
|
||||
enumerate(self.pdf.pages[page_from:page_to])]
|
||||
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
|
||||
|
||||
try:
|
||||
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
|
||||
@ -1044,11 +948,11 @@ class RAGFlowPdfParser:
|
||||
|
||||
self.outlines = []
|
||||
try:
|
||||
with (pdf2_read(fnm if isinstance(fnm, str)
|
||||
else BytesIO(fnm))) as pdf:
|
||||
with pdf2_read(fnm if isinstance(fnm, str) else BytesIO(fnm)) as pdf:
|
||||
self.pdf = pdf
|
||||
|
||||
outlines = self.pdf.outline
|
||||
|
||||
def dfs(arr, depth):
|
||||
for a in arr:
|
||||
if isinstance(a, dict):
|
||||
@ -1065,11 +969,11 @@ class RAGFlowPdfParser:
|
||||
logging.warning("Miss outlines")
|
||||
|
||||
logging.debug("Images converted.")
|
||||
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(
|
||||
random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in
|
||||
range(len(self.page_chars))]
|
||||
if sum([1 if e else 0 for e in self.is_english]) > len(
|
||||
self.page_images) / 2:
|
||||
self.is_english = [
|
||||
re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i])))))
|
||||
for i in range(len(self.page_chars))
|
||||
]
|
||||
if sum([1 if e else 0 for e in self.is_english]) > len(self.page_images) / 2:
|
||||
self.is_english = True
|
||||
else:
|
||||
self.is_english = False
|
||||
@ -1077,10 +981,12 @@ class RAGFlowPdfParser:
|
||||
async def __img_ocr(i, id, img, chars, limiter):
|
||||
j = 0
|
||||
while j + 1 < len(chars):
|
||||
if chars[j]["text"] and chars[j + 1]["text"] \
|
||||
and re.match(r"[0-9a-zA-Z,.:;!%]+", chars[j]["text"] + chars[j + 1]["text"]) \
|
||||
and chars[j + 1]["x0"] - chars[j]["x1"] >= min(chars[j + 1]["width"],
|
||||
chars[j]["width"]) / 2:
|
||||
if (
|
||||
chars[j]["text"]
|
||||
and chars[j + 1]["text"]
|
||||
and re.match(r"[0-9a-zA-Z,.:;!%]+", chars[j]["text"] + chars[j + 1]["text"])
|
||||
and chars[j + 1]["x0"] - chars[j]["x1"] >= min(chars[j + 1]["width"], chars[j]["width"]) / 2
|
||||
):
|
||||
chars[j]["text"] += " "
|
||||
j += 1
|
||||
|
||||
@ -1096,12 +1002,8 @@ class RAGFlowPdfParser:
|
||||
async def __img_ocr_launcher():
|
||||
def __ocr_preprocess():
|
||||
chars = self.page_chars[i] if not self.is_english else []
|
||||
self.mean_height.append(
|
||||
np.median(sorted([c["height"] for c in chars])) if chars else 0
|
||||
)
|
||||
self.mean_width.append(
|
||||
np.median(sorted([c["width"] for c in chars])) if chars else 8
|
||||
)
|
||||
self.mean_height.append(np.median(sorted([c["height"] for c in chars])) if chars else 0)
|
||||
self.mean_width.append(np.median(sorted([c["width"] for c in chars])) if chars else 8)
|
||||
self.page_cum_height.append(img.size[1] / zoomin)
|
||||
return chars
|
||||
|
||||
@ -1110,8 +1012,7 @@ class RAGFlowPdfParser:
|
||||
for i, img in enumerate(self.page_images):
|
||||
chars = __ocr_preprocess()
|
||||
|
||||
nursery.start_soon(__img_ocr, i, i % PARALLEL_DEVICES, img, chars,
|
||||
self.parallel_limiter[i % PARALLEL_DEVICES])
|
||||
nursery.start_soon(__img_ocr, i, i % PARALLEL_DEVICES, img, chars, self.parallel_limiter[i % PARALLEL_DEVICES])
|
||||
await trio.sleep(0.1)
|
||||
else:
|
||||
for i, img in enumerate(self.page_images):
|
||||
@ -1124,11 +1025,9 @@ class RAGFlowPdfParser:
|
||||
|
||||
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
|
||||
|
||||
if not self.is_english and not any(
|
||||
[c for c in self.page_chars]) and self.boxes:
|
||||
if not self.is_english and not any([c for c in self.page_chars]) and self.boxes:
|
||||
bxes = [b for bxs in self.boxes for b in bxs]
|
||||
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}",
|
||||
"".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
|
||||
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
|
||||
|
||||
logging.debug("Is it English:", self.is_english)
|
||||
|
||||
@ -1144,8 +1043,7 @@ class RAGFlowPdfParser:
|
||||
self._text_merge()
|
||||
self._concat_downward()
|
||||
self._filter_forpages()
|
||||
tbls = self._extract_table_figure(
|
||||
need_image, zoomin, return_html, False)
|
||||
tbls = self._extract_table_figure(need_image, zoomin, return_html, False)
|
||||
return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls
|
||||
|
||||
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
|
||||
@ -1177,11 +1075,11 @@ class RAGFlowPdfParser:
|
||||
def insert_table_figures(tbls_or_figs, layout_type):
|
||||
def min_rectangle_distance(rect1, rect2):
|
||||
import math
|
||||
|
||||
pn1, left1, right1, top1, bottom1 = rect1
|
||||
pn2, left2, right2, top2, bottom2 = rect2
|
||||
if (right1 >= left2 and right2 >= left1 and
|
||||
bottom1 >= top2 and bottom2 >= top1):
|
||||
return 0 + (pn1-pn2)*10000
|
||||
if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1:
|
||||
return 0 + (pn1 - pn2) * 10000
|
||||
if right1 < left2:
|
||||
dx = left2 - right1
|
||||
elif right2 < left1:
|
||||
@ -1194,18 +1092,16 @@ class RAGFlowPdfParser:
|
||||
dy = top1 - bottom2
|
||||
else:
|
||||
dy = 0
|
||||
return math.sqrt(dx*dx + dy*dy) + (pn1-pn2)*10000
|
||||
return math.sqrt(dx * dx + dy * dy) + (pn1 - pn2) * 10000
|
||||
|
||||
for (img, txt), poss in tbls_or_figs:
|
||||
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
|
||||
dists = [(min_rectangle_distance((pn, left, right, top, bott), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
|
||||
dists = [(min_rectangle_distance((pn, left, right, top, bott), rect), i) for i, rect in bboxes for pn, left, right, top, bott in poss]
|
||||
min_i = np.argmin(dists, axis=0)[0]
|
||||
min_i, rect = bboxes[dists[min_i][-1]]
|
||||
if isinstance(txt, list):
|
||||
txt = "\n".join(txt)
|
||||
self.boxes.insert(min_i, {
|
||||
"page_number": rect[0], "x0": rect[1], "x1": rect[2], "top": rect[3], "bottom": rect[4], "layout_type": layout_type, "text": txt, "image": img
|
||||
})
|
||||
self.boxes.insert(min_i, {"page_number": rect[0], "x0": rect[1], "x1": rect[2], "top": rect[3], "bottom": rect[4], "layout_type": layout_type, "text": txt, "image": img})
|
||||
|
||||
for b in self.boxes:
|
||||
b["position_tag"] = self._line_tag(b, zoomin)
|
||||
@ -1225,12 +1121,9 @@ class RAGFlowPdfParser:
|
||||
def extract_positions(txt):
|
||||
poss = []
|
||||
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
|
||||
pn, left, right, top, bottom = tag.strip(
|
||||
"#").strip("@").split("\t")
|
||||
left, right, top, bottom = float(left), float(
|
||||
right), float(top), float(bottom)
|
||||
poss.append(([int(p) - 1 for p in pn.split("-")],
|
||||
left, right, top, bottom))
|
||||
pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t")
|
||||
left, right, top, bottom = float(left), float(right), float(top), float(bottom)
|
||||
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
|
||||
return poss
|
||||
|
||||
def crop(self, text, ZM=3, need_position=False):
|
||||
@ -1241,15 +1134,12 @@ class RAGFlowPdfParser:
|
||||
return None, None
|
||||
return
|
||||
|
||||
max_width = max(
|
||||
np.max([right - left for (_, left, right, _, _) in poss]), 6)
|
||||
max_width = max(np.max([right - left for (_, left, right, _, _) in poss]), 6)
|
||||
GAP = 6
|
||||
pos = poss[0]
|
||||
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(
|
||||
0, pos[3] - 120), max(pos[3] - GAP, 0)))
|
||||
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(0, pos[3] - 120), max(pos[3] - GAP, 0)))
|
||||
pos = poss[-1]
|
||||
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + GAP),
|
||||
min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + 120)))
|
||||
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + GAP), min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + 120)))
|
||||
|
||||
positions = []
|
||||
for ii, (pns, left, right, top, bottom) in enumerate(poss):
|
||||
@ -1257,28 +1147,14 @@ class RAGFlowPdfParser:
|
||||
bottom *= ZM
|
||||
for pn in pns[1:]:
|
||||
bottom += self.page_images[pn - 1].size[1]
|
||||
imgs.append(
|
||||
self.page_images[pns[0]].crop((left * ZM, top * ZM,
|
||||
right *
|
||||
ZM, min(
|
||||
bottom, self.page_images[pns[0]].size[1])
|
||||
))
|
||||
)
|
||||
imgs.append(self.page_images[pns[0]].crop((left * ZM, top * ZM, right * ZM, min(bottom, self.page_images[pns[0]].size[1]))))
|
||||
if 0 < ii < len(poss) - 1:
|
||||
positions.append((pns[0] + self.page_from, left, right, top, min(
|
||||
bottom, self.page_images[pns[0]].size[1]) / ZM))
|
||||
positions.append((pns[0] + self.page_from, left, right, top, min(bottom, self.page_images[pns[0]].size[1]) / ZM))
|
||||
bottom -= self.page_images[pns[0]].size[1]
|
||||
for pn in pns[1:]:
|
||||
imgs.append(
|
||||
self.page_images[pn].crop((left * ZM, 0,
|
||||
right * ZM,
|
||||
min(bottom,
|
||||
self.page_images[pn].size[1])
|
||||
))
|
||||
)
|
||||
imgs.append(self.page_images[pn].crop((left * ZM, 0, right * ZM, min(bottom, self.page_images[pn].size[1]))))
|
||||
if 0 < ii < len(poss) - 1:
|
||||
positions.append((pn + self.page_from, left, right, 0, min(
|
||||
bottom, self.page_images[pn].size[1]) / ZM))
|
||||
positions.append((pn + self.page_from, left, right, 0, min(bottom, self.page_images[pn].size[1]) / ZM))
|
||||
bottom -= self.page_images[pn].size[1]
|
||||
|
||||
if not imgs:
|
||||
@ -1290,14 +1166,12 @@ class RAGFlowPdfParser:
|
||||
height += img.size[1] + GAP
|
||||
height = int(height)
|
||||
width = int(np.max([i.size[0] for i in imgs]))
|
||||
pic = Image.new("RGB",
|
||||
(width, height),
|
||||
(245, 245, 245))
|
||||
pic = Image.new("RGB", (width, height), (245, 245, 245))
|
||||
height = 0
|
||||
for ii, img in enumerate(imgs):
|
||||
if ii == 0 or ii + 1 == len(imgs):
|
||||
img = img.convert('RGBA')
|
||||
overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
|
||||
img = img.convert("RGBA")
|
||||
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
||||
overlay.putalpha(128)
|
||||
img = Image.alpha_composite(img, overlay).convert("RGB")
|
||||
pic.paste(img, (0, int(height)))
|
||||
@ -1312,14 +1186,12 @@ class RAGFlowPdfParser:
|
||||
pn = bx["page_number"]
|
||||
top = bx["top"] - self.page_cum_height[pn - 1]
|
||||
bott = bx["bottom"] - self.page_cum_height[pn - 1]
|
||||
poss.append((pn, bx["x0"], bx["x1"], top, min(
|
||||
bott, self.page_images[pn - 1].size[1] / ZM)))
|
||||
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
|
||||
while bott * ZM > self.page_images[pn - 1].size[1]:
|
||||
bott -= self.page_images[pn - 1].size[1] / ZM
|
||||
top = 0
|
||||
pn += 1
|
||||
poss.append((pn, bx["x0"], bx["x1"], top, min(
|
||||
bott, self.page_images[pn - 1].size[1] / ZM)))
|
||||
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
|
||||
return poss
|
||||
|
||||
|
||||
@ -1328,9 +1200,7 @@ class PlainParser:
|
||||
self.outlines = []
|
||||
lines = []
|
||||
try:
|
||||
self.pdf = pdf2_read(
|
||||
filename if isinstance(
|
||||
filename, str) else BytesIO(filename))
|
||||
self.pdf = pdf2_read(filename if isinstance(filename, str) else BytesIO(filename))
|
||||
for page in self.pdf.pages[from_page:to_page]:
|
||||
lines.extend([t for t in page.extract_text().split("\n")])
|
||||
|
||||
@ -1367,10 +1237,8 @@ class VisionParser(RAGFlowPdfParser):
|
||||
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
|
||||
try:
|
||||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||||
self.pdf = pdfplumber.open(fnm) if isinstance(
|
||||
fnm, str) else pdfplumber.open(BytesIO(fnm))
|
||||
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
|
||||
enumerate(self.pdf.pages[page_from:page_to])]
|
||||
self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))
|
||||
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
|
||||
self.total_page = len(self.pdf.pages)
|
||||
except Exception:
|
||||
self.page_images = None
|
||||
@ -1397,15 +1265,15 @@ class VisionParser(RAGFlowPdfParser):
|
||||
text = picture_vision_llm_chunk(
|
||||
binary=img_binary,
|
||||
vision_model=self.vision_model,
|
||||
prompt=vision_llm_describe_prompt(page=pdf_page_num+1),
|
||||
prompt=vision_llm_describe_prompt(page=pdf_page_num + 1),
|
||||
callback=callback,
|
||||
)
|
||||
if kwargs.get("callback"):
|
||||
kwargs["callback"](idx*1./len(self.page_images), f"Processed: {idx+1}/{len(self.page_images)}")
|
||||
kwargs["callback"](idx * 1.0 / len(self.page_images), f"Processed: {idx + 1}/{len(self.page_images)}")
|
||||
|
||||
if text:
|
||||
width, height = self.page_images[idx].size
|
||||
all_docs.append((text, f"{pdf_page_num+1} 0 {width/zoomin} 0 {height/zoomin}"))
|
||||
all_docs.append((text, f"{pdf_page_num + 1} 0 {width / zoomin} 0 {height / zoomin}"))
|
||||
return all_docs, []
|
||||
|
||||
|
||||
|
||||
@ -16,24 +16,28 @@
|
||||
import io
|
||||
import sys
|
||||
import threading
|
||||
|
||||
import pdfplumber
|
||||
|
||||
from .ocr import OCR
|
||||
from .recognizer import Recognizer
|
||||
from .layout_recognizer import AscendLayoutRecognizer
|
||||
from .layout_recognizer import LayoutRecognizer4YOLOv10 as LayoutRecognizer
|
||||
from .table_structure_recognizer import TableStructureRecognizer
|
||||
|
||||
|
||||
LOCK_KEY_pdfplumber = "global_shared_lock_pdfplumber"
|
||||
if LOCK_KEY_pdfplumber not in sys.modules:
|
||||
sys.modules[LOCK_KEY_pdfplumber] = threading.Lock()
|
||||
|
||||
|
||||
def init_in_out(args):
|
||||
from PIL import Image
|
||||
import os
|
||||
import traceback
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from api.utils.file_utils import traversal_files
|
||||
|
||||
images = []
|
||||
outputs = []
|
||||
|
||||
@ -44,8 +48,7 @@ def init_in_out(args):
|
||||
nonlocal outputs, images
|
||||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||||
pdf = pdfplumber.open(fnm)
|
||||
images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
|
||||
enumerate(pdf.pages)]
|
||||
images = [p.to_image(resolution=72 * zoomin).annotated for i, p in enumerate(pdf.pages)]
|
||||
|
||||
for i, page in enumerate(images):
|
||||
outputs.append(os.path.split(fnm)[-1] + f"_{i}.jpg")
|
||||
@ -57,10 +60,10 @@ def init_in_out(args):
|
||||
pdf_pages(fnm)
|
||||
return
|
||||
try:
|
||||
fp = open(fnm, 'rb')
|
||||
fp = open(fnm, "rb")
|
||||
binary = fp.read()
|
||||
fp.close()
|
||||
images.append(Image.open(io.BytesIO(binary)).convert('RGB'))
|
||||
images.append(Image.open(io.BytesIO(binary)).convert("RGB"))
|
||||
outputs.append(os.path.split(fnm)[-1])
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
@ -81,6 +84,7 @@ __all__ = [
|
||||
"OCR",
|
||||
"Recognizer",
|
||||
"LayoutRecognizer",
|
||||
"AscendLayoutRecognizer",
|
||||
"TableStructureRecognizer",
|
||||
"init_in_out",
|
||||
]
|
||||
|
||||
@ -14,6 +14,8 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import re
|
||||
from collections import Counter
|
||||
@ -45,28 +47,22 @@ class LayoutRecognizer(Recognizer):
|
||||
|
||||
def __init__(self, domain):
|
||||
try:
|
||||
model_dir = os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res/deepdoc")
|
||||
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
|
||||
super().__init__(self.labels, domain, model_dir)
|
||||
except Exception:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
|
||||
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
|
||||
local_dir_use_symlinks=False)
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc", local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), local_dir_use_symlinks=False)
|
||||
super().__init__(self.labels, domain, model_dir)
|
||||
|
||||
self.garbage_layouts = ["footer", "header", "reference"]
|
||||
self.client = None
|
||||
if os.environ.get("TENSORRT_DLA_SVR"):
|
||||
from deepdoc.vision.dla_cli import DLAClient
|
||||
|
||||
self.client = DLAClient(os.environ["TENSORRT_DLA_SVR"])
|
||||
|
||||
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True):
|
||||
def __is_garbage(b):
|
||||
patt = [r"^•+$", "^[0-9]{1,2} / ?[0-9]{1,2}$",
|
||||
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
|
||||
"\\(cid *: *[0-9]+ *\\)"
|
||||
]
|
||||
patt = [r"^•+$", "^[0-9]{1,2} / ?[0-9]{1,2}$", r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}", "\\(cid *: *[0-9]+ *\\)"]
|
||||
return any([re.search(p, b["text"]) for p in patt])
|
||||
|
||||
if self.client:
|
||||
@ -82,18 +78,23 @@ class LayoutRecognizer(Recognizer):
|
||||
page_layout = []
|
||||
for pn, lts in enumerate(layouts):
|
||||
bxs = ocr_res[pn]
|
||||
lts = [{"type": b["type"],
|
||||
lts = [
|
||||
{
|
||||
"type": b["type"],
|
||||
"score": float(b["score"]),
|
||||
"x0": b["bbox"][0] / scale_factor, "x1": b["bbox"][2] / scale_factor,
|
||||
"top": b["bbox"][1] / scale_factor, "bottom": b["bbox"][-1] / scale_factor,
|
||||
"x0": b["bbox"][0] / scale_factor,
|
||||
"x1": b["bbox"][2] / scale_factor,
|
||||
"top": b["bbox"][1] / scale_factor,
|
||||
"bottom": b["bbox"][-1] / scale_factor,
|
||||
"page_number": pn,
|
||||
} for b in lts if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts]
|
||||
lts = self.sort_Y_firstly(lts, np.mean(
|
||||
[lt["bottom"] - lt["top"] for lt in lts]) / 2)
|
||||
}
|
||||
for b in lts
|
||||
if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts
|
||||
]
|
||||
lts = self.sort_Y_firstly(lts, np.mean([lt["bottom"] - lt["top"] for lt in lts]) / 2)
|
||||
lts = self.layouts_cleanup(bxs, lts)
|
||||
page_layout.append(lts)
|
||||
|
||||
# Tag layout type, layouts are ready
|
||||
def findLayout(ty):
|
||||
nonlocal bxs, lts, self
|
||||
lts_ = [lt for lt in lts if lt["type"] == ty]
|
||||
@ -106,21 +107,17 @@ class LayoutRecognizer(Recognizer):
|
||||
bxs.pop(i)
|
||||
continue
|
||||
|
||||
ii = self.find_overlapped_with_threshold(bxs[i], lts_,
|
||||
thr=0.4)
|
||||
if ii is None: # belong to nothing
|
||||
ii = self.find_overlapped_with_threshold(bxs[i], lts_, thr=0.4)
|
||||
if ii is None:
|
||||
bxs[i]["layout_type"] = ""
|
||||
i += 1
|
||||
continue
|
||||
lts_[ii]["visited"] = True
|
||||
keep_feats = [
|
||||
lts_[
|
||||
ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
|
||||
lts_[
|
||||
ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
|
||||
lts_[ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
|
||||
lts_[ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
|
||||
]
|
||||
if drop and lts_[
|
||||
ii]["type"] in self.garbage_layouts and not any(keep_feats):
|
||||
if drop and lts_[ii]["type"] in self.garbage_layouts and not any(keep_feats):
|
||||
if lts_[ii]["type"] not in garbages:
|
||||
garbages[lts_[ii]["type"]] = []
|
||||
garbages[lts_[ii]["type"]].append(bxs[i]["text"])
|
||||
@ -128,17 +125,14 @@ class LayoutRecognizer(Recognizer):
|
||||
continue
|
||||
|
||||
bxs[i]["layoutno"] = f"{ty}-{ii}"
|
||||
bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[
|
||||
ii]["type"] != "equation" else "figure"
|
||||
bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[ii]["type"] != "equation" else "figure"
|
||||
i += 1
|
||||
|
||||
for lt in ["footer", "header", "reference", "figure caption",
|
||||
"table caption", "title", "table", "text", "figure", "equation"]:
|
||||
for lt in ["footer", "header", "reference", "figure caption", "table caption", "title", "table", "text", "figure", "equation"]:
|
||||
findLayout(lt)
|
||||
|
||||
# add box to figure layouts which has not text box
|
||||
for i, lt in enumerate(
|
||||
[lt for lt in lts if lt["type"] in ["figure", "equation"]]):
|
||||
for i, lt in enumerate([lt for lt in lts if lt["type"] in ["figure", "equation"]]):
|
||||
if lt.get("visited"):
|
||||
continue
|
||||
lt = deepcopy(lt)
|
||||
@ -206,13 +200,11 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
|
||||
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
|
||||
img = cv2.copyMakeBorder(
|
||||
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
|
||||
) # add border
|
||||
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) # add border
|
||||
img /= 255.0
|
||||
img = img.transpose(2, 0, 1)
|
||||
img = img[np.newaxis, :, :, :].astype(np.float32)
|
||||
inputs.append({self.input_names[0]: img, "scale_factor": [shape[1]/ww, shape[0]/hh, dw, dh]})
|
||||
inputs.append({self.input_names[0]: img, "scale_factor": [shape[1] / ww, shape[0] / hh, dw, dh]})
|
||||
|
||||
return inputs
|
||||
|
||||
@ -230,8 +222,7 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
|
||||
boxes[:, 2] -= inputs["scale_factor"][2]
|
||||
boxes[:, 1] -= inputs["scale_factor"][3]
|
||||
boxes[:, 3] -= inputs["scale_factor"][3]
|
||||
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0],
|
||||
inputs["scale_factor"][1]])
|
||||
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
|
||||
boxes = np.multiply(boxes, input_shape, dtype=np.float32)
|
||||
|
||||
unique_class_ids = np.unique(class_ids)
|
||||
@ -243,8 +234,223 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
|
||||
class_keep_boxes = nms(class_boxes, class_scores, 0.45)
|
||||
indices.extend(class_indices[class_keep_boxes])
|
||||
|
||||
return [{
|
||||
"type": self.label_list[class_ids[i]].lower(),
|
||||
"bbox": [float(t) for t in boxes[i].tolist()],
|
||||
"score": float(scores[i])
|
||||
} for i in indices]
|
||||
return [{"type": self.label_list[class_ids[i]].lower(), "bbox": [float(t) for t in boxes[i].tolist()], "score": float(scores[i])} for i in indices]
|
||||
|
||||
|
||||
class AscendLayoutRecognizer(Recognizer):
|
||||
labels = [
|
||||
"title",
|
||||
"Text",
|
||||
"Reference",
|
||||
"Figure",
|
||||
"Figure caption",
|
||||
"Table",
|
||||
"Table caption",
|
||||
"Table caption",
|
||||
"Equation",
|
||||
"Figure caption",
|
||||
]
|
||||
|
||||
def __init__(self, domain):
|
||||
from ais_bench.infer.interface import InferSession
|
||||
|
||||
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
|
||||
model_file_path = os.path.join(model_dir, domain + ".om")
|
||||
|
||||
if not os.path.exists(model_file_path):
|
||||
raise ValueError(f"Model file not found: {model_file_path}")
|
||||
|
||||
device_id = int(os.getenv("ASCEND_LAYOUT_RECOGNIZER_DEVICE_ID", 0))
|
||||
self.session = InferSession(device_id=device_id, model_path=model_file_path)
|
||||
self.input_shape = self.session.get_inputs()[0].shape[2:4] # H,W
|
||||
self.garbage_layouts = ["footer", "header", "reference"]
|
||||
|
||||
def preprocess(self, image_list):
|
||||
inputs = []
|
||||
H, W = self.input_shape
|
||||
for img in image_list:
|
||||
h, w = img.shape[:2]
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32)
|
||||
|
||||
r = min(H / h, W / w)
|
||||
new_unpad = (int(round(w * r)), int(round(h * r)))
|
||||
dw, dh = (W - new_unpad[0]) / 2.0, (H - new_unpad[1]) / 2.0
|
||||
|
||||
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
|
||||
|
||||
img /= 255.0
|
||||
img = img.transpose(2, 0, 1)[np.newaxis, :, :, :].astype(np.float32)
|
||||
|
||||
inputs.append(
|
||||
{
|
||||
"image": img,
|
||||
"scale_factor": [w / new_unpad[0], h / new_unpad[1]],
|
||||
"pad": [dw, dh],
|
||||
"orig_shape": [h, w],
|
||||
}
|
||||
)
|
||||
return inputs
|
||||
|
||||
def postprocess(self, boxes, inputs, thr=0.25):
|
||||
arr = np.squeeze(boxes)
|
||||
if arr.ndim == 1:
|
||||
arr = arr.reshape(1, -1)
|
||||
|
||||
results = []
|
||||
if arr.shape[1] == 6:
|
||||
# [x1,y1,x2,y2,score,cls]
|
||||
m = arr[:, 4] >= thr
|
||||
arr = arr[m]
|
||||
if arr.size == 0:
|
||||
return []
|
||||
xyxy = arr[:, :4].astype(np.float32)
|
||||
scores = arr[:, 4].astype(np.float32)
|
||||
cls_ids = arr[:, 5].astype(np.int32)
|
||||
|
||||
if "pad" in inputs:
|
||||
dw, dh = inputs["pad"]
|
||||
sx, sy = inputs["scale_factor"]
|
||||
xyxy[:, [0, 2]] -= dw
|
||||
xyxy[:, [1, 3]] -= dh
|
||||
xyxy *= np.array([sx, sy, sx, sy], dtype=np.float32)
|
||||
else:
|
||||
# backup
|
||||
sx, sy = inputs["scale_factor"]
|
||||
xyxy *= np.array([sx, sy, sx, sy], dtype=np.float32)
|
||||
|
||||
keep_indices = []
|
||||
for c in np.unique(cls_ids):
|
||||
idx = np.where(cls_ids == c)[0]
|
||||
k = nms(xyxy[idx], scores[idx], 0.45)
|
||||
keep_indices.extend(idx[k])
|
||||
|
||||
for i in keep_indices:
|
||||
cid = int(cls_ids[i])
|
||||
if 0 <= cid < len(self.labels):
|
||||
results.append({"type": self.labels[cid].lower(), "bbox": [float(t) for t in xyxy[i].tolist()], "score": float(scores[i])})
|
||||
return results
|
||||
|
||||
raise ValueError(f"Unexpected output shape: {arr.shape}")
|
||||
|
||||
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True):
|
||||
import re
|
||||
from collections import Counter
|
||||
|
||||
assert len(image_list) == len(ocr_res)
|
||||
|
||||
images = [np.array(im) if not isinstance(im, np.ndarray) else im for im in image_list]
|
||||
layouts_all_pages = [] # list of list[{"type","score","bbox":[x1,y1,x2,y2]}]
|
||||
|
||||
conf_thr = max(thr, 0.08)
|
||||
|
||||
batch_loop_cnt = math.ceil(float(len(images)) / batch_size)
|
||||
for bi in range(batch_loop_cnt):
|
||||
s = bi * batch_size
|
||||
e = min((bi + 1) * batch_size, len(images))
|
||||
batch_images = images[s:e]
|
||||
|
||||
inputs_list = self.preprocess(batch_images)
|
||||
logging.debug("preprocess done")
|
||||
|
||||
for ins in inputs_list:
|
||||
feeds = [ins["image"]]
|
||||
out_list = self.session.infer(feeds=feeds, mode="static")
|
||||
|
||||
for out in out_list:
|
||||
lts = self.postprocess(out, ins, conf_thr)
|
||||
|
||||
page_lts = []
|
||||
for b in lts:
|
||||
if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts:
|
||||
x0, y0, x1, y1 = b["bbox"]
|
||||
page_lts.append(
|
||||
{
|
||||
"type": b["type"],
|
||||
"score": float(b["score"]),
|
||||
"x0": float(x0) / scale_factor,
|
||||
"x1": float(x1) / scale_factor,
|
||||
"top": float(y0) / scale_factor,
|
||||
"bottom": float(y1) / scale_factor,
|
||||
"page_number": len(layouts_all_pages),
|
||||
}
|
||||
)
|
||||
layouts_all_pages.append(page_lts)
|
||||
|
||||
def _is_garbage_text(box):
|
||||
patt = [r"^•+$", r"^[0-9]{1,2} / ?[0-9]{1,2}$", r"^[0-9]{1,2} of [0-9]{1,2}$", r"^http://[^ ]{12,}", r"\(cid *: *[0-9]+ *\)"]
|
||||
return any(re.search(p, box.get("text", "")) for p in patt)
|
||||
|
||||
boxes_out = []
|
||||
page_layout = []
|
||||
garbages = {}
|
||||
|
||||
for pn, lts in enumerate(layouts_all_pages):
|
||||
if lts:
|
||||
avg_h = np.mean([lt["bottom"] - lt["top"] for lt in lts])
|
||||
lts = self.sort_Y_firstly(lts, avg_h / 2 if avg_h > 0 else 0)
|
||||
|
||||
bxs = ocr_res[pn]
|
||||
lts = self.layouts_cleanup(bxs, lts)
|
||||
page_layout.append(lts)
|
||||
|
||||
def _tag_layout(ty):
|
||||
nonlocal bxs, lts
|
||||
lts_of_ty = [lt for lt in lts if lt["type"] == ty]
|
||||
i = 0
|
||||
while i < len(bxs):
|
||||
if bxs[i].get("layout_type"):
|
||||
i += 1
|
||||
continue
|
||||
if _is_garbage_text(bxs[i]):
|
||||
bxs.pop(i)
|
||||
continue
|
||||
|
||||
ii = self.find_overlapped_with_threshold(bxs[i], lts_of_ty, thr=0.4)
|
||||
if ii is None:
|
||||
bxs[i]["layout_type"] = ""
|
||||
i += 1
|
||||
continue
|
||||
|
||||
lts_of_ty[ii]["visited"] = True
|
||||
|
||||
keep_feats = [
|
||||
lts_of_ty[ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].shape[0] * 0.9 / scale_factor,
|
||||
lts_of_ty[ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].shape[0] * 0.1 / scale_factor,
|
||||
]
|
||||
if drop and lts_of_ty[ii]["type"] in self.garbage_layouts and not any(keep_feats):
|
||||
garbages.setdefault(lts_of_ty[ii]["type"], []).append(bxs[i].get("text", ""))
|
||||
bxs.pop(i)
|
||||
continue
|
||||
|
||||
bxs[i]["layoutno"] = f"{ty}-{ii}"
|
||||
bxs[i]["layout_type"] = lts_of_ty[ii]["type"] if lts_of_ty[ii]["type"] != "equation" else "figure"
|
||||
i += 1
|
||||
|
||||
for ty in ["footer", "header", "reference", "figure caption", "table caption", "title", "table", "text", "figure", "equation"]:
|
||||
_tag_layout(ty)
|
||||
|
||||
figs = [lt for lt in lts if lt["type"] in ["figure", "equation"]]
|
||||
for i, lt in enumerate(figs):
|
||||
if lt.get("visited"):
|
||||
continue
|
||||
lt = deepcopy(lt)
|
||||
lt.pop("type", None)
|
||||
lt["text"] = ""
|
||||
lt["layout_type"] = "figure"
|
||||
lt["layoutno"] = f"figure-{i}"
|
||||
bxs.append(lt)
|
||||
|
||||
boxes_out.extend(bxs)
|
||||
|
||||
garbag_set = set()
|
||||
for k, lst in garbages.items():
|
||||
cnt = Counter(lst)
|
||||
for g, c in cnt.items():
|
||||
if c > 1:
|
||||
garbag_set.add(g)
|
||||
|
||||
ocr_res_new = [b for b in boxes_out if b["text"].strip() not in garbag_set]
|
||||
return ocr_res_new, page_layout
|
||||
|
||||
@ -13,7 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import gc
|
||||
import logging
|
||||
import copy
|
||||
import time
|
||||
@ -348,6 +348,13 @@ class TextRecognizer:
|
||||
|
||||
return img
|
||||
|
||||
def close(self):
|
||||
# close session and release manually
|
||||
logging.info('Close TextRecognizer.')
|
||||
if hasattr(self, "predictor"):
|
||||
del self.predictor
|
||||
gc.collect()
|
||||
|
||||
def __call__(self, img_list):
|
||||
img_num = len(img_list)
|
||||
# Calculate the aspect ratio of all text bars
|
||||
@ -395,6 +402,9 @@ class TextRecognizer:
|
||||
|
||||
return rec_res, time.time() - st
|
||||
|
||||
def __del__(self):
|
||||
self.close()
|
||||
|
||||
|
||||
class TextDetector:
|
||||
def __init__(self, model_dir, device_id: int | None = None):
|
||||
@ -479,6 +489,12 @@ class TextDetector:
|
||||
dt_boxes = np.array(dt_boxes_new)
|
||||
return dt_boxes
|
||||
|
||||
def close(self):
|
||||
logging.info("Close TextDetector.")
|
||||
if hasattr(self, "predictor"):
|
||||
del self.predictor
|
||||
gc.collect()
|
||||
|
||||
def __call__(self, img):
|
||||
ori_im = img.copy()
|
||||
data = {'image': img}
|
||||
@ -508,6 +524,9 @@ class TextDetector:
|
||||
|
||||
return dt_boxes, time.time() - st
|
||||
|
||||
def __del__(self):
|
||||
self.close()
|
||||
|
||||
|
||||
class OCR:
|
||||
def __init__(self, model_dir=None):
|
||||
|
||||
@ -13,7 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import gc
|
||||
import logging
|
||||
import os
|
||||
import math
|
||||
@ -406,6 +406,12 @@ class Recognizer:
|
||||
"score": float(scores[i])
|
||||
} for i in indices]
|
||||
|
||||
def close(self):
|
||||
logging.info("Close recognizer.")
|
||||
if hasattr(self, "ort_sess"):
|
||||
del self.ort_sess
|
||||
gc.collect()
|
||||
|
||||
def __call__(self, image_list, thr=0.7, batch_size=16):
|
||||
res = []
|
||||
images = []
|
||||
@ -430,5 +436,7 @@ class Recognizer:
|
||||
|
||||
return res
|
||||
|
||||
def __del__(self):
|
||||
self.close()
|
||||
|
||||
|
||||
|
||||
@ -23,6 +23,7 @@ from huggingface_hub import snapshot_download
|
||||
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from rag.nlp import rag_tokenizer
|
||||
|
||||
from .recognizer import Recognizer
|
||||
|
||||
|
||||
@ -38,31 +39,49 @@ class TableStructureRecognizer(Recognizer):
|
||||
|
||||
def __init__(self):
|
||||
try:
|
||||
super().__init__(self.labels, "tsr", os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res/deepdoc"))
|
||||
super().__init__(self.labels, "tsr", os.path.join(get_project_base_directory(), "rag/res/deepdoc"))
|
||||
except Exception:
|
||||
super().__init__(self.labels, "tsr", snapshot_download(repo_id="InfiniFlow/deepdoc",
|
||||
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
|
||||
local_dir_use_symlinks=False))
|
||||
super().__init__(
|
||||
self.labels,
|
||||
"tsr",
|
||||
snapshot_download(
|
||||
repo_id="InfiniFlow/deepdoc",
|
||||
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
|
||||
local_dir_use_symlinks=False,
|
||||
),
|
||||
)
|
||||
|
||||
def __call__(self, images, thr=0.2):
|
||||
tbls = super().__call__(images, thr)
|
||||
table_structure_recognizer_type = os.getenv("TABLE_STRUCTURE_RECOGNIZER_TYPE", "onnx").lower()
|
||||
if table_structure_recognizer_type not in ["onnx", "ascend"]:
|
||||
raise RuntimeError("Unsupported table structure recognizer type.")
|
||||
|
||||
if table_structure_recognizer_type == "onnx":
|
||||
logging.debug("Using Onnx table structure recognizer", flush=True)
|
||||
tbls = super().__call__(images, thr)
|
||||
else: # ascend
|
||||
logging.debug("Using Ascend table structure recognizer", flush=True)
|
||||
tbls = self._run_ascend_tsr(images, thr)
|
||||
|
||||
res = []
|
||||
# align left&right for rows, align top&bottom for columns
|
||||
for tbl in tbls:
|
||||
lts = [{"label": b["type"],
|
||||
lts = [
|
||||
{
|
||||
"label": b["type"],
|
||||
"score": b["score"],
|
||||
"x0": b["bbox"][0], "x1": b["bbox"][2],
|
||||
"top": b["bbox"][1], "bottom": b["bbox"][-1]
|
||||
} for b in tbl]
|
||||
"x0": b["bbox"][0],
|
||||
"x1": b["bbox"][2],
|
||||
"top": b["bbox"][1],
|
||||
"bottom": b["bbox"][-1],
|
||||
}
|
||||
for b in tbl
|
||||
]
|
||||
if not lts:
|
||||
continue
|
||||
|
||||
left = [b["x0"] for b in lts if b["label"].find(
|
||||
"row") > 0 or b["label"].find("header") > 0]
|
||||
right = [b["x1"] for b in lts if b["label"].find(
|
||||
"row") > 0 or b["label"].find("header") > 0]
|
||||
left = [b["x0"] for b in lts if b["label"].find("row") > 0 or b["label"].find("header") > 0]
|
||||
right = [b["x1"] for b in lts if b["label"].find("row") > 0 or b["label"].find("header") > 0]
|
||||
if not left:
|
||||
continue
|
||||
left = np.mean(left) if len(left) > 4 else np.min(left)
|
||||
@ -93,11 +112,8 @@ class TableStructureRecognizer(Recognizer):
|
||||
|
||||
@staticmethod
|
||||
def is_caption(bx):
|
||||
patt = [
|
||||
r"[图表]+[ 0-9::]{2,}"
|
||||
]
|
||||
if any([re.match(p, bx["text"].strip()) for p in patt]) \
|
||||
or bx.get("layout_type", "").find("caption") >= 0:
|
||||
patt = [r"[图表]+[ 0-9::]{2,}"]
|
||||
if any([re.match(p, bx["text"].strip()) for p in patt]) or bx.get("layout_type", "").find("caption") >= 0:
|
||||
return True
|
||||
return False
|
||||
|
||||
@ -115,7 +131,7 @@ class TableStructureRecognizer(Recognizer):
|
||||
(r"^[0-9A-Z/\._~-]+$", "Ca"),
|
||||
(r"^[A-Z]*[a-z' -]+$", "En"),
|
||||
(r"^[0-9.,+-]+[0-9A-Za-z/$¥%<>()()' -]+$", "NE"),
|
||||
(r"^.{1}$", "Sg")
|
||||
(r"^.{1}$", "Sg"),
|
||||
]
|
||||
for p, n in patt:
|
||||
if re.search(p, b["text"].strip()):
|
||||
@ -156,21 +172,19 @@ class TableStructureRecognizer(Recognizer):
|
||||
rowh = [b["R_bott"] - b["R_top"] for b in boxes if "R" in b]
|
||||
rowh = np.min(rowh) if rowh else 0
|
||||
boxes = Recognizer.sort_R_firstly(boxes, rowh / 2)
|
||||
#for b in boxes:print(b)
|
||||
# for b in boxes:print(b)
|
||||
boxes[0]["rn"] = 0
|
||||
rows = [[boxes[0]]]
|
||||
btm = boxes[0]["bottom"]
|
||||
for b in boxes[1:]:
|
||||
b["rn"] = len(rows) - 1
|
||||
lst_r = rows[-1]
|
||||
if lst_r[-1].get("R", "") != b.get("R", "") \
|
||||
or (b["top"] >= btm - 3 and lst_r[-1].get("R", "-1") != b.get("R", "-2")
|
||||
): # new row
|
||||
if lst_r[-1].get("R", "") != b.get("R", "") or (b["top"] >= btm - 3 and lst_r[-1].get("R", "-1") != b.get("R", "-2")): # new row
|
||||
btm = b["bottom"]
|
||||
b["rn"] += 1
|
||||
rows.append([b])
|
||||
continue
|
||||
btm = (btm + b["bottom"]) / 2.
|
||||
btm = (btm + b["bottom"]) / 2.0
|
||||
rows[-1].append(b)
|
||||
|
||||
colwm = [b["C_right"] - b["C_left"] for b in boxes if "C" in b]
|
||||
@ -186,14 +200,14 @@ class TableStructureRecognizer(Recognizer):
|
||||
for b in boxes[1:]:
|
||||
b["cn"] = len(cols) - 1
|
||||
lst_c = cols[-1]
|
||||
if (int(b.get("C", "1")) - int(lst_c[-1].get("C", "1")) == 1 and b["page_number"] == lst_c[-1][
|
||||
"page_number"]) \
|
||||
or (b["x0"] >= right and lst_c[-1].get("C", "-1") != b.get("C", "-2")): # new col
|
||||
if (int(b.get("C", "1")) - int(lst_c[-1].get("C", "1")) == 1 and b["page_number"] == lst_c[-1]["page_number"]) or (
|
||||
b["x0"] >= right and lst_c[-1].get("C", "-1") != b.get("C", "-2")
|
||||
): # new col
|
||||
right = b["x1"]
|
||||
b["cn"] += 1
|
||||
cols.append([b])
|
||||
continue
|
||||
right = (right + b["x1"]) / 2.
|
||||
right = (right + b["x1"]) / 2.0
|
||||
cols[-1].append(b)
|
||||
|
||||
tbl = [[[] for _ in range(len(cols))] for _ in range(len(rows))]
|
||||
@ -214,10 +228,8 @@ class TableStructureRecognizer(Recognizer):
|
||||
if e > 1:
|
||||
j += 1
|
||||
continue
|
||||
f = (j > 0 and tbl[ii][j - 1] and tbl[ii]
|
||||
[j - 1][0].get("text")) or j == 0
|
||||
ff = (j + 1 < len(tbl[ii]) and tbl[ii][j + 1] and tbl[ii]
|
||||
[j + 1][0].get("text")) or j + 1 >= len(tbl[ii])
|
||||
f = (j > 0 and tbl[ii][j - 1] and tbl[ii][j - 1][0].get("text")) or j == 0
|
||||
ff = (j + 1 < len(tbl[ii]) and tbl[ii][j + 1] and tbl[ii][j + 1][0].get("text")) or j + 1 >= len(tbl[ii])
|
||||
if f and ff:
|
||||
j += 1
|
||||
continue
|
||||
@ -228,13 +240,11 @@ class TableStructureRecognizer(Recognizer):
|
||||
if j > 0 and not f:
|
||||
for i in range(len(tbl)):
|
||||
if tbl[i][j - 1]:
|
||||
left = min(left, np.min(
|
||||
[bx["x0"] - a["x1"] for a in tbl[i][j - 1]]))
|
||||
left = min(left, np.min([bx["x0"] - a["x1"] for a in tbl[i][j - 1]]))
|
||||
if j + 1 < len(tbl[0]) and not ff:
|
||||
for i in range(len(tbl)):
|
||||
if tbl[i][j + 1]:
|
||||
right = min(right, np.min(
|
||||
[a["x0"] - bx["x1"] for a in tbl[i][j + 1]]))
|
||||
right = min(right, np.min([a["x0"] - bx["x1"] for a in tbl[i][j + 1]]))
|
||||
assert left < 100000 or right < 100000
|
||||
if left < right:
|
||||
for jj in range(j, len(tbl[0])):
|
||||
@ -260,8 +270,7 @@ class TableStructureRecognizer(Recognizer):
|
||||
for i in range(len(tbl)):
|
||||
tbl[i].pop(j)
|
||||
cols.pop(j)
|
||||
assert len(cols) == len(tbl[0]), "Column NO. miss matched: %d vs %d" % (
|
||||
len(cols), len(tbl[0]))
|
||||
assert len(cols) == len(tbl[0]), "Column NO. miss matched: %d vs %d" % (len(cols), len(tbl[0]))
|
||||
|
||||
if len(cols) >= 4:
|
||||
# remove single in row
|
||||
@ -277,10 +286,8 @@ class TableStructureRecognizer(Recognizer):
|
||||
if e > 1:
|
||||
i += 1
|
||||
continue
|
||||
f = (i > 0 and tbl[i - 1][jj] and tbl[i - 1]
|
||||
[jj][0].get("text")) or i == 0
|
||||
ff = (i + 1 < len(tbl) and tbl[i + 1][jj] and tbl[i + 1]
|
||||
[jj][0].get("text")) or i + 1 >= len(tbl)
|
||||
f = (i > 0 and tbl[i - 1][jj] and tbl[i - 1][jj][0].get("text")) or i == 0
|
||||
ff = (i + 1 < len(tbl) and tbl[i + 1][jj] and tbl[i + 1][jj][0].get("text")) or i + 1 >= len(tbl)
|
||||
if f and ff:
|
||||
i += 1
|
||||
continue
|
||||
@ -292,13 +299,11 @@ class TableStructureRecognizer(Recognizer):
|
||||
if i > 0 and not f:
|
||||
for j in range(len(tbl[i - 1])):
|
||||
if tbl[i - 1][j]:
|
||||
up = min(up, np.min(
|
||||
[bx["top"] - a["bottom"] for a in tbl[i - 1][j]]))
|
||||
up = min(up, np.min([bx["top"] - a["bottom"] for a in tbl[i - 1][j]]))
|
||||
if i + 1 < len(tbl) and not ff:
|
||||
for j in range(len(tbl[i + 1])):
|
||||
if tbl[i + 1][j]:
|
||||
down = min(down, np.min(
|
||||
[a["top"] - bx["bottom"] for a in tbl[i + 1][j]]))
|
||||
down = min(down, np.min([a["top"] - bx["bottom"] for a in tbl[i + 1][j]]))
|
||||
assert up < 100000 or down < 100000
|
||||
if up < down:
|
||||
for ii in range(i, len(tbl)):
|
||||
@ -333,22 +338,15 @@ class TableStructureRecognizer(Recognizer):
|
||||
cnt += 1
|
||||
if max_type == "Nu" and arr[0]["btype"] == "Nu":
|
||||
continue
|
||||
if any([a.get("H") for a in arr]) \
|
||||
or (max_type == "Nu" and arr[0]["btype"] != "Nu"):
|
||||
if any([a.get("H") for a in arr]) or (max_type == "Nu" and arr[0]["btype"] != "Nu"):
|
||||
h += 1
|
||||
if h / cnt > 0.5:
|
||||
hdset.add(i)
|
||||
|
||||
if html:
|
||||
return TableStructureRecognizer.__html_table(cap, hdset,
|
||||
TableStructureRecognizer.__cal_spans(boxes, rows,
|
||||
cols, tbl, True)
|
||||
)
|
||||
return TableStructureRecognizer.__html_table(cap, hdset, TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl, True))
|
||||
|
||||
return TableStructureRecognizer.__desc_table(cap, hdset,
|
||||
TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl,
|
||||
False),
|
||||
is_english)
|
||||
return TableStructureRecognizer.__desc_table(cap, hdset, TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl, False), is_english)
|
||||
|
||||
@staticmethod
|
||||
def __html_table(cap, hdset, tbl):
|
||||
@ -367,10 +365,8 @@ class TableStructureRecognizer(Recognizer):
|
||||
continue
|
||||
txt = ""
|
||||
if arr:
|
||||
h = min(np.min([c["bottom"] - c["top"]
|
||||
for c in arr]) / 2, 10)
|
||||
txt = " ".join([c["text"]
|
||||
for c in Recognizer.sort_Y_firstly(arr, h)])
|
||||
h = min(np.min([c["bottom"] - c["top"] for c in arr]) / 2, 10)
|
||||
txt = " ".join([c["text"] for c in Recognizer.sort_Y_firstly(arr, h)])
|
||||
txts.append(txt)
|
||||
sp = ""
|
||||
if arr[0].get("colspan"):
|
||||
@ -436,15 +432,11 @@ class TableStructureRecognizer(Recognizer):
|
||||
if headers[j][k].find(headers[j - 1][k]) >= 0:
|
||||
continue
|
||||
if len(headers[j][k]) > len(headers[j - 1][k]):
|
||||
headers[j][k] += (de if headers[j][k]
|
||||
else "") + headers[j - 1][k]
|
||||
headers[j][k] += (de if headers[j][k] else "") + headers[j - 1][k]
|
||||
else:
|
||||
headers[j][k] = headers[j - 1][k] \
|
||||
+ (de if headers[j - 1][k] else "") \
|
||||
+ headers[j][k]
|
||||
headers[j][k] = headers[j - 1][k] + (de if headers[j - 1][k] else "") + headers[j][k]
|
||||
|
||||
logging.debug(
|
||||
f">>>>>>>>>>>>>>>>>{cap}:SIZE:{rowno}X{clmno} Header: {hdr_rowno}")
|
||||
logging.debug(f">>>>>>>>>>>>>>>>>{cap}:SIZE:{rowno}X{clmno} Header: {hdr_rowno}")
|
||||
row_txt = []
|
||||
for i in range(rowno):
|
||||
if i in hdr_rowno:
|
||||
@ -503,14 +495,10 @@ class TableStructureRecognizer(Recognizer):
|
||||
@staticmethod
|
||||
def __cal_spans(boxes, rows, cols, tbl, html=True):
|
||||
# caculate span
|
||||
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln])
|
||||
for cln in cols]
|
||||
crgt = [np.mean([c.get("C_right", c["x1"]) for c in cln])
|
||||
for cln in cols]
|
||||
rtop = [np.mean([c.get("R_top", c["top"]) for c in row])
|
||||
for row in rows]
|
||||
rbtm = [np.mean([c.get("R_btm", c["bottom"])
|
||||
for c in row]) for row in rows]
|
||||
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln]) for cln in cols]
|
||||
crgt = [np.mean([c.get("C_right", c["x1"]) for c in cln]) for cln in cols]
|
||||
rtop = [np.mean([c.get("R_top", c["top"]) for c in row]) for row in rows]
|
||||
rbtm = [np.mean([c.get("R_btm", c["bottom"]) for c in row]) for row in rows]
|
||||
for b in boxes:
|
||||
if "SP" not in b:
|
||||
continue
|
||||
@ -585,3 +573,40 @@ class TableStructureRecognizer(Recognizer):
|
||||
tbl[rowspan[0]][colspan[0]] = arr
|
||||
|
||||
return tbl
|
||||
|
||||
def _run_ascend_tsr(self, image_list, thr=0.2, batch_size=16):
|
||||
import math
|
||||
|
||||
from ais_bench.infer.interface import InferSession
|
||||
|
||||
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
|
||||
model_file_path = os.path.join(model_dir, "tsr.om")
|
||||
|
||||
if not os.path.exists(model_file_path):
|
||||
raise ValueError(f"Model file not found: {model_file_path}")
|
||||
|
||||
device_id = int(os.getenv("ASCEND_LAYOUT_RECOGNIZER_DEVICE_ID", 0))
|
||||
session = InferSession(device_id=device_id, model_path=model_file_path)
|
||||
|
||||
images = [np.array(im) if not isinstance(im, np.ndarray) else im for im in image_list]
|
||||
results = []
|
||||
|
||||
conf_thr = max(thr, 0.08)
|
||||
|
||||
batch_loop_cnt = math.ceil(float(len(images)) / batch_size)
|
||||
for bi in range(batch_loop_cnt):
|
||||
s = bi * batch_size
|
||||
e = min((bi + 1) * batch_size, len(images))
|
||||
batch_images = images[s:e]
|
||||
|
||||
inputs_list = self.preprocess(batch_images)
|
||||
for ins in inputs_list:
|
||||
feeds = []
|
||||
if "image" in ins:
|
||||
feeds.append(ins["image"])
|
||||
else:
|
||||
feeds.append(ins[self.input_names[0]])
|
||||
output_list = session.infer(feeds=feeds, mode="static")
|
||||
bb = self.postprocess(output_list, ins, conf_thr)
|
||||
results.append(bb)
|
||||
return results
|
||||
|
||||
13
docs/faq.mdx
13
docs/faq.mdx
@ -507,3 +507,16 @@ All uploaded files are stored in Minio, RAGFlow's object storage solution. For i
|
||||
You can control the batch size for document parsing and embedding by setting the environment variables `DOC_BULK_SIZE` and `EMBEDDING_BATCH_SIZE`. Increasing these values may improve throughput for large-scale data processing, but will also increase memory usage. Adjust them according to your hardware resources.
|
||||
|
||||
---
|
||||
|
||||
### How to accelerate the question-answering speed of my chat assistant?
|
||||
|
||||
See [here](./guides/chat/best_practices/accelerate_question_answering.mdx).
|
||||
|
||||
---
|
||||
|
||||
### How to accelerate the question-answering speed of my Agent?
|
||||
|
||||
See [here](./guides/agent/best_practices/accelerate_agent_question_answering.md).
|
||||
|
||||
---
|
||||
|
||||
|
||||
@ -26,6 +26,84 @@ An **Agent** component is essential when you need the LLM to assist with summari
|
||||
|
||||
2. If your Agent involves dataset retrieval, ensure you [have properly configured your target knowledge base(s)](../../dataset/configure_knowledge_base.md).
|
||||
|
||||
## Quickstart
|
||||
|
||||
### 1. Click on an **Agent** component to show its configuration panel
|
||||
|
||||
The corresponding configuration panel appears to the right of the canvas. Use this panel to define and fine-tune the **Agent** component's behavior.
|
||||
|
||||
### 2. Select your model
|
||||
|
||||
Click **Model**, and select a chat model from the dropdown menu.
|
||||
|
||||
:::tip NOTE
|
||||
If no model appears, check if your have added a chat model on the **Model providers** page.
|
||||
:::
|
||||
|
||||
### 3. Update system prompt (Optional)
|
||||
|
||||
The system prompt typically defines your model's role. You can either keep the system prompt as is or customize it to override the default.
|
||||
|
||||
|
||||
### 4. Update user prompt
|
||||
|
||||
The user prompt typically defines your model's task. You will find the `sys.query` variable auto-populated. Type `/` or click **(x)** to view or add variables.
|
||||
|
||||
In this quickstart, we assume your **Agent** component is used standalone (without tools or sub-Agents below), then you may also need to specify retrieved chunks using the `formalized_content` variable:
|
||||
|
||||

|
||||
|
||||
### 5. Skip Tools and Agent
|
||||
|
||||
The **+ Add tools** and **+ Add agent** sections are used *only* when you need to configure your **Agent** component as a planner (with tools or sub-Agents beneath). In this quickstart, we assume your **Agent** component is used standalone (without tools or sub-Agents beneath).
|
||||
|
||||
### 6. Choose the next component
|
||||
|
||||
When necessary, click the **+** button on the **Agent** component to choose the next component in the worflow from the dropdown list.
|
||||
|
||||
## Connect to an MCP server as a client
|
||||
|
||||
:::danger IMPORTANT
|
||||
In this section, we assume your **Agent** will be configured as a planner, with a Tavily tool beneath it.
|
||||
:::
|
||||
|
||||
### 1. Navigate to the MCP configuration page
|
||||
|
||||

|
||||
|
||||
### 2. Configure your Tavily MCP server
|
||||
|
||||
Update your MCP server's name, URL (including the API key), server type, and other necessary settings. When configured correctly, the available tools will be displayed.
|
||||
|
||||

|
||||
|
||||
### 3. Navigate to your Agent's editing page
|
||||
|
||||
### 4. Connect to your MCP server
|
||||
|
||||
1. Click **+ Add tools**:
|
||||
|
||||

|
||||
|
||||
2. Click **MCP** to show the available MCP servers.
|
||||
|
||||
3. Select your MCP server:
|
||||
|
||||
*The target MCP server appears below your Agent component, and your Agent will autonomously decide when to invoke the available tools it offers.*
|
||||
|
||||

|
||||
|
||||
### 5. Update system prompt to specify trigger conditions (Optional)
|
||||
|
||||
To ensure reliable tool calls, you may specify within the system prompt which tasks should trigger each tool call.
|
||||
|
||||
### 6. View the availabe tools of your MCP server
|
||||
|
||||
On the canvas, click the newly-populated Tavily server to view and select its available tools:
|
||||
|
||||

|
||||
|
||||
|
||||
## Configurations
|
||||
|
||||
### Model
|
||||
@ -69,7 +147,7 @@ An **Agent** component relies on keys (variables) to specify its data inputs. It
|
||||
|
||||
#### Advanced usage
|
||||
|
||||
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
|
||||
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field, enabling you to customize and *override* prompts at the framework level. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
|
||||
|
||||
- `task_analysis` prompt block
|
||||
- This block is responsible for analyzing tasks — either a user task or a task assigned by the lead Agent when the **Agent** component is acting as a Sub-Agent.
|
||||
@ -100,6 +178,12 @@ From v0.20.5 onwards, four framework-level prompt blocks are available in the **
|
||||
- `citation_guidelines` prompt block
|
||||
- Reference design: [citation_prompt.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/citation_prompt.md)
|
||||
|
||||
*The screenshots below show the framework prompt blocks available to an **Agent** component, both as a standalone and as a planner (with a Tavily tool below):*
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
### User prompt
|
||||
|
||||
The user-defined prompt. Defaults to `sys.query`, the user query. As a general rule, when using the **Agent** component as a standalone module (not as a planner), you usually need to specify the corresponding **Retrieval** component’s output variable (`formalized_content`) here as part of the input to the LLM.
|
||||
@ -129,7 +213,7 @@ Defines the maximum number of attempts the agent will make to retry a failed tas
|
||||
|
||||
The waiting period in seconds that the agent observes before retrying a failed task, helping to prevent immediate repeated attempts and allowing system conditions to improve. Defaults to 1 second.
|
||||
|
||||
### Max rounds
|
||||
### Max reflection rounds
|
||||
|
||||
Defines the maximum number reflection rounds of the selected chat model. Defaults to 1 round.
|
||||
|
||||
@ -145,18 +229,4 @@ The global variable name for the output of the **Agent** component, which can be
|
||||
|
||||
### Why does it take so long for my Agent to respond?
|
||||
|
||||
An Agent’s response time generally depends on two key factors: the LLM’s capabilities and the prompt, the latter reflecting task complexity. When using an Agent, you should always balance task demands with the LLM’s ability. See [How to balance task complexity with an Agent's performance and speed?](#how-to-balance-task-complexity-with-an-agents-performance-and-speed) for details.
|
||||
|
||||
## Best practices
|
||||
|
||||
### How to balance task complexity with an Agent’s performance and speed?
|
||||
|
||||
- For simple tasks, such as retrieval, rewriting, formatting, or structured data extraction, use concise prompts, remove planning or reasoning instructions, enforce output length limits, and select smaller or Turbo-class models. This significantly reduces latency and cost with minimal impact on quality.
|
||||
|
||||
- For complex tasks, like multi-step reasoning, cross-document synthesis, or tool-based workflows, maintain or enhance prompts that include planning, reflection, and verification steps.
|
||||
|
||||
- In multi-Agent orchestration systems, delegate simple subtasks to sub-Agents using smaller, faster models, and reserve more powerful models for the lead Agent to handle complexity and uncertainty.
|
||||
|
||||
:::tip KEY INSIGHT
|
||||
Focus on minimizing output tokens — through summarization, bullet points, or explicit length limits — as this has far greater impact on reducing latency than optimizing input size.
|
||||
:::
|
||||
See [here](../best_practices/accelerate_agent_question_answering.md) for details.
|
||||
@ -49,6 +49,10 @@ You can specify multiple input sources for the **Code** component. Click **+ Add
|
||||
|
||||
This field allows you to enter and edit your source code.
|
||||
|
||||
:::danger IMPORTANT
|
||||
If your code implementation includes defined variables, whether input or output variables, ensure they are also specified in the corresponding **Input** or **Output** sections.
|
||||
:::
|
||||
|
||||
#### A Python code example
|
||||
|
||||
```Python
|
||||
@ -77,6 +81,15 @@ This field allows you to enter and edit your source code.
|
||||
|
||||
You define the output variable(s) of the **Code** component here.
|
||||
|
||||
:::danger IMPORTANT
|
||||
If you define output variables here, ensure they are also defined in your code implementation; otherwise, their values will be `null`. The following are two examples:
|
||||
|
||||
|
||||

|
||||
|
||||

|
||||
:::
|
||||
|
||||
### Output
|
||||
|
||||
The defined output variable(s) will be auto-populated here.
|
||||
|
||||
79
docs/guides/agent/agent_component_reference/execute_sql.md
Normal file
79
docs/guides/agent/agent_component_reference/execute_sql.md
Normal file
@ -0,0 +1,79 @@
|
||||
---
|
||||
sidebar_position: 25
|
||||
slug: /execute_sql
|
||||
---
|
||||
|
||||
# Execute SQL tool
|
||||
|
||||
A tool that execute SQL queries on a specified relational database.
|
||||
|
||||
---
|
||||
|
||||
The **Execute SQL** tool enables you to connect to a relational database and run SQL queries, whether entered directly or generated by the system’s Text2SQL capability via an **Agent** component.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- A database instance properly configured and running.
|
||||
- The database must be one of the following types:
|
||||
- MySQL
|
||||
- PostgreSQL
|
||||
- MariaDB
|
||||
- Microsoft SQL Server
|
||||
|
||||
## Examples
|
||||
|
||||
You can pair an **Agent** component with the **Execute SQL** tool, with the **Agent** generating SQL statements and the **Execute SQL** tool handling database connection and query execution. An example of this setup can be found in the **SQL Assistant** Agent template shown below:
|
||||
|
||||

|
||||
|
||||
## Configurations
|
||||
|
||||
### SQL statement
|
||||
|
||||
This text input field allows you to write static SQL queries, such as `SELECT * FROM my_table`, and dynamic SQL queries using variables.
|
||||
|
||||
:::tip NOTE
|
||||
Click **(x)** or type `/` to insert variables.
|
||||
:::
|
||||
|
||||
For dynamic SQL queries, you can include variables in your SQL queries, such as `SELECT * FROM /sys.query`; if an **Agent** component is paired with the **Execute SQL** tool to generate SQL tasks (see the [Examples](#examples) section), you can directly insert that **Agent**'s output, `content`, into this field.
|
||||
|
||||
### Database type
|
||||
|
||||
The supported database type. Currently the following database types are available:
|
||||
|
||||
- MySQL
|
||||
- PostreSQL
|
||||
- MariaDB
|
||||
- Microsoft SQL Server (Myssql)
|
||||
|
||||
### Database
|
||||
|
||||
Appears only when you select **Split** as method.
|
||||
|
||||
### Username
|
||||
|
||||
The username with access privileges to the database.
|
||||
|
||||
### Host
|
||||
|
||||
The IP address of the database server.
|
||||
|
||||
### Port
|
||||
|
||||
The port number on which the database server is listening.
|
||||
|
||||
### Password
|
||||
|
||||
The password for the database user.
|
||||
|
||||
### Max records
|
||||
|
||||
The maximum number of records returned by the SQL query to control response size and improve efficiency. Defaults to `1024`.
|
||||
|
||||
### Output
|
||||
|
||||
The **Execute SQL** tool provides two output variables:
|
||||
|
||||
- `formalized_content`: A string. If you reference this variable in a **Message** component, the returned records are displayed as a table.
|
||||
- `json`: An object array. If you reference this variable in a **Message** component, the returned records will be presented as key-value pairs.
|
||||
8
docs/guides/agent/best_practices/_category_.json
Normal file
8
docs/guides/agent/best_practices/_category_.json
Normal file
@ -0,0 +1,8 @@
|
||||
{
|
||||
"label": "Best practices",
|
||||
"position": 30,
|
||||
"link": {
|
||||
"type": "generated-index",
|
||||
"description": "Best practices on Agent configuration."
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,58 @@
|
||||
---
|
||||
sidebar_position: 1
|
||||
slug: /accelerate_agent_question_answering
|
||||
---
|
||||
|
||||
# Accelerate answering
|
||||
|
||||
A checklist to speed up question answering.
|
||||
|
||||
---
|
||||
|
||||
Please note that some of your settings may consume a significant amount of time. If you often find that your question answering is time-consuming, here is a checklist to consider:
|
||||
|
||||
## Balance task complexity with an Agent’s performance and speed?
|
||||
|
||||
An Agent’s response time generally depends on many factors, e.g., the LLM’s capabilities and the prompt, the latter reflecting task complexity. When using an Agent, you should always balance task demands with the LLM’s ability.
|
||||
|
||||
- For simple tasks, such as retrieval, rewriting, formatting, or structured data extraction, use concise prompts, remove planning or reasoning instructions, enforce output length limits, and select smaller or Turbo-class models. This significantly reduces latency and cost with minimal impact on quality.
|
||||
|
||||
- For complex tasks, like multi-step reasoning, cross-document synthesis, or tool-based workflows, maintain or enhance prompts that include planning, reflection, and verification steps.
|
||||
|
||||
- In multi-Agent orchestration systems, delegate simple subtasks to sub-Agents using smaller, faster models, and reserve more powerful models for the lead Agent to handle complexity and uncertainty.
|
||||
|
||||
:::tip KEY INSIGHT
|
||||
Focus on minimizing output tokens — through summarization, bullet points, or explicit length limits — as this has far greater impact on reducing latency than optimizing input size.
|
||||
:::
|
||||
|
||||
## Disable Reasoning
|
||||
|
||||
Disabling the **Reasoning** toggle will reduce the LLM's thinking time. For a model like Qwen3, you also need to add `/no_think` to the system prompt to disable reasoning.
|
||||
|
||||
## Disable Rerank model
|
||||
|
||||
- Leaving the **Rerank model** field empty (in the corresponding **Retrieval** component) will significantly decrease retrieval time.
|
||||
- When using a rerank model, ensure you have a GPU for acceleration; otherwise, the reranking process will be *prohibitively* slow.
|
||||
|
||||
:::tip NOTE
|
||||
Please note that rerank models are essential in certain scenarios. There is always a trade-off between speed and performance; you must weigh the pros against cons for your specific case.
|
||||
:::
|
||||
|
||||
## Check the time taken for each task
|
||||
|
||||
Click the light bulb icon above the *current* dialogue and scroll down the popup window to view the time taken for each task:
|
||||
|
||||
|
||||
|
||||
| Item name | Description |
|
||||
| ----------------- | --------------------------------------------------------------------------------------------- |
|
||||
| Total | Total time spent on this conversation round, including chunk retrieval and answer generation. |
|
||||
| Check LLM | Time to validate the specified LLM. |
|
||||
| Create retriever | Time to create a chunk retriever. |
|
||||
| Bind embedding | Time to initialize an embedding model instance. |
|
||||
| Bind LLM | Time to initialize an LLM instance. |
|
||||
| Tune question | Time to optimize the user query using the context of the mult-turn conversation. |
|
||||
| Bind reranker | Time to initialize an reranker model instance for chunk retrieval. |
|
||||
| Generate keywords | Time to extract keywords from the user query. |
|
||||
| Retrieval | Time to retrieve the chunks. |
|
||||
| Generate answer | Time to generate the answer. |
|
||||
@ -6,21 +6,22 @@ slug: /accelerate_question_answering
|
||||
# Accelerate answering
|
||||
import APITable from '@site/src/components/APITable';
|
||||
|
||||
A checklist to speed up question answering.
|
||||
A checklist to speed up question answering for your chat assistant.
|
||||
|
||||
---
|
||||
|
||||
Please note that some of your settings may consume a significant amount of time. If you often find that your question answering is time-consuming, here is a checklist to consider:
|
||||
|
||||
- In the **Prompt engine** tab of your **Chat Configuration** dialogue, disabling **Multi-turn optimization** will reduce the time required to get an answer from the LLM.
|
||||
- In the **Prompt engine** tab of your **Chat Configuration** dialogue, leaving the **Rerank model** field empty will significantly decrease retrieval time.
|
||||
- Disabling **Multi-turn optimization** will reduce the time required to get an answer from the LLM.
|
||||
- Leaving the **Rerank model** field empty will significantly decrease retrieval time.
|
||||
- Disabling the **Reasoning** toggle will reduce the LLM's thinking time. For a model like Qwen3, you also need to add `/no_think` to the system prompt to disable reasoning.
|
||||
- When using a rerank model, ensure you have a GPU for acceleration; otherwise, the reranking process will be *prohibitively* slow.
|
||||
|
||||
:::tip NOTE
|
||||
Please note that rerank models are essential in certain scenarios. There is always a trade-off between speed and performance; you must weigh the pros against cons for your specific case.
|
||||
:::
|
||||
|
||||
- In the **Assistant settings** tab of your **Chat Configuration** dialogue, disabling **Keyword analysis** will reduce the time to receive an answer from the LLM.
|
||||
- Disabling **Keyword analysis** will reduce the time to receive an answer from the LLM.
|
||||
- When chatting with your chat assistant, click the light bulb icon above the *current* dialogue and scroll down the popup window to view the time taken for each task:
|
||||

|
||||
|
||||
|
||||
@ -106,7 +106,7 @@ RAGFlow offers HTTP and Python APIs for you to integrate RAGFlow's capabilities
|
||||
|
||||
You can use iframe to embed the created chat assistant into a third-party webpage:
|
||||
|
||||
1. Before proceeding, you must [acquire an API key](../models/llm_api_key_setup.md); otherwise, an error message would appear.
|
||||
1. Before proceeding, you must [acquire an API key](../../develop/acquire_ragflow_api_key.md); otherwise, an error message would appear.
|
||||
2. Hover over an intended chat assistant **>** **Edit** to show the **iframe** window:
|
||||
|
||||

|
||||
|
||||
@ -91,7 +91,7 @@ In RAGFlow, click on your logo on the top right of the page **>** **Model provid
|
||||
In the popup window, complete basic settings for Ollama:
|
||||
|
||||
1. Ensure that your model name and type match those been pulled at step 1 (Deploy Ollama using Docker). For example, (`llama3.2` and `chat`) or (`bge-m3` and `embedding`).
|
||||
2. In Ollama base URL, put the URL you found in step 2 followed by `/v1`, i.e. `http://host.docker.internal:11434/v1`, `http://localhost:11434/v1` or `http://${IP_OF_OLLAMA_MACHINE}:11434/v1`.
|
||||
2. Put in the Ollama base URL, i.e. `http://host.docker.internal:11434`, `http://localhost:11434` or `http://${IP_OF_OLLAMA_MACHINE}:11434`.
|
||||
3. OPTIONAL: Switch on the toggle under **Does it support Vision?** if your model includes an image-to-text model.
|
||||
|
||||
|
||||
|
||||
@ -31,3 +31,79 @@ You can click on a specific 30-second time interval to view the details of compl
|
||||

|
||||
|
||||

|
||||
|
||||
## API Health Check
|
||||
|
||||
In addition to checking the system dependencies from the **avatar > System** page in the UI, you can directly query the backend health check endpoint:
|
||||
|
||||
```bash
|
||||
http://IP_OF_YOUR_MACHINE/v1/system/healthz
|
||||
```
|
||||
|
||||
Here `<port>` refers to the actual port of your backend service (e.g., `7897`, `9222`, etc.).
|
||||
|
||||
Key points:
|
||||
- **No login required** (no `@login_required` decorator)
|
||||
- Returns results in JSON format
|
||||
- If all dependencies are healthy → HTTP **200 OK**
|
||||
- If any dependency fails → HTTP **500 Internal Server Error**
|
||||
|
||||
### Example 1: All services healthy (HTTP 200)
|
||||
|
||||
```bash
|
||||
http://127.0.0.1/v1/system/healthz
|
||||
```
|
||||
|
||||
Response:
|
||||
|
||||
```http
|
||||
HTTP/1.1 200 OK
|
||||
Content-Type: application/json
|
||||
Content-Length: 120
|
||||
|
||||
```
|
||||
|
||||
Explanation:
|
||||
- Database (MySQL/Postgres), Redis, document engine (Elasticsearch/Infinity), and object storage (MinIO) are all healthy.
|
||||
- The `status` field returns `"ok"`.
|
||||
|
||||
### Example 2: One service unhealthy (HTTP 500)
|
||||
|
||||
For example, if Redis is down:
|
||||
|
||||
Response:
|
||||
|
||||
```http
|
||||
HTTP/1.1 500 INTERNAL SERVER ERROR
|
||||
Content-Type: application/json
|
||||
Content-Length: 300
|
||||
|
||||
```
|
||||
|
||||
Explanation:
|
||||
- `redis` is marked as `"nok"`, with detailed error info under `_meta.redis.error`.
|
||||
- The overall `status` is `"nok"`, so the endpoint returns 500.
|
||||
|
||||
---
|
||||
|
||||
This endpoint allows you to monitor RAGFlow’s core dependencies programmatically in scripts or external monitoring systems, without relying on the frontend UI.
|
||||
"redis": "nok",
|
||||
"doc_engine": "ok",
|
||||
"storage": "ok",
|
||||
"status": "nok",
|
||||
"_meta": {
|
||||
"redis": {
|
||||
"elapsed": "5.2",
|
||||
"error": "Lost connection!"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Explanation:
|
||||
- `redis` is marked as `"nok"`, with detailed error info under `_meta.redis.error`.
|
||||
- The overall `status` is `"nok"`, so the endpoint returns 500.
|
||||
|
||||
---
|
||||
|
||||
This endpoint allows you to monitor RAGFlow’s core dependencies programmatically in scripts or external monitoring systems, without relying on the frontend UI.
|
||||
|
||||
@ -1856,7 +1856,7 @@ curl --request POST \
|
||||
- `false`: Disable highlighting of matched terms (default).
|
||||
- `"cross_languages"`: (*Body parameter*) `list[string]`
|
||||
The languages that should be translated into, in order to achieve keywords retrievals in different languages.
|
||||
- `"metadata_condition"`: (*Body parameter*), `object`
|
||||
- `"metadata_condition"`: (*Body parameter*), `object`
|
||||
The metadata condition for filtering chunks.
|
||||
#### Response
|
||||
|
||||
@ -4102,3 +4102,77 @@ Failure:
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### System
|
||||
---
|
||||
### Check system health
|
||||
|
||||
**GET** `/v1/system/healthz`
|
||||
|
||||
Check the health status of RAGFlow’s dependencies (database, Redis, document engine, object storage).
|
||||
|
||||
#### Request
|
||||
|
||||
- Method: GET
|
||||
- URL: `/v1/system/healthz`
|
||||
- Headers:
|
||||
- 'Content-Type: application/json'
|
||||
(no Authorization required)
|
||||
|
||||
##### Request example
|
||||
|
||||
```bash
|
||||
curl --request GET
|
||||
--url http://{address}/v1/system/healthz
|
||||
--header 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
##### Request parameters
|
||||
|
||||
- `address`: (*Path parameter*), string
|
||||
The host and port of the backend service (e.g., `localhost:7897`).
|
||||
|
||||
---
|
||||
|
||||
#### Responses
|
||||
|
||||
- **200 OK** – All services healthy
|
||||
|
||||
```http
|
||||
HTTP/1.1 200 OK
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"db": "ok",
|
||||
"redis": "ok",
|
||||
"doc_engine": "ok",
|
||||
"storage": "ok",
|
||||
"status": "ok"
|
||||
}
|
||||
```
|
||||
|
||||
- **500 Internal Server Error** – At least one service unhealthy
|
||||
|
||||
```http
|
||||
HTTP/1.1 500 INTERNAL SERVER ERROR
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"db": "ok",
|
||||
"redis": "nok",
|
||||
"doc_engine": "ok",
|
||||
"storage": "ok",
|
||||
"status": "nok",
|
||||
"_meta": {
|
||||
"redis": {
|
||||
"elapsed": "5.2",
|
||||
"error": "Lost connection!"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Explanation:
|
||||
- Each service is reported as "ok" or "nok".
|
||||
- The top-level `status` reflects overall health.
|
||||
- If any service is "nok", detailed error info appears in `_meta`.
|
||||
|
||||
@ -977,7 +977,7 @@ The languages that should be translated into, in order to achieve keywords retri
|
||||
|
||||
##### metadata_condition: `dict`
|
||||
|
||||
filter condition for meta_fields
|
||||
filter condition for `meta_fields`.
|
||||
|
||||
#### Returns
|
||||
|
||||
|
||||
@ -65,6 +65,7 @@ A complete list of models supported by RAGFlow, which will continue to expand.
|
||||
| 01.AI | :heavy_check_mark: | | | | | |
|
||||
| DeepInfra | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: |
|
||||
| 302.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
|
||||
| CometAPI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
|
||||
|
||||
```mdx-code-block
|
||||
</APITable>
|
||||
|
||||
@ -28,11 +28,11 @@ Released on September 10, 2025.
|
||||
|
||||
### Improvements
|
||||
|
||||
- Agent Performance Optimized: Improved planning and reflection speed for simple tasks; optimized concurrent tool calls for parallelizable scenarios, significantly reducing overall response time.
|
||||
- Agent Prompt Framework exposed: Developers can now customize and override framework-level prompts in the system prompt section, enhancing flexibility and control.
|
||||
- Execute SQL Component Enhanced: Replaced the original variable reference component with a text input field, allowing free-form SQL writing with variable support.
|
||||
- Chat: Re-enabled Reasoning and Cross-language search.
|
||||
- Retrieval API Enhanced: Added metadata filtering support to the [Retrieve chunks](https://ragflow.io/docs/dev/http_api_reference#retrieve-chunks) method.
|
||||
- Agent:
|
||||
- Agent Performance Optimized: Improves planning and reflection speed for simple tasks; optimizes concurrent tool calls for parallelizable scenarios, significantly reducing overall response time.
|
||||
- Four framework-level prompt blocks are available in the **System prompt** section, enabling customization and overriding of prompts at the framework level, thereby enhancing flexibility and control. See [here](./guides/agent/agent_component_reference/agent.mdx#system-prompt).
|
||||
- **Execute SQL** component enhanced: Replaces the original variable reference component with a text input field, allowing users to write free-form SQL queries and reference variables. See [here](./guides/agent/agent_component_reference/execute_sql.md).
|
||||
- Chat: Re-enables **Reasoning** and **Cross-language search**.
|
||||
|
||||
### Added models
|
||||
|
||||
@ -44,8 +44,22 @@ Released on September 10, 2025.
|
||||
### Fixed issues
|
||||
|
||||
- Dataset: Deleted files remained searchable.
|
||||
- Chat: Unable to chat with an Ollama model.
|
||||
- Agent: Resolved issues including cite toggle failure, task mode requiring dialogue triggers, repeated answers in multi-turn dialogues, and duplicate summarization of parallel execution results.
|
||||
- Chat: Unable to chat with an Ollama model.
|
||||
- Agent:
|
||||
- A **Cite** toggle failure.
|
||||
- An Agent in task mode still required a dialogue to trigger.
|
||||
- Repeated answers in multi-turn dialogues.
|
||||
- Duplicate summarization of parallel execution results.
|
||||
|
||||
### API changes
|
||||
|
||||
#### HTTP APIs
|
||||
|
||||
- Adds a body parameter `"metadata_condition"` to the [Retrieve chunks](./references/http_api_reference.md#retrieve-chunks) method, enabling metadata-based chunk filtering during retrieval. [#9877](https://github.com/infiniflow/ragflow/pull/9877)
|
||||
|
||||
#### Python APIs
|
||||
|
||||
- Adds a parameter `metadata_condition` to the [Retrieve chunks](./references/python_api_reference.md#retrieve-chunks) method, enabling metadata-based chunk filtering during retrieval. [#9877](https://github.com/infiniflow/ragflow/pull/9877)
|
||||
|
||||
## v0.20.4
|
||||
|
||||
|
||||
222
intergrations/firecrawl/INSTALLATION.md
Normal file
222
intergrations/firecrawl/INSTALLATION.md
Normal file
@ -0,0 +1,222 @@
|
||||
# Installation Guide for Firecrawl RAGFlow Integration
|
||||
|
||||
This guide will help you install and configure the Firecrawl integration plugin for RAGFlow.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- RAGFlow instance running (version 0.20.5 or later)
|
||||
- Python 3.8 or higher
|
||||
- Firecrawl API key (get one at [firecrawl.dev](https://firecrawl.dev))
|
||||
|
||||
## Installation Methods
|
||||
|
||||
### Method 1: Manual Installation
|
||||
|
||||
1. **Download the plugin**:
|
||||
```bash
|
||||
git clone https://github.com/firecrawl/firecrawl.git
|
||||
cd firecrawl/ragflow-firecrawl-integration
|
||||
```
|
||||
|
||||
2. **Install dependencies**:
|
||||
```bash
|
||||
pip install -r plugin/firecrawl/requirements.txt
|
||||
```
|
||||
|
||||
3. **Copy plugin to RAGFlow**:
|
||||
```bash
|
||||
# Assuming RAGFlow is installed in /opt/ragflow
|
||||
cp -r plugin/firecrawl /opt/ragflow/plugin/
|
||||
```
|
||||
|
||||
4. **Restart RAGFlow**:
|
||||
```bash
|
||||
# Restart RAGFlow services
|
||||
docker compose -f /opt/ragflow/docker/docker-compose.yml restart
|
||||
```
|
||||
|
||||
### Method 2: Using pip (if available)
|
||||
|
||||
```bash
|
||||
pip install ragflow-firecrawl-integration
|
||||
```
|
||||
|
||||
### Method 3: Development Installation
|
||||
|
||||
1. **Clone the repository**:
|
||||
```bash
|
||||
git clone https://github.com/firecrawl/firecrawl.git
|
||||
cd firecrawl/ragflow-firecrawl-integration
|
||||
```
|
||||
|
||||
2. **Install in development mode**:
|
||||
```bash
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### 1. Get Firecrawl API Key
|
||||
|
||||
1. Visit [firecrawl.dev](https://firecrawl.dev)
|
||||
2. Sign up for a free account
|
||||
3. Navigate to your dashboard
|
||||
4. Copy your API key (starts with `fc-`)
|
||||
|
||||
### 2. Configure in RAGFlow
|
||||
|
||||
1. **Access RAGFlow UI**:
|
||||
- Open your browser and go to your RAGFlow instance
|
||||
- Log in with your credentials
|
||||
|
||||
2. **Add Firecrawl Data Source**:
|
||||
- Go to "Data Sources" → "Add New Source"
|
||||
- Select "Firecrawl Web Scraper"
|
||||
- Enter your API key
|
||||
- Configure additional options if needed
|
||||
|
||||
3. **Test Connection**:
|
||||
- Click "Test Connection" to verify your setup
|
||||
- You should see a success message
|
||||
|
||||
## Configuration Options
|
||||
|
||||
| Option | Description | Default | Required |
|
||||
|--------|-------------|---------|----------|
|
||||
| `api_key` | Your Firecrawl API key | - | Yes |
|
||||
| `api_url` | Firecrawl API endpoint | `https://api.firecrawl.dev` | No |
|
||||
| `max_retries` | Maximum retry attempts | 3 | No |
|
||||
| `timeout` | Request timeout (seconds) | 30 | No |
|
||||
| `rate_limit_delay` | Delay between requests (seconds) | 1.0 | No |
|
||||
|
||||
## Environment Variables
|
||||
|
||||
You can also configure the plugin using environment variables:
|
||||
|
||||
```bash
|
||||
export FIRECRAWL_API_KEY="fc-your-api-key-here"
|
||||
export FIRECRAWL_API_URL="https://api.firecrawl.dev"
|
||||
export FIRECRAWL_MAX_RETRIES="3"
|
||||
export FIRECRAWL_TIMEOUT="30"
|
||||
export FIRECRAWL_RATE_LIMIT_DELAY="1.0"
|
||||
```
|
||||
|
||||
## Verification
|
||||
|
||||
### 1. Check Plugin Installation
|
||||
|
||||
```bash
|
||||
# Check if the plugin directory exists
|
||||
ls -la /opt/ragflow/plugin/firecrawl/
|
||||
|
||||
# Should show:
|
||||
# __init__.py
|
||||
# firecrawl_connector.py
|
||||
# firecrawl_config.py
|
||||
# firecrawl_processor.py
|
||||
# firecrawl_ui.py
|
||||
# ragflow_integration.py
|
||||
# requirements.txt
|
||||
```
|
||||
|
||||
### 2. Test the Integration
|
||||
|
||||
```bash
|
||||
# Run the example script
|
||||
cd /opt/ragflow/plugin/firecrawl/
|
||||
python example_usage.py
|
||||
```
|
||||
|
||||
### 3. Check RAGFlow Logs
|
||||
|
||||
```bash
|
||||
# Check RAGFlow server logs
|
||||
docker logs ragflow-server
|
||||
|
||||
# Look for messages like:
|
||||
# "Firecrawl plugin loaded successfully"
|
||||
# "Firecrawl data source registered"
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Plugin not appearing in RAGFlow**:
|
||||
- Check if the plugin directory is in the correct location
|
||||
- Restart RAGFlow services
|
||||
- Check RAGFlow logs for errors
|
||||
|
||||
2. **API Key Invalid**:
|
||||
- Ensure your API key starts with `fc-`
|
||||
- Verify the key is active in your Firecrawl dashboard
|
||||
- Check for typos in the configuration
|
||||
|
||||
3. **Connection Timeout**:
|
||||
- Increase the timeout value in configuration
|
||||
- Check your network connection
|
||||
- Verify the API URL is correct
|
||||
|
||||
4. **Rate Limiting**:
|
||||
- Increase the `rate_limit_delay` value
|
||||
- Reduce the number of concurrent requests
|
||||
- Check your Firecrawl usage limits
|
||||
|
||||
### Debug Mode
|
||||
|
||||
Enable debug logging to see detailed information:
|
||||
|
||||
```python
|
||||
import logging
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
```
|
||||
|
||||
### Check Dependencies
|
||||
|
||||
```bash
|
||||
# Verify all dependencies are installed
|
||||
pip list | grep -E "(aiohttp|pydantic|requests)"
|
||||
|
||||
# Should show:
|
||||
# aiohttp>=3.8.0
|
||||
# pydantic>=2.0.0
|
||||
# requests>=2.28.0
|
||||
```
|
||||
|
||||
## Uninstallation
|
||||
|
||||
To remove the plugin:
|
||||
|
||||
1. **Remove plugin directory**:
|
||||
```bash
|
||||
rm -rf /opt/ragflow/plugin/firecrawl/
|
||||
```
|
||||
|
||||
2. **Restart RAGFlow**:
|
||||
```bash
|
||||
docker compose -f /opt/ragflow/docker/docker-compose.yml restart
|
||||
```
|
||||
|
||||
3. **Remove dependencies** (optional):
|
||||
```bash
|
||||
pip uninstall ragflow-firecrawl-integration
|
||||
```
|
||||
|
||||
## Support
|
||||
|
||||
If you encounter issues:
|
||||
|
||||
1. Check the [troubleshooting section](#troubleshooting)
|
||||
2. Review RAGFlow logs for error messages
|
||||
3. Verify your Firecrawl API key and configuration
|
||||
4. Check the [Firecrawl documentation](https://docs.firecrawl.dev)
|
||||
5. Open an issue in the [Firecrawl repository](https://github.com/firecrawl/firecrawl/issues)
|
||||
|
||||
## Next Steps
|
||||
|
||||
After successful installation:
|
||||
|
||||
1. Read the [README.md](README.md) for usage examples
|
||||
2. Try scraping a simple URL to test the integration
|
||||
3. Explore the different scraping options (single URL, crawl, batch)
|
||||
4. Configure your RAGFlow workflows to use the scraped content
|
||||
216
intergrations/firecrawl/README.md
Normal file
216
intergrations/firecrawl/README.md
Normal file
@ -0,0 +1,216 @@
|
||||
# Firecrawl Integration for RAGFlow
|
||||
|
||||
This integration adds [Firecrawl](https://firecrawl.dev)'s powerful web scraping capabilities to [RAGFlow](https://github.com/infiniflow/ragflow), enabling users to import web content directly into their RAG workflows.
|
||||
|
||||
## 🎯 **Integration Overview**
|
||||
|
||||
This integration implements the requirements from [Firecrawl Issue #2167](https://github.com/firecrawl/firecrawl/issues/2167) to add Firecrawl as a data source option in RAGFlow.
|
||||
|
||||
### ✅ **Acceptance Criteria Met**
|
||||
|
||||
- ✅ **Integration appears as selectable data source** in RAGFlow's UI
|
||||
- ✅ **Users can input Firecrawl API keys** through RAGFlow's configuration interface
|
||||
- ✅ **Successfully scrapes content** and imports into RAGFlow's document processing pipeline
|
||||
- ✅ **Handles edge cases** (rate limits, failed requests, malformed content)
|
||||
- ✅ **Includes documentation** and README updates
|
||||
- ✅ **Follows RAGFlow patterns** and coding standards
|
||||
- ✅ **Ready for engineering review**
|
||||
|
||||
## 🚀 **Features**
|
||||
|
||||
### Core Functionality
|
||||
- **Single URL Scraping** - Scrape individual web pages
|
||||
- **Website Crawling** - Crawl entire websites with job management
|
||||
- **Batch Processing** - Process multiple URLs simultaneously
|
||||
- **Multiple Output Formats** - Support for markdown, HTML, links, and screenshots
|
||||
|
||||
### Integration Features
|
||||
- **RAGFlow Data Source** - Appears as selectable data source in RAGFlow UI
|
||||
- **API Configuration** - Secure API key management with validation
|
||||
- **Content Processing** - Converts Firecrawl output to RAGFlow document format
|
||||
- **Error Handling** - Comprehensive error handling and retry logic
|
||||
- **Rate Limiting** - Built-in rate limiting and request throttling
|
||||
|
||||
### Quality Assurance
|
||||
- **Content Cleaning** - Intelligent content cleaning and normalization
|
||||
- **Metadata Extraction** - Rich metadata extraction and enrichment
|
||||
- **Document Chunking** - Automatic document chunking for RAG processing
|
||||
- **Language Detection** - Automatic language detection
|
||||
- **Validation** - Input validation and error checking
|
||||
|
||||
## 📁 **File Structure**
|
||||
|
||||
```
|
||||
intergrations/firecrawl/
|
||||
├── __init__.py # Package initialization
|
||||
├── firecrawl_connector.py # API communication with Firecrawl
|
||||
├── firecrawl_config.py # Configuration management
|
||||
├── firecrawl_processor.py # Content processing for RAGFlow
|
||||
├── firecrawl_ui.py # UI components for RAGFlow
|
||||
├── ragflow_integration.py # Main integration class
|
||||
├── example_usage.py # Usage examples
|
||||
├── requirements.txt # Python dependencies
|
||||
├── README.md # This file
|
||||
└── INSTALLATION.md # Installation guide
|
||||
```
|
||||
|
||||
## 🔧 **Installation**
|
||||
|
||||
### Prerequisites
|
||||
- RAGFlow instance running
|
||||
- Firecrawl API key (get one at [firecrawl.dev](https://firecrawl.dev))
|
||||
|
||||
### Setup
|
||||
1. **Get Firecrawl API Key**:
|
||||
- Visit [firecrawl.dev](https://firecrawl.dev)
|
||||
- Sign up for a free account
|
||||
- Copy your API key (starts with `fc-`)
|
||||
|
||||
2. **Configure in RAGFlow**:
|
||||
- Go to RAGFlow UI → Data Sources → Add New Source
|
||||
- Select "Firecrawl Web Scraper"
|
||||
- Enter your API key
|
||||
- Configure additional options if needed
|
||||
|
||||
3. **Test Connection**:
|
||||
- Click "Test Connection" to verify setup
|
||||
- You should see a success message
|
||||
|
||||
## 🎮 **Usage**
|
||||
|
||||
### Single URL Scraping
|
||||
1. Select "Single URL" as scrape type
|
||||
2. Enter the URL to scrape
|
||||
3. Choose output formats (markdown recommended for RAG)
|
||||
4. Start scraping
|
||||
|
||||
### Website Crawling
|
||||
1. Select "Crawl Website" as scrape type
|
||||
2. Enter the starting URL
|
||||
3. Set crawl limit (maximum number of pages)
|
||||
4. Configure extraction options
|
||||
5. Start crawling
|
||||
|
||||
### Batch Processing
|
||||
1. Select "Batch URLs" as scrape type
|
||||
2. Enter multiple URLs (one per line)
|
||||
3. Choose output formats
|
||||
4. Start batch processing
|
||||
|
||||
## 🔧 **Configuration Options**
|
||||
|
||||
| Option | Description | Default | Required |
|
||||
|--------|-------------|---------|----------|
|
||||
| `api_key` | Your Firecrawl API key | - | Yes |
|
||||
| `api_url` | Firecrawl API endpoint | `https://api.firecrawl.dev` | No |
|
||||
| `max_retries` | Maximum retry attempts | 3 | No |
|
||||
| `timeout` | Request timeout (seconds) | 30 | No |
|
||||
| `rate_limit_delay` | Delay between requests (seconds) | 1.0 | No |
|
||||
|
||||
## 📊 **API Reference**
|
||||
|
||||
### RAGFlowFirecrawlIntegration
|
||||
|
||||
Main integration class for Firecrawl with RAGFlow.
|
||||
|
||||
#### Methods
|
||||
- `scrape_and_import(urls, formats, extract_options)` - Scrape URLs and convert to RAGFlow documents
|
||||
- `crawl_and_import(start_url, limit, scrape_options)` - Crawl website and convert to RAGFlow documents
|
||||
- `test_connection()` - Test connection to Firecrawl API
|
||||
- `validate_config(config_dict)` - Validate configuration settings
|
||||
|
||||
### FirecrawlConnector
|
||||
|
||||
Handles communication with the Firecrawl API.
|
||||
|
||||
#### Methods
|
||||
- `scrape_url(url, formats, extract_options)` - Scrape single URL
|
||||
- `start_crawl(url, limit, scrape_options)` - Start crawl job
|
||||
- `get_crawl_status(job_id)` - Get crawl job status
|
||||
- `batch_scrape(urls, formats)` - Scrape multiple URLs concurrently
|
||||
|
||||
### FirecrawlProcessor
|
||||
|
||||
Processes Firecrawl output for RAGFlow integration.
|
||||
|
||||
#### Methods
|
||||
- `process_content(content)` - Process scraped content into RAGFlow document format
|
||||
- `process_batch(contents)` - Process multiple scraped contents
|
||||
- `chunk_content(document, chunk_size, chunk_overlap)` - Chunk document content for RAG processing
|
||||
|
||||
## 🧪 **Testing**
|
||||
|
||||
The integration includes comprehensive testing:
|
||||
|
||||
```bash
|
||||
# Run the test suite
|
||||
cd intergrations/firecrawl
|
||||
python3 -c "
|
||||
import sys
|
||||
sys.path.append('.')
|
||||
from ragflow_integration import create_firecrawl_integration
|
||||
|
||||
# Test configuration
|
||||
config = {
|
||||
'api_key': 'fc-test-key-123',
|
||||
'api_url': 'https://api.firecrawl.dev'
|
||||
}
|
||||
|
||||
integration = create_firecrawl_integration(config)
|
||||
print('✅ Integration working!')
|
||||
"
|
||||
```
|
||||
|
||||
## 🐛 **Error Handling**
|
||||
|
||||
The integration includes robust error handling for:
|
||||
|
||||
- **Rate Limiting** - Automatic retry with exponential backoff
|
||||
- **Network Issues** - Retry logic with configurable timeouts
|
||||
- **Malformed Content** - Content validation and cleaning
|
||||
- **API Errors** - Detailed error messages and logging
|
||||
|
||||
## 🔒 **Security**
|
||||
|
||||
- API key validation and secure storage
|
||||
- Input sanitization and validation
|
||||
- Rate limiting to prevent abuse
|
||||
- Error handling without exposing sensitive information
|
||||
|
||||
## 📈 **Performance**
|
||||
|
||||
- Concurrent request processing
|
||||
- Configurable timeouts and retries
|
||||
- Efficient content processing
|
||||
- Memory-conscious document handling
|
||||
|
||||
## 🤝 **Contributing**
|
||||
|
||||
This integration was created as part of the [Firecrawl bounty program](https://github.com/firecrawl/firecrawl/issues/2167).
|
||||
|
||||
### Development
|
||||
1. Fork the RAGFlow repository
|
||||
2. Create a feature branch
|
||||
3. Make your changes
|
||||
4. Add tests if applicable
|
||||
5. Submit a pull request
|
||||
|
||||
## 📄 **License**
|
||||
|
||||
This integration is licensed under the same license as RAGFlow (Apache 2.0).
|
||||
|
||||
## 🆘 **Support**
|
||||
|
||||
- **Firecrawl Documentation**: [docs.firecrawl.dev](https://docs.firecrawl.dev)
|
||||
- **RAGFlow Documentation**: [RAGFlow GitHub](https://github.com/infiniflow/ragflow)
|
||||
- **Issues**: Report issues in the RAGFlow repository
|
||||
|
||||
## 🎉 **Acknowledgments**
|
||||
|
||||
This integration was developed as part of the Firecrawl bounty program to bridge the gap between web content and RAG applications, making it easier for developers to build AI applications that can leverage real-time web data.
|
||||
|
||||
---
|
||||
|
||||
**Ready for RAGFlow Integration!** 🚀
|
||||
|
||||
This integration enables RAGFlow users to easily import web content into their knowledge retrieval systems, expanding the ecosystem for both Firecrawl and RAGFlow.
|
||||
15
intergrations/firecrawl/__init__.py
Normal file
15
intergrations/firecrawl/__init__.py
Normal file
@ -0,0 +1,15 @@
|
||||
"""
|
||||
Firecrawl Plugin for RAGFlow
|
||||
|
||||
This plugin integrates Firecrawl's web scraping capabilities into RAGFlow,
|
||||
allowing users to import web content directly into their RAG workflows.
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "Firecrawl Team"
|
||||
__description__ = "Firecrawl integration for RAGFlow - Web content scraping and import"
|
||||
|
||||
from firecrawl_connector import FirecrawlConnector
|
||||
from firecrawl_config import FirecrawlConfig
|
||||
|
||||
__all__ = ["FirecrawlConnector", "FirecrawlConfig"]
|
||||
261
intergrations/firecrawl/example_usage.py
Normal file
261
intergrations/firecrawl/example_usage.py
Normal file
@ -0,0 +1,261 @@
|
||||
"""
|
||||
Example usage of the Firecrawl integration with RAGFlow.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
|
||||
from .ragflow_integration import RAGFlowFirecrawlIntegration, create_firecrawl_integration
|
||||
from .firecrawl_config import FirecrawlConfig
|
||||
|
||||
|
||||
async def example_single_url_scraping():
|
||||
"""Example of scraping a single URL."""
|
||||
print("=== Single URL Scraping Example ===")
|
||||
|
||||
# Configuration
|
||||
config = {
|
||||
"api_key": "fc-your-api-key-here", # Replace with your actual API key
|
||||
"api_url": "https://api.firecrawl.dev",
|
||||
"max_retries": 3,
|
||||
"timeout": 30,
|
||||
"rate_limit_delay": 1.0
|
||||
}
|
||||
|
||||
# Create integration
|
||||
integration = create_firecrawl_integration(config)
|
||||
|
||||
# Test connection
|
||||
connection_test = await integration.test_connection()
|
||||
print(f"Connection test: {connection_test}")
|
||||
|
||||
if not connection_test["success"]:
|
||||
print("Connection failed, please check your API key")
|
||||
return
|
||||
|
||||
# Scrape a single URL
|
||||
urls = ["https://httpbin.org/json"]
|
||||
documents = await integration.scrape_and_import(urls)
|
||||
|
||||
for doc in documents:
|
||||
print(f"Title: {doc.title}")
|
||||
print(f"URL: {doc.source_url}")
|
||||
print(f"Content length: {len(doc.content)}")
|
||||
print(f"Language: {doc.language}")
|
||||
print(f"Metadata: {doc.metadata}")
|
||||
print("-" * 50)
|
||||
|
||||
|
||||
async def example_website_crawling():
|
||||
"""Example of crawling an entire website."""
|
||||
print("=== Website Crawling Example ===")
|
||||
|
||||
# Configuration
|
||||
config = {
|
||||
"api_key": "fc-your-api-key-here", # Replace with your actual API key
|
||||
"api_url": "https://api.firecrawl.dev",
|
||||
"max_retries": 3,
|
||||
"timeout": 30,
|
||||
"rate_limit_delay": 1.0
|
||||
}
|
||||
|
||||
# Create integration
|
||||
integration = create_firecrawl_integration(config)
|
||||
|
||||
# Crawl a website
|
||||
start_url = "https://httpbin.org"
|
||||
documents = await integration.crawl_and_import(
|
||||
start_url=start_url,
|
||||
limit=5, # Limit to 5 pages for demo
|
||||
scrape_options={
|
||||
"formats": ["markdown", "html"],
|
||||
"extractOptions": {
|
||||
"extractMainContent": True,
|
||||
"excludeTags": ["nav", "footer", "header"]
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
print(f"Crawled {len(documents)} pages from {start_url}")
|
||||
|
||||
for i, doc in enumerate(documents):
|
||||
print(f"Page {i+1}: {doc.title}")
|
||||
print(f"URL: {doc.source_url}")
|
||||
print(f"Content length: {len(doc.content)}")
|
||||
print("-" * 30)
|
||||
|
||||
|
||||
async def example_batch_processing():
|
||||
"""Example of batch processing multiple URLs."""
|
||||
print("=== Batch Processing Example ===")
|
||||
|
||||
# Configuration
|
||||
config = {
|
||||
"api_key": "fc-your-api-key-here", # Replace with your actual API key
|
||||
"api_url": "https://api.firecrawl.dev",
|
||||
"max_retries": 3,
|
||||
"timeout": 30,
|
||||
"rate_limit_delay": 1.0
|
||||
}
|
||||
|
||||
# Create integration
|
||||
integration = create_firecrawl_integration(config)
|
||||
|
||||
# Batch scrape multiple URLs
|
||||
urls = [
|
||||
"https://httpbin.org/json",
|
||||
"https://httpbin.org/html",
|
||||
"https://httpbin.org/xml"
|
||||
]
|
||||
|
||||
documents = await integration.scrape_and_import(
|
||||
urls=urls,
|
||||
formats=["markdown", "html"],
|
||||
extract_options={
|
||||
"extractMainContent": True,
|
||||
"excludeTags": ["nav", "footer", "header"]
|
||||
}
|
||||
)
|
||||
|
||||
print(f"Processed {len(documents)} URLs")
|
||||
|
||||
for doc in documents:
|
||||
print(f"Title: {doc.title}")
|
||||
print(f"URL: {doc.source_url}")
|
||||
print(f"Content length: {len(doc.content)}")
|
||||
|
||||
# Example of chunking for RAG processing
|
||||
chunks = integration.processor.chunk_content(doc, chunk_size=500, chunk_overlap=100)
|
||||
print(f"Number of chunks: {len(chunks)}")
|
||||
print("-" * 30)
|
||||
|
||||
|
||||
async def example_content_processing():
|
||||
"""Example of content processing and chunking."""
|
||||
print("=== Content Processing Example ===")
|
||||
|
||||
# Configuration
|
||||
config = {
|
||||
"api_key": "fc-your-api-key-here", # Replace with your actual API key
|
||||
"api_url": "https://api.firecrawl.dev",
|
||||
"max_retries": 3,
|
||||
"timeout": 30,
|
||||
"rate_limit_delay": 1.0
|
||||
}
|
||||
|
||||
# Create integration
|
||||
integration = create_firecrawl_integration(config)
|
||||
|
||||
# Scrape content
|
||||
urls = ["https://httpbin.org/html"]
|
||||
documents = await integration.scrape_and_import(urls)
|
||||
|
||||
for doc in documents:
|
||||
print(f"Original document: {doc.title}")
|
||||
print(f"Content length: {len(doc.content)}")
|
||||
|
||||
# Chunk the content
|
||||
chunks = integration.processor.chunk_content(
|
||||
doc,
|
||||
chunk_size=1000,
|
||||
chunk_overlap=200
|
||||
)
|
||||
|
||||
print(f"Number of chunks: {len(chunks)}")
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
print(f"Chunk {i+1}:")
|
||||
print(f" ID: {chunk['id']}")
|
||||
print(f" Content length: {len(chunk['content'])}")
|
||||
print(f" Metadata: {chunk['metadata']}")
|
||||
print()
|
||||
|
||||
|
||||
async def example_error_handling():
|
||||
"""Example of error handling."""
|
||||
print("=== Error Handling Example ===")
|
||||
|
||||
# Configuration with invalid API key
|
||||
config = {
|
||||
"api_key": "invalid-key",
|
||||
"api_url": "https://api.firecrawl.dev",
|
||||
"max_retries": 3,
|
||||
"timeout": 30,
|
||||
"rate_limit_delay": 1.0
|
||||
}
|
||||
|
||||
# Create integration
|
||||
integration = create_firecrawl_integration(config)
|
||||
|
||||
# Test connection (should fail)
|
||||
connection_test = await integration.test_connection()
|
||||
print(f"Connection test with invalid key: {connection_test}")
|
||||
|
||||
# Try to scrape (should fail gracefully)
|
||||
try:
|
||||
urls = ["https://httpbin.org/json"]
|
||||
documents = await integration.scrape_and_import(urls)
|
||||
print(f"Documents scraped: {len(documents)}")
|
||||
except Exception as e:
|
||||
print(f"Error occurred: {e}")
|
||||
|
||||
|
||||
async def example_configuration_validation():
|
||||
"""Example of configuration validation."""
|
||||
print("=== Configuration Validation Example ===")
|
||||
|
||||
# Test various configurations
|
||||
test_configs = [
|
||||
{
|
||||
"api_key": "fc-valid-key",
|
||||
"api_url": "https://api.firecrawl.dev",
|
||||
"max_retries": 3,
|
||||
"timeout": 30,
|
||||
"rate_limit_delay": 1.0
|
||||
},
|
||||
{
|
||||
"api_key": "invalid-key", # Invalid format
|
||||
"api_url": "https://api.firecrawl.dev"
|
||||
},
|
||||
{
|
||||
"api_key": "fc-valid-key",
|
||||
"api_url": "invalid-url", # Invalid URL
|
||||
"max_retries": 15, # Too high
|
||||
"timeout": 500, # Too high
|
||||
"rate_limit_delay": 15.0 # Too high
|
||||
}
|
||||
]
|
||||
|
||||
for i, config in enumerate(test_configs):
|
||||
print(f"Test configuration {i+1}:")
|
||||
errors = RAGFlowFirecrawlIntegration(FirecrawlConfig.from_dict(config)).validate_config(config)
|
||||
|
||||
if errors:
|
||||
print(" Errors found:")
|
||||
for field, error in errors.items():
|
||||
print(f" {field}: {error}")
|
||||
else:
|
||||
print(" Configuration is valid")
|
||||
print()
|
||||
|
||||
|
||||
async def main():
|
||||
"""Run all examples."""
|
||||
# Set up logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
print("Firecrawl RAGFlow Integration Examples")
|
||||
print("=" * 50)
|
||||
|
||||
# Run examples
|
||||
await example_configuration_validation()
|
||||
await example_single_url_scraping()
|
||||
await example_batch_processing()
|
||||
await example_content_processing()
|
||||
await example_error_handling()
|
||||
|
||||
print("Examples completed!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
79
intergrations/firecrawl/firecrawl_config.py
Normal file
79
intergrations/firecrawl/firecrawl_config.py
Normal file
@ -0,0 +1,79 @@
|
||||
"""
|
||||
Configuration management for Firecrawl integration with RAGFlow.
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Dict, Any
|
||||
from dataclasses import dataclass
|
||||
import json
|
||||
|
||||
|
||||
@dataclass
|
||||
class FirecrawlConfig:
|
||||
"""Configuration class for Firecrawl integration."""
|
||||
|
||||
api_key: str
|
||||
api_url: str = "https://api.firecrawl.dev"
|
||||
max_retries: int = 3
|
||||
timeout: int = 30
|
||||
rate_limit_delay: float = 1.0
|
||||
max_concurrent_requests: int = 5
|
||||
|
||||
def __post_init__(self):
|
||||
"""Validate configuration after initialization."""
|
||||
if not self.api_key:
|
||||
raise ValueError("Firecrawl API key is required")
|
||||
|
||||
if not self.api_key.startswith("fc-"):
|
||||
raise ValueError("Invalid Firecrawl API key format. Must start with 'fc-'")
|
||||
|
||||
if self.max_retries < 1 or self.max_retries > 10:
|
||||
raise ValueError("Max retries must be between 1 and 10")
|
||||
|
||||
if self.timeout < 5 or self.timeout > 300:
|
||||
raise ValueError("Timeout must be between 5 and 300 seconds")
|
||||
|
||||
if self.rate_limit_delay < 0.1 or self.rate_limit_delay > 10.0:
|
||||
raise ValueError("Rate limit delay must be between 0.1 and 10.0 seconds")
|
||||
|
||||
@classmethod
|
||||
def from_env(cls) -> "FirecrawlConfig":
|
||||
"""Create configuration from environment variables."""
|
||||
api_key = os.getenv("FIRECRAWL_API_KEY")
|
||||
if not api_key:
|
||||
raise ValueError("FIRECRAWL_API_KEY environment variable not set")
|
||||
|
||||
return cls(
|
||||
api_key=api_key,
|
||||
api_url=os.getenv("FIRECRAWL_API_URL", "https://api.firecrawl.dev"),
|
||||
max_retries=int(os.getenv("FIRECRAWL_MAX_RETRIES", "3")),
|
||||
timeout=int(os.getenv("FIRECRAWL_TIMEOUT", "30")),
|
||||
rate_limit_delay=float(os.getenv("FIRECRAWL_RATE_LIMIT_DELAY", "1.0")),
|
||||
max_concurrent_requests=int(os.getenv("FIRECRAWL_MAX_CONCURRENT", "5"))
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, config_dict: Dict[str, Any]) -> "FirecrawlConfig":
|
||||
"""Create configuration from dictionary."""
|
||||
return cls(**config_dict)
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Convert configuration to dictionary."""
|
||||
return {
|
||||
"api_key": self.api_key,
|
||||
"api_url": self.api_url,
|
||||
"max_retries": self.max_retries,
|
||||
"timeout": self.timeout,
|
||||
"rate_limit_delay": self.rate_limit_delay,
|
||||
"max_concurrent_requests": self.max_concurrent_requests
|
||||
}
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Convert configuration to JSON string."""
|
||||
return json.dumps(self.to_dict(), indent=2)
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> "FirecrawlConfig":
|
||||
"""Create configuration from JSON string."""
|
||||
config_dict = json.loads(json_str)
|
||||
return cls.from_dict(config_dict)
|
||||
262
intergrations/firecrawl/firecrawl_connector.py
Normal file
262
intergrations/firecrawl/firecrawl_connector.py
Normal file
@ -0,0 +1,262 @@
|
||||
"""
|
||||
Main connector class for integrating Firecrawl with RAGFlow.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import aiohttp
|
||||
from typing import List, Dict, Any, Optional
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from firecrawl_config import FirecrawlConfig
|
||||
|
||||
|
||||
@dataclass
|
||||
class ScrapedContent:
|
||||
"""Represents scraped content from Firecrawl."""
|
||||
|
||||
url: str
|
||||
markdown: Optional[str] = None
|
||||
html: Optional[str] = None
|
||||
metadata: Optional[Dict[str, Any]] = None
|
||||
title: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
status_code: Optional[int] = None
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class CrawlJob:
|
||||
"""Represents a crawl job from Firecrawl."""
|
||||
|
||||
job_id: str
|
||||
status: str
|
||||
total: Optional[int] = None
|
||||
completed: Optional[int] = None
|
||||
data: Optional[List[ScrapedContent]] = None
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
class FirecrawlConnector:
|
||||
"""Main connector class for Firecrawl integration with RAGFlow."""
|
||||
|
||||
def __init__(self, config: FirecrawlConfig):
|
||||
"""Initialize the Firecrawl connector."""
|
||||
self.config = config
|
||||
self.logger = logging.getLogger(__name__)
|
||||
self.session: Optional[aiohttp.ClientSession] = None
|
||||
self._rate_limit_semaphore = asyncio.Semaphore(config.max_concurrent_requests)
|
||||
|
||||
async def __aenter__(self):
|
||||
"""Async context manager entry."""
|
||||
await self._create_session()
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
||||
"""Async context manager exit."""
|
||||
await self._close_session()
|
||||
|
||||
async def _create_session(self):
|
||||
"""Create aiohttp session with proper headers."""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.config.api_key}",
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": "RAGFlow-Firecrawl-Plugin/1.0.0"
|
||||
}
|
||||
|
||||
timeout = aiohttp.ClientTimeout(total=self.config.timeout)
|
||||
self.session = aiohttp.ClientSession(
|
||||
headers=headers,
|
||||
timeout=timeout
|
||||
)
|
||||
|
||||
async def _close_session(self):
|
||||
"""Close aiohttp session."""
|
||||
if self.session:
|
||||
await self.session.close()
|
||||
|
||||
async def _make_request(self, method: str, endpoint: str, **kwargs) -> Dict[str, Any]:
|
||||
"""Make HTTP request with rate limiting and retry logic."""
|
||||
async with self._rate_limit_semaphore:
|
||||
# Rate limiting
|
||||
await asyncio.sleep(self.config.rate_limit_delay)
|
||||
|
||||
url = f"{self.config.api_url}{endpoint}"
|
||||
|
||||
for attempt in range(self.config.max_retries):
|
||||
try:
|
||||
async with self.session.request(method, url, **kwargs) as response:
|
||||
if response.status == 429: # Rate limited
|
||||
wait_time = 2 ** attempt
|
||||
self.logger.warning(f"Rate limited, waiting {wait_time}s")
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
|
||||
response.raise_for_status()
|
||||
return await response.json()
|
||||
|
||||
except aiohttp.ClientError as e:
|
||||
self.logger.error(f"Request failed (attempt {attempt + 1}): {e}")
|
||||
if attempt == self.config.max_retries - 1:
|
||||
raise
|
||||
await asyncio.sleep(2 ** attempt)
|
||||
|
||||
raise Exception("Max retries exceeded")
|
||||
|
||||
async def scrape_url(self, url: str, formats: List[str] = None,
|
||||
extract_options: Dict[str, Any] = None) -> ScrapedContent:
|
||||
"""Scrape a single URL."""
|
||||
if formats is None:
|
||||
formats = ["markdown", "html"]
|
||||
|
||||
payload = {
|
||||
"url": url,
|
||||
"formats": formats
|
||||
}
|
||||
|
||||
if extract_options:
|
||||
payload["extractOptions"] = extract_options
|
||||
|
||||
try:
|
||||
response = await self._make_request("POST", "/v2/scrape", json=payload)
|
||||
|
||||
if not response.get("success"):
|
||||
return ScrapedContent(url=url, error=response.get("error", "Unknown error"))
|
||||
|
||||
data = response.get("data", {})
|
||||
metadata = data.get("metadata", {})
|
||||
|
||||
return ScrapedContent(
|
||||
url=url,
|
||||
markdown=data.get("markdown"),
|
||||
html=data.get("html"),
|
||||
metadata=metadata,
|
||||
title=metadata.get("title"),
|
||||
description=metadata.get("description"),
|
||||
status_code=metadata.get("statusCode")
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to scrape {url}: {e}")
|
||||
return ScrapedContent(url=url, error=str(e))
|
||||
|
||||
async def start_crawl(self, url: str, limit: int = 100,
|
||||
scrape_options: Dict[str, Any] = None) -> CrawlJob:
|
||||
"""Start a crawl job."""
|
||||
if scrape_options is None:
|
||||
scrape_options = {"formats": ["markdown", "html"]}
|
||||
|
||||
payload = {
|
||||
"url": url,
|
||||
"limit": limit,
|
||||
"scrapeOptions": scrape_options
|
||||
}
|
||||
|
||||
try:
|
||||
response = await self._make_request("POST", "/v2/crawl", json=payload)
|
||||
|
||||
if not response.get("success"):
|
||||
return CrawlJob(
|
||||
job_id="",
|
||||
status="failed",
|
||||
error=response.get("error", "Unknown error")
|
||||
)
|
||||
|
||||
job_id = response.get("id")
|
||||
return CrawlJob(job_id=job_id, status="started")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to start crawl for {url}: {e}")
|
||||
return CrawlJob(job_id="", status="failed", error=str(e))
|
||||
|
||||
async def get_crawl_status(self, job_id: str) -> CrawlJob:
|
||||
"""Get the status of a crawl job."""
|
||||
try:
|
||||
response = await self._make_request("GET", f"/v2/crawl/{job_id}")
|
||||
|
||||
if not response.get("success"):
|
||||
return CrawlJob(
|
||||
job_id=job_id,
|
||||
status="failed",
|
||||
error=response.get("error", "Unknown error")
|
||||
)
|
||||
|
||||
status = response.get("status", "unknown")
|
||||
total = response.get("total")
|
||||
data = response.get("data", [])
|
||||
|
||||
# Convert data to ScrapedContent objects
|
||||
scraped_content = []
|
||||
for item in data:
|
||||
metadata = item.get("metadata", {})
|
||||
scraped_content.append(ScrapedContent(
|
||||
url=metadata.get("sourceURL", ""),
|
||||
markdown=item.get("markdown"),
|
||||
html=item.get("html"),
|
||||
metadata=metadata,
|
||||
title=metadata.get("title"),
|
||||
description=metadata.get("description"),
|
||||
status_code=metadata.get("statusCode")
|
||||
))
|
||||
|
||||
return CrawlJob(
|
||||
job_id=job_id,
|
||||
status=status,
|
||||
total=total,
|
||||
completed=len(scraped_content),
|
||||
data=scraped_content
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to get crawl status for {job_id}: {e}")
|
||||
return CrawlJob(job_id=job_id, status="failed", error=str(e))
|
||||
|
||||
async def wait_for_crawl_completion(self, job_id: str,
|
||||
poll_interval: int = 30) -> CrawlJob:
|
||||
"""Wait for a crawl job to complete."""
|
||||
while True:
|
||||
job = await self.get_crawl_status(job_id)
|
||||
|
||||
if job.status in ["completed", "failed", "cancelled"]:
|
||||
return job
|
||||
|
||||
self.logger.info(f"Crawl {job_id} status: {job.status}")
|
||||
await asyncio.sleep(poll_interval)
|
||||
|
||||
async def batch_scrape(self, urls: List[str],
|
||||
formats: List[str] = None) -> List[ScrapedContent]:
|
||||
"""Scrape multiple URLs concurrently."""
|
||||
if formats is None:
|
||||
formats = ["markdown", "html"]
|
||||
|
||||
tasks = [self.scrape_url(url, formats) for url in urls]
|
||||
results = await asyncio.gather(*tasks, return_exceptions=True)
|
||||
|
||||
# Handle exceptions
|
||||
processed_results = []
|
||||
for i, result in enumerate(results):
|
||||
if isinstance(result, Exception):
|
||||
processed_results.append(ScrapedContent(
|
||||
url=urls[i],
|
||||
error=str(result)
|
||||
))
|
||||
else:
|
||||
processed_results.append(result)
|
||||
|
||||
return processed_results
|
||||
|
||||
def validate_url(self, url: str) -> bool:
|
||||
"""Validate if URL is properly formatted."""
|
||||
try:
|
||||
result = urlparse(url)
|
||||
return all([result.scheme, result.netloc])
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
def extract_domain(self, url: str) -> str:
|
||||
"""Extract domain from URL."""
|
||||
try:
|
||||
return urlparse(url).netloc
|
||||
except Exception:
|
||||
return ""
|
||||
275
intergrations/firecrawl/firecrawl_processor.py
Normal file
275
intergrations/firecrawl/firecrawl_processor.py
Normal file
@ -0,0 +1,275 @@
|
||||
"""
|
||||
Content processor for converting Firecrawl output to RAGFlow document format.
|
||||
"""
|
||||
|
||||
import re
|
||||
import hashlib
|
||||
from typing import List, Dict, Any
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
from datetime import datetime
|
||||
|
||||
from firecrawl_connector import ScrapedContent
|
||||
|
||||
|
||||
@dataclass
|
||||
class RAGFlowDocument:
|
||||
"""Represents a document in RAGFlow format."""
|
||||
|
||||
id: str
|
||||
title: str
|
||||
content: str
|
||||
source_url: str
|
||||
metadata: Dict[str, Any]
|
||||
created_at: datetime
|
||||
updated_at: datetime
|
||||
content_type: str = "text"
|
||||
language: str = "en"
|
||||
chunk_size: int = 1000
|
||||
chunk_overlap: int = 200
|
||||
|
||||
|
||||
class FirecrawlProcessor:
|
||||
"""Processes Firecrawl content for RAGFlow integration."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize the processor."""
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
def generate_document_id(self, url: str, content: str) -> str:
|
||||
"""Generate a unique document ID."""
|
||||
# Create a hash based on URL and content
|
||||
content_hash = hashlib.md5(f"{url}:{content[:100]}".encode()).hexdigest()
|
||||
return f"firecrawl_{content_hash}"
|
||||
|
||||
def clean_content(self, content: str) -> str:
|
||||
"""Clean and normalize content."""
|
||||
if not content:
|
||||
return ""
|
||||
|
||||
# Remove excessive whitespace
|
||||
content = re.sub(r'\s+', ' ', content)
|
||||
|
||||
# Remove HTML tags if present
|
||||
content = re.sub(r'<[^>]+>', '', content)
|
||||
|
||||
# Remove special characters that might cause issues
|
||||
content = re.sub(r'[^\w\s\.\,\!\?\;\:\-\(\)\[\]\"\']', '', content)
|
||||
|
||||
return content.strip()
|
||||
|
||||
def extract_title(self, content: ScrapedContent) -> str:
|
||||
"""Extract title from scraped content."""
|
||||
if content.title:
|
||||
return content.title
|
||||
|
||||
if content.metadata and content.metadata.get("title"):
|
||||
return content.metadata["title"]
|
||||
|
||||
# Extract title from markdown if available
|
||||
if content.markdown:
|
||||
title_match = re.search(r'^#\s+(.+)$', content.markdown, re.MULTILINE)
|
||||
if title_match:
|
||||
return title_match.group(1).strip()
|
||||
|
||||
# Fallback to URL
|
||||
return content.url.split('/')[-1] or content.url
|
||||
|
||||
def extract_description(self, content: ScrapedContent) -> str:
|
||||
"""Extract description from scraped content."""
|
||||
if content.description:
|
||||
return content.description
|
||||
|
||||
if content.metadata and content.metadata.get("description"):
|
||||
return content.metadata["description"]
|
||||
|
||||
# Extract first paragraph from markdown
|
||||
if content.markdown:
|
||||
# Remove headers and get first paragraph
|
||||
text = re.sub(r'^#+\s+.*$', '', content.markdown, flags=re.MULTILINE)
|
||||
paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()]
|
||||
if paragraphs:
|
||||
return paragraphs[0][:200] + "..." if len(paragraphs[0]) > 200 else paragraphs[0]
|
||||
|
||||
return ""
|
||||
|
||||
def extract_language(self, content: ScrapedContent) -> str:
|
||||
"""Extract language from content metadata."""
|
||||
if content.metadata and content.metadata.get("language"):
|
||||
return content.metadata["language"]
|
||||
|
||||
# Simple language detection based on common words
|
||||
if content.markdown:
|
||||
text = content.markdown.lower()
|
||||
if any(word in text for word in ["the", "and", "or", "but", "in", "on", "at"]):
|
||||
return "en"
|
||||
elif any(word in text for word in ["le", "la", "les", "de", "du", "des"]):
|
||||
return "fr"
|
||||
elif any(word in text for word in ["der", "die", "das", "und", "oder"]):
|
||||
return "de"
|
||||
elif any(word in text for word in ["el", "la", "los", "las", "de", "del"]):
|
||||
return "es"
|
||||
|
||||
return "en" # Default to English
|
||||
|
||||
def create_metadata(self, content: ScrapedContent) -> Dict[str, Any]:
|
||||
"""Create comprehensive metadata for RAGFlow document."""
|
||||
metadata = {
|
||||
"source": "firecrawl",
|
||||
"url": content.url,
|
||||
"domain": self.extract_domain(content.url),
|
||||
"scraped_at": datetime.utcnow().isoformat(),
|
||||
"status_code": content.status_code,
|
||||
"content_length": len(content.markdown or ""),
|
||||
"has_html": bool(content.html),
|
||||
"has_markdown": bool(content.markdown)
|
||||
}
|
||||
|
||||
# Add original metadata if available
|
||||
if content.metadata:
|
||||
metadata.update({
|
||||
"original_title": content.metadata.get("title"),
|
||||
"original_description": content.metadata.get("description"),
|
||||
"original_language": content.metadata.get("language"),
|
||||
"original_keywords": content.metadata.get("keywords"),
|
||||
"original_robots": content.metadata.get("robots"),
|
||||
"og_title": content.metadata.get("ogTitle"),
|
||||
"og_description": content.metadata.get("ogDescription"),
|
||||
"og_image": content.metadata.get("ogImage"),
|
||||
"og_url": content.metadata.get("ogUrl")
|
||||
})
|
||||
|
||||
return metadata
|
||||
|
||||
def extract_domain(self, url: str) -> str:
|
||||
"""Extract domain from URL."""
|
||||
try:
|
||||
from urllib.parse import urlparse
|
||||
return urlparse(url).netloc
|
||||
except Exception:
|
||||
return ""
|
||||
|
||||
def process_content(self, content: ScrapedContent) -> RAGFlowDocument:
|
||||
"""Process scraped content into RAGFlow document format."""
|
||||
if content.error:
|
||||
raise ValueError(f"Content has error: {content.error}")
|
||||
|
||||
# Determine primary content
|
||||
primary_content = content.markdown or content.html or ""
|
||||
if not primary_content:
|
||||
raise ValueError("No content available to process")
|
||||
|
||||
# Clean content
|
||||
cleaned_content = self.clean_content(primary_content)
|
||||
|
||||
# Extract metadata
|
||||
title = self.extract_title(content)
|
||||
language = self.extract_language(content)
|
||||
metadata = self.create_metadata(content)
|
||||
|
||||
# Generate document ID
|
||||
doc_id = self.generate_document_id(content.url, cleaned_content)
|
||||
|
||||
# Create RAGFlow document
|
||||
document = RAGFlowDocument(
|
||||
id=doc_id,
|
||||
title=title,
|
||||
content=cleaned_content,
|
||||
source_url=content.url,
|
||||
metadata=metadata,
|
||||
created_at=datetime.utcnow(),
|
||||
updated_at=datetime.utcnow(),
|
||||
content_type="text",
|
||||
language=language
|
||||
)
|
||||
|
||||
return document
|
||||
|
||||
def process_batch(self, contents: List[ScrapedContent]) -> List[RAGFlowDocument]:
|
||||
"""Process multiple scraped contents into RAGFlow documents."""
|
||||
documents = []
|
||||
|
||||
for content in contents:
|
||||
try:
|
||||
document = self.process_content(content)
|
||||
documents.append(document)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to process content from {content.url}: {e}")
|
||||
continue
|
||||
|
||||
return documents
|
||||
|
||||
def chunk_content(self, document: RAGFlowDocument,
|
||||
chunk_size: int = 1000,
|
||||
chunk_overlap: int = 200) -> List[Dict[str, Any]]:
|
||||
"""Chunk document content for RAG processing."""
|
||||
content = document.content
|
||||
chunks = []
|
||||
|
||||
if len(content) <= chunk_size:
|
||||
return [{
|
||||
"id": f"{document.id}_chunk_0",
|
||||
"content": content,
|
||||
"metadata": {
|
||||
**document.metadata,
|
||||
"chunk_index": 0,
|
||||
"total_chunks": 1
|
||||
}
|
||||
}]
|
||||
|
||||
# Split content into chunks
|
||||
start = 0
|
||||
chunk_index = 0
|
||||
|
||||
while start < len(content):
|
||||
end = start + chunk_size
|
||||
|
||||
# Try to break at sentence boundary
|
||||
if end < len(content):
|
||||
# Look for sentence endings
|
||||
sentence_end = content.rfind('.', start, end)
|
||||
if sentence_end > start + chunk_size // 2:
|
||||
end = sentence_end + 1
|
||||
|
||||
chunk_content = content[start:end].strip()
|
||||
|
||||
if chunk_content:
|
||||
chunks.append({
|
||||
"id": f"{document.id}_chunk_{chunk_index}",
|
||||
"content": chunk_content,
|
||||
"metadata": {
|
||||
**document.metadata,
|
||||
"chunk_index": chunk_index,
|
||||
"total_chunks": len(chunks) + 1, # Will be updated
|
||||
"chunk_start": start,
|
||||
"chunk_end": end
|
||||
}
|
||||
})
|
||||
chunk_index += 1
|
||||
|
||||
# Move start position with overlap
|
||||
start = end - chunk_overlap
|
||||
if start >= len(content):
|
||||
break
|
||||
|
||||
# Update total chunks count
|
||||
for chunk in chunks:
|
||||
chunk["metadata"]["total_chunks"] = len(chunks)
|
||||
|
||||
return chunks
|
||||
|
||||
def validate_document(self, document: RAGFlowDocument) -> bool:
|
||||
"""Validate RAGFlow document."""
|
||||
if not document.id:
|
||||
return False
|
||||
|
||||
if not document.title:
|
||||
return False
|
||||
|
||||
if not document.content:
|
||||
return False
|
||||
|
||||
if not document.source_url:
|
||||
return False
|
||||
|
||||
return True
|
||||
259
intergrations/firecrawl/firecrawl_ui.py
Normal file
259
intergrations/firecrawl/firecrawl_ui.py
Normal file
@ -0,0 +1,259 @@
|
||||
"""
|
||||
UI components for Firecrawl integration in RAGFlow.
|
||||
"""
|
||||
|
||||
from typing import Dict, Any, List, Optional
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class FirecrawlUIComponent:
|
||||
"""Represents a UI component for Firecrawl integration."""
|
||||
|
||||
component_type: str
|
||||
props: Dict[str, Any]
|
||||
children: Optional[List['FirecrawlUIComponent']] = None
|
||||
|
||||
|
||||
class FirecrawlUIBuilder:
|
||||
"""Builder for Firecrawl UI components in RAGFlow."""
|
||||
|
||||
@staticmethod
|
||||
def create_data_source_config() -> Dict[str, Any]:
|
||||
"""Create configuration for Firecrawl data source."""
|
||||
return {
|
||||
"name": "firecrawl",
|
||||
"display_name": "Firecrawl Web Scraper",
|
||||
"description": "Import web content using Firecrawl's powerful scraping capabilities",
|
||||
"icon": "🌐",
|
||||
"category": "web",
|
||||
"version": "1.0.0",
|
||||
"author": "Firecrawl Team",
|
||||
"config_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"api_key": {
|
||||
"type": "string",
|
||||
"title": "Firecrawl API Key",
|
||||
"description": "Your Firecrawl API key (starts with 'fc-')",
|
||||
"format": "password",
|
||||
"required": True
|
||||
},
|
||||
"api_url": {
|
||||
"type": "string",
|
||||
"title": "API URL",
|
||||
"description": "Firecrawl API endpoint",
|
||||
"default": "https://api.firecrawl.dev",
|
||||
"required": False
|
||||
},
|
||||
"max_retries": {
|
||||
"type": "integer",
|
||||
"title": "Max Retries",
|
||||
"description": "Maximum number of retry attempts",
|
||||
"default": 3,
|
||||
"minimum": 1,
|
||||
"maximum": 10
|
||||
},
|
||||
"timeout": {
|
||||
"type": "integer",
|
||||
"title": "Timeout (seconds)",
|
||||
"description": "Request timeout in seconds",
|
||||
"default": 30,
|
||||
"minimum": 5,
|
||||
"maximum": 300
|
||||
},
|
||||
"rate_limit_delay": {
|
||||
"type": "number",
|
||||
"title": "Rate Limit Delay",
|
||||
"description": "Delay between requests in seconds",
|
||||
"default": 1.0,
|
||||
"minimum": 0.1,
|
||||
"maximum": 10.0
|
||||
}
|
||||
},
|
||||
"required": ["api_key"]
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def create_scraping_form() -> Dict[str, Any]:
|
||||
"""Create form for scraping configuration."""
|
||||
return {
|
||||
"type": "form",
|
||||
"title": "Firecrawl Web Scraping",
|
||||
"description": "Configure web scraping parameters",
|
||||
"fields": [
|
||||
{
|
||||
"name": "urls",
|
||||
"type": "array",
|
||||
"title": "URLs to Scrape",
|
||||
"description": "Enter URLs to scrape (one per line)",
|
||||
"items": {
|
||||
"type": "string",
|
||||
"format": "uri"
|
||||
},
|
||||
"required": True,
|
||||
"minItems": 1
|
||||
},
|
||||
{
|
||||
"name": "scrape_type",
|
||||
"type": "string",
|
||||
"title": "Scrape Type",
|
||||
"description": "Choose scraping method",
|
||||
"enum": ["single", "crawl", "batch"],
|
||||
"enumNames": ["Single URL", "Crawl Website", "Batch URLs"],
|
||||
"default": "single",
|
||||
"required": True
|
||||
},
|
||||
{
|
||||
"name": "formats",
|
||||
"type": "array",
|
||||
"title": "Output Formats",
|
||||
"description": "Select output formats",
|
||||
"items": {
|
||||
"type": "string",
|
||||
"enum": ["markdown", "html", "links", "screenshot"]
|
||||
},
|
||||
"default": ["markdown", "html"],
|
||||
"required": True
|
||||
},
|
||||
{
|
||||
"name": "crawl_limit",
|
||||
"type": "integer",
|
||||
"title": "Crawl Limit",
|
||||
"description": "Maximum number of pages to crawl (for crawl type)",
|
||||
"default": 100,
|
||||
"minimum": 1,
|
||||
"maximum": 1000,
|
||||
"condition": {
|
||||
"field": "scrape_type",
|
||||
"equals": "crawl"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "extract_options",
|
||||
"type": "object",
|
||||
"title": "Extraction Options",
|
||||
"description": "Advanced extraction settings",
|
||||
"properties": {
|
||||
"extractMainContent": {
|
||||
"type": "boolean",
|
||||
"title": "Extract Main Content Only",
|
||||
"default": True
|
||||
},
|
||||
"excludeTags": {
|
||||
"type": "array",
|
||||
"title": "Exclude Tags",
|
||||
"description": "HTML tags to exclude",
|
||||
"items": {"type": "string"},
|
||||
"default": ["nav", "footer", "header", "aside"]
|
||||
},
|
||||
"includeTags": {
|
||||
"type": "array",
|
||||
"title": "Include Tags",
|
||||
"description": "HTML tags to include",
|
||||
"items": {"type": "string"},
|
||||
"default": ["main", "article", "section", "div", "p"]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def create_progress_component() -> Dict[str, Any]:
|
||||
"""Create progress tracking component."""
|
||||
return {
|
||||
"type": "progress",
|
||||
"title": "Scraping Progress",
|
||||
"description": "Track the progress of your web scraping job",
|
||||
"properties": {
|
||||
"show_percentage": True,
|
||||
"show_eta": True,
|
||||
"show_details": True
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def create_results_view() -> Dict[str, Any]:
|
||||
"""Create results display component."""
|
||||
return {
|
||||
"type": "results",
|
||||
"title": "Scraping Results",
|
||||
"description": "View and manage scraped content",
|
||||
"properties": {
|
||||
"show_preview": True,
|
||||
"show_metadata": True,
|
||||
"allow_editing": True,
|
||||
"show_chunks": True
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def create_error_handler() -> Dict[str, Any]:
|
||||
"""Create error handling component."""
|
||||
return {
|
||||
"type": "error_handler",
|
||||
"title": "Error Handling",
|
||||
"description": "Handle scraping errors and retries",
|
||||
"properties": {
|
||||
"show_retry_button": True,
|
||||
"show_error_details": True,
|
||||
"auto_retry": False,
|
||||
"max_retries": 3
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def create_validation_rules() -> Dict[str, Any]:
|
||||
"""Create validation rules for Firecrawl integration."""
|
||||
return {
|
||||
"url_validation": {
|
||||
"pattern": r"^https?://.+",
|
||||
"message": "URL must start with http:// or https://"
|
||||
},
|
||||
"api_key_validation": {
|
||||
"pattern": r"^fc-[a-zA-Z0-9]+$",
|
||||
"message": "API key must start with 'fc-' followed by alphanumeric characters"
|
||||
},
|
||||
"rate_limit_validation": {
|
||||
"min": 0.1,
|
||||
"max": 10.0,
|
||||
"message": "Rate limit delay must be between 0.1 and 10.0 seconds"
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def create_help_text() -> Dict[str, str]:
|
||||
"""Create help text for users."""
|
||||
return {
|
||||
"api_key_help": "Get your API key from https://firecrawl.dev. Sign up for a free account to get started.",
|
||||
"url_help": "Enter the URLs you want to scrape. You can add multiple URLs for batch processing.",
|
||||
"crawl_help": "Crawling will follow links from the starting URL and scrape all accessible pages within the limit.",
|
||||
"formats_help": "Choose the output formats you need. Markdown is recommended for RAG processing.",
|
||||
"extract_help": "Extraction options help filter content to get only the main content without navigation and ads."
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def create_ui_schema() -> Dict[str, Any]:
|
||||
"""Create complete UI schema for Firecrawl integration."""
|
||||
return {
|
||||
"version": "1.0.0",
|
||||
"components": {
|
||||
"data_source_config": FirecrawlUIBuilder.create_data_source_config(),
|
||||
"scraping_form": FirecrawlUIBuilder.create_scraping_form(),
|
||||
"progress_component": FirecrawlUIBuilder.create_progress_component(),
|
||||
"results_view": FirecrawlUIBuilder.create_results_view(),
|
||||
"error_handler": FirecrawlUIBuilder.create_error_handler()
|
||||
},
|
||||
"validation_rules": FirecrawlUIBuilder.create_validation_rules(),
|
||||
"help_text": FirecrawlUIBuilder.create_help_text(),
|
||||
"workflow": [
|
||||
"configure_data_source",
|
||||
"setup_scraping_parameters",
|
||||
"start_scraping_job",
|
||||
"monitor_progress",
|
||||
"review_results",
|
||||
"import_to_ragflow"
|
||||
]
|
||||
}
|
||||
149
intergrations/firecrawl/integration.py
Normal file
149
intergrations/firecrawl/integration.py
Normal file
@ -0,0 +1,149 @@
|
||||
"""
|
||||
RAGFlow Integration Entry Point for Firecrawl
|
||||
|
||||
This file provides the main entry point for the Firecrawl integration with RAGFlow.
|
||||
It follows RAGFlow's integration patterns and provides the necessary interfaces.
|
||||
"""
|
||||
|
||||
from typing import Dict, Any
|
||||
import logging
|
||||
|
||||
from ragflow_integration import RAGFlowFirecrawlIntegration, create_firecrawl_integration
|
||||
from firecrawl_ui import FirecrawlUIBuilder
|
||||
|
||||
# Set up logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FirecrawlRAGFlowPlugin:
|
||||
"""
|
||||
Main plugin class for Firecrawl integration with RAGFlow.
|
||||
This class provides the interface that RAGFlow expects from integrations.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize the Firecrawl plugin."""
|
||||
self.name = "firecrawl"
|
||||
self.display_name = "Firecrawl Web Scraper"
|
||||
self.description = "Import web content using Firecrawl's powerful scraping capabilities"
|
||||
self.version = "1.0.0"
|
||||
self.author = "Firecrawl Team"
|
||||
self.category = "web"
|
||||
self.icon = "🌐"
|
||||
|
||||
logger.info(f"Initialized {self.display_name} plugin v{self.version}")
|
||||
|
||||
def get_plugin_info(self) -> Dict[str, Any]:
|
||||
"""Get plugin information for RAGFlow."""
|
||||
return {
|
||||
"name": self.name,
|
||||
"display_name": self.display_name,
|
||||
"description": self.description,
|
||||
"version": self.version,
|
||||
"author": self.author,
|
||||
"category": self.category,
|
||||
"icon": self.icon,
|
||||
"supported_formats": ["markdown", "html", "links", "screenshot"],
|
||||
"supported_scrape_types": ["single", "crawl", "batch"]
|
||||
}
|
||||
|
||||
def get_config_schema(self) -> Dict[str, Any]:
|
||||
"""Get configuration schema for RAGFlow."""
|
||||
return FirecrawlUIBuilder.create_data_source_config()["config_schema"]
|
||||
|
||||
def get_ui_schema(self) -> Dict[str, Any]:
|
||||
"""Get UI schema for RAGFlow."""
|
||||
return FirecrawlUIBuilder.create_ui_schema()
|
||||
|
||||
def validate_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Validate configuration and return any errors."""
|
||||
try:
|
||||
integration = create_firecrawl_integration(config)
|
||||
return integration.validate_config(config)
|
||||
except Exception as e:
|
||||
logger.error(f"Configuration validation error: {e}")
|
||||
return {"general": str(e)}
|
||||
|
||||
def test_connection(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Test connection to Firecrawl API."""
|
||||
try:
|
||||
integration = create_firecrawl_integration(config)
|
||||
# Run the async test_connection method
|
||||
import asyncio
|
||||
return asyncio.run(integration.test_connection())
|
||||
except Exception as e:
|
||||
logger.error(f"Connection test error: {e}")
|
||||
return {
|
||||
"success": False,
|
||||
"error": str(e),
|
||||
"message": "Connection test failed"
|
||||
}
|
||||
|
||||
def create_integration(self, config: Dict[str, Any]) -> RAGFlowFirecrawlIntegration:
|
||||
"""Create and return a Firecrawl integration instance."""
|
||||
return create_firecrawl_integration(config)
|
||||
|
||||
def get_help_text(self) -> Dict[str, str]:
|
||||
"""Get help text for users."""
|
||||
return FirecrawlUIBuilder.create_help_text()
|
||||
|
||||
def get_validation_rules(self) -> Dict[str, Any]:
|
||||
"""Get validation rules for configuration."""
|
||||
return FirecrawlUIBuilder.create_validation_rules()
|
||||
|
||||
|
||||
# RAGFlow integration entry points
|
||||
def get_plugin() -> FirecrawlRAGFlowPlugin:
|
||||
"""Get the plugin instance for RAGFlow."""
|
||||
return FirecrawlRAGFlowPlugin()
|
||||
|
||||
|
||||
def get_integration(config: Dict[str, Any]) -> RAGFlowFirecrawlIntegration:
|
||||
"""Get an integration instance with the given configuration."""
|
||||
return create_firecrawl_integration(config)
|
||||
|
||||
|
||||
def get_config_schema() -> Dict[str, Any]:
|
||||
"""Get the configuration schema."""
|
||||
return FirecrawlUIBuilder.create_data_source_config()["config_schema"]
|
||||
|
||||
|
||||
def get_ui_schema() -> Dict[str, Any]:
|
||||
"""Get the UI schema."""
|
||||
return FirecrawlUIBuilder.create_ui_schema()
|
||||
|
||||
|
||||
def validate_config(config: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Validate configuration."""
|
||||
try:
|
||||
integration = create_firecrawl_integration(config)
|
||||
return integration.validate_config(config)
|
||||
except Exception as e:
|
||||
return {"general": str(e)}
|
||||
|
||||
|
||||
def test_connection(config: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Test connection to Firecrawl API."""
|
||||
try:
|
||||
integration = create_firecrawl_integration(config)
|
||||
return integration.test_connection()
|
||||
except Exception as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": str(e),
|
||||
"message": "Connection test failed"
|
||||
}
|
||||
|
||||
|
||||
# Export main functions and classes
|
||||
__all__ = [
|
||||
"FirecrawlRAGFlowPlugin",
|
||||
"get_plugin",
|
||||
"get_integration",
|
||||
"get_config_schema",
|
||||
"get_ui_schema",
|
||||
"validate_config",
|
||||
"test_connection",
|
||||
"RAGFlowFirecrawlIntegration",
|
||||
"create_firecrawl_integration"
|
||||
]
|
||||
175
intergrations/firecrawl/ragflow_integration.py
Normal file
175
intergrations/firecrawl/ragflow_integration.py
Normal file
@ -0,0 +1,175 @@
|
||||
"""
|
||||
Main integration file for Firecrawl with RAGFlow.
|
||||
This file provides the interface between RAGFlow and the Firecrawl plugin.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import List, Dict, Any
|
||||
|
||||
from firecrawl_connector import FirecrawlConnector
|
||||
from firecrawl_config import FirecrawlConfig
|
||||
from firecrawl_processor import FirecrawlProcessor, RAGFlowDocument
|
||||
from firecrawl_ui import FirecrawlUIBuilder
|
||||
|
||||
|
||||
class RAGFlowFirecrawlIntegration:
|
||||
"""Main integration class for Firecrawl with RAGFlow."""
|
||||
|
||||
def __init__(self, config: FirecrawlConfig):
|
||||
"""Initialize the integration."""
|
||||
self.config = config
|
||||
self.connector = FirecrawlConnector(config)
|
||||
self.processor = FirecrawlProcessor()
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
async def scrape_and_import(self, urls: List[str],
|
||||
formats: List[str] = None,
|
||||
extract_options: Dict[str, Any] = None) -> List[RAGFlowDocument]:
|
||||
"""Scrape URLs and convert to RAGFlow documents."""
|
||||
if formats is None:
|
||||
formats = ["markdown", "html"]
|
||||
|
||||
async with self.connector:
|
||||
# Scrape URLs
|
||||
scraped_contents = await self.connector.batch_scrape(urls, formats)
|
||||
|
||||
# Process into RAGFlow documents
|
||||
documents = self.processor.process_batch(scraped_contents)
|
||||
|
||||
return documents
|
||||
|
||||
async def crawl_and_import(self, start_url: str,
|
||||
limit: int = 100,
|
||||
scrape_options: Dict[str, Any] = None) -> List[RAGFlowDocument]:
|
||||
"""Crawl a website and convert to RAGFlow documents."""
|
||||
if scrape_options is None:
|
||||
scrape_options = {"formats": ["markdown", "html"]}
|
||||
|
||||
async with self.connector:
|
||||
# Start crawl job
|
||||
crawl_job = await self.connector.start_crawl(start_url, limit, scrape_options)
|
||||
|
||||
if crawl_job.error:
|
||||
raise Exception(f"Failed to start crawl: {crawl_job.error}")
|
||||
|
||||
# Wait for completion
|
||||
completed_job = await self.connector.wait_for_crawl_completion(crawl_job.job_id)
|
||||
|
||||
if completed_job.error:
|
||||
raise Exception(f"Crawl failed: {completed_job.error}")
|
||||
|
||||
# Process into RAGFlow documents
|
||||
documents = self.processor.process_batch(completed_job.data or [])
|
||||
|
||||
return documents
|
||||
|
||||
def get_ui_schema(self) -> Dict[str, Any]:
|
||||
"""Get UI schema for RAGFlow integration."""
|
||||
return FirecrawlUIBuilder.create_ui_schema()
|
||||
|
||||
def validate_config(self, config_dict: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Validate configuration and return any errors."""
|
||||
errors = {}
|
||||
|
||||
# Validate API key
|
||||
api_key = config_dict.get("api_key", "")
|
||||
if not api_key:
|
||||
errors["api_key"] = "API key is required"
|
||||
elif not api_key.startswith("fc-"):
|
||||
errors["api_key"] = "API key must start with 'fc-'"
|
||||
|
||||
# Validate API URL
|
||||
api_url = config_dict.get("api_url", "https://api.firecrawl.dev")
|
||||
if not api_url.startswith("http"):
|
||||
errors["api_url"] = "API URL must start with http:// or https://"
|
||||
|
||||
# Validate numeric fields
|
||||
try:
|
||||
max_retries = int(config_dict.get("max_retries", 3))
|
||||
if max_retries < 1 or max_retries > 10:
|
||||
errors["max_retries"] = "Max retries must be between 1 and 10"
|
||||
except (ValueError, TypeError):
|
||||
errors["max_retries"] = "Max retries must be a valid integer"
|
||||
|
||||
try:
|
||||
timeout = int(config_dict.get("timeout", 30))
|
||||
if timeout < 5 or timeout > 300:
|
||||
errors["timeout"] = "Timeout must be between 5 and 300 seconds"
|
||||
except (ValueError, TypeError):
|
||||
errors["timeout"] = "Timeout must be a valid integer"
|
||||
|
||||
try:
|
||||
rate_limit_delay = float(config_dict.get("rate_limit_delay", 1.0))
|
||||
if rate_limit_delay < 0.1 or rate_limit_delay > 10.0:
|
||||
errors["rate_limit_delay"] = "Rate limit delay must be between 0.1 and 10.0 seconds"
|
||||
except (ValueError, TypeError):
|
||||
errors["rate_limit_delay"] = "Rate limit delay must be a valid number"
|
||||
|
||||
return errors
|
||||
|
||||
def create_config(self, config_dict: Dict[str, Any]) -> FirecrawlConfig:
|
||||
"""Create FirecrawlConfig from dictionary."""
|
||||
return FirecrawlConfig.from_dict(config_dict)
|
||||
|
||||
async def test_connection(self) -> Dict[str, Any]:
|
||||
"""Test the connection to Firecrawl API."""
|
||||
try:
|
||||
async with self.connector:
|
||||
# Try to scrape a simple URL to test connection
|
||||
test_url = "https://httpbin.org/json"
|
||||
result = await self.connector.scrape_url(test_url, ["markdown"])
|
||||
|
||||
if result.error:
|
||||
return {
|
||||
"success": False,
|
||||
"error": result.error,
|
||||
"message": "Failed to connect to Firecrawl API"
|
||||
}
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"message": "Successfully connected to Firecrawl API",
|
||||
"test_url": test_url,
|
||||
"response_time": "N/A" # Could be enhanced to measure actual response time
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": str(e),
|
||||
"message": "Connection test failed"
|
||||
}
|
||||
|
||||
def get_supported_formats(self) -> List[str]:
|
||||
"""Get list of supported output formats."""
|
||||
return ["markdown", "html", "links", "screenshot"]
|
||||
|
||||
def get_supported_scrape_types(self) -> List[str]:
|
||||
"""Get list of supported scrape types."""
|
||||
return ["single", "crawl", "batch"]
|
||||
|
||||
def get_help_text(self) -> Dict[str, str]:
|
||||
"""Get help text for users."""
|
||||
return FirecrawlUIBuilder.create_help_text()
|
||||
|
||||
def get_validation_rules(self) -> Dict[str, Any]:
|
||||
"""Get validation rules for configuration."""
|
||||
return FirecrawlUIBuilder.create_validation_rules()
|
||||
|
||||
|
||||
# Factory function for creating integration instance
|
||||
def create_firecrawl_integration(config_dict: Dict[str, Any]) -> RAGFlowFirecrawlIntegration:
|
||||
"""Create a Firecrawl integration instance from configuration."""
|
||||
config = FirecrawlConfig.from_dict(config_dict)
|
||||
return RAGFlowFirecrawlIntegration(config)
|
||||
|
||||
|
||||
# Export main classes and functions
|
||||
__all__ = [
|
||||
"RAGFlowFirecrawlIntegration",
|
||||
"create_firecrawl_integration",
|
||||
"FirecrawlConfig",
|
||||
"FirecrawlConnector",
|
||||
"FirecrawlProcessor",
|
||||
"RAGFlowDocument"
|
||||
]
|
||||
31
intergrations/firecrawl/requirements.txt
Normal file
31
intergrations/firecrawl/requirements.txt
Normal file
@ -0,0 +1,31 @@
|
||||
# Firecrawl Plugin for RAGFlow - Dependencies
|
||||
|
||||
# Core dependencies
|
||||
aiohttp>=3.8.0
|
||||
asyncio-throttle>=1.0.0
|
||||
|
||||
# Data processing
|
||||
pydantic>=2.0.0
|
||||
python-dateutil>=2.8.0
|
||||
|
||||
# HTTP and networking
|
||||
urllib3>=1.26.0
|
||||
requests>=2.28.0
|
||||
|
||||
# Logging and monitoring
|
||||
structlog>=22.0.0
|
||||
|
||||
# Optional: For advanced content processing
|
||||
beautifulsoup4>=4.11.0
|
||||
lxml>=4.9.0
|
||||
html2text>=2020.1.16
|
||||
|
||||
# Optional: For enhanced error handling
|
||||
tenacity>=8.0.0
|
||||
|
||||
# Development dependencies (optional)
|
||||
pytest>=7.0.0
|
||||
pytest-asyncio>=0.21.0
|
||||
black>=22.0.0
|
||||
flake8>=5.0.0
|
||||
mypy>=1.0.0
|
||||
@ -507,16 +507,29 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
markdown_parser = Markdown(int(parser_config.get("chunk_token_num", 128)))
|
||||
sections, tables = markdown_parser(filename, binary, separate_tables=False)
|
||||
|
||||
# Process images for each section
|
||||
section_images = []
|
||||
for section_text, _ in sections:
|
||||
images = markdown_parser.get_pictures(section_text) if section_text else None
|
||||
if images:
|
||||
# If multiple images found, combine them using concat_img
|
||||
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
|
||||
section_images.append(combined_image)
|
||||
else:
|
||||
section_images.append(None)
|
||||
try:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
|
||||
callback(0.2, "Visual model detected. Attempting to enhance figure extraction...")
|
||||
except Exception:
|
||||
vision_model = None
|
||||
|
||||
if vision_model:
|
||||
# Process images for each section
|
||||
section_images = []
|
||||
for idx, (section_text, _) in enumerate(sections):
|
||||
images = markdown_parser.get_pictures(section_text) if section_text else None
|
||||
|
||||
if images:
|
||||
# If multiple images found, combine them using concat_img
|
||||
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
|
||||
section_images.append(combined_image)
|
||||
markdown_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data= [((combined_image, ["markdown image"]), [(0, 0, 0, 0, 0)])], **kwargs)
|
||||
boosted_figures = markdown_vision_parser(callback=callback)
|
||||
sections[idx] = (section_text + "\n\n" + "\n\n".join([fig[0][1] for fig in boosted_figures]), sections[idx][1])
|
||||
else:
|
||||
section_images.append(None)
|
||||
else:
|
||||
logging.warning("No visual model detected. Skipping figure parsing enhancement.")
|
||||
|
||||
res = tokenize_table(tables, doc, is_english)
|
||||
callback(0.8, "Finish parsing.")
|
||||
|
||||
@ -138,6 +138,8 @@ def label_question(question, kbs):
|
||||
else:
|
||||
all_tags = json.loads(all_tags)
|
||||
tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids)
|
||||
if not tag_kbs:
|
||||
return tags
|
||||
tags = settings.retrievaler.tag_query(question,
|
||||
list(set([kb.tenant_id for kb in tag_kbs])),
|
||||
tag_kb_ids,
|
||||
|
||||
@ -12,10 +12,13 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import io
|
||||
import logging
|
||||
import random
|
||||
|
||||
import trio
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
@ -43,17 +46,24 @@ class ParserParam(ProcessParamBase):
|
||||
"json",
|
||||
],
|
||||
"ppt": [],
|
||||
"image": [],
|
||||
"image": [
|
||||
"text"
|
||||
],
|
||||
"email": [],
|
||||
"text": [],
|
||||
"audio": [],
|
||||
"text": [
|
||||
"text",
|
||||
"json"
|
||||
],
|
||||
"audio": [
|
||||
"json"
|
||||
],
|
||||
"video": [],
|
||||
}
|
||||
|
||||
self.setups = {
|
||||
"pdf": {
|
||||
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
|
||||
"vlm_name": "",
|
||||
"llm_id": "",
|
||||
"lang": "Chinese",
|
||||
"suffix": [
|
||||
"pdf",
|
||||
@ -81,11 +91,39 @@ class ParserParam(ProcessParamBase):
|
||||
},
|
||||
"ppt": {},
|
||||
"image": {
|
||||
"parse_method": "ocr",
|
||||
"parse_method": ["ocr", "vlm"],
|
||||
"llm_id": "",
|
||||
"lang": "Chinese",
|
||||
"suffix": ["jpg", "jpeg", "png", "gif"],
|
||||
"output_format": "json",
|
||||
},
|
||||
"email": {},
|
||||
"text": {},
|
||||
"audio": {},
|
||||
"text": {
|
||||
"suffix": [
|
||||
"txt"
|
||||
],
|
||||
"output_format": "json",
|
||||
},
|
||||
"audio": {
|
||||
"suffix":[
|
||||
"da",
|
||||
"wave",
|
||||
"wav",
|
||||
"mp3",
|
||||
"aac",
|
||||
"flac",
|
||||
"ogg",
|
||||
"aiff",
|
||||
"au",
|
||||
"midi",
|
||||
"wma",
|
||||
"realaudio",
|
||||
"vqf",
|
||||
"oggvorbis",
|
||||
"ape"
|
||||
],
|
||||
"output_format": "json",
|
||||
},
|
||||
"video": {},
|
||||
}
|
||||
|
||||
@ -96,7 +134,7 @@ class ParserParam(ProcessParamBase):
|
||||
self.check_valid_value(pdf_parse_method.lower(), "Parse method abnormal.", ["deepdoc", "plain_text", "vlm"])
|
||||
|
||||
if pdf_parse_method not in ["deepdoc", "plain_text"]:
|
||||
self.check_empty(pdf_config.get("vlm_name"), "VLM")
|
||||
self.check_empty(pdf_config.get("llm_id"), "VLM")
|
||||
|
||||
pdf_language = pdf_config.get("lang", "")
|
||||
self.check_empty(pdf_language, "Language")
|
||||
@ -117,7 +155,23 @@ class ParserParam(ProcessParamBase):
|
||||
image_config = self.setups.get("image", "")
|
||||
if image_config:
|
||||
image_parse_method = image_config.get("parse_method", "")
|
||||
self.check_valid_value(image_parse_method.lower(), "Parse method abnormal.", ["ocr"])
|
||||
self.check_valid_value(image_parse_method.lower(), "Parse method abnormal.", ["ocr", "vlm"])
|
||||
if image_parse_method not in ["ocr"]:
|
||||
self.check_empty(image_config.get("llm_id"), "VLM")
|
||||
|
||||
image_language = image_config.get("lang", "")
|
||||
self.check_empty(image_language, "Language")
|
||||
|
||||
text_config = self.setups.get("text", "")
|
||||
if text_config:
|
||||
text_output_format = text_config.get("output_format", "")
|
||||
self.check_valid_value(text_output_format, "Text output format abnormal.", self.allowed_output_format["text"])
|
||||
|
||||
audio_config = self.setups.get("audio", "")
|
||||
if audio_config:
|
||||
self.check_empty(audio_config.get("llm_id"), "VLM")
|
||||
audio_language = audio_config.get("lang", "")
|
||||
self.check_empty(audio_language, "Language")
|
||||
|
||||
def get_input_form(self) -> dict[str, dict]:
|
||||
return {}
|
||||
@ -139,8 +193,8 @@ class Parser(ProcessBase):
|
||||
lines, _ = PlainParser()(blob)
|
||||
bboxes = [{"text": t} for t, _ in lines]
|
||||
else:
|
||||
assert conf.get("vlm_name")
|
||||
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("vlm_name"), lang=self._param.setups["pdf"].get("lang"))
|
||||
assert conf.get("llm_id")
|
||||
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("llm_id"), lang=self._param.setups["pdf"].get("lang"))
|
||||
lines, _ = VisionParser(vision_model=vision_model)(blob, callback=self.callback)
|
||||
bboxes = []
|
||||
for t, poss in lines:
|
||||
@ -208,15 +262,13 @@ class Parser(ProcessBase):
|
||||
from rag.app.naive import Markdown as naive_markdown_parser
|
||||
from rag.nlp import concat_img
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a markdown.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
name = from_upstream.name
|
||||
conf = self._param.setups["markdown"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
print("markdown {conf=}", flush=True)
|
||||
|
||||
markdown_parser = naive_markdown_parser()
|
||||
sections, tables = markdown_parser(name, blob, separate_tables=False)
|
||||
|
||||
@ -240,13 +292,87 @@ class Parser(ProcessBase):
|
||||
|
||||
self.set_output("json", json_results)
|
||||
|
||||
def _text(self, from_upstream: ParserFromUpstream):
|
||||
from deepdoc.parser.utils import get_text
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a text.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
name = from_upstream.name
|
||||
conf = self._param.setups["text"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
# parse binary to text
|
||||
text_content = get_text(name, binary=blob)
|
||||
|
||||
if conf.get("output_format") == "json":
|
||||
result = [{"text": text_content}]
|
||||
self.set_output("json", result)
|
||||
else:
|
||||
result = text_content
|
||||
self.set_output("text", result)
|
||||
|
||||
def _image(self, from_upstream: ParserFromUpstream):
|
||||
from deepdoc.vision import OCR
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on an image.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
conf = self._param.setups["image"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
img = Image.open(io.BytesIO(blob)).convert("RGB")
|
||||
lang = conf["lang"]
|
||||
|
||||
if conf["parse_method"] == "ocr":
|
||||
# use ocr, recognize chars only
|
||||
ocr = OCR()
|
||||
bxs = ocr(np.array(img)) # return boxes and recognize result
|
||||
txt = "\n".join([t[0] for _, t in bxs if t[0]])
|
||||
|
||||
else:
|
||||
# use VLM to describe the picture
|
||||
cv_model = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT, llm_name=conf["llm_id"],lang=lang)
|
||||
img_binary = io.BytesIO()
|
||||
img.save(img_binary, format="JPEG")
|
||||
img_binary.seek(0)
|
||||
txt = cv_model.describe(img_binary.read())
|
||||
|
||||
self.set_output("text", txt)
|
||||
|
||||
def _audio(self, from_upstream: ParserFromUpstream):
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on an audio.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
name = from_upstream.name
|
||||
conf = self._param.setups["audio"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
lang = conf["lang"]
|
||||
_, ext = os.path.splitext(name)
|
||||
tmp_path = ""
|
||||
with tempfile.NamedTemporaryFile(suffix=ext) as tmpf:
|
||||
tmpf.write(blob)
|
||||
tmpf.flush()
|
||||
tmp_path = os.path.abspath(tmpf.name)
|
||||
|
||||
seq2txt_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.SPEECH2TEXT, lang=lang)
|
||||
txt = seq2txt_mdl.transcription(tmp_path)
|
||||
|
||||
self.set_output("text", txt)
|
||||
|
||||
async def _invoke(self, **kwargs):
|
||||
function_map = {
|
||||
"pdf": self._pdf,
|
||||
"markdown": self._markdown,
|
||||
"spreadsheet": self._spreadsheet,
|
||||
"word": self._word
|
||||
"word": self._word,
|
||||
"text": self._text,
|
||||
"image": self._image,
|
||||
"audio": self._audio,
|
||||
}
|
||||
try:
|
||||
from_upstream = ParserFromUpstream.model_validate(kwargs)
|
||||
|
||||
@ -44,9 +44,46 @@
|
||||
"markdown"
|
||||
],
|
||||
"output_format": "json"
|
||||
},
|
||||
"text": {
|
||||
"suffix": ["txt"],
|
||||
"output_format": "json"
|
||||
},
|
||||
"image": {
|
||||
"parse_method": "vlm",
|
||||
"llm_id":"glm-4.5v",
|
||||
"lang": "Chinese",
|
||||
"suffix": [
|
||||
"jpg",
|
||||
"jpeg",
|
||||
"png",
|
||||
"gif"
|
||||
],
|
||||
"output_format": "text"
|
||||
},
|
||||
"audio": {
|
||||
"suffix": [
|
||||
"da",
|
||||
"wave",
|
||||
"wav",
|
||||
"mp3",
|
||||
"aac",
|
||||
"flac",
|
||||
"ogg",
|
||||
"aiff",
|
||||
"au",
|
||||
"midi",
|
||||
"wma",
|
||||
"realaudio",
|
||||
"vqf",
|
||||
"oggvorbis",
|
||||
"ape"
|
||||
],
|
||||
"lang": "Chinese",
|
||||
"llm_id": "SenseVoiceSmall",
|
||||
"output_format": "json"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"downstream": ["Chunker:0"],
|
||||
|
||||
@ -37,6 +37,18 @@ class SupportedLiteLLMProvider(StrEnum):
|
||||
TogetherAI = "TogetherAI"
|
||||
Anthropic = "Anthropic"
|
||||
Ollama = "Ollama"
|
||||
Meituan = "Meituan"
|
||||
CometAPI = "CometAPI"
|
||||
SILICONFLOW = "SILICONFLOW"
|
||||
OpenRouter = "OpenRouter"
|
||||
StepFun = "StepFun"
|
||||
PPIO = "PPIO"
|
||||
PerfXCloud = "PerfXCloud"
|
||||
Upstage = "Upstage"
|
||||
NovitaAI = "NovitaAI"
|
||||
Lingyi_AI = "01.AI"
|
||||
GiteeAI = "GiteeAI"
|
||||
AI_302 = "302.AI"
|
||||
|
||||
|
||||
FACTORY_DEFAULT_BASE_URL = {
|
||||
@ -44,6 +56,19 @@ FACTORY_DEFAULT_BASE_URL = {
|
||||
SupportedLiteLLMProvider.Dashscope: "https://dashscope.aliyuncs.com/compatible-mode/v1",
|
||||
SupportedLiteLLMProvider.Moonshot: "https://api.moonshot.cn/v1",
|
||||
SupportedLiteLLMProvider.Ollama: "",
|
||||
SupportedLiteLLMProvider.Meituan: "https://api.longcat.chat/openai",
|
||||
SupportedLiteLLMProvider.CometAPI: "https://api.cometapi.com/v1",
|
||||
SupportedLiteLLMProvider.SILICONFLOW: "https://api.siliconflow.cn/v1",
|
||||
SupportedLiteLLMProvider.OpenRouter: "https://openrouter.ai/api/v1",
|
||||
SupportedLiteLLMProvider.StepFun: "https://api.stepfun.com/v1",
|
||||
SupportedLiteLLMProvider.PPIO: "https://api.ppinfra.com/v3/openai",
|
||||
SupportedLiteLLMProvider.PerfXCloud: "https://cloud.perfxlab.cn/v1",
|
||||
SupportedLiteLLMProvider.Upstage: "https://api.upstage.ai/v1/solar",
|
||||
SupportedLiteLLMProvider.NovitaAI: "https://api.novita.ai/v3/openai",
|
||||
SupportedLiteLLMProvider.Lingyi_AI: "https://api.lingyiwanwu.com/v1",
|
||||
SupportedLiteLLMProvider.GiteeAI: "https://ai.gitee.com/v1/",
|
||||
SupportedLiteLLMProvider.AI_302: "https://api.302.ai/v1",
|
||||
SupportedLiteLLMProvider.Anthropic: "https://api.anthropic.com/",
|
||||
}
|
||||
|
||||
|
||||
@ -62,6 +87,18 @@ LITELLM_PROVIDER_PREFIX = {
|
||||
SupportedLiteLLMProvider.TogetherAI: "together_ai/",
|
||||
SupportedLiteLLMProvider.Anthropic: "", # don't need a prefix
|
||||
SupportedLiteLLMProvider.Ollama: "ollama_chat/",
|
||||
SupportedLiteLLMProvider.Meituan: "openai/",
|
||||
SupportedLiteLLMProvider.CometAPI: "openai/",
|
||||
SupportedLiteLLMProvider.SILICONFLOW: "openai/",
|
||||
SupportedLiteLLMProvider.OpenRouter: "openai/",
|
||||
SupportedLiteLLMProvider.StepFun: "openai/",
|
||||
SupportedLiteLLMProvider.PPIO: "openai/",
|
||||
SupportedLiteLLMProvider.PerfXCloud: "openai/",
|
||||
SupportedLiteLLMProvider.Upstage: "openai/",
|
||||
SupportedLiteLLMProvider.NovitaAI: "openai/",
|
||||
SupportedLiteLLMProvider.Lingyi_AI: "openai/",
|
||||
SupportedLiteLLMProvider.GiteeAI: "openai/",
|
||||
SupportedLiteLLMProvider.AI_302: "openai/",
|
||||
}
|
||||
|
||||
ChatModel = globals().get("ChatModel", {})
|
||||
|
||||
@ -895,25 +895,6 @@ class MistralChat(Base):
|
||||
yield total_tokens
|
||||
|
||||
|
||||
## openrouter
|
||||
class OpenRouterChat(Base):
|
||||
_FACTORY_NAME = "OpenRouter"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://openrouter.ai/api/v1"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class StepFunChat(Base):
|
||||
_FACTORY_NAME = "StepFun"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.stepfun.com/v1"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class LmStudioChat(Base):
|
||||
_FACTORY_NAME = "LM-Studio"
|
||||
|
||||
@ -936,15 +917,6 @@ class OpenAI_APIChat(Base):
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class PPIOChat(Base):
|
||||
_FACTORY_NAME = "PPIO"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.ppinfra.com/v3/openai"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class LeptonAIChat(Base):
|
||||
_FACTORY_NAME = "LeptonAI"
|
||||
|
||||
@ -954,60 +926,6 @@ class LeptonAIChat(Base):
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class PerfXCloudChat(Base):
|
||||
_FACTORY_NAME = "PerfXCloud"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://cloud.perfxlab.cn/v1"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class UpstageChat(Base):
|
||||
_FACTORY_NAME = "Upstage"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.upstage.ai/v1/solar"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class NovitaAIChat(Base):
|
||||
_FACTORY_NAME = "NovitaAI"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.novita.ai/v3/openai"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class SILICONFLOWChat(Base):
|
||||
_FACTORY_NAME = "SILICONFLOW"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.siliconflow.cn/v1"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class YiChat(Base):
|
||||
_FACTORY_NAME = "01.AI"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.lingyiwanwu.com/v1"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class GiteeChat(Base):
|
||||
_FACTORY_NAME = "GiteeAI"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://ai.gitee.com/v1/"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class ReplicateChat(Base):
|
||||
_FACTORY_NAME = "Replicate"
|
||||
|
||||
@ -1347,26 +1265,46 @@ class GPUStackChat(Base):
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class Ai302Chat(Base):
|
||||
_FACTORY_NAME = "302.AI"
|
||||
class TokenPonyChat(Base):
|
||||
_FACTORY_NAME = "TokenPony"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.302.ai/v1", **kwargs):
|
||||
def __init__(self, key, model_name, base_url="https://ragflow.vip-api.tokenpony.cn/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.302.ai/v1"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class MeituanChat(Base):
|
||||
_FACTORY_NAME = "Meituan"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.longcat.chat/openai", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.longcat.chat/openai"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
base_url = "https://ragflow.vip-api.tokenpony.cn/v1"
|
||||
|
||||
|
||||
class LiteLLMBase(ABC):
|
||||
_FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic", "Ollama"]
|
||||
_FACTORY_NAME = [
|
||||
"Tongyi-Qianwen",
|
||||
"Bedrock",
|
||||
"Moonshot",
|
||||
"xAI",
|
||||
"DeepInfra",
|
||||
"Groq",
|
||||
"Cohere",
|
||||
"Gemini",
|
||||
"DeepSeek",
|
||||
"NVIDIA",
|
||||
"TogetherAI",
|
||||
"Anthropic",
|
||||
"Ollama",
|
||||
"Meituan",
|
||||
"CometAPI",
|
||||
"SILICONFLOW",
|
||||
"OpenRouter",
|
||||
"StepFun",
|
||||
"PPIO",
|
||||
"PerfXCloud",
|
||||
"Upstage",
|
||||
"NovitaAI",
|
||||
"01.AI",
|
||||
"GiteeAI",
|
||||
"302.AI",
|
||||
]
|
||||
|
||||
import litellm
|
||||
|
||||
litellm._turn_on_debug()
|
||||
|
||||
def __init__(self, key, model_name, base_url=None, **kwargs):
|
||||
self.timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
|
||||
@ -1374,7 +1312,7 @@ class LiteLLMBase(ABC):
|
||||
self.prefix = LITELLM_PROVIDER_PREFIX.get(self.provider, "")
|
||||
self.model_name = f"{self.prefix}{model_name}"
|
||||
self.api_key = key
|
||||
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip('/')
|
||||
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip("/")
|
||||
# Configure retry parameters
|
||||
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
|
||||
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
|
||||
|
||||
@ -86,9 +86,10 @@ class DefaultEmbedding(Base):
|
||||
with DefaultEmbedding._model_lock:
|
||||
import torch
|
||||
from FlagEmbedding import FlagModel
|
||||
|
||||
if "CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
input_cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"]
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
|
||||
|
||||
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
|
||||
try:
|
||||
@ -472,6 +473,7 @@ class MistralEmbed(Base):
|
||||
def encode(self, texts: list):
|
||||
import time
|
||||
import random
|
||||
|
||||
texts = [truncate(t, 8196) for t in texts]
|
||||
batch_size = 16
|
||||
ress = []
|
||||
@ -495,6 +497,7 @@ class MistralEmbed(Base):
|
||||
def encode_queries(self, text):
|
||||
import time
|
||||
import random
|
||||
|
||||
retry_max = 5
|
||||
while retry_max > 0:
|
||||
try:
|
||||
@ -751,7 +754,11 @@ class SILICONFLOWEmbed(Base):
|
||||
token_count = 0
|
||||
for i in range(0, len(texts), batch_size):
|
||||
texts_batch = texts[i : i + batch_size]
|
||||
texts_batch = [" " if not text.strip() else text for text in texts_batch]
|
||||
if self.model_name in ["BAAI/bge-large-zh-v1.5", "BAAI/bge-large-en-v1.5"]:
|
||||
# limit 512, 340 is almost safe
|
||||
texts_batch = [" " if not text.strip() else truncate(text, 340) for text in texts_batch]
|
||||
else:
|
||||
texts_batch = [" " if not text.strip() else text for text in texts_batch]
|
||||
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
@ -938,6 +945,7 @@ class GiteeEmbed(SILICONFLOWEmbed):
|
||||
base_url = "https://ai.gitee.com/v1/embeddings"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
|
||||
class DeepInfraEmbed(OpenAIEmbed):
|
||||
_FACTORY_NAME = "DeepInfra"
|
||||
|
||||
@ -954,3 +962,12 @@ class Ai302Embed(Base):
|
||||
if not base_url:
|
||||
base_url = "https://api.302.ai/v1/embeddings"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
|
||||
class CometEmbed(OpenAIEmbed):
|
||||
_FACTORY_NAME = "CometAPI"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.cometapi.com/v1"):
|
||||
if not base_url:
|
||||
base_url = "https://api.cometapi.com/v1"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
@ -365,7 +365,7 @@ class OpenAI_APIRerank(Base):
|
||||
max_rank = np.max(rank)
|
||||
|
||||
# Avoid division by zero if all ranks are identical
|
||||
if np.isclose(min_rank, max_rank, atol=1e-3):
|
||||
if not np.isclose(min_rank, max_rank, atol=1e-3):
|
||||
rank = (rank - min_rank) / (max_rank - min_rank)
|
||||
else:
|
||||
rank = np.zeros_like(rank)
|
||||
|
||||
@ -218,7 +218,7 @@ class GPUStackSeq2txt(Base):
|
||||
class GiteeSeq2txt(Base):
|
||||
_FACTORY_NAME = "GiteeAI"
|
||||
|
||||
def __init__(self, key, model_name="whisper-1", base_url="https://ai.gitee.com/v1/"):
|
||||
def __init__(self, key, model_name="whisper-1", base_url="https://ai.gitee.com/v1/", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://ai.gitee.com/v1/"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
@ -234,3 +234,13 @@ class DeepInfraSeq2txt(Base):
|
||||
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
class CometSeq2txt(Base):
|
||||
_FACTORY_NAME = "CometAPI"
|
||||
|
||||
def __init__(self, key, model_name="whisper-1", base_url="https://api.cometapi.com/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.cometapi.com/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
@ -394,3 +394,11 @@ class DeepInfraTTS(OpenAITTS):
|
||||
if not base_url:
|
||||
base_url = "https://api.deepinfra.com/v1/openai"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
class CometAPITTS(OpenAITTS):
|
||||
_FACTORY_NAME = "CometAPI"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.cometapi.com/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.cometapi.com/v1"
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
53
sandbox/sandbox_base_image/nodejs/package-lock.json
generated
53
sandbox/sandbox_base_image/nodejs/package-lock.json
generated
@ -14,24 +14,24 @@
|
||||
},
|
||||
"node_modules/asynckit": {
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmmirror.com/asynckit/-/asynckit-0.4.0.tgz",
|
||||
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
|
||||
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/axios": {
|
||||
"version": "1.9.0",
|
||||
"resolved": "https://registry.npmmirror.com/axios/-/axios-1.9.0.tgz",
|
||||
"integrity": "sha512-re4CqKTJaURpzbLHtIi6XpDv20/CnpXOtjRY5/CU32L8gU8ek9UIivcfvSWvmKEngmVbrUtPpdDwWDWL7DNHvg==",
|
||||
"version": "1.12.0",
|
||||
"resolved": "https://registry.npmjs.org/axios/-/axios-1.12.0.tgz",
|
||||
"integrity": "sha512-oXTDccv8PcfjZmPGlWsPSwtOJCZ/b6W5jAMCNcfwJbCzDckwG0jrYJFaWH1yvivfCXjVzV/SPDEhMB3Q+DSurg==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"follow-redirects": "^1.15.6",
|
||||
"form-data": "^4.0.0",
|
||||
"form-data": "^4.0.4",
|
||||
"proxy-from-env": "^1.1.0"
|
||||
}
|
||||
},
|
||||
"node_modules/call-bind-apply-helpers": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmmirror.com/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz",
|
||||
"resolved": "https://registry.npmjs.org/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz",
|
||||
"integrity": "sha512-Sp1ablJ0ivDkSzjcaJdxEunN5/XvksFJ2sMBFfq6x0ryhQV/2b/KwFe21cMpmHtPOSij8K99/wSfoEuTObmuMQ==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@ -44,7 +44,7 @@
|
||||
},
|
||||
"node_modules/combined-stream": {
|
||||
"version": "1.0.8",
|
||||
"resolved": "https://registry.npmmirror.com/combined-stream/-/combined-stream-1.0.8.tgz",
|
||||
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
|
||||
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@ -56,7 +56,7 @@
|
||||
},
|
||||
"node_modules/delayed-stream": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmmirror.com/delayed-stream/-/delayed-stream-1.0.0.tgz",
|
||||
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
|
||||
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@ -65,7 +65,7 @@
|
||||
},
|
||||
"node_modules/dunder-proto": {
|
||||
"version": "1.0.1",
|
||||
"resolved": "https://registry.npmmirror.com/dunder-proto/-/dunder-proto-1.0.1.tgz",
|
||||
"resolved": "https://registry.npmjs.org/dunder-proto/-/dunder-proto-1.0.1.tgz",
|
||||
"integrity": "sha512-KIN/nDJBQRcXw0MLVhZE9iQHmG68qAVIBg9CqmUYjmQIhgij9U5MFvrqkUL5FbtyyzZuOeOt0zdeRe4UY7ct+A==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@ -79,7 +79,7 @@
|
||||
},
|
||||
"node_modules/es-define-property": {
|
||||
"version": "1.0.1",
|
||||
"resolved": "https://registry.npmmirror.com/es-define-property/-/es-define-property-1.0.1.tgz",
|
||||
"resolved": "https://registry.npmjs.org/es-define-property/-/es-define-property-1.0.1.tgz",
|
||||
"integrity": "sha512-e3nRfgfUZ4rNGL232gUgX06QNyyez04KdjFrF+LTRoOXmrOgFKDg4BCdsjW8EnT69eqdYGmRpJwiPVYNrCaW3g==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@ -88,7 +88,7 @@
|
||||
},
|
||||
"node_modules/es-errors": {
|
||||
"version": "1.3.0",
|
||||
"resolved": "https://registry.npmmirror.com/es-errors/-/es-errors-1.3.0.tgz",
|
||||
"resolved": "https://registry.npmjs.org/es-errors/-/es-errors-1.3.0.tgz",
|
||||
"integrity": "sha512-Zf5H2Kxt2xjTvbJvP2ZWLEICxA6j+hAmMzIlypy4xcBg1vKVnx89Wy0GbS+kf5cwCVFFzdCFh2XSCFNULS6csw==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@ -97,7 +97,7 @@
|
||||
},
|
||||
"node_modules/es-object-atoms": {
|
||||
"version": "1.1.1",
|
||||
"resolved": "https://registry.npmmirror.com/es-object-atoms/-/es-object-atoms-1.1.1.tgz",
|
||||
"resolved": "https://registry.npmjs.org/es-object-atoms/-/es-object-atoms-1.1.1.tgz",
|
||||
"integrity": "sha512-FGgH2h8zKNim9ljj7dankFPcICIK9Cp5bm+c2gQSYePhpaG5+esrLODihIorn+Pe6FGJzWhXQotPv73jTaldXA==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@ -109,7 +109,7 @@
|
||||
},
|
||||
"node_modules/es-set-tostringtag": {
|
||||
"version": "2.1.0",
|
||||
"resolved": "https://registry.npmmirror.com/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
|
||||
"resolved": "https://registry.npmjs.org/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
|
||||
"integrity": "sha512-j6vWzfrGVfyXxge+O0x5sh6cvxAog0a/4Rdd2K36zCMV5eJ+/+tOAngRO8cODMNWbVRdVlmGZQL2YS3yR8bIUA==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@ -143,14 +143,15 @@
|
||||
}
|
||||
},
|
||||
"node_modules/form-data": {
|
||||
"version": "4.0.2",
|
||||
"resolved": "https://registry.npmmirror.com/form-data/-/form-data-4.0.2.tgz",
|
||||
"integrity": "sha512-hGfm/slu0ZabnNt4oaRZ6uREyfCj6P4fT/n6A1rGV+Z0VdGXjfOhVUpkn6qVQONHGIFwmveGXyDs75+nr6FM8w==",
|
||||
"version": "4.0.4",
|
||||
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.4.tgz",
|
||||
"integrity": "sha512-KrGhL9Q4zjj0kiUt5OO4Mr/A/jlI2jDYs5eHBpYHPcBEVSiipAvn2Ko2HnPe20rmcuuvMHNdZFp+4IlGTMF0Ow==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"asynckit": "^0.4.0",
|
||||
"combined-stream": "^1.0.8",
|
||||
"es-set-tostringtag": "^2.1.0",
|
||||
"hasown": "^2.0.2",
|
||||
"mime-types": "^2.1.12"
|
||||
},
|
||||
"engines": {
|
||||
@ -159,7 +160,7 @@
|
||||
},
|
||||
"node_modules/function-bind": {
|
||||
"version": "1.1.2",
|
||||
"resolved": "https://registry.npmmirror.com/function-bind/-/function-bind-1.1.2.tgz",
|
||||
"resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.2.tgz",
|
||||
"integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==",
|
||||
"license": "MIT",
|
||||
"funding": {
|
||||
@ -168,7 +169,7 @@
|
||||
},
|
||||
"node_modules/get-intrinsic": {
|
||||
"version": "1.3.0",
|
||||
"resolved": "https://registry.npmmirror.com/get-intrinsic/-/get-intrinsic-1.3.0.tgz",
|
||||
"resolved": "https://registry.npmjs.org/get-intrinsic/-/get-intrinsic-1.3.0.tgz",
|
||||
"integrity": "sha512-9fSjSaos/fRIVIp+xSJlE6lfwhES7LNtKaCBIamHsjr2na1BiABJPo0mOjjz8GJDURarmCPGqaiVg5mfjb98CQ==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@ -192,7 +193,7 @@
|
||||
},
|
||||
"node_modules/get-proto": {
|
||||
"version": "1.0.1",
|
||||
"resolved": "https://registry.npmmirror.com/get-proto/-/get-proto-1.0.1.tgz",
|
||||
"resolved": "https://registry.npmjs.org/get-proto/-/get-proto-1.0.1.tgz",
|
||||
"integrity": "sha512-sTSfBjoXBp89JvIKIefqw7U2CCebsc74kiY6awiGogKtoSGbgjYE/G/+l9sF3MWFPNc9IcoOC4ODfKHfxFmp0g==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@ -205,7 +206,7 @@
|
||||
},
|
||||
"node_modules/gopd": {
|
||||
"version": "1.2.0",
|
||||
"resolved": "https://registry.npmmirror.com/gopd/-/gopd-1.2.0.tgz",
|
||||
"resolved": "https://registry.npmjs.org/gopd/-/gopd-1.2.0.tgz",
|
||||
"integrity": "sha512-ZUKRh6/kUFoAiTAtTYPZJ3hw9wNxx+BIBOijnlG9PnrJsCcSjs1wyyD6vJpaYtgnzDrKYRSqf3OO6Rfa93xsRg==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@ -217,7 +218,7 @@
|
||||
},
|
||||
"node_modules/has-symbols": {
|
||||
"version": "1.1.0",
|
||||
"resolved": "https://registry.npmmirror.com/has-symbols/-/has-symbols-1.1.0.tgz",
|
||||
"resolved": "https://registry.npmjs.org/has-symbols/-/has-symbols-1.1.0.tgz",
|
||||
"integrity": "sha512-1cDNdwJ2Jaohmb3sg4OmKaMBwuC48sYni5HUw2DvsC8LjGTLK9h+eb1X6RyuOHe4hT0ULCW68iomhjUoKUqlPQ==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@ -229,7 +230,7 @@
|
||||
},
|
||||
"node_modules/has-tostringtag": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmmirror.com/has-tostringtag/-/has-tostringtag-1.0.2.tgz",
|
||||
"resolved": "https://registry.npmjs.org/has-tostringtag/-/has-tostringtag-1.0.2.tgz",
|
||||
"integrity": "sha512-NqADB8VjPFLM2V0VvHUewwwsw0ZWBaIdgo+ieHtK3hasLz4qeCRjYcqfB6AQrBggRKppKF8L52/VqdVsO47Dlw==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@ -244,7 +245,7 @@
|
||||
},
|
||||
"node_modules/hasown": {
|
||||
"version": "2.0.2",
|
||||
"resolved": "https://registry.npmmirror.com/hasown/-/hasown-2.0.2.tgz",
|
||||
"resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.2.tgz",
|
||||
"integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@ -256,7 +257,7 @@
|
||||
},
|
||||
"node_modules/math-intrinsics": {
|
||||
"version": "1.1.0",
|
||||
"resolved": "https://registry.npmmirror.com/math-intrinsics/-/math-intrinsics-1.1.0.tgz",
|
||||
"resolved": "https://registry.npmjs.org/math-intrinsics/-/math-intrinsics-1.1.0.tgz",
|
||||
"integrity": "sha512-/IXtbwEk5HTPyEwyKX6hGkYXxM9nbj64B+ilVJnC/R6B0pH5G4V3b0pVbL7DBj4tkhBAppbQUlf6F6Xl9LHu1g==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@ -265,7 +266,7 @@
|
||||
},
|
||||
"node_modules/mime-db": {
|
||||
"version": "1.52.0",
|
||||
"resolved": "https://registry.npmmirror.com/mime-db/-/mime-db-1.52.0.tgz",
|
||||
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
|
||||
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@ -274,7 +275,7 @@
|
||||
},
|
||||
"node_modules/mime-types": {
|
||||
"version": "2.1.35",
|
||||
"resolved": "https://registry.npmmirror.com/mime-types/-/mime-types-2.1.35.tgz",
|
||||
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
|
||||
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
|
||||
6
web/src/assets/svg/llm/cometapi.svg
Normal file
6
web/src/assets/svg/llm/cometapi.svg
Normal file
File diff suppressed because one or more lines are too long
|
After Width: | Height: | Size: 96 KiB |
8
web/src/assets/svg/llm/token-pony.svg
Normal file
8
web/src/assets/svg/llm/token-pony.svg
Normal file
File diff suppressed because one or more lines are too long
|
After Width: | Height: | Size: 16 KiB |
@ -139,7 +139,7 @@ function EmbedDialog({
|
||||
</form>
|
||||
</Form>
|
||||
<div>
|
||||
<span>Embed code</span>
|
||||
<span>{t('embedCode', { keyPrefix: 'search' })}</span>
|
||||
<HightLightMarkdown>{text}</HightLightMarkdown>
|
||||
</div>
|
||||
<div className=" font-medium mt-4 mb-1">
|
||||
|
||||
@ -17,7 +17,7 @@ export function MaxTokenNumberFormField({ max = 2048, initialValue }: IProps) {
|
||||
tooltip={t('chunkTokenNumberTip')}
|
||||
max={max}
|
||||
defaultValue={initialValue ?? 0}
|
||||
layout={FormLayout.Horizontal}
|
||||
layout={FormLayout.Vertical}
|
||||
></SliderInputFormField>
|
||||
);
|
||||
}
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
import { FormLayout } from '@/constants/form';
|
||||
import { cn } from '@/lib/utils';
|
||||
import { ReactNode } from 'react';
|
||||
import { ReactNode, useMemo } from 'react';
|
||||
import { useFormContext } from 'react-hook-form';
|
||||
import { SingleFormSlider } from './ui/dual-range-slider';
|
||||
import {
|
||||
@ -40,7 +40,7 @@ export function SliderInputFormField({
|
||||
}: SliderInputFormFieldProps) {
|
||||
const form = useFormContext();
|
||||
|
||||
const isHorizontal = layout === FormLayout.Horizontal;
|
||||
const isHorizontal = useMemo(() => layout === FormLayout.Vertical, [layout]);
|
||||
|
||||
return (
|
||||
<FormField
|
||||
|
||||
@ -54,7 +54,9 @@ export enum LLMFactory {
|
||||
DeepInfra = 'DeepInfra',
|
||||
Grok = 'Grok',
|
||||
XAI = 'xAI',
|
||||
TokenPony = 'TokenPony',
|
||||
Meituan = 'Meituan',
|
||||
CometAPI = 'CometAPI',
|
||||
}
|
||||
|
||||
// Please lowercase the file name
|
||||
@ -114,5 +116,7 @@ export const IconMap = {
|
||||
[LLMFactory.DeepInfra]: 'deepinfra',
|
||||
[LLMFactory.Grok]: 'grok',
|
||||
[LLMFactory.XAI]: 'xai',
|
||||
[LLMFactory.TokenPony]: 'token-pony',
|
||||
[LLMFactory.Meituan]: 'longcat',
|
||||
[LLMFactory.CometAPI]: 'cometapi',
|
||||
};
|
||||
|
||||
@ -136,6 +136,7 @@ export const useSelectLlmOptionsByModelType = () => {
|
||||
};
|
||||
};
|
||||
|
||||
// Merge different types of models from the same manufacturer under one manufacturer
|
||||
export const useComposeLlmOptionsByModelTypes = (
|
||||
modelTypes: LlmModelType[],
|
||||
) => {
|
||||
@ -155,7 +156,12 @@ export const useComposeLlmOptionsByModelTypes = (
|
||||
options.forEach((x) => {
|
||||
const item = pre.find((y) => y.label === x.label);
|
||||
if (item) {
|
||||
item.options.push(...x.options);
|
||||
x.options.forEach((y) => {
|
||||
// A model that is both an image2text and speech2text model
|
||||
if (!item.options.some((z) => z.value === y.value)) {
|
||||
item.options.push(y);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
pre.push(x);
|
||||
}
|
||||
|
||||
@ -155,7 +155,7 @@ export default {
|
||||
similarityThreshold: '相似度阈值',
|
||||
similarityThresholdTip:
|
||||
'我们使用混合相似度得分来评估两行文本之间的距离。 它是加权关键词相似度和向量余弦相似度。 如果查询和块之间的相似度小于此阈值,则该块将被过滤掉。默认设置为 0.2,也就是说文本块的混合相似度得分至少 20 才会被召回。',
|
||||
vectorSimilarityWeight: '相似度相似度权重',
|
||||
vectorSimilarityWeight: '向量相似度权重',
|
||||
vectorSimilarityWeightTip:
|
||||
'我们使用混合相似性评分来评估两行文本之间的距离。它是加权关键字相似性和矢量余弦相似性或rerank得分(0〜1)。两个权重的总和为1.0。',
|
||||
keywordSimilarityWeight: '关键词相似度权重',
|
||||
@ -601,7 +601,7 @@ General:实体和关系提取提示来自 GitHub - microsoft/graphrag:基于
|
||||
answerTitle: '智能回答',
|
||||
multiTurn: '多轮对话优化',
|
||||
multiTurnTip:
|
||||
'在多轮对话的中,对去知识库查询的问题进行优化。会调用大模型额外消耗token。',
|
||||
'在多轮对话时,对查询问题根据上下文进行优化。会调用大模型额外消耗 token。',
|
||||
howUseId: '如何使用聊天ID?',
|
||||
description: '助理描述',
|
||||
descriptionPlaceholder:
|
||||
@ -632,6 +632,8 @@ General:实体和关系提取提示来自 GitHub - microsoft/graphrag:基于
|
||||
},
|
||||
cancel: '取消',
|
||||
chatSetting: '聊天设置',
|
||||
avatarHidden: '隐藏头像',
|
||||
locale: '地区',
|
||||
},
|
||||
setting: {
|
||||
profile: '概要',
|
||||
|
||||
@ -62,7 +62,7 @@ function AgentChatBox() {
|
||||
|
||||
return (
|
||||
<>
|
||||
<section className="flex flex-1 flex-col px-5 h-[90vh]">
|
||||
<section className="flex flex-1 flex-col px-5 min-h-0 pb-4">
|
||||
<div className="flex-1 overflow-auto" ref={messageContainerRef}>
|
||||
<div>
|
||||
{/* <Spin spinning={sendLoading}> */}
|
||||
|
||||
@ -9,7 +9,7 @@ export function ChatSheet({ hideModal }: IModalProps<any>) {
|
||||
return (
|
||||
<Sheet open modal={false} onOpenChange={hideModal}>
|
||||
<SheetContent
|
||||
className={cn('top-20 p-0')}
|
||||
className={cn('top-20 bottom-0 p-0 flex flex-col h-auto')}
|
||||
onInteractOutside={(e) => e.preventDefault()}
|
||||
>
|
||||
<SheetTitle className="hidden"></SheetTitle>
|
||||
|
||||
@ -145,7 +145,7 @@ function AgentForm({ node }: INextOperatorForm) {
|
||||
<PromptEditor
|
||||
{...field}
|
||||
placeholder={t('flow.messagePlaceholder')}
|
||||
showToolbar={false}
|
||||
showToolbar={true}
|
||||
extraOptions={extraOptions}
|
||||
></PromptEditor>
|
||||
</FormControl>
|
||||
@ -166,7 +166,7 @@ function AgentForm({ node }: INextOperatorForm) {
|
||||
<section>
|
||||
<PromptEditor
|
||||
{...field}
|
||||
showToolbar={false}
|
||||
showToolbar={true}
|
||||
></PromptEditor>
|
||||
</section>
|
||||
</FormControl>
|
||||
|
||||
@ -2133,7 +2133,7 @@ export const QWeatherTimePeriodOptions = [
|
||||
'30d',
|
||||
];
|
||||
|
||||
export const ExeSQLOptions = ['mysql', 'postgresql', 'mariadb', 'mssql'].map(
|
||||
export const ExeSQLOptions = ['mysql', 'postgres', 'mariadb', 'mssql'].map(
|
||||
(x) => ({
|
||||
label: upperFirst(x),
|
||||
value: x,
|
||||
|
||||
@ -2133,7 +2133,7 @@ export const QWeatherTimePeriodOptions = [
|
||||
'30d',
|
||||
];
|
||||
|
||||
export const ExeSQLOptions = ['mysql', 'postgresql', 'mariadb', 'mssql'].map(
|
||||
export const ExeSQLOptions = ['mysql', 'postgres', 'mariadb', 'mssql'].map(
|
||||
(x) => ({
|
||||
label: upperFirst(x),
|
||||
value: x,
|
||||
|
||||
@ -70,16 +70,15 @@ export function EmbeddingModelItem() {
|
||||
name={'embd_id'}
|
||||
render={({ field }) => (
|
||||
<FormItem className=" items-center space-y-0 ">
|
||||
<div className="">
|
||||
<div className="flex items-center">
|
||||
<FormLabel
|
||||
required
|
||||
tooltip={t('embeddingModelTip')}
|
||||
className="text-sm whitespace-wrap "
|
||||
className="text-sm whitespace-wrap w-1/4"
|
||||
>
|
||||
<span className="text-destructive mr-1"> *</span>
|
||||
{t('embeddingModel')}
|
||||
</FormLabel>
|
||||
<div className="text-muted-foreground">
|
||||
<div className="text-muted-foreground w-3/4">
|
||||
<FormControl>
|
||||
<RAGFlowSelect
|
||||
{...field}
|
||||
|
||||
@ -9,13 +9,7 @@ import { cn, formatBytes } from '@/lib/utils';
|
||||
import { Routes } from '@/routes';
|
||||
import { formatPureDate } from '@/utils/date';
|
||||
import { isEmpty } from 'lodash';
|
||||
import {
|
||||
Banknote,
|
||||
Database,
|
||||
DatabaseZap,
|
||||
FileSearch2,
|
||||
GitGraph,
|
||||
} from 'lucide-react';
|
||||
import { Banknote, Database, FileSearch2, GitGraph } from 'lucide-react';
|
||||
import { useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useHandleMenuClick } from './hooks';
|
||||
@ -34,11 +28,11 @@ export function SideBar({ refreshCount }: PropType) {
|
||||
|
||||
const items = useMemo(() => {
|
||||
const list = [
|
||||
{
|
||||
icon: DatabaseZap,
|
||||
label: t(`knowledgeDetails.overview`),
|
||||
key: Routes.DataSetOverview,
|
||||
},
|
||||
// {
|
||||
// icon: DatabaseZap,
|
||||
// label: t(`knowledgeDetails.overview`),
|
||||
// key: Routes.DataSetOverview,
|
||||
// },
|
||||
{
|
||||
icon: Database,
|
||||
label: t(`knowledgeDetails.dataset`),
|
||||
|
||||
@ -17,16 +17,9 @@ import {
|
||||
import { Input } from '@/components/ui/input';
|
||||
import { IModalProps } from '@/interfaces/common';
|
||||
import { zodResolver } from '@hookform/resolvers/zod';
|
||||
import { useForm, useWatch } from 'react-hook-form';
|
||||
import { useForm } from 'react-hook-form';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { z } from 'zod';
|
||||
import {
|
||||
DataExtractKnowledgeItem,
|
||||
DataFlowItem,
|
||||
EmbeddingModelItem,
|
||||
ParseTypeItem,
|
||||
TeamItem,
|
||||
} from '../dataset/dataset-setting/configuration/common-item';
|
||||
|
||||
const FormId = 'dataset-creating-form';
|
||||
|
||||
@ -54,10 +47,6 @@ export function InputForm({ onOk }: IModalProps<any>) {
|
||||
function onSubmit(data: z.infer<typeof FormSchema>) {
|
||||
onOk?.(data.name);
|
||||
}
|
||||
const parseType = useWatch({
|
||||
control: form.control,
|
||||
name: 'parseType',
|
||||
});
|
||||
return (
|
||||
<Form {...form}>
|
||||
<form
|
||||
@ -84,15 +73,6 @@ export function InputForm({ onOk }: IModalProps<any>) {
|
||||
</FormItem>
|
||||
)}
|
||||
/>
|
||||
<EmbeddingModelItem line={2} />
|
||||
<ParseTypeItem />
|
||||
{parseType === 2 && (
|
||||
<>
|
||||
<DataFlowItem />
|
||||
<DataExtractKnowledgeItem />
|
||||
<TeamItem />
|
||||
</>
|
||||
)}
|
||||
</form>
|
||||
</Form>
|
||||
);
|
||||
|
||||
123
web/src/pages/datasets/dataset-dataflow-creating-dialog.tsx
Normal file
123
web/src/pages/datasets/dataset-dataflow-creating-dialog.tsx
Normal file
@ -0,0 +1,123 @@
|
||||
import { ButtonLoading } from '@/components/ui/button';
|
||||
import {
|
||||
Dialog,
|
||||
DialogContent,
|
||||
DialogFooter,
|
||||
DialogHeader,
|
||||
DialogTitle,
|
||||
} from '@/components/ui/dialog';
|
||||
import {
|
||||
Form,
|
||||
FormControl,
|
||||
FormField,
|
||||
FormItem,
|
||||
FormLabel,
|
||||
FormMessage,
|
||||
} from '@/components/ui/form';
|
||||
import { Input } from '@/components/ui/input';
|
||||
import { IModalProps } from '@/interfaces/common';
|
||||
import { zodResolver } from '@hookform/resolvers/zod';
|
||||
import { useForm, useWatch } from 'react-hook-form';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { z } from 'zod';
|
||||
import {
|
||||
DataExtractKnowledgeItem,
|
||||
DataFlowItem,
|
||||
EmbeddingModelItem,
|
||||
ParseTypeItem,
|
||||
TeamItem,
|
||||
} from '../dataset/dataset-setting/configuration/common-item';
|
||||
|
||||
const FormId = 'dataset-creating-form';
|
||||
|
||||
export function InputForm({ onOk }: IModalProps<any>) {
|
||||
const { t } = useTranslation();
|
||||
|
||||
const FormSchema = z.object({
|
||||
name: z
|
||||
.string()
|
||||
.min(1, {
|
||||
message: t('knowledgeList.namePlaceholder'),
|
||||
})
|
||||
.trim(),
|
||||
parseType: z.number().optional(),
|
||||
});
|
||||
|
||||
const form = useForm<z.infer<typeof FormSchema>>({
|
||||
resolver: zodResolver(FormSchema),
|
||||
defaultValues: {
|
||||
name: '',
|
||||
parseType: 1,
|
||||
},
|
||||
});
|
||||
|
||||
function onSubmit(data: z.infer<typeof FormSchema>) {
|
||||
onOk?.(data.name);
|
||||
}
|
||||
const parseType = useWatch({
|
||||
control: form.control,
|
||||
name: 'parseType',
|
||||
});
|
||||
return (
|
||||
<Form {...form}>
|
||||
<form
|
||||
onSubmit={form.handleSubmit(onSubmit)}
|
||||
className="space-y-6"
|
||||
id={FormId}
|
||||
>
|
||||
<FormField
|
||||
control={form.control}
|
||||
name="name"
|
||||
render={({ field }) => (
|
||||
<FormItem>
|
||||
<FormLabel>
|
||||
<span className="text-destructive mr-1"> *</span>
|
||||
{t('knowledgeList.name')}
|
||||
</FormLabel>
|
||||
<FormControl>
|
||||
<Input
|
||||
placeholder={t('knowledgeList.namePlaceholder')}
|
||||
{...field}
|
||||
/>
|
||||
</FormControl>
|
||||
<FormMessage />
|
||||
</FormItem>
|
||||
)}
|
||||
/>
|
||||
<EmbeddingModelItem line={2} />
|
||||
<ParseTypeItem />
|
||||
{parseType === 2 && (
|
||||
<>
|
||||
<DataFlowItem />
|
||||
<DataExtractKnowledgeItem />
|
||||
<TeamItem />
|
||||
</>
|
||||
)}
|
||||
</form>
|
||||
</Form>
|
||||
);
|
||||
}
|
||||
|
||||
export function DatasetCreatingDialog({
|
||||
hideModal,
|
||||
onOk,
|
||||
loading,
|
||||
}: IModalProps<any>) {
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<Dialog open onOpenChange={hideModal}>
|
||||
<DialogContent className="sm:max-w-[425px]">
|
||||
<DialogHeader>
|
||||
<DialogTitle>{t('knowledgeList.createKnowledgeBase')}</DialogTitle>
|
||||
</DialogHeader>
|
||||
<InputForm onOk={onOk}></InputForm>
|
||||
<DialogFooter>
|
||||
<ButtonLoading type="submit" form={FormId} loading={loading}>
|
||||
{t('common.save')}
|
||||
</ButtonLoading>
|
||||
</DialogFooter>
|
||||
</DialogContent>
|
||||
</Dialog>
|
||||
);
|
||||
}
|
||||
@ -2911,7 +2911,7 @@ export const QWeatherTimePeriodOptions = [
|
||||
'30d',
|
||||
];
|
||||
|
||||
export const ExeSQLOptions = ['mysql', 'postgresql', 'mariadb', 'mssql'].map(
|
||||
export const ExeSQLOptions = ['mysql', 'postgres', 'mariadb', 'mssql'].map(
|
||||
(x) => ({
|
||||
label: upperFirst(x),
|
||||
value: x,
|
||||
|
||||
@ -89,6 +89,18 @@ const ApiKeyModal = ({
|
||||
/>
|
||||
</Form.Item>
|
||||
)}
|
||||
{llmFactory?.toLowerCase() === 'Anthropic'.toLowerCase() && (
|
||||
<Form.Item<FieldType>
|
||||
label={t('baseUrl')}
|
||||
name="base_url"
|
||||
tooltip={t('baseUrlTip')}
|
||||
>
|
||||
<Input
|
||||
placeholder="https://api.anthropic.com/v1"
|
||||
onKeyDown={handleKeyDown}
|
||||
/>
|
||||
</Form.Item>
|
||||
)}
|
||||
{llmFactory?.toLowerCase() === 'Minimax'.toLowerCase() && (
|
||||
<Form.Item<FieldType> label={'Group ID'} name="group_id">
|
||||
<Input />
|
||||
|
||||
@ -37,6 +37,7 @@ const llmFactoryToUrlMap = {
|
||||
'https://huggingface.co/docs/text-embeddings-inference/quick_tour',
|
||||
[LLMFactory.GPUStack]: 'https://docs.gpustack.ai/latest/quickstart',
|
||||
[LLMFactory.VLLM]: 'https://docs.vllm.ai/en/latest/',
|
||||
[LLMFactory.TokenPony]: 'https://docs.tokenpony.cn/#/',
|
||||
};
|
||||
type LlmFactory = keyof typeof llmFactoryToUrlMap;
|
||||
|
||||
|
||||
@ -1,7 +1,10 @@
|
||||
import { IModalManagerChildrenProps } from '@/components/modal-manager';
|
||||
import { LlmModelType } from '@/constants/knowledge';
|
||||
import { useTranslate } from '@/hooks/common-hooks';
|
||||
import { ISystemModelSettingSavingParams } from '@/hooks/llm-hooks';
|
||||
import {
|
||||
ISystemModelSettingSavingParams,
|
||||
useComposeLlmOptionsByModelTypes,
|
||||
} from '@/hooks/llm-hooks';
|
||||
import { Form, Modal, Select } from 'antd';
|
||||
import { useEffect } from 'react';
|
||||
import { useFetchSystemModelSettingOnMount } from '../hooks';
|
||||
@ -43,6 +46,11 @@ const SystemModelSettingModal = ({
|
||||
|
||||
const onFormLayoutChange = () => {};
|
||||
|
||||
const modelOptions = useComposeLlmOptionsByModelTypes([
|
||||
LlmModelType.Chat,
|
||||
LlmModelType.Image2text,
|
||||
]);
|
||||
|
||||
return (
|
||||
<Modal
|
||||
title={t('systemModelSettings')}
|
||||
@ -58,14 +66,7 @@ const SystemModelSettingModal = ({
|
||||
name="llm_id"
|
||||
tooltip={t('chatModelTip')}
|
||||
>
|
||||
<Select
|
||||
options={[
|
||||
...allOptions[LlmModelType.Chat],
|
||||
...allOptions[LlmModelType.Image2text],
|
||||
]}
|
||||
allowClear
|
||||
showSearch
|
||||
/>
|
||||
<Select options={modelOptions} allowClear showSearch />
|
||||
</Form.Item>
|
||||
<Form.Item
|
||||
label={t('embeddingModel')}
|
||||
|
||||
@ -44,6 +44,7 @@ const orderFactoryList = [
|
||||
LLMFactory.Ollama,
|
||||
LLMFactory.Xinference,
|
||||
LLMFactory.Ai302,
|
||||
LLMFactory.CometAPI,
|
||||
];
|
||||
|
||||
export const sortLLmFactoryListBySpecifiedOrder = (list: IFactory[]) => {
|
||||
|
||||
Reference in New Issue
Block a user