Compare commits

..

1 Commits

Author SHA1 Message Date
cd0216cce3 Revert "Refa: make RAGFlow more asynchronous 2 (#11664)"
This reverts commit 627c11c429.
2025-12-02 19:34:56 +08:00
208 changed files with 561771 additions and 5538 deletions

View File

@ -127,14 +127,6 @@ jobs:
fi
fi
- name: Run unit test
run: |
uv sync --python 3.10 --group test --frozen
source .venv/bin/activate
which pytest || echo "pytest not in PATH"
echo "Start to run unit test"
python3 run_tests.py
- name: Build ragflow:nightly
run: |
RUNNER_WORKSPACE_PREFIX=${RUNNER_WORKSPACE_PREFIX:-${HOME}}

View File

@ -10,10 +10,11 @@ WORKDIR /ragflow
# Copy models downloaded via download_deps.py
RUN mkdir -p /ragflow/rag/res/deepdoc /root/.ragflow
RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/huggingface.co,target=/huggingface.co \
cp /huggingface.co/InfiniFlow/huqie/huqie.txt.trie /ragflow/rag/res/ && \
tar --exclude='.*' -cf - \
/huggingface.co/InfiniFlow/text_concat_xgb_v1.0 \
/huggingface.co/InfiniFlow/deepdoc \
| tar -xf - --strip-components=3 -C /ragflow/rag/res/deepdoc
| tar -xf - --strip-components=3 -C /ragflow/rag/res/deepdoc
# https://github.com/chrismattmann/tika-python
# This is the only way to run python-tika without internet access. Without this set, the default is to check the tika version and pull latest every time from Apache.

View File

@ -14,5 +14,5 @@
# limitations under the License.
#
# from beartype.claw import beartype_this_package
# beartype_this_package()
from beartype.claw import beartype_this_package
beartype_this_package()

View File

@ -16,7 +16,6 @@
import asyncio
import base64
import inspect
import binascii
import json
import logging
import re
@ -29,9 +28,7 @@ from typing import Any, Union, Tuple
from agent.component import component_class
from agent.component.base import ComponentBase
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMBundle
from api.db.services.task_service import has_canceled
from common.constants import LLMType
from common.misc_utils import get_uuid, hash_str2int
from common.exceptions import TaskCanceledException
from rag.prompts.generator import chunks_format
@ -91,6 +88,9 @@ class Graph:
def load(self):
self.components = self.dsl["components"]
cpn_nms = set([])
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")()
@ -356,6 +356,8 @@ class Canvas(Graph):
self.globals[k] = ""
else:
self.globals[k] = ""
print(self.globals)
async def run(self, **kwargs):
st = time.perf_counter()
@ -413,19 +415,13 @@ class Canvas(Graph):
loop = asyncio.get_running_loop()
tasks = []
def _run_async_in_thread(coro_func, **call_kwargs):
return asyncio.run(coro_func(**call_kwargs))
i = f
while i < t:
cpn = self.get_component_obj(self.path[i])
task_fn = None
call_kwargs = None
if cpn.component_name.lower() in ["begin", "userfillup"]:
call_kwargs = {"inputs": kwargs.get("inputs", {})}
task_fn = cpn.invoke
task_fn = partial(cpn.invoke, inputs=kwargs.get("inputs", {}))
i += 1
else:
for _, ele in cpn.get_input_elements().items():
@ -434,18 +430,13 @@ class Canvas(Graph):
t -= 1
break
else:
call_kwargs = cpn.get_input()
task_fn = cpn.invoke
task_fn = partial(cpn.invoke, **cpn.get_input())
i += 1
if task_fn is None:
continue
invoke_async = getattr(cpn, "invoke_async", None)
if invoke_async and asyncio.iscoroutinefunction(invoke_async):
tasks.append(loop.run_in_executor(self._thread_pool, partial(_run_async_in_thread, invoke_async, **(call_kwargs or {}))))
else:
tasks.append(loop.run_in_executor(self._thread_pool, partial(task_fn, **(call_kwargs or {}))))
tasks.append(loop.run_in_executor(self._thread_pool, task_fn))
if tasks:
await asyncio.gather(*tasks)
@ -465,7 +456,6 @@ class Canvas(Graph):
self.error = ""
idx = len(self.path) - 1
partials = []
tts_mdl = None
while idx < len(self.path):
to = len(self.path)
for i in range(idx, to):
@ -483,63 +473,41 @@ class Canvas(Graph):
cpn = self.get_component(self.path[i])
cpn_obj = self.get_component_obj(self.path[i])
if cpn_obj.component_name.lower() == "message":
if cpn_obj.get_param("auto_play"):
tts_mdl = LLMBundle(self._tenant_id, LLMType.TTS)
if isinstance(cpn_obj.output("content"), partial):
_m = ""
buff_m = ""
stream = cpn_obj.output("content")()
async def _process_stream(m):
nonlocal buff_m, _m, tts_mdl
if not m:
return
if m == "<think>":
return decorate("message", {"content": "", "start_to_think": True})
elif m == "</think>":
return decorate("message", {"content": "", "end_to_think": True})
buff_m += m
_m += m
if len(buff_m) > 16:
ev = decorate(
"message",
{
"content": m,
"audio_binary": self.tts(tts_mdl, buff_m)
}
)
buff_m = ""
return ev
return decorate("message", {"content": m})
if inspect.isasyncgen(stream):
async for m in stream:
ev= await _process_stream(m)
if ev:
yield ev
if not m:
continue
if m == "<think>":
yield decorate("message", {"content": "", "start_to_think": True})
elif m == "</think>":
yield decorate("message", {"content": "", "end_to_think": True})
else:
yield decorate("message", {"content": m})
_m += m
else:
for m in stream:
ev= await _process_stream(m)
if ev:
yield ev
if buff_m:
yield decorate("message", {"content": "", "audio_binary": self.tts(tts_mdl, buff_m)})
buff_m = ""
if not m:
continue
if m == "<think>":
yield decorate("message", {"content": "", "start_to_think": True})
elif m == "</think>":
yield decorate("message", {"content": "", "end_to_think": True})
else:
yield decorate("message", {"content": m})
_m += m
cpn_obj.set_output("content", _m)
cite = re.search(r"\[ID:[ 0-9]+\]", _m)
else:
yield decorate("message", {"content": cpn_obj.output("content")})
cite = re.search(r"\[ID:[ 0-9]+\]", cpn_obj.output("content"))
message_end = {}
if isinstance(cpn_obj.output("attachment"), dict):
message_end["attachment"] = cpn_obj.output("attachment")
if cite:
message_end["reference"] = self.get_reference()
yield decorate("message_end", message_end)
if isinstance(cpn_obj.output("attachment"), tuple):
yield decorate("message", {"attachment": cpn_obj.output("attachment")})
yield decorate("message_end", {"reference": self.get_reference() if cite else None})
while partials:
_cpn_obj = self.get_component_obj(partials[0])
@ -650,50 +618,6 @@ class Canvas(Graph):
return False
return True
def tts(self,tts_mdl, text):
def clean_tts_text(text: str) -> str:
if not text:
return ""
text = text.encode("utf-8", "ignore").decode("utf-8", "ignore")
text = re.sub(r"[\x00-\x08\x0B-\x0C\x0E-\x1F\x7F]", "", text)
emoji_pattern = re.compile(
"[\U0001F600-\U0001F64F"
"\U0001F300-\U0001F5FF"
"\U0001F680-\U0001F6FF"
"\U0001F1E0-\U0001F1FF"
"\U00002700-\U000027BF"
"\U0001F900-\U0001F9FF"
"\U0001FA70-\U0001FAFF"
"\U0001FAD0-\U0001FAFF]+",
flags=re.UNICODE
)
text = emoji_pattern.sub("", text)
text = re.sub(r"\s+", " ", text).strip()
MAX_LEN = 500
if len(text) > MAX_LEN:
text = text[:MAX_LEN]
return text
if not tts_mdl or not text:
return None
text = clean_tts_text(text)
if not text:
return None
bin = b""
try:
for chunk in tts_mdl.tts(text):
bin += chunk
except Exception as e:
logging.error(f"TTS failed: {e}, text={text!r}")
return None
return binascii.hexlify(bin).decode("utf-8")
def get_history(self, window_size):
convs = []
if window_size <= 0:

View File

@ -13,11 +13,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import json
import logging
import os
import re
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from functools import partial
from typing import Any
@ -29,8 +29,8 @@ from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.mcp_server_service import MCPServerService
from common.connection_utils import timeout
from rag.prompts.generator import next_step_async, COMPLETE_TASK, analyze_task_async, \
citation_prompt, reflect_async, kb_prompt, citation_plus, full_question, message_fit_in, structured_output_prompt
from rag.prompts.generator import next_step, COMPLETE_TASK, analyze_task, \
citation_prompt, reflect, rank_memories, kb_prompt, citation_plus, full_question, message_fit_in, structured_output_prompt
from common.mcp_tool_call_conn import MCPToolCallSession, mcp_tool_metadata_to_openai_tool
from agent.component.llm import LLMParam, LLM
@ -153,19 +153,16 @@ class Agent(LLM, ToolBase):
return None
async def _force_format_to_schema_async(self, text: str, schema_prompt: str) -> str:
def _force_format_to_schema(self, text: str, schema_prompt: str) -> str:
fmt_msgs = [
{"role": "system", "content": schema_prompt + "\nIMPORTANT: Output ONLY valid JSON. No markdown, no extra text."},
{"role": "user", "content": text},
]
_, fmt_msgs = message_fit_in(fmt_msgs, int(self.chat_mdl.max_length * 0.97))
return await self._generate_async(fmt_msgs)
def _invoke(self, **kwargs):
return asyncio.run(self._invoke_async(**kwargs))
return self._generate(fmt_msgs)
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 20*60)))
async def _invoke_async(self, **kwargs):
def _invoke(self, **kwargs):
if self.check_if_canceled("Agent processing"):
return
@ -184,7 +181,7 @@ class Agent(LLM, ToolBase):
if not self.tools:
if self.check_if_canceled("Agent processing"):
return
return await LLM._invoke_async(self, **kwargs)
return LLM._invoke(self, **kwargs)
prompt, msg, user_defined_prompt = self._prepare_prompt_variables()
output_schema = self._get_output_schema()
@ -196,13 +193,13 @@ class Agent(LLM, ToolBase):
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not (ex and ex["goto"]) and not output_schema:
self.set_output("content", partial(self.stream_output_with_tools_async, prompt, deepcopy(msg), user_defined_prompt))
self.set_output("content", partial(self.stream_output_with_tools, prompt, msg, user_defined_prompt))
return
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
use_tools = []
ans = ""
async for delta_ans, _tk in self._react_with_tools_streamly_async(prompt, msg, use_tools, user_defined_prompt,schema_prompt=schema_prompt):
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt,schema_prompt=schema_prompt):
if self.check_if_canceled("Agent processing"):
return
ans += delta_ans
@ -230,7 +227,7 @@ class Agent(LLM, ToolBase):
return obj
except Exception:
error = "The answer cannot be parsed as JSON"
ans = await self._force_format_to_schema_async(ans, schema_prompt)
ans = self._force_format_to_schema(ans, schema_prompt)
if ans.find("**ERROR**") >= 0:
continue
@ -242,11 +239,11 @@ class Agent(LLM, ToolBase):
self.set_output("use_tools", use_tools)
return ans
async def stream_output_with_tools_async(self, prompt, msg, user_defined_prompt={}):
def stream_output_with_tools(self, prompt, msg, user_defined_prompt={}):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer_without_toolcall = ""
use_tools = []
async for delta_ans, _ in self._react_with_tools_streamly_async(prompt, msg, use_tools, user_defined_prompt):
for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
if self.check_if_canceled("Agent streaming"):
return
@ -264,23 +261,39 @@ class Agent(LLM, ToolBase):
if use_tools:
self.set_output("use_tools", use_tools)
async def _react_with_tools_streamly_async(self, prompt, history: list[dict], use_tools, user_defined_prompt={}, schema_prompt: str = ""):
def _gen_citations(self, text):
retrievals = self._canvas.get_reference()
retrievals = {"chunks": list(retrievals["chunks"].values()), "doc_aggs": list(retrievals["doc_aggs"].values())}
formated_refer = kb_prompt(retrievals, self.chat_mdl.max_length, True)
for delta_ans in self._generate_streamly([{"role": "system", "content": citation_plus("\n\n".join(formated_refer))},
{"role": "user", "content": text}
]):
yield delta_ans
def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools, user_defined_prompt={}, schema_prompt: str = ""):
token_count = 0
tool_metas = self.tool_meta
hist = deepcopy(history)
last_calling = ""
if len(hist) > 3:
st = timer()
user_request = await asyncio.to_thread(full_question, messages=history, chat_mdl=self.chat_mdl)
user_request = full_question(messages=history, chat_mdl=self.chat_mdl)
self.callback("Multi-turn conversation optimization", {}, user_request, elapsed_time=timer()-st)
else:
user_request = history[-1]["content"]
async def use_tool_async(name, args):
nonlocal hist, use_tools, last_calling
def use_tool(name, args):
nonlocal hist, use_tools, token_count,last_calling,user_request
logging.info(f"{last_calling=} == {name=}")
# Summarize of function calling
#if all([
# isinstance(self.toolcall_session.get_tool_obj(name), Agent),
# last_calling,
# last_calling != name
#]):
# self.toolcall_session.get_tool_obj(name).add2system_prompt(f"The chat history with other agents are as following: \n" + self.get_useful_memory(user_request, str(args["user_prompt"]),user_defined_prompt))
last_calling = name
tool_response = await self.toolcall_session.tool_call_async(name, args)
tool_response = self.toolcall_session.tool_call(name, args)
use_tools.append({
"name": name,
"arguments": args,
@ -291,7 +304,7 @@ class Agent(LLM, ToolBase):
return name, tool_response
async def complete():
def complete():
nonlocal hist
need2cite = self._param.cite and self._canvas.get_reference()["chunks"] and self._id.find("-->") < 0
if schema_prompt:
@ -309,7 +322,7 @@ class Agent(LLM, ToolBase):
if len(hist) > 12:
_hist = [hist[0], hist[1], *hist[-10:]]
entire_txt = ""
async for delta_ans in self._generate_streamly_async(_hist):
for delta_ans in self._generate_streamly(_hist):
if not need2cite or cited:
yield delta_ans, 0
entire_txt += delta_ans
@ -318,7 +331,7 @@ class Agent(LLM, ToolBase):
st = timer()
txt = ""
async for delta_ans in self._gen_citations_async(entire_txt):
for delta_ans in self._gen_citations(entire_txt):
if self.check_if_canceled("Agent streaming"):
return
yield delta_ans, 0
@ -333,14 +346,14 @@ class Agent(LLM, ToolBase):
hist.append({"role": "user", "content": content})
st = timer()
task_desc = await analyze_task_async(self.chat_mdl, prompt, user_request, tool_metas, user_defined_prompt)
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas, user_defined_prompt)
self.callback("analyze_task", {}, task_desc, elapsed_time=timer()-st)
for _ in range(self._param.max_rounds + 1):
if self.check_if_canceled("Agent streaming"):
return
response, tk = await next_step_async(self.chat_mdl, hist, tool_metas, task_desc, user_defined_prompt)
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc, user_defined_prompt)
# self.callback("next_step", {}, str(response)[:256]+"...")
token_count += tk or 0
token_count += tk
hist.append({"role": "assistant", "content": response})
try:
functions = json_repair.loads(re.sub(r"```.*", "", response))
@ -349,24 +362,23 @@ class Agent(LLM, ToolBase):
for f in functions:
if not isinstance(f, dict):
raise TypeError(f"An object type should be returned, but `{f}`")
with ThreadPoolExecutor(max_workers=5) as executor:
thr = []
for func in functions:
name = func["name"]
args = func["arguments"]
if name == COMPLETE_TASK:
append_user_content(hist, f"Respond with a formal answer. FORGET(DO NOT mention) about `{COMPLETE_TASK}`. The language for the response MUST be as the same as the first user request.\n")
for txt, tkcnt in complete():
yield txt, tkcnt
return
tool_tasks = []
for func in functions:
name = func["name"]
args = func["arguments"]
if name == COMPLETE_TASK:
append_user_content(hist, f"Respond with a formal answer. FORGET(DO NOT mention) about `{COMPLETE_TASK}`. The language for the response MUST be as the same as the first user request.\n")
async for txt, tkcnt in complete():
yield txt, tkcnt
return
thr.append(executor.submit(use_tool, name, args))
tool_tasks.append(asyncio.create_task(use_tool_async(name, args)))
results = await asyncio.gather(*tool_tasks) if tool_tasks else []
st = timer()
reflection = await reflect_async(self.chat_mdl, hist, results, user_defined_prompt)
append_user_content(hist, reflection)
self.callback("reflection", {}, str(reflection), elapsed_time=timer()-st)
st = timer()
reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr], user_defined_prompt)
append_user_content(hist, reflection)
self.callback("reflection", {}, str(reflection), elapsed_time=timer()-st)
except Exception as e:
logging.exception(msg=f"Wrong JSON argument format in LLM ReAct response: {e}")
@ -390,17 +402,21 @@ Respond immediately with your final comprehensive answer.
return
append_user_content(hist, final_instruction)
async for txt, tkcnt in complete():
for txt, tkcnt in complete():
yield txt, tkcnt
async def _gen_citations_async(self, text):
retrievals = self._canvas.get_reference()
retrievals = {"chunks": list(retrievals["chunks"].values()), "doc_aggs": list(retrievals["doc_aggs"].values())}
formated_refer = kb_prompt(retrievals, self.chat_mdl.max_length, True)
async for delta_ans in self._generate_streamly_async([{"role": "system", "content": citation_plus("\n\n".join(formated_refer))},
{"role": "user", "content": text}
]):
yield delta_ans
def get_useful_memory(self, goal: str, sub_goal:str, topn=3, user_defined_prompt:dict={}) -> str:
# self.callback("get_useful_memory", {"topn": 3}, "...")
mems = self._canvas.get_memory()
rank = rank_memories(self.chat_mdl, goal, sub_goal, [summ for (user, assist, summ) in mems], user_defined_prompt)
try:
rank = json_repair.loads(re.sub(r"```.*", "", rank))[:topn]
mems = [mems[r] for r in rank]
return "\n\n".join([f"User: {u}\nAgent: {a}" for u, a,_ in mems])
except Exception as e:
logging.exception(e)
return "Error occurred."
def reset(self, only_output=False):
"""
@ -417,3 +433,4 @@ Respond immediately with your final comprehensive answer.
for k in self._param.inputs.keys():
self._param.inputs[k]["value"] = None
self._param.debug_inputs = {}

View File

@ -14,7 +14,6 @@
# limitations under the License.
#
import asyncio
import re
import time
from abc import ABC
@ -446,34 +445,6 @@ class ComponentBase(ABC):
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()
async def invoke_async(self, **kwargs) -> dict[str, Any]:
"""
Async wrapper for component invocation.
Prefers coroutine `_invoke_async` if present; otherwise falls back to `_invoke`.
Handles timing and error recording consistently with `invoke`.
"""
self.set_output("_created_time", time.perf_counter())
try:
if self.check_if_canceled("Component processing"):
return
fn_async = getattr(self, "_invoke_async", None)
if fn_async and asyncio.iscoroutinefunction(fn_async):
await fn_async(**kwargs)
elif asyncio.iscoroutinefunction(self._invoke):
await self._invoke(**kwargs)
else:
await asyncio.to_thread(self._invoke, **kwargs)
except Exception as e:
if self.get_exception_default_value():
self.set_exception_default_value()
else:
self.set_output("_ERROR", str(e))
logging.exception(e)
self._param.debug_inputs = {}
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
raise NotImplementedError()

View File

@ -18,7 +18,6 @@ import re
from functools import partial
from agent.component.base import ComponentParamBase, ComponentBase
from api.db.services.file_service import FileService
class UserFillUpParam(ComponentParamBase):
@ -64,13 +63,6 @@ class UserFillUp(ComponentBase):
for k, v in kwargs.get("inputs", {}).items():
if self.check_if_canceled("UserFillUp processing"):
return
if isinstance(v, dict) and v.get("type", "").lower().find("file") >=0:
if v.get("optional") and v.get("value", None) is None:
v = None
else:
v = FileService.get_files([v["value"]])
else:
v = v.get("value")
self.set_output(k, v)
def thoughts(self) -> str:

View File

@ -13,14 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import json
import logging
import os
import re
import threading
from copy import deepcopy
from typing import Any, Generator, AsyncGenerator
from typing import Any, Generator
import json_repair
from functools import partial
from common.constants import LLMType
@ -173,13 +171,6 @@ class LLM(ComponentBase):
return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), **kwargs)
return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs)
async def _generate_async(self, msg: list[dict], **kwargs) -> str:
if not self.imgs and hasattr(self.chat_mdl, "async_chat"):
return await self.chat_mdl.async_chat(msg[0]["content"], msg[1:], self._param.gen_conf(), **kwargs)
if self.imgs and hasattr(self.chat_mdl, "async_chat"):
return await self.chat_mdl.async_chat(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs)
return await asyncio.to_thread(self._generate, msg, **kwargs)
def _generate_streamly(self, msg:list[dict], **kwargs) -> Generator[str, None, None]:
ans = ""
last_idx = 0
@ -214,69 +205,6 @@ class LLM(ComponentBase):
for txt in self.chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs):
yield delta(txt)
async def _generate_streamly_async(self, msg: list[dict], **kwargs) -> AsyncGenerator[str, None]:
async def delta_wrapper(txt_iter):
ans = ""
last_idx = 0
endswith_think = False
def delta(txt):
nonlocal ans, last_idx, endswith_think
delta_ans = txt[last_idx:]
ans = txt
if delta_ans.find("<think>") == 0:
last_idx += len("<think>")
return "<think>"
elif delta_ans.find("<think>") > 0:
delta_ans = txt[last_idx:last_idx + delta_ans.find("<think>")]
last_idx += delta_ans.find("<think>")
return delta_ans
elif delta_ans.endswith("</think>"):
endswith_think = True
elif endswith_think:
endswith_think = False
return "</think>"
last_idx = len(ans)
if ans.endswith("</think>"):
last_idx -= len("</think>")
return re.sub(r"(<think>|</think>)", "", delta_ans)
async for t in txt_iter:
yield delta(t)
if not self.imgs and hasattr(self.chat_mdl, "async_chat_streamly"):
async for t in delta_wrapper(self.chat_mdl.async_chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf(), **kwargs)):
yield t
return
if self.imgs and hasattr(self.chat_mdl, "async_chat_streamly"):
async for t in delta_wrapper(self.chat_mdl.async_chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs)):
yield t
return
# fallback
loop = asyncio.get_running_loop()
queue: asyncio.Queue = asyncio.Queue()
def worker():
try:
for item in self._generate_streamly(msg, **kwargs):
loop.call_soon_threadsafe(queue.put_nowait, item)
except Exception as e:
loop.call_soon_threadsafe(queue.put_nowait, e)
finally:
loop.call_soon_threadsafe(queue.put_nowait, StopAsyncIteration)
threading.Thread(target=worker, daemon=True).start()
while True:
item = await queue.get()
if item is StopAsyncIteration:
break
if isinstance(item, Exception):
raise item
yield item
async def _stream_output_async(self, prompt, msg):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer = ""
@ -327,7 +255,7 @@ class LLM(ComponentBase):
self.set_output("content", answer)
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
async def _invoke_async(self, **kwargs):
def _invoke(self, **kwargs):
if self.check_if_canceled("LLM processing"):
return
@ -338,25 +266,22 @@ class LLM(ComponentBase):
prompt, msg, _ = self._prepare_prompt_variables()
error: str = ""
output_structure = None
output_structure=None
try:
output_structure = self._param.outputs["structured"]
output_structure = self._param.outputs['structured']
except Exception:
pass
if output_structure and isinstance(output_structure, dict) and output_structure.get("properties") and len(output_structure["properties"]) > 0:
schema = json.dumps(output_structure, ensure_ascii=False, indent=2)
prompt_with_schema = prompt + structured_output_prompt(schema)
for _ in range(self._param.max_retries + 1):
schema=json.dumps(output_structure, ensure_ascii=False, indent=2)
prompt += structured_output_prompt(schema)
for _ in range(self._param.max_retries+1):
if self.check_if_canceled("LLM processing"):
return
_, msg_fit = message_fit_in(
[{"role": "system", "content": prompt_with_schema}, *deepcopy(msg)],
int(self.chat_mdl.max_length * 0.97),
)
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
error = ""
ans = await self._generate_async(msg_fit)
msg_fit.pop(0)
ans = self._generate(msg)
msg.pop(0)
if ans.find("**ERROR**") >= 0:
logging.error(f"LLM response error: {ans}")
error = ans
@ -365,7 +290,7 @@ class LLM(ComponentBase):
self.set_output("structured", json_repair.loads(clean_formated_answer(ans)))
return
except Exception:
msg_fit.append({"role": "user", "content": "The answer can't not be parsed as JSON"})
msg.append({"role": "user", "content": "The answer can't not be parsed as JSON"})
error = "The answer can't not be parsed as JSON"
if error:
self.set_output("_ERROR", error)
@ -373,23 +298,18 @@ class LLM(ComponentBase):
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower() == "message" for cid in downstreams]) and not (
ex and ex["goto"]
):
self.set_output("content", partial(self._stream_output_async, prompt, deepcopy(msg)))
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not (ex and ex["goto"]):
self.set_output("content", partial(self._stream_output_async, prompt, msg))
return
error = ""
for _ in range(self._param.max_retries + 1):
for _ in range(self._param.max_retries+1):
if self.check_if_canceled("LLM processing"):
return
_, msg_fit = message_fit_in(
[{"role": "system", "content": prompt}, *deepcopy(msg)], int(self.chat_mdl.max_length * 0.97)
)
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
error = ""
ans = await self._generate_async(msg_fit)
msg_fit.pop(0)
ans = self._generate(msg)
msg.pop(0)
if ans.find("**ERROR**") >= 0:
logging.error(f"LLM response error: {ans}")
error = ans
@ -403,9 +323,23 @@ class LLM(ComponentBase):
else:
self.set_output("_ERROR", error)
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
return asyncio.run(self._invoke_async(**kwargs))
def _stream_output(self, prompt, msg):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer = ""
for ans in self._generate_streamly(msg):
if self.check_if_canceled("LLM streaming"):
return
if ans.find("**ERROR**") >= 0:
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
yield self.get_exception_default_value()
else:
self.set_output("_ERROR", ans)
return
yield ans
answer += ans
self.set_output("content", answer)
def add_memory(self, user:str, assist:str, func_name: str, params: dict, results: str, user_defined_prompt:dict={}):
summ = tool_call_summary(self.chat_mdl, func_name, params, results, user_defined_prompt)

View File

@ -17,7 +17,6 @@ import logging
import re
import time
from copy import deepcopy
import asyncio
from functools import partial
from typing import TypedDict, List, Any
from agent.component.base import ComponentParamBase, ComponentBase
@ -49,19 +48,12 @@ class LLMToolPluginCallSession(ToolCallSession):
self.callback = callback
def tool_call(self, name: str, arguments: dict[str, Any]) -> Any:
return asyncio.run(self.tool_call_async(name, arguments))
async def tool_call_async(self, name: str, arguments: dict[str, Any]) -> Any:
assert name in self.tools_map, f"LLM tool {name} does not exist"
st = timer()
tool_obj = self.tools_map[name]
if isinstance(tool_obj, MCPToolCallSession):
resp = await asyncio.to_thread(tool_obj.tool_call, name, arguments, 60)
if isinstance(self.tools_map[name], MCPToolCallSession):
resp = self.tools_map[name].tool_call(name, arguments, 60)
else:
if hasattr(tool_obj, "invoke_async") and asyncio.iscoroutinefunction(tool_obj.invoke_async):
resp = await tool_obj.invoke_async(**arguments)
else:
resp = await asyncio.to_thread(tool_obj.invoke, **arguments)
resp = self.tools_map[name].invoke(**arguments)
self.callback(name, arguments, resp, elapsed_time=timer()-st)
return resp
@ -147,33 +139,6 @@ class ToolBase(ComponentBase):
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return res
async def invoke_async(self, **kwargs):
"""
Async wrapper for tool invocation.
If `_invoke` is a coroutine, await it directly; otherwise run in a thread to avoid blocking.
Mirrors the exception handling of `invoke`.
"""
if self.check_if_canceled("Tool processing"):
return
self.set_output("_created_time", time.perf_counter())
try:
fn_async = getattr(self, "_invoke_async", None)
if fn_async and asyncio.iscoroutinefunction(fn_async):
res = await fn_async(**kwargs)
elif asyncio.iscoroutinefunction(self._invoke):
res = await self._invoke(**kwargs)
else:
res = await asyncio.to_thread(self._invoke, **kwargs)
except Exception as e:
self._param.outputs["_ERROR"] = {"value": str(e)}
logging.exception(e)
res = str(e)
self._param.debug_inputs = []
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return res
def _retrieve_chunks(self, res_list: list, get_title, get_url, get_content, get_score=None):
chunks = []
aggs = []

View File

@ -198,7 +198,6 @@ class Retrieval(ToolBase, ABC):
return
if cks:
kbinfos["chunks"] = cks
kbinfos["chunks"] = settings.retriever.retrieval_by_children(kbinfos["chunks"], [kb.tenant_id for kb in kbs])
if self._param.use_kg:
ck = settings.kg_retriever.retrieval(query,
[kb.tenant_id for kb in kbs],

View File

@ -14,5 +14,5 @@
# limitations under the License.
#
# from beartype.claw import beartype_this_package
# beartype_this_package()
from beartype.claw import beartype_this_package
beartype_this_package()

View File

@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import datetime
import json
import re
@ -148,35 +147,31 @@ async def set():
d["available_int"] = req["available_int"]
try:
def _set_sync():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
_d = d
if doc.parser_id == ParserType.QA:
arr = [
t for t in re.split(
r"[\n\t]",
req["content_with_weight"]) if len(t) > 1]
q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
_d = beAdoc(d, q, a, not any(
[rag_tokenizer.is_chinese(t) for t in q + a]))
if doc.parser_id == ParserType.QA:
arr = [
t for t in re.split(
r"[\n\t]",
req["content_with_weight"]) if len(t) > 1]
q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
d = beAdoc(d, q, a, not any(
[rag_tokenizer.is_chinese(t) for t in q + a]))
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not _d.get("question_kwd") else "\n".join(_d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
_d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.update({"id": req["chunk_id"]}, _d, search.index_name(tenant_id), doc.kb_id)
return get_json_result(data=True)
return await asyncio.to_thread(_set_sync)
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -187,19 +182,16 @@ async def set():
async def switch():
req = await get_request_json()
try:
def _switch_sync():
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
for cid in req["chunk_ids"]:
if not settings.docStoreConn.update({"id": cid},
{"available_int": int(req["available_int"])},
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
doc.kb_id):
return get_data_error_result(message="Index updating failure")
return get_json_result(data=True)
return await asyncio.to_thread(_switch_sync)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
for cid in req["chunk_ids"]:
if not settings.docStoreConn.update({"id": cid},
{"available_int": int(req["available_int"])},
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
doc.kb_id):
return get_data_error_result(message="Index updating failure")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -210,23 +202,20 @@ async def switch():
async def rm():
req = await get_request_json()
try:
def _rm_sync():
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if not settings.docStoreConn.delete({"id": req["chunk_ids"]},
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
doc.kb_id):
return get_data_error_result(message="Chunk deleting failure")
deleted_chunk_ids = req["chunk_ids"]
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
for cid in deleted_chunk_ids:
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, cid):
settings.STORAGE_IMPL.rm(doc.kb_id, cid)
return get_json_result(data=True)
return await asyncio.to_thread(_rm_sync)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if not settings.docStoreConn.delete({"id": req["chunk_ids"]},
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
doc.kb_id):
return get_data_error_result(message="Chunk deleting failure")
deleted_chunk_ids = req["chunk_ids"]
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
for cid in deleted_chunk_ids:
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, cid):
settings.STORAGE_IMPL.rm(doc.kb_id, cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -256,38 +245,35 @@ async def create():
d["tag_feas"] = req["tag_feas"]
try:
def _create_sync():
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
d["kb_id"] = [doc.kb_id]
d["docnm_kwd"] = doc.name
d["title_tks"] = rag_tokenizer.tokenize(doc.name)
d["doc_id"] = doc.id
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
d["kb_id"] = [doc.kb_id]
d["docnm_kwd"] = doc.name
d["title_tks"] = rag_tokenizer.tokenize(doc.name)
d["doc_id"] = doc.id
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
if not e:
return get_data_error_result(message="Knowledgebase not found!")
if kb.pagerank:
d[PAGERANK_FLD] = kb.pagerank
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
if not e:
return get_data_error_result(message="Knowledgebase not found!")
if kb.pagerank:
d[PAGERANK_FLD] = kb.pagerank
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, c, 1, 0)
return get_json_result(data={"chunk_id": chunck_id})
return await asyncio.to_thread(_create_sync)
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, c, 1, 0)
return get_json_result(data={"chunk_id": chunck_id})
except Exception as e:
return server_error_response(e)
@ -311,28 +297,25 @@ async def retrieval_test():
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
langs = req.get("cross_languages", [])
user_id = current_user.id
tenant_ids = []
def _retrieval_sync():
local_doc_ids = list(doc_ids) if doc_ids else []
tenant_ids = []
if req.get("search_id", ""):
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
meta_data_filter = search_config.get("meta_data_filter", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters: dict = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
if meta_data_filter["manual"] and not doc_ids:
doc_ids = ["-999"]
if req.get("search_id", ""):
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
meta_data_filter = search_config.get("meta_data_filter", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(user_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters: dict = gen_meta_filter(chat_mdl, metas, question)
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not local_doc_ids:
local_doc_ids = None
elif meta_data_filter.get("method") == "manual":
local_doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
if meta_data_filter["manual"] and not local_doc_ids:
local_doc_ids = ["-999"]
tenants = UserTenantService.query(user_id=user_id)
try:
tenants = UserTenantService.query(user_id=current_user.id)
for kb_id in kb_ids:
for tenant in tenants:
if KnowledgebaseService.query(
@ -348,9 +331,8 @@ async def retrieval_test():
if not e:
return get_data_error_result(message="Knowledgebase not found!")
_question = question
if langs:
_question = cross_languages(kb.tenant_id, None, _question, langs)
question = cross_languages(kb.tenant_id, None, question, langs)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
@ -360,19 +342,19 @@ async def retrieval_test():
if req.get("keyword", False):
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
_question += keyword_extraction(chat_mdl, _question)
question += keyword_extraction(chat_mdl, question)
labels = label_question(_question, [kb])
ranks = settings.retriever.retrieval(_question, embd_mdl, tenant_ids, kb_ids, page, size,
labels = label_question(question, [kb])
ranks = settings.retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
float(req.get("similarity_threshold", 0.0)),
float(req.get("vector_similarity_weight", 0.3)),
top,
local_doc_ids, rerank_mdl=rerank_mdl,
doc_ids, rerank_mdl=rerank_mdl,
highlight=req.get("highlight", False),
rank_feature=labels
)
if use_kg:
ck = settings.kg_retriever.retrieval(_question,
ck = settings.kg_retriever.retrieval(question,
tenant_ids,
kb_ids,
embd_mdl,
@ -385,9 +367,6 @@ async def retrieval_test():
ranks["labels"] = labels
return get_json_result(data=ranks)
try:
return await asyncio.to_thread(_retrieval_sync)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',

View File

@ -168,12 +168,10 @@ async def _render_web_oauth_popup(flow_id: str, success: bool, message: str, sou
status = "success" if success else "error"
auto_close = "window.close();" if success else ""
escaped_message = escape(message)
# Drive: ragflow-google-drive-oauth
# Gmail: ragflow-gmail-oauth
payload_type = f"ragflow-{source}-oauth"
payload_json = json.dumps(
{
"type": payload_type,
# TODO(google-oauth): include connector type (drive/gmail) in payload type if needed
"type": f"ragflow-google-{source}-oauth",
"status": status,
"flowId": flow_id or "",
"message": message,

View File

@ -462,7 +462,7 @@ async def related_questions():
if "parameter" in gen_conf:
del gen_conf["parameter"]
prompt = load_prompt("related_question")
ans = await chat_mdl.async_chat(
ans = chat_mdl.chat(
prompt,
[
{

View File

@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License
#
import asyncio
import json
import os.path
import pathlib
@ -73,7 +72,7 @@ async def upload():
if not check_kb_team_permission(kb, current_user.id):
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
err, files = await asyncio.to_thread(FileService.upload_document, kb, file_objs, current_user.id)
err, files = FileService.upload_document(kb, file_objs, current_user.id)
if err:
return get_json_result(data=files, message="\n".join(err), code=RetCode.SERVER_ERROR)
@ -391,7 +390,7 @@ async def rm():
if not DocumentService.accessible4deletion(doc_id, current_user.id):
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
errors = await asyncio.to_thread(FileService.delete_docs, doc_ids, current_user.id)
errors = FileService.delete_docs(doc_ids, current_user.id)
if errors:
return get_json_result(data=False, message=errors, code=RetCode.SERVER_ERROR)
@ -404,48 +403,44 @@ async def rm():
@validate_request("doc_ids", "run")
async def run():
req = await get_request_json()
for doc_id in req["doc_ids"]:
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
try:
def _run_sync():
for doc_id in req["doc_ids"]:
if not DocumentService.accessible(doc_id, current_user.id):
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
kb_table_num_map = {}
for id in req["doc_ids"]:
info = {"run": str(req["run"]), "progress": 0}
if str(req["run"]) == TaskStatus.RUNNING.value and req.get("delete", False):
info["progress_msg"] = ""
info["chunk_num"] = 0
info["token_num"] = 0
kb_table_num_map = {}
for id in req["doc_ids"]:
info = {"run": str(req["run"]), "progress": 0}
if str(req["run"]) == TaskStatus.RUNNING.value and req.get("delete", False):
info["progress_msg"] = ""
info["chunk_num"] = 0
info["token_num"] = 0
tenant_id = DocumentService.get_tenant_id(id)
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
e, doc = DocumentService.get_by_id(id)
if not e:
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(id)
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
e, doc = DocumentService.get_by_id(id)
if not e:
return get_data_error_result(message="Document not found!")
if str(req["run"]) == TaskStatus.CANCEL.value:
if str(doc.run) == TaskStatus.RUNNING.value:
cancel_all_task_of(id)
else:
return get_data_error_result(message="Cannot cancel a task that is not in RUNNING status")
if all([("delete" not in req or req["delete"]), str(req["run"]) == TaskStatus.RUNNING.value, str(doc.run) == TaskStatus.DONE.value]):
DocumentService.clear_chunk_num_when_rerun(doc.id)
if str(req["run"]) == TaskStatus.CANCEL.value:
if str(doc.run) == TaskStatus.RUNNING.value:
cancel_all_task_of(id)
else:
return get_data_error_result(message="Cannot cancel a task that is not in RUNNING status")
if all([("delete" not in req or req["delete"]), str(req["run"]) == TaskStatus.RUNNING.value, str(doc.run) == TaskStatus.DONE.value]):
DocumentService.clear_chunk_num_when_rerun(doc.id)
DocumentService.update_by_id(id, info)
if req.get("delete", False):
TaskService.filter_delete([Task.doc_id == id])
if settings.docStoreConn.indexExist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), doc.kb_id)
DocumentService.update_by_id(id, info)
if req.get("delete", False):
TaskService.filter_delete([Task.doc_id == id])
if settings.docStoreConn.indexExist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), doc.kb_id)
if str(req["run"]) == TaskStatus.RUNNING.value:
doc = doc.to_dict()
DocumentService.run(tenant_id, doc, kb_table_num_map)
if str(req["run"]) == TaskStatus.RUNNING.value:
doc_dict = doc.to_dict()
DocumentService.run(tenant_id, doc_dict, kb_table_num_map)
return get_json_result(data=True)
return await asyncio.to_thread(_run_sync)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -455,49 +450,45 @@ async def run():
@validate_request("doc_id", "name")
async def rename():
req = await get_request_json()
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
try:
def _rename_sync():
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
return get_json_result(data=False, message="The extension of file can't be changed", code=RetCode.ARGUMENT_ERROR)
if len(req["name"].encode("utf-8")) > FILE_NAME_LEN_LIMIT:
return get_json_result(data=False, message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=RetCode.ARGUMENT_ERROR)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
return get_json_result(data=False, message="The extension of file can't be changed", code=RetCode.ARGUMENT_ERROR)
if len(req["name"].encode("utf-8")) > FILE_NAME_LEN_LIMIT:
return get_json_result(data=False, message=f"File name must be {FILE_NAME_LEN_LIMIT} bytes or less.", code=RetCode.ARGUMENT_ERROR)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_data_error_result(message="Duplicated document name in the same knowledgebase.")
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_data_error_result(message="Duplicated document name in the same knowledgebase.")
if not DocumentService.update_by_id(req["doc_id"], {"name": req["name"]}):
return get_data_error_result(message="Database error (Document rename)!")
if not DocumentService.update_by_id(req["doc_id"], {"name": req["name"]}):
return get_data_error_result(message="Database error (Document rename)!")
informs = File2DocumentService.get_by_document_id(req["doc_id"])
if informs:
e, file = FileService.get_by_id(informs[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]})
informs = File2DocumentService.get_by_document_id(req["doc_id"])
if informs:
e, file = FileService.get_by_id(informs[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]})
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
title_tks = rag_tokenizer.tokenize(req["name"])
es_body = {
"docnm_kwd": req["name"],
"title_tks": title_tks,
"title_sm_tks": rag_tokenizer.fine_grained_tokenize(title_tks),
}
if settings.docStoreConn.indexExist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.update(
{"doc_id": req["doc_id"]},
es_body,
search.index_name(tenant_id),
doc.kb_id,
)
return get_json_result(data=True)
return await asyncio.to_thread(_rename_sync)
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
title_tks = rag_tokenizer.tokenize(req["name"])
es_body = {
"docnm_kwd": req["name"],
"title_tks": title_tks,
"title_sm_tks": rag_tokenizer.fine_grained_tokenize(title_tks),
}
if settings.docStoreConn.indexExist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.update(
{"doc_id": req["doc_id"]},
es_body,
search.index_name(tenant_id),
doc.kb_id,
)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -511,8 +502,7 @@ async def get(doc_id):
return get_data_error_result(message="Document not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
data = await asyncio.to_thread(settings.STORAGE_IMPL.get, b, n)
response = await make_response(data)
response = await make_response(settings.STORAGE_IMPL.get(b, n))
ext = re.search(r"\.([^.]+)$", doc.name.lower())
ext = ext.group(1) if ext else None
@ -533,7 +523,8 @@ async def get(doc_id):
async def download_attachment(attachment_id):
try:
ext = request.args.get("ext", "markdown")
data = await asyncio.to_thread(settings.STORAGE_IMPL.get, current_user.id, attachment_id)
data = settings.STORAGE_IMPL.get(current_user.id, attachment_id)
# data = settings.STORAGE_IMPL.get("eb500d50bb0411f0907561d2782adda5", attachment_id)
response = await make_response(data)
response.headers.set("Content-Type", CONTENT_TYPE_MAP.get(ext, f"application/{ext}"))
@ -605,8 +596,7 @@ async def get_image(image_id):
if len(arr) != 2:
return get_data_error_result(message="Image not found.")
bkt, nm = image_id.split("-")
data = await asyncio.to_thread(settings.STORAGE_IMPL.get, bkt, nm)
response = await make_response(data)
response = await make_response(settings.STORAGE_IMPL.get(bkt, nm))
response.headers.set("Content-Type", "image/JPEG")
return response
except Exception as e:

View File

@ -1,479 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
RAG Evaluation API Endpoints
Provides REST API for RAG evaluation functionality including:
- Dataset management
- Test case management
- Evaluation execution
- Results retrieval
- Configuration recommendations
"""
from quart import request
from api.apps import login_required, current_user
from api.db.services.evaluation_service import EvaluationService
from api.utils.api_utils import (
get_data_error_result,
get_json_result,
get_request_json,
server_error_response,
validate_request
)
from common.constants import RetCode
# ==================== Dataset Management ====================
@manager.route('/dataset/create', methods=['POST']) # noqa: F821
@login_required
@validate_request("name", "kb_ids")
async def create_dataset():
"""
Create a new evaluation dataset.
Request body:
{
"name": "Dataset name",
"description": "Optional description",
"kb_ids": ["kb_id1", "kb_id2"]
}
"""
try:
req = await get_request_json()
name = req.get("name", "").strip()
description = req.get("description", "")
kb_ids = req.get("kb_ids", [])
if not name:
return get_data_error_result(message="Dataset name cannot be empty")
if not kb_ids or not isinstance(kb_ids, list):
return get_data_error_result(message="kb_ids must be a non-empty list")
success, result = EvaluationService.create_dataset(
name=name,
description=description,
kb_ids=kb_ids,
tenant_id=current_user.id,
user_id=current_user.id
)
if not success:
return get_data_error_result(message=result)
return get_json_result(data={"dataset_id": result})
except Exception as e:
return server_error_response(e)
@manager.route('/dataset/list', methods=['GET']) # noqa: F821
@login_required
async def list_datasets():
"""
List evaluation datasets for current tenant.
Query params:
- page: Page number (default: 1)
- page_size: Items per page (default: 20)
"""
try:
page = int(request.args.get("page", 1))
page_size = int(request.args.get("page_size", 20))
result = EvaluationService.list_datasets(
tenant_id=current_user.id,
user_id=current_user.id,
page=page,
page_size=page_size
)
return get_json_result(data=result)
except Exception as e:
return server_error_response(e)
@manager.route('/dataset/<dataset_id>', methods=['GET']) # noqa: F821
@login_required
async def get_dataset(dataset_id):
"""Get dataset details by ID"""
try:
dataset = EvaluationService.get_dataset(dataset_id)
if not dataset:
return get_data_error_result(
message="Dataset not found",
code=RetCode.DATA_ERROR
)
return get_json_result(data=dataset)
except Exception as e:
return server_error_response(e)
@manager.route('/dataset/<dataset_id>', methods=['PUT']) # noqa: F821
@login_required
async def update_dataset(dataset_id):
"""
Update dataset.
Request body:
{
"name": "New name",
"description": "New description",
"kb_ids": ["kb_id1", "kb_id2"]
}
"""
try:
req = await get_request_json()
# Remove fields that shouldn't be updated
req.pop("id", None)
req.pop("tenant_id", None)
req.pop("created_by", None)
req.pop("create_time", None)
success = EvaluationService.update_dataset(dataset_id, **req)
if not success:
return get_data_error_result(message="Failed to update dataset")
return get_json_result(data={"dataset_id": dataset_id})
except Exception as e:
return server_error_response(e)
@manager.route('/dataset/<dataset_id>', methods=['DELETE']) # noqa: F821
@login_required
async def delete_dataset(dataset_id):
"""Delete dataset (soft delete)"""
try:
success = EvaluationService.delete_dataset(dataset_id)
if not success:
return get_data_error_result(message="Failed to delete dataset")
return get_json_result(data={"dataset_id": dataset_id})
except Exception as e:
return server_error_response(e)
# ==================== Test Case Management ====================
@manager.route('/dataset/<dataset_id>/case/add', methods=['POST']) # noqa: F821
@login_required
@validate_request("question")
async def add_test_case(dataset_id):
"""
Add a test case to a dataset.
Request body:
{
"question": "Test question",
"reference_answer": "Optional ground truth answer",
"relevant_doc_ids": ["doc_id1", "doc_id2"],
"relevant_chunk_ids": ["chunk_id1", "chunk_id2"],
"metadata": {"key": "value"}
}
"""
try:
req = await get_request_json()
question = req.get("question", "").strip()
if not question:
return get_data_error_result(message="Question cannot be empty")
success, result = EvaluationService.add_test_case(
dataset_id=dataset_id,
question=question,
reference_answer=req.get("reference_answer"),
relevant_doc_ids=req.get("relevant_doc_ids"),
relevant_chunk_ids=req.get("relevant_chunk_ids"),
metadata=req.get("metadata")
)
if not success:
return get_data_error_result(message=result)
return get_json_result(data={"case_id": result})
except Exception as e:
return server_error_response(e)
@manager.route('/dataset/<dataset_id>/case/import', methods=['POST']) # noqa: F821
@login_required
@validate_request("cases")
async def import_test_cases(dataset_id):
"""
Bulk import test cases.
Request body:
{
"cases": [
{
"question": "Question 1",
"reference_answer": "Answer 1",
...
},
{
"question": "Question 2",
...
}
]
}
"""
try:
req = await get_request_json()
cases = req.get("cases", [])
if not cases or not isinstance(cases, list):
return get_data_error_result(message="cases must be a non-empty list")
success_count, failure_count = EvaluationService.import_test_cases(
dataset_id=dataset_id,
cases=cases
)
return get_json_result(data={
"success_count": success_count,
"failure_count": failure_count,
"total": len(cases)
})
except Exception as e:
return server_error_response(e)
@manager.route('/dataset/<dataset_id>/cases', methods=['GET']) # noqa: F821
@login_required
async def get_test_cases(dataset_id):
"""Get all test cases for a dataset"""
try:
cases = EvaluationService.get_test_cases(dataset_id)
return get_json_result(data={"cases": cases, "total": len(cases)})
except Exception as e:
return server_error_response(e)
@manager.route('/case/<case_id>', methods=['DELETE']) # noqa: F821
@login_required
async def delete_test_case(case_id):
"""Delete a test case"""
try:
success = EvaluationService.delete_test_case(case_id)
if not success:
return get_data_error_result(message="Failed to delete test case")
return get_json_result(data={"case_id": case_id})
except Exception as e:
return server_error_response(e)
# ==================== Evaluation Execution ====================
@manager.route('/run/start', methods=['POST']) # noqa: F821
@login_required
@validate_request("dataset_id", "dialog_id")
async def start_evaluation():
"""
Start an evaluation run.
Request body:
{
"dataset_id": "dataset_id",
"dialog_id": "dialog_id",
"name": "Optional run name"
}
"""
try:
req = await get_request_json()
dataset_id = req.get("dataset_id")
dialog_id = req.get("dialog_id")
name = req.get("name")
success, result = EvaluationService.start_evaluation(
dataset_id=dataset_id,
dialog_id=dialog_id,
user_id=current_user.id,
name=name
)
if not success:
return get_data_error_result(message=result)
return get_json_result(data={"run_id": result})
except Exception as e:
return server_error_response(e)
@manager.route('/run/<run_id>', methods=['GET']) # noqa: F821
@login_required
async def get_evaluation_run(run_id):
"""Get evaluation run details"""
try:
result = EvaluationService.get_run_results(run_id)
if not result:
return get_data_error_result(
message="Evaluation run not found",
code=RetCode.DATA_ERROR
)
return get_json_result(data=result)
except Exception as e:
return server_error_response(e)
@manager.route('/run/<run_id>/results', methods=['GET']) # noqa: F821
@login_required
async def get_run_results(run_id):
"""Get detailed results for an evaluation run"""
try:
result = EvaluationService.get_run_results(run_id)
if not result:
return get_data_error_result(
message="Evaluation run not found",
code=RetCode.DATA_ERROR
)
return get_json_result(data=result)
except Exception as e:
return server_error_response(e)
@manager.route('/run/list', methods=['GET']) # noqa: F821
@login_required
async def list_evaluation_runs():
"""
List evaluation runs.
Query params:
- dataset_id: Filter by dataset (optional)
- dialog_id: Filter by dialog (optional)
- page: Page number (default: 1)
- page_size: Items per page (default: 20)
"""
try:
# TODO: Implement list_runs in EvaluationService
return get_json_result(data={"runs": [], "total": 0})
except Exception as e:
return server_error_response(e)
@manager.route('/run/<run_id>', methods=['DELETE']) # noqa: F821
@login_required
async def delete_evaluation_run(run_id):
"""Delete an evaluation run"""
try:
# TODO: Implement delete_run in EvaluationService
return get_json_result(data={"run_id": run_id})
except Exception as e:
return server_error_response(e)
# ==================== Analysis & Recommendations ====================
@manager.route('/run/<run_id>/recommendations', methods=['GET']) # noqa: F821
@login_required
async def get_recommendations(run_id):
"""Get configuration recommendations based on evaluation results"""
try:
recommendations = EvaluationService.get_recommendations(run_id)
return get_json_result(data={"recommendations": recommendations})
except Exception as e:
return server_error_response(e)
@manager.route('/compare', methods=['POST']) # noqa: F821
@login_required
@validate_request("run_ids")
async def compare_runs():
"""
Compare multiple evaluation runs.
Request body:
{
"run_ids": ["run_id1", "run_id2", "run_id3"]
}
"""
try:
req = await get_request_json()
run_ids = req.get("run_ids", [])
if not run_ids or not isinstance(run_ids, list) or len(run_ids) < 2:
return get_data_error_result(
message="run_ids must be a list with at least 2 run IDs"
)
# TODO: Implement compare_runs in EvaluationService
return get_json_result(data={"comparison": {}})
except Exception as e:
return server_error_response(e)
@manager.route('/run/<run_id>/export', methods=['GET']) # noqa: F821
@login_required
async def export_results(run_id):
"""Export evaluation results as JSON/CSV"""
try:
# format_type = request.args.get("format", "json") # TODO: Use for CSV export
result = EvaluationService.get_run_results(run_id)
if not result:
return get_data_error_result(
message="Evaluation run not found",
code=RetCode.DATA_ERROR
)
# TODO: Implement CSV export
return get_json_result(data=result)
except Exception as e:
return server_error_response(e)
# ==================== Real-time Evaluation ====================
@manager.route('/evaluate_single', methods=['POST']) # noqa: F821
@login_required
@validate_request("question", "dialog_id")
async def evaluate_single():
"""
Evaluate a single question-answer pair in real-time.
Request body:
{
"question": "Test question",
"dialog_id": "dialog_id",
"reference_answer": "Optional ground truth",
"relevant_chunk_ids": ["chunk_id1", "chunk_id2"]
}
"""
try:
# req = await get_request_json() # TODO: Use for single evaluation implementation
# TODO: Implement single evaluation
# This would execute the RAG pipeline and return metrics immediately
return get_json_result(data={
"answer": "",
"metrics": {},
"retrieved_chunks": []
})
except Exception as e:
return server_error_response(e)

View File

@ -14,7 +14,6 @@
# limitations under the License
#
import logging
import asyncio
import os
import pathlib
import re
@ -62,10 +61,9 @@ async def upload():
e, pf_folder = FileService.get_by_id(pf_id)
if not e:
return get_data_error_result( message="Can't find this folder!")
async def _handle_single_file(file_obj):
for file_obj in file_objs:
MAX_FILE_NUM_PER_USER: int = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
if 0 < MAX_FILE_NUM_PER_USER <= await asyncio.to_thread(DocumentService.get_doc_count, current_user.id):
if 0 < MAX_FILE_NUM_PER_USER <= DocumentService.get_doc_count(current_user.id):
return get_data_error_result( message="Exceed the maximum file number of a free user!")
# split file name path
@ -77,36 +75,35 @@ async def upload():
file_len = len(file_obj_names)
# get folder
file_id_list = await asyncio.to_thread(FileService.get_id_list_by_id, pf_id, file_obj_names, 1, [pf_id])
file_id_list = FileService.get_id_list_by_id(pf_id, file_obj_names, 1, [pf_id])
len_id_list = len(file_id_list)
# create folder
if file_len != len_id_list:
e, file = await asyncio.to_thread(FileService.get_by_id, file_id_list[len_id_list - 1])
e, file = FileService.get_by_id(file_id_list[len_id_list - 1])
if not e:
return get_data_error_result(message="Folder not found!")
last_folder = await asyncio.to_thread(FileService.create_folder, file, file_id_list[len_id_list - 1], file_obj_names,
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names,
len_id_list)
else:
e, file = await asyncio.to_thread(FileService.get_by_id, file_id_list[len_id_list - 2])
e, file = FileService.get_by_id(file_id_list[len_id_list - 2])
if not e:
return get_data_error_result(message="Folder not found!")
last_folder = await asyncio.to_thread(FileService.create_folder, file, file_id_list[len_id_list - 2], file_obj_names,
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names,
len_id_list)
# file type
filetype = filename_type(file_obj_names[file_len - 1])
location = file_obj_names[file_len - 1]
while await asyncio.to_thread(settings.STORAGE_IMPL.obj_exist, last_folder.id, location):
while settings.STORAGE_IMPL.obj_exist(last_folder.id, location):
location += "_"
blob = await asyncio.to_thread(file_obj.read)
filename = await asyncio.to_thread(
duplicate_name,
blob = file_obj.read()
filename = duplicate_name(
FileService.query,
name=file_obj_names[file_len - 1],
parent_id=last_folder.id)
await asyncio.to_thread(settings.STORAGE_IMPL.put, last_folder.id, location, blob)
file_data = {
settings.STORAGE_IMPL.put(last_folder.id, location, blob)
file = {
"id": get_uuid(),
"parent_id": last_folder.id,
"tenant_id": current_user.id,
@ -116,13 +113,8 @@ async def upload():
"location": location,
"size": len(blob),
}
inserted = await asyncio.to_thread(FileService.insert, file_data)
return inserted.to_json()
for file_obj in file_objs:
res = await _handle_single_file(file_obj)
file_res.append(res)
file = FileService.insert(file)
file_res.append(file.to_json())
return get_json_result(data=file_res)
except Exception as e:
return server_error_response(e)
@ -250,58 +242,55 @@ async def rm():
req = await get_request_json()
file_ids = req["file_ids"]
def _delete_single_file(file):
try:
if file.location:
settings.STORAGE_IMPL.rm(file.parent_id, file.location)
except Exception as e:
logging.exception(f"Fail to remove object: {file.parent_id}/{file.location}, error: {e}")
informs = File2DocumentService.get_by_file_id(file.id)
for inform in informs:
doc_id = inform.document_id
e, doc = DocumentService.get_by_id(doc_id)
if e and doc:
tenant_id = DocumentService.get_tenant_id(doc_id)
if tenant_id:
DocumentService.remove_document(doc, tenant_id)
File2DocumentService.delete_by_file_id(file.id)
FileService.delete(file)
def _delete_folder_recursive(folder, tenant_id):
sub_files = FileService.list_all_files_by_parent_id(folder.id)
for sub_file in sub_files:
if sub_file.type == FileType.FOLDER.value:
_delete_folder_recursive(sub_file, tenant_id)
else:
_delete_single_file(sub_file)
FileService.delete(folder)
try:
def _delete_single_file(file):
try:
if file.location:
settings.STORAGE_IMPL.rm(file.parent_id, file.location)
except Exception as e:
logging.exception(f"Fail to remove object: {file.parent_id}/{file.location}, error: {e}")
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
if not e or not file:
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")
if not check_file_team_permission(file, current_user.id):
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
informs = File2DocumentService.get_by_file_id(file.id)
for inform in informs:
doc_id = inform.document_id
e, doc = DocumentService.get_by_id(doc_id)
if e and doc:
tenant_id = DocumentService.get_tenant_id(doc_id)
if tenant_id:
DocumentService.remove_document(doc, tenant_id)
File2DocumentService.delete_by_file_id(file.id)
if file.source_type == FileSource.KNOWLEDGEBASE:
continue
FileService.delete(file)
if file.type == FileType.FOLDER.value:
_delete_folder_recursive(file, current_user.id)
continue
def _delete_folder_recursive(folder, tenant_id):
sub_files = FileService.list_all_files_by_parent_id(folder.id)
for sub_file in sub_files:
if sub_file.type == FileType.FOLDER.value:
_delete_folder_recursive(sub_file, tenant_id)
else:
_delete_single_file(sub_file)
_delete_single_file(file)
FileService.delete(folder)
def _rm_sync():
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
if not e or not file:
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")
if not check_file_team_permission(file, current_user.id):
return get_json_result(data=False, message="No authorization.", code=RetCode.AUTHENTICATION_ERROR)
if file.source_type == FileSource.KNOWLEDGEBASE:
continue
if file.type == FileType.FOLDER.value:
_delete_folder_recursive(file, current_user.id)
continue
_delete_single_file(file)
return get_json_result(data=True)
return await asyncio.to_thread(_rm_sync)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -357,10 +346,10 @@ async def get(file_id):
if not check_file_team_permission(file, current_user.id):
return get_json_result(data=False, message='No authorization.', code=RetCode.AUTHENTICATION_ERROR)
blob = await asyncio.to_thread(settings.STORAGE_IMPL.get, file.parent_id, file.location)
blob = settings.STORAGE_IMPL.get(file.parent_id, file.location)
if not blob:
b, n = File2DocumentService.get_storage_address(file_id=file_id)
blob = await asyncio.to_thread(settings.STORAGE_IMPL.get, b, n)
blob = settings.STORAGE_IMPL.get(b, n)
response = await make_response(blob)
ext = re.search(r"\.([^.]+)$", file.name.lower())
@ -455,12 +444,10 @@ async def move():
},
)
def _move_sync():
for file in files:
_move_entry_recursive(file, dest_folder)
return get_json_result(data=True)
for file in files:
_move_entry_recursive(file, dest_folder)
return await asyncio.to_thread(_move_sync)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -17,7 +17,6 @@ import json
import logging
import random
import re
import asyncio
from quart import request
import numpy as np
@ -117,22 +116,12 @@ async def update():
if kb.pagerank != req.get("pagerank", 0):
if req.get("pagerank", 0) > 0:
await asyncio.to_thread(
settings.docStoreConn.update,
{"kb_id": kb.id},
{PAGERANK_FLD: req["pagerank"]},
search.index_name(kb.tenant_id),
kb.id,
)
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
search.index_name(kb.tenant_id), kb.id)
else:
# Elasticsearch requires PAGERANK_FLD be non-zero!
await asyncio.to_thread(
settings.docStoreConn.update,
{"exists": PAGERANK_FLD},
{"remove": PAGERANK_FLD},
search.index_name(kb.tenant_id),
kb.id,
)
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
search.index_name(kb.tenant_id), kb.id)
e, kb = KnowledgebaseService.get_by_id(kb.id)
if not e:
@ -235,28 +224,25 @@ async def rm():
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=RetCode.OPERATING_ERROR)
def _rm_sync():
for doc in DocumentService.query(kb_id=req["kb_id"]):
if not DocumentService.remove_document(doc, kbs[0].tenant_id):
return get_data_error_result(
message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc.id)
if f2d:
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete(
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
if not KnowledgebaseService.delete_by_id(req["kb_id"]):
for doc in DocumentService.query(kb_id=req["kb_id"]):
if not DocumentService.remove_document(doc, kbs[0].tenant_id):
return get_data_error_result(
message="Database error (Knowledgebase removal)!")
for kb in kbs:
settings.docStoreConn.delete({"kb_id": kb.id}, search.index_name(kb.tenant_id), kb.id)
settings.docStoreConn.deleteIdx(search.index_name(kb.tenant_id), kb.id)
if hasattr(settings.STORAGE_IMPL, 'remove_bucket'):
settings.STORAGE_IMPL.remove_bucket(kb.id)
return get_json_result(data=True)
return await asyncio.to_thread(_rm_sync)
message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc.id)
if f2d:
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete(
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
if not KnowledgebaseService.delete_by_id(req["kb_id"]):
return get_data_error_result(
message="Database error (Knowledgebase removal)!")
for kb in kbs:
settings.docStoreConn.delete({"kb_id": kb.id}, search.index_name(kb.tenant_id), kb.id)
settings.docStoreConn.deleteIdx(search.index_name(kb.tenant_id), kb.id)
if hasattr(settings.STORAGE_IMPL, 'remove_bucket'):
settings.STORAGE_IMPL.remove_bucket(kb.id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -936,3 +922,5 @@ async def check_embedding():
if summary["avg_cos_sim"] > 0.9:
return get_json_result(data={"summary": summary, "results": results})
return get_json_result(code=RetCode.NOT_EFFECTIVE, message="Embedding model switch failed: the average similarity between old and new vectors is below 0.9, indicating incompatible vector spaces.", data={"summary": summary, "results": results})

View File

@ -33,7 +33,7 @@ from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.task_service import TaskService, queue_tasks, cancel_all_task_of
from api.db.services.task_service import TaskService, queue_tasks
from api.db.services.dialog_service import meta_filter, convert_conditions
from api.utils.api_utils import check_duplicate_ids, construct_json_result, get_error_data_result, get_parser_config, get_result, server_error_response, token_required, \
get_request_json
@ -321,7 +321,9 @@ async def update_doc(tenant_id, dataset_id, document_id):
try:
if not DocumentService.update_by_id(doc.id, {"status": str(status)}):
return get_error_data_result(message="Database error (Document update)!")
settings.docStoreConn.update({"doc_id": doc.id}, {"available_int": status}, search.index_name(kb.tenant_id), doc.kb_id)
return get_result(data=True)
except Exception as e:
return server_error_response(e)
@ -348,10 +350,12 @@ async def update_doc(tenant_id, dataset_id, document_id):
}
renamed_doc = {}
for key, value in doc.to_dict().items():
if key == "run":
renamed_doc["run"] = run_mapping.get(str(value))
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
if key == "run":
renamed_doc["run"] = run_mapping.get(str(value))
renamed_doc["run"] = run_mapping.get(value)
return get_result(data=renamed_doc)
@ -835,8 +839,6 @@ async def stop_parsing(tenant_id, dataset_id):
return get_error_data_result(message=f"You don't own the document {id}.")
if int(doc[0].progress) == 1 or doc[0].progress == 0:
return get_error_data_result("Can't stop parsing document with progress at 0 or 1")
# Send cancellation signal via Redis to stop background task
cancel_all_task_of(id)
info = {"run": "2", "progress": 0, "chunk_num": 0}
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": doc[0].id}, search.index_name(tenant_id), dataset_id)

View File

@ -14,7 +14,7 @@
# limitations under the License.
#
import asyncio
import pathlib
import re
from quart import request, make_response
@ -29,7 +29,6 @@ from api.db import FileType
from api.db.services import duplicate_name
from api.db.services.file_service import FileService
from api.utils.file_utils import filename_type
from api.utils.web_utils import CONTENT_TYPE_MAP
from common import settings
from common.constants import RetCode
@ -40,7 +39,7 @@ async def upload(tenant_id):
Upload a file to the system.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
parameters:
@ -156,7 +155,7 @@ async def create(tenant_id):
Create a new file or folder.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
parameters:
@ -234,7 +233,7 @@ async def list_files(tenant_id):
List files under a specific folder.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
parameters:
@ -326,7 +325,7 @@ async def get_root_folder(tenant_id):
Get user's root folder.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
responses:
@ -362,7 +361,7 @@ async def get_parent_folder():
Get parent folder info of a file.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
parameters:
@ -407,7 +406,7 @@ async def get_all_parent_folders(tenant_id):
Get all parent folders of a file.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
parameters:
@ -455,7 +454,7 @@ async def rm(tenant_id):
Delete one or multiple files/folders.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
parameters:
@ -529,7 +528,7 @@ async def rename(tenant_id):
Rename a file.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
parameters:
@ -590,7 +589,7 @@ async def get(tenant_id, file_id):
Download a file.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
produces:
@ -630,19 +629,6 @@ async def get(tenant_id, file_id):
except Exception as e:
return server_error_response(e)
@manager.route("/file/download/<attachment_id>", methods=["GET"]) # noqa: F821
@token_required
async def download_attachment(tenant_id,attachment_id):
try:
ext = request.args.get("ext", "markdown")
data = await asyncio.to_thread(settings.STORAGE_IMPL.get, tenant_id, attachment_id)
response = await make_response(data)
response.headers.set("Content-Type", CONTENT_TYPE_MAP.get(ext, f"application/{ext}"))
return response
except Exception as e:
return server_error_response(e)
@manager.route('/file/mv', methods=['POST']) # noqa: F821
@token_required
@ -651,7 +637,7 @@ async def move(tenant_id):
Move one or multiple files to another folder.
---
tags:
- File
- File Management
security:
- ApiKeyAuth: []
parameters:

View File

@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import json
import re
import time
@ -788,7 +787,7 @@ Reason:
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
"""
ans = await chat_mdl.async_chat(
ans = chat_mdl.chat(
prompt,
[
{
@ -964,30 +963,28 @@ async def retrieval_test_embedded():
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
langs = req.get("cross_languages", [])
tenant_ids = []
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
def _retrieval_sync():
local_doc_ids = list(doc_ids) if doc_ids else []
tenant_ids = []
_question = question
if req.get("search_id", ""):
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
meta_data_filter = search_config.get("meta_data_filter", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters: dict = gen_meta_filter(chat_mdl, metas, _question)
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not local_doc_ids:
local_doc_ids = None
elif meta_data_filter.get("method") == "manual":
local_doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
if meta_data_filter["manual"] and not local_doc_ids:
local_doc_ids = ["-999"]
if req.get("search_id", ""):
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
meta_data_filter = search_config.get("meta_data_filter", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters: dict = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
if meta_data_filter["manual"] and not doc_ids:
doc_ids = ["-999"]
try:
tenants = UserTenantService.query(user_id=tenant_id)
for kb_id in kb_ids:
for tenant in tenants:
@ -1003,7 +1000,7 @@ async def retrieval_test_embedded():
return get_error_data_result(message="Knowledgebase not found!")
if langs:
_question = cross_languages(kb.tenant_id, None, _question, langs)
question = cross_languages(kb.tenant_id, None, question, langs)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
@ -1013,15 +1010,15 @@ async def retrieval_test_embedded():
if req.get("keyword", False):
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
_question += keyword_extraction(chat_mdl, _question)
question += keyword_extraction(chat_mdl, question)
labels = label_question(_question, [kb])
labels = label_question(question, [kb])
ranks = settings.retriever.retrieval(
_question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top,
local_doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
)
if use_kg:
ck = settings.kg_retriever.retrieval(_question, tenant_ids, kb_ids, embd_mdl,
ck = settings.kg_retriever.retrieval(question, tenant_ids, kb_ids, embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
@ -1031,9 +1028,6 @@ async def retrieval_test_embedded():
ranks["labels"] = labels
return get_json_result(data=ranks)
try:
return await asyncio.to_thread(_retrieval_sync)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message="No chunk found! Check the chunk status please!",
@ -1070,7 +1064,7 @@ async def related_questions_embedded():
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
prompt = load_prompt("related_question")
ans = await chat_mdl.async_chat(
ans = chat_mdl.chat(
prompt,
[
{

View File

@ -1113,70 +1113,6 @@ class SyncLogs(DataBaseModel):
db_table = "sync_logs"
class EvaluationDataset(DataBaseModel):
"""Ground truth dataset for RAG evaluation"""
id = CharField(max_length=32, primary_key=True)
tenant_id = CharField(max_length=32, null=False, index=True, help_text="tenant ID")
name = CharField(max_length=255, null=False, index=True, help_text="dataset name")
description = TextField(null=True, help_text="dataset description")
kb_ids = JSONField(null=False, help_text="knowledge base IDs to evaluate against")
created_by = CharField(max_length=32, null=False, index=True, help_text="creator user ID")
create_time = BigIntegerField(null=False, index=True, help_text="creation timestamp")
update_time = BigIntegerField(null=False, help_text="last update timestamp")
status = IntegerField(null=False, default=1, help_text="1=valid, 0=invalid")
class Meta:
db_table = "evaluation_datasets"
class EvaluationCase(DataBaseModel):
"""Individual test case in an evaluation dataset"""
id = CharField(max_length=32, primary_key=True)
dataset_id = CharField(max_length=32, null=False, index=True, help_text="FK to evaluation_datasets")
question = TextField(null=False, help_text="test question")
reference_answer = TextField(null=True, help_text="optional ground truth answer")
relevant_doc_ids = JSONField(null=True, help_text="expected relevant document IDs")
relevant_chunk_ids = JSONField(null=True, help_text="expected relevant chunk IDs")
metadata = JSONField(null=True, help_text="additional context/tags")
create_time = BigIntegerField(null=False, help_text="creation timestamp")
class Meta:
db_table = "evaluation_cases"
class EvaluationRun(DataBaseModel):
"""A single evaluation run"""
id = CharField(max_length=32, primary_key=True)
dataset_id = CharField(max_length=32, null=False, index=True, help_text="FK to evaluation_datasets")
dialog_id = CharField(max_length=32, null=False, index=True, help_text="dialog configuration being evaluated")
name = CharField(max_length=255, null=False, help_text="run name")
config_snapshot = JSONField(null=False, help_text="dialog config at time of evaluation")
metrics_summary = JSONField(null=True, help_text="aggregated metrics")
status = CharField(max_length=32, null=False, default="PENDING", help_text="PENDING/RUNNING/COMPLETED/FAILED")
created_by = CharField(max_length=32, null=False, index=True, help_text="user who started the run")
create_time = BigIntegerField(null=False, index=True, help_text="creation timestamp")
complete_time = BigIntegerField(null=True, help_text="completion timestamp")
class Meta:
db_table = "evaluation_runs"
class EvaluationResult(DataBaseModel):
"""Result for a single test case in an evaluation run"""
id = CharField(max_length=32, primary_key=True)
run_id = CharField(max_length=32, null=False, index=True, help_text="FK to evaluation_runs")
case_id = CharField(max_length=32, null=False, index=True, help_text="FK to evaluation_cases")
generated_answer = TextField(null=False, help_text="generated answer")
retrieved_chunks = JSONField(null=False, help_text="chunks that were retrieved")
metrics = JSONField(null=False, help_text="all computed metrics")
execution_time = FloatField(null=False, help_text="response time in seconds")
token_usage = JSONField(null=True, help_text="prompt/completion tokens")
create_time = BigIntegerField(null=False, help_text="creation timestamp")
class Meta:
db_table = "evaluation_results"
def migrate_db():
logging.disable(logging.ERROR)
migrator = DatabaseMigrator[settings.DATABASE_TYPE.upper()].value(DB)
@ -1357,43 +1293,4 @@ def migrate_db():
migrate(migrator.add_column("llm_factories", "rank", IntegerField(default=0, index=False)))
except Exception:
pass
# RAG Evaluation tables
try:
migrate(migrator.add_column("evaluation_datasets", "id", CharField(max_length=32, primary_key=True)))
except Exception:
pass
try:
migrate(migrator.add_column("evaluation_datasets", "tenant_id", CharField(max_length=32, null=False, index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("evaluation_datasets", "name", CharField(max_length=255, null=False, index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("evaluation_datasets", "description", TextField(null=True)))
except Exception:
pass
try:
migrate(migrator.add_column("evaluation_datasets", "kb_ids", JSONField(null=False)))
except Exception:
pass
try:
migrate(migrator.add_column("evaluation_datasets", "created_by", CharField(max_length=32, null=False, index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("evaluation_datasets", "create_time", BigIntegerField(null=False, index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("evaluation_datasets", "update_time", BigIntegerField(null=False)))
except Exception:
pass
try:
migrate(migrator.add_column("evaluation_datasets", "status", IntegerField(null=False, default=1)))
except Exception:
pass
logging.disable(logging.NOTSET)

View File

@ -761,48 +761,13 @@ Please write the SQL, only SQL, without any other explanations or text.
"prompt": sys_prompt,
}
def clean_tts_text(text: str) -> str:
if not text:
return ""
text = text.encode("utf-8", "ignore").decode("utf-8", "ignore")
text = re.sub(r"[\x00-\x08\x0B-\x0C\x0E-\x1F\x7F]", "", text)
emoji_pattern = re.compile(
"[\U0001F600-\U0001F64F"
"\U0001F300-\U0001F5FF"
"\U0001F680-\U0001F6FF"
"\U0001F1E0-\U0001F1FF"
"\U00002700-\U000027BF"
"\U0001F900-\U0001F9FF"
"\U0001FA70-\U0001FAFF"
"\U0001FAD0-\U0001FAFF]+",
flags=re.UNICODE
)
text = emoji_pattern.sub("", text)
text = re.sub(r"\s+", " ", text).strip()
MAX_LEN = 500
if len(text) > MAX_LEN:
text = text[:MAX_LEN]
return text
def tts(tts_mdl, text):
if not tts_mdl or not text:
return None
text = clean_tts_text(text)
if not text:
return None
bin = b""
try:
for chunk in tts_mdl.tts(text):
bin += chunk
except Exception as e:
logging.error(f"TTS failed: {e}, text={text!r}")
return None
for chunk in tts_mdl.tts(text):
bin += chunk
return binascii.hexlify(bin).decode("utf-8")

View File

@ -719,14 +719,10 @@ class DocumentService(CommonService):
# only for special task and parsed docs and unfinished
freeze_progress = special_task_running and doc_progress >= 1 and not finished
msg = "\n".join(sorted(msg))
begin_at = d.get("process_begin_at")
if not begin_at:
begin_at = datetime.now()
# fallback
cls.update_by_id(d["id"], {"process_begin_at": begin_at})
info = {
"process_duration": max(datetime.timestamp(datetime.now()) - begin_at.timestamp(), 0),
"process_duration": datetime.timestamp(
datetime.now()) -
d["process_begin_at"].timestamp(),
"run": status}
if prg != 0 and not freeze_progress:
info["progress"] = prg

View File

@ -1,598 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
RAG Evaluation Service
Provides functionality for evaluating RAG system performance including:
- Dataset management
- Test case management
- Evaluation execution
- Metrics computation
- Configuration recommendations
"""
import logging
from typing import List, Dict, Any, Optional, Tuple
from datetime import datetime
from timeit import default_timer as timer
from api.db.db_models import EvaluationDataset, EvaluationCase, EvaluationRun, EvaluationResult
from api.db.services.common_service import CommonService
from api.db.services.dialog_service import DialogService, chat
from common.misc_utils import get_uuid
from common.time_utils import current_timestamp
from common.constants import StatusEnum
class EvaluationService(CommonService):
"""Service for managing RAG evaluations"""
model = EvaluationDataset
# ==================== Dataset Management ====================
@classmethod
def create_dataset(cls, name: str, description: str, kb_ids: List[str],
tenant_id: str, user_id: str) -> Tuple[bool, str]:
"""
Create a new evaluation dataset.
Args:
name: Dataset name
description: Dataset description
kb_ids: List of knowledge base IDs to evaluate against
tenant_id: Tenant ID
user_id: User ID who creates the dataset
Returns:
(success, dataset_id or error_message)
"""
try:
dataset_id = get_uuid()
dataset = {
"id": dataset_id,
"tenant_id": tenant_id,
"name": name,
"description": description,
"kb_ids": kb_ids,
"created_by": user_id,
"create_time": current_timestamp(),
"update_time": current_timestamp(),
"status": StatusEnum.VALID.value
}
if not EvaluationDataset.create(**dataset):
return False, "Failed to create dataset"
return True, dataset_id
except Exception as e:
logging.error(f"Error creating evaluation dataset: {e}")
return False, str(e)
@classmethod
def get_dataset(cls, dataset_id: str) -> Optional[Dict[str, Any]]:
"""Get dataset by ID"""
try:
dataset = EvaluationDataset.get_by_id(dataset_id)
if dataset:
return dataset.to_dict()
return None
except Exception as e:
logging.error(f"Error getting dataset {dataset_id}: {e}")
return None
@classmethod
def list_datasets(cls, tenant_id: str, user_id: str,
page: int = 1, page_size: int = 20) -> Dict[str, Any]:
"""List datasets for a tenant"""
try:
query = EvaluationDataset.select().where(
(EvaluationDataset.tenant_id == tenant_id) &
(EvaluationDataset.status == StatusEnum.VALID.value)
).order_by(EvaluationDataset.create_time.desc())
total = query.count()
datasets = query.paginate(page, page_size)
return {
"total": total,
"datasets": [d.to_dict() for d in datasets]
}
except Exception as e:
logging.error(f"Error listing datasets: {e}")
return {"total": 0, "datasets": []}
@classmethod
def update_dataset(cls, dataset_id: str, **kwargs) -> bool:
"""Update dataset"""
try:
kwargs["update_time"] = current_timestamp()
return EvaluationDataset.update(**kwargs).where(
EvaluationDataset.id == dataset_id
).execute() > 0
except Exception as e:
logging.error(f"Error updating dataset {dataset_id}: {e}")
return False
@classmethod
def delete_dataset(cls, dataset_id: str) -> bool:
"""Soft delete dataset"""
try:
return EvaluationDataset.update(
status=StatusEnum.INVALID.value,
update_time=current_timestamp()
).where(EvaluationDataset.id == dataset_id).execute() > 0
except Exception as e:
logging.error(f"Error deleting dataset {dataset_id}: {e}")
return False
# ==================== Test Case Management ====================
@classmethod
def add_test_case(cls, dataset_id: str, question: str,
reference_answer: Optional[str] = None,
relevant_doc_ids: Optional[List[str]] = None,
relevant_chunk_ids: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None) -> Tuple[bool, str]:
"""
Add a test case to a dataset.
Args:
dataset_id: Dataset ID
question: Test question
reference_answer: Optional ground truth answer
relevant_doc_ids: Optional list of relevant document IDs
relevant_chunk_ids: Optional list of relevant chunk IDs
metadata: Optional additional metadata
Returns:
(success, case_id or error_message)
"""
try:
case_id = get_uuid()
case = {
"id": case_id,
"dataset_id": dataset_id,
"question": question,
"reference_answer": reference_answer,
"relevant_doc_ids": relevant_doc_ids,
"relevant_chunk_ids": relevant_chunk_ids,
"metadata": metadata,
"create_time": current_timestamp()
}
if not EvaluationCase.create(**case):
return False, "Failed to create test case"
return True, case_id
except Exception as e:
logging.error(f"Error adding test case: {e}")
return False, str(e)
@classmethod
def get_test_cases(cls, dataset_id: str) -> List[Dict[str, Any]]:
"""Get all test cases for a dataset"""
try:
cases = EvaluationCase.select().where(
EvaluationCase.dataset_id == dataset_id
).order_by(EvaluationCase.create_time)
return [c.to_dict() for c in cases]
except Exception as e:
logging.error(f"Error getting test cases for dataset {dataset_id}: {e}")
return []
@classmethod
def delete_test_case(cls, case_id: str) -> bool:
"""Delete a test case"""
try:
return EvaluationCase.delete().where(
EvaluationCase.id == case_id
).execute() > 0
except Exception as e:
logging.error(f"Error deleting test case {case_id}: {e}")
return False
@classmethod
def import_test_cases(cls, dataset_id: str, cases: List[Dict[str, Any]]) -> Tuple[int, int]:
"""
Bulk import test cases from a list.
Args:
dataset_id: Dataset ID
cases: List of test case dictionaries
Returns:
(success_count, failure_count)
"""
success_count = 0
failure_count = 0
for case_data in cases:
success, _ = cls.add_test_case(
dataset_id=dataset_id,
question=case_data.get("question", ""),
reference_answer=case_data.get("reference_answer"),
relevant_doc_ids=case_data.get("relevant_doc_ids"),
relevant_chunk_ids=case_data.get("relevant_chunk_ids"),
metadata=case_data.get("metadata")
)
if success:
success_count += 1
else:
failure_count += 1
return success_count, failure_count
# ==================== Evaluation Execution ====================
@classmethod
def start_evaluation(cls, dataset_id: str, dialog_id: str,
user_id: str, name: Optional[str] = None) -> Tuple[bool, str]:
"""
Start an evaluation run.
Args:
dataset_id: Dataset ID
dialog_id: Dialog configuration to evaluate
user_id: User ID who starts the run
name: Optional run name
Returns:
(success, run_id or error_message)
"""
try:
# Get dialog configuration
success, dialog = DialogService.get_by_id(dialog_id)
if not success:
return False, "Dialog not found"
# Create evaluation run
run_id = get_uuid()
if not name:
name = f"Evaluation Run {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
run = {
"id": run_id,
"dataset_id": dataset_id,
"dialog_id": dialog_id,
"name": name,
"config_snapshot": dialog.to_dict(),
"metrics_summary": None,
"status": "RUNNING",
"created_by": user_id,
"create_time": current_timestamp(),
"complete_time": None
}
if not EvaluationRun.create(**run):
return False, "Failed to create evaluation run"
# Execute evaluation asynchronously (in production, use task queue)
# For now, we'll execute synchronously
cls._execute_evaluation(run_id, dataset_id, dialog)
return True, run_id
except Exception as e:
logging.error(f"Error starting evaluation: {e}")
return False, str(e)
@classmethod
def _execute_evaluation(cls, run_id: str, dataset_id: str, dialog: Any):
"""
Execute evaluation for all test cases.
This method runs the RAG pipeline for each test case and computes metrics.
"""
try:
# Get all test cases
test_cases = cls.get_test_cases(dataset_id)
if not test_cases:
EvaluationRun.update(
status="FAILED",
complete_time=current_timestamp()
).where(EvaluationRun.id == run_id).execute()
return
# Execute each test case
results = []
for case in test_cases:
result = cls._evaluate_single_case(run_id, case, dialog)
if result:
results.append(result)
# Compute summary metrics
metrics_summary = cls._compute_summary_metrics(results)
# Update run status
EvaluationRun.update(
status="COMPLETED",
metrics_summary=metrics_summary,
complete_time=current_timestamp()
).where(EvaluationRun.id == run_id).execute()
except Exception as e:
logging.error(f"Error executing evaluation {run_id}: {e}")
EvaluationRun.update(
status="FAILED",
complete_time=current_timestamp()
).where(EvaluationRun.id == run_id).execute()
@classmethod
def _evaluate_single_case(cls, run_id: str, case: Dict[str, Any],
dialog: Any) -> Optional[Dict[str, Any]]:
"""
Evaluate a single test case.
Args:
run_id: Evaluation run ID
case: Test case dictionary
dialog: Dialog configuration
Returns:
Result dictionary or None if failed
"""
try:
# Prepare messages
messages = [{"role": "user", "content": case["question"]}]
# Execute RAG pipeline
start_time = timer()
answer = ""
retrieved_chunks = []
for ans in chat(dialog, messages, stream=False):
if isinstance(ans, dict):
answer = ans.get("answer", "")
retrieved_chunks = ans.get("reference", {}).get("chunks", [])
break
execution_time = timer() - start_time
# Compute metrics
metrics = cls._compute_metrics(
question=case["question"],
generated_answer=answer,
reference_answer=case.get("reference_answer"),
retrieved_chunks=retrieved_chunks,
relevant_chunk_ids=case.get("relevant_chunk_ids"),
dialog=dialog
)
# Save result
result_id = get_uuid()
result = {
"id": result_id,
"run_id": run_id,
"case_id": case["id"],
"generated_answer": answer,
"retrieved_chunks": retrieved_chunks,
"metrics": metrics,
"execution_time": execution_time,
"token_usage": None, # TODO: Track token usage
"create_time": current_timestamp()
}
EvaluationResult.create(**result)
return result
except Exception as e:
logging.error(f"Error evaluating case {case.get('id')}: {e}")
return None
@classmethod
def _compute_metrics(cls, question: str, generated_answer: str,
reference_answer: Optional[str],
retrieved_chunks: List[Dict[str, Any]],
relevant_chunk_ids: Optional[List[str]],
dialog: Any) -> Dict[str, float]:
"""
Compute evaluation metrics for a single test case.
Returns:
Dictionary of metric names to values
"""
metrics = {}
# Retrieval metrics (if ground truth chunks provided)
if relevant_chunk_ids:
retrieved_ids = [c.get("chunk_id") for c in retrieved_chunks]
metrics.update(cls._compute_retrieval_metrics(retrieved_ids, relevant_chunk_ids))
# Generation metrics
if generated_answer:
# Basic metrics
metrics["answer_length"] = len(generated_answer)
metrics["has_answer"] = 1.0 if generated_answer.strip() else 0.0
# TODO: Implement advanced metrics using LLM-as-judge
# - Faithfulness (hallucination detection)
# - Answer relevance
# - Context relevance
# - Semantic similarity (if reference answer provided)
return metrics
@classmethod
def _compute_retrieval_metrics(cls, retrieved_ids: List[str],
relevant_ids: List[str]) -> Dict[str, float]:
"""
Compute retrieval metrics.
Args:
retrieved_ids: List of retrieved chunk IDs
relevant_ids: List of relevant chunk IDs (ground truth)
Returns:
Dictionary of retrieval metrics
"""
if not relevant_ids:
return {}
retrieved_set = set(retrieved_ids)
relevant_set = set(relevant_ids)
# Precision: proportion of retrieved that are relevant
precision = len(retrieved_set & relevant_set) / len(retrieved_set) if retrieved_set else 0.0
# Recall: proportion of relevant that were retrieved
recall = len(retrieved_set & relevant_set) / len(relevant_set) if relevant_set else 0.0
# F1 score
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
# Hit rate: whether any relevant chunk was retrieved
hit_rate = 1.0 if (retrieved_set & relevant_set) else 0.0
# MRR (Mean Reciprocal Rank): position of first relevant chunk
mrr = 0.0
for i, chunk_id in enumerate(retrieved_ids, 1):
if chunk_id in relevant_set:
mrr = 1.0 / i
break
return {
"precision": precision,
"recall": recall,
"f1_score": f1,
"hit_rate": hit_rate,
"mrr": mrr
}
@classmethod
def _compute_summary_metrics(cls, results: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Compute summary metrics across all test cases.
Args:
results: List of result dictionaries
Returns:
Summary metrics dictionary
"""
if not results:
return {}
# Aggregate metrics
metric_sums = {}
metric_counts = {}
for result in results:
metrics = result.get("metrics", {})
for key, value in metrics.items():
if isinstance(value, (int, float)):
metric_sums[key] = metric_sums.get(key, 0) + value
metric_counts[key] = metric_counts.get(key, 0) + 1
# Compute averages
summary = {
"total_cases": len(results),
"avg_execution_time": sum(r.get("execution_time", 0) for r in results) / len(results)
}
for key in metric_sums:
summary[f"avg_{key}"] = metric_sums[key] / metric_counts[key]
return summary
# ==================== Results & Analysis ====================
@classmethod
def get_run_results(cls, run_id: str) -> Dict[str, Any]:
"""Get results for an evaluation run"""
try:
run = EvaluationRun.get_by_id(run_id)
if not run:
return {}
results = EvaluationResult.select().where(
EvaluationResult.run_id == run_id
).order_by(EvaluationResult.create_time)
return {
"run": run.to_dict(),
"results": [r.to_dict() for r in results]
}
except Exception as e:
logging.error(f"Error getting run results {run_id}: {e}")
return {}
@classmethod
def get_recommendations(cls, run_id: str) -> List[Dict[str, Any]]:
"""
Analyze evaluation results and provide configuration recommendations.
Args:
run_id: Evaluation run ID
Returns:
List of recommendation dictionaries
"""
try:
run = EvaluationRun.get_by_id(run_id)
if not run or not run.metrics_summary:
return []
metrics = run.metrics_summary
recommendations = []
# Low precision: retrieving irrelevant chunks
if metrics.get("avg_precision", 1.0) < 0.7:
recommendations.append({
"issue": "Low Precision",
"severity": "high",
"description": "System is retrieving many irrelevant chunks",
"suggestions": [
"Increase similarity_threshold to filter out less relevant chunks",
"Enable reranking to improve chunk ordering",
"Reduce top_k to return fewer chunks"
]
})
# Low recall: missing relevant chunks
if metrics.get("avg_recall", 1.0) < 0.7:
recommendations.append({
"issue": "Low Recall",
"severity": "high",
"description": "System is missing relevant chunks",
"suggestions": [
"Increase top_k to retrieve more chunks",
"Lower similarity_threshold to be more inclusive",
"Enable hybrid search (keyword + semantic)",
"Check chunk size - may be too large or too small"
]
})
# Slow response time
if metrics.get("avg_execution_time", 0) > 5.0:
recommendations.append({
"issue": "Slow Response Time",
"severity": "medium",
"description": f"Average response time is {metrics['avg_execution_time']:.2f}s",
"suggestions": [
"Reduce top_k to retrieve fewer chunks",
"Optimize embedding model selection",
"Consider caching frequently asked questions"
]
})
return recommendations
except Exception as e:
logging.error(f"Error generating recommendations for run {run_id}: {e}")
return []

View File

@ -385,7 +385,6 @@ class LLMBundle(LLM4Tenant):
async def async_chat_streamly(self, system: str, history: list, gen_conf: dict = {}, **kwargs):
total_tokens = 0
ans = ""
if self.is_tools and self.mdl.is_tools:
stream_fn = getattr(self.mdl, "async_chat_streamly_with_tools", None)
else:
@ -398,15 +397,7 @@ class LLMBundle(LLM4Tenant):
if isinstance(txt, int):
total_tokens = txt
break
if txt.endswith("</think>"):
ans = ans[: -len("</think>")]
if not self.verbose_tool_use:
txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
ans += txt
yield ans
yield txt
if total_tokens and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, total_tokens, self.llm_name):
logging.error("LLMBundle.async_chat_streamly can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, total_tokens))
return

View File

@ -331,7 +331,6 @@ class RaptorConfig(Base):
threshold: Annotated[float, Field(default=0.1, ge=0.0, le=1.0)]
max_cluster: Annotated[int, Field(default=64, ge=1, le=1024)]
random_seed: Annotated[int, Field(default=0, ge=0)]
auto_disable_for_structured_data: Annotated[bool, Field(default=True)]
class GraphragConfig(Base):

View File

@ -148,7 +148,6 @@ class Storage(Enum):
AWS_S3 = 4
OSS = 5
OPENDAL = 6
GCS = 7
# environment
# ENV_STRONG_TEST_COUNT = "STRONG_TEST_COUNT"

View File

@ -190,11 +190,6 @@ class WebDAVConnector(LoadConnector, PollConnector):
files = self._list_files_recursive(self.remote_path, start, end)
logging.info(f"Found {len(files)} files matching time criteria")
filename_counts: dict[str, int] = {}
for file_path, _ in files:
file_name = os.path.basename(file_path)
filename_counts[file_name] = filename_counts.get(file_name, 0) + 1
batch: list[Document] = []
for file_path, file_info in files:
file_name = os.path.basename(file_path)
@ -242,22 +237,12 @@ class WebDAVConnector(LoadConnector, PollConnector):
else:
modified = datetime.now(timezone.utc)
if filename_counts.get(file_name, 0) > 1:
relative_path = file_path
if file_path.startswith(self.remote_path):
relative_path = file_path[len(self.remote_path):]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
semantic_id = relative_path.replace('/', ' / ') if relative_path else file_name
else:
semantic_id = file_name
batch.append(
Document(
id=f"webdav:{self.base_url}:{file_path}",
blob=blob,
source=DocumentSource.WEBDAV,
semantic_identifier=semantic_id,
semantic_identifier=file_name,
extension=get_file_ext(file_name),
doc_updated_at=modified,
size_bytes=size_bytes if size_bytes else 0

View File

@ -153,7 +153,7 @@ def parse_mineru_paths() -> Dict[str, Path]:
@once
def check_and_install_mineru() -> None:
def install_mineru() -> None:
"""
Ensure MinerU is installed.
@ -173,8 +173,8 @@ def check_and_install_mineru() -> None:
Logging is used to indicate status.
"""
# Check if MinerU is enabled
use_mineru = os.getenv("USE_MINERU", "false").strip().lower()
if use_mineru != "true":
use_mineru = os.getenv("USE_MINERU", "").strip().lower()
if use_mineru == "false":
logging.info("USE_MINERU=%r. Skipping MinerU installation.", use_mineru)
return

View File

@ -31,7 +31,6 @@ import rag.utils.ob_conn
import rag.utils.opensearch_conn
from rag.utils.azure_sas_conn import RAGFlowAzureSasBlob
from rag.utils.azure_spn_conn import RAGFlowAzureSpnBlob
from rag.utils.gcs_conn import RAGFlowGCS
from rag.utils.minio_conn import RAGFlowMinio
from rag.utils.opendal_conn import OpenDALStorage
from rag.utils.s3_conn import RAGFlowS3
@ -110,7 +109,6 @@ MINIO = {}
OB = {}
OSS = {}
OS = {}
GCS = {}
DOC_MAXIMUM_SIZE: int = 128 * 1024 * 1024
DOC_BULK_SIZE: int = 4
@ -153,8 +151,7 @@ class StorageFactory:
Storage.AZURE_SAS: RAGFlowAzureSasBlob,
Storage.AWS_S3: RAGFlowS3,
Storage.OSS: RAGFlowOSS,
Storage.OPENDAL: OpenDALStorage,
Storage.GCS: RAGFlowGCS,
Storage.OPENDAL: OpenDALStorage
}
@classmethod
@ -253,7 +250,7 @@ def init_settings():
else:
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
global AZURE, S3, MINIO, OSS, GCS
global AZURE, S3, MINIO, OSS
if STORAGE_IMPL_TYPE in ['AZURE_SPN', 'AZURE_SAS']:
AZURE = get_base_config("azure", {})
elif STORAGE_IMPL_TYPE == 'AWS_S3':
@ -262,8 +259,6 @@ def init_settings():
MINIO = decrypt_database_config(name="minio")
elif STORAGE_IMPL_TYPE == 'OSS':
OSS = get_base_config("oss", {})
elif STORAGE_IMPL_TYPE == 'GCS':
GCS = get_base_config("gcs", {})
global STORAGE_IMPL
STORAGE_IMPL = StorageFactory.create(Storage[STORAGE_IMPL_TYPE])

View File

@ -60,8 +60,6 @@ user_default_llm:
# access_key: 'access_key'
# secret_key: 'secret_key'
# region: 'region'
#gcs:
# bucket: 'bridgtl-edm-d-bucket-ragflow'
# oss:
# access_key: 'access_key'
# secret_key: 'secret_key'

View File

@ -25,8 +25,6 @@ from rag.prompts.generator import vision_llm_figure_describe_prompt
def vision_figure_parser_figure_data_wrapper(figures_data_without_positions):
if not figures_data_without_positions:
return []
return [
(
(figure_data[1], [figure_data[0]]),
@ -37,9 +35,7 @@ def vision_figure_parser_figure_data_wrapper(figures_data_without_positions):
]
def vision_figure_parser_docx_wrapper(sections, tbls, callback=None,**kwargs):
if not tbls:
return []
def vision_figure_parser_docx_wrapper(sections,tbls,callback=None,**kwargs):
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
callback(0.7, "Visual model detected. Attempting to enhance figure extraction...")
@ -57,8 +53,6 @@ def vision_figure_parser_docx_wrapper(sections, tbls, callback=None,**kwargs):
def vision_figure_parser_pdf_wrapper(tbls, callback=None, **kwargs):
if not tbls:
return []
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
callback(0.7, "Visual model detected. Attempting to enhance figure extraction...")

View File

@ -63,7 +63,6 @@ class MinerUParser(RAGFlowPdfParser):
self.logger = logging.getLogger(self.__class__.__name__)
def _extract_zip_no_root(self, zip_path, extract_to, root_dir):
self.logger.info(f"[MinerU] Extract zip: zip_path={zip_path}, extract_to={extract_to}, root_hint={root_dir}")
with zipfile.ZipFile(zip_path, "r") as zip_ref:
if not root_dir:
files = zip_ref.namelist()
@ -73,7 +72,7 @@ class MinerUParser(RAGFlowPdfParser):
root_dir = None
if not root_dir or not root_dir.endswith("/"):
self.logger.info(f"[MinerU] No root directory found, extracting all (root_hint={root_dir})")
self.logger.info(f"[MinerU] No root directory found, extracting all...fff{root_dir}")
zip_ref.extractall(extract_to)
return
@ -109,7 +108,7 @@ class MinerUParser(RAGFlowPdfParser):
valid_backends = ["pipeline", "vlm-http-client", "vlm-transformers", "vlm-vllm-engine"]
if backend not in valid_backends:
reason = "[MinerU] Invalid backend '{backend}'. Valid backends are: {valid_backends}"
self.logger.warning(reason)
logging.warning(reason)
return False, reason
subprocess_kwargs = {
@ -129,40 +128,40 @@ class MinerUParser(RAGFlowPdfParser):
if backend == "vlm-http-client" and server_url:
try:
server_accessible = self._is_http_endpoint_valid(server_url + "/openapi.json")
self.logger.info(f"[MinerU] vlm-http-client server check: {server_accessible}")
logging.info(f"[MinerU] vlm-http-client server check: {server_accessible}")
if server_accessible:
self.using_api = False # We are using http client, not API
return True, reason
else:
reason = f"[MinerU] vlm-http-client server not accessible: {server_url}"
self.logger.warning(f"[MinerU] vlm-http-client server not accessible: {server_url}")
logging.warning(f"[MinerU] vlm-http-client server not accessible: {server_url}")
return False, reason
except Exception as e:
self.logger.warning(f"[MinerU] vlm-http-client server check failed: {e}")
logging.warning(f"[MinerU] vlm-http-client server check failed: {e}")
try:
response = requests.get(server_url, timeout=5)
self.logger.info(f"[MinerU] vlm-http-client server connection check: success with status {response.status_code}")
logging.info(f"[MinerU] vlm-http-client server connection check: success with status {response.status_code}")
self.using_api = False
return True, reason
except Exception as e:
reason = f"[MinerU] vlm-http-client server connection check failed: {server_url}: {e}"
self.logger.warning(f"[MinerU] vlm-http-client server connection check failed: {server_url}: {e}")
logging.warning(f"[MinerU] vlm-http-client server connection check failed: {server_url}: {e}")
return False, reason
try:
result = subprocess.run([str(self.mineru_path), "--version"], **subprocess_kwargs)
version_info = result.stdout.strip()
if version_info:
self.logger.info(f"[MinerU] Detected version: {version_info}")
logging.info(f"[MinerU] Detected version: {version_info}")
else:
self.logger.info("[MinerU] Detected MinerU, but version info is empty.")
logging.info("[MinerU] Detected MinerU, but version info is empty.")
return True, reason
except subprocess.CalledProcessError as e:
self.logger.warning(f"[MinerU] Execution failed (exit code {e.returncode}).")
logging.warning(f"[MinerU] Execution failed (exit code {e.returncode}).")
except FileNotFoundError:
self.logger.warning("[MinerU] MinerU not found. Please install it via: pip install -U 'mineru[core]'")
logging.warning("[MinerU] MinerU not found. Please install it via: pip install -U 'mineru[core]'")
except Exception as e:
self.logger.error(f"[MinerU] Unexpected error during installation check: {e}")
logging.error(f"[MinerU] Unexpected error during installation check: {e}")
# If executable check fails, try API check
try:
@ -172,14 +171,14 @@ class MinerUParser(RAGFlowPdfParser):
if not openapi_exists:
reason = "[MinerU] Failed to detect vaild MinerU API server"
return openapi_exists, reason
self.logger.info(f"[MinerU] Detected {self.mineru_api}/openapi.json: {openapi_exists}")
logging.info(f"[MinerU] Detected {self.mineru_api}/openapi.json: {openapi_exists}")
self.using_api = openapi_exists
return openapi_exists, reason
else:
self.logger.info("[MinerU] api not exists.")
logging.info("[MinerU] api not exists.")
except Exception as e:
reason = f"[MinerU] Unexpected error during api check: {e}"
self.logger.error(f"[MinerU] Unexpected error during api check: {e}")
logging.error(f"[MinerU] Unexpected error during api check: {e}")
return False, reason
def _run_mineru(
@ -315,7 +314,7 @@ class MinerUParser(RAGFlowPdfParser):
except Exception as e:
self.page_images = None
self.total_page = 0
self.logger.exception(e)
logging.exception(e)
def _line_tag(self, bx):
pn = [bx["page_idx"] + 1]
@ -481,49 +480,15 @@ class MinerUParser(RAGFlowPdfParser):
json_file = None
subdir = None
attempted = []
# mirror MinerU's sanitize_filename to align ZIP naming
def _sanitize_filename(name: str) -> str:
sanitized = re.sub(r"[/\\\.]{2,}|[/\\]", "", name)
sanitized = re.sub(r"[^\w.-]", "_", sanitized, flags=re.UNICODE)
if sanitized.startswith("."):
sanitized = "_" + sanitized[1:]
return sanitized or "unnamed"
safe_stem = _sanitize_filename(file_stem)
allowed_names = {f"{file_stem}_content_list.json", f"{safe_stem}_content_list.json"}
self.logger.info(f"[MinerU] Expected output files: {', '.join(sorted(allowed_names))}")
self.logger.info(f"[MinerU] Searching output candidates: {', '.join(str(c) for c in candidates)}")
for sub in candidates:
jf = sub / f"{file_stem}_content_list.json"
self.logger.info(f"[MinerU] Trying original path: {jf}")
attempted.append(jf)
if jf.exists():
subdir = sub
json_file = jf
break
# MinerU API sanitizes non-ASCII filenames inside the ZIP root and file names.
alt = sub / f"{safe_stem}_content_list.json"
self.logger.info(f"[MinerU] Trying sanitized filename: {alt}")
attempted.append(alt)
if alt.exists():
subdir = sub
json_file = alt
break
nested_alt = sub / safe_stem / f"{safe_stem}_content_list.json"
self.logger.info(f"[MinerU] Trying sanitized nested path: {nested_alt}")
attempted.append(nested_alt)
if nested_alt.exists():
subdir = nested_alt.parent
json_file = nested_alt
break
if not json_file:
raise FileNotFoundError(f"[MinerU] Missing output file, tried: {', '.join(str(p) for p in attempted)}")
raise FileNotFoundError(f"[MinerU] Missing output file, tried: {', '.join(str(c / (file_stem + '_content_list.json')) for c in candidates)}")
with open(json_file, "r", encoding="utf-8") as f:
data = json.load(f)

View File

@ -170,7 +170,7 @@ TZ=Asia/Shanghai
# Uncomment the following line if your operating system is MacOS:
# MACOS=1
# The maximum file size limit (in bytes) for each upload to your dataset or RAGFlow's File system.
# The maximum file size limit (in bytes) for each upload to your knowledge base or File Management.
# To change the 1GB file size limit, uncomment the line below and update as needed.
# MAX_CONTENT_LENGTH=1073741824
# After updating, ensure `client_max_body_size` in nginx/nginx.conf is updated accordingly.

View File

@ -23,7 +23,7 @@ services:
env_file: .env
networks:
- ragflow
restart: unless-stopped
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
extra_hosts:
@ -48,7 +48,7 @@ services:
env_file: .env
networks:
- ragflow
restart: unless-stopped
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
extra_hosts:

View File

@ -31,7 +31,7 @@ services:
retries: 120
networks:
- ragflow
restart: unless-stopped
restart: on-failure
opensearch01:
profiles:
@ -67,12 +67,12 @@ services:
retries: 120
networks:
- ragflow
restart: unless-stopped
restart: on-failure
infinity:
profiles:
- infinity
image: infiniflow/infinity:v0.6.10
image: infiniflow/infinity:v0.6.8
volumes:
- infinity_data:/var/infinity
- ./infinity_conf.toml:/infinity_conf.toml
@ -94,7 +94,7 @@ services:
interval: 10s
timeout: 10s
retries: 120
restart: unless-stopped
restart: on-failure
oceanbase:
profiles:
@ -119,7 +119,7 @@ services:
timeout: 10s
networks:
- ragflow
restart: unless-stopped
restart: on-failure
sandbox-executor-manager:
profiles:
@ -147,7 +147,7 @@ services:
interval: 10s
timeout: 10s
retries: 120
restart: unless-stopped
restart: on-failure
mysql:
# mysql:5.7 linux/arm64 image is unavailable.
@ -175,7 +175,7 @@ services:
interval: 10s
timeout: 10s
retries: 120
restart: unless-stopped
restart: on-failure
minio:
image: quay.io/minio/minio:RELEASE.2025-06-13T11-33-47Z
@ -191,7 +191,7 @@ services:
- minio_data:/data
networks:
- ragflow
restart: unless-stopped
restart: on-failure
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9000/minio/health/live"]
interval: 10s
@ -209,7 +209,7 @@ services:
- redis_data:/data
networks:
- ragflow
restart: unless-stopped
restart: on-failure
healthcheck:
test: ["CMD", "redis-cli", "-a", "${REDIS_PASSWORD}", "ping"]
interval: 10s
@ -228,7 +228,7 @@ services:
networks:
- ragflow
command: ["--model-id", "/data/${TEI_MODEL}", "--auto-truncate"]
restart: unless-stopped
restart: on-failure
tei-gpu:
@ -249,7 +249,7 @@ services:
- driver: nvidia
count: all
capabilities: [gpu]
restart: unless-stopped
restart: on-failure
kibana:
@ -271,7 +271,7 @@ services:
retries: 120
networks:
- ragflow
restart: unless-stopped
restart: on-failure
volumes:

View File

@ -22,7 +22,7 @@ services:
env_file: .env
networks:
- ragflow
restart: unless-stopped
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
extra_hosts:
@ -39,7 +39,7 @@ services:
# entrypoint: "/ragflow/entrypoint_task_executor.sh 1 3"
# networks:
# - ragflow
# restart: unless-stopped
# restart: on-failure
# # https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# # If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
# extra_hosts:

View File

@ -45,7 +45,7 @@ services:
env_file: .env
networks:
- ragflow
restart: unless-stopped
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you use Docker Desktop, the --add-host flag is optional. This flag ensures that the host's internal IP is exposed to the Prometheus container.
extra_hosts:
@ -94,7 +94,7 @@ services:
env_file: .env
networks:
- ragflow
restart: unless-stopped
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you use Docker Desktop, the --add-host flag is optional. This flag ensures that the host's internal IP is exposed to the Prometheus container.
extra_hosts:
@ -120,7 +120,7 @@ services:
# entrypoint: "/ragflow/entrypoint_task_executor.sh 1 3"
# networks:
# - ragflow
# restart: unless-stopped
# restart: on-failure
# # https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# # If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
# extra_hosts:

View File

@ -1,5 +1,5 @@
[general]
version = "0.6.10"
version = "0.6.8"
time_zone = "utc-8"
[network]

View File

@ -76,5 +76,5 @@ No. Files uploaded to an agent as input are not stored in a dataset and hence wi
There is no _specific_ file size limit for a file uploaded to an agent. However, note that model providers typically have a default or explicit maximum token setting, which can range from 8196 to 128k: The plain text part of the uploaded file will be passed in as the key value, but if the file's token count exceeds this limit, the string will be truncated and incomplete.
:::tip NOTE
The variables `MAX_CONTENT_LENGTH` in `/docker/.env` and `client_max_body_size` in `/docker/nginx/nginx.conf` set the file size limit for each upload to a dataset or RAGFlow's File system. These settings DO NOT apply in this scenario.
The variables `MAX_CONTENT_LENGTH` in `/docker/.env` and `client_max_body_size` in `/docker/nginx/nginx.conf` set the file size limit for each upload to a dataset or **File Management**. These settings DO NOT apply in this scenario.
:::

View File

@ -9,7 +9,7 @@ Initiate an AI-powered chat with a configured chat assistant.
---
Chats in RAGFlow are based on a particular dataset or multiple datasets. Once you have created your dataset, finished file parsing, and [run a retrieval test](../dataset/run_retrieval_test.md), you can go ahead and start an AI conversation.
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. Chats in RAGFlow are based on a particular dataset or multiple datasets. Once you have created your dataset, finished file parsing, and [run a retrieval test](../dataset/run_retrieval_test.md), you can go ahead and start an AI conversation.
## Start an AI chat

View File

@ -5,7 +5,7 @@ slug: /configure_knowledge_base
# Configure dataset
Most of RAGFlow's chat assistants and Agents are based on datasets. Each of RAGFlow's datasets serves as a knowledge source, *parsing* files uploaded from your local machine and file references generated in RAGFlow's File system into the real 'knowledge' for future AI chats. This guide demonstrates some basic usages of the dataset feature, covering the following topics:
Most of RAGFlow's chat assistants and Agents are based on datasets. Each of RAGFlow's datasets serves as a knowledge source, *parsing* files uploaded from your local machine and file references generated in **File Management** into the real 'knowledge' for future AI chats. This guide demonstrates some basic usages of the dataset feature, covering the following topics:
- Create a dataset
- Configure a dataset
@ -82,10 +82,10 @@ Some embedding models are optimized for specific languages, so performance may b
### Upload file
- RAGFlow's File system allows you to link a file to multiple datasets, in which case each target dataset holds a reference to the file.
- RAGFlow's **File Management** allows you to link a file to multiple datasets, in which case each target dataset holds a reference to the file.
- In **Knowledge Base**, you are also given the option of uploading a single file or a folder of files (bulk upload) from your local machine to a dataset, in which case the dataset holds file copies.
While uploading files directly to a dataset seems more convenient, we *highly* recommend uploading files to RAGFlow's File system and then linking them to the target datasets. This way, you can avoid permanently deleting files uploaded to the dataset.
While uploading files directly to a dataset seems more convenient, we *highly* recommend uploading files to **File Management** and then linking them to the target datasets. This way, you can avoid permanently deleting files uploaded to the dataset.
### Parse file
@ -142,6 +142,6 @@ As of RAGFlow v0.22.1, the search feature is still in a rudimentary form, suppor
You are allowed to delete a dataset. Hover your mouse over the three dot of the intended dataset card and the **Delete** option appears. Once you delete a dataset, the associated folder under **root/.knowledge** directory is AUTOMATICALLY REMOVED. The consequence is:
- The files uploaded directly to the dataset are gone;
- The file references, which you created from within RAGFlow's File system, are gone, but the associated files still exist.
- The file references, which you created from within **File Management**, are gone, but the associated files still exist in **File Management**.
![delete dataset](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/delete_datasets.jpg)

View File

@ -419,11 +419,17 @@ Creates a dataset.
- `"embedding_model"`: `string`
- `"permission"`: `string`
- `"chunk_method"`: `string`
- `"parser_config"`: `object`
- `"parse_type"`: `int`
- `"pipeline_id"`: `string`
- "parser_config": `object`
- "parse_type": `int`
- "pipeline_id": `string`
##### A basic request example
Note: Choose exactly one ingestion mode when creating a dataset.
- Chunking method: provide `"chunk_method"` (optionally with `"parser_config"`).
- Ingestion pipeline: provide both `"parse_type"` and `"pipeline_id"` and do not provide `"chunk_method"`.
These options are mutually exclusive. If all three of `chunk_method`, `parse_type`, and `pipeline_id` are omitted, the system defaults to `chunk_method = "naive"`.
##### Request example
```bash
curl --request POST \
@ -435,11 +441,9 @@ curl --request POST \
}'
```
##### A request example specifying ingestion pipeline
##### Request example (ingestion pipeline)
:::caution WARNING
You must *not* include `"chunk_method"` or `"parser_config"` when specifying an ingestion pipeline.
:::
Use this form when specifying an ingestion pipeline (do not include `chunk_method`).
```bash
curl --request POST \
@ -448,11 +452,15 @@ curl --request POST \
--header 'Authorization: Bearer <YOUR_API_KEY>' \
--data '{
"name": "test-sdk",
"parse_type": <NUMBER_OF_PARSERS_IN_YOUR_PARSER_COMPONENT>,
"parse_type": <NUMBER_OF_FORMATS_IN_PARSE>,
"pipeline_id": "<PIPELINE_ID_32_HEX>"
}'
```
Notes:
- `parse_type` is an integer. Replace `<NUMBER_OF_FORMATS_IN_PARSE>` with your pipeline's parse-type value.
- `pipeline_id` must be a 32-character lowercase hexadecimal string.
##### Request parameters
- `"name"`: (*Body parameter*), `string`, *Required*
@ -480,8 +488,7 @@ curl --request POST \
- `"team"`: All team members can manage the dataset.
- `"chunk_method"`: (*Body parameter*), `enum<string>`
The default chunk method of the dataset to create. Mutually exclusive with `"parse_type"` and `"pipeline_id"`. If you set `"chunk_method"`, do not include `"parse_type"` or `"pipeline_id"`.
Available options:
The chunking method of the dataset to create. Available options:
- `"naive"`: General (default)
- `"book"`: Book
- `"email"`: Email
@ -494,6 +501,7 @@ curl --request POST \
- `"qa"`: Q&A
- `"table"`: Table
- `"tag"`: Tag
- Mutually exclusive with `parse_type` and `pipeline_id`. If you set `chunk_method`, do not include `parse_type` or `pipeline_id`.
- `"parser_config"`: (*Body parameter*), `object`
The configuration settings for the dataset parser. The attributes in this JSON object vary with the selected `"chunk_method"`:
@ -512,16 +520,13 @@ curl --request POST \
- Maximum: `2048`
- `"delimiter"`: `string`
- Defaults to `"\n"`.
- `"html4excel"`: `bool`
- Whether to convert Excel documents into HTML format.
- `"html4excel"`: `bool` Indicates whether to convert Excel documents into HTML format.
- Defaults to `false`
- `"layout_recognize"`: `string`
- Defaults to `DeepDOC`
- `"tag_kb_ids"`: `array<string>`
- IDs of datasets to be parsed using the Tag chunk method.
- Before setting this, ensure a tag set is created and properly configured. For details, see [Use tag set](https://ragflow.io/docs/dev/use_tag_sets).
- `"task_page_size"`: `int`
- For PDFs only.
- `"tag_kb_ids"`: `array<string>` refer to [Use tag set](https://ragflow.io/docs/dev/use_tag_sets)
- Must include a list of dataset IDs, where each dataset is parsed using the Tag Chunking Method
- `"task_page_size"`: `int` For PDF only.
- Defaults to `12`
- Minimum: `1`
- `"raptor"`: `object` RAPTOR-specific settings.
@ -533,25 +538,14 @@ curl --request POST \
- Defaults to: `{"use_raptor": false}`.
- If `"chunk_method"` is `"table"`, `"picture"`, `"one"`, or `"email"`, `"parser_config"` is an empty JSON object.
- `"parse_type"`: (*Body parameter*), `int`
The ingestion pipeline parse type identifier, i.e., the number of parsers in your **Parser** component.
- Required (along with `"pipeline_id"`) if specifying an ingestion pipeline.
- Must not be included when `"chunk_method"` is specified.
- "parse_type": (*Body parameter*), `int`
The ingestion pipeline parse type identifier. Required if and only if you are using an ingestion pipeline (together with `"pipeline_id"`). Must not be provided when `"chunk_method"` is set.
- `"pipeline_id"`: (*Body parameter*), `string`
The ingestion pipeline ID. Can be found in the corresponding URL in the RAGFlow UI.
- Required (along with `"parse_type"`) if specifying an ingestion pipeline.
- Must be a 32-character lowercase hexadecimal string, e.g., `"d0bebe30ae2211f0970942010a8e0005"`.
- Must not be included when `"chunk_method"` is specified.
- "pipeline_id": (*Body parameter*), `string`
The ingestion pipeline ID. Required if and only if you are using an ingestion pipeline (together with `"parse_type"`).
- Must not be provided when `"chunk_method"` is set.
:::caution WARNING
You can choose either of the following ingestion options when creating a dataset, but *not* both:
- Use a built-in chunk method -- specify `"chunk_method"` (optionally with `"parser_config"`).
- Use an ingestion pipeline -- specify both `"parse_type"` and `"pipeline_id"`.
If none of `"chunk_method"`, `"parse_type"`, or `"pipeline_id"` are provided, the system defaults to `chunk_method = "naive"`.
:::
Note: If none of `chunk_method`, `parse_type`, and `pipeline_id` are provided, the system will default to `chunk_method = "naive"`.
#### Response

View File

@ -43,6 +43,7 @@ def get_urls(use_china_mirrors=False) -> list[Union[str, list[str]]]:
repos = [
"InfiniFlow/text_concat_xgb_v1.0",
"InfiniFlow/deepdoc",
"InfiniFlow/huqie",
]

View File

@ -57,7 +57,7 @@ async def run_graphrag(
start = trio.current_time()
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"]
chunks = []
for d in settings.retriever.chunk_list(doc_id, tenant_id, [kb_id], max_count=10000, fields=["content_with_weight", "doc_id"], sort_by_position=True):
for d in settings.retriever.chunk_list(doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"], sort_by_position=True):
chunks.append(d["content_with_weight"])
with trio.fail_after(max(120, len(chunks) * 60 * 10) if enable_timeout_assertion else 10000000000):
@ -174,19 +174,13 @@ async def run_graphrag_for_kb(
chunks = []
current_chunk = ""
# DEBUG: Obtener todos los chunks primero
raw_chunks = list(settings.retriever.chunk_list(
for d in settings.retriever.chunk_list(
doc_id,
tenant_id,
[kb_id],
max_count=10000, # FIX: Aumentar límite para procesar todos los chunks
fields=fields_for_chunks,
sort_by_position=True,
))
callback(msg=f"[DEBUG] chunk_list() returned {len(raw_chunks)} raw chunks for doc {doc_id}")
for d in raw_chunks:
):
content = d["content_with_weight"]
if num_tokens_from_string(current_chunk + content) < 1024:
current_chunk += content

View File

@ -96,7 +96,7 @@ ragflow:
infinity:
image:
repository: infiniflow/infinity
tag: v0.6.10
tag: v0.6.8
pullPolicy: IfNotPresent
pullSecrets: []
storage:

View File

@ -57,6 +57,7 @@ JSON_RESPONSE = True
class RAGFlowConnector:
_MAX_DATASET_CACHE = 32
_MAX_DOCUMENT_CACHE = 128
_CACHE_TTL = 300
_dataset_metadata_cache: OrderedDict[str, tuple[dict, float | int]] = OrderedDict() # "dataset_id" -> (metadata, expiry_ts)
@ -115,6 +116,8 @@ class RAGFlowConnector:
def _set_cached_document_metadata_by_dataset(self, dataset_id, doc_id_meta_list):
self._document_metadata_cache[dataset_id] = (doc_id_meta_list, self._get_expiry_timestamp())
self._document_metadata_cache.move_to_end(dataset_id)
if len(self._document_metadata_cache) > self._MAX_DOCUMENT_CACHE:
self._document_metadata_cache.popitem(last=False)
def list_datasets(self, page: int = 1, page_size: int = 1000, orderby: str = "create_time", desc: bool = True, id: str | None = None, name: str | None = None):
res = self._get("/datasets", {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
@ -237,46 +240,46 @@ class RAGFlowConnector:
docs = None if force_refresh else self._get_cached_document_metadata_by_dataset(dataset_id)
if docs is None:
page = 1
page_size = 30
doc_id_meta_list = []
docs = {}
while page:
docs_res = self._get(f"/datasets/{dataset_id}/documents?page={page}")
docs_data = docs_res.json()
if docs_data.get("code") == 0 and docs_data.get("data", {}).get("docs"):
for doc in docs_data["data"]["docs"]:
doc_id = doc.get("id")
if not doc_id:
continue
doc_meta = {
"document_id": doc_id,
"name": doc.get("name", ""),
"location": doc.get("location", ""),
"type": doc.get("type", ""),
"size": doc.get("size"),
"chunk_count": doc.get("chunk_count"),
"create_date": doc.get("create_date", ""),
"update_date": doc.get("update_date", ""),
"token_count": doc.get("token_count"),
"thumbnail": doc.get("thumbnail", ""),
"dataset_id": doc.get("dataset_id", dataset_id),
"meta_fields": doc.get("meta_fields", {}),
}
doc_id_meta_list.append((doc_id, doc_meta))
docs[doc_id] = doc_meta
page += 1
if docs_data.get("data", {}).get("total", 0) - page * page_size <= 0:
page = None
docs_res = self._get(f"/datasets/{dataset_id}/documents")
docs_data = docs_res.json()
if docs_data.get("code") == 0 and docs_data.get("data", {}).get("docs"):
doc_id_meta_list = []
docs = {}
for doc in docs_data["data"]["docs"]:
doc_id = doc.get("id")
if not doc_id:
continue
doc_meta = {
"document_id": doc_id,
"name": doc.get("name", ""),
"location": doc.get("location", ""),
"type": doc.get("type", ""),
"size": doc.get("size"),
"chunk_count": doc.get("chunk_count"),
# "chunk_method": doc.get("chunk_method", ""),
"create_date": doc.get("create_date", ""),
"update_date": doc.get("update_date", ""),
# "process_begin_at": doc.get("process_begin_at", ""),
# "process_duration": doc.get("process_duration"),
# "progress": doc.get("progress"),
# "progress_msg": doc.get("progress_msg", ""),
# "status": doc.get("status", ""),
# "run": doc.get("run", ""),
"token_count": doc.get("token_count"),
# "source_type": doc.get("source_type", ""),
"thumbnail": doc.get("thumbnail", ""),
"dataset_id": doc.get("dataset_id", dataset_id),
"meta_fields": doc.get("meta_fields", {}),
# "parser_config": doc.get("parser_config", {})
}
doc_id_meta_list.append((doc_id, doc_meta))
docs[doc_id] = doc_meta
self._set_cached_document_metadata_by_dataset(dataset_id, doc_id_meta_list)
if docs:
document_cache.update(docs)
except Exception as e:
except Exception:
# Gracefully handle metadata cache failures
logging.error(f"Problem building the document metadata cache: {str(e)}")
pass
return document_cache, dataset_cache

View File

@ -49,7 +49,7 @@ dependencies = [
"html-text==0.6.2",
"httpx[socks]>=0.28.1,<0.29.0",
"huggingface-hub>=0.25.0,<0.26.0",
"infinity-sdk==0.6.10",
"infinity-sdk==0.6.8",
"infinity-emb>=0.0.66,<0.0.67",
"itsdangerous==2.1.2",
"json-repair==0.35.0",
@ -131,6 +131,7 @@ dependencies = [
"graspologic @ git+https://github.com/yuzhichang/graspologic.git@38e680cab72bc9fb68a7992c3bcc2d53b24e42fd",
"mini-racer>=0.12.4,<0.13.0",
"pyodbc>=5.2.0,<6.0.0",
"pyicu>=2.15.3,<3.0.0",
"flasgger>=0.9.7.1,<0.10.0",
"xxhash>=3.5.0,<4.0.0",
"trio>=0.17.0,<0.29.0",
@ -162,9 +163,6 @@ test = [
"openpyxl>=3.1.5",
"pillow>=10.4.0",
"pytest>=8.3.5",
"pytest-asyncio>=1.3.0",
"pytest-xdist>=3.8.0",
"pytest-cov>=7.0.0",
"python-docx>=1.1.2",
"python-pptx>=1.0.2",
"reportlab>=4.4.1",
@ -197,83 +195,8 @@ extend-select = ["ASYNC", "ASYNC1"]
ignore = ["E402"]
[tool.pytest.ini_options]
pythonpath = [
"."
]
testpaths = ["test"]
python_files = ["test_*.py"]
python_classes = ["Test*"]
python_functions = ["test_*"]
markers = [
"p1: high priority test cases",
"p2: medium priority test cases",
"p3: low priority test cases",
]
# Test collection and runtime configuration
filterwarnings = [
"error", # Treat warnings as errors
"ignore::DeprecationWarning", # Ignore specific warnings
]
# Command line options
addopts = [
"-v", # Verbose output
"--strict-markers", # Enforce marker definitions
"--tb=short", # Simplified traceback
"--disable-warnings", # Disable warnings
"--color=yes" # Colored output
]
# Coverage configuration
[tool.coverage.run]
# Source paths - adjust according to your project structure
source = [
# "../../api/db/services",
# Add more directories if needed:
"../../common",
# "../../utils",
]
# Files/directories to exclude
omit = [
"*/tests/*",
"*/test_*",
"*/__pycache__/*",
"*/.pytest_cache/*",
"*/venv/*",
"*/.venv/*",
"*/env/*",
"*/site-packages/*",
"*/dist/*",
"*/build/*",
"*/migrations/*",
"setup.py"
]
[tool.coverage.report]
# Report configuration
precision = 2
show_missing = true
skip_covered = false
fail_under = 0 # Minimum coverage requirement (0-100)
# Lines to exclude (optional)
exclude_lines = [
# "pragma: no cover",
# "def __repr__",
# "raise AssertionError",
# "raise NotImplementedError",
# "if __name__ == .__main__.:",
# "if TYPE_CHECKING:",
"pass"
]
[tool.coverage.html]
# HTML report configuration
directory = "htmlcov"
title = "Test Coverage Report"
# extra_css = "custom.css" # Optional custom CSS

View File

@ -14,5 +14,5 @@
# limitations under the License.
#
# from beartype.claw import beartype_this_package
# beartype_this_package()
from beartype.claw import beartype_this_package
beartype_this_package()

View File

@ -219,27 +219,23 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
)
def _normalize_section(section):
# Pad/normalize to (txt, layout, positions)
if not isinstance(section, (list, tuple)):
section = (section, "", [])
elif len(section) == 1:
# pad section to length 3: (txt, sec_id, poss)
if len(section) == 1:
section = (section[0], "", [])
elif len(section) == 2:
section = (section[0], "", section[1])
else:
section = (section[0], section[1], section[2])
elif len(section) != 3:
raise ValueError(f"Unexpected section length: {len(section)} (value={section!r})")
txt, layoutno, poss = section
if isinstance(poss, str):
poss = pdf_parser.extract_positions(poss)
if poss:
first = poss[0] # tuple: ([pn], x1, x2, y1, y2)
pn = first[0]
if isinstance(pn, list) and pn:
pn = pn[0] # [pn] -> pn
first = poss[0] # tuple: ([pn], x1, x2, y1, y2)
pn = first[0]
if isinstance(pn, list):
pn = pn[0] # [pn] -> pn
poss[0] = (pn, *first[1:])
if not poss:
poss = []
return (txt, layoutno, poss)

View File

@ -86,11 +86,9 @@ class Pdf(PdfParser):
# (A) Add text
for b in self.boxes:
# b["page_number"] is relative page numbermust + from_page
global_page_num = b["page_number"] + from_page
if not (from_page < global_page_num <= to_page + from_page):
if not (from_page < b["page_number"] <= to_page + from_page):
continue
page_items[global_page_num].append({
page_items[b["page_number"]].append({
"top": b["top"],
"x0": b["x0"],
"text": b["text"],
@ -102,6 +100,7 @@ class Pdf(PdfParser):
if not positions:
continue
# Handle content type (list vs str)
if isinstance(content, list):
final_text = "\n".join(content)
elif isinstance(content, str):
@ -110,11 +109,10 @@ class Pdf(PdfParser):
final_text = str(content)
try:
# Parse positions
pn_index = positions[0][0]
if isinstance(pn_index, list):
pn_index = pn_index[0]
# pn_index in tbls is absolute page number
current_page_num = int(pn_index) + 1
except Exception as e:
print(f"Error parsing position: {e}")

View File

@ -12,17 +12,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import random
from copy import deepcopy, copy
import trio
import xxhash
from copy import deepcopy
from agent.component.llm import LLMParam, LLM
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.prompts.generator import run_toc_from_text
class ExtractorParam(ProcessParamBase, LLMParam):
@ -38,38 +31,6 @@ class ExtractorParam(ProcessParamBase, LLMParam):
class Extractor(ProcessBase, LLM):
component_name = "Extractor"
def _build_TOC(self, docs):
self.callback(message="Start to generate table of content ...")
docs = sorted(docs, key=lambda d:(
d.get("page_num_int", 0)[0] if isinstance(d.get("page_num_int", 0), list) else d.get("page_num_int", 0),
d.get("top_int", 0)[0] if isinstance(d.get("top_int", 0), list) else d.get("top_int", 0)
))
toc: list[dict] = trio.run(run_toc_from_text, [d["text"] for d in docs], self.chat_mdl)
logging.info("------------ T O C -------------\n"+json.dumps(toc, ensure_ascii=False, indent=' '))
ii = 0
while ii < len(toc):
try:
idx = int(toc[ii]["chunk_id"])
del toc[ii]["chunk_id"]
toc[ii]["ids"] = [docs[idx]["id"]]
if ii == len(toc) -1:
break
for jj in range(idx+1, int(toc[ii+1]["chunk_id"])+1):
toc[ii]["ids"].append(docs[jj]["id"])
except Exception as e:
logging.exception(e)
ii += 1
if toc:
d = copy.deepcopy(docs[-1])
d["content_with_weight"] = json.dumps(toc, ensure_ascii=False)
d["toc_kwd"] = "toc"
d["available_int"] = 0
d["page_num_int"] = [100000000]
d["id"] = xxhash.xxh64((d["content_with_weight"] + str(d["doc_id"])).encode("utf-8", "surrogatepass")).hexdigest()
return d
return None
async def _invoke(self, **kwargs):
self.set_output("output_format", "chunks")
self.callback(random.randint(1, 5) / 100.0, "Start to generate.")
@ -84,12 +45,6 @@ class Extractor(ProcessBase, LLM):
chunks_key = k
if chunks:
if self._param.field_name == "toc":
toc = self._build_TOC(chunks)
chunks.append(toc)
self.set_output("chunks", chunks)
return
prog = 0
for i, ck in enumerate(chunks):
args[chunks_key] = ck["text"]

View File

@ -1685,17 +1685,12 @@ class LiteLLMBase(ABC):
yield ans, tol
async def async_chat(self, system, history, gen_conf, **kwargs):
hist = list(history) if history else []
if system:
if not hist or hist[0].get("role") != "system":
hist.insert(0, {"role": "system", "content": system})
logging.info("[HISTORY]" + json.dumps(hist, ensure_ascii=False, indent=2))
async def async_chat(self, history, gen_conf, **kwargs):
logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2))
if self.model_name.lower().find("qwen3") >= 0:
kwargs["extra_body"] = {"enable_thinking": False}
completion_args = self._construct_completion_args(history=hist, stream=False, tools=False, **gen_conf)
completion_args = self._construct_completion_args(history=history, stream=False, tools=False, **gen_conf)
for attempt in range(self.max_retries + 1):
try:

View File

@ -537,8 +537,7 @@ class Dealer:
doc["id"] = id
if dict_chunks:
res.extend(dict_chunks.values())
# FIX: Solo terminar si no hay chunks, no si hay menos de bs
if len(dict_chunks.values()) == 0:
if len(dict_chunks.values()) < bs:
break
return res

View File

@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import datetime
import json
import logging
@ -343,8 +342,7 @@ def form_history(history, limit=-6):
return context
async def analyze_task_async(chat_mdl, prompt, task_name, tools_description: list[dict], user_defined_prompts: dict={}):
def analyze_task(chat_mdl, prompt, task_name, tools_description: list[dict], user_defined_prompts: dict={}):
tools_desc = tool_schema(tools_description)
context = ""
@ -353,7 +351,7 @@ async def analyze_task_async(chat_mdl, prompt, task_name, tools_description: lis
else:
template = PROMPT_JINJA_ENV.from_string(ANALYZE_TASK_SYSTEM + "\n\n" + ANALYZE_TASK_USER)
context = template.render(task=task_name, context=context, agent_prompt=prompt, tools_desc=tools_desc)
kwd = await _chat_async(chat_mdl, context, [{"role": "user", "content": "Please analyze it."}])
kwd = chat_mdl.chat(context, [{"role": "user", "content": "Please analyze it."}])
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
@ -362,17 +360,9 @@ async def analyze_task_async(chat_mdl, prompt, task_name, tools_description: lis
return kwd
async def _chat_async(chat_mdl, system: str, history: list, **kwargs):
chat_async = getattr(chat_mdl, "async_chat", None)
if chat_async and asyncio.iscoroutinefunction(chat_async):
return await chat_async(system, history, **kwargs)
return await asyncio.to_thread(chat_mdl.chat, system, history, **kwargs)
async def next_step_async(chat_mdl, history:list, tools_description: list[dict], task_desc, user_defined_prompts: dict={}):
def next_step(chat_mdl, history:list, tools_description: list[dict], task_desc, user_defined_prompts: dict={}):
if not tools_description:
return "", 0
return ""
desc = tool_schema(tools_description)
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("plan_generation", NEXT_STEP))
user_prompt = "\nWhat's the next tool to call? If ready OR IMPOSSIBLE TO BE READY, then call `complete_task`."
@ -381,18 +371,14 @@ async def next_step_async(chat_mdl, history:list, tools_description: list[dict],
hist[-1]["content"] += user_prompt
else:
hist.append({"role": "user", "content": user_prompt})
json_str = await _chat_async(
chat_mdl,
template.render(task_analysis=task_desc, desc=desc, today=datetime.datetime.now().strftime("%Y-%m-%d")),
hist[1:],
stop=["<|stop|>"],
)
json_str = chat_mdl.chat(template.render(task_analysis=task_desc, desc=desc, today=datetime.datetime.now().strftime("%Y-%m-%d")),
hist[1:], stop=["<|stop|>"])
tk_cnt = num_tokens_from_string(json_str)
json_str = re.sub(r"^.*</think>", "", json_str, flags=re.DOTALL)
return json_str, tk_cnt
async def reflect_async(chat_mdl, history: list[dict], tool_call_res: list[Tuple], user_defined_prompts: dict={}):
def reflect(chat_mdl, history: list[dict], tool_call_res: list[Tuple], user_defined_prompts: dict={}):
tool_calls = [{"name": p[0], "result": p[1]} for p in tool_call_res]
goal = history[1]["content"]
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("reflection", REFLECT))
@ -403,7 +389,7 @@ async def reflect_async(chat_mdl, history: list[dict], tool_call_res: list[Tuple
else:
hist.append({"role": "user", "content": user_prompt})
_, msg = message_fit_in(hist, chat_mdl.max_length)
ans = await _chat_async(chat_mdl, msg[0]["content"], msg[1:])
ans = chat_mdl.chat(msg[0]["content"], msg[1:])
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
return """
**Observation**
@ -434,12 +420,12 @@ def tool_call_summary(chat_mdl, name: str, params: dict, result: str, user_defin
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
async def rank_memories_async(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[str], user_defined_prompts: dict={}):
def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[str], user_defined_prompts: dict={}):
template = PROMPT_JINJA_ENV.from_string(RANK_MEMORY)
system_prompt = template.render(goal=goal, sub_goal=sub_goal, results=[{"i": i, "content": s} for i,s in enumerate(tool_call_summaries)])
user_prompt = " → rank: "
_, msg = message_fit_in(form_message(system_prompt, user_prompt), chat_mdl.max_length)
ans = await _chat_async(chat_mdl, msg[0]["content"], msg[1:], stop="<|stop|>")
ans = chat_mdl.chat(msg[0]["content"], msg[1:], stop="<|stop|>")
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
@ -511,7 +497,7 @@ def toc_index_extractor(toc:list[dict], content:str, chat_mdl):
The structure variable is the numeric system which represents the index of the hierarchy section in the table of contents. For example, the first section has structure index 1, the first subsection has structure index 1.1, the second subsection has structure index 1.2, etc.
The response should be in the following JSON format:
The response should be in the following JSON format:
[
{
"structure": <structure index, "x.x.x" or None> (string),
@ -638,8 +624,8 @@ def toc_transformer(toc_pages, chat_mdl):
The `structure` is the numeric system which represents the index of the hierarchy section in the table of contents. For example, the first section has structure index 1, the first subsection has structure index 1.1, the second subsection has structure index 1.2, etc.
The `title` is a short phrase or a several-words term.
The response should be in the following JSON format:
The response should be in the following JSON format:
[
{
"structure": <structure index, "x.x.x" or None> (string),
@ -664,7 +650,7 @@ def toc_transformer(toc_pages, chat_mdl):
while not (if_complete == "yes"):
prompt = f"""
Your task is to continue the table of contents json structure, directly output the remaining part of the json structure.
The response should be in the following JSON format:
The response should be in the following JSON format:
The raw table of contents json structure is:
{toc_content}
@ -753,7 +739,7 @@ async def run_toc_from_text(chunks, chat_mdl, callback=None):
for chunk in chunks_res:
titles.extend(chunk.get("toc", []))
# Filter out entries with title == -1
prune = len(titles) > 512
max_len = 12 if prune else 22

555629
rag/res/huqie.txt Normal file

File diff suppressed because it is too large Load Diff

View File

@ -157,30 +157,11 @@ class Confluence(SyncBase):
from common.data_source.config import DocumentSource
from common.data_source.interfaces import StaticCredentialsProvider
index_mode = (self.conf.get("index_mode") or "everything").lower()
if index_mode not in {"everything", "space", "page"}:
index_mode = "everything"
space = ""
page_id = ""
index_recursively = False
if index_mode == "space":
space = (self.conf.get("space") or "").strip()
if not space:
raise ValueError("Space Key is required when indexing a specific Confluence space.")
elif index_mode == "page":
page_id = (self.conf.get("page_id") or "").strip()
if not page_id:
raise ValueError("Page ID is required when indexing a specific Confluence page.")
index_recursively = bool(self.conf.get("index_recursively", False))
self.connector = ConfluenceConnector(
wiki_base=self.conf["wiki_base"],
space=self.conf.get("space", ""),
is_cloud=self.conf.get("is_cloud", True),
space=space,
page_id=page_id,
index_recursively=index_recursively,
# page_id=self.conf.get("page_id", ""),
)
credentials_provider = StaticCredentialsProvider(tenant_id=task["tenant_id"], connector_name=DocumentSource.CONFLUENCE, credential_json=self.conf["credentials"])

View File

@ -29,7 +29,6 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.pipeline_operation_log_service import PipelineOperationLogService
from common.connection_utils import timeout
from rag.utils.base64_image import image2id
from rag.utils.raptor_utils import should_skip_raptor, get_skip_reason
from common.log_utils import init_root_logger
from common.config_utils import show_configs
from graphrag.general.index import run_graphrag_for_kb
@ -69,7 +68,7 @@ from common.signal_utils import start_tracemalloc_and_snapshot, stop_tracemalloc
from common.exceptions import TaskCanceledException
from common import settings
from common.constants import PAGERANK_FLD, TAG_FLD, SVR_CONSUMER_GROUP_NAME
from common.misc_utils import check_and_install_mineru
from common.misc_utils import install_mineru
BATCH_SIZE = 64
@ -854,17 +853,6 @@ async def do_handle_task(task):
progress_callback(prog=-1.0, msg="Internal error: Invalid RAPTOR configuration")
return
# Check if Raptor should be skipped for structured data
file_type = task.get("type", "")
parser_id = task.get("parser_id", "")
raptor_config = kb_parser_config.get("raptor", {})
if should_skip_raptor(file_type, parser_id, task_parser_config, raptor_config):
skip_reason = get_skip_reason(file_type, parser_id, task_parser_config)
logging.info(f"Skipping Raptor for document {task_document_name}: {skip_reason}")
progress_callback(prog=1.0, msg=f"Raptor skipped: {skip_reason}")
return
# bind LLM for raptor
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
# run RAPTOR
@ -956,7 +944,7 @@ async def do_handle_task(task):
logging.info(progress_message)
progress_callback(msg=progress_message)
if task["parser_id"].lower() == "naive" and task["parser_config"].get("toc_extraction", False):
toc_thread = executor.submit(build_TOC, task, chunks, progress_callback)
toc_thread = executor.submit(build_TOC,task, chunks, progress_callback)
chunk_count = len(set([chunk["id"] for chunk in chunks]))
start_ts = timer()
@ -1113,8 +1101,8 @@ async def main():
show_configs()
settings.init_settings()
settings.check_and_install_torch()
check_and_install_mineru()
logging.info(f'default embedding config: {settings.EMBEDDING_CFG}')
install_mineru()
logging.info(f'settings.EMBEDDING_CFG: {settings.EMBEDDING_CFG}')
settings.print_rag_settings()
if sys.platform != "win32":
signal.signal(signal.SIGUSR1, start_tracemalloc_and_snapshot)

View File

@ -1,207 +0,0 @@
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import time
import datetime
from io import BytesIO
from google.cloud import storage
from google.api_core.exceptions import NotFound
from common.decorator import singleton
from common import settings
@singleton
class RAGFlowGCS:
def __init__(self):
self.client = None
self.bucket_name = None
self.__open__()
def __open__(self):
try:
if self.client:
self.client = None
except Exception:
pass
try:
self.client = storage.Client()
self.bucket_name = settings.GCS["bucket"]
except Exception:
logging.exception("Fail to connect to GCS")
def _get_blob_path(self, folder, filename):
"""Helper to construct the path: folder/filename"""
if not folder:
return filename
return f"{folder}/{filename}"
def health(self):
folder, fnm, binary = "ragflow-health", "health_check", b"_t@@@1"
try:
bucket_obj = self.client.bucket(self.bucket_name)
if not bucket_obj.exists():
logging.error(f"Health check failed: Main bucket '{self.bucket_name}' does not exist.")
return False
blob_path = self._get_blob_path(folder, fnm)
blob = bucket_obj.blob(blob_path)
blob.upload_from_file(BytesIO(binary), content_type='application/octet-stream')
return True
except Exception as e:
logging.exception(f"Health check failed: {e}")
return False
def put(self, bucket, fnm, binary, tenant_id=None):
# RENAMED PARAMETER: bucket_name -> bucket (to match interface)
for _ in range(3):
try:
bucket_obj = self.client.bucket(self.bucket_name)
blob_path = self._get_blob_path(bucket, fnm)
blob = bucket_obj.blob(blob_path)
blob.upload_from_file(BytesIO(binary), content_type='application/octet-stream')
return True
except NotFound:
logging.error(f"Fail to put: Main bucket {self.bucket_name} does not exist.")
return False
except Exception:
logging.exception(f"Fail to put {bucket}/{fnm}:")
self.__open__()
time.sleep(1)
return False
def rm(self, bucket, fnm, tenant_id=None):
# RENAMED PARAMETER: bucket_name -> bucket
try:
bucket_obj = self.client.bucket(self.bucket_name)
blob_path = self._get_blob_path(bucket, fnm)
blob = bucket_obj.blob(blob_path)
blob.delete()
except NotFound:
pass
except Exception:
logging.exception(f"Fail to remove {bucket}/{fnm}:")
def get(self, bucket, filename, tenant_id=None):
# RENAMED PARAMETER: bucket_name -> bucket
for _ in range(1):
try:
bucket_obj = self.client.bucket(self.bucket_name)
blob_path = self._get_blob_path(bucket, filename)
blob = bucket_obj.blob(blob_path)
return blob.download_as_bytes()
except NotFound:
logging.warning(f"File not found {bucket}/{filename} in {self.bucket_name}")
return None
except Exception:
logging.exception(f"Fail to get {bucket}/{filename}")
self.__open__()
time.sleep(1)
return None
def obj_exist(self, bucket, filename, tenant_id=None):
# RENAMED PARAMETER: bucket_name -> bucket
try:
bucket_obj = self.client.bucket(self.bucket_name)
blob_path = self._get_blob_path(bucket, filename)
blob = bucket_obj.blob(blob_path)
return blob.exists()
except Exception:
logging.exception(f"obj_exist {bucket}/{filename} got exception")
return False
def bucket_exists(self, bucket):
# RENAMED PARAMETER: bucket_name -> bucket
try:
bucket_obj = self.client.bucket(self.bucket_name)
return bucket_obj.exists()
except Exception:
logging.exception(f"bucket_exist check for {self.bucket_name} got exception")
return False
def get_presigned_url(self, bucket, fnm, expires, tenant_id=None):
# RENAMED PARAMETER: bucket_name -> bucket
for _ in range(10):
try:
bucket_obj = self.client.bucket(self.bucket_name)
blob_path = self._get_blob_path(bucket, fnm)
blob = bucket_obj.blob(blob_path)
expiration = expires
if isinstance(expires, int):
expiration = datetime.timedelta(seconds=expires)
url = blob.generate_signed_url(
version="v4",
expiration=expiration,
method="GET"
)
return url
except Exception:
logging.exception(f"Fail to get_presigned {bucket}/{fnm}:")
self.__open__()
time.sleep(1)
return None
def remove_bucket(self, bucket):
# RENAMED PARAMETER: bucket_name -> bucket
try:
bucket_obj = self.client.bucket(self.bucket_name)
prefix = f"{bucket}/"
blobs = list(self.client.list_blobs(self.bucket_name, prefix=prefix))
if blobs:
bucket_obj.delete_blobs(blobs)
except Exception:
logging.exception(f"Fail to remove virtual bucket (folder) {bucket}")
def copy(self, src_bucket, src_path, dest_bucket, dest_path):
# RENAMED PARAMETERS to match original interface
try:
bucket_obj = self.client.bucket(self.bucket_name)
src_blob_path = self._get_blob_path(src_bucket, src_path)
dest_blob_path = self._get_blob_path(dest_bucket, dest_path)
src_blob = bucket_obj.blob(src_blob_path)
if not src_blob.exists():
logging.error(f"Source object not found: {src_blob_path}")
return False
bucket_obj.copy_blob(src_blob, bucket_obj, dest_blob_path)
return True
except NotFound:
logging.error(f"Copy failed: Main bucket {self.bucket_name} does not exist.")
return False
except Exception:
logging.exception(f"Fail to copy {src_bucket}/{src_path} -> {dest_bucket}/{dest_path}")
return False
def move(self, src_bucket, src_path, dest_bucket, dest_path):
try:
if self.copy(src_bucket, src_path, dest_bucket, dest_path):
self.rm(src_bucket, src_path)
return True
else:
logging.error(f"Copy failed, move aborted: {src_bucket}/{src_path}")
return False
except Exception:
logging.exception(f"Fail to move {src_bucket}/{src_path} -> {dest_bucket}/{dest_path}")
return False

View File

@ -1,145 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Utility functions for Raptor processing decisions.
"""
import logging
from typing import Optional
# File extensions for structured data types
EXCEL_EXTENSIONS = {".xls", ".xlsx", ".xlsm", ".xlsb"}
CSV_EXTENSIONS = {".csv", ".tsv"}
STRUCTURED_EXTENSIONS = EXCEL_EXTENSIONS | CSV_EXTENSIONS
def is_structured_file_type(file_type: Optional[str]) -> bool:
"""
Check if a file type is structured data (Excel, CSV, etc.)
Args:
file_type: File extension (e.g., ".xlsx", ".csv")
Returns:
True if file is structured data type
"""
if not file_type:
return False
# Normalize to lowercase and ensure leading dot
file_type = file_type.lower()
if not file_type.startswith("."):
file_type = f".{file_type}"
return file_type in STRUCTURED_EXTENSIONS
def is_tabular_pdf(parser_id: str = "", parser_config: Optional[dict] = None) -> bool:
"""
Check if a PDF is being parsed as tabular data.
Args:
parser_id: Parser ID (e.g., "table", "naive")
parser_config: Parser configuration dict
Returns:
True if PDF is being parsed as tabular data
"""
parser_config = parser_config or {}
# If using table parser, it's tabular
if parser_id and parser_id.lower() == "table":
return True
# Check if html4excel is enabled (Excel-like table parsing)
if parser_config.get("html4excel", False):
return True
return False
def should_skip_raptor(
file_type: Optional[str] = None,
parser_id: str = "",
parser_config: Optional[dict] = None,
raptor_config: Optional[dict] = None
) -> bool:
"""
Determine if Raptor should be skipped for a given document.
This function implements the logic to automatically disable Raptor for:
1. Excel files (.xls, .xlsx, .csv, etc.)
2. PDFs with tabular data (using table parser or html4excel)
Args:
file_type: File extension (e.g., ".xlsx", ".pdf")
parser_id: Parser ID being used
parser_config: Parser configuration dict
raptor_config: Raptor configuration dict (can override with auto_disable_for_structured_data)
Returns:
True if Raptor should be skipped, False otherwise
"""
parser_config = parser_config or {}
raptor_config = raptor_config or {}
# Check if auto-disable is explicitly disabled in config
if raptor_config.get("auto_disable_for_structured_data", True) is False:
logging.info("Raptor auto-disable is turned off via configuration")
return False
# Check for Excel/CSV files
if is_structured_file_type(file_type):
logging.info(f"Skipping Raptor for structured file type: {file_type}")
return True
# Check for tabular PDFs
if file_type and file_type.lower() in [".pdf", "pdf"]:
if is_tabular_pdf(parser_id, parser_config):
logging.info(f"Skipping Raptor for tabular PDF (parser_id={parser_id})")
return True
return False
def get_skip_reason(
file_type: Optional[str] = None,
parser_id: str = "",
parser_config: Optional[dict] = None
) -> str:
"""
Get a human-readable reason why Raptor was skipped.
Args:
file_type: File extension
parser_id: Parser ID being used
parser_config: Parser configuration dict
Returns:
Reason string, or empty string if Raptor should not be skipped
"""
parser_config = parser_config or {}
if is_structured_file_type(file_type):
return f"Structured data file ({file_type}) - Raptor auto-disabled"
if file_type and file_type.lower() in [".pdf", "pdf"]:
if is_tabular_pdf(parser_id, parser_config):
return f"Tabular PDF (parser={parser_id}) - Raptor auto-disabled"
return ""

View File

@ -1,275 +0,0 @@
#!/usr/bin/env python3
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import argparse
import subprocess
from pathlib import Path
from typing import List
class Colors:
"""ANSI color codes for terminal output"""
RED = '\033[0;31m'
GREEN = '\033[0;32m'
YELLOW = '\033[1;33m'
BLUE = '\033[0;34m'
NC = '\033[0m' # No Color
class TestRunner:
"""RAGFlow Unit Test Runner"""
def __init__(self):
self.project_root = Path(__file__).parent.resolve()
self.ut_dir = Path(self.project_root / 'test' / 'unit_test')
# Default options
self.coverage = False
self.parallel = False
self.verbose = False
self.markers = ""
# Python interpreter path
self.python = sys.executable
@staticmethod
def print_info(message: str) -> None:
"""Print informational message"""
print(f"{Colors.BLUE}[INFO]{Colors.NC} {message}")
@staticmethod
def print_error(message: str) -> None:
"""Print error message"""
print(f"{Colors.RED}[ERROR]{Colors.NC} {message}")
@staticmethod
def show_usage() -> None:
"""Display usage information"""
usage = """
RAGFlow Unit Test Runner
Usage: python run_tests.py [OPTIONS]
OPTIONS:
-h, --help Show this help message
-c, --coverage Run tests with coverage report
-p, --parallel Run tests in parallel (requires pytest-xdist)
-v, --verbose Verbose output
-t, --test FILE Run specific test file or directory
-m, --markers MARKERS Run tests with specific markers (e.g., "unit", "integration")
EXAMPLES:
# Run all tests
python run_tests.py
# Run with coverage
python run_tests.py --coverage
# Run in parallel
python run_tests.py --parallel
# Run specific test file
python run_tests.py --test services/test_dialog_service.py
# Run only unit tests
python run_tests.py --markers "unit"
# Run tests with coverage and parallel execution
python run_tests.py --coverage --parallel
"""
print(usage)
def build_pytest_command(self) -> List[str]:
"""Build the pytest command arguments"""
cmd = ["pytest", str(self.ut_dir)]
# Add test path
# Add markers
if self.markers:
cmd.extend(["-m", self.markers])
# Add verbose flag
if self.verbose:
cmd.extend(["-vv"])
else:
cmd.append("-v")
# Add coverage
if self.coverage:
# Relative path from test directory to source code
source_path = str(self.project_root / "common")
cmd.extend([
"--cov", source_path,
"--cov-report", "html",
"--cov-report", "term"
])
# Add parallel execution
if self.parallel:
# Try to get number of CPU cores
try:
import multiprocessing
cpu_count = multiprocessing.cpu_count()
cmd.extend(["-n", str(cpu_count)])
except ImportError:
# Fallback to auto if multiprocessing not available
cmd.extend(["-n", "auto"])
# Add default options from pyproject.toml if it exists
pyproject_path = self.project_root / "pyproject.toml"
if pyproject_path.exists():
cmd.extend(["--config-file", str(pyproject_path)])
return cmd
def run_tests(self) -> bool:
"""Execute the pytest command"""
# Change to test directory
os.chdir(self.project_root)
# Build command
cmd = self.build_pytest_command()
# Print test configuration
self.print_info("Running RAGFlow Unit Tests")
self.print_info("=" * 40)
self.print_info(f"Test Directory: {self.ut_dir}")
self.print_info(f"Coverage: {self.coverage}")
self.print_info(f"Parallel: {self.parallel}")
self.print_info(f"Verbose: {self.verbose}")
if self.markers:
self.print_info(f"Markers: {self.markers}")
print(f"\n{Colors.BLUE}[EXECUTING]{Colors.NC} {' '.join(cmd)}\n")
# Run pytest
try:
result = subprocess.run(cmd, check=False)
if result.returncode == 0:
print(f"\n{Colors.GREEN}[SUCCESS]{Colors.NC} All tests passed!")
if self.coverage:
coverage_dir = self.ut_dir / "htmlcov"
if coverage_dir.exists():
index_file = coverage_dir / "index.html"
print(f"\n{Colors.BLUE}[INFO]{Colors.NC} Coverage report generated:")
print(f" {index_file}")
print("\nOpen with:")
print(f" - Windows: start {index_file}")
print(f" - macOS: open {index_file}")
print(f" - Linux: xdg-open {index_file}")
return True
else:
print(f"\n{Colors.RED}[FAILURE]{Colors.NC} Some tests failed!")
return False
except KeyboardInterrupt:
print(f"\n{Colors.YELLOW}[INTERRUPTED]{Colors.NC} Test execution interrupted by user")
return False
except Exception as e:
self.print_error(f"Failed to execute tests: {e}")
return False
def parse_arguments(self) -> bool:
"""Parse command line arguments"""
parser = argparse.ArgumentParser(
description="RAGFlow Unit Test Runner",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python run_tests.py # Run all tests
python run_tests.py --coverage # Run with coverage
python run_tests.py --parallel # Run in parallel
python run_tests.py --test services/test_dialog_service.py # Run specific test
python run_tests.py --markers "unit" # Run only unit tests
"""
)
parser.add_argument(
"-c", "--coverage",
action="store_true",
help="Run tests with coverage report"
)
parser.add_argument(
"-p", "--parallel",
action="store_true",
help="Run tests in parallel (requires pytest-xdist)"
)
parser.add_argument(
"-v", "--verbose",
action="store_true",
help="Verbose output"
)
parser.add_argument(
"-t", "--test",
type=str,
default="",
help="Run specific test file or directory"
)
parser.add_argument(
"-m", "--markers",
type=str,
default="",
help="Run tests with specific markers (e.g., 'unit', 'integration')"
)
try:
args = parser.parse_args()
# Set options
self.coverage = args.coverage
self.parallel = args.parallel
self.verbose = args.verbose
self.markers = args.markers
return True
except SystemExit:
# argparse already printed help, just exit
return False
except Exception as e:
self.print_error(f"Error parsing arguments: {e}")
return False
def run(self) -> int:
"""Main execution method"""
# Parse command line arguments
if not self.parse_arguments():
return 1
# Run tests
success = self.run_tests()
return 0 if success else 1
def main():
"""Entry point"""
runner = TestRunner()
return runner.run()
if __name__ == "__main__":
sys.exit(main())

View File

@ -37,4 +37,4 @@ __all__ = [
"Document",
"Chunk",
"Agent"
]
]

View File

@ -1,287 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Unit tests for Raptor utility functions.
"""
import pytest
from rag.utils.raptor_utils import (
is_structured_file_type,
is_tabular_pdf,
should_skip_raptor,
get_skip_reason,
EXCEL_EXTENSIONS,
CSV_EXTENSIONS,
STRUCTURED_EXTENSIONS
)
class TestIsStructuredFileType:
"""Test file type detection for structured data"""
@pytest.mark.parametrize("file_type,expected", [
(".xlsx", True),
(".xls", True),
(".xlsm", True),
(".xlsb", True),
(".csv", True),
(".tsv", True),
("xlsx", True), # Without leading dot
("XLSX", True), # Uppercase
(".pdf", False),
(".docx", False),
(".txt", False),
("", False),
(None, False),
])
def test_file_type_detection(self, file_type, expected):
"""Test detection of various file types"""
assert is_structured_file_type(file_type) == expected
def test_excel_extensions_defined(self):
"""Test that Excel extensions are properly defined"""
assert ".xlsx" in EXCEL_EXTENSIONS
assert ".xls" in EXCEL_EXTENSIONS
assert len(EXCEL_EXTENSIONS) >= 4
def test_csv_extensions_defined(self):
"""Test that CSV extensions are properly defined"""
assert ".csv" in CSV_EXTENSIONS
assert ".tsv" in CSV_EXTENSIONS
def test_structured_extensions_combined(self):
"""Test that structured extensions include both Excel and CSV"""
assert EXCEL_EXTENSIONS.issubset(STRUCTURED_EXTENSIONS)
assert CSV_EXTENSIONS.issubset(STRUCTURED_EXTENSIONS)
class TestIsTabularPDF:
"""Test tabular PDF detection"""
def test_table_parser_detected(self):
"""Test that table parser is detected as tabular"""
assert is_tabular_pdf("table", {}) is True
assert is_tabular_pdf("TABLE", {}) is True
def test_html4excel_detected(self):
"""Test that html4excel config is detected as tabular"""
assert is_tabular_pdf("naive", {"html4excel": True}) is True
assert is_tabular_pdf("", {"html4excel": True}) is True
def test_non_tabular_pdf(self):
"""Test that non-tabular PDFs are not detected"""
assert is_tabular_pdf("naive", {}) is False
assert is_tabular_pdf("naive", {"html4excel": False}) is False
assert is_tabular_pdf("", {}) is False
def test_combined_conditions(self):
"""Test combined table parser and html4excel"""
assert is_tabular_pdf("table", {"html4excel": True}) is True
assert is_tabular_pdf("table", {"html4excel": False}) is True
class TestShouldSkipRaptor:
"""Test Raptor skip logic"""
def test_skip_excel_files(self):
"""Test that Excel files skip Raptor"""
assert should_skip_raptor(".xlsx") is True
assert should_skip_raptor(".xls") is True
assert should_skip_raptor(".xlsm") is True
def test_skip_csv_files(self):
"""Test that CSV files skip Raptor"""
assert should_skip_raptor(".csv") is True
assert should_skip_raptor(".tsv") is True
def test_skip_tabular_pdf_with_table_parser(self):
"""Test that tabular PDFs skip Raptor"""
assert should_skip_raptor(".pdf", parser_id="table") is True
assert should_skip_raptor("pdf", parser_id="TABLE") is True
def test_skip_tabular_pdf_with_html4excel(self):
"""Test that PDFs with html4excel skip Raptor"""
assert should_skip_raptor(".pdf", parser_config={"html4excel": True}) is True
def test_dont_skip_regular_pdf(self):
"""Test that regular PDFs don't skip Raptor"""
assert should_skip_raptor(".pdf", parser_id="naive") is False
assert should_skip_raptor(".pdf", parser_config={}) is False
def test_dont_skip_text_files(self):
"""Test that text files don't skip Raptor"""
assert should_skip_raptor(".txt") is False
assert should_skip_raptor(".docx") is False
assert should_skip_raptor(".md") is False
def test_override_with_config(self):
"""Test that auto-disable can be overridden"""
raptor_config = {"auto_disable_for_structured_data": False}
# Should not skip even for Excel files
assert should_skip_raptor(".xlsx", raptor_config=raptor_config) is False
assert should_skip_raptor(".csv", raptor_config=raptor_config) is False
assert should_skip_raptor(".pdf", parser_id="table", raptor_config=raptor_config) is False
def test_default_auto_disable_enabled(self):
"""Test that auto-disable is enabled by default"""
# Empty raptor_config should default to auto_disable=True
assert should_skip_raptor(".xlsx", raptor_config={}) is True
assert should_skip_raptor(".xlsx", raptor_config=None) is True
def test_explicit_auto_disable_enabled(self):
"""Test explicit auto-disable enabled"""
raptor_config = {"auto_disable_for_structured_data": True}
assert should_skip_raptor(".xlsx", raptor_config=raptor_config) is True
class TestGetSkipReason:
"""Test skip reason generation"""
def test_excel_skip_reason(self):
"""Test skip reason for Excel files"""
reason = get_skip_reason(".xlsx")
assert "Structured data file" in reason
assert ".xlsx" in reason
assert "auto-disabled" in reason.lower()
def test_csv_skip_reason(self):
"""Test skip reason for CSV files"""
reason = get_skip_reason(".csv")
assert "Structured data file" in reason
assert ".csv" in reason
def test_tabular_pdf_skip_reason(self):
"""Test skip reason for tabular PDFs"""
reason = get_skip_reason(".pdf", parser_id="table")
assert "Tabular PDF" in reason
assert "table" in reason.lower()
assert "auto-disabled" in reason.lower()
def test_html4excel_skip_reason(self):
"""Test skip reason for html4excel PDFs"""
reason = get_skip_reason(".pdf", parser_config={"html4excel": True})
assert "Tabular PDF" in reason
def test_no_skip_reason_for_regular_files(self):
"""Test that regular files have no skip reason"""
assert get_skip_reason(".txt") == ""
assert get_skip_reason(".docx") == ""
assert get_skip_reason(".pdf", parser_id="naive") == ""
class TestEdgeCases:
"""Test edge cases and error handling"""
def test_none_values(self):
"""Test handling of None values"""
assert should_skip_raptor(None) is False
assert should_skip_raptor("") is False
assert get_skip_reason(None) == ""
def test_empty_strings(self):
"""Test handling of empty strings"""
assert should_skip_raptor("") is False
assert get_skip_reason("") == ""
def test_case_insensitivity(self):
"""Test case insensitive handling"""
assert is_structured_file_type("XLSX") is True
assert is_structured_file_type("XlSx") is True
assert is_tabular_pdf("TABLE", {}) is True
assert is_tabular_pdf("TaBlE", {}) is True
def test_with_and_without_dot(self):
"""Test file extensions with and without leading dot"""
assert should_skip_raptor(".xlsx") is True
assert should_skip_raptor("xlsx") is True
assert should_skip_raptor(".CSV") is True
assert should_skip_raptor("csv") is True
class TestIntegrationScenarios:
"""Test real-world integration scenarios"""
def test_financial_excel_report(self):
"""Test scenario: Financial quarterly Excel report"""
file_type = ".xlsx"
parser_id = "naive"
parser_config = {}
raptor_config = {"use_raptor": True}
# Should skip Raptor
assert should_skip_raptor(file_type, parser_id, parser_config, raptor_config) is True
reason = get_skip_reason(file_type, parser_id, parser_config)
assert "Structured data file" in reason
def test_scientific_csv_data(self):
"""Test scenario: Scientific experimental CSV results"""
file_type = ".csv"
# Should skip Raptor
assert should_skip_raptor(file_type) is True
reason = get_skip_reason(file_type)
assert ".csv" in reason
def test_legal_contract_with_tables(self):
"""Test scenario: Legal contract PDF with tables"""
file_type = ".pdf"
parser_id = "table"
parser_config = {}
# Should skip Raptor
assert should_skip_raptor(file_type, parser_id, parser_config) is True
reason = get_skip_reason(file_type, parser_id, parser_config)
assert "Tabular PDF" in reason
def test_text_heavy_pdf_document(self):
"""Test scenario: Text-heavy PDF document"""
file_type = ".pdf"
parser_id = "naive"
parser_config = {}
# Should NOT skip Raptor
assert should_skip_raptor(file_type, parser_id, parser_config) is False
reason = get_skip_reason(file_type, parser_id, parser_config)
assert reason == ""
def test_mixed_dataset_processing(self):
"""Test scenario: Mixed dataset with various file types"""
files = [
(".xlsx", "naive", {}, True), # Excel - skip
(".csv", "naive", {}, True), # CSV - skip
(".pdf", "table", {}, True), # Tabular PDF - skip
(".pdf", "naive", {}, False), # Regular PDF - don't skip
(".docx", "naive", {}, False), # Word doc - don't skip
(".txt", "naive", {}, False), # Text file - don't skip
]
for file_type, parser_id, parser_config, expected_skip in files:
result = should_skip_raptor(file_type, parser_id, parser_config)
assert result == expected_skip, f"Failed for {file_type}"
def test_override_for_special_excel(self):
"""Test scenario: Override auto-disable for special Excel processing"""
file_type = ".xlsx"
raptor_config = {"auto_disable_for_structured_data": False}
# Should NOT skip when explicitly disabled
assert should_skip_raptor(file_type, raptor_config=raptor_config) is False
if __name__ == "__main__":
pytest.main([__file__, "-v"])

300
uv.lock generated
View File

@ -443,36 +443,27 @@ wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/df/73/b6e24bd22e6720ca8ee9a85a0c4a2971af8497d8f3193fa05390cbd46e09/backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8", size = 15148, upload-time = "2022-10-05T19:19:30.546Z" },
]
[[package]]
name = "backports-asyncio-runner"
version = "1.2.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/8e/ff/70dca7d7cb1cbc0edb2c6cc0c38b65cba36cccc491eca64cabd5fe7f8670/backports_asyncio_runner-1.2.0.tar.gz", hash = "sha256:a5aa7b2b7d8f8bfcaa2b57313f70792df84e32a2a746f585213373f900b42162", size = 69893, upload-time = "2025-07-02T02:27:15.685Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a0/59/76ab57e3fe74484f48a53f8e337171b4a2349e506eabe136d7e01d059086/backports_asyncio_runner-1.2.0-py3-none-any.whl", hash = "sha256:0da0a936a8aeb554eccb426dc55af3ba63bcdc69fa1a600b5bb305413a4477b5", size = 12313, upload-time = "2025-07-02T02:27:14.263Z" },
]
[[package]]
name = "bce-python-sdk"
version = "0.9.55"
version = "0.9.54"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "future" },
{ name = "pycryptodome" },
{ name = "six" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/ff/ae/f31ee3ccae94e1a07d8886a413f08c1581349e6cb45bf8b3c608fbf173e4/bce_python_sdk-0.9.55.tar.gz", hash = "sha256:bed63f8a0975f2e9daecf53417c3d5b803232ad87f35a0b16e25850710ce209c", size = 275733, upload-time = "2025-12-02T12:02:38.041Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/b3/c8/1c3bc30aa745ad4c3d073f150bddaf1d43ee6ee33f0b8ec60068494f511e/bce_python_sdk-0.9.54.tar.gz", hash = "sha256:f68026f40f11ea38ef445f50a7756009d5b703c7253438b138b30fb3b83be275", size = 275698, upload-time = "2025-11-27T02:28:50.24Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/8f/01/1b13a627e5f0239f24b168138d9a948e876d4b387c03f59d31699578c960/bce_python_sdk-0.9.55-py3-none-any.whl", hash = "sha256:6045d19d783b548644cce50a2f41ef5242da6654fb91b2c21629f309ca6dbf4c", size = 390463, upload-time = "2025-12-02T12:02:36.417Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/69/a7/b8806c8505bb830cc863837ef8b42695170dd9561605c61262250df066d3/bce_python_sdk-0.9.54-py3-none-any.whl", hash = "sha256:a084eee577931f15a55280a7401bea2474115989ee79ebbca131610bdce81c99", size = 390447, upload-time = "2025-11-27T02:28:48.603Z" },
]
[[package]]
name = "beartype"
version = "0.22.8"
version = "0.22.7"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/8c/1d/794ae2acaa67c8b216d91d5919da2606c2bb14086849ffde7f5555f3a3a5/beartype-0.22.8.tar.gz", hash = "sha256:b19b21c9359722ee3f7cc433f063b3e13997b27ae8226551ea5062e621f61165", size = 1602262, upload-time = "2025-12-03T05:11:10.766Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/2c/49/e28a77f8a3868b1c9ff6a030678e84de24c4783bae4c12cec9443cf8fb54/beartype-0.22.7.tar.gz", hash = "sha256:c7269855b71e32b7c9f0fc662baade752eb525107266e053338c2f6e8873826b", size = 1599627, upload-time = "2025-11-29T06:49:56.751Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/14/2a/fbcbf5a025d3e71ddafad7efd43e34ec4362f4d523c3c471b457148fb211/beartype-0.22.8-py3-none-any.whl", hash = "sha256:b832882d04e41a4097bab9f63e6992bc6de58c414ee84cba9b45b67314f5ab2e", size = 1331895, upload-time = "2025-12-03T05:11:08.373Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f6/0c/a764253610513295b7f57904b91fae1d99c7afd1b16b6eaae06fdfb71fb5/beartype-0.22.7-py3-none-any.whl", hash = "sha256:e13430ac07c61fa4bc54d375970438aeb9aa47a482c529a6f438ce52e18e6f50", size = 1330771, upload-time = "2025-11-29T06:49:54.545Z" },
]
[[package]]
@ -1034,58 +1025,6 @@ wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0c/58/bd257695f39d05594ca4ad60df5bcb7e32247f9951fd09a9b8edb82d1daa/contourpy-1.3.3-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:3d1a3799d62d45c18bafd41c5fa05120b96a28079f2393af559b843d1a966a77", size = 225315, upload-time = "2025-07-26T12:02:58.801Z" },
]
[[package]]
name = "coverage"
version = "7.12.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/89/26/4a96807b193b011588099c3b5c89fbb05294e5b90e71018e065465f34eb6/coverage-7.12.0.tar.gz", hash = "sha256:fc11e0a4e372cb5f282f16ef90d4a585034050ccda536451901abfb19a57f40c", size = 819341, upload-time = "2025-11-18T13:34:20.766Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/26/4a/0dc3de1c172d35abe512332cfdcc43211b6ebce629e4cc42e6cd25ed8f4d/coverage-7.12.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:32b75c2ba3f324ee37af3ccee5b30458038c50b349ad9b88cee85096132a575b", size = 217409, upload-time = "2025-11-18T13:31:53.122Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/01/c3/086198b98db0109ad4f84241e8e9ea7e5fb2db8c8ffb787162d40c26cc76/coverage-7.12.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cb2a1b6ab9fe833714a483a915de350abc624a37149649297624c8d57add089c", size = 217927, upload-time = "2025-11-18T13:31:54.458Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/5d/5f/34614dbf5ce0420828fc6c6f915126a0fcb01e25d16cf141bf5361e6aea6/coverage-7.12.0-cp310-cp310-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:5734b5d913c3755e72f70bf6cc37a0518d4f4745cde760c5d8e12005e62f9832", size = 244678, upload-time = "2025-11-18T13:31:55.805Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/55/7b/6b26fb32e8e4a6989ac1d40c4e132b14556131493b1d06bc0f2be169c357/coverage-7.12.0-cp310-cp310-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:b527a08cdf15753279b7afb2339a12073620b761d79b81cbe2cdebdb43d90daa", size = 246507, upload-time = "2025-11-18T13:31:57.05Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/06/42/7d70e6603d3260199b90fb48b537ca29ac183d524a65cc31366b2e905fad/coverage-7.12.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9bb44c889fb68004e94cab71f6a021ec83eac9aeabdbb5a5a88821ec46e1da73", size = 248366, upload-time = "2025-11-18T13:31:58.362Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2d/4a/d86b837923878424c72458c5b25e899a3c5ca73e663082a915f5b3c4d749/coverage-7.12.0-cp310-cp310-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:4b59b501455535e2e5dde5881739897967b272ba25988c89145c12d772810ccb", size = 245366, upload-time = "2025-11-18T13:31:59.572Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e6/c2/2adec557e0aa9721875f06ced19730fdb7fc58e31b02b5aa56f2ebe4944d/coverage-7.12.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d8842f17095b9868a05837b7b1b73495293091bed870e099521ada176aa3e00e", size = 246408, upload-time = "2025-11-18T13:32:00.784Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/5a/4b/8bd1f1148260df11c618e535fdccd1e5aaf646e55b50759006a4f41d8a26/coverage-7.12.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c5a6f20bf48b8866095c6820641e7ffbe23f2ac84a2efc218d91235e404c7777", size = 244416, upload-time = "2025-11-18T13:32:01.963Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0e/13/3a248dd6a83df90414c54a4e121fd081fb20602ca43955fbe1d60e2312a9/coverage-7.12.0-cp310-cp310-musllinux_1_2_riscv64.whl", hash = "sha256:5f3738279524e988d9da2893f307c2093815c623f8d05a8f79e3eff3a7a9e553", size = 244681, upload-time = "2025-11-18T13:32:03.408Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/76/30/aa833827465a5e8c938935f5d91ba055f70516941078a703740aaf1aa41f/coverage-7.12.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e0d68c1f7eabbc8abe582d11fa393ea483caf4f44b0af86881174769f185c94d", size = 245300, upload-time = "2025-11-18T13:32:04.686Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/38/24/f85b3843af1370fb3739fa7571819b71243daa311289b31214fe3e8c9d68/coverage-7.12.0-cp310-cp310-win32.whl", hash = "sha256:7670d860e18b1e3ee5930b17a7d55ae6287ec6e55d9799982aa103a2cc1fa2ef", size = 220008, upload-time = "2025-11-18T13:32:05.806Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3a/a2/c7da5b9566f7164db9eefa133d17761ecb2c2fde9385d754e5b5c80f710d/coverage-7.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:f999813dddeb2a56aab5841e687b68169da0d3f6fc78ccf50952fa2463746022", size = 220943, upload-time = "2025-11-18T13:32:07.166Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/5a/0c/0dfe7f0487477d96432e4815537263363fb6dd7289743a796e8e51eabdf2/coverage-7.12.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aa124a3683d2af98bd9d9c2bfa7a5076ca7e5ab09fdb96b81fa7d89376ae928f", size = 217535, upload-time = "2025-11-18T13:32:08.812Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/9b/f5/f9a4a053a5bbff023d3bec259faac8f11a1e5a6479c2ccf586f910d8dac7/coverage-7.12.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d93fbf446c31c0140208dcd07c5d882029832e8ed7891a39d6d44bd65f2316c3", size = 218044, upload-time = "2025-11-18T13:32:10.329Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/95/c5/84fc3697c1fa10cd8571919bf9693f693b7373278daaf3b73e328d502bc8/coverage-7.12.0-cp311-cp311-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:52ca620260bd8cd6027317bdd8b8ba929be1d741764ee765b42c4d79a408601e", size = 248440, upload-time = "2025-11-18T13:32:12.536Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f4/36/2d93fbf6a04670f3874aed397d5a5371948a076e3249244a9e84fb0e02d6/coverage-7.12.0-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:f3433ffd541380f3a0e423cff0f4926d55b0cc8c1d160fdc3be24a4c03aa65f7", size = 250361, upload-time = "2025-11-18T13:32:13.852Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/5d/49/66dc65cc456a6bfc41ea3d0758c4afeaa4068a2b2931bf83be6894cf1058/coverage-7.12.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f7bbb321d4adc9f65e402c677cd1c8e4c2d0105d3ce285b51b4d87f1d5db5245", size = 252472, upload-time = "2025-11-18T13:32:15.068Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/35/1f/ebb8a18dffd406db9fcd4b3ae42254aedcaf612470e8712f12041325930f/coverage-7.12.0-cp311-cp311-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:22a7aade354a72dff3b59c577bfd18d6945c61f97393bc5fb7bd293a4237024b", size = 248592, upload-time = "2025-11-18T13:32:16.328Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/da/a8/67f213c06e5ea3b3d4980df7dc344d7fea88240b5fe878a5dcbdfe0e2315/coverage-7.12.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:3ff651dcd36d2fea66877cd4a82de478004c59b849945446acb5baf9379a1b64", size = 250167, upload-time = "2025-11-18T13:32:17.687Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f0/00/e52aef68154164ea40cc8389c120c314c747fe63a04b013a5782e989b77f/coverage-7.12.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:31b8b2e38391a56e3cea39d22a23faaa7c3fc911751756ef6d2621d2a9daf742", size = 248238, upload-time = "2025-11-18T13:32:19.2Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1f/a4/4d88750bcf9d6d66f77865e5a05a20e14db44074c25fd22519777cb69025/coverage-7.12.0-cp311-cp311-musllinux_1_2_riscv64.whl", hash = "sha256:297bc2da28440f5ae51c845a47c8175a4db0553a53827886e4fb25c66633000c", size = 247964, upload-time = "2025-11-18T13:32:21.027Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a7/6b/b74693158899d5b47b0bf6238d2c6722e20ba749f86b74454fac0696bb00/coverage-7.12.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6ff7651cc01a246908eac162a6a86fc0dbab6de1ad165dfb9a1e2ec660b44984", size = 248862, upload-time = "2025-11-18T13:32:22.304Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/18/de/6af6730227ce0e8ade307b1cc4a08e7f51b419a78d02083a86c04ccceb29/coverage-7.12.0-cp311-cp311-win32.whl", hash = "sha256:313672140638b6ddb2c6455ddeda41c6a0b208298034544cfca138978c6baed6", size = 220033, upload-time = "2025-11-18T13:32:23.714Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e2/a1/e7f63021a7c4fe20994359fcdeae43cbef4a4d0ca36a5a1639feeea5d9e1/coverage-7.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:a1783ed5bd0d5938d4435014626568dc7f93e3cb99bc59188cc18857c47aa3c4", size = 220966, upload-time = "2025-11-18T13:32:25.599Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/77/e8/deae26453f37c20c3aa0c4433a1e32cdc169bf415cce223a693117aa3ddd/coverage-7.12.0-cp311-cp311-win_arm64.whl", hash = "sha256:4648158fd8dd9381b5847622df1c90ff314efbfc1df4550092ab6013c238a5fc", size = 219637, upload-time = "2025-11-18T13:32:27.265Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/02/bf/638c0427c0f0d47638242e2438127f3c8ee3cfc06c7fdeb16778ed47f836/coverage-7.12.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:29644c928772c78512b48e14156b81255000dcfd4817574ff69def189bcb3647", size = 217704, upload-time = "2025-11-18T13:32:28.906Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/08/e1/706fae6692a66c2d6b871a608bbde0da6281903fa0e9f53a39ed441da36a/coverage-7.12.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8638cbb002eaa5d7c8d04da667813ce1067080b9a91099801a0053086e52b736", size = 218064, upload-time = "2025-11-18T13:32:30.161Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a9/8b/eb0231d0540f8af3ffda39720ff43cb91926489d01524e68f60e961366e4/coverage-7.12.0-cp312-cp312-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:083631eeff5eb9992c923e14b810a179798bb598e6a0dd60586819fc23be6e60", size = 249560, upload-time = "2025-11-18T13:32:31.835Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e9/a1/67fb52af642e974d159b5b379e4d4c59d0ebe1288677fbd04bbffe665a82/coverage-7.12.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:99d5415c73ca12d558e07776bd957c4222c687b9f1d26fa0e1b57e3598bdcde8", size = 252318, upload-time = "2025-11-18T13:32:33.178Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/41/e5/38228f31b2c7665ebf9bdfdddd7a184d56450755c7e43ac721c11a4b8dab/coverage-7.12.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e949ebf60c717c3df63adb4a1a366c096c8d7fd8472608cd09359e1bd48ef59f", size = 253403, upload-time = "2025-11-18T13:32:34.45Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ec/4b/df78e4c8188f9960684267c5a4897836f3f0f20a20c51606ee778a1d9749/coverage-7.12.0-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:6d907ddccbca819afa2cd014bc69983b146cca2735a0b1e6259b2a6c10be1e70", size = 249984, upload-time = "2025-11-18T13:32:35.747Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ba/51/bb163933d195a345c6f63eab9e55743413d064c291b6220df754075c2769/coverage-7.12.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:b1518ecbad4e6173f4c6e6c4a46e49555ea5679bf3feda5edb1b935c7c44e8a0", size = 251339, upload-time = "2025-11-18T13:32:37.352Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/15/40/c9b29cdb8412c837cdcbc2cfa054547dd83affe6cbbd4ce4fdb92b6ba7d1/coverage-7.12.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:51777647a749abdf6f6fd8c7cffab12de68ab93aab15efc72fbbb83036c2a068", size = 249489, upload-time = "2025-11-18T13:32:39.212Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c8/da/b3131e20ba07a0de4437a50ef3b47840dfabf9293675b0cd5c2c7f66dd61/coverage-7.12.0-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:42435d46d6461a3b305cdfcad7cdd3248787771f53fe18305548cba474e6523b", size = 249070, upload-time = "2025-11-18T13:32:40.598Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/70/81/b653329b5f6302c08d683ceff6785bc60a34be9ae92a5c7b63ee7ee7acec/coverage-7.12.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:5bcead88c8423e1855e64b8057d0544e33e4080b95b240c2a355334bb7ced937", size = 250929, upload-time = "2025-11-18T13:32:42.915Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a3/00/250ac3bca9f252a5fb1338b5ad01331ebb7b40223f72bef5b1b2cb03aa64/coverage-7.12.0-cp312-cp312-win32.whl", hash = "sha256:dcbb630ab034e86d2a0f79aefd2be07e583202f41e037602d438c80044957baa", size = 220241, upload-time = "2025-11-18T13:32:44.665Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/64/1c/77e79e76d37ce83302f6c21980b45e09f8aa4551965213a10e62d71ce0ab/coverage-7.12.0-cp312-cp312-win_amd64.whl", hash = "sha256:2fd8354ed5d69775ac42986a691fbf68b4084278710cee9d7c3eaa0c28fa982a", size = 221051, upload-time = "2025-11-18T13:32:46.008Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/31/f5/641b8a25baae564f9e52cac0e2667b123de961985709a004e287ee7663cc/coverage-7.12.0-cp312-cp312-win_arm64.whl", hash = "sha256:737c3814903be30695b2de20d22bcc5428fdae305c61ba44cdc8b3252984c49c", size = 219692, upload-time = "2025-11-18T13:32:47.372Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ce/a3/43b749004e3c09452e39bb56347a008f0a0668aad37324a99b5c8ca91d9e/coverage-7.12.0-py3-none-any.whl", hash = "sha256:159d50c0b12e060b15ed3d39f87ed43d4f7f7ad40b8a534f4dd331adbb51104a", size = 209503, upload-time = "2025-11-18T13:34:18.892Z" },
]
[package.optional-dependencies]
toml = [
{ name = "tomli", marker = "python_full_version <= '3.11'" },
]
[[package]]
name = "cramjam"
version = "2.11.0"
@ -1573,15 +1512,6 @@ wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/8a/0e/97c33bf5009bdbac74fd2beace167cab3f978feb69cc36f1ef79360d6c4e/exceptiongroup-1.3.1-py3-none-any.whl", hash = "sha256:a7a39a3bd276781e98394987d3a5701d0c4edffb633bb7a5144577f82c773598", size = 16740, upload-time = "2025-11-21T23:01:53.443Z" },
]
[[package]]
name = "execnet"
version = "2.1.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/bf/89/780e11f9588d9e7128a3f87788354c7946a9cbb1401ad38a48c4db9a4f07/execnet-2.1.2.tar.gz", hash = "sha256:63d83bfdd9a23e35b9c6a3261412324f964c2ec8dcd8d3c6916ee9373e0befcd", size = 166622, upload-time = "2025-11-12T09:56:37.75Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ab/84/02fc1827e8cdded4aa65baef11296a9bbe595c474f0d6d758af082d849fd/execnet-2.1.2-py3-none-any.whl", hash = "sha256:67fba928dd5a544b783f6056f449e5e3931a5c378b128bc18501f7ea79e296ec", size = 40708, upload-time = "2025-11-12T09:56:36.333Z" },
]
[[package]]
name = "extract-msg"
version = "0.41.5"
@ -1980,11 +1910,11 @@ wheels = [
[[package]]
name = "fsspec"
version = "2025.12.0"
version = "2025.10.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/b6/27/954057b0d1f53f086f681755207dda6de6c660ce133c829158e8e8fe7895/fsspec-2025.12.0.tar.gz", hash = "sha256:c505de011584597b1060ff778bb664c1bc022e87921b0e4f10cc9c44f9635973", size = 309748, upload-time = "2025-12-03T15:23:42.687Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/24/7f/2747c0d332b9acfa75dc84447a066fdf812b5a6b8d30472b74d309bfe8cb/fsspec-2025.10.0.tar.gz", hash = "sha256:b6789427626f068f9a83ca4e8a3cc050850b6c0f71f99ddb4f542b8266a26a59", size = 309285, upload-time = "2025-10-30T14:58:44.036Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/51/c7/b64cae5dba3a1b138d7123ec36bb5ccd39d39939f18454407e5468f4763f/fsspec-2025.12.0-py3-none-any.whl", hash = "sha256:8bf1fe301b7d8acfa6e8571e3b1c3d158f909666642431cc78a1b7b4dbc5ec5b", size = 201422, upload-time = "2025-12-03T15:23:41.434Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl", hash = "sha256:7c7712353ae7d875407f97715f0e1ffcc21e33d5b24556cb1e090ae9409ec61d", size = 200966, upload-time = "2025-10-30T14:58:42.53Z" },
]
[[package]]
@ -2092,21 +2022,16 @@ wheels = [
[[package]]
name = "google-auth"
version = "2.43.0"
version = "2.41.1"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "cachetools" },
{ name = "pyasn1-modules" },
{ name = "rsa" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/ff/ef/66d14cf0e01b08d2d51ffc3c20410c4e134a1548fc246a6081eae585a4fe/google_auth-2.43.0.tar.gz", hash = "sha256:88228eee5fc21b62a1b5fe773ca15e67778cb07dc8363adcb4a8827b52d81483", size = 296359, upload-time = "2025-11-06T00:13:36.587Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/a8/af/5129ce5b2f9688d2fa49b463e544972a7c82b0fdb50980dafee92e121d9f/google_auth-2.41.1.tar.gz", hash = "sha256:b76b7b1f9e61f0cb7e88870d14f6a94aeef248959ef6992670efee37709cbfd2", size = 292284, upload-time = "2025-09-30T22:51:26.363Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6f/d1/385110a9ae86d91cc14c5282c61fe9f4dc41c0b9f7d423c6ad77038c4448/google_auth-2.43.0-py2.py3-none-any.whl", hash = "sha256:af628ba6fa493f75c7e9dbe9373d148ca9f4399b5ea29976519e0a3848eddd16", size = 223114, upload-time = "2025-11-06T00:13:35.209Z" },
]
[package.optional-dependencies]
requests = [
{ name = "requests" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/be/a4/7319a2a8add4cc352be9e3efeff5e2aacee917c85ca2fa1647e29089983c/google_auth-2.41.1-py2.py3-none-any.whl", hash = "sha256:754843be95575b9a19c604a848a41be03f7f2afd8c019f716dc1f51ee41c639d", size = 221302, upload-time = "2025-09-30T22:51:24.212Z" },
]
[[package]]
@ -2124,15 +2049,15 @@ wheels = [
[[package]]
name = "google-auth-oauthlib"
version = "1.2.2"
version = "1.2.3"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "google-auth" },
{ name = "requests-oauthlib" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/fb/87/e10bf24f7bcffc1421b84d6f9c3377c30ec305d082cd737ddaa6d8f77f7c/google_auth_oauthlib-1.2.2.tar.gz", hash = "sha256:11046fb8d3348b296302dd939ace8af0a724042e8029c1b872d87fabc9f41684", size = 20955, upload-time = "2025-04-22T16:40:29.172Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/86/a6/c6336a6ceb682709a4aa39e2e6b5754a458075ca92359512b6cbfcb25ae3/google_auth_oauthlib-1.2.3.tar.gz", hash = "sha256:eb09e450d3cc789ecbc2b3529cb94a713673fd5f7a22c718ad91cf75aedc2ea4", size = 21265, upload-time = "2025-10-30T21:28:19.105Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ac/84/40ee070be95771acd2f4418981edb834979424565c3eec3cd88b6aa09d24/google_auth_oauthlib-1.2.2-py3-none-any.whl", hash = "sha256:fd619506f4b3908b5df17b65f39ca8d66ea56986e5472eb5978fd8f3786f00a2", size = 19072, upload-time = "2025-04-22T16:40:28.174Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/38/07/a54c100da461ffc5968457823fcc665a48fb4b875c68bcfecbfe24a10dbe/google_auth_oauthlib-1.2.3-py3-none-any.whl", hash = "sha256:7c0940e037677f25e71999607493640d071212e7f3c15aa0febea4c47a5a0680", size = 19184, upload-time = "2025-10-30T21:28:17.88Z" },
]
[[package]]
@ -2252,11 +2177,11 @@ wheels = [
[[package]]
name = "google-genai"
version = "1.53.0"
version = "1.52.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "anyio" },
{ name = "google-auth", extra = ["requests"] },
{ name = "google-auth" },
{ name = "httpx" },
{ name = "pydantic" },
{ name = "requests" },
@ -2264,9 +2189,9 @@ dependencies = [
{ name = "typing-extensions" },
{ name = "websockets" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/de/b3/36fbfde2e21e6d3bc67780b61da33632f495ab1be08076cf0a16af74098f/google_genai-1.53.0.tar.gz", hash = "sha256:938a26d22f3fd32c6eeeb4276ef204ef82884e63af9842ce3eac05ceb39cbd8d", size = 260102, upload-time = "2025-12-03T17:21:23.233Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/09/4e/0ad8585d05312074bb69711b2d81cfed69ce0ae441913d57bf169bed20a7/google_genai-1.52.0.tar.gz", hash = "sha256:a74e8a4b3025f23aa98d6a0f84783119012ca6c336fd68f73c5d2b11465d7fc5", size = 258743, upload-time = "2025-11-21T02:18:55.742Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/40/f2/97fefdd1ad1f3428321bac819ae7a83ccc59f6439616054736b7819fa56c/google_genai-1.53.0-py3-none-any.whl", hash = "sha256:65a3f99e5c03c372d872cda7419f5940e723374bb12a2f3ffd5e3e56e8eb2094", size = 262015, upload-time = "2025-12-03T17:21:21.934Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ec/66/03f663e7bca7abe9ccfebe6cb3fe7da9a118fd723a5abb278d6117e7990e/google_genai-1.52.0-py3-none-any.whl", hash = "sha256:c8352b9f065ae14b9322b949c7debab8562982f03bf71d44130cd2b798c20743", size = 261219, upload-time = "2025-11-21T02:18:54.515Z" },
]
[[package]]
@ -2851,7 +2776,7 @@ wheels = [
[[package]]
name = "infinity-sdk"
version = "0.6.10"
version = "0.6.8"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "datrie" },
@ -2870,9 +2795,9 @@ dependencies = [
{ name = "sqlglot", extra = ["rs"] },
{ name = "thrift" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/b4/e5/88fdcfe42835c5494a08f02b64762a98e04dae4ad49f7dfabac18ee01928/infinity_sdk-0.6.10.tar.gz", hash = "sha256:b55c296ca3b2c8c2f4568f359dd8a50772e9432f09b64667140e9804bf780436", size = 29502969, upload-time = "2025-12-04T02:42:17.882Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/a3/2d/4b699d62202319e5cbbcb4a7d9e87a86dde7ba7c767d0af4ebbee3de8419/infinity_sdk-0.6.8.tar.gz", hash = "sha256:e91c1f6cdf2fa41bc615c72be2a9e981211bd05b34522c1d27f1b825b905b125", size = 72669, upload-time = "2025-12-02T05:09:29.377Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/97/99/8857ea0805bd83fe092f5dca914a31f9fcc731c3800264657bd3ba950a1d/infinity_sdk-0.6.10-py3-none-any.whl", hash = "sha256:8f605039ec73d1b05d219105fbabef186e0178fddbad058c2c06c4873be48651", size = 29722107, upload-time = "2025-12-04T02:42:04.101Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ab/08/59ed1261ee80d3b2c5a80313a013a94cae83ce90ff1da1ef488055944a7b/infinity_sdk-0.6.8-py3-none-any.whl", hash = "sha256:392f942a2073a5b545261dad9859b217c6a0331ede606c8894e7ae335f2ead5e", size = 81564, upload-time = "2025-12-02T05:09:27.784Z" },
]
[[package]]
@ -3152,7 +3077,7 @@ wheels = [
[[package]]
name = "langfuse"
version = "3.10.5"
version = "3.10.3"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "backoff" },
@ -3166,9 +3091,9 @@ dependencies = [
{ name = "requests" },
{ name = "wrapt" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/69/21/dff0434290512484436bfa108e36f0adc3457eb4117767de70e76a411cac/langfuse-3.10.5.tar.gz", hash = "sha256:14eb767663f7e7480cd1cd1b3ca457022817c129e666efe97e5c80adb8c5aac0", size = 223142, upload-time = "2025-12-03T17:49:39.747Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/7b/03/c4316cb0a91cff97118c21b973b3089c2fe1bdbcad02f3623d6ac572e954/langfuse-3.10.3.tar.gz", hash = "sha256:69d6eaf573212f8cdc1cebd2d6b47f271bfe76c7eb5a3c5d6766bb0d9bf0004c", size = 226617, upload-time = "2025-12-01T18:01:02.607Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/64/6f/dc15775f82d38da62cd2015110f5802bb175a9ee731a4533fe2a0cdf75b6/langfuse-3.10.5-py3-none-any.whl", hash = "sha256:0223a64109a4293b9bd9b2e0e3229f53b75291cd96341e42cc3eba186973fcdb", size = 398888, upload-time = "2025-12-03T17:49:38.171Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fd/04/f07c2a23f2822f73f8576b1ba7348c014c4be65127384b4bee475f913f3b/langfuse-3.10.3-py3-none-any.whl", hash = "sha256:b9a2e6506f8f0923c2f4b8c9e3fa355231994197a17f75509a37f335660ce334", size = 399062, upload-time = "2025-12-01T18:01:00.688Z" },
]
[[package]]
@ -3995,12 +3920,12 @@ name = "onnxruntime-gpu"
version = "1.19.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "coloredlogs", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "flatbuffers", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "numpy", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "packaging", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "protobuf", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "sympy", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "coloredlogs" },
{ name = "flatbuffers" },
{ name = "numpy" },
{ name = "packaging" },
{ name = "protobuf" },
{ name = "sympy" },
]
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d0/9c/3fa310e0730643051eb88e884f19813a6c8b67d0fbafcda610d960e589db/onnxruntime_gpu-1.19.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a49740e079e7c5215830d30cde3df792e903df007aa0b0fd7aa797937061b27a", size = 226178508, upload-time = "2024-09-04T06:43:40.83Z" },
@ -4118,32 +4043,32 @@ wheels = [
[[package]]
name = "opentelemetry-api"
version = "1.39.0"
version = "1.38.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "importlib-metadata" },
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/c0/0b/e5428c009d4d9af0515b0a8371a8aaae695371af291f45e702f7969dce6b/opentelemetry_api-1.39.0.tar.gz", hash = "sha256:6130644268c5ac6bdffaf660ce878f10906b3e789f7e2daa5e169b047a2933b9", size = 65763, upload-time = "2025-12-03T13:19:56.378Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/08/d8/0f354c375628e048bd0570645b310797299754730079853095bf000fba69/opentelemetry_api-1.38.0.tar.gz", hash = "sha256:f4c193b5e8acb0912b06ac5b16321908dd0843d75049c091487322284a3eea12", size = 65242, upload-time = "2025-10-16T08:35:50.25Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/05/85/d831a9bc0a9e0e1a304ff3d12c1489a5fbc9bf6690a15dcbdae372bbca45/opentelemetry_api-1.39.0-py3-none-any.whl", hash = "sha256:3c3b3ca5c5687b1b5b37e5c5027ff68eacea8675241b29f13110a8ffbb8f0459", size = 66357, upload-time = "2025-12-03T13:19:33.043Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ae/a2/d86e01c28300bd41bab8f18afd613676e2bd63515417b77636fc1add426f/opentelemetry_api-1.38.0-py3-none-any.whl", hash = "sha256:2891b0197f47124454ab9f0cf58f3be33faca394457ac3e09daba13ff50aa582", size = 65947, upload-time = "2025-10-16T08:35:30.23Z" },
]
[[package]]
name = "opentelemetry-exporter-otlp-proto-common"
version = "1.39.0"
version = "1.38.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "opentelemetry-proto" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/11/cb/3a29ce606b10c76d413d6edd42d25a654af03e73e50696611e757d2602f3/opentelemetry_exporter_otlp_proto_common-1.39.0.tar.gz", hash = "sha256:a135fceed1a6d767f75be65bd2845da344dd8b9258eeed6bc48509d02b184409", size = 20407, upload-time = "2025-12-03T13:19:59.003Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/19/83/dd4660f2956ff88ed071e9e0e36e830df14b8c5dc06722dbde1841accbe8/opentelemetry_exporter_otlp_proto_common-1.38.0.tar.gz", hash = "sha256:e333278afab4695aa8114eeb7bf4e44e65c6607d54968271a249c180b2cb605c", size = 20431, upload-time = "2025-10-16T08:35:53.285Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ef/c6/215edba62d13a3948c718b289539f70e40965bc37fc82ecd55bb0b749c1a/opentelemetry_exporter_otlp_proto_common-1.39.0-py3-none-any.whl", hash = "sha256:3d77be7c4bdf90f1a76666c934368b8abed730b5c6f0547a2ec57feb115849ac", size = 18367, upload-time = "2025-12-03T13:19:36.906Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a7/9e/55a41c9601191e8cd8eb626b54ee6827b9c9d4a46d736f32abc80d8039fc/opentelemetry_exporter_otlp_proto_common-1.38.0-py3-none-any.whl", hash = "sha256:03cb76ab213300fe4f4c62b7d8f17d97fcfd21b89f0b5ce38ea156327ddda74a", size = 18359, upload-time = "2025-10-16T08:35:34.099Z" },
]
[[package]]
name = "opentelemetry-exporter-otlp-proto-http"
version = "1.39.0"
version = "1.38.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "googleapis-common-protos" },
@ -4154,48 +4079,48 @@ dependencies = [
{ name = "requests" },
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/81/dc/1e9bf3f6a28e29eba516bc0266e052996d02bc7e92675f3cd38169607609/opentelemetry_exporter_otlp_proto_http-1.39.0.tar.gz", hash = "sha256:28d78fc0eb82d5a71ae552263d5012fa3ebad18dfd189bf8d8095ba0e65ee1ed", size = 17287, upload-time = "2025-12-03T13:20:01.134Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/81/0a/debcdfb029fbd1ccd1563f7c287b89a6f7bef3b2902ade56797bfd020854/opentelemetry_exporter_otlp_proto_http-1.38.0.tar.gz", hash = "sha256:f16bd44baf15cbe07633c5112ffc68229d0edbeac7b37610be0b2def4e21e90b", size = 17282, upload-time = "2025-10-16T08:35:54.422Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/bc/46/e4a102e17205bb05a50dbf24ef0e92b66b648cd67db9a68865af06a242fd/opentelemetry_exporter_otlp_proto_http-1.39.0-py3-none-any.whl", hash = "sha256:5789cb1375a8b82653328c0ce13a054d285f774099faf9d068032a49de4c7862", size = 19639, upload-time = "2025-12-03T13:19:39.536Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e5/77/154004c99fb9f291f74aa0822a2f5bbf565a72d8126b3a1b63ed8e5f83c7/opentelemetry_exporter_otlp_proto_http-1.38.0-py3-none-any.whl", hash = "sha256:84b937305edfc563f08ec69b9cb2298be8188371217e867c1854d77198d0825b", size = 19579, upload-time = "2025-10-16T08:35:36.269Z" },
]
[[package]]
name = "opentelemetry-proto"
version = "1.39.0"
version = "1.38.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "protobuf" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/48/b5/64d2f8c3393cd13ea2092106118f7b98461ba09333d40179a31444c6f176/opentelemetry_proto-1.39.0.tar.gz", hash = "sha256:c1fa48678ad1a1624258698e59be73f990b7fc1f39e73e16a9d08eef65dd838c", size = 46153, upload-time = "2025-12-03T13:20:08.729Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/51/14/f0c4f0f6371b9cb7f9fa9ee8918bfd59ac7040c7791f1e6da32a1839780d/opentelemetry_proto-1.38.0.tar.gz", hash = "sha256:88b161e89d9d372ce723da289b7da74c3a8354a8e5359992be813942969ed468", size = 46152, upload-time = "2025-10-16T08:36:01.612Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e3/4d/d500e1862beed68318705732d1976c390f4a72ca8009c4983ff627acff20/opentelemetry_proto-1.39.0-py3-none-any.whl", hash = "sha256:1e086552ac79acb501485ff0ce75533f70f3382d43d0a30728eeee594f7bf818", size = 72534, upload-time = "2025-12-03T13:19:50.251Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b6/6a/82b68b14efca5150b2632f3692d627afa76b77378c4999f2648979409528/opentelemetry_proto-1.38.0-py3-none-any.whl", hash = "sha256:b6ebe54d3217c42e45462e2a1ae28c3e2bf2ec5a5645236a490f55f45f1a0a18", size = 72535, upload-time = "2025-10-16T08:35:45.749Z" },
]
[[package]]
name = "opentelemetry-sdk"
version = "1.39.0"
version = "1.38.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "opentelemetry-api" },
{ name = "opentelemetry-semantic-conventions" },
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/51/e3/7cd989003e7cde72e0becfe830abff0df55c69d237ee7961a541e0167833/opentelemetry_sdk-1.39.0.tar.gz", hash = "sha256:c22204f12a0529e07aa4d985f1bca9d6b0e7b29fe7f03e923548ae52e0e15dde", size = 171322, upload-time = "2025-12-03T13:20:09.651Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/85/cb/f0eee1445161faf4c9af3ba7b848cc22a50a3d3e2515051ad8628c35ff80/opentelemetry_sdk-1.38.0.tar.gz", hash = "sha256:93df5d4d871ed09cb4272305be4d996236eedb232253e3ab864c8620f051cebe", size = 171942, upload-time = "2025-10-16T08:36:02.257Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a4/b4/2adc8bc83eb1055ecb592708efb6f0c520cc2eb68970b02b0f6ecda149cf/opentelemetry_sdk-1.39.0-py3-none-any.whl", hash = "sha256:90cfb07600dfc0d2de26120cebc0c8f27e69bf77cd80ef96645232372709a514", size = 132413, upload-time = "2025-12-03T13:19:51.364Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2f/2e/e93777a95d7d9c40d270a371392b6d6f1ff170c2a3cb32d6176741b5b723/opentelemetry_sdk-1.38.0-py3-none-any.whl", hash = "sha256:1c66af6564ecc1553d72d811a01df063ff097cdc82ce188da9951f93b8d10f6b", size = 132349, upload-time = "2025-10-16T08:35:46.995Z" },
]
[[package]]
name = "opentelemetry-semantic-conventions"
version = "0.60b0"
version = "0.59b0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "opentelemetry-api" },
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/71/0e/176a7844fe4e3cb5de604212094dffaed4e18b32f1c56b5258bcbcba85c2/opentelemetry_semantic_conventions-0.60b0.tar.gz", hash = "sha256:227d7aa73cbb8a2e418029d6b6465553aa01cf7e78ec9d0bc3255c7b3ac5bf8f", size = 137935, upload-time = "2025-12-03T13:20:12.395Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/40/bc/8b9ad3802cd8ac6583a4eb7de7e5d7db004e89cb7efe7008f9c8a537ee75/opentelemetry_semantic_conventions-0.59b0.tar.gz", hash = "sha256:7a6db3f30d70202d5bf9fa4b69bc866ca6a30437287de6c510fb594878aed6b0", size = 129861, upload-time = "2025-10-16T08:36:03.346Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d0/56/af0306666f91bae47db14d620775604688361f0f76a872e0005277311131/opentelemetry_semantic_conventions-0.60b0-py3-none-any.whl", hash = "sha256:069530852691136018087b52688857d97bba61cd641d0f8628d2d92788c4f78a", size = 219981, upload-time = "2025-12-03T13:19:53.585Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/24/7d/c88d7b15ba8fe5c6b8f93be50fc11795e9fc05386c44afaf6b76fe191f9b/opentelemetry_semantic_conventions-0.59b0-py3-none-any.whl", hash = "sha256:35d3b8833ef97d614136e253c1da9342b4c3c083bbaf29ce31d572a1c3825eed", size = 207954, upload-time = "2025-10-16T08:35:48.054Z" },
]
[[package]]
@ -5064,6 +4989,12 @@ wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b", size = 1225217, upload-time = "2025-06-21T13:39:07.939Z" },
]
[[package]]
name = "pyicu"
version = "2.16"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/11/c3/8d558b30deb33eb583c0bcae3e64d6db8316b69461a04bb9db5ff63d3f6e/pyicu-2.16.tar.gz", hash = "sha256:42b3a8062e3b23e927ca727e6b5e1730d86c70279834e4887152895d2eb012d9", size = 268126, upload-time = "2025-11-04T23:33:00.006Z" }
[[package]]
name = "pyjwt"
version = "2.8.0"
@ -5264,47 +5195,6 @@ wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a8/a4/20da314d277121d6534b3a980b29035dcd51e6744bd79075a6ce8fa4eb8d/pytest-8.4.2-py3-none-any.whl", hash = "sha256:872f880de3fc3a5bdc88a11b39c9710c3497a547cfa9320bc3c5e62fbf272e79", size = 365750, upload-time = "2025-09-04T14:34:20.226Z" },
]
[[package]]
name = "pytest-asyncio"
version = "1.3.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "backports-asyncio-runner", marker = "python_full_version < '3.11'" },
{ name = "pytest" },
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/90/2c/8af215c0f776415f3590cac4f9086ccefd6fd463befeae41cd4d3f193e5a/pytest_asyncio-1.3.0.tar.gz", hash = "sha256:d7f52f36d231b80ee124cd216ffb19369aa168fc10095013c6b014a34d3ee9e5", size = 50087, upload-time = "2025-11-10T16:07:47.256Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e5/35/f8b19922b6a25bc0880171a2f1a003eaeb93657475193ab516fd87cac9da/pytest_asyncio-1.3.0-py3-none-any.whl", hash = "sha256:611e26147c7f77640e6d0a92a38ed17c3e9848063698d5c93d5aa7aa11cebff5", size = 15075, upload-time = "2025-11-10T16:07:45.537Z" },
]
[[package]]
name = "pytest-cov"
version = "7.0.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "coverage", extra = ["toml"] },
{ name = "pluggy" },
{ name = "pytest" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/5e/f7/c933acc76f5208b3b00089573cf6a2bc26dc80a8aece8f52bb7d6b1855ca/pytest_cov-7.0.0.tar.gz", hash = "sha256:33c97eda2e049a0c5298e91f519302a1334c26ac65c1a483d6206fd458361af1", size = 54328, upload-time = "2025-09-09T10:57:02.113Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ee/49/1377b49de7d0c1ce41292161ea0f721913fa8722c19fb9c1e3aa0367eecb/pytest_cov-7.0.0-py3-none-any.whl", hash = "sha256:3b8e9558b16cc1479da72058bdecf8073661c7f57f7d3c5f22a1c23507f2d861", size = 22424, upload-time = "2025-09-09T10:57:00.695Z" },
]
[[package]]
name = "pytest-xdist"
version = "3.8.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "execnet" },
{ name = "pytest" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/78/b4/439b179d1ff526791eb921115fca8e44e596a13efeda518b9d845a619450/pytest_xdist-3.8.0.tar.gz", hash = "sha256:7e578125ec9bc6050861aa93f2d59f1d8d085595d6551c2c90b6f4fad8d3a9f1", size = 88069, upload-time = "2025-07-01T13:30:59.346Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ca/31/d4e37e9e550c2b92a9cbc2e4d0b7420a27224968580b5a447f420847c975/pytest_xdist-3.8.0-py3-none-any.whl", hash = "sha256:202ca578cfeb7370784a8c33d6d05bc6e13b4f25b5053c30a152269fd10f0b88", size = 46396, upload-time = "2025-07-01T13:30:56.632Z" },
]
[[package]]
name = "python-calamine"
version = "0.6.1"
@ -5668,6 +5558,7 @@ dependencies = [
{ name = "psycopg2-binary" },
{ name = "pyclipper" },
{ name = "pycryptodomex" },
{ name = "pyicu" },
{ name = "pymysql" },
{ name = "pyobvector" },
{ name = "pyodbc" },
@ -5729,9 +5620,6 @@ test = [
{ name = "openpyxl" },
{ name = "pillow" },
{ name = "pytest" },
{ name = "pytest-asyncio" },
{ name = "pytest-cov" },
{ name = "pytest-xdist" },
{ name = "python-docx" },
{ name = "python-pptx" },
{ name = "reportlab" },
@ -5795,7 +5683,7 @@ requires-dist = [
{ name = "huggingface-hub", specifier = ">=0.25.0,<0.26.0" },
{ name = "imageio-ffmpeg", specifier = ">=0.6.0" },
{ name = "infinity-emb", specifier = ">=0.0.66,<0.0.67" },
{ name = "infinity-sdk", specifier = "==0.6.10" },
{ name = "infinity-sdk", specifier = "==0.6.8" },
{ name = "itsdangerous", specifier = "==2.1.2" },
{ name = "jira", specifier = "==3.10.5" },
{ name = "json-repair", specifier = "==0.35.0" },
@ -5835,6 +5723,7 @@ requires-dist = [
{ name = "psycopg2-binary", specifier = "==2.9.9" },
{ name = "pyclipper", specifier = "==1.3.0.post5" },
{ name = "pycryptodomex", specifier = "==3.20.0" },
{ name = "pyicu", specifier = ">=2.15.3,<3.0.0" },
{ name = "pymysql", specifier = ">=1.1.1,<2.0.0" },
{ name = "pyobvector", specifier = "==0.2.18" },
{ name = "pyodbc", specifier = ">=5.2.0,<6.0.0" },
@ -5896,9 +5785,6 @@ test = [
{ name = "openpyxl", specifier = ">=3.1.5" },
{ name = "pillow", specifier = ">=10.4.0" },
{ name = "pytest", specifier = ">=8.3.5" },
{ name = "pytest-asyncio", specifier = ">=1.3.0" },
{ name = "pytest-cov", specifier = ">=7.0.0" },
{ name = "pytest-xdist", specifier = ">=3.8.0" },
{ name = "python-docx", specifier = ">=1.1.2" },
{ name = "python-pptx", specifier = ">=1.0.2" },
{ name = "reportlab", specifier = ">=4.4.1" },
@ -6826,11 +6712,11 @@ wheels = [
[[package]]
name = "sqlglot"
version = "28.1.0"
version = "28.0.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/7e/49/cda1fc4e610ed5764de2842bb2f362f4aba267b4a7d05a3a217a25b39004/sqlglot-28.1.0.tar.gz", hash = "sha256:a3ef7344359667b51cf95e840aac70a49f847602c61c9fbaeb847f74f7877fe1", size = 5546281, upload-time = "2025-12-02T16:52:28.387Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/52/8d/9ce5904aca760b81adf821c77a1dcf07c98f9caaa7e3b5c991c541ff89d2/sqlglot-28.0.0.tar.gz", hash = "sha256:cc9a651ef4182e61dac58aa955e5fb21845a5865c6a4d7d7b5a7857450285ad4", size = 5520798, upload-time = "2025-11-17T10:34:57.016Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2c/e8/bd016214348f65ba31107c1b81af70fc7662d96758052d5d59b516fd3858/sqlglot-28.1.0-py3-none-any.whl", hash = "sha256:2a895a31666ba947c686caa980624c82bcd0e6fdf59b4fdb9e47108bd092d1ac", size = 547889, upload-time = "2025-12-02T16:52:26.019Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/56/6d/86de134f40199105d2fee1b066741aa870b3ce75ee74018d9c8508bbb182/sqlglot-28.0.0-py3-none-any.whl", hash = "sha256:ac1778e7fa4812f4f7e5881b260632fc167b00ca4c1226868891fb15467122e4", size = 536127, upload-time = "2025-11-17T10:34:55.192Z" },
]
[package.optional-dependencies]
@ -6840,40 +6726,40 @@ rs = [
[[package]]
name = "sqlglotrs"
version = "0.8.0"
version = "0.7.3"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/d5/37/118f24c367fde662e6c1181327dc9c16d08914108904c69bac3a6ba12c52/sqlglotrs-0.8.0.tar.gz", hash = "sha256:2b9a23c580d82be2388ee23496230cfc667f280ed0ed7eaa099d0da8d718cbf2", size = 15706, upload-time = "2025-12-02T16:58:38.197Z" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/87/5a/46d8efeda45be6ce1c630229455f000cafedea6129b47e6cfab39ff462f5/sqlglotrs-0.7.3.tar.gz", hash = "sha256:caadc572c8a194f99d6ba44d02f9ada0110e3d47cca3330c81f4aa608f1143eb", size = 15888, upload-time = "2025-10-13T06:33:57.322Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d7/88/7fc59c146118603e06abf69dc19c237ef496a8dd936e5c224fdffc7df120/sqlglotrs-0.8.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3db8f75b8efe5b94ed5540c13b80ef0a3e64c0d15864b05a6bccf5554c6e6008", size = 318097, upload-time = "2025-12-02T16:58:30.763Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/44/9a/7c0103f02b371f49f6ade420519d54c11c7e3ae4dcf22a855b9c71ccb546/sqlglotrs-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:37d00b69814fdabd4256be955d66e699afa1c50740f03369503d85f90245af35", size = 306820, upload-time = "2025-12-02T16:58:23.714Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4a/cf/52de2a02a52976dfbd863ec57a3fafaf018a9536114f195404d51717501d/sqlglotrs-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:631da494550442ec2c7139993f59d854e4d4a44282b568594b5fc50818bc4736", size = 341540, upload-time = "2025-12-02T16:57:33.009Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b8/89/072a295c3b98322a3d08d85ed47551c1f080309f2cde2d2fa75bd1964621/sqlglotrs-0.8.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6b624e0650067cc006d8a0595e07be3ac91599187ee353313eb9f114ca434e44", size = 350048, upload-time = "2025-12-02T16:57:41.477Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fd/b2/fbc05eef045124a9e5820812ddd641ec42add5e52f12126a85d942b0f166/sqlglotrs-0.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6c0c5ae335b1917aa101d7cfe1aacbedf3b54f489d2038e94c8f42ffe5bd304a", size = 474032, upload-time = "2025-12-02T16:58:00.344Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b2/a8/1472a5d5f849803fb2ad566ae43db8e5c9f3b1686b104dda245e4acfd963/sqlglotrs-0.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21d145e9fef6e2e53fdf17f9b6ab7e7fbba26064365c56d2103a41e95053d1d4", size = 365233, upload-time = "2025-12-02T16:58:08.102Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ab/c8/ea700f277cba380c7919136a16e03f9f990f29da34c5404b861fbb8b6fd5/sqlglotrs-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ed5d7afd8b6b244c33316cc292122f26c20bf9677907bc5790c1b053097aff4", size = 348452, upload-time = "2025-12-02T16:58:15.863Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/60/f7/ba63c7cabcd71abed855e7a4cecb4b0df297bf17d315ff39eacf94926378/sqlglotrs-0.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:185442ad85a125719bf365a238c2b357c079cb5a13392adbbde172b1a0073410", size = 371656, upload-time = "2025-12-02T16:57:51.329Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/5c/dc/1ba05670afe7f4c7e651f972f4738dc4508525bb67b9151cdf463b0ef55b/sqlglotrs-0.8.0-cp310-cp310-win32.whl", hash = "sha256:a7d3f36d9c53090842ae18de6d96bd7634d73584255014983aad998f2b7dc95f", size = 188554, upload-time = "2025-12-02T16:58:39.078Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/33/fc/a393a837a9e09411da87cf8ee2d9f190e3bad37d289cd385e3791356a788/sqlglotrs-0.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:c8a5e3c8870323666e9695be7cc65f710ed437ceea572e69e2b14e63b70f21b2", size = 200973, upload-time = "2025-12-02T16:58:46.02Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3d/be/a6a8e41e59813663baf02b23534d822b62521d018ee740f132b4547c4239/sqlglotrs-0.8.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:0267b0121073669d1184bc0441779559e6b0c6067a12571b63befa2a9b4b0f77", size = 318016, upload-time = "2025-12-02T16:58:32.555Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/08/02/bf65a608b2caf268d81073171196f93beed8d32731ebda1288153dec2b73/sqlglotrs-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c1a2fa22a3ae4b38c7df9abbf14b2473f7e71c859c95bc270bd4a169688380", size = 306527, upload-time = "2025-12-02T16:58:24.853Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/39/98/32de2ad5ea9310e220baabfb6b2ee1e3c7ebb3b83a1db9bd2acdf72de6a5/sqlglotrs-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e7df3d2117c92004aa20082d71fbbd1735f063f123354d32d0b2b602ab4e1353", size = 341821, upload-time = "2025-12-02T16:57:34.854Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3b/99/64247cb3b9f99ca09aafa11791fe250326d498b194795af91cc957003852/sqlglotrs-0.8.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ecd7fdfd1be44828a8a8046ee743ffbaf93a972d7a125ff13e4673bb659fcf2c", size = 350003, upload-time = "2025-12-02T16:57:42.659Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d0/91/bc15e4d2322cc28f4f94e519b2ae927ba42844830efaacf973ff774d8e06/sqlglotrs-0.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:171df6454f3dc064b89895c51cfb713163188493b36b845bf7c17df0e5702095", size = 474163, upload-time = "2025-12-02T16:58:01.554Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/93/8e/736451fc39f68f1e394a90d768dd9c8135412669ea3460e47033308cbb2e/sqlglotrs-0.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:497472ed07445a693e2699fd6f1b8ed5b8320488ade6a4a8e476664ee93ea51c", size = 365088, upload-time = "2025-12-02T16:58:09.604Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/97/2c/214f352fe03652b08873dcb8f4e6799a02be71446bdf9fea99ce13a502f3/sqlglotrs-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2be9add4daed501e28564208b30d4a772dfd6aaa1ad10dadd2d49f4e851f9fa", size = 348368, upload-time = "2025-12-02T16:58:17.363Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e6/22/c445428a52d053a6f6b31858ac817afb997316e9f0ab2ee3187a10bd85a4/sqlglotrs-0.8.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:871d5ee6414f2d7116b670d0430c16f5b3d5a96480c274f7f3d50d97dbea7601", size = 371720, upload-time = "2025-12-02T16:57:52.71Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/20/b2/301261db4ac543891f897b58a036e87ff33158ea4eda050ee0e08ae0083a/sqlglotrs-0.8.0-cp311-cp311-win32.whl", hash = "sha256:1bbe94effd9d64a8bdca12e0f14b28388059cb5a381561bac07aafedc8c63761", size = 188284, upload-time = "2025-12-02T16:58:40.21Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c8/a1/0534075d3b8a7c8ab8eff4ea7ba0338a2ef76e3d2e49105b189049430e99/sqlglotrs-0.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:05a5098ec2836799c4c43b06df7c68a2b4c19c0fce042a66706fe3edc957459d", size = 201117, upload-time = "2025-12-02T16:58:47.14Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fd/20/7beddfd545aaebbfee10a77ac8ef8a205ff597f9ce041c4b0437d0194392/sqlglotrs-0.8.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:fcb53f27cf4b9cae8a66c5777b84eeb3d079e96bcb4277b627fd90bfd1a591b5", size = 314699, upload-time = "2025-12-02T16:58:33.82Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/47/6f/6223a1946fe24a979b8af3c7ae2d16c5451d8f35f2468782bd4af2c122da/sqlglotrs-0.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4da1480cc288e02bd459e4638f212fa86a1fef81eb2cd69e6fdbdeb64e3df729", size = 303385, upload-time = "2025-12-02T16:58:26.052Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a0/98/55050208ef839cad740df6ca86f2f3ca895d469f6ce2040cba32d0b6c4a0/sqlglotrs-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc4a77df178b0ba242aba0e7cd775c3f9aef0fa79dfc31c6e642431ce690f51f", size = 341580, upload-time = "2025-12-02T16:57:36.197Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/eb/f2/6f1d207e629fd4810cc826cf419acc386f3d43d32987684730fbc2399503/sqlglotrs-0.8.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a8647d20cc5a9ff39071786169b3f1acf56f266483fa55386111783bca335f04", size = 348451, upload-time = "2025-12-02T16:57:43.756Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/df/1b/fa8a0907471fe7be3754bac683a21c984b17672eef6958206473f683b63a/sqlglotrs-0.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1afdd6a0fa915b3aef7c801cbdc815bb39b3d6aecc4d5b04c4ce54d3f73d0013", size = 475703, upload-time = "2025-12-02T16:58:02.843Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/92/56/f020c9c48d68883f6e24d69d18fe386eafc5963bc3982cc45013ec9b1ba0/sqlglotrs-0.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b4c1edeb80f572cf3586b9a23d15f18f48ac8dc481eceabdbb85dc7dbf8a2ce", size = 365842, upload-time = "2025-12-02T16:58:10.847Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/61/7b/091464f8aa2232a2f33028f9c9a2cbea7c4e5719400656f203592d46264d/sqlglotrs-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b6d819f2753804d55b10e4320df08350cd2739556572a97ed1b1d7fc939f194", size = 348397, upload-time = "2025-12-02T16:58:18.567Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b7/1b/1b0cf0d41e8412786d1e80695778db799520223acf85c3ddc53c1200731f/sqlglotrs-0.8.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dcf2cce002969cefb1466f2837c716d20fc9eac62b05043523fda25b3de4c444", size = 369756, upload-time = "2025-12-02T16:57:53.85Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/31/6e/d9e50472aa92736751abf3d6fcad1c793f0701f17a553ae787e4a7581a1d/sqlglotrs-0.8.0-cp312-cp312-win32.whl", hash = "sha256:5459235a25b30eae508bcaea8bc6ebc04610acd87e985ba4d602981a94078384", size = 187891, upload-time = "2025-12-02T16:58:41.57Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3b/a2/21d09ff2065a7e883f8f68dcea57fb23f6f04ba7a193f2ac2895b5dfafae/sqlglotrs-0.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:1e0de4fa8e6c54419bd63a1205f3218feb5e2649d72f1bc69c5261b6c333e63b", size = 200842, upload-time = "2025-12-02T16:58:48.181Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/9d/95/f08e01f54e521a286fcd9f7a8bdd178eabcddd9dbc6d6c15dc983c7be8dd/sqlglotrs-0.7.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7acc6dba37af53d9cf1e3217fdd719878dbfaaf2a578ad7b3fbc07ef9dadd035", size = 314621, upload-time = "2025-10-13T06:33:48.917Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/98/7d/01a5db15e413ab587816448f1222286d3a10f0465954d21f5d2915aaeed5/sqlglotrs-0.7.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3cbfb42071422afbd7376d70b93a969e86fb74752efe98dd66ee6d2ae27a9665", size = 300189, upload-time = "2025-10-13T06:33:40.963Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/08/21/94d1fb647a394afcb09a9174f7bff078452bb956e6898093dd9ee459ef2b/sqlglotrs-0.7.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07500421de9dea8dfc0cd6769145df754178fc2ae5a3692bdbf5d37aebc0712a", size = 332771, upload-time = "2025-10-13T06:32:45.992Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/29/d1/ccade8e794304c925e9b94e1d7bff4c56896f571a291a03bfd96048c4a0f/sqlglotrs-0.7.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:792eb179a742d7d72d1d47c9a50e073078f0133e9191bd07920945dcc9170844", size = 342960, upload-time = "2025-10-13T06:32:55.493Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1e/2f/2ff3cfe7d91ac3762100e511c4eff0c98824970d7c27e18e88c44a4d4567/sqlglotrs-0.7.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4c3849992e33e47403c2517d464564e4b4cf6a080ad761141504e271ab2c7cd", size = 487268, upload-time = "2025-10-13T06:33:13.784Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3f/d7/a95fbdd26f20b7bd5781bb5a4c51616fdd59f1c521010f668ffd54e59f5d/sqlglotrs-0.7.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:016f51409ed3d87c33ca5a31dd6766e75a809909e418a0ffd2965e0ae7b84a7b", size = 365853, upload-time = "2025-10-13T06:33:23.415Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/53/7a/5d50d0b1167c79a509957d58a6bf9f6450f894e0bc233987cb85ccaec50f/sqlglotrs-0.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94dd711ea2ba76e664dab3e7f7b08cb5517cf5164fd94a552598acfd1f6df59a", size = 343697, upload-time = "2025-10-13T06:33:32.542Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e5/89/85acbd412a5c7ef39ee5a96f5be28d6d38bce2c4521a264c747361b4c021/sqlglotrs-0.7.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:517198977f3baece667513326e42545b00b2878719922c58fcbfa21553f1338d", size = 363446, upload-time = "2025-10-13T06:33:03.995Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/37/4d/0a04f29731b6fda327bd11495c143ce70d1a7446b22440a32d8571408a06/sqlglotrs-0.7.3-cp310-cp310-win32.whl", hash = "sha256:1e9121ef3a64dc7d18e500e5e93df458a9bb6f4111b8f8569d5e4f8db21e61d2", size = 183997, upload-time = "2025-10-13T06:33:58.579Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0e/16/0e95fa77409da059c951c6be11d4d73311c60bb5ed82f1d40a4afc9a1aa9/sqlglotrs-0.7.3-cp310-cp310-win_amd64.whl", hash = "sha256:48fd7e9efef56331e1ef7402b6d65113c087da1cfe2ef80d143ee62046d49056", size = 195923, upload-time = "2025-10-13T06:34:06.676Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/82/41/fcd87de298b562947cb2592feb9df5794886a8fa24eab8a080a552aa0e4d/sqlglotrs-0.7.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f2144fc8e472de2b165665c1370e7f0ca7f9400f60ca5e78c7aedbb3233bc8d7", size = 314465, upload-time = "2025-10-13T06:33:50.219Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/14/81/22cf241e22f364c414d57893fad9cfea869f8866189e75575a3862f1d329/sqlglotrs-0.7.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:93cb74928b205da3f29f2b9c728d2c6656ad30e1ef500560f6c851bca2129fbc", size = 300129, upload-time = "2025-10-13T06:33:42.205Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a5/90/4e4220f8605c6fbca77dfad2052cdebf195099c99fd0684723677dcbf091/sqlglotrs-0.7.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a918137bacfa31529802063e349a99d5352f74c914beceb14689cd2864c5e4d0", size = 332735, upload-time = "2025-10-13T06:32:48.095Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3b/35/abe3cb6aa197b5193fcb446ab69465b5927e09e281b2c05f4e12249fd335/sqlglotrs-0.7.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c3fd0edbd957d136c67919ead10c90d832da1aedbbedc6da899d173fe78bf600", size = 342779, upload-time = "2025-10-13T06:32:56.782Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/22/71/670ad31f4dbfe594592a1992c4e7a62003dc47dffb15d96b2fec4137f933/sqlglotrs-0.7.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5a361a1dd8c55fbc57f81db738658141cab723509cc1b3edcc871bccfbba0cfb", size = 487344, upload-time = "2025-10-13T06:33:15.095Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f4/73/86e46b762b615c7cdec489e4b0670d2a04ea6fab0c0be30a5756e95f108f/sqlglotrs-0.7.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c698af6379475c243a8f190845bf1d1267a2c9867011a4567d5cfdcc5b0eb094", size = 366062, upload-time = "2025-10-13T06:33:25.183Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/dc/07/b4dd7315df7d975c4b82d09106eb73ea2ee8f3734f764889913636e9d68c/sqlglotrs-0.7.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75d63ed29058c56f153912c90811d8af1706d81f0c759883baeb21acb6322969", size = 343642, upload-time = "2025-10-13T06:33:33.826Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/37/84/2e834fc665236ef6b0fced14d75c8e9eb0db471d96fde539d8c37ce3a10f/sqlglotrs-0.7.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4e19dee6dc46c4d84c556ae456fa0c6400edb157528fd369670b3d041b54ef21", size = 363731, upload-time = "2025-10-13T06:33:05.913Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ad/db/b7063b1240a1c39bc5627880dbb80c9e3f7b5548a17962d3a6bf98239171/sqlglotrs-0.7.3-cp311-cp311-win32.whl", hash = "sha256:f1276d0f02eaefbdd149b614f6c21fb9be372d7e1137f19c3d5f9e50662367b3", size = 183607, upload-time = "2025-10-13T06:33:59.858Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/09/98/e9cb2b3dd4abb34d2ae71747f113bf12f741a86fa29e661f1f09ba8376d0/sqlglotrs-0.7.3-cp311-cp311-win_amd64.whl", hash = "sha256:ccf05fc6e89523cf5819982fab12b8fe07a9656dbb5356fc4b56b562e734c202", size = 196050, upload-time = "2025-10-13T06:34:07.921Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/23/3f/3b059058e198b2fb6612d0ddaad5431a796d7081d40b21f12273ea1b26dc/sqlglotrs-0.7.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:2e7be55bf719b5ebdc344a996b6d27b9a0ba9bae0a09462900805e2f7dc4dca5", size = 310987, upload-time = "2025-10-13T06:33:51.874Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/47/b6/0058b2fe4f4813d9f3280d65ace97a637e8edd152be2a13bb1782c5c2eff/sqlglotrs-0.7.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6fef415993e1843201a57916f310b49e79669db379ff38094161fa93be2ffdf2", size = 296829, upload-time = "2025-10-13T06:33:43.838Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f3/a8/35c593b03bf498876aea68ea944a7e7bb9cf648e68984f55795181c928dd/sqlglotrs-0.7.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e980354e576e852c53e0bb5444b04ebb6459054074bce8012cc3385dd3d116ed", size = 332313, upload-time = "2025-10-13T06:32:49.343Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e9/bc/534e21a233846d33d6b55100485bf1844d301b0b75deded5310ef9cd171f/sqlglotrs-0.7.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1444b260c040cc80697956629f3fd3adece0bdb4f83bae22cd618ca3f18c4de8", size = 342309, upload-time = "2025-10-13T06:32:58.031Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/71/63/1d7bd7de87f01adb43cd1710d3fd5b9d5b0b3fea160bbeadc340fe1a9132/sqlglotrs-0.7.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3202c6f00145b8adb4632c1bb5071be5aa362829054653bac058dbcdbc6228e7", size = 484954, upload-time = "2025-10-13T06:33:16.697Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6f/bd/10126c9f59fb4f8fa51bf3f0ad17895b953bd09e1687986d5d9e110758c8/sqlglotrs-0.7.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17ae27e895f0ed960e28e76028c84758ff00df24e598654df3b5f22de8c7fc30", size = 366874, upload-time = "2025-10-13T06:33:26.888Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a3/fa/f12a1eb9c22cdce962bafebefea58e898c19bae3d21e9b79d6e811a2951d/sqlglotrs-0.7.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a36c3d55b913c09dc31572ca7d5b423e85d761f1b3c9d8f86e2a1433a2f20d5", size = 342990, upload-time = "2025-10-13T06:33:35.478Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/86/1d/2bd1c8900d7a081a61a1c424785fd1a1452def751bc212630251423d80ce/sqlglotrs-0.7.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:94875611a2a953c06e8152b1d485f4d20ec61b72ebd848f96c04aca66b30f189", size = 362603, upload-time = "2025-10-13T06:33:07.507Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/18/3a/9c176a7f9b93d78168b3d137db4704a703cb51b32edb29d231b615130b47/sqlglotrs-0.7.3-cp312-cp312-win32.whl", hash = "sha256:64a708c87d1bea1f4bdb3edf0a3e94ea1b908ed229502da93621a4a50ef20189", size = 183180, upload-time = "2025-10-13T06:34:01.017Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/df/ea/37757060d3caadb22509d349087e1e16a2dcc4c1649a00d2d6b501f8ff50/sqlglotrs-0.7.3-cp312-cp312-win_amd64.whl", hash = "sha256:fe1ef1bedbb34b87dfb4e99a911026f8895ff2514b222cfd82cd08033406de2e", size = 195746, upload-time = "2025-10-13T06:34:09.478Z" },
]
[[package]]

97
web/package-lock.json generated
View File

@ -76,7 +76,6 @@
"pptx-preview": "^1.0.5",
"rc-tween-one": "^3.0.6",
"react": "^18.2.0",
"react-audio-voice-recorder": "^2.2.0",
"react-copy-to-clipboard": "^5.1.0",
"react-day-picker": "^9.8.0",
"react-dom": "^18.2.0",
@ -2853,69 +2852,6 @@
"node": "^12.22.0 || ^14.17.0 || >=16.0.0"
}
},
"node_modules/@ffmpeg/ffmpeg": {
"version": "0.11.6",
"resolved": "https://registry.npmmirror.com/@ffmpeg/ffmpeg/-/ffmpeg-0.11.6.tgz",
"integrity": "sha512-uN8J8KDjADEavPhNva6tYO9Fj0lWs9z82swF3YXnTxWMBoFLGq3LZ6FLlIldRKEzhOBKnkVfA8UnFJuvGvNxcA==",
"license": "MIT",
"dependencies": {
"is-url": "^1.2.4",
"node-fetch": "^2.6.1",
"regenerator-runtime": "^0.13.7",
"resolve-url": "^0.2.1"
},
"engines": {
"node": ">=12.16.1"
}
},
"node_modules/@ffmpeg/ffmpeg/node_modules/node-fetch": {
"version": "2.7.0",
"resolved": "https://registry.npmmirror.com/node-fetch/-/node-fetch-2.7.0.tgz",
"integrity": "sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==",
"license": "MIT",
"dependencies": {
"whatwg-url": "^5.0.0"
},
"engines": {
"node": "4.x || >=6.0.0"
},
"peerDependencies": {
"encoding": "^0.1.0"
},
"peerDependenciesMeta": {
"encoding": {
"optional": true
}
}
},
"node_modules/@ffmpeg/ffmpeg/node_modules/regenerator-runtime": {
"version": "0.13.11",
"resolved": "https://registry.npmmirror.com/regenerator-runtime/-/regenerator-runtime-0.13.11.tgz",
"integrity": "sha512-kY1AZVr2Ra+t+piVaJ4gxaFaReZVH40AKNo7UCX6W+dEwBo/2oZJzqfuN1qLq1oL45o56cPaTXELwrTh8Fpggg==",
"license": "MIT"
},
"node_modules/@ffmpeg/ffmpeg/node_modules/tr46": {
"version": "0.0.3",
"resolved": "https://registry.npmmirror.com/tr46/-/tr46-0.0.3.tgz",
"integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==",
"license": "MIT"
},
"node_modules/@ffmpeg/ffmpeg/node_modules/webidl-conversions": {
"version": "3.0.1",
"resolved": "https://registry.npmmirror.com/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
"integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ==",
"license": "BSD-2-Clause"
},
"node_modules/@ffmpeg/ffmpeg/node_modules/whatwg-url": {
"version": "5.0.0",
"resolved": "https://registry.npmmirror.com/whatwg-url/-/whatwg-url-5.0.0.tgz",
"integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==",
"license": "MIT",
"dependencies": {
"tr46": "~0.0.3",
"webidl-conversions": "^3.0.0"
}
},
"node_modules/@floating-ui/core": {
"version": "0.6.2",
"resolved": "https://registry.npmmirror.com/@floating-ui/core/-/core-0.6.2.tgz",
@ -21717,12 +21653,6 @@
"node": ">= 0.4"
}
},
"node_modules/is-url": {
"version": "1.2.4",
"resolved": "https://registry.npmmirror.com/is-url/-/is-url-1.2.4.tgz",
"integrity": "sha512-ITvGim8FhRiYe4IQ5uHSkj7pVaPDrCTkNd3yq3cV7iZAcJdHTUMPMEHcqSOy9xZ9qFenQCvi+2wjH9a1nXqHww==",
"license": "MIT"
},
"node_modules/is-weakmap": {
"version": "2.0.1",
"resolved": "https://registry.npmmirror.com/is-weakmap/-/is-weakmap-2.0.1.tgz",
@ -29700,30 +29630,6 @@
"node": ">=0.10.0"
}
},
"node_modules/react-audio-visualize": {
"version": "1.2.0",
"resolved": "https://registry.npmmirror.com/react-audio-visualize/-/react-audio-visualize-1.2.0.tgz",
"integrity": "sha512-rfO5nmT0fp23gjU0y2WQT6+ZOq2ZsuPTMphchwX1PCz1Di4oaIr6x7JZII8MLrbHdG7UB0OHfGONTIsWdh67kQ==",
"license": "MIT",
"peerDependencies": {
"react": ">=16.2.0",
"react-dom": ">=16.2.0"
}
},
"node_modules/react-audio-voice-recorder": {
"version": "2.2.0",
"resolved": "https://registry.npmmirror.com/react-audio-voice-recorder/-/react-audio-voice-recorder-2.2.0.tgz",
"integrity": "sha512-Hq+143Zs99vJojT/uFvtpxUuiIKoLbMhxhA7qgxe5v8hNXrh5/qTnvYP92hFaE5V+GyoCXlESONa0ufk7t5kHQ==",
"license": "MIT",
"dependencies": {
"@ffmpeg/ffmpeg": "^0.11.6",
"react-audio-visualize": "^1.1.3"
},
"peerDependencies": {
"react": ">=16.2.0",
"react-dom": ">=16.2.0"
}
},
"node_modules/react-copy-to-clipboard": {
"version": "5.1.0",
"resolved": "https://registry.npmmirror.com/react-copy-to-clipboard/-/react-copy-to-clipboard-5.1.0.tgz",
@ -32196,7 +32102,8 @@
"version": "0.2.1",
"resolved": "https://registry.npmmirror.com/resolve-url/-/resolve-url-0.2.1.tgz",
"integrity": "sha512-ZuF55hVUQaaczgOIwqWzkEcEidmlD/xl44x1UZnhOXcYuFN2S6+rcxpG+C1N3So0wvNI3DmJICUFfu2SxhBmvg==",
"deprecated": "https://github.com/lydell/resolve-url#deprecated"
"deprecated": "https://github.com/lydell/resolve-url#deprecated",
"dev": true
},
"node_modules/resolve.exports": {
"version": "2.0.2",

View File

@ -89,7 +89,6 @@
"pptx-preview": "^1.0.5",
"rc-tween-one": "^3.0.6",
"react": "^18.2.0",
"react-audio-voice-recorder": "^2.2.0",
"react-copy-to-clipboard": "^5.1.0",
"react-day-picker": "^9.8.0",
"react-dom": "^18.2.0",

View File

@ -0,0 +1,48 @@
import { useTranslate } from '@/hooks/common-hooks';
import { Flex, Form, InputNumber, Slider } from 'antd';
export const AutoKeywordsItem = () => {
const { t } = useTranslate('knowledgeDetails');
return (
<Form.Item label={t('autoKeywords')} tooltip={t('autoKeywordsTip')}>
<Flex gap={20} align="center">
<Flex flex={1}>
<Form.Item
name={['parser_config', 'auto_keywords']}
noStyle
initialValue={0}
>
<Slider max={30} style={{ width: '100%' }} />
</Form.Item>
</Flex>
<Form.Item name={['parser_config', 'auto_keywords']} noStyle>
<InputNumber max={30} min={0} />
</Form.Item>
</Flex>
</Form.Item>
);
};
export const AutoQuestionsItem = () => {
const { t } = useTranslate('knowledgeDetails');
return (
<Form.Item label={t('autoQuestions')} tooltip={t('autoQuestionsTip')}>
<Flex gap={20} align="center">
<Flex flex={1}>
<Form.Item
name={['parser_config', 'auto_questions']}
noStyle
initialValue={0}
>
<Slider max={10} style={{ width: '100%' }} />
</Form.Item>
</Flex>
<Form.Item name={['parser_config', 'auto_questions']} noStyle>
<InputNumber max={10} min={0} />
</Form.Item>
</Flex>
</Form.Item>
);
};

View File

@ -0,0 +1,161 @@
import { DocumentParserType } from '@/constants/knowledge';
import { useHandleChunkMethodSelectChange } from '@/hooks/logic-hooks';
import { useSelectParserList } from '@/hooks/use-user-setting-request';
import { FormInstance } from 'antd';
import { useCallback, useEffect, useMemo, useState } from 'react';
const ParserListMap = new Map([
[
['pdf'],
[
DocumentParserType.Naive,
DocumentParserType.Resume,
DocumentParserType.Manual,
DocumentParserType.Paper,
DocumentParserType.Book,
DocumentParserType.Laws,
DocumentParserType.Presentation,
DocumentParserType.One,
DocumentParserType.Qa,
DocumentParserType.KnowledgeGraph,
],
],
[
['doc', 'docx'],
[
DocumentParserType.Naive,
DocumentParserType.Resume,
DocumentParserType.Book,
DocumentParserType.Laws,
DocumentParserType.One,
DocumentParserType.Qa,
DocumentParserType.Manual,
DocumentParserType.KnowledgeGraph,
],
],
[
['xlsx', 'xls'],
[
DocumentParserType.Naive,
DocumentParserType.Qa,
DocumentParserType.Table,
DocumentParserType.One,
DocumentParserType.KnowledgeGraph,
],
],
[['ppt', 'pptx'], [DocumentParserType.Presentation]],
[
['jpg', 'jpeg', 'png', 'gif', 'bmp', 'tif', 'tiff', 'webp', 'svg', 'ico'],
[DocumentParserType.Picture],
],
[
['txt'],
[
DocumentParserType.Naive,
DocumentParserType.Resume,
DocumentParserType.Book,
DocumentParserType.Laws,
DocumentParserType.One,
DocumentParserType.Qa,
DocumentParserType.Table,
DocumentParserType.KnowledgeGraph,
],
],
[
['csv'],
[
DocumentParserType.Naive,
DocumentParserType.Resume,
DocumentParserType.Book,
DocumentParserType.Laws,
DocumentParserType.One,
DocumentParserType.Qa,
DocumentParserType.Table,
DocumentParserType.KnowledgeGraph,
],
],
[
['md'],
[
DocumentParserType.Naive,
DocumentParserType.Qa,
DocumentParserType.KnowledgeGraph,
],
],
[['json'], [DocumentParserType.Naive, DocumentParserType.KnowledgeGraph]],
[['eml'], [DocumentParserType.Email]],
]);
const getParserList = (
values: string[],
parserList: Array<{
value: string;
label: string;
}>,
) => {
return parserList.filter((x) => values?.some((y) => y === x.value));
};
export const useFetchParserListOnMount = (
documentId: string,
parserId: DocumentParserType,
documentExtension: string,
form: FormInstance,
) => {
const [selectedTag, setSelectedTag] = useState<DocumentParserType>();
const parserList = useSelectParserList();
const handleChunkMethodSelectChange = useHandleChunkMethodSelectChange(form);
const nextParserList = useMemo(() => {
const key = [...ParserListMap.keys()].find((x) =>
x.some((y) => y === documentExtension),
);
if (key) {
const values = ParserListMap.get(key);
return getParserList(values ?? [], parserList);
}
return getParserList(
[
DocumentParserType.Naive,
DocumentParserType.Resume,
DocumentParserType.Book,
DocumentParserType.Laws,
DocumentParserType.One,
DocumentParserType.Qa,
DocumentParserType.Table,
],
parserList,
);
}, [parserList, documentExtension]);
useEffect(() => {
setSelectedTag(parserId);
}, [parserId, documentId]);
const handleChange = (tag: string) => {
handleChunkMethodSelectChange(tag);
setSelectedTag(tag as DocumentParserType);
};
return { parserList: nextParserList, handleChange, selectedTag };
};
const hideAutoKeywords = [
DocumentParserType.Qa,
DocumentParserType.Table,
DocumentParserType.Resume,
DocumentParserType.KnowledgeGraph,
DocumentParserType.Tag,
];
export const useShowAutoKeywords = () => {
const showAutoKeywords = useCallback(
(selectedTag: DocumentParserType | undefined) => {
return hideAutoKeywords.every((x) => selectedTag !== x);
},
[],
);
return showAutoKeywords;
};

View File

@ -0,0 +1,14 @@
.pageInputNumber {
width: 220px;
}
.questionIcon {
margin-inline-start: 4px;
color: rgba(0, 0, 0, 0.45);
cursor: help;
writing-mode: horizontal-tb;
}
.chunkMethod {
margin-bottom: 0;
}

View File

@ -0,0 +1,350 @@
import MaxTokenNumber from '@/components/max-token-number';
import { IModalManagerChildrenProps } from '@/components/modal-manager';
import {
MinusCircleOutlined,
PlusOutlined,
QuestionCircleOutlined,
} from '@ant-design/icons';
import {
Button,
Divider,
Form,
InputNumber,
Modal,
Select,
Space,
Tooltip,
} from 'antd';
import omit from 'lodash/omit';
import React, { useEffect, useMemo } from 'react';
import { useFetchParserListOnMount, useShowAutoKeywords } from './hooks';
import { DocumentParserType } from '@/constants/knowledge';
import { useTranslate } from '@/hooks/common-hooks';
import { useFetchKnowledgeBaseConfiguration } from '@/hooks/use-knowledge-request';
import { IParserConfig } from '@/interfaces/database/document';
import { IChangeParserConfigRequestBody } from '@/interfaces/request/document';
import { get } from 'lodash';
import { AutoKeywordsItem, AutoQuestionsItem } from '../auto-keywords-item';
import { DatasetConfigurationContainer } from '../dataset-configuration-container';
import Delimiter from '../delimiter';
import EntityTypesItem from '../entity-types-item';
import ExcelToHtml from '../excel-to-html';
import LayoutRecognize from '../layout-recognize';
import ParseConfiguration, {
showRaptorParseConfiguration,
} from '../parse-configuration';
import {
UseGraphRagItem,
showGraphRagItems,
} from '../parse-configuration/graph-rag-items';
import styles from './index.less';
interface IProps extends Omit<IModalManagerChildrenProps, 'showModal'> {
loading: boolean;
onOk: (
parserId: DocumentParserType | undefined,
parserConfig: IChangeParserConfigRequestBody,
) => void;
showModal?(): void;
parserId: DocumentParserType;
parserConfig: IParserConfig;
documentExtension: string;
documentId: string;
}
const hidePagesChunkMethods = [
DocumentParserType.Qa,
DocumentParserType.Table,
DocumentParserType.Picture,
DocumentParserType.Resume,
DocumentParserType.One,
DocumentParserType.KnowledgeGraph,
];
const ChunkMethodModal: React.FC<IProps> = ({
documentId,
parserId,
onOk,
hideModal,
visible,
documentExtension,
parserConfig,
loading,
}) => {
const [form] = Form.useForm();
const { parserList, handleChange, selectedTag } = useFetchParserListOnMount(
documentId,
parserId,
documentExtension,
form,
);
const { t } = useTranslate('knowledgeDetails');
const { data: knowledgeDetails } = useFetchKnowledgeBaseConfiguration();
const useGraphRag = useMemo(() => {
return knowledgeDetails.parser_config?.graphrag?.use_graphrag;
}, [knowledgeDetails.parser_config?.graphrag?.use_graphrag]);
const handleOk = async () => {
const values = await form.validateFields();
const parser_config = {
...values.parser_config,
pages: values.pages?.map((x: any) => [x.from, x.to]) ?? [],
};
onOk(selectedTag, parser_config);
};
const isPdf = documentExtension === 'pdf';
const showPages = useMemo(() => {
return isPdf && hidePagesChunkMethods.every((x) => x !== selectedTag);
}, [selectedTag, isPdf]);
const showOne = useMemo(() => {
return (
isPdf &&
hidePagesChunkMethods
.filter((x) => x !== DocumentParserType.One)
.every((x) => x !== selectedTag)
);
}, [selectedTag, isPdf]);
const showMaxTokenNumber =
selectedTag === DocumentParserType.Naive ||
selectedTag === DocumentParserType.KnowledgeGraph;
const showEntityTypes = selectedTag === DocumentParserType.KnowledgeGraph;
const showExcelToHtml =
selectedTag === DocumentParserType.Naive && documentExtension === 'xlsx';
const showAutoKeywords = useShowAutoKeywords();
const afterClose = () => {
form.resetFields();
};
useEffect(() => {
if (visible) {
const pages =
parserConfig?.pages?.map((x) => ({ from: x[0], to: x[1] })) ?? [];
form.setFieldsValue({
pages: pages.length > 0 ? pages : [{ from: 1, to: 1024 }],
parser_config: {
...omit(parserConfig, 'pages'),
graphrag: {
use_graphrag: get(
parserConfig,
'graphrag.use_graphrag',
useGraphRag,
),
},
},
});
}
}, [
form,
knowledgeDetails.parser_config,
parserConfig,
useGraphRag,
visible,
]);
return (
<Modal
title={t('chunkMethod')}
open={visible}
onOk={handleOk}
onCancel={hideModal}
afterClose={afterClose}
confirmLoading={loading}
width={700}
>
<Space size={[0, 8]} wrap>
<Form.Item label={t('chunkMethod')} className={styles.chunkMethod}>
<Select
style={{ width: 160 }}
onChange={handleChange}
value={selectedTag}
options={parserList}
/>
</Form.Item>
</Space>
<Divider></Divider>
<Form
name="dynamic_form_nest_item"
autoComplete="off"
form={form}
className="space-y-4"
>
{showPages && (
<>
<Space>
<p>{t('pageRanges')}:</p>
<Tooltip title={t('pageRangesTip')}>
<QuestionCircleOutlined
className={styles.questionIcon}
></QuestionCircleOutlined>
</Tooltip>
</Space>
<Form.List name="pages">
{(fields, { add, remove }) => (
<>
{fields.map(({ key, name, ...restField }) => (
<Space
key={key}
style={{
display: 'flex',
}}
align="baseline"
>
<Form.Item
{...restField}
name={[name, 'from']}
dependencies={name > 0 ? [name - 1, 'to'] : []}
rules={[
{
required: true,
message: t('fromMessage'),
},
({ getFieldValue }) => ({
validator(_, value) {
if (
name === 0 ||
!value ||
getFieldValue(['pages', name - 1, 'to']) < value
) {
return Promise.resolve();
}
return Promise.reject(
new Error(t('greaterThanPrevious')),
);
},
}),
]}
>
<InputNumber
placeholder={t('fromPlaceholder')}
min={0}
precision={0}
className={styles.pageInputNumber}
/>
</Form.Item>
<Form.Item
{...restField}
name={[name, 'to']}
dependencies={[name, 'from']}
rules={[
{
required: true,
message: t('toMessage'),
},
({ getFieldValue }) => ({
validator(_, value) {
if (
!value ||
getFieldValue(['pages', name, 'from']) < value
) {
return Promise.resolve();
}
return Promise.reject(
new Error(t('greaterThan')),
);
},
}),
]}
>
<InputNumber
placeholder={t('toPlaceholder')}
min={0}
precision={0}
className={styles.pageInputNumber}
/>
</Form.Item>
{name > 0 && (
<MinusCircleOutlined onClick={() => remove(name)} />
)}
</Space>
))}
<Form.Item>
<Button
type="dashed"
onClick={() => add()}
block
icon={<PlusOutlined />}
>
{t('addPage')}
</Button>
</Form.Item>
</>
)}
</Form.List>
</>
)}
{showPages && (
<Form.Item
noStyle
dependencies={[['parser_config', 'layout_recognize']]}
>
{({ getFieldValue }) =>
getFieldValue(['parser_config', 'layout_recognize']) && (
<Form.Item
name={['parser_config', 'task_page_size']}
label={t('taskPageSize')}
tooltip={t('taskPageSizeTip')}
initialValue={12}
rules={[
{
required: true,
message: t('taskPageSizeMessage'),
},
]}
>
<InputNumber min={1} max={128} />
</Form.Item>
)
}
</Form.Item>
)}
<DatasetConfigurationContainer show={showOne || showMaxTokenNumber}>
{showOne && <LayoutRecognize></LayoutRecognize>}
{showMaxTokenNumber && (
<>
<MaxTokenNumber
max={
selectedTag === DocumentParserType.KnowledgeGraph
? 8192 * 2
: 2048
}
></MaxTokenNumber>
<Delimiter></Delimiter>
</>
)}
</DatasetConfigurationContainer>
<DatasetConfigurationContainer
show={showAutoKeywords(selectedTag) || showExcelToHtml}
>
{showAutoKeywords(selectedTag) && (
<>
<AutoKeywordsItem></AutoKeywordsItem>
<AutoQuestionsItem></AutoQuestionsItem>
</>
)}
{showExcelToHtml && <ExcelToHtml></ExcelToHtml>}
</DatasetConfigurationContainer>
{showRaptorParseConfiguration(selectedTag) && (
<DatasetConfigurationContainer>
<ParseConfiguration></ParseConfiguration>
</DatasetConfigurationContainer>
)}
{showGraphRagItems(selectedTag) && useGraphRag && (
<UseGraphRagItem></UseGraphRagItem>
)}
{showEntityTypes && <EntityTypesItem></EntityTypesItem>}
</Form>
</Modal>
);
};
export default ChunkMethodModal;

View File

@ -0,0 +1,40 @@
import { Select as AntSelect, Form } from 'antd';
import { useTranslation } from 'react-i18next';
const Languages = [
'English',
'Chinese',
'Spanish',
'French',
'German',
'Japanese',
'Korean',
'Vietnamese',
];
const options = Languages.map((x) => ({ label: x, value: x }));
type CrossLanguageItemProps = {
name?: string | Array<string>;
};
export const CrossLanguageItem = ({
name = ['prompt_config', 'cross_languages'],
}: CrossLanguageItemProps) => {
const { t } = useTranslation();
return (
<Form.Item
label={t('chat.crossLanguage')}
name={name}
tooltip={t('chat.crossLanguageTip')}
>
<AntSelect
options={options}
allowClear
placeholder={t('common.languagePlaceholder')}
mode="multiple"
/>
</Form.Item>
);
};

View File

@ -0,0 +1,42 @@
import { Form, Input } from 'antd';
import { useTranslation } from 'react-i18next';
interface IProps {
value?: string | undefined;
onChange?: (val: string | undefined) => void;
maxLength?: number;
}
export const DelimiterInput = ({ value, onChange, maxLength }: IProps) => {
const nextValue = value?.replaceAll('\n', '\\n');
const handleInputChange = (e: React.ChangeEvent<HTMLInputElement>) => {
const val = e.target.value;
const nextValue = val.replaceAll('\\n', '\n');
onChange?.(nextValue);
};
return (
<Input
value={nextValue}
onChange={handleInputChange}
maxLength={maxLength}
></Input>
);
};
const Delimiter = () => {
const { t } = useTranslation();
return (
<Form.Item
name={['parser_config', 'delimiter']}
label={t('knowledgeDetails.delimiter')}
initialValue={`\n`}
rules={[{ required: true }]}
tooltip={t('knowledgeDetails.delimiterTip')}
>
<DelimiterInput />
</Form.Item>
);
};
export default Delimiter;

View File

@ -1,5 +1,7 @@
import message from '@/components/ui/message';
import { Spin } from '@/components/ui/spin';
import { Authorization } from '@/constants/authorization';
import { getAuthorization } from '@/utils/authorization-util';
import request from '@/utils/request';
import classNames from 'classnames';
import mammoth from 'mammoth';
@ -10,87 +12,26 @@ interface DocPreviewerProps {
url: string;
}
// Word document preview component. Behavior:
// 1) Fetches the document as a Blob.
// 2) Detects .docx input via a ZIP header probe.
// 3) Renders .docx using Mammoth; presents a controlled "unsupported" notice for non-ZIP payloads.
export const DocPreviewer: React.FC<DocPreviewerProps> = ({
className,
url,
}) => {
// const url = useGetDocumentUrl();
const [htmlContent, setHtmlContent] = useState<string>('');
const [loading, setLoading] = useState(false);
// Determines whether the Blob represents a .docx document by checking for the ZIP
// file signature ("PK") in the initial bytes. A valid .docx file is a ZIP container
// and always begins with:
// 50 4B 03 04 ("PK..")
//
// Legacy .doc files use the CFBF binary format, commonly starting with:
// D0 CF 11 E0 A1 B1 1A E1
//
// Note that some files distributed with a “.doc” extension may internally be .docx
// documents (e.g., renamed files or files produced by systems that export .docx
// content under a .doc filename). These files will still present the ZIP signature
// and are therefore treated as supported .docx payloads. The header inspection
// ensures correct routing regardless of filename or reported extension.
const isZipLikeBlob = async (blob: Blob): Promise<boolean> => {
try {
const headerSlice = blob.slice(0, 4);
const buf = await headerSlice.arrayBuffer();
const bytes = new Uint8Array(buf);
// ZIP files start with "PK" (0x50, 0x4B)
return bytes.length >= 2 && bytes[0] === 0x50 && bytes[1] === 0x4b;
} catch (e) {
console.error('Failed to inspect blob header', e);
return false;
}
};
const fetchDocument = async () => {
if (!url) return;
setLoading(true);
const res = await request(url, {
method: 'GET',
responseType: 'blob',
headers: { [Authorization]: getAuthorization() },
onError: () => {
message.error('Document parsing failed');
console.error('Error loading document:', url);
},
});
try {
const blob: Blob = res.data;
const contentType: string =
blob.type || (res as any).headers?.['content-type'] || '';
// Execution path selection: ZIP-like payloads are treated as .docx and rendered via Mammoth;
// non-ZIP payloads receive an explicit unsupported notice.
const looksLikeZip = await isZipLikeBlob(blob);
if (!looksLikeZip) {
// Non-ZIP payload (likely legacy .doc or another format): skip Mammoth processing.
setHtmlContent(`
<div class="flex h-full items-center justify-center">
<div class="border border-dashed border-border-normal rounded-xl p-8 max-w-2xl text-center">
<p class="text-2xl font-bold mb-4">
Preview is not available for this Word document
</p>
<p class="italic text-sm text-muted-foreground leading-relaxed">
Mammoth supports modern <code>.docx</code> files only.<br/>
The file header does not indicate a <code>.docx</code> ZIP archive.
</p>
</div>
</div>
`);
return;
}
// ZIP-like payload: parse as .docx with Mammoth
const arrayBuffer = await blob.arrayBuffer();
const arrayBuffer = await res.data.arrayBuffer();
const result = await mammoth.convertToHtml(
{ arrayBuffer },
{ includeDefaultStyleMap: true },
@ -102,11 +43,10 @@ export const DocPreviewer: React.FC<DocPreviewerProps> = ({
setHtmlContent(styledContent);
} catch (err) {
message.error('Failed to parse document.');
message.error('Document parsing failed');
console.error('Error parsing document:', err);
} finally {
setLoading(false);
}
setLoading(false);
};
useEffect(() => {
@ -114,7 +54,6 @@ export const DocPreviewer: React.FC<DocPreviewerProps> = ({
fetchDocument();
}
}, [url]);
return (
<div
className={classNames(

View File

@ -0,0 +1,33 @@
import { useTranslate } from '@/hooks/common-hooks';
import { Form } from 'antd';
import EditTag from './edit-tag';
const initialEntityTypes = [
'organization',
'person',
'geo',
'event',
'category',
];
type IProps = {
field?: string[];
};
const EntityTypesItem = ({
field = ['parser_config', 'entity_types'],
}: IProps) => {
const { t } = useTranslate('knowledgeConfiguration');
return (
<Form.Item
name={field}
label={t('entityTypes')}
rules={[{ required: true }]}
initialValue={initialEntityTypes}
>
<EditTag />
</Form.Item>
);
};
export default EntityTypesItem;

View File

@ -0,0 +1,19 @@
import { useTranslate } from '@/hooks/common-hooks';
import { Form, Switch } from 'antd';
const ExcelToHtml = () => {
const { t } = useTranslate('knowledgeDetails');
return (
<Form.Item
name={['parser_config', 'html4excel']}
label={t('html4excel')}
initialValue={false}
valuePropName="checked"
tooltip={t('html4excelTip')}
>
<Switch />
</Form.Item>
);
};
export default ExcelToHtml;

View File

@ -1,77 +0,0 @@
import { IModalProps } from '@/interfaces/common';
import { IFeedbackRequestBody } from '@/interfaces/request/chat';
import { zodResolver } from '@hookform/resolvers/zod';
import { useCallback } from 'react';
import { useForm } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { z } from 'zod';
import { RAGFlowFormItem } from './ragflow-form';
import { ButtonLoading } from './ui/button';
import {
Dialog,
DialogContent,
DialogFooter,
DialogHeader,
DialogTitle,
} from './ui/dialog';
import { Form } from './ui/form';
import { Textarea } from './ui/textarea';
const FormId = 'feedback-dialog';
const FeedbackDialog = ({
visible,
hideModal,
onOk,
loading,
}: IModalProps<IFeedbackRequestBody>) => {
const { t } = useTranslation();
const FormSchema = z.object({
feedback: z
.string()
.min(1, {
message: t('common.namePlaceholder'),
})
.trim(),
});
const form = useForm<z.infer<typeof FormSchema>>({
resolver: zodResolver(FormSchema),
defaultValues: { feedback: '' },
});
const handleOk = useCallback(
async (data: z.infer<typeof FormSchema>) => {
return onOk?.({ thumbup: false, feedback: data.feedback });
},
[onOk],
);
return (
<Dialog open={visible} onOpenChange={hideModal}>
<DialogContent className="sm:max-w-[425px]">
<DialogHeader>
<DialogTitle>Feedback</DialogTitle>
</DialogHeader>
<Form {...form}>
<form
onSubmit={form.handleSubmit(handleOk)}
className="space-y-6"
id={FormId}
>
<RAGFlowFormItem name="feedback">
<Textarea> </Textarea>
</RAGFlowFormItem>
</form>
</Form>
<DialogFooter>
<ButtonLoading type="submit" form={FormId} loading={loading}>
{t('common.save')}
</ButtonLoading>
</DialogFooter>
</DialogContent>
</Dialog>
);
};
export default FeedbackDialog;

View File

@ -0,0 +1,13 @@
.uploader {
:global {
.ant-upload-list {
max-height: 40vh;
overflow-y: auto;
}
}
}
.uploadLimit {
color: red;
font-size: 12px;
}

View File

@ -0,0 +1,191 @@
import { useTranslate } from '@/hooks/common-hooks';
import { IModalProps } from '@/interfaces/common';
import { InboxOutlined } from '@ant-design/icons';
import {
Checkbox,
Flex,
Modal,
Progress,
Segmented,
Tabs,
TabsProps,
Upload,
UploadFile,
UploadProps,
} from 'antd';
import { Dispatch, SetStateAction, useState } from 'react';
import styles from './index.less';
const { Dragger } = Upload;
const FileUpload = ({
directory,
fileList,
setFileList,
uploadProgress,
}: {
directory: boolean;
fileList: UploadFile[];
setFileList: Dispatch<SetStateAction<UploadFile[]>>;
uploadProgress?: number;
}) => {
const { t } = useTranslate('fileManager');
const props: UploadProps = {
multiple: true,
onRemove: (file) => {
const index = fileList.indexOf(file);
const newFileList = fileList.slice();
newFileList.splice(index, 1);
setFileList(newFileList);
},
beforeUpload: (file: UploadFile) => {
setFileList((pre) => {
return [...pre, file];
});
return false;
},
directory,
fileList,
progress: {
strokeWidth: 2,
},
};
return (
<>
<Progress percent={uploadProgress} showInfo={false} />
<Dragger {...props} className={styles.uploader}>
<p className="ant-upload-drag-icon">
<InboxOutlined />
</p>
<p className="ant-upload-text">{t('uploadTitle')}</p>
<p className="ant-upload-hint">{t('uploadDescription')}</p>
{false && <p className={styles.uploadLimit}>{t('uploadLimit')}</p>}
</Dragger>
</>
);
};
interface IFileUploadModalProps
extends IModalProps<
{ parseOnCreation: boolean; directoryFileList: UploadFile[] } | UploadFile[]
> {
uploadFileList?: UploadFile[];
setUploadFileList?: Dispatch<SetStateAction<UploadFile[]>>;
uploadProgress?: number;
setUploadProgress?: Dispatch<SetStateAction<number>>;
}
const FileUploadModal = ({
visible,
hideModal,
loading,
onOk: onFileUploadOk,
uploadFileList: fileList,
setUploadFileList: setFileList,
uploadProgress,
setUploadProgress,
}: IFileUploadModalProps) => {
const { t } = useTranslate('fileManager');
const [value, setValue] = useState<string | number>('local');
const [parseOnCreation, setParseOnCreation] = useState(false);
const [currentFileList, setCurrentFileList] = useState<UploadFile[]>([]);
const [directoryFileList, setDirectoryFileList] = useState<UploadFile[]>([]);
const clearFileList = () => {
if (setFileList) {
setFileList([]);
setUploadProgress?.(0);
} else {
setCurrentFileList([]);
}
setDirectoryFileList([]);
};
const onOk = async () => {
if (uploadProgress === 100) {
hideModal?.();
return;
}
const ret = await onFileUploadOk?.(
fileList
? { parseOnCreation, directoryFileList }
: [...currentFileList, ...directoryFileList],
);
return ret;
};
const afterClose = () => {
clearFileList();
};
const items: TabsProps['items'] = [
{
key: '1',
label: t('file'),
children: (
<FileUpload
directory={false}
fileList={fileList ? fileList : currentFileList}
setFileList={setFileList ? setFileList : setCurrentFileList}
uploadProgress={uploadProgress}
></FileUpload>
),
},
{
key: '2',
label: t('directory'),
children: (
<FileUpload
directory
fileList={directoryFileList}
setFileList={setDirectoryFileList}
uploadProgress={uploadProgress}
></FileUpload>
),
},
];
return (
<>
<Modal
title={t('uploadFile')}
open={visible}
onOk={onOk}
onCancel={hideModal}
confirmLoading={loading}
afterClose={afterClose}
>
<Flex gap={'large'} vertical>
<Segmented
options={[
{ label: t('local'), value: 'local' },
{ label: t('s3'), value: 's3' },
]}
block
value={value}
onChange={setValue}
/>
{value === 'local' ? (
<>
<Checkbox
checked={parseOnCreation}
onChange={(e) => setParseOnCreation(e.target.checked)}
>
{t('parseOnCreation')}
</Checkbox>
<Tabs defaultActiveKey="1" items={items} />
</>
) : (
t('comingSoon', { keyPrefix: 'common' })
)}
</Flex>
</Modal>
</>
);
};
export default FileUploadModal;

View File

@ -1,9 +1,8 @@
import React, { useEffect, useRef, useState } from 'react';
import React, { useEffect, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import './css/cloud9_night.less';
import './css/index.less';
import { JsonEditorOptions, JsonEditorProps } from './interface';
const defaultConfig: JsonEditorOptions = {
mode: 'code',
modes: ['tree', 'code'],
@ -15,7 +14,6 @@ const defaultConfig: JsonEditorOptions = {
enableTransform: false,
indentation: 2,
};
const JsonEditor: React.FC<JsonEditorProps> = ({
value,
onChange,
@ -27,62 +25,43 @@ const JsonEditor: React.FC<JsonEditorProps> = ({
const editorRef = useRef<any>(null);
const { i18n } = useTranslation();
const currentLanguageRef = useRef<string>(i18n.language);
const [isLoading, setIsLoading] = useState(true);
useEffect(() => {
let isMounted = true;
if (typeof window !== 'undefined') {
const JSONEditor = require('jsoneditor');
import('jsoneditor/dist/jsoneditor.min.css');
const initEditor = async () => {
if (typeof window !== 'undefined') {
try {
const JSONEditorModule = await import('jsoneditor');
const JSONEditor = JSONEditorModule.default || JSONEditorModule;
await import('jsoneditor/dist/jsoneditor.min.css');
if (isMounted && containerRef.current) {
// Default configuration options
const defaultOptions: JsonEditorOptions = {
...defaultConfig,
language: i18n.language === 'zh' ? 'zh-CN' : 'en',
onChange: () => {
if (editorRef.current && onChange) {
try {
const updatedJson = editorRef.current.get();
onChange(updatedJson);
} catch (err) {
// Do not trigger onChange when parsing error occurs
console.error(err);
}
}
},
...options, // Merge user provided options with defaults
};
editorRef.current = new JSONEditor(
containerRef.current,
defaultOptions,
);
if (value) {
editorRef.current.set(value);
if (containerRef.current) {
// Default configuration options
const defaultOptions: JsonEditorOptions = {
...defaultConfig,
language: i18n.language === 'zh' ? 'zh-CN' : 'en',
onChange: () => {
if (editorRef.current && onChange) {
try {
const updatedJson = editorRef.current.get();
onChange(updatedJson);
} catch (err) {
// Do not trigger onChange when parsing error occurs
console.error(err);
}
}
},
...options, // Merge user provided options with defaults
};
setIsLoading(false);
}
} catch (error) {
console.error('Failed to load jsoneditor:', error);
if (isMounted) {
setIsLoading(false);
}
editorRef.current = new JSONEditor(
containerRef.current,
defaultOptions,
);
if (value) {
editorRef.current.set(value);
}
}
};
initEditor();
}
return () => {
isMounted = false;
if (editorRef.current) {
if (typeof editorRef.current.destroy === 'function') {
editorRef.current.destroy();
@ -113,38 +92,26 @@ const JsonEditor: React.FC<JsonEditorProps> = ({
}
// Recreate the editor with new language
const initEditorWithNewLanguage = async () => {
try {
const JSONEditorModule = await import('jsoneditor');
const JSONEditor = JSONEditorModule.default || JSONEditorModule;
const JSONEditor = require('jsoneditor');
const newOptions: JsonEditorOptions = {
...defaultConfig,
language: i18n.language === 'zh' ? 'zh-CN' : 'en',
onChange: () => {
if (editorRef.current && onChange) {
try {
const updatedJson = editorRef.current.get();
onChange(updatedJson);
} catch (err) {
// Do not trigger onChange when parsing error occurs
}
}
},
...options, // Merge user provided options with defaults
};
editorRef.current = new JSONEditor(containerRef.current, newOptions);
editorRef.current.set(currentData);
} catch (error) {
console.error(
'Failed to reload jsoneditor with new language:',
error,
);
}
const newOptions: JsonEditorOptions = {
...defaultConfig,
language: i18n.language === 'zh' ? 'zh-CN' : 'en',
onChange: () => {
if (editorRef.current && onChange) {
try {
const updatedJson = editorRef.current.get();
onChange(updatedJson);
} catch (err) {
// Do not trigger onChange when parsing error occurs
}
}
},
...options, // Merge user provided options with defaults
};
initEditorWithNewLanguage();
editorRef.current = new JSONEditor(containerRef.current, newOptions);
editorRef.current.set(currentData);
}
}, [i18n.language, value, onChange, options]);
@ -168,13 +135,7 @@ const JsonEditor: React.FC<JsonEditorProps> = ({
ref={containerRef}
style={{ height }}
className={`ace-tomorrow-night w-full border border-border-button rounded-lg overflow-hidden bg-bg-input ${className} `}
>
{isLoading && (
<div className="flex items-center justify-center h-full">
<div className="text-text-secondary">Loading editor...</div>
</div>
)}
</div>
/>
);
};

View File

@ -0,0 +1,55 @@
import { LlmModelType } from '@/constants/knowledge';
import { useTranslate } from '@/hooks/common-hooks';
import { useSelectLlmOptionsByModelType } from '@/hooks/use-llm-request';
import { Form, Select } from 'antd';
import { camelCase } from 'lodash';
import { useMemo } from 'react';
const enum DocumentType {
DeepDOC = 'DeepDOC',
PlainText = 'Plain Text',
}
const LayoutRecognize = () => {
const { t } = useTranslate('knowledgeDetails');
const allOptions = useSelectLlmOptionsByModelType();
const options = useMemo(() => {
const list = [DocumentType.DeepDOC, DocumentType.PlainText].map((x) => ({
label: x === DocumentType.PlainText ? t(camelCase(x)) : 'DeepDoc',
value: x,
}));
const image2TextList = allOptions[LlmModelType.Image2text].map((x) => {
return {
...x,
options: x.options.map((y) => {
return {
...y,
label: (
<div className="flex justify-between items-center gap-2">
{y.label}
<span className="text-red-500 text-sm">Experimental</span>
</div>
),
};
}),
};
});
return [...list, ...image2TextList];
}, [allOptions, t]);
return (
<Form.Item
name={['parser_config', 'layout_recognize']}
label={t('layoutRecognize')}
initialValue={DocumentType.DeepDOC}
tooltip={t('layoutRecognizeTip')}
>
<Select options={options} popupMatchSelectWidth={false} />
</Form.Item>
);
};
export default LayoutRecognize;

View File

@ -0,0 +1,51 @@
import { useTranslate } from '@/hooks/common-hooks';
import { useLlmToolsList } from '@/hooks/plugin-hooks';
import { Select, Space } from 'antd';
interface IProps {
value?: string;
onChange?: (value: string) => void;
disabled?: boolean;
}
const LLMToolsSelect = ({ value, onChange, disabled }: IProps) => {
const { t } = useTranslate("llmTools");
const tools = useLlmToolsList();
function wrapTranslation(text: string): string {
if (!text) {
return text;
}
if (text.startsWith("$t:")) {
return t(text.substring(3));
}
return text;
}
const toolOptions = tools.map(t => ({
label: wrapTranslation(t.displayName),
description: wrapTranslation(t.displayDescription),
value: t.name,
title: wrapTranslation(t.displayDescription),
}));
return (
<Select
mode="multiple"
options={toolOptions}
optionRender={option => (
<Space size="large">
{option.label}
{option.data.description}
</Space>
)}
onChange={onChange}
value={value}
disabled={disabled}
></Select>
);
};
export default LLMToolsSelect;

View File

@ -217,23 +217,20 @@ const MarkdownContent = ({
const docType = chunkItem?.doc_type;
return showImage(docType) ? (
<section>
<Image
id={imageId}
className={styles.referenceInnerChunkImage}
onClick={
documentId
? handleDocumentButtonClick(
documentId,
chunkItem,
fileExtension === 'pdf',
documentUrl,
)
: () => {}
}
></Image>
<span className="text-accent-primary"> {imageId}</span>
</section>
<Image
id={imageId}
className={styles.referenceInnerChunkImage}
onClick={
documentId
? handleDocumentButtonClick(
documentId,
chunkItem,
fileExtension === 'pdf',
documentUrl,
)
: () => {}
}
></Image>
) : (
<HoverCard key={i}>
<HoverCardTrigger>

View File

@ -0,0 +1,37 @@
import { useTranslate } from '@/hooks/common-hooks';
import { Flex, Form, InputNumber, Slider } from 'antd';
interface IProps {
initialValue?: number;
max?: number;
}
const MaxTokenNumber = ({ initialValue = 512, max = 2048 }: IProps) => {
const { t } = useTranslate('knowledgeConfiguration');
return (
<Form.Item label={t('chunkTokenNumber')} tooltip={t('chunkTokenNumberTip')}>
<Flex gap={20} align="center">
<Flex flex={1}>
<Form.Item
name={['parser_config', 'chunk_token_num']}
noStyle
initialValue={initialValue}
rules={[{ required: true, message: t('chunkTokenNumberMessage') }]}
>
<Slider max={max} style={{ width: '100%' }} />
</Form.Item>
</Flex>
<Form.Item
name={['parser_config', 'chunk_token_num']}
noStyle
rules={[{ required: true, message: t('chunkTokenNumberMessage') }]}
>
<InputNumber max={max} min={0} />
</Form.Item>
</Flex>
</Form.Item>
);
};
export default MaxTokenNumber;

View File

@ -1,3 +1,4 @@
import { Form, InputNumber } from 'antd';
import { useFormContext } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import {
@ -9,6 +10,27 @@ import {
} from './ui/form';
import { NumberInput } from './ui/input';
const MessageHistoryWindowSizeItem = ({
initialValue,
}: {
initialValue: number;
}) => {
const { t } = useTranslation();
return (
<Form.Item
name={'message_history_window_size'}
label={t('flow.messageHistoryWindowSize')}
initialValue={initialValue}
tooltip={t('flow.messageHistoryWindowSizeTip')}
>
<InputNumber style={{ width: '100%' }} />
</Form.Item>
);
};
export default MessageHistoryWindowSizeItem;
export function MessageHistoryWindowSizeFormField() {
const form = useFormContext();
const { t } = useTranslation();

View File

@ -18,9 +18,7 @@ import { cn } from '@/lib/utils';
import { t } from 'i18next';
import { CircleStop, Paperclip, Send, Upload, X } from 'lucide-react';
import * as React from 'react';
import { useEffect } from 'react';
import { toast } from 'sonner';
import { AudioButton } from '../ui/audio-button';
interface IProps {
disabled: boolean;
@ -54,22 +52,6 @@ export function NextMessageInput({
removeFile,
}: IProps) {
const [files, setFiles] = React.useState<File[]>([]);
const [audioInputValue, setAudioInputValue] = React.useState<string | null>(
null,
);
useEffect(() => {
if (audioInputValue !== null) {
onInputChange({
target: { value: audioInputValue },
} as React.ChangeEvent<HTMLTextAreaElement>);
setTimeout(() => {
onPressEnter();
setAudioInputValue(null);
}, 0);
}
}, [audioInputValue, onInputChange, onPressEnter]);
const onFileReject = React.useCallback((file: File, message: string) => {
toast(message, {
@ -189,24 +171,15 @@ export function NextMessageInput({
<CircleStop />
</Button>
) : (
<div className="flex items-center gap-3">
{/* <div className="bg-bg-input rounded-md hover:bg-bg-card p-1"> */}
<AudioButton
onOk={(value) => {
setAudioInputValue(value);
}}
/>
{/* </div> */}
<Button
className="size-5 rounded-sm"
disabled={
sendDisabled || isUploading || sendLoading || !value.trim()
}
>
<Send />
<span className="sr-only">Send message</span>
</Button>
</div>
<Button
className="size-5 rounded-sm"
disabled={
sendDisabled || isUploading || sendLoading || !value.trim()
}
>
<Send />
<span className="sr-only">Send message</span>
</Button>
)}
</div>
</form>

View File

@ -0,0 +1,51 @@
import { Form, Input, Modal } from 'antd';
import { IModalProps } from '@/interfaces/common';
import { IFeedbackRequestBody } from '@/interfaces/request/chat';
import { useCallback } from 'react';
type FieldType = {
feedback?: string;
};
const FeedbackModal = ({
visible,
hideModal,
onOk,
loading,
}: IModalProps<IFeedbackRequestBody>) => {
const [form] = Form.useForm();
const handleOk = useCallback(async () => {
const ret = await form.validateFields();
return onOk?.({ thumbup: false, feedback: ret.feedback });
}, [onOk, form]);
return (
<Modal
title="Feedback"
open={visible}
onOk={handleOk}
onCancel={hideModal}
confirmLoading={loading}
>
<Form
name="basic"
labelCol={{ span: 0 }}
wrapperCol={{ span: 24 }}
style={{ maxWidth: 600 }}
autoComplete="off"
form={form}
>
<Form.Item<FieldType>
name="feedback"
rules={[{ required: true, message: 'Please input your feedback!' }]}
>
<Input.TextArea rows={8} placeholder="Please input your feedback!" />
</Form.Item>
</Form>
</Modal>
);
};
export default FeedbackModal;

View File

@ -13,9 +13,9 @@ import {
import { Radio, Tooltip } from 'antd';
import { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import FeedbackDialog from '../feedback-dialog';
import { PromptDialog } from '../prompt-dialog';
import FeedbackModal from './feedback-modal';
import { useRemoveMessage, useSendFeedback, useSpeech } from './hooks';
import PromptModal from './prompt-modal';
interface IProps {
messageId: string;
@ -79,19 +79,19 @@ export const AssistantGroupButton = ({
)}
</Radio.Group>
{visible && (
<FeedbackDialog
<FeedbackModal
visible={visible}
hideModal={hideModal}
onOk={onFeedbackOk}
loading={loading}
></FeedbackDialog>
></FeedbackModal>
)}
{promptVisible && (
<PromptDialog
<PromptModal
visible={promptVisible}
hideModal={hidePromptModal}
prompt={prompt}
></PromptDialog>
></PromptModal>
)}
</>
);

View File

@ -0,0 +1,30 @@
import { IModalProps } from '@/interfaces/common';
import { IFeedbackRequestBody } from '@/interfaces/request/chat';
import { Modal, Space } from 'antd';
import HightLightMarkdown from '../highlight-markdown';
import SvgIcon from '../svg-icon';
const PromptModal = ({
visible,
hideModal,
prompt,
}: IModalProps<IFeedbackRequestBody> & { prompt?: string }) => {
return (
<Modal
title={
<Space>
<SvgIcon name={`prompt`} width={18}></SvgIcon>
Prompt
</Space>
}
width={'80%'}
open={visible}
onCancel={hideModal}
footer={null}
>
<HightLightMarkdown>{prompt}</HightLightMarkdown>
</Modal>
);
};
export default PromptModal;

View File

@ -220,23 +220,20 @@ function MarkdownContent({
const docType = chunkItem?.doc_type;
return showImage(docType) ? (
<section>
<Image
id={imageId}
className={styles.referenceInnerChunkImage}
onClick={
documentId
? handleDocumentButtonClick(
documentId,
chunkItem,
fileExtension === 'pdf',
documentUrl,
)
: () => {}
}
></Image>
<span className="text-accent-primary">{imageId}</span>
</section>
<Image
id={imageId}
className={styles.referenceInnerChunkImage}
onClick={
documentId
? handleDocumentButtonClick(
documentId,
chunkItem,
fileExtension === 'pdf',
documentUrl,
)
: () => {}
}
></Image>
) : (
<HoverCard key={i}>
<HoverCardTrigger>

View File

@ -0,0 +1,51 @@
import { Form, Input, Modal } from 'antd';
import { IModalProps } from '@/interfaces/common';
import { IFeedbackRequestBody } from '@/interfaces/request/chat';
import { useCallback } from 'react';
type FieldType = {
feedback?: string;
};
const FeedbackModal = ({
visible,
hideModal,
onOk,
loading,
}: IModalProps<IFeedbackRequestBody>) => {
const [form] = Form.useForm();
const handleOk = useCallback(async () => {
const ret = await form.validateFields();
return onOk?.({ thumbup: false, feedback: ret.feedback });
}, [onOk, form]);
return (
<Modal
title="Feedback"
open={visible}
onOk={handleOk}
onCancel={hideModal}
confirmLoading={loading}
>
<Form
name="basic"
labelCol={{ span: 0 }}
wrapperCol={{ span: 24 }}
style={{ maxWidth: 600 }}
autoComplete="off"
form={form}
>
<Form.Item<FieldType>
name="feedback"
rules={[{ required: true, message: 'Please input your feedback!' }]}
>
<Input.TextArea rows={8} placeholder="Please input your feedback!" />
</Form.Item>
</Form>
</Modal>
);
};
export default FeedbackModal;

View File

@ -3,8 +3,6 @@ import CopyToClipboard from '@/components/copy-to-clipboard';
import { useSetModalState } from '@/hooks/common-hooks';
import { IRemoveMessageById } from '@/hooks/logic-hooks';
import { AgentChatContext } from '@/pages/agent/context';
import { downloadFile } from '@/services/file-manager-service';
import { downloadFileFromBlob } from '@/utils/file-util';
import {
DeleteOutlined,
DislikeOutlined,
@ -14,13 +12,13 @@ import {
SyncOutlined,
} from '@ant-design/icons';
import { Radio, Tooltip } from 'antd';
import { Download, NotebookText } from 'lucide-react';
import { NotebookText } from 'lucide-react';
import { useCallback, useContext } from 'react';
import { useTranslation } from 'react-i18next';
import FeedbackDialog from '../feedback-dialog';
import { PromptDialog } from '../prompt-dialog';
import { ToggleGroup, ToggleGroupItem } from '../ui/toggle-group';
import FeedbackModal from './feedback-modal';
import { useRemoveMessage, useSendFeedback, useSpeech } from './hooks';
import PromptModal from './prompt-modal';
interface IProps {
messageId: string;
@ -30,11 +28,6 @@ interface IProps {
audioBinary?: string;
showLoudspeaker?: boolean;
showLog?: boolean;
attachment?: {
file_name: string;
doc_id: string;
format: string;
};
}
export const AssistantGroupButton = ({
@ -45,7 +38,6 @@ export const AssistantGroupButton = ({
showLikeButton,
showLoudspeaker = true,
showLog = true,
attachment,
}: IProps) => {
const { visible, hideModal, showModal, onFeedbackOk, loading } =
useSendFeedback(messageId);
@ -106,42 +98,21 @@ export const AssistantGroupButton = ({
<NotebookText className="size-4" />
</ToggleGroupItem>
)}
{!!attachment?.doc_id && (
<ToggleGroupItem
value="g"
onClick={async () => {
try {
const response = await downloadFile({
docId: attachment.doc_id,
ext: attachment.format,
});
const blob = new Blob([response.data], {
type: response.data.type,
});
downloadFileFromBlob(blob, attachment.file_name);
} catch (error) {
console.error('Download failed:', error);
}
}}
>
<Download size={16} />
</ToggleGroupItem>
)}
</ToggleGroup>
{visible && (
<FeedbackDialog
<FeedbackModal
visible={visible}
hideModal={hideModal}
onOk={onFeedbackOk}
loading={loading}
></FeedbackDialog>
></FeedbackModal>
)}
{promptVisible && (
<PromptDialog
<PromptModal
visible={promptVisible}
hideModal={hidePromptModal}
prompt={prompt}
></PromptDialog>
></PromptModal>
)}
</>
);

View File

@ -21,8 +21,10 @@ import { INodeEvent, MessageEventType } from '@/hooks/use-send-message';
import { cn } from '@/lib/utils';
import { AgentChatContext } from '@/pages/agent/context';
import { WorkFlowTimeline } from '@/pages/agent/log-sheet/workflow-timeline';
import { downloadFile } from '@/services/file-manager-service';
import { downloadFileFromBlob } from '@/utils/file-util';
import { isEmpty } from 'lodash';
import { Atom, ChevronDown, ChevronUp } from 'lucide-react';
import { Atom, ChevronDown, ChevronUp, Download } from 'lucide-react';
import MarkdownContent from '../next-markdown-content';
import { RAGFlowAvatar } from '../ragflow-avatar';
import { useTheme } from '../theme-provider';
@ -174,7 +176,6 @@ function MessageItem({
audioBinary={item.audio_binary}
showLoudspeaker={showLoudspeaker}
showLog={showLog}
attachment={item.attachment}
></AssistantGroupButton>
)}
{!isShare && (
@ -186,7 +187,6 @@ function MessageItem({
audioBinary={item.audio_binary}
showLoudspeaker={showLoudspeaker}
showLog={showLog}
attachment={item.attachment}
></AssistantGroupButton>
)}
</>
@ -250,7 +250,7 @@ function MessageItem({
{isUser && (
<UploadedMessageFiles files={item.files}></UploadedMessageFiles>
)}
{/* {isAssistant && item.attachment && item.attachment.doc_id && (
{isAssistant && item.attachment && item.attachment.doc_id && (
<div className="w-full flex items-center justify-end">
<Button
variant="link"
@ -275,7 +275,7 @@ function MessageItem({
<Download size={16} />
</Button>
</div>
)} */}
)}
</section>
</div>
</section>

View File

@ -0,0 +1,30 @@
import { IModalProps } from '@/interfaces/common';
import { IFeedbackRequestBody } from '@/interfaces/request/chat';
import { Modal, Space } from 'antd';
import HightLightMarkdown from '../highlight-markdown';
import SvgIcon from '../svg-icon';
const PromptModal = ({
visible,
hideModal,
prompt,
}: IModalProps<IFeedbackRequestBody> & { prompt?: string }) => {
return (
<Modal
title={
<Space>
<SvgIcon name={`prompt`} width={18}></SvgIcon>
Prompt
</Space>
}
width={'80%'}
open={visible}
onCancel={hideModal}
footer={null}
>
<HightLightMarkdown>{prompt}</HightLightMarkdown>
</Modal>
);
};
export default PromptModal;

View File

@ -0,0 +1,4 @@
.delete {
// height: 24px;
display: inline-block;
}

View File

@ -0,0 +1,90 @@
import { useShowDeleteConfirm } from '@/hooks/common-hooks';
import { DeleteOutlined, MoreOutlined } from '@ant-design/icons';
import { Dropdown, MenuProps, Space } from 'antd';
import { useTranslation } from 'react-i18next';
import React, { useMemo } from 'react';
import styles from './index.less';
interface IProps {
deleteItem: () => Promise<any> | void;
iconFontSize?: number;
iconFontColor?: string;
items?: MenuProps['items'];
height?: number;
needsDeletionValidation?: boolean;
showDeleteItems?: boolean;
}
const OperateDropdown = ({
deleteItem,
children,
iconFontSize = 30,
iconFontColor = 'gray',
items: otherItems = [],
height = 24,
needsDeletionValidation = true,
showDeleteItems = true,
}: React.PropsWithChildren<IProps>) => {
const { t } = useTranslation();
const showDeleteConfirm = useShowDeleteConfirm();
const handleDelete = () => {
if (needsDeletionValidation) {
showDeleteConfirm({ onOk: deleteItem });
} else {
deleteItem();
}
};
const handleDropdownMenuClick: MenuProps['onClick'] = ({ domEvent, key }) => {
domEvent.preventDefault();
domEvent.stopPropagation();
if (key === '1') {
handleDelete();
}
};
const items: MenuProps['items'] = useMemo(() => {
const items = [];
if (showDeleteItems) {
items.push({
key: '1',
label: (
<Space>
{t('common.delete')}
<DeleteOutlined />
</Space>
),
});
}
return [...items, ...otherItems];
}, [showDeleteItems, otherItems, t]);
return (
<Dropdown
menu={{
items,
onClick: handleDropdownMenuClick,
}}
>
{children || (
<span className={styles.delete}>
<MoreOutlined
rotate={90}
style={{
fontSize: iconFontSize,
color: iconFontColor,
cursor: 'pointer',
height,
}}
/>
</span>
)}
</Dropdown>
);
};
export default OperateDropdown;

View File

@ -0,0 +1,28 @@
import { useTranslate } from '@/hooks/common-hooks';
import { Flex, Form, InputNumber, Slider } from 'antd';
const PageRank = () => {
const { t } = useTranslate('knowledgeConfiguration');
return (
<Form.Item label={t('pageRank')} tooltip={t('pageRankTip')}>
<Flex gap={20} align="center">
<Flex flex={1}>
<Form.Item
name={['pagerank']}
noStyle
initialValue={0}
rules={[{ required: true }]}
>
<Slider max={100} style={{ width: '100%' }} />
</Form.Item>
</Flex>
<Form.Item name={['pagerank']} noStyle rules={[{ required: true }]}>
<InputNumber max={100} min={0} />
</Form.Item>
</Flex>
</Form.Item>
);
};
export default PageRank;

View File

@ -0,0 +1,138 @@
import { DocumentParserType } from '@/constants/knowledge';
import { useTranslate } from '@/hooks/common-hooks';
import { cn } from '@/lib/utils';
import { Form, Select, Switch } from 'antd';
import { upperFirst } from 'lodash';
import { useCallback, useMemo } from 'react';
import { DatasetConfigurationContainer } from '../dataset-configuration-container';
import EntityTypesItem from '../entity-types-item';
const excludedTagParseMethods = [
DocumentParserType.Table,
DocumentParserType.KnowledgeGraph,
DocumentParserType.Tag,
];
export const showTagItems = (parserId: DocumentParserType) => {
return !excludedTagParseMethods.includes(parserId);
};
const enum MethodValue {
General = 'general',
Light = 'light',
}
export const excludedParseMethods = [
DocumentParserType.Table,
DocumentParserType.Resume,
DocumentParserType.Picture,
DocumentParserType.KnowledgeGraph,
DocumentParserType.Qa,
DocumentParserType.Tag,
];
export const showGraphRagItems = (parserId: DocumentParserType | undefined) => {
return !excludedParseMethods.some((x) => x === parserId);
};
type GraphRagItemsProps = {
marginBottom?: boolean;
};
export function UseGraphRagItem() {
const { t } = useTranslate('knowledgeConfiguration');
return (
<Form.Item
name={['parser_config', 'graphrag', 'use_graphrag']}
label={t('useGraphRag')}
initialValue={false}
valuePropName="checked"
tooltip={t('useGraphRagTip')}
>
<Switch />
</Form.Item>
);
}
// The three types "table", "resume" and "one" do not display this configuration.
const GraphRagItems = ({ marginBottom = false }: GraphRagItemsProps) => {
const { t } = useTranslate('knowledgeConfiguration');
const methodOptions = useMemo(() => {
return [MethodValue.Light, MethodValue.General].map((x) => ({
value: x,
label: upperFirst(x),
}));
}, []);
const renderWideTooltip = useCallback(
(title: React.ReactNode | string) => {
return {
title: typeof title === 'string' ? t(title) : title,
overlayInnerStyle: { width: '32vw' },
};
},
[t],
);
return (
<DatasetConfigurationContainer className={cn({ 'mb-4': marginBottom })}>
<UseGraphRagItem></UseGraphRagItem>
<Form.Item
shouldUpdate={(prevValues, curValues) =>
prevValues.parser_config.graphrag.use_graphrag !==
curValues.parser_config.graphrag.use_graphrag
}
>
{({ getFieldValue }) => {
const useRaptor = getFieldValue([
'parser_config',
'graphrag',
'use_graphrag',
]);
return (
useRaptor && (
<>
<EntityTypesItem
field={['parser_config', 'graphrag', 'entity_types']}
></EntityTypesItem>
<Form.Item
name={['parser_config', 'graphrag', 'method']}
label={t('graphRagMethod')}
tooltip={renderWideTooltip(
<div
dangerouslySetInnerHTML={{
__html: t('graphRagMethodTip'),
}}
></div>,
)}
initialValue={MethodValue.Light}
>
<Select options={methodOptions} />
</Form.Item>
<Form.Item
name={['parser_config', 'graphrag', 'resolution']}
label={t('resolution')}
tooltip={renderWideTooltip('resolutionTip')}
>
<Switch />
</Form.Item>
<Form.Item
name={['parser_config', 'graphrag', 'community']}
label={t('community')}
tooltip={renderWideTooltip('communityTip')}
>
<Switch />
</Form.Item>
</>
)
);
}}
</Form.Item>
</DatasetConfigurationContainer>
);
};
export default GraphRagItems;

View File

@ -1,33 +0,0 @@
import { IModalProps } from '@/interfaces/common';
import { IFeedbackRequestBody } from '@/interfaces/request/chat';
import HightLightMarkdown from './highlight-markdown';
import SvgIcon from './svg-icon';
import { Dialog, DialogContent, DialogHeader, DialogTitle } from './ui/dialog';
type PromptDialogProps = IModalProps<IFeedbackRequestBody> & {
prompt?: string;
};
export function PromptDialog({
visible,
hideModal,
prompt,
}: PromptDialogProps) {
return (
<Dialog open={visible} onOpenChange={hideModal}>
<DialogContent className="max-w-[80vw]">
<DialogHeader>
<DialogTitle>
<div className="space-x-2">
<SvgIcon name={`prompt`} width={18}></SvgIcon>
<span> Prompt</span>
</div>
</DialogTitle>
</DialogHeader>
<section className="max-h-[80vh] overflow-auto">
<HightLightMarkdown>{prompt}</HightLightMarkdown>
</section>
</DialogContent>
</Dialog>
);
}

View File

@ -0,0 +1,82 @@
import { useTranslate } from '@/hooks/common-hooks';
import { Form, Input, Modal } from 'antd';
import { useEffect } from 'react';
import { IModalManagerChildrenProps } from '../modal-manager';
interface IProps extends Omit<IModalManagerChildrenProps, 'showModal'> {
loading: boolean;
initialName: string;
onOk: (name: string) => void;
showModal?(): void;
}
const RenameModal = ({
visible,
hideModal,
loading,
initialName,
onOk,
}: IProps) => {
const [form] = Form.useForm();
const { t } = useTranslate('common');
type FieldType = {
name?: string;
};
const handleOk = async () => {
const ret = await form.validateFields();
return onOk(ret.name);
};
const handleCancel = () => {
hideModal();
};
const onFinish = (values: any) => {
console.log('Success:', values);
};
const onFinishFailed = (errorInfo: any) => {
console.log('Failed:', errorInfo);
};
useEffect(() => {
if (visible) {
form.setFieldValue('name', initialName);
}
}, [initialName, form, visible]);
return (
<Modal
title={t('rename')}
open={visible}
onOk={handleOk}
onCancel={handleCancel}
okButtonProps={{ loading }}
confirmLoading={loading}
>
<Form
name="basic"
labelCol={{ span: 4 }}
wrapperCol={{ span: 20 }}
style={{ maxWidth: 600 }}
onFinish={onFinish}
onFinishFailed={onFinishFailed}
autoComplete="off"
form={form}
>
<Form.Item<FieldType>
label={t('name')}
name="name"
rules={[{ required: true, message: t('namePlaceholder') }]}
>
<Input />
</Form.Item>
</Form>
</Modal>
);
};
export default RenameModal;

Some files were not shown because too many files have changed in this diff Show More