mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-04 03:25:30 +08:00
Compare commits
58 Commits
9db999ccae
...
v0.20.1
| Author | SHA1 | Date | |
|---|---|---|---|
| 9b026fc5b6 | |||
| 90eb5fd31b | |||
| b9eeb8e64f | |||
| 4c99988c3e | |||
| 4f2e9ef248 | |||
| 4a3871090d | |||
| 7ce64cb265 | |||
| d102a6bb71 | |||
| a02ca16260 | |||
| cd3bb0ed7c | |||
| 86fb710e52 | |||
| 7713e14d6a | |||
| 392f5f4ce9 | |||
| 79481becea | |||
| 58a64000ea | |||
| 1bd64dafcb | |||
| 07354f4a1a | |||
| d628234942 | |||
| 5749aa30b0 | |||
| a2e1f5618d | |||
| dc48c3863d | |||
| 23062cb27a | |||
| 63c2f5b821 | |||
| 0a0bfc02a0 | |||
| f0c34d4454 | |||
| 7c719f8365 | |||
| 4fc9e42e74 | |||
| 35539092d0 | |||
| 581a54fbbb | |||
| 9ca86d801e | |||
| fb0426419e | |||
| 1409bb30df | |||
| 7efeaf6548 | |||
| 46a35f44da | |||
| a7eba61067 | |||
| 465f7e036a | |||
| 7a27d5e463 | |||
| 6a0d6d2565 | |||
| f359f2c44e | |||
| 9295c23170 | |||
| 023b090fa4 | |||
| 2124329e95 | |||
| ed9757b0c7 | |||
| f235a38225 | |||
| 550e65bb22 | |||
| a264c629b5 | |||
| e6bad45c6d | |||
| 0a303d9ae1 | |||
| 98a83543e8 | |||
| afd3a508e5 | |||
| 1deb0a2d42 | |||
| dd055deee9 | |||
| a249803961 | |||
| 6ec3f18e22 | |||
| 7724acbadb | |||
| a36ba95c1c | |||
| 30ccc4a66c | |||
| dda5a0080a |
12
README.md
12
README.md
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.0">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -87,7 +87,9 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Latest Updates
|
||||
|
||||
- 2025-08-01 Supports agentic workflow.
|
||||
- 2025-08-08 Supports OpenAI's latest GPT-5 series models.
|
||||
- 2025-08-04 Supports new models, including Kimi K2 and Grok 4.
|
||||
- 2025-08-01 Supports agentic workflow and MCP.
|
||||
- 2025-05-23 Adds a Python/JavaScript code executor component to Agent.
|
||||
- 2025-05-05 Supports cross-language query.
|
||||
- 2025-03-19 Supports using a multi-modal model to make sense of images within PDF or DOCX files.
|
||||
@ -188,7 +190,7 @@ releases! 🌟
|
||||
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
|
||||
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
|
||||
|
||||
> The command below downloads the `v0.20.0-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0` for the full edition `v0.20.0`.
|
||||
> The command below downloads the `v0.20.1-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` for the full edition `v0.20.1`.
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -201,8 +203,8 @@ releases! 🌟
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
|-------------------|-----------------|-----------------------|--------------------------|
|
||||
| v0.20.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.0-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.20.1 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.1-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
12
README_id.md
12
README_id.md
@ -22,7 +22,7 @@
|
||||
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.0">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
|
||||
@ -80,7 +80,9 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Pembaruan Terbaru
|
||||
|
||||
- 2025-08-01 Mendukung Alur Kerja agen.
|
||||
- 2025-08-08 Mendukung model seri GPT-5 terbaru dari OpenAI.
|
||||
- 2025-08-04 Mendukung model baru, termasuk Kimi K2 dan Grok 4.
|
||||
- 2025-08-01 Mendukung alur kerja agen dan MCP.
|
||||
- 2025-05-23 Menambahkan komponen pelaksana kode Python/JS ke Agen.
|
||||
- 2025-05-05 Mendukung kueri lintas bahasa.
|
||||
- 2025-03-19 Mendukung penggunaan model multi-modal untuk memahami gambar di dalam file PDF atau DOCX.
|
||||
@ -179,7 +181,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
|
||||
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
|
||||
|
||||
> Perintah di bawah ini mengunduh edisi v0.20.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0 untuk edisi lengkap v0.20.0.
|
||||
> Perintah di bawah ini mengunduh edisi v0.20.1-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.1-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1 untuk edisi lengkap v0.20.1.
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -192,8 +194,8 @@ $ docker compose -f docker-compose.yml up -d
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.0-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.20.1 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.1-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
12
README_ja.md
12
README_ja.md
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.0">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -60,7 +60,9 @@
|
||||
|
||||
## 🔥 最新情報
|
||||
|
||||
- 2025-08-01 エージェントワークフローをサポートします。
|
||||
- 2025-08-08 OpenAI の最新 GPT-5 シリーズモデルをサポートします。
|
||||
- 2025-08-04 新モデル、キミK2およびGrok 4をサポート。
|
||||
- 2025-08-01 エージェントワークフローとMCPをサポート。
|
||||
- 2025-05-23 エージェントに Python/JS コードエグゼキュータコンポーネントを追加しました。
|
||||
- 2025-05-05 言語間クエリをサポートしました。
|
||||
- 2025-03-19 PDFまたはDOCXファイル内の画像を理解するために、多モーダルモデルを使用することをサポートします。
|
||||
@ -158,7 +160,7 @@
|
||||
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
|
||||
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
|
||||
|
||||
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0 と設定します。
|
||||
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.1-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.1-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.1 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1 と設定します。
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -171,8 +173,8 @@
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.0-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.20.1 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.1-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
12
README_ko.md
12
README_ko.md
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.0">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -60,7 +60,9 @@
|
||||
|
||||
## 🔥 업데이트
|
||||
|
||||
- 2025-08-01 에이전트 워크플로를 지원합니다.
|
||||
- 2025-08-08 OpenAI의 최신 GPT-5 시리즈 모델을 지원합니다.
|
||||
- 2025-08-04 새로운 모델인 Kimi K2와 Grok 4를 포함하여 지원합니다.
|
||||
- 2025-08-01 에이전트 워크플로우와 MCP를 지원합니다.
|
||||
- 2025-05-23 Agent에 Python/JS 코드 실행기 구성 요소를 추가합니다.
|
||||
- 2025-05-05 언어 간 쿼리를 지원합니다.
|
||||
- 2025-03-19 PDF 또는 DOCX 파일 내의 이미지를 이해하기 위해 다중 모드 모델을 사용하는 것을 지원합니다.
|
||||
@ -158,7 +160,7 @@
|
||||
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
|
||||
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
|
||||
|
||||
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0로 설정합니다.
|
||||
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.1-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.1-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.1을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1로 설정합니다.
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -171,8 +173,8 @@
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.0-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.20.1 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.1-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.0">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
|
||||
@ -80,7 +80,9 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
## 🔥 Últimas Atualizações
|
||||
|
||||
- 01-08-2025 Suporta o fluxo de trabalho agêntico.
|
||||
- 08-08-2025 Suporta a mais recente série GPT-5 da OpenAI.
|
||||
- 04-08-2025 Suporta novos modelos, incluindo Kimi K2 e Grok 4.
|
||||
- 01-08-2025 Suporta fluxo de trabalho agente e MCP.
|
||||
- 23-05-2025 Adicione o componente executor de código Python/JS ao Agente.
|
||||
- 05-05-2025 Suporte a consultas entre idiomas.
|
||||
- 19-03-2025 Suporta o uso de um modelo multi-modal para entender imagens dentro de arquivos PDF ou DOCX.
|
||||
@ -178,7 +180,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
|
||||
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
|
||||
|
||||
> O comando abaixo baixa a edição `v0.20.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0` para a edição completa `v0.20.0`.
|
||||
> O comando abaixo baixa a edição `v0.20.1-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.1-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` para a edição completa `v0.20.1`.
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -191,8 +193,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
|
||||
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
|
||||
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
|
||||
| v0.20.0 | ~9 | :heavy_check_mark: | Lançamento estável |
|
||||
| v0.20.0-slim | ~2 | ❌ | Lançamento estável |
|
||||
| v0.20.1 | ~9 | :heavy_check_mark: | Lançamento estável |
|
||||
| v0.20.1-slim | ~2 | ❌ | Lançamento estável |
|
||||
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
|
||||
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
|
||||
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.0">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -83,7 +83,9 @@
|
||||
|
||||
## 🔥 近期更新
|
||||
|
||||
- 2025-08-01 支援 agentic workflow
|
||||
- 2025-08-08 支援 OpenAI 最新的 GPT-5 系列模型。
|
||||
- 2025-08-04 支援 Kimi K2 和 Grok 4 等模型.
|
||||
- 2025-08-01 支援 agentic workflow 和 MCP
|
||||
- 2025-05-23 為 Agent 新增 Python/JS 程式碼執行器元件。
|
||||
- 2025-05-05 支援跨語言查詢。
|
||||
- 2025-03-19 PDF和DOCX中的圖支持用多模態大模型去解析得到描述.
|
||||
@ -181,7 +183,7 @@
|
||||
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
|
||||
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
|
||||
|
||||
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0` 來下載 RAGFlow 鏡像的 `v0.20.0` 完整發行版。
|
||||
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.1-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.1-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` 來下載 RAGFlow 鏡像的 `v0.20.1` 完整發行版。
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -194,8 +196,8 @@
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.0-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.20.1 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.1-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
12
README_zh.md
12
README_zh.md
@ -22,7 +22,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.0">
|
||||
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -83,7 +83,9 @@
|
||||
|
||||
## 🔥 近期更新
|
||||
|
||||
- 2025-08-01 支持 agentic workflow。
|
||||
- 2025-08-08 支持 OpenAI 最新的 GPT-5 系列模型.
|
||||
- 2025-08-04 新增对 Kimi K2 和 Grok 4 等模型的支持.
|
||||
- 2025-08-01 支持 agentic workflow 和 MCP。
|
||||
- 2025-05-23 Agent 新增 Python/JS 代码执行器组件。
|
||||
- 2025-05-05 支持跨语言查询。
|
||||
- 2025-03-19 PDF 和 DOCX 中的图支持用多模态大模型去解析得到描述.
|
||||
@ -181,7 +183,7 @@
|
||||
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
|
||||
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
|
||||
|
||||
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0` 来下载 RAGFlow 镜像的 `v0.20.0` 完整发行版。
|
||||
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.1-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.1-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` 来下载 RAGFlow 镜像的 `v0.20.1` 完整发行版。
|
||||
|
||||
```bash
|
||||
$ cd ragflow/docker
|
||||
@ -194,8 +196,8 @@
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|
||||
| ----------------- | --------------- | --------------------- | ------------------------ |
|
||||
| v0.20.0 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.0-slim | ≈2 | ❌ | Stable release |
|
||||
| v0.20.1 | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| v0.20.1-slim | ≈2 | ❌ | Stable release |
|
||||
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
|
||||
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
|
||||
|
||||
|
||||
417
agent/templates/choose_your_knowledge_base_agent.json
Normal file
417
agent/templates/choose_your_knowledge_base_agent.json
Normal file
File diff suppressed because one or more lines are too long
435
agent/templates/choose_your_knowledge_base_workflow.json
Normal file
435
agent/templates/choose_your_knowledge_base_workflow.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -89,11 +89,11 @@
|
||||
"presence_penalty": 0.4,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "{sys.query}",
|
||||
"content": "The user query is {sys.query}\n\nThe relevant document are {Retrieval:ShyPumasJoke@formalized_content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
"sys_prompt": "You are a highly professional product information advisor. \n\nYour only mission is to provide accurate, factual, and structured answers to all product-related queries.\n\nAbsolutely no assumptions, guesses, or fabricated content are allowed. \n\n**Key Principles:**\n\n1. **Strict Database Reliance:** \n\n - Every answer must be based solely on the verified product information stored in the database accessed through the Retrieval tool. \n\n - You are NOT allowed to invent, speculate, or infer details beyond what is retrieved. \n\n - If you cannot find relevant data, respond with: *\"I cannot find this information in our official product database. Please check back later or provide more details for further search.\"*\n\n2. **Information Accuracy and Structure:** \n\n - Provide information in a clear, concise, and professional way. \n\n - Use bullet points or numbered lists if there are multiple key points (e.g., features, price, warranty, technical specifications). \n\n - Always specify the version or model number when applicable to avoid confusion.\n\n3. **Tone and Style:** \n\n - Maintain a polite, professional, and helpful tone at all times. \n\n - Avoid marketing exaggeration or promotional language; stay strictly factual. \n\n - Do not express personal opinions; only cite official product data.\n\n4. **User Guidance:** \n\n - If the user\u2019s query is unclear or too broad, politely request clarification or guide them to provide more specific product details (e.g., product name, model, version). \n\n - Example: *\"Could you please specify the product model or category so I can retrieve the most relevant information for you?\"*\n\n5. **Response Length and Formatting:** \n\n - Keep each answer within 100\u2013150 words for general queries. \n\n - For complex or multi-step explanations, you may extend to 200\u2013250 words, but always remain clear and well-structured.\n\n6. **Critical Reminder:** \n\nYour authority and reliability depend entirely on database-driven responses. Any fabricated, speculative, or unverified content will be considered a critical failure of your role.\n\nAlways begin processing a query by accessing the Retrieval tool, confirming the data source, and then structuring your response according to the above principles.\n\n",
|
||||
"sys_prompt": "You are a highly professional product information advisor. \n\nYour only mission is to provide accurate, factual, and structured answers to all product-related queries.\n\nAbsolutely no assumptions, guesses, or fabricated content are allowed. \n\n**Key Principles:**\n\n1. **Strict Database Reliance:** \n\n - Every answer must be based solely on the verified product information stored in the relevant documen.\n\n - You are NOT allowed to invent, speculate, or infer details beyond what is retrieved. \n\n - If you cannot find relevant data, respond with: *\"I cannot find this information in our official product database. Please check back later or provide more details for further search.\"*\n\n2. **Information Accuracy and Structure:** \n\n - Provide information in a clear, concise, and professional way. \n\n - Use bullet points or numbered lists if there are multiple key points (e.g., features, price, warranty, technical specifications). \n\n - Always specify the version or model number when applicable to avoid confusion.\n\n3. **Tone and Style:** \n\n - Maintain a polite, professional, and helpful tone at all times. \n\n - Avoid marketing exaggeration or promotional language; stay strictly factual. \n\n - Do not express personal opinions; only cite official product data.\n\n4. **User Guidance:** \n\n - If the user\u2019s query is unclear or too broad, politely request clarification or guide them to provide more specific product details (e.g., product name, model, version). \n\n - Example: *\"Could you please specify the product model or category so I can retrieve the most relevant information for you?\"*\n\n5. **Response Length and Formatting:** \n\n - Keep each answer within 100\u2013150 words for general queries. \n\n - For complex or multi-step explanations, you may extend to 200\u2013250 words, but always remain clear and well-structured.\n\n6. **Critical Reminder:** \n\nYour authority and reliability depend entirely on the relevant document responses. Any fabricated, speculative, or unverified content will be considered a critical failure of your role.\n\n\n",
|
||||
"temperature": 0.1,
|
||||
"temperatureEnabled": true,
|
||||
"tools": [],
|
||||
@ -699,7 +699,7 @@
|
||||
"width": 200
|
||||
},
|
||||
"position": {
|
||||
"x": 644.5771854408022,
|
||||
"x": 645.6873721057459,
|
||||
"y": 516.6923702571407
|
||||
},
|
||||
"selected": false,
|
||||
@ -735,11 +735,11 @@
|
||||
"presence_penalty": 0.4,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "{sys.query}",
|
||||
"content": "The user query is {sys.query}\n\nThe relevant document are {Retrieval:ShyPumasJoke@formalized_content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
"sys_prompt": "You are a highly professional product information advisor. \n\nYour only mission is to provide accurate, factual, and structured answers to all product-related queries.\n\nAbsolutely no assumptions, guesses, or fabricated content are allowed. \n\n**Key Principles:**\n\n1. **Strict Database Reliance:** \n\n - Every answer must be based solely on the verified product information stored in the database accessed through the Retrieval tool. \n\n - You are NOT allowed to invent, speculate, or infer details beyond what is retrieved. \n\n - If you cannot find relevant data, respond with: *\"I cannot find this information in our official product database. Please check back later or provide more details for further search.\"*\n\n2. **Information Accuracy and Structure:** \n\n - Provide information in a clear, concise, and professional way. \n\n - Use bullet points or numbered lists if there are multiple key points (e.g., features, price, warranty, technical specifications). \n\n - Always specify the version or model number when applicable to avoid confusion.\n\n3. **Tone and Style:** \n\n - Maintain a polite, professional, and helpful tone at all times. \n\n - Avoid marketing exaggeration or promotional language; stay strictly factual. \n\n - Do not express personal opinions; only cite official product data.\n\n4. **User Guidance:** \n\n - If the user\u2019s query is unclear or too broad, politely request clarification or guide them to provide more specific product details (e.g., product name, model, version). \n\n - Example: *\"Could you please specify the product model or category so I can retrieve the most relevant information for you?\"*\n\n5. **Response Length and Formatting:** \n\n - Keep each answer within 100\u2013150 words for general queries. \n\n - For complex or multi-step explanations, you may extend to 200\u2013250 words, but always remain clear and well-structured.\n\n6. **Critical Reminder:** \n\nYour authority and reliability depend entirely on database-driven responses. Any fabricated, speculative, or unverified content will be considered a critical failure of your role.\n\nAlways begin processing a query by accessing the Retrieval tool, confirming the data source, and then structuring your response according to the above principles.\n\n",
|
||||
"sys_prompt": "You are a highly professional product information advisor. \n\nYour only mission is to provide accurate, factual, and structured answers to all product-related queries.\n\nAbsolutely no assumptions, guesses, or fabricated content are allowed. \n\n**Key Principles:**\n\n1. **Strict Database Reliance:** \n\n - Every answer must be based solely on the verified product information stored in the relevant documen.\n\n - You are NOT allowed to invent, speculate, or infer details beyond what is retrieved. \n\n - If you cannot find relevant data, respond with: *\"I cannot find this information in our official product database. Please check back later or provide more details for further search.\"*\n\n2. **Information Accuracy and Structure:** \n\n - Provide information in a clear, concise, and professional way. \n\n - Use bullet points or numbered lists if there are multiple key points (e.g., features, price, warranty, technical specifications). \n\n - Always specify the version or model number when applicable to avoid confusion.\n\n3. **Tone and Style:** \n\n - Maintain a polite, professional, and helpful tone at all times. \n\n - Avoid marketing exaggeration or promotional language; stay strictly factual. \n\n - Do not express personal opinions; only cite official product data.\n\n4. **User Guidance:** \n\n - If the user\u2019s query is unclear or too broad, politely request clarification or guide them to provide more specific product details (e.g., product name, model, version). \n\n - Example: *\"Could you please specify the product model or category so I can retrieve the most relevant information for you?\"*\n\n5. **Response Length and Formatting:** \n\n - Keep each answer within 100\u2013150 words for general queries. \n\n - For complex or multi-step explanations, you may extend to 200\u2013250 words, but always remain clear and well-structured.\n\n6. **Critical Reminder:** \n\nYour authority and reliability depend entirely on the relevant document responses. Any fabricated, speculative, or unverified content will be considered a critical failure of your role.\n\n\n",
|
||||
"temperature": 0.1,
|
||||
"temperatureEnabled": true,
|
||||
"tools": [],
|
||||
|
||||
724
agent/templates/sql_assistant.json
Normal file
724
agent/templates/sql_assistant.json
Normal file
@ -0,0 +1,724 @@
|
||||
{
|
||||
"id": 17,
|
||||
"title": "SQL Assistant",
|
||||
"description": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarter’s top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
|
||||
"canvas_type": "Marketing",
|
||||
"dsl": {
|
||||
"components": {
|
||||
"Agent:WickedGoatsDivide": {
|
||||
"downstream": [
|
||||
"ExeSQL:TiredShirtsPull"
|
||||
],
|
||||
"obj": {
|
||||
"component_name": "Agent",
|
||||
"params": {
|
||||
"delay_after_error": 1,
|
||||
"description": "",
|
||||
"exception_default_value": "",
|
||||
"exception_goto": [],
|
||||
"exception_method": "",
|
||||
"frequencyPenaltyEnabled": false,
|
||||
"frequency_penalty": 0.7,
|
||||
"llm_id": "qwen-max@Tongyi-Qianwen",
|
||||
"maxTokensEnabled": false,
|
||||
"max_retries": 3,
|
||||
"max_rounds": 5,
|
||||
"max_tokens": 256,
|
||||
"mcp": [],
|
||||
"message_history_window_size": 12,
|
||||
"outputs": {
|
||||
"content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"presencePenaltyEnabled": false,
|
||||
"presence_penalty": 0.4,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "User's query: {sys.query}\n\nSchema: {Retrieval:HappyTiesFilm@formalized_content}\n\nSamples about question to SQL: {Retrieval:SmartNewsHammer@formalized_content}\n\nDescription about meanings of tables and files: {Retrieval:SweetDancersAppear@formalized_content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
"sys_prompt": "### ROLE\nYou are a Text-to-SQL assistant. \nGiven a relational database schema and a natural-language request, you must produce a **single, syntactically-correct MySQL query** that answers the request. \nReturn **nothing except the SQL statement itself**\u2014no code fences, no commentary, no explanations, no comments, no trailing semicolon if not required.\n\n\n### EXAMPLES \n-- Example 1 \nUser: List every product name and its unit price. \nSQL:\nSELECT name, unit_price FROM Products;\n\n-- Example 2 \nUser: Show the names and emails of customers who placed orders in January 2025. \nSQL:\nSELECT DISTINCT c.name, c.email\nFROM Customers c\nJOIN Orders o ON o.customer_id = c.id\nWHERE o.order_date BETWEEN '2025-01-01' AND '2025-01-31';\n\n-- Example 3 \nUser: How many orders have a status of \"Completed\" for each month in 2024? \nSQL:\nSELECT DATE_FORMAT(order_date, '%Y-%m') AS month,\n COUNT(*) AS completed_orders\nFROM Orders\nWHERE status = 'Completed'\n AND YEAR(order_date) = 2024\nGROUP BY month\nORDER BY month;\n\n-- Example 4 \nUser: Which products generated at least \\$10 000 in total revenue? \nSQL:\nSELECT p.id, p.name, SUM(oi.quantity * oi.unit_price) AS revenue\nFROM Products p\nJOIN OrderItems oi ON oi.product_id = p.id\nGROUP BY p.id, p.name\nHAVING revenue >= 10000\nORDER BY revenue DESC;\n\n\n### OUTPUT GUIDELINES\n1. Think through the schema and the request. \n2. Write **only** the final MySQL query. \n3. Do **not** wrap the query in back-ticks or markdown fences. \n4. Do **not** add explanations, comments, or additional text\u2014just the SQL.",
|
||||
"temperature": 0.1,
|
||||
"temperatureEnabled": false,
|
||||
"tools": [],
|
||||
"topPEnabled": false,
|
||||
"top_p": 0.3,
|
||||
"user_prompt": "",
|
||||
"visual_files_var": ""
|
||||
}
|
||||
},
|
||||
"upstream": [
|
||||
"Retrieval:HappyTiesFilm",
|
||||
"Retrieval:SmartNewsHammer",
|
||||
"Retrieval:SweetDancersAppear"
|
||||
]
|
||||
},
|
||||
"ExeSQL:TiredShirtsPull": {
|
||||
"downstream": [
|
||||
"Message:ShaggyMasksAttend"
|
||||
],
|
||||
"obj": {
|
||||
"component_name": "ExeSQL",
|
||||
"params": {
|
||||
"database": "",
|
||||
"db_type": "mysql",
|
||||
"host": "",
|
||||
"max_records": 1024,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
},
|
||||
"json": {
|
||||
"type": "Array<Object>",
|
||||
"value": []
|
||||
}
|
||||
},
|
||||
"password": "20010812Yy!",
|
||||
"port": 3306,
|
||||
"sql": "Agent:WickedGoatsDivide@content",
|
||||
"username": "13637682833@163.com"
|
||||
}
|
||||
},
|
||||
"upstream": [
|
||||
"Agent:WickedGoatsDivide"
|
||||
]
|
||||
},
|
||||
"Message:ShaggyMasksAttend": {
|
||||
"downstream": [],
|
||||
"obj": {
|
||||
"component_name": "Message",
|
||||
"params": {
|
||||
"content": [
|
||||
"{ExeSQL:TiredShirtsPull@formalized_content}"
|
||||
]
|
||||
}
|
||||
},
|
||||
"upstream": [
|
||||
"ExeSQL:TiredShirtsPull"
|
||||
]
|
||||
},
|
||||
"Retrieval:HappyTiesFilm": {
|
||||
"downstream": [
|
||||
"Agent:WickedGoatsDivide"
|
||||
],
|
||||
"obj": {
|
||||
"component_name": "Retrieval",
|
||||
"params": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"ed31364c727211f0bdb2bafe6e7908e6"
|
||||
],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
"top_n": 8,
|
||||
"use_kg": false
|
||||
}
|
||||
},
|
||||
"upstream": [
|
||||
"begin"
|
||||
]
|
||||
},
|
||||
"Retrieval:SmartNewsHammer": {
|
||||
"downstream": [
|
||||
"Agent:WickedGoatsDivide"
|
||||
],
|
||||
"obj": {
|
||||
"component_name": "Retrieval",
|
||||
"params": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"0f968106727311f08357bafe6e7908e6"
|
||||
],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
"top_n": 8,
|
||||
"use_kg": false
|
||||
}
|
||||
},
|
||||
"upstream": [
|
||||
"begin"
|
||||
]
|
||||
},
|
||||
"Retrieval:SweetDancersAppear": {
|
||||
"downstream": [
|
||||
"Agent:WickedGoatsDivide"
|
||||
],
|
||||
"obj": {
|
||||
"component_name": "Retrieval",
|
||||
"params": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"4ad1f9d0727311f0827dbafe6e7908e6"
|
||||
],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
"top_n": 8,
|
||||
"use_kg": false
|
||||
}
|
||||
},
|
||||
"upstream": [
|
||||
"begin"
|
||||
]
|
||||
},
|
||||
"begin": {
|
||||
"downstream": [
|
||||
"Retrieval:HappyTiesFilm",
|
||||
"Retrieval:SmartNewsHammer",
|
||||
"Retrieval:SweetDancersAppear"
|
||||
],
|
||||
"obj": {
|
||||
"component_name": "Begin",
|
||||
"params": {
|
||||
"enablePrologue": true,
|
||||
"inputs": {},
|
||||
"mode": "conversational",
|
||||
"prologue": "Hi! I'm your SQL assistant, what can I do for you?"
|
||||
}
|
||||
},
|
||||
"upstream": []
|
||||
}
|
||||
},
|
||||
"globals": {
|
||||
"sys.conversation_turns": 0,
|
||||
"sys.files": [],
|
||||
"sys.query": "",
|
||||
"sys.user_id": ""
|
||||
},
|
||||
"graph": {
|
||||
"edges": [
|
||||
{
|
||||
"data": {
|
||||
"isHovered": false
|
||||
},
|
||||
"id": "xy-edge__beginstart-Retrieval:HappyTiesFilmend",
|
||||
"source": "begin",
|
||||
"sourceHandle": "start",
|
||||
"target": "Retrieval:HappyTiesFilm",
|
||||
"targetHandle": "end"
|
||||
},
|
||||
{
|
||||
"id": "xy-edge__beginstart-Retrieval:SmartNewsHammerend",
|
||||
"source": "begin",
|
||||
"sourceHandle": "start",
|
||||
"target": "Retrieval:SmartNewsHammer",
|
||||
"targetHandle": "end"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"isHovered": false
|
||||
},
|
||||
"id": "xy-edge__beginstart-Retrieval:SweetDancersAppearend",
|
||||
"source": "begin",
|
||||
"sourceHandle": "start",
|
||||
"target": "Retrieval:SweetDancersAppear",
|
||||
"targetHandle": "end"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"isHovered": false
|
||||
},
|
||||
"id": "xy-edge__Retrieval:HappyTiesFilmstart-Agent:WickedGoatsDivideend",
|
||||
"source": "Retrieval:HappyTiesFilm",
|
||||
"sourceHandle": "start",
|
||||
"target": "Agent:WickedGoatsDivide",
|
||||
"targetHandle": "end"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"isHovered": false
|
||||
},
|
||||
"id": "xy-edge__Retrieval:SmartNewsHammerstart-Agent:WickedGoatsDivideend",
|
||||
"markerEnd": "logo",
|
||||
"source": "Retrieval:SmartNewsHammer",
|
||||
"sourceHandle": "start",
|
||||
"style": {
|
||||
"stroke": "rgba(91, 93, 106, 1)",
|
||||
"strokeWidth": 1
|
||||
},
|
||||
"target": "Agent:WickedGoatsDivide",
|
||||
"targetHandle": "end",
|
||||
"type": "buttonEdge",
|
||||
"zIndex": 1001
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"isHovered": false
|
||||
},
|
||||
"id": "xy-edge__Retrieval:SweetDancersAppearstart-Agent:WickedGoatsDivideend",
|
||||
"markerEnd": "logo",
|
||||
"source": "Retrieval:SweetDancersAppear",
|
||||
"sourceHandle": "start",
|
||||
"style": {
|
||||
"stroke": "rgba(91, 93, 106, 1)",
|
||||
"strokeWidth": 1
|
||||
},
|
||||
"target": "Agent:WickedGoatsDivide",
|
||||
"targetHandle": "end",
|
||||
"type": "buttonEdge",
|
||||
"zIndex": 1001
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"isHovered": false
|
||||
},
|
||||
"id": "xy-edge__Agent:WickedGoatsDividestart-ExeSQL:TiredShirtsPullend",
|
||||
"source": "Agent:WickedGoatsDivide",
|
||||
"sourceHandle": "start",
|
||||
"target": "ExeSQL:TiredShirtsPull",
|
||||
"targetHandle": "end"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"isHovered": false
|
||||
},
|
||||
"id": "xy-edge__ExeSQL:TiredShirtsPullstart-Message:ShaggyMasksAttendend",
|
||||
"source": "ExeSQL:TiredShirtsPull",
|
||||
"sourceHandle": "start",
|
||||
"target": "Message:ShaggyMasksAttend",
|
||||
"targetHandle": "end"
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"enablePrologue": true,
|
||||
"inputs": {},
|
||||
"mode": "conversational",
|
||||
"prologue": "Hi! I'm your SQL assistant, what can I do for you?"
|
||||
},
|
||||
"label": "Begin",
|
||||
"name": "begin"
|
||||
},
|
||||
"id": "begin",
|
||||
"measured": {
|
||||
"height": 48,
|
||||
"width": 200
|
||||
},
|
||||
"position": {
|
||||
"x": 50,
|
||||
"y": 200
|
||||
},
|
||||
"selected": false,
|
||||
"sourcePosition": "left",
|
||||
"targetPosition": "right",
|
||||
"type": "beginNode"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"ed31364c727211f0bdb2bafe6e7908e6"
|
||||
],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
"top_n": 8,
|
||||
"use_kg": false
|
||||
},
|
||||
"label": "Retrieval",
|
||||
"name": "Schema"
|
||||
},
|
||||
"dragging": false,
|
||||
"id": "Retrieval:HappyTiesFilm",
|
||||
"measured": {
|
||||
"height": 96,
|
||||
"width": 200
|
||||
},
|
||||
"position": {
|
||||
"x": 414,
|
||||
"y": 20.5
|
||||
},
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "retrievalNode"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"0f968106727311f08357bafe6e7908e6"
|
||||
],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
"top_n": 8,
|
||||
"use_kg": false
|
||||
},
|
||||
"label": "Retrieval",
|
||||
"name": "Question to SQL"
|
||||
},
|
||||
"dragging": false,
|
||||
"id": "Retrieval:SmartNewsHammer",
|
||||
"measured": {
|
||||
"height": 96,
|
||||
"width": 200
|
||||
},
|
||||
"position": {
|
||||
"x": 406.5,
|
||||
"y": 175.5
|
||||
},
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "retrievalNode"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"cross_languages": [],
|
||||
"empty_response": "",
|
||||
"kb_ids": [
|
||||
"4ad1f9d0727311f0827dbafe6e7908e6"
|
||||
],
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"query": "sys.query",
|
||||
"rerank_id": "",
|
||||
"similarity_threshold": 0.2,
|
||||
"top_k": 1024,
|
||||
"top_n": 8,
|
||||
"use_kg": false
|
||||
},
|
||||
"label": "Retrieval",
|
||||
"name": "Database Description"
|
||||
},
|
||||
"dragging": false,
|
||||
"id": "Retrieval:SweetDancersAppear",
|
||||
"measured": {
|
||||
"height": 96,
|
||||
"width": 200
|
||||
},
|
||||
"position": {
|
||||
"x": 403.5,
|
||||
"y": 328
|
||||
},
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "retrievalNode"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"delay_after_error": 1,
|
||||
"description": "",
|
||||
"exception_default_value": "",
|
||||
"exception_goto": [],
|
||||
"exception_method": "",
|
||||
"frequencyPenaltyEnabled": false,
|
||||
"frequency_penalty": 0.7,
|
||||
"llm_id": "qwen-max@Tongyi-Qianwen",
|
||||
"maxTokensEnabled": false,
|
||||
"max_retries": 3,
|
||||
"max_rounds": 5,
|
||||
"max_tokens": 256,
|
||||
"mcp": [],
|
||||
"message_history_window_size": 12,
|
||||
"outputs": {
|
||||
"content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
}
|
||||
},
|
||||
"presencePenaltyEnabled": false,
|
||||
"presence_penalty": 0.4,
|
||||
"prompts": [
|
||||
{
|
||||
"content": "User's query: {sys.query}\n\nSchema: {Retrieval:HappyTiesFilm@formalized_content}\n\nSamples about question to SQL: {Retrieval:SmartNewsHammer@formalized_content}\n\nDescription about meanings of tables and files: {Retrieval:SweetDancersAppear@formalized_content}",
|
||||
"role": "user"
|
||||
}
|
||||
],
|
||||
"sys_prompt": "### ROLE\nYou are a Text-to-SQL assistant. \nGiven a relational database schema and a natural-language request, you must produce a **single, syntactically-correct MySQL query** that answers the request. \nReturn **nothing except the SQL statement itself**\u2014no code fences, no commentary, no explanations, no comments, no trailing semicolon if not required.\n\n\n### EXAMPLES \n-- Example 1 \nUser: List every product name and its unit price. \nSQL:\nSELECT name, unit_price FROM Products;\n\n-- Example 2 \nUser: Show the names and emails of customers who placed orders in January 2025. \nSQL:\nSELECT DISTINCT c.name, c.email\nFROM Customers c\nJOIN Orders o ON o.customer_id = c.id\nWHERE o.order_date BETWEEN '2025-01-01' AND '2025-01-31';\n\n-- Example 3 \nUser: How many orders have a status of \"Completed\" for each month in 2024? \nSQL:\nSELECT DATE_FORMAT(order_date, '%Y-%m') AS month,\n COUNT(*) AS completed_orders\nFROM Orders\nWHERE status = 'Completed'\n AND YEAR(order_date) = 2024\nGROUP BY month\nORDER BY month;\n\n-- Example 4 \nUser: Which products generated at least \\$10 000 in total revenue? \nSQL:\nSELECT p.id, p.name, SUM(oi.quantity * oi.unit_price) AS revenue\nFROM Products p\nJOIN OrderItems oi ON oi.product_id = p.id\nGROUP BY p.id, p.name\nHAVING revenue >= 10000\nORDER BY revenue DESC;\n\n\n### OUTPUT GUIDELINES\n1. Think through the schema and the request. \n2. Write **only** the final MySQL query. \n3. Do **not** wrap the query in back-ticks or markdown fences. \n4. Do **not** add explanations, comments, or additional text\u2014just the SQL.",
|
||||
"temperature": 0.1,
|
||||
"temperatureEnabled": false,
|
||||
"tools": [],
|
||||
"topPEnabled": false,
|
||||
"top_p": 0.3,
|
||||
"user_prompt": "",
|
||||
"visual_files_var": ""
|
||||
},
|
||||
"label": "Agent",
|
||||
"name": "SQL Generator "
|
||||
},
|
||||
"dragging": false,
|
||||
"id": "Agent:WickedGoatsDivide",
|
||||
"measured": {
|
||||
"height": 84,
|
||||
"width": 200
|
||||
},
|
||||
"position": {
|
||||
"x": 981,
|
||||
"y": 174
|
||||
},
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "agentNode"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"database": "",
|
||||
"db_type": "mysql",
|
||||
"host": "",
|
||||
"max_records": 1024,
|
||||
"outputs": {
|
||||
"formalized_content": {
|
||||
"type": "string",
|
||||
"value": ""
|
||||
},
|
||||
"json": {
|
||||
"type": "Array<Object>",
|
||||
"value": []
|
||||
}
|
||||
},
|
||||
"password": "20010812Yy!",
|
||||
"port": 3306,
|
||||
"sql": "Agent:WickedGoatsDivide@content",
|
||||
"username": "13637682833@163.com"
|
||||
},
|
||||
"label": "ExeSQL",
|
||||
"name": "ExeSQL"
|
||||
},
|
||||
"dragging": false,
|
||||
"id": "ExeSQL:TiredShirtsPull",
|
||||
"measured": {
|
||||
"height": 56,
|
||||
"width": 200
|
||||
},
|
||||
"position": {
|
||||
"x": 1211.5,
|
||||
"y": 212.5
|
||||
},
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "ragNode"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"content": [
|
||||
"{ExeSQL:TiredShirtsPull@formalized_content}"
|
||||
]
|
||||
},
|
||||
"label": "Message",
|
||||
"name": "Message"
|
||||
},
|
||||
"dragging": false,
|
||||
"id": "Message:ShaggyMasksAttend",
|
||||
"measured": {
|
||||
"height": 56,
|
||||
"width": 200
|
||||
},
|
||||
"position": {
|
||||
"x": 1447.3125,
|
||||
"y": 181.5
|
||||
},
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "messageNode"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"text": "Searches for relevant database creation statements.\n\nIt should label with a knowledgebase to which the schema is dumped in. You could use \" General \" as parsing method, \" 2 \" as chunk size and \" ; \" as delimiter."
|
||||
},
|
||||
"label": "Note",
|
||||
"name": "Note Schema"
|
||||
},
|
||||
"dragHandle": ".note-drag-handle",
|
||||
"dragging": false,
|
||||
"height": 188,
|
||||
"id": "Note:ThickClubsFloat",
|
||||
"measured": {
|
||||
"height": 188,
|
||||
"width": 392
|
||||
},
|
||||
"position": {
|
||||
"x": 689,
|
||||
"y": -180.31251144409183
|
||||
},
|
||||
"resizing": false,
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "noteNode",
|
||||
"width": 392
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"text": "Searches for samples about question to SQL. \n\nYou could use \" Q&A \" as parsing method.\n\nPlease check this dataset:\nhttps://huggingface.co/datasets/InfiniFlow/text2sql"
|
||||
},
|
||||
"label": "Note",
|
||||
"name": "Note: Question to SQL"
|
||||
},
|
||||
"dragHandle": ".note-drag-handle",
|
||||
"dragging": false,
|
||||
"height": 154,
|
||||
"id": "Note:ElevenLionsJoke",
|
||||
"measured": {
|
||||
"height": 154,
|
||||
"width": 345
|
||||
},
|
||||
"position": {
|
||||
"x": 693.5,
|
||||
"y": 138
|
||||
},
|
||||
"resizing": false,
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "noteNode",
|
||||
"width": 345
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"text": "Searches for description about meanings of tables and fields.\n\nYou could use \" General \" as parsing method, \" 2 \" as chunk size and \" ### \" as delimiter."
|
||||
},
|
||||
"label": "Note",
|
||||
"name": "Note: Database Description"
|
||||
},
|
||||
"dragHandle": ".note-drag-handle",
|
||||
"dragging": false,
|
||||
"height": 158,
|
||||
"id": "Note:ManyRosesTrade",
|
||||
"measured": {
|
||||
"height": 158,
|
||||
"width": 408
|
||||
},
|
||||
"position": {
|
||||
"x": 691.5,
|
||||
"y": 435.69736389555317
|
||||
},
|
||||
"resizing": false,
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "noteNode",
|
||||
"width": 408
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"text": "The Agent learns which tables may be available based on the responses from three knowledge bases and converts the user's input into SQL statements."
|
||||
},
|
||||
"label": "Note",
|
||||
"name": "Note: SQL Generator"
|
||||
},
|
||||
"dragHandle": ".note-drag-handle",
|
||||
"dragging": false,
|
||||
"height": 132,
|
||||
"id": "Note:RudeHousesInvite",
|
||||
"measured": {
|
||||
"height": 132,
|
||||
"width": 383
|
||||
},
|
||||
"position": {
|
||||
"x": 1106.9254833678003,
|
||||
"y": 290.5891036507015
|
||||
},
|
||||
"resizing": false,
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "noteNode",
|
||||
"width": 383
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"form": {
|
||||
"text": "Connect to your database to execute SQL statements."
|
||||
},
|
||||
"label": "Note",
|
||||
"name": "Note: SQL Executor"
|
||||
},
|
||||
"dragHandle": ".note-drag-handle",
|
||||
"dragging": false,
|
||||
"id": "Note:HungryBatsLay",
|
||||
"measured": {
|
||||
"height": 136,
|
||||
"width": 255
|
||||
},
|
||||
"position": {
|
||||
"x": 1185,
|
||||
"y": -30
|
||||
},
|
||||
"selected": false,
|
||||
"sourcePosition": "right",
|
||||
"targetPosition": "left",
|
||||
"type": "noteNode"
|
||||
}
|
||||
]
|
||||
},
|
||||
"history": [],
|
||||
"messages": [],
|
||||
"path": [],
|
||||
"retrieval": []
|
||||
},
|
||||
"avatar": ""
|
||||
}
|
||||
@ -86,7 +86,7 @@ class Retrieval(ToolBase, ABC):
|
||||
kb_ids.append(id)
|
||||
continue
|
||||
kb_nm = self._canvas.get_variable_value(id)
|
||||
e, kb = KnowledgebaseService.get_by_name(kb_nm)
|
||||
e, kb = KnowledgebaseService.get_by_name(kb_nm, self._canvas._tenant_id)
|
||||
if not e:
|
||||
raise Exception(f"Dataset({kb_nm}) does not exist.")
|
||||
kb_ids.append(kb.id)
|
||||
|
||||
@ -20,94 +20,128 @@ BEGIN_SEARCH_RESULT = "<|begin_search_result|>"
|
||||
END_SEARCH_RESULT = "<|end_search_result|>"
|
||||
MAX_SEARCH_LIMIT = 6
|
||||
|
||||
REASON_PROMPT = (
|
||||
"You are a reasoning assistant with the ability to perform dataset searches to help "
|
||||
"you answer the user's question accurately. You have special tools:\n\n"
|
||||
f"- To perform a search: write {BEGIN_SEARCH_QUERY} your query here {END_SEARCH_QUERY}.\n"
|
||||
f"Then, the system will search and analyze relevant content, then provide you with helpful information in the format {BEGIN_SEARCH_RESULT} ...search results... {END_SEARCH_RESULT}.\n\n"
|
||||
f"You can repeat the search process multiple times if necessary. The maximum number of search attempts is limited to {MAX_SEARCH_LIMIT}.\n\n"
|
||||
"Once you have all the information you need, continue your reasoning.\n\n"
|
||||
"-- Example 1 --\n" ########################################
|
||||
"Question: \"Are both the directors of Jaws and Casino Royale from the same country?\"\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Who is the director of Jaws?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nThe director of Jaws is Steven Spielberg...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information.\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Where is Steven Spielberg from?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nSteven Allan Spielberg is an American filmmaker...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information...\n\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Who is the director of Casino Royale?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nCasino Royale is a 2006 spy film directed by Martin Campbell...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information...\n\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Where is Martin Campbell from?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nMartin Campbell (born 24 October 1943) is a New Zealand film and television director...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information...\n\n"
|
||||
"Assistant:\nIt's enough to answer the question\n"
|
||||
REASON_PROMPT = f"""You are an advanced reasoning agent. Your goal is to answer the user's question by breaking it down into a series of verifiable steps.
|
||||
|
||||
"-- Example 2 --\n" #########################################
|
||||
"Question: \"When was the founder of craigslist born?\"\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY}Who was the founder of craigslist?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nCraigslist was founded by Craig Newmark...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information.\n"
|
||||
"Assistant:\n"
|
||||
f" {BEGIN_SEARCH_QUERY} When was Craig Newmark born?{END_SEARCH_QUERY}\n\n"
|
||||
"User:\n"
|
||||
f" {BEGIN_SEARCH_RESULT}\nCraig Newmark was born on December 6, 1952...\n{END_SEARCH_RESULT}\n\n"
|
||||
"Continues reasoning with the new information...\n\n"
|
||||
"Assistant:\nIt's enough to answer the question\n"
|
||||
"**Remember**:\n"
|
||||
f"- You have a dataset to search, so you just provide a proper search query.\n"
|
||||
f"- Use {BEGIN_SEARCH_QUERY} to request a dataset search and end with {END_SEARCH_QUERY}.\n"
|
||||
"- The language of query MUST be as the same as 'Question' or 'search result'.\n"
|
||||
"- If no helpful information can be found, rewrite the search query to be less and precise keywords.\n"
|
||||
"- When done searching, continue your reasoning.\n\n"
|
||||
'Please answer the following question. You should think step by step to solve it.\n\n'
|
||||
)
|
||||
You have access to a powerful search tool to find information.
|
||||
|
||||
RELEVANT_EXTRACTION_PROMPT = """**Task Instruction:**
|
||||
**Your Task:**
|
||||
1. Analyze the user's question.
|
||||
2. If you need information, issue a search query to find a specific fact.
|
||||
3. Review the search results.
|
||||
4. Repeat the search process until you have all the facts needed to answer the question.
|
||||
5. Once you have gathered sufficient information, synthesize the facts and provide the final answer directly.
|
||||
|
||||
You are tasked with reading and analyzing web pages based on the following inputs: **Previous Reasoning Steps**, **Current Search Query**, and **Searched Web Pages**. Your objective is to extract relevant and helpful information for **Current Search Query** from the **Searched Web Pages** and seamlessly integrate this information into the **Previous Reasoning Steps** to continue reasoning for the original question.
|
||||
**Tool Usage:**
|
||||
- To search, you MUST write your query between the special tokens: {BEGIN_SEARCH_QUERY}your query{END_SEARCH_QUERY}.
|
||||
- The system will provide results between {BEGIN_SEARCH_RESULT}search results{END_SEARCH_RESULT}.
|
||||
- You have a maximum of {MAX_SEARCH_LIMIT} search attempts.
|
||||
|
||||
**Guidelines:**
|
||||
---
|
||||
**Example 1: Multi-hop Question**
|
||||
|
||||
1. **Analyze the Searched Web Pages:**
|
||||
- Carefully review the content of each searched web page.
|
||||
- Identify factual information that is relevant to the **Current Search Query** and can aid in the reasoning process for the original question.
|
||||
**Question:** "Are both the directors of Jaws and Casino Royale from the same country?"
|
||||
|
||||
2. **Extract Relevant Information:**
|
||||
- Select the information from the Searched Web Pages that directly contributes to advancing the **Previous Reasoning Steps**.
|
||||
- Ensure that the extracted information is accurate and relevant.
|
||||
**Your Thought Process & Actions:**
|
||||
First, I need to identify the director of Jaws.
|
||||
{BEGIN_SEARCH_QUERY}who is the director of Jaws?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Jaws is a 1975 American thriller film directed by Steven Spielberg.
|
||||
{END_SEARCH_RESULT}
|
||||
Okay, the director of Jaws is Steven Spielberg. Now I need to find out his nationality.
|
||||
{BEGIN_SEARCH_QUERY}where is Steven Spielberg from?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Steven Allan Spielberg is an American filmmaker. Born in Cincinnati, Ohio...
|
||||
{END_SEARCH_RESULT}
|
||||
So, Steven Spielberg is from the USA. Next, I need to find the director of Casino Royale.
|
||||
{BEGIN_SEARCH_QUERY}who is the director of Casino Royale 2006?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Casino Royale is a 2006 spy film directed by Martin Campbell.
|
||||
{END_SEARCH_RESULT}
|
||||
The director of Casino Royale is Martin Campbell. Now I need his nationality.
|
||||
{BEGIN_SEARCH_QUERY}where is Martin Campbell from?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Martin Campbell (born 24 October 1943) is a New Zealand film and television director.
|
||||
{END_SEARCH_RESULT}
|
||||
I have all the information. Steven Spielberg is from the USA, and Martin Campbell is from New Zealand. They are not from the same country.
|
||||
|
||||
3. **Output Format:**
|
||||
- **If the web pages provide helpful information for current search query:** Present the information beginning with `**Final Information**` as shown below.
|
||||
- The language of query **MUST BE** as the same as 'Search Query' or 'Web Pages'.\n"
|
||||
**Final Information**
|
||||
Final Answer: No, the directors of Jaws and Casino Royale are not from the same country. Steven Spielberg is from the USA, and Martin Campbell is from New Zealand.
|
||||
|
||||
[Helpful information]
|
||||
---
|
||||
**Example 2: Simple Fact Retrieval**
|
||||
|
||||
- **If the web pages do not provide any helpful information for current search query:** Output the following text.
|
||||
**Question:** "When was the founder of craigslist born?"
|
||||
|
||||
**Final Information**
|
||||
**Your Thought Process & Actions:**
|
||||
First, I need to know who founded craigslist.
|
||||
{BEGIN_SEARCH_QUERY}who founded craigslist?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Craigslist was founded in 1995 by Craig Newmark.
|
||||
{END_SEARCH_RESULT}
|
||||
The founder is Craig Newmark. Now I need his birth date.
|
||||
{BEGIN_SEARCH_QUERY}when was Craig Newmark born?{END_SEARCH_QUERY}
|
||||
[System returns search results]
|
||||
{BEGIN_SEARCH_RESULT}
|
||||
Craig Newmark was born on December 6, 1952.
|
||||
{END_SEARCH_RESULT}
|
||||
I have found the answer.
|
||||
|
||||
No helpful information found.
|
||||
Final Answer: The founder of craigslist, Craig Newmark, was born on December 6, 1952.
|
||||
|
||||
**Inputs:**
|
||||
- **Previous Reasoning Steps:**
|
||||
{prev_reasoning}
|
||||
---
|
||||
**Important Rules:**
|
||||
- **One Fact at a Time:** Decompose the problem and issue one search query at a time to find a single, specific piece of information.
|
||||
- **Be Precise:** Formulate clear and precise search queries. If a search fails, rephrase it.
|
||||
- **Synthesize at the End:** Do not provide the final answer until you have completed all necessary searches.
|
||||
- **Language Consistency:** Your search queries should be in the same language as the user's question.
|
||||
|
||||
- **Current Search Query:**
|
||||
{search_query}
|
||||
Now, begin your work. Please answer the following question by thinking step-by-step.
|
||||
"""
|
||||
|
||||
- **Searched Web Pages:**
|
||||
{document}
|
||||
RELEVANT_EXTRACTION_PROMPT = """You are a highly efficient information extraction module. Your sole purpose is to extract the single most relevant piece of information from the provided `Searched Web Pages` that directly answers the `Current Search Query`.
|
||||
|
||||
"""
|
||||
**Your Task:**
|
||||
1. Read the `Current Search Query` to understand what specific information is needed.
|
||||
2. Scan the `Searched Web Pages` to find the answer to that query.
|
||||
3. Extract only the essential, factual information that answers the query. Be concise.
|
||||
|
||||
**Context (For Your Information Only):**
|
||||
The `Previous Reasoning Steps` are provided to give you context on the overall goal, but your primary focus MUST be on answering the `Current Search Query`. Do not use information from the previous steps in your output.
|
||||
|
||||
**Output Format:**
|
||||
Your response must follow one of two formats precisely.
|
||||
|
||||
1. **If a direct and relevant answer is found:**
|
||||
- Start your response immediately with `Final Information`.
|
||||
- Provide only the extracted fact(s). Do not add any extra conversational text.
|
||||
|
||||
*Example:*
|
||||
`Current Search Query`: Where is Martin Campbell from?
|
||||
`Searched Web Pages`: [Long article snippet about Martin Campbell's career, which includes the sentence "Martin Campbell (born 24 October 1943) is a New Zealand film and television director..."]
|
||||
|
||||
*Your Output:*
|
||||
Final Information
|
||||
Martin Campbell is a New Zealand film and television director.
|
||||
|
||||
2. **If no relevant answer that directly addresses the query is found in the web pages:**
|
||||
- Start your response immediately with `Final Information`.
|
||||
- Write the exact phrase: `No helpful information found.`
|
||||
|
||||
---
|
||||
**BEGIN TASK**
|
||||
|
||||
**Inputs:**
|
||||
|
||||
- **Previous Reasoning Steps:**
|
||||
{prev_reasoning}
|
||||
|
||||
- **Current Search Query:**
|
||||
{search_query}
|
||||
|
||||
- **Searched Web Pages:**
|
||||
{document}
|
||||
"""
|
||||
@ -32,8 +32,7 @@ from api.db.services.user_service import TenantService
|
||||
from api.db.services.user_canvas_version import UserCanvasVersionService
|
||||
from api.settings import RetCode
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import get_json_result, server_error_response, validate_request, get_data_error_result, \
|
||||
get_error_data_result
|
||||
from api.utils.api_utils import get_json_result, server_error_response, validate_request, get_data_error_result
|
||||
from agent.canvas import Canvas
|
||||
from peewee import MySQLDatabase, PostgresqlDatabase
|
||||
from api.db.db_models import APIToken
|
||||
@ -62,7 +61,7 @@ def canvas_list():
|
||||
@login_required
|
||||
def rm():
|
||||
for i in request.json["canvas_ids"]:
|
||||
if not UserCanvasService.query(user_id=current_user.id,id=i):
|
||||
if not UserCanvasService.accessible(i, current_user.id):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
@ -86,7 +85,7 @@ def save():
|
||||
if not UserCanvasService.save(**req):
|
||||
return get_data_error_result(message="Fail to save canvas.")
|
||||
else:
|
||||
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
|
||||
if not UserCanvasService.accessible(req["id"], current_user.id):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
@ -100,9 +99,9 @@ def save():
|
||||
@manager.route('/get/<canvas_id>', methods=['GET']) # noqa: F821
|
||||
@login_required
|
||||
def get(canvas_id):
|
||||
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
|
||||
if not e or c["user_id"] != current_user.id:
|
||||
if not UserCanvasService.accessible(canvas_id, current_user.id):
|
||||
return get_data_error_result(message="canvas not found.")
|
||||
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
|
||||
return get_json_result(data=c)
|
||||
|
||||
|
||||
@ -131,14 +130,15 @@ def run():
|
||||
files = req.get("files", [])
|
||||
inputs = req.get("inputs", {})
|
||||
user_id = req.get("user_id", current_user.id)
|
||||
e, cvs = UserCanvasService.get_by_id(req["id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="canvas not found.")
|
||||
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
|
||||
if not UserCanvasService.accessible(req["id"], current_user.id):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
|
||||
e, cvs = UserCanvasService.get_by_id(req["id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="canvas not found.")
|
||||
|
||||
if not isinstance(cvs.dsl, str):
|
||||
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
||||
|
||||
@ -172,14 +172,14 @@ def run():
|
||||
@login_required
|
||||
def reset():
|
||||
req = request.json
|
||||
if not UserCanvasService.accessible(req["id"], current_user.id):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
try:
|
||||
e, user_canvas = UserCanvasService.get_by_id(req["id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="canvas not found.")
|
||||
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
|
||||
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
|
||||
canvas.reset()
|
||||
@ -290,15 +290,12 @@ def input_form():
|
||||
@login_required
|
||||
def debug():
|
||||
req = request.json
|
||||
if not UserCanvasService.accessible(req["id"], current_user.id):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
try:
|
||||
e, user_canvas = UserCanvasService.get_by_id(req["id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="canvas not found.")
|
||||
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
|
||||
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
|
||||
canvas.reset()
|
||||
canvas.message_id = get_uuid()
|
||||
@ -404,6 +401,12 @@ def list_kbs():
|
||||
def setting():
|
||||
req = request.json
|
||||
req["user_id"] = current_user.id
|
||||
|
||||
if not UserCanvasService.accessible(req["id"], current_user.id):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
|
||||
e,flow = UserCanvasService.get_by_id(req["id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="canvas not found.")
|
||||
@ -415,10 +418,7 @@ def setting():
|
||||
flow["permission"] = req["permission"]
|
||||
if req["avatar"]:
|
||||
flow["avatar"] = req["avatar"]
|
||||
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
|
||||
num= UserCanvasService.update_by_id(req["id"], flow)
|
||||
return get_json_result(data=num)
|
||||
|
||||
@ -441,8 +441,10 @@ def trace():
|
||||
@login_required
|
||||
def sessions(canvas_id):
|
||||
tenant_id = current_user.id
|
||||
if not UserCanvasService.query(user_id=tenant_id, id=canvas_id):
|
||||
return get_error_data_result(message=f"You don't own the agent {canvas_id}.")
|
||||
if not UserCanvasService.accessible(canvas_id, tenant_id):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
|
||||
user_id = request.args.get("user_id")
|
||||
page_number = int(request.args.get("page", 1))
|
||||
|
||||
@ -66,7 +66,8 @@ def set_conversation():
|
||||
e, dia = DialogService.get_by_id(req["dialog_id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="Dialog not found")
|
||||
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": name, "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}],"user_id": current_user.id}
|
||||
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": name, "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}],"user_id": current_user.id,
|
||||
"reference":[{}],}
|
||||
ConversationService.save(**conv)
|
||||
return get_json_result(data=conv)
|
||||
except Exception as e:
|
||||
|
||||
@ -32,7 +32,8 @@ from api.utils.api_utils import get_json_result
|
||||
@login_required
|
||||
def set_dialog():
|
||||
req = request.json
|
||||
dialog_id = req.get("dialog_id")
|
||||
dialog_id = req.get("dialog_id", "")
|
||||
is_create = not dialog_id
|
||||
name = req.get("name", "New Dialog")
|
||||
if not isinstance(name, str):
|
||||
return get_data_error_result(message="Dialog name must be string.")
|
||||
@ -52,15 +53,16 @@ def set_dialog():
|
||||
llm_setting = req.get("llm_setting", {})
|
||||
prompt_config = req["prompt_config"]
|
||||
|
||||
if not req.get("kb_ids", []) and not prompt_config.get("tavily_api_key") and "{knowledge}" in prompt_config['system']:
|
||||
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base/Tavily used here.")
|
||||
if not is_create:
|
||||
if not req.get("kb_ids", []) and not prompt_config.get("tavily_api_key") and "{knowledge}" in prompt_config['system']:
|
||||
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base/Tavily used here.")
|
||||
|
||||
for p in prompt_config["parameters"]:
|
||||
if p["optional"]:
|
||||
continue
|
||||
if prompt_config["system"].find("{%s}" % p["key"]) < 0:
|
||||
return get_data_error_result(
|
||||
message="Parameter '{}' is not used".format(p["key"]))
|
||||
for p in prompt_config["parameters"]:
|
||||
if p["optional"]:
|
||||
continue
|
||||
if prompt_config["system"].find("{%s}" % p["key"]) < 0:
|
||||
return get_data_error_result(
|
||||
message="Parameter '{}' is not used".format(p["key"]))
|
||||
|
||||
try:
|
||||
e, tenant = TenantService.get_by_id(current_user.id)
|
||||
@ -153,6 +155,43 @@ def list_dialogs():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/next', methods=['POST']) # noqa: F821
|
||||
@login_required
|
||||
def list_dialogs_next():
|
||||
keywords = request.args.get("keywords", "")
|
||||
page_number = int(request.args.get("page", 0))
|
||||
items_per_page = int(request.args.get("page_size", 0))
|
||||
parser_id = request.args.get("parser_id")
|
||||
orderby = request.args.get("orderby", "create_time")
|
||||
if request.args.get("desc", "true").lower() == "false":
|
||||
desc = False
|
||||
else:
|
||||
desc = True
|
||||
|
||||
req = request.get_json()
|
||||
owner_ids = req.get("owner_ids", [])
|
||||
try:
|
||||
if not owner_ids:
|
||||
# tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
|
||||
# tenants = [tenant["tenant_id"] for tenant in tenants]
|
||||
tenants = [] # keep it here
|
||||
dialogs, total = DialogService.get_by_tenant_ids(
|
||||
tenants, current_user.id, page_number,
|
||||
items_per_page, orderby, desc, keywords, parser_id)
|
||||
else:
|
||||
tenants = owner_ids
|
||||
dialogs, total = DialogService.get_by_tenant_ids(
|
||||
tenants, current_user.id, 0,
|
||||
0, orderby, desc, keywords, parser_id)
|
||||
dialogs = [dialog for dialog in dialogs if dialog["tenant_id"] in tenants]
|
||||
total = len(dialogs)
|
||||
if page_number and items_per_page:
|
||||
dialogs = dialogs[(page_number-1)*items_per_page:page_number*items_per_page]
|
||||
return get_json_result(data={"dialogs": dialogs, "total": total})
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/rm', methods=['POST']) # noqa: F821
|
||||
@login_required
|
||||
@validate_request("dialog_ids")
|
||||
|
||||
@ -166,6 +166,17 @@ def create():
|
||||
if DocumentService.query(name=req["name"], kb_id=kb_id):
|
||||
return get_data_error_result(message="Duplicated document name in the same knowledgebase.")
|
||||
|
||||
kb_root_folder = FileService.get_kb_folder(kb.tenant_id)
|
||||
if not kb_root_folder:
|
||||
return get_data_error_result(message="Cannot find the root folder.")
|
||||
kb_folder = FileService.new_a_file_from_kb(
|
||||
kb.tenant_id,
|
||||
kb.name,
|
||||
kb_root_folder["id"],
|
||||
)
|
||||
if not kb_folder:
|
||||
return get_data_error_result(message="Cannot find the kb folder for this file.")
|
||||
|
||||
doc = DocumentService.insert(
|
||||
{
|
||||
"id": get_uuid(),
|
||||
@ -180,6 +191,9 @@ def create():
|
||||
"size": 0,
|
||||
}
|
||||
)
|
||||
|
||||
FileService.add_file_from_kb(doc.to_dict(), kb_folder["id"], kb.tenant_id)
|
||||
|
||||
return get_json_result(data=doc.to_json())
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
@ -15,7 +15,6 @@
|
||||
#
|
||||
import logging
|
||||
import json
|
||||
import base64
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
|
||||
@ -24,7 +23,7 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
|
||||
from api.db import StatusEnum, LLMType
|
||||
from api.db.db_models import TenantLLM
|
||||
from api.utils.api_utils import get_json_result
|
||||
from api.utils.base64_image import test_image_base64
|
||||
from api.utils.base64_image import test_image
|
||||
from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
|
||||
|
||||
|
||||
@ -82,7 +81,7 @@ def set_api_key():
|
||||
raise Exception(m)
|
||||
chat_passed = True
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
|
||||
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
|
||||
e)
|
||||
elif not rerank_passed and llm.model_type == LLMType.RERANK:
|
||||
assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
|
||||
@ -95,7 +94,7 @@ def set_api_key():
|
||||
rerank_passed = True
|
||||
logging.debug(f'passed model rerank {llm.llm_name}')
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
|
||||
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
|
||||
e)
|
||||
if any([embd_passed, chat_passed, rerank_passed]):
|
||||
msg = ''
|
||||
@ -230,7 +229,7 @@ def add_llm():
|
||||
if not tc and m.find("**ERROR**:") >= 0:
|
||||
raise Exception(m)
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({mdl_nm})." + str(
|
||||
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
|
||||
e)
|
||||
elif llm["model_type"] == LLMType.RERANK:
|
||||
assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
|
||||
@ -244,9 +243,9 @@ def add_llm():
|
||||
if len(arr) == 0:
|
||||
raise Exception("Not known.")
|
||||
except KeyError:
|
||||
msg += f"{factory} dose not support this model({mdl_nm})"
|
||||
msg += f"{factory} dose not support this model({factory}/{mdl_nm})"
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({mdl_nm})." + str(
|
||||
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
|
||||
e)
|
||||
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
|
||||
assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
|
||||
@ -256,12 +255,12 @@ def add_llm():
|
||||
base_url=llm["api_base"]
|
||||
)
|
||||
try:
|
||||
image_data = base64.b64decode(test_image_base64)
|
||||
image_data = test_image
|
||||
m, tc = mdl.describe(image_data)
|
||||
if not m and not tc:
|
||||
raise Exception(m)
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({mdl_nm})." + str(e)
|
||||
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
||||
elif llm["model_type"] == LLMType.TTS:
|
||||
assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
|
||||
mdl = TTSModel[factory](
|
||||
@ -271,7 +270,7 @@ def add_llm():
|
||||
for resp in mdl.tts("Hello~ Ragflower!"):
|
||||
pass
|
||||
except RuntimeError as e:
|
||||
msg += f"\nFail to access model({mdl_nm})." + str(e)
|
||||
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
||||
else:
|
||||
# TODO: check other type of models
|
||||
pass
|
||||
@ -359,8 +358,6 @@ def my_llms():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
|
||||
|
||||
@manager.route('/list', methods=['GET']) # noqa: F821
|
||||
@login_required
|
||||
def list_app():
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
#
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -75,11 +75,13 @@ def retrieval(tenant_id):
|
||||
for c in ranks["chunks"]:
|
||||
e, doc = DocumentService.get_by_id( c["doc_id"])
|
||||
c.pop("vector", None)
|
||||
meta = getattr(doc, 'meta_fields', {})
|
||||
meta["doc_id"] = c["doc_id"]
|
||||
records.append({
|
||||
"content": c["content_with_weight"],
|
||||
"score": c["similarity"],
|
||||
"title": c["docnm_kwd"],
|
||||
"metadata": getattr(doc, 'meta_fields', {})
|
||||
"metadata": meta
|
||||
})
|
||||
|
||||
return jsonify({"records": records})
|
||||
|
||||
@ -51,6 +51,7 @@ def create(tenant_id, chat_id):
|
||||
"name": req.get("name", "New session"),
|
||||
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
|
||||
"user_id": req.get("user_id", ""),
|
||||
"reference": [{}],
|
||||
}
|
||||
if not conv.get("name"):
|
||||
return get_error_data_result(message="`name` can not be empty.")
|
||||
@ -435,14 +436,38 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
|
||||
)
|
||||
)
|
||||
|
||||
# Get the last user message as the question
|
||||
question = next((m["content"] for m in reversed(messages) if m["role"] == "user"), "")
|
||||
|
||||
if req.get("stream", True):
|
||||
return Response(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", req.get("metadata", {}).get("id", "")), stream=True), mimetype="text/event-stream")
|
||||
stream = req.pop("stream", False)
|
||||
if stream:
|
||||
resp = Response(
|
||||
completionOpenAI(
|
||||
tenant_id,
|
||||
agent_id,
|
||||
question,
|
||||
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
|
||||
stream=True,
|
||||
**req,
|
||||
),
|
||||
mimetype="text/event-stream",
|
||||
)
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
resp.headers.add_header("Connection", "keep-alive")
|
||||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||||
return resp
|
||||
else:
|
||||
# For non-streaming, just return the response directly
|
||||
response = next(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", req.get("metadata", {}).get("id", "")), stream=False))
|
||||
response = next(
|
||||
completionOpenAI(
|
||||
tenant_id,
|
||||
agent_id,
|
||||
question,
|
||||
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
|
||||
stream=False,
|
||||
**req,
|
||||
)
|
||||
)
|
||||
return jsonify(response)
|
||||
|
||||
|
||||
@ -450,41 +475,38 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
|
||||
@token_required
|
||||
def agent_completions(tenant_id, agent_id):
|
||||
req = request.json
|
||||
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
|
||||
if not cvs:
|
||||
return get_error_data_result(f"You don't own the agent {agent_id}")
|
||||
if req.get("session_id"):
|
||||
dsl = cvs[0].dsl
|
||||
if not isinstance(dsl, str):
|
||||
dsl = json.dumps(dsl)
|
||||
|
||||
conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
|
||||
if not conv:
|
||||
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
||||
# If an update to UserCanvas is detected, update the API4Conversation.dsl
|
||||
sync_dsl = req.get("sync_dsl", False)
|
||||
if sync_dsl is True and cvs[0].update_time > conv[0].update_time:
|
||||
current_dsl = conv[0].dsl
|
||||
new_dsl = json.loads(dsl)
|
||||
state_fields = ["history", "messages", "path", "reference"]
|
||||
states = {field: current_dsl.get(field, []) for field in state_fields}
|
||||
current_dsl.update(new_dsl)
|
||||
current_dsl.update(states)
|
||||
API4ConversationService.update_by_id(req["session_id"], {"dsl": current_dsl})
|
||||
else:
|
||||
req["question"] = ""
|
||||
ans = {}
|
||||
if req.get("stream", True):
|
||||
resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
|
||||
|
||||
def generate():
|
||||
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
||||
if isinstance(answer, str):
|
||||
try:
|
||||
ans = json.loads(answer[5:]) # remove "data:"
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
if ans.get("event") != "message":
|
||||
continue
|
||||
|
||||
yield answer
|
||||
|
||||
yield "data:[DONE]\n\n"
|
||||
|
||||
resp = Response(generate(), mimetype="text/event-stream")
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
resp.headers.add_header("Connection", "keep-alive")
|
||||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||||
return resp
|
||||
try:
|
||||
for answer in agent_completion(tenant_id, agent_id, **req):
|
||||
return get_result(data=answer)
|
||||
except Exception as e:
|
||||
return get_error_data_result(str(e))
|
||||
|
||||
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
||||
try:
|
||||
ans = json.loads(answer[5:]) # remove "data:"
|
||||
except Exception as e:
|
||||
return get_result(data=f"**ERROR**: {str(e)}")
|
||||
return get_result(data=ans)
|
||||
|
||||
|
||||
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
|
||||
@ -512,16 +534,16 @@ def list_session(tenant_id, chat_id):
|
||||
if "prompt" in info:
|
||||
info.pop("prompt")
|
||||
conv["chat_id"] = conv.pop("dialog_id")
|
||||
if conv["reference"]:
|
||||
ref_messages = conv["reference"]
|
||||
if ref_messages:
|
||||
messages = conv["messages"]
|
||||
message_num = 0
|
||||
while message_num < len(messages) and message_num < len(conv["reference"]):
|
||||
if message_num != 0 and messages[message_num]["role"] != "user":
|
||||
if message_num >= len(conv["reference"]):
|
||||
break
|
||||
ref_num = 0
|
||||
while message_num < len(messages) and ref_num < len(ref_messages):
|
||||
if messages[message_num]["role"] != "user":
|
||||
chunk_list = []
|
||||
if "chunks" in conv["reference"][message_num]:
|
||||
chunks = conv["reference"][message_num]["chunks"]
|
||||
if "chunks" in ref_messages[ref_num]:
|
||||
chunks = ref_messages[ref_num]["chunks"]
|
||||
for chunk in chunks:
|
||||
new_chunk = {
|
||||
"id": chunk.get("chunk_id", chunk.get("id")),
|
||||
@ -535,6 +557,7 @@ def list_session(tenant_id, chat_id):
|
||||
|
||||
chunk_list.append(new_chunk)
|
||||
messages[message_num]["reference"] = chunk_list
|
||||
ref_num += 1
|
||||
message_num += 1
|
||||
del conv["reference"]
|
||||
return get_result(data=convs)
|
||||
@ -848,10 +871,11 @@ def begin_inputs(agent_id):
|
||||
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
|
||||
|
||||
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
|
||||
return get_result(data={
|
||||
"title": cvs.title,
|
||||
"avatar": cvs.avatar,
|
||||
"inputs": canvas.get_component_input_form("begin")
|
||||
})
|
||||
|
||||
|
||||
return get_result(
|
||||
data={
|
||||
"title": cvs.title,
|
||||
"avatar": cvs.avatar,
|
||||
"inputs": canvas.get_component_input_form("begin"),
|
||||
"prologue": canvas.get_prologue()
|
||||
}
|
||||
)
|
||||
|
||||
@ -16,7 +16,6 @@
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
import traceback
|
||||
from uuid import uuid4
|
||||
from agent.canvas import Canvas
|
||||
from api.db import TenantPermission
|
||||
@ -54,12 +53,12 @@ class UserCanvasService(CommonService):
|
||||
agents = agents.paginate(page_number, items_per_page)
|
||||
|
||||
return list(agents.dicts())
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_by_tenant_id(cls, pid):
|
||||
try:
|
||||
|
||||
|
||||
fields = [
|
||||
cls.model.id,
|
||||
cls.model.avatar,
|
||||
@ -83,7 +82,7 @@ class UserCanvasService(CommonService):
|
||||
except Exception as e:
|
||||
logging.exception(e)
|
||||
return False, None
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
|
||||
@ -103,14 +102,14 @@ class UserCanvasService(CommonService):
|
||||
]
|
||||
if keywords:
|
||||
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
||||
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
||||
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
||||
TenantPermission.TEAM.value)) | (
|
||||
cls.model.user_id == user_id)),
|
||||
(fn.LOWER(cls.model.title).contains(keywords.lower()))
|
||||
)
|
||||
else:
|
||||
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
||||
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
||||
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
||||
TenantPermission.TEAM.value)) | (
|
||||
cls.model.user_id == user_id))
|
||||
)
|
||||
@ -122,9 +121,21 @@ class UserCanvasService(CommonService):
|
||||
agents = agents.paginate(page_number, items_per_page)
|
||||
return list(agents.dicts()), count
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def accessible(cls, canvas_id, tenant_id):
|
||||
from api.db.services.user_service import UserTenantService
|
||||
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
|
||||
if not e:
|
||||
return False
|
||||
|
||||
tids = [t.tenant_id for t in UserTenantService.query(user_id=tenant_id)]
|
||||
if c["user_id"] != canvas_id and c["user_id"] not in tids:
|
||||
return False
|
||||
return True
|
||||
|
||||
def completion(tenant_id, agent_id, session_id=None, **kwargs):
|
||||
query = kwargs.get("query", "")
|
||||
query = kwargs.get("query", "") or kwargs.get("question", "")
|
||||
files = kwargs.get("files", [])
|
||||
inputs = kwargs.get("inputs", {})
|
||||
user_id = kwargs.get("user_id", "")
|
||||
@ -173,223 +184,105 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
|
||||
conv.message.append({"role": "assistant", "content": txt, "created_at": time.time(), "id": message_id})
|
||||
conv.reference = canvas.get_reference()
|
||||
conv.errors = canvas.error
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
conv.dsl = str(canvas)
|
||||
conv = conv.to_dict()
|
||||
API4ConversationService.append_message(conv["id"], conv)
|
||||
|
||||
|
||||
def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
|
||||
"""Main function for OpenAI-compatible completions, structured similarly to the completion function."""
|
||||
tiktokenenc = tiktoken.get_encoding("cl100k_base")
|
||||
e, cvs = UserCanvasService.get_by_id(agent_id)
|
||||
|
||||
if not e:
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content="**ERROR**: Agent not found."
|
||||
)
|
||||
return
|
||||
|
||||
if cvs.user_id != tenant_id:
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content="**ERROR**: You do not own the agent"
|
||||
)
|
||||
return
|
||||
|
||||
if not isinstance(cvs.dsl, str):
|
||||
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
||||
|
||||
canvas = Canvas(cvs.dsl, tenant_id)
|
||||
canvas.reset()
|
||||
message_id = str(uuid4())
|
||||
|
||||
# Handle new session creation
|
||||
if not session_id:
|
||||
query = canvas.get_preset_param()
|
||||
if query:
|
||||
for ele in query:
|
||||
if not ele["optional"]:
|
||||
if not kwargs.get(ele["key"]):
|
||||
yield get_data_openai(
|
||||
id=None,
|
||||
model=agent_id,
|
||||
content=f"`{ele['key']}` is required",
|
||||
completion_tokens=len(tiktokenenc.encode(f"`{ele['key']}` is required")),
|
||||
prompt_tokens=len(tiktokenenc.encode(question if question else ""))
|
||||
)
|
||||
return
|
||||
ele["value"] = kwargs[ele["key"]]
|
||||
if ele["optional"]:
|
||||
if kwargs.get(ele["key"]):
|
||||
ele["value"] = kwargs[ele['key']]
|
||||
else:
|
||||
if "value" in ele:
|
||||
ele.pop("value")
|
||||
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
session_id = get_uuid()
|
||||
conv = {
|
||||
"id": session_id,
|
||||
"dialog_id": cvs.id,
|
||||
"user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
|
||||
"message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
|
||||
"source": "agent",
|
||||
"dsl": cvs.dsl
|
||||
}
|
||||
canvas.messages.append({"role": "user", "content": question, "id": message_id})
|
||||
canvas.add_user_input(question)
|
||||
|
||||
API4ConversationService.save(**conv)
|
||||
conv = API4Conversation(**conv)
|
||||
if not conv.message:
|
||||
conv.message = []
|
||||
conv.message.append({
|
||||
"role": "user",
|
||||
"content": question,
|
||||
"id": message_id
|
||||
})
|
||||
|
||||
if not conv.reference:
|
||||
conv.reference = []
|
||||
conv.reference.append({"chunks": [], "doc_aggs": []})
|
||||
|
||||
# Handle existing session
|
||||
else:
|
||||
e, conv = API4ConversationService.get_by_id(session_id)
|
||||
if not e:
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content="**ERROR**: Session not found!"
|
||||
)
|
||||
return
|
||||
|
||||
canvas = Canvas(json.dumps(conv.dsl), tenant_id)
|
||||
canvas.messages.append({"role": "user", "content": question, "id": message_id})
|
||||
canvas.add_user_input(question)
|
||||
|
||||
if not conv.message:
|
||||
conv.message = []
|
||||
conv.message.append({
|
||||
"role": "user",
|
||||
"content": question,
|
||||
"id": message_id
|
||||
})
|
||||
|
||||
if not conv.reference:
|
||||
conv.reference = []
|
||||
conv.reference.append({"chunks": [], "doc_aggs": []})
|
||||
|
||||
# Process request based on stream mode
|
||||
final_ans = {"reference": [], "content": ""}
|
||||
prompt_tokens = len(tiktokenenc.encode(str(question)))
|
||||
|
||||
user_id = kwargs.get("user_id", "")
|
||||
|
||||
if stream:
|
||||
completion_tokens = 0
|
||||
try:
|
||||
completion_tokens = 0
|
||||
for ans in canvas.run(stream=True, bypass_begin=True):
|
||||
if ans.get("running_status"):
|
||||
completion_tokens += len(tiktokenenc.encode(ans.get("content", "")))
|
||||
yield "data: " + json.dumps(
|
||||
get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content=ans["content"],
|
||||
object="chat.completion.chunk",
|
||||
completion_tokens=completion_tokens,
|
||||
prompt_tokens=prompt_tokens
|
||||
),
|
||||
ensure_ascii=False
|
||||
) + "\n\n"
|
||||
for ans in completion(
|
||||
tenant_id=tenant_id,
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
query=question,
|
||||
user_id=user_id,
|
||||
**kwargs
|
||||
):
|
||||
if isinstance(ans, str):
|
||||
try:
|
||||
ans = json.loads(ans[5:]) # remove "data:"
|
||||
except Exception as e:
|
||||
logging.exception(f"Agent OpenAI-Compatible completionOpenAI parse answer failed: {e}")
|
||||
continue
|
||||
|
||||
if ans.get("event") != "message":
|
||||
continue
|
||||
|
||||
for k in ans.keys():
|
||||
final_ans[k] = ans[k]
|
||||
|
||||
completion_tokens += len(tiktokenenc.encode(final_ans.get("content", "")))
|
||||
|
||||
content_piece = ans["data"]["content"]
|
||||
completion_tokens += len(tiktokenenc.encode(content_piece))
|
||||
|
||||
yield "data: " + json.dumps(
|
||||
get_data_openai(
|
||||
id=session_id,
|
||||
id=session_id or str(uuid4()),
|
||||
model=agent_id,
|
||||
content=final_ans["content"],
|
||||
object="chat.completion.chunk",
|
||||
finish_reason="stop",
|
||||
content=content_piece,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
prompt_tokens=prompt_tokens
|
||||
stream=True
|
||||
),
|
||||
ensure_ascii=False
|
||||
) + "\n\n"
|
||||
|
||||
# Update conversation
|
||||
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
|
||||
canvas.history.append(("assistant", final_ans["content"]))
|
||||
if final_ans.get("reference"):
|
||||
canvas.reference.append(final_ans["reference"])
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
|
||||
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
yield "data: " + json.dumps(
|
||||
get_data_openai(
|
||||
id=session_id,
|
||||
id=session_id or str(uuid4()),
|
||||
model=agent_id,
|
||||
content="**ERROR**: " + str(e),
|
||||
content=f"**ERROR**: {str(e)}",
|
||||
finish_reason="stop",
|
||||
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
|
||||
prompt_tokens=prompt_tokens
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=len(tiktokenenc.encode(f"**ERROR**: {str(e)}")),
|
||||
stream=True
|
||||
),
|
||||
ensure_ascii=False
|
||||
) + "\n\n"
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
else: # Non-streaming mode
|
||||
|
||||
else:
|
||||
try:
|
||||
all_answer_content = ""
|
||||
for answer in canvas.run(stream=False, bypass_begin=True):
|
||||
if answer.get("running_status"):
|
||||
all_content = ""
|
||||
for ans in completion(
|
||||
tenant_id=tenant_id,
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
query=question,
|
||||
user_id=user_id,
|
||||
**kwargs
|
||||
):
|
||||
if isinstance(ans, str):
|
||||
ans = json.loads(ans[5:])
|
||||
if ans.get("event") != "message":
|
||||
continue
|
||||
|
||||
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
|
||||
final_ans["reference"] = answer.get("reference", [])
|
||||
all_answer_content += final_ans["content"]
|
||||
|
||||
final_ans["content"] = all_answer_content
|
||||
|
||||
# Update conversation
|
||||
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
|
||||
canvas.history.append(("assistant", final_ans["content"]))
|
||||
if final_ans.get("reference"):
|
||||
canvas.reference.append(final_ans["reference"])
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
|
||||
# Return the response in OpenAI format
|
||||
all_content += ans["data"]["content"]
|
||||
|
||||
completion_tokens = len(tiktokenenc.encode(all_content))
|
||||
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
id=session_id or str(uuid4()),
|
||||
model=agent_id,
|
||||
content=final_ans["content"],
|
||||
finish_reason="stop",
|
||||
completion_tokens=len(tiktokenenc.encode(final_ans["content"])),
|
||||
prompt_tokens=prompt_tokens,
|
||||
param=canvas.get_preset_param() # Added param info like in completion
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
yield get_data_openai(
|
||||
id=session_id,
|
||||
model=agent_id,
|
||||
content="**ERROR**: " + str(e),
|
||||
completion_tokens=completion_tokens,
|
||||
content=all_content,
|
||||
finish_reason="stop",
|
||||
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
|
||||
prompt_tokens=prompt_tokens
|
||||
param=None
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
yield get_data_openai(
|
||||
id=session_id or str(uuid4()),
|
||||
model=agent_id,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=len(tiktokenenc.encode(f"**ERROR**: {str(e)}")),
|
||||
content=f"**ERROR**: {str(e)}",
|
||||
finish_reason="stop",
|
||||
param=None
|
||||
)
|
||||
|
||||
@ -23,6 +23,7 @@ from functools import partial
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from langfuse import Langfuse
|
||||
from peewee import fn
|
||||
|
||||
from agentic_reasoning import DeepResearcher
|
||||
from api import settings
|
||||
@ -96,6 +97,66 @@ class DialogService(CommonService):
|
||||
return list(chats.dicts())
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_by_tenant_ids(cls, joined_tenant_ids, user_id, page_number, items_per_page, orderby, desc, keywords, parser_id=None):
|
||||
from api.db.db_models import User
|
||||
|
||||
fields = [
|
||||
cls.model.id,
|
||||
cls.model.tenant_id,
|
||||
cls.model.name,
|
||||
cls.model.description,
|
||||
cls.model.language,
|
||||
cls.model.llm_id,
|
||||
cls.model.llm_setting,
|
||||
cls.model.prompt_type,
|
||||
cls.model.prompt_config,
|
||||
cls.model.similarity_threshold,
|
||||
cls.model.vector_similarity_weight,
|
||||
cls.model.top_n,
|
||||
cls.model.top_k,
|
||||
cls.model.do_refer,
|
||||
cls.model.rerank_id,
|
||||
cls.model.kb_ids,
|
||||
cls.model.status,
|
||||
User.nickname,
|
||||
User.avatar.alias("tenant_avatar"),
|
||||
cls.model.update_time,
|
||||
cls.model.create_time,
|
||||
]
|
||||
if keywords:
|
||||
dialogs = (
|
||||
cls.model.select(*fields)
|
||||
.join(User, on=(cls.model.tenant_id == User.id))
|
||||
.where(
|
||||
(cls.model.tenant_id.in_(joined_tenant_ids) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value),
|
||||
(fn.LOWER(cls.model.name).contains(keywords.lower())),
|
||||
)
|
||||
)
|
||||
else:
|
||||
dialogs = (
|
||||
cls.model.select(*fields)
|
||||
.join(User, on=(cls.model.tenant_id == User.id))
|
||||
.where(
|
||||
(cls.model.tenant_id.in_(joined_tenant_ids) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value),
|
||||
)
|
||||
)
|
||||
if parser_id:
|
||||
dialogs = dialogs.where(cls.model.parser_id == parser_id)
|
||||
if desc:
|
||||
dialogs = dialogs.order_by(cls.model.getter_by(orderby).desc())
|
||||
else:
|
||||
dialogs = dialogs.order_by(cls.model.getter_by(orderby).asc())
|
||||
|
||||
count = dialogs.count()
|
||||
|
||||
if page_number and items_per_page:
|
||||
dialogs = dialogs.paginate(page_number, items_per_page)
|
||||
|
||||
return list(dialogs.dicts()), count
|
||||
|
||||
|
||||
def chat_solo(dialog, messages, stream=True):
|
||||
if TenantLLMService.llm_id2llm_type(dialog.llm_id) == "image2text":
|
||||
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
|
||||
|
||||
@ -225,6 +225,15 @@ class TenantLLMService(CommonService):
|
||||
if llm_id == llm["llm_name"]:
|
||||
return llm["model_type"].split(",")[-1]
|
||||
|
||||
for llm in LLMService.query(llm_name=llm_id):
|
||||
return llm.model_type
|
||||
|
||||
llm = TenantLLMService.get_or_none(llm_name=llm_id)
|
||||
if llm:
|
||||
return llm.model_type
|
||||
for llm in TenantLLMService.query(llm_name=llm_id):
|
||||
return llm.model_type
|
||||
|
||||
|
||||
class LLMBundle:
|
||||
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
|
||||
|
||||
@ -70,7 +70,7 @@ REGISTER_ENABLED = 1
|
||||
# sandbox-executor-manager
|
||||
SANDBOX_ENABLED = 0
|
||||
SANDBOX_HOST = None
|
||||
STRONG_TEST_COUNT = int(os.environ.get("STRONG_TEST_COUNT", "32"))
|
||||
STRONG_TEST_COUNT = int(os.environ.get("STRONG_TEST_COUNT", "8"))
|
||||
|
||||
BUILTIN_EMBEDDING_MODELS = ["BAAI/bge-large-zh-v1.5@BAAI", "maidalun1020/bce-embedding-base_v1@Youdao"]
|
||||
|
||||
|
||||
@ -402,8 +402,22 @@ def get_data_openai(
|
||||
finish_reason=None,
|
||||
object="chat.completion",
|
||||
param=None,
|
||||
stream=False
|
||||
):
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
|
||||
if stream:
|
||||
return {
|
||||
"id": f"{id}",
|
||||
"object": "chat.completion.chunk",
|
||||
"model": model,
|
||||
"choices": [{
|
||||
"delta": {"content": content},
|
||||
"finish_reason": finish_reason,
|
||||
"index": 0,
|
||||
}],
|
||||
}
|
||||
|
||||
return {
|
||||
"id": f"{id}",
|
||||
"object": object,
|
||||
@ -414,9 +428,21 @@ def get_data_openai(
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": total_tokens,
|
||||
"completion_tokens_details": {"reasoning_tokens": 0, "accepted_prediction_tokens": 0, "rejected_prediction_tokens": 0},
|
||||
"completion_tokens_details": {
|
||||
"reasoning_tokens": 0,
|
||||
"accepted_prediction_tokens": 0,
|
||||
"rejected_prediction_tokens": 0,
|
||||
},
|
||||
},
|
||||
"choices": [{"message": {"role": "assistant", "content": content}, "logprobs": None, "finish_reason": finish_reason, "index": 0}],
|
||||
"choices": [{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": content
|
||||
},
|
||||
"logprobs": None,
|
||||
"finish_reason": finish_reason,
|
||||
"index": 0,
|
||||
}],
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -1 +1,3 @@
|
||||
import base64
|
||||
test_image_base64 = "iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAIAAAD/gAIDAAAA6ElEQVR4nO3QwQ3AIBDAsIP9d25XIC+EZE8QZc18w5l9O+AlZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBT+IYAHHLHkdEgAAAABJRU5ErkJggg=="
|
||||
test_image = base64.b64decode(test_image_base64)
|
||||
@ -6,6 +6,34 @@
|
||||
"tags": "LLM,TEXT EMBEDDING,TTS,TEXT RE-RANK,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "gpt-5",
|
||||
"tags": "LLM,CHAT,400k,IMAGE2TEXT",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-mini",
|
||||
"tags": "LLM,CHAT,400k,IMAGE2TEXT",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-nano",
|
||||
"tags": "LLM,CHAT,400k,IMAGE2TEXT",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-5-chat-latest",
|
||||
"tags": "LLM,CHAT,400k,IMAGE2TEXT",
|
||||
"max_tokens": 400000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "gpt-4.1",
|
||||
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
|
||||
@ -2598,234 +2626,255 @@
|
||||
"tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,IMAGE2TEXT",
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "Qwen3-Embedding-8B",
|
||||
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen3-Embedding-4B",
|
||||
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen3-Embedding-0.6B",
|
||||
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
|
||||
"max_tokens": 32000,
|
||||
"model_type": "embedding",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-235B-A22B",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-30B-A3B",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-32B",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-14B",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen3-8B",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/QVQ-72B-Preview",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-R1",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-V3",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-V3",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-V3-1226",
|
||||
"tags": "LLM,CHAT,64k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 64000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 16384,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "deepseek-ai/DeepSeek-V2.5",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/QwQ-32B",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 32768,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-VL-72B-Instruct",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,128k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-VL-7B-Instruct",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-Z1-32B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-4-32B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-Z1-9B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-4-9B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/chatglm3-6b",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/THUDM/glm-4-9b-chat",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/GLM-Z1-Rumination-32B-0414",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "THUDM/glm-4-9b-chat",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/QwQ-32B-Preview",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 8192,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-Coder-32B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2-VL-72B-Instruct",
|
||||
"tags": "LLM,IMAGE2TEXT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-72B-Instruct-128Kt",
|
||||
"tags": "LLM,IMAGE2TEXT,128k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 128000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
@ -2839,98 +2888,98 @@
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-72B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-32B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-14B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2.5-Coder-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "internlm/internlm2_5-20b-chat",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "internlm/internlm2_5-7b-chat",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Qwen/Qwen2-1.5B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-Coder-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2-VL-7B-Instruct",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "image2text",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2.5-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2-7B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
{
|
||||
"llm_name": "Pro/Qwen/Qwen2-1.5B-Instruct",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 4096,
|
||||
"max_tokens": 32000,
|
||||
"model_type": "chat",
|
||||
"is_tools": false
|
||||
},
|
||||
@ -3267,45 +3316,52 @@
|
||||
"status": "1",
|
||||
"llm": [
|
||||
{
|
||||
"llm_name": "claude-opus-4-20250514",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-7-sonnet-20250219",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "image2text",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-5-sonnet-20241022",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"llm_name": "claude-opus-4-1-20250805",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-opus-20240229",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"llm_name": "claude-opus-4-20250514",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-sonnet-4-20250514",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-7-sonnet-20250219",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-5-sonnet-20241022",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-5-haiku-20241022",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
},
|
||||
{
|
||||
"llm_name": "claude-3-haiku-20240307",
|
||||
"tags": "LLM,IMAGE2TEXT,200k",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
|
||||
"max_tokens": 204800,
|
||||
"model_type": "image2text",
|
||||
"model_type": "chat",
|
||||
"is_tools": true
|
||||
}
|
||||
]
|
||||
|
||||
10
docker/.env
10
docker/.env
@ -62,6 +62,8 @@ MYSQL_DBNAME=rag_flow
|
||||
# The port used to expose the MySQL service to the host machine,
|
||||
# allowing EXTERNAL access to the MySQL database running inside the Docker container.
|
||||
MYSQL_PORT=5455
|
||||
# The maximum size of communication packets sent to the MySQL server
|
||||
MYSQL_MAX_PACKET=1073741824
|
||||
|
||||
# The hostname where the MinIO service is exposed
|
||||
MINIO_HOST=minio
|
||||
@ -91,13 +93,13 @@ REDIS_PASSWORD=infini_rag_flow
|
||||
SVR_HTTP_PORT=9380
|
||||
|
||||
# The RAGFlow Docker image to download.
|
||||
# Defaults to the v0.20.0-slim edition, which is the RAGFlow Docker image without embedding models.
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0-slim
|
||||
# Defaults to the v0.20.1-slim edition, which is the RAGFlow Docker image without embedding models.
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1-slim
|
||||
#
|
||||
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
|
||||
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0
|
||||
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1
|
||||
#
|
||||
# The Docker image of the v0.20.0 edition includes built-in embedding models:
|
||||
# The Docker image of the v0.20.1 edition includes built-in embedding models:
|
||||
# - BAAI/bge-large-zh-v1.5
|
||||
# - maidalun1020/bce-embedding-base_v1
|
||||
#
|
||||
|
||||
@ -79,8 +79,8 @@ The [.env](./.env) file contains important environment variables for Docker.
|
||||
- `RAGFLOW-IMAGE`
|
||||
The Docker image edition. Available editions:
|
||||
|
||||
- `infiniflow/ragflow:v0.20.0-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.0`: The RAGFlow Docker image with embedding models including:
|
||||
- `infiniflow/ragflow:v0.20.1-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.1`: The RAGFlow Docker image with embedding models including:
|
||||
- Built-in embedding models:
|
||||
- `BAAI/bge-large-zh-v1.5`
|
||||
- `maidalun1020/bce-embedding-base_v1`
|
||||
|
||||
@ -9,6 +9,7 @@ mysql:
|
||||
port: 3306
|
||||
max_connections: 900
|
||||
stale_timeout: 300
|
||||
max_allowed_packet: ${MYSQL_MAX_PACKET:-1073741824}
|
||||
minio:
|
||||
user: '${MINIO_USER:-rag_flow}'
|
||||
password: '${MINIO_PASSWORD:-infini_rag_flow}'
|
||||
|
||||
@ -99,8 +99,8 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
|
||||
- `RAGFLOW-IMAGE`
|
||||
The Docker image edition. Available editions:
|
||||
|
||||
- `infiniflow/ragflow:v0.20.0-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.0`: The RAGFlow Docker image with embedding models including:
|
||||
- `infiniflow/ragflow:v0.20.1-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.1`: The RAGFlow Docker image with embedding models including:
|
||||
- Built-in embedding models:
|
||||
- `BAAI/bge-large-zh-v1.5`
|
||||
- `maidalun1020/bce-embedding-base_v1`
|
||||
|
||||
@ -77,7 +77,7 @@ After building the infiniflow/ragflow:nightly-slim image, you are ready to launc
|
||||
|
||||
1. Edit Docker Compose Configuration
|
||||
|
||||
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.0-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
|
||||
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.1-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
|
||||
|
||||
|
||||
2. Launch the Service
|
||||
|
||||
10
docs/faq.mdx
10
docs/faq.mdx
@ -30,17 +30,17 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
|
||||
|
||||
Each RAGFlow release is available in two editions:
|
||||
|
||||
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.0-slim`
|
||||
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.0`
|
||||
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1-slim`
|
||||
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1`
|
||||
|
||||
---
|
||||
|
||||
### Which embedding models can be deployed locally?
|
||||
|
||||
RAGFlow offers two Docker image editions, `v0.20.0-slim` and `v0.20.0`:
|
||||
RAGFlow offers two Docker image editions, `v0.20.1-slim` and `v0.20.1`:
|
||||
|
||||
- `infiniflow/ragflow:v0.20.0-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.0`: The RAGFlow Docker image with embedding models including:
|
||||
- `infiniflow/ragflow:v0.20.1-slim` (default): The RAGFlow Docker image without embedding models.
|
||||
- `infiniflow/ragflow:v0.20.1`: The RAGFlow Docker image with embedding models including:
|
||||
- Built-in embedding models:
|
||||
- `BAAI/bge-large-zh-v1.5`
|
||||
- `maidalun1020/bce-embedding-base_v1`
|
||||
|
||||
@ -9,7 +9,7 @@ The component equipped with reasoning, tool usage, and multi-agent collaboration
|
||||
|
||||
---
|
||||
|
||||
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.0 onwards, an **Agent** component is able to work independently and with the following capabilities:
|
||||
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.1 onwards, an **Agent** component is able to work independently and with the following capabilities:
|
||||
|
||||
- Autonomous reasoning with reflection and adjustment based on environmental feedback.
|
||||
- Use of tools or subagents to complete tasks.
|
||||
@ -82,7 +82,7 @@ An integer specifying the number of previous dialogue rounds to input into the L
|
||||
This feature is used for multi-turn dialogue *only*.
|
||||
:::
|
||||
|
||||
### Max retrieves
|
||||
### Max retries
|
||||
|
||||
Defines the maximum number of attempts the agent will make to retry a failed task or operation before stopping or reporting failure.
|
||||
|
||||
@ -92,7 +92,11 @@ The waiting period in seconds that the agent observes before retrying a failed t
|
||||
|
||||
### Max rounds
|
||||
|
||||
Defines the maximum number reflection rounds of the selected chat model. Defaults to 5 rounds.
|
||||
Defines the maximum number reflection rounds of the selected chat model. Defaults to 1 round.
|
||||
|
||||
:::tip NOTE
|
||||
Increasing this value will significantly extend your agent's response time.
|
||||
:::
|
||||
|
||||
### Output
|
||||
|
||||
|
||||
@ -9,7 +9,7 @@ A component that retrieves information from specified datasets.
|
||||
|
||||
## Scenarios
|
||||
|
||||
A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated knowledge bases before being sent to the LLM for content generation. As of v0.20.0, a **Retrieval** component can operate either as a workflow component or as a tool of an **Agent**, enabling the Agent to control its invocation and search queries.
|
||||
A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated knowledge bases before being sent to the LLM for content generation. As of v0.20.1, a **Retrieval** component can operate either as a workflow component or as a tool of an **Agent**, enabling the Agent to control its invocation and search queries.
|
||||
|
||||
## Configurations
|
||||
|
||||
|
||||
@ -48,7 +48,7 @@ You start an AI conversation by creating an assistant.
|
||||
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
|
||||
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
|
||||
- If you are uncertain about the logic behind **Variable**, leave it *as-is*.
|
||||
- As of v0.20.0, if you add custom variables here, the only way you can pass in their values is to call:
|
||||
- As of v0.20.1, if you add custom variables here, the only way you can pass in their values is to call:
|
||||
- HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or
|
||||
- Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant).
|
||||
|
||||
|
||||
@ -128,7 +128,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
|
||||
|
||||
## Search for knowledge base
|
||||
|
||||
As of RAGFlow v0.20.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
|
||||
As of RAGFlow v0.20.1, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
|
||||
|
||||

|
||||
|
||||
|
||||
@ -87,4 +87,4 @@ RAGFlow's file management allows you to download an uploaded file:
|
||||
|
||||

|
||||
|
||||
> As of RAGFlow v0.20.0, bulk download is not supported, nor can you download an entire folder.
|
||||
> As of RAGFlow v0.20.1, bulk download is not supported, nor can you download an entire folder.
|
||||
|
||||
@ -18,7 +18,7 @@ RAGFlow ships with a built-in [Langfuse](https://langfuse.com) integration so th
|
||||
Langfuse stores traces, spans and prompt payloads in a purpose-built observability backend and offers filtering and visualisations on top.
|
||||
|
||||
:::info NOTE
|
||||
• RAGFlow **≥ 0.20.0** (contains the Langfuse connector)
|
||||
• RAGFlow **≥ 0.20.1** (contains the Langfuse connector)
|
||||
• A Langfuse workspace (cloud or self-hosted) with a _Project Public Key_ and _Secret Key_
|
||||
:::
|
||||
|
||||
|
||||
@ -66,10 +66,10 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
|
||||
git clone https://github.com/infiniflow/ragflow.git
|
||||
```
|
||||
|
||||
2. Switch to the latest, officially published release, e.g., `v0.20.0`:
|
||||
2. Switch to the latest, officially published release, e.g., `v0.20.1`:
|
||||
|
||||
```bash
|
||||
git checkout -f v0.20.0
|
||||
git checkout -f v0.20.1
|
||||
```
|
||||
|
||||
3. Update **ragflow/docker/.env**:
|
||||
@ -83,14 +83,14 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
|
||||
<TabItem value="slim">
|
||||
|
||||
```bash
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0-slim
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1-slim
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="full">
|
||||
|
||||
```bash
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
@ -114,10 +114,10 @@ No, you do not need to. Upgrading RAGFlow in itself will *not* remove your uploa
|
||||
1. From an environment with Internet access, pull the required Docker image.
|
||||
2. Save the Docker image to a **.tar** file.
|
||||
```bash
|
||||
docker save -o ragflow.v0.20.0.tar infiniflow/ragflow:v0.20.0
|
||||
docker save -o ragflow.v0.20.1.tar infiniflow/ragflow:v0.20.1
|
||||
```
|
||||
3. Copy the **.tar** file to the target server.
|
||||
4. Load the **.tar** file into Docker:
|
||||
```bash
|
||||
docker load -i ragflow.v0.20.0.tar
|
||||
docker load -i ragflow.v0.20.1.tar
|
||||
```
|
||||
|
||||
@ -44,7 +44,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
|
||||
|
||||
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
|
||||
|
||||
RAGFlow v0.20.0 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
|
||||
RAGFlow v0.20.1 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
|
||||
|
||||
<Tabs
|
||||
defaultValue="linux"
|
||||
@ -184,13 +184,13 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
|
||||
```bash
|
||||
$ git clone https://github.com/infiniflow/ragflow.git
|
||||
$ cd ragflow/docker
|
||||
$ git checkout -f v0.20.0
|
||||
$ git checkout -f v0.20.1
|
||||
```
|
||||
|
||||
3. Use the pre-built Docker images and start up the server:
|
||||
|
||||
:::tip NOTE
|
||||
The command below downloads the `v0.20.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.0` for the full edition `v0.20.0`.
|
||||
The command below downloads the `v0.20.1-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1` for the full edition `v0.20.1`.
|
||||
:::
|
||||
|
||||
```bash
|
||||
@ -207,8 +207,8 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
|
||||
|
||||
| RAGFlow image tag | Image size (GB) | Has embedding models and Python packages? | Stable? |
|
||||
| ------------------- | --------------- | ----------------------------------------- | ------------------------ |
|
||||
| `v0.20.0` | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| `v0.20.0-slim` | ≈2 | ❌ | Stable release |
|
||||
| `v0.20.1` | ≈9 | :heavy_check_mark: | Stable release |
|
||||
| `v0.20.1-slim` | ≈2 | ❌ | Stable release |
|
||||
| `nightly` | ≈9 | :heavy_check_mark: | *Unstable* nightly build |
|
||||
| `nightly-slim` | ≈2 | ❌ | *Unstable* nightly build |
|
||||
|
||||
@ -217,7 +217,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
|
||||
```
|
||||
|
||||
:::danger IMPORTANT
|
||||
The embedding models included in `v0.20.0` and `nightly` are:
|
||||
The embedding models included in `v0.20.1` and `nightly` are:
|
||||
|
||||
- BAAI/bge-large-zh-v1.5
|
||||
- maidalun1020/bce-embedding-base_v1
|
||||
|
||||
@ -19,7 +19,7 @@ import TOCInline from '@theme/TOCInline';
|
||||
|
||||
### Cross-language search
|
||||
|
||||
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.0. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the system’s default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
|
||||
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.1. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the system’s default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
|
||||
|
||||
By enabling cross-language search, users can effortlessly access a broader range of information regardless of language barriers, significantly enhancing the system’s usability and inclusiveness.
|
||||
|
||||
|
||||
@ -22,6 +22,32 @@ The embedding models included in a full edition are:
|
||||
These two embedding models are optimized specifically for English and Chinese, so performance may be compromised if you use them to embed documents in other languages.
|
||||
:::
|
||||
|
||||
## v0.20.1
|
||||
|
||||
Released on August 8, 2025.
|
||||
|
||||
### New Features
|
||||
|
||||
- The **Retrieval** component now supports the dynamic specification of knowledge base names using variables.
|
||||
- The user interface now includes a French language option.
|
||||
|
||||
### Added Models
|
||||
|
||||
- ChatGPT 5
|
||||
- Claude 4.1
|
||||
|
||||
### New agent Templates (both workflow and agentic)
|
||||
|
||||
- SQL Assistant Workflow: Empowers non-technical teams (e.g., operations, product) to independently query business data.
|
||||
- Choose Your Knowledge Base Workflow: Lets users select a knowledge base to query during conversations. [#9325](https://github.com/infiniflow/ragflow/pull/9325)
|
||||
- Choose Your Knowledge Base Agent: Delivers higher-quality responses with extended reasoning time, suited for complex queries. [#9325](https://github.com/infiniflow/ragflow/pull/9325)
|
||||
|
||||
### Fixed Issues
|
||||
|
||||
- The **Agent** component was unable to invoke models installed via vLLM.
|
||||
- Agents could not be shared with the team.
|
||||
- Embedding an Agent into a webpage was not functioning properly.
|
||||
|
||||
## v0.20.0
|
||||
|
||||
Released on August 4, 2025.
|
||||
@ -34,16 +60,16 @@ From v0.20.0 onwards, Agents are no longer compatible with earlier versions, and
|
||||
|
||||
- Unified orchestration of both Agents and Workflows.
|
||||
- A comprehensive refactor of the Agent, greatly enhancing its capabilities and usability, with support for Multi-Agent configurations, planning and reflection, and visual functionalities.
|
||||
- Fully realized MCP functionality, allowing for MCP Server import, Agents functioning as MCP Clients, and RAGFlow itself operating as an MCP Server.
|
||||
- Fully implemented MCP functionality, allowing for MCP Server import, Agents functioning as MCP Clients, and RAGFlow itself operating as an MCP Server.
|
||||
- Access to runtime logs for Agents.
|
||||
- Chat histories with Agents available through the management panel.
|
||||
- Integration of a new, more robust version of Infinity, enabling the auto-tagging functionality with Infinity as the underlying document engine.
|
||||
- An OpenAI-compatible API that supports file reference information.
|
||||
- Support for new embedding models, including Kimi K2, Grok 4, and Voyage.
|
||||
- Support for new models, including Kimi K2, Grok 4, and Voyage embedding.
|
||||
- RAGFlow’s codebase is now mirrored on Gitee.
|
||||
- Introduction of a new model provider, Gitee AI.
|
||||
|
||||
### New agent templates
|
||||
### New agent templates introduced
|
||||
|
||||
- Multi-Agent based Deep Research: Collaborative Agent teamwork led by a Lead Agent with multiple Subagents, distinct from traditional workflow orchestration.
|
||||
- An intelligent Q&A chatbot leveraging internal knowledge bases, designed for customer service and training scenarios.
|
||||
|
||||
@ -33,13 +33,13 @@ env:
|
||||
REDIS_PASSWORD: infini_rag_flow_helm
|
||||
|
||||
# The RAGFlow Docker image to download.
|
||||
# Defaults to the v0.20.0-slim edition, which is the RAGFlow Docker image without embedding models.
|
||||
RAGFLOW_IMAGE: infiniflow/ragflow:v0.20.0-slim
|
||||
# Defaults to the v0.20.1-slim edition, which is the RAGFlow Docker image without embedding models.
|
||||
RAGFLOW_IMAGE: infiniflow/ragflow:v0.20.1-slim
|
||||
#
|
||||
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
|
||||
# RAGFLOW_IMAGE: infiniflow/ragflow:v0.20.0
|
||||
# RAGFLOW_IMAGE: infiniflow/ragflow:v0.20.1
|
||||
#
|
||||
# The Docker image of the v0.20.0 edition includes:
|
||||
# The Docker image of the v0.20.1 edition includes:
|
||||
# - Built-in embedding models:
|
||||
# - BAAI/bge-large-zh-v1.5
|
||||
# - BAAI/bge-reranker-v2-m3
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ragflow"
|
||||
version = "0.20.0"
|
||||
version = "0.20.1"
|
||||
description = "[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data."
|
||||
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
|
||||
license-files = ["LICENSE"]
|
||||
|
||||
@ -135,7 +135,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
sections = pdf_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
|
||||
elif layout_recognizer == "Plain Text":
|
||||
pdf_parser = PlainParser()
|
||||
sections, _ = pdf_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
|
||||
sections, _ = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page,
|
||||
callback=callback)
|
||||
else:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT, llm_name=layout_recognizer, lang=lang)
|
||||
pdf_parser = VisionParser(vision_model=vision_model, **kwargs)
|
||||
|
||||
@ -1099,9 +1099,20 @@ class GeminiChat(Base):
|
||||
|
||||
if system:
|
||||
self.model._system_instruction = content_types.to_content(system)
|
||||
response = self.model.generate_content(hist, generation_config=gen_conf)
|
||||
ans = response.text
|
||||
return ans, response.usage_metadata.total_token_count
|
||||
retry_count = 0
|
||||
max_retries = 3
|
||||
while retry_count < max_retries:
|
||||
try:
|
||||
response = self.model.generate_content(hist, generation_config=gen_conf)
|
||||
ans = response.text
|
||||
return ans, response.usage_metadata.total_token_count
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
if retry_count >= max_retries:
|
||||
raise e
|
||||
else:
|
||||
import time
|
||||
time.sleep(50)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
||||
from google.generativeai.types import content_types
|
||||
@ -1216,11 +1227,11 @@ class LmStudioChat(Base):
|
||||
class OpenAI_APIChat(Base):
|
||||
_FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
|
||||
|
||||
def __init__(self, key, model_name, base_url):
|
||||
def __init__(self, key, model_name, base_url, **kwargs):
|
||||
if not base_url:
|
||||
raise ValueError("url cannot be None")
|
||||
model_name = model_name.split("___")[0]
|
||||
super().__init__(key, model_name, base_url)
|
||||
super().__init__(key, model_name, base_url, **kwargs)
|
||||
|
||||
|
||||
class PPIOChat(Base):
|
||||
|
||||
@ -59,6 +59,10 @@ class Base(ABC):
|
||||
def _image_prompt(self, text, images):
|
||||
if not images:
|
||||
return text
|
||||
|
||||
if isinstance(images, str) or "bytes" in type(images).__name__:
|
||||
images = [images]
|
||||
|
||||
pmpt = [{"type": "text", "text": text}]
|
||||
for img in images:
|
||||
pmpt.append({
|
||||
@ -518,6 +522,7 @@ class GeminiCV(Base):
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
from transformers import GenerationConfig
|
||||
ans = ""
|
||||
response = None
|
||||
try:
|
||||
response = self.model.generate_content(
|
||||
self._form_history(system, history, images),
|
||||
@ -533,8 +538,11 @@ class GeminiCV(Base):
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield response._chunks[-1].usage_metadata.total_token_count
|
||||
|
||||
if response and hasattr(response, "usage_metadata") and hasattr(response.usage_metadata, "total_token_count"):
|
||||
yield response.usage_metadata.total_token_count
|
||||
else:
|
||||
yield 0
|
||||
|
||||
|
||||
class NvidiaCV(Base):
|
||||
_FACTORY_NAME = "NVIDIA"
|
||||
@ -616,15 +624,18 @@ class NvidiaCV(Base):
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
||||
total_tokens = 0
|
||||
try:
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
cnt = response["choices"][0]["message"]["content"]
|
||||
if "usage" in response and "total_tokens" in response["usage"]:
|
||||
total_tokens += response["usage"]["total_tokens"]
|
||||
for resp in cnt:
|
||||
yield resp
|
||||
except Exception as e:
|
||||
yield "\n**ERROR**: " + str(e)
|
||||
|
||||
yield response["usage"]["total_tokens"]
|
||||
yield total_tokens
|
||||
|
||||
|
||||
class AnthropicCV(Base):
|
||||
@ -795,4 +806,4 @@ class GoogleCV(AnthropicCV, GeminiCV):
|
||||
yield ans
|
||||
else:
|
||||
for ans in GeminiCV.chat_streamly(self, system, history, gen_conf, images):
|
||||
yield ans
|
||||
yield ans
|
||||
|
||||
@ -37,7 +37,12 @@ from rag.utils import num_tokens_from_string, truncate
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
"""
|
||||
Constructor for abstract base class.
|
||||
Parameters are accepted for interface consistency but are not stored.
|
||||
Subclasses should implement their own initialization as needed.
|
||||
"""
|
||||
pass
|
||||
|
||||
def encode(self, texts: list):
|
||||
@ -864,7 +869,7 @@ class VoyageEmbed(Base):
|
||||
class HuggingFaceEmbed(Base):
|
||||
_FACTORY_NAME = "HuggingFace"
|
||||
|
||||
def __init__(self, key, model_name, base_url=None):
|
||||
def __init__(self, key, model_name, base_url=None, **kwargs):
|
||||
if not model_name:
|
||||
raise ValueError("Model name cannot be None")
|
||||
self.key = key
|
||||
@ -946,4 +951,4 @@ class Ai302Embed(Base):
|
||||
def __init__(self, key, model_name, base_url="https://api.302.ai/v1/embeddings"):
|
||||
if not base_url:
|
||||
base_url = "https://api.302.ai/v1/embeddings"
|
||||
super().__init__(key, model_name, base_url)
|
||||
super().__init__(key, model_name, base_url)
|
||||
@ -33,7 +33,11 @@ from api.utils.log_utils import log_exception
|
||||
from rag.utils import num_tokens_from_string, truncate
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
"""
|
||||
Abstract base class constructor.
|
||||
Parameters are not stored; initialization is left to subclasses.
|
||||
"""
|
||||
pass
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
@ -315,7 +319,7 @@ class NvidiaRerank(Base):
|
||||
class LmStudioRerank(Base):
|
||||
_FACTORY_NAME = "LM-Studio"
|
||||
|
||||
def __init__(self, key, model_name, base_url):
|
||||
def __init__(self, key, model_name, base_url, **kwargs):
|
||||
pass
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
@ -396,7 +400,7 @@ class CoHereRerank(Base):
|
||||
class TogetherAIRerank(Base):
|
||||
_FACTORY_NAME = "TogetherAI"
|
||||
|
||||
def __init__(self, key, model_name, base_url):
|
||||
def __init__(self, key, model_name, base_url, **kwargs):
|
||||
pass
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
|
||||
@ -28,7 +28,11 @@ from rag.utils import num_tokens_from_string
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
"""
|
||||
Abstract base class constructor.
|
||||
Parameters are not stored; initialization is left to subclasses.
|
||||
"""
|
||||
pass
|
||||
|
||||
def transcription(self, audio, **kwargs):
|
||||
|
||||
@ -63,7 +63,11 @@ class ServeTTSRequest(BaseModel):
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
def __init__(self, key, model_name, base_url, **kwargs):
|
||||
"""
|
||||
Abstract base class constructor.
|
||||
Parameters are not stored; subclasses should handle their own initialization.
|
||||
"""
|
||||
pass
|
||||
|
||||
def tts(self, audio):
|
||||
|
||||
@ -611,6 +611,10 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
|
||||
if re.match(f"^{dels}$", sub_sec):
|
||||
continue
|
||||
add_chunk(sub_sec, image)
|
||||
|
||||
for img in images:
|
||||
if isinstance(img, Image.Image):
|
||||
img.close()
|
||||
|
||||
return cks, result_images
|
||||
|
||||
@ -642,7 +646,6 @@ def concat_img(img1, img2):
|
||||
pixel_data1 = img1.tobytes()
|
||||
pixel_data2 = img2.tobytes()
|
||||
if pixel_data1 == pixel_data2:
|
||||
img2.close()
|
||||
return img1
|
||||
|
||||
width1, height1 = img1.size
|
||||
@ -654,8 +657,6 @@ def concat_img(img1, img2):
|
||||
|
||||
new_image.paste(img1, (0, 0))
|
||||
new_image.paste(img2, (0, height1))
|
||||
img1.close()
|
||||
img2.close()
|
||||
return new_image
|
||||
|
||||
|
||||
|
||||
@ -231,7 +231,7 @@ async def get_storage_binary(bucket, name):
|
||||
return await trio.to_thread.run_sync(lambda: STORAGE_IMPL.get(bucket, name))
|
||||
|
||||
|
||||
@timeout(60*40, 1)
|
||||
@timeout(60*80, 1)
|
||||
async def build_chunks(task, progress_callback):
|
||||
if task["size"] > DOC_MAXIMUM_SIZE:
|
||||
set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
|
||||
@ -284,7 +284,7 @@ async def build_chunks(task, progress_callback):
|
||||
try:
|
||||
d = copy.deepcopy(document)
|
||||
d.update(chunk)
|
||||
d["id"] = xxhash.xxh64((chunk["content_with_weight"] + str(d["doc_id"])).encode("utf-8")).hexdigest()
|
||||
d["id"] = xxhash.xxh64((chunk["content_with_weight"] + str(d["doc_id"])).encode("utf-8", "surrogatepass")).hexdigest()
|
||||
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
|
||||
d["create_timestamp_flt"] = datetime.now().timestamp()
|
||||
if not d.get("image"):
|
||||
@ -420,7 +420,6 @@ def init_kb(row, vector_size: int):
|
||||
return settings.docStoreConn.createIdx(idxnm, row.get("kb_id", ""), vector_size)
|
||||
|
||||
|
||||
@timeout(60*20)
|
||||
async def embedding(docs, mdl, parser_config=None, callback=None):
|
||||
if parser_config is None:
|
||||
parser_config = {}
|
||||
@ -441,10 +440,15 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
|
||||
tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
|
||||
tk_count += c
|
||||
|
||||
@timeout(5)
|
||||
def batch_encode(txts):
|
||||
nonlocal mdl
|
||||
return mdl.encode([truncate(c, mdl.max_length-10) for c in txts])
|
||||
|
||||
cnts_ = np.array([])
|
||||
for i in range(0, len(cnts), EMBEDDING_BATCH_SIZE):
|
||||
async with embed_limiter:
|
||||
vts, c = await trio.to_thread.run_sync(lambda: mdl.encode([truncate(c, mdl.max_length-10) for c in cnts[i: i + EMBEDDING_BATCH_SIZE]]))
|
||||
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(cnts[i: i + EMBEDDING_BATCH_SIZE]))
|
||||
if len(cnts_) == 0:
|
||||
cnts_ = vts
|
||||
else:
|
||||
|
||||
@ -23,7 +23,7 @@ SET GLOBAL max_allowed_packet={}
|
||||
def get_opendal_config():
|
||||
try:
|
||||
opendal_config = get_base_config('opendal', {})
|
||||
if opendal_config.get("scheme") == 'mysql':
|
||||
if opendal_config.get("scheme", "mysql") == 'mysql':
|
||||
mysql_config = get_base_config('mysql', {})
|
||||
max_packet = mysql_config.get("max_allowed_packet", 134217728)
|
||||
kwargs = {
|
||||
@ -33,7 +33,7 @@ def get_opendal_config():
|
||||
"user": mysql_config.get("user", "root"),
|
||||
"password": mysql_config.get("password", ""),
|
||||
"database": mysql_config.get("name", "test_open_dal"),
|
||||
"table": opendal_config.get("config").get("oss_table", "opendal_storage"),
|
||||
"table": opendal_config.get("config", {}).get("oss_table", "opendal_storage"),
|
||||
"max_allowed_packet": str(max_packet)
|
||||
}
|
||||
kwargs["connection_string"] = f"mysql://{kwargs['user']}:{quote_plus(kwargs['password'])}@{kwargs['host']}:{kwargs['port']}/{kwargs['database']}?max_allowed_packet={max_packet}"
|
||||
|
||||
@ -227,9 +227,20 @@ class RedisDB:
|
||||
"""https://redis.io/docs/latest/commands/xreadgroup/"""
|
||||
for _ in range(3):
|
||||
try:
|
||||
group_info = self.REDIS.xinfo_groups(queue_name)
|
||||
if not any(gi["name"] == group_name for gi in group_info):
|
||||
self.REDIS.xgroup_create(queue_name, group_name, id="0", mkstream=True)
|
||||
|
||||
try:
|
||||
group_info = self.REDIS.xinfo_groups(queue_name)
|
||||
if not any(gi["name"] == group_name for gi in group_info):
|
||||
self.REDIS.xgroup_create(queue_name, group_name, id="0", mkstream=True)
|
||||
except redis.exceptions.ResponseError as e:
|
||||
if "no such key" in str(e).lower():
|
||||
self.REDIS.xgroup_create(queue_name, group_name, id="0", mkstream=True)
|
||||
elif "busygroup" in str(e).lower():
|
||||
logging.warning("Group already exists, continue.")
|
||||
pass
|
||||
else:
|
||||
raise
|
||||
|
||||
args = {
|
||||
"groupname": group_name,
|
||||
"consumername": consumer_name,
|
||||
@ -338,8 +349,8 @@ class RedisDB:
|
||||
logging.warning("RedisDB.delete " + str(key) + " got exception: " + str(e))
|
||||
self.__open__()
|
||||
return False
|
||||
|
||||
|
||||
|
||||
|
||||
REDIS_CONN = RedisDB()
|
||||
|
||||
|
||||
|
||||
@ -30,7 +30,8 @@ class RAGFlowS3:
|
||||
self.s3_config = settings.S3
|
||||
self.access_key = self.s3_config.get('access_key', None)
|
||||
self.secret_key = self.s3_config.get('secret_key', None)
|
||||
self.region = self.s3_config.get('region', None)
|
||||
self.session_token = self.s3_config.get('session_token', None)
|
||||
self.region_name = self.s3_config.get('region_name', None)
|
||||
self.endpoint_url = self.s3_config.get('endpoint_url', None)
|
||||
self.signature_version = self.s3_config.get('signature_version', None)
|
||||
self.addressing_style = self.s3_config.get('addressing_style', None)
|
||||
@ -73,31 +74,32 @@ class RAGFlowS3:
|
||||
s3_params = {
|
||||
'aws_access_key_id': self.access_key,
|
||||
'aws_secret_access_key': self.secret_key,
|
||||
'aws_session_token': self.session_token,
|
||||
}
|
||||
if self.region in self.s3_config:
|
||||
s3_params['region_name'] = self.region
|
||||
if 'endpoint_url' in self.s3_config:
|
||||
if self.region_name:
|
||||
s3_params['region_name'] = self.region_name
|
||||
if self.endpoint_url:
|
||||
s3_params['endpoint_url'] = self.endpoint_url
|
||||
if 'signature_version' in self.s3_config:
|
||||
config_kwargs['signature_version'] = self.signature_version
|
||||
if 'addressing_style' in self.s3_config:
|
||||
config_kwargs['addressing_style'] = self.addressing_style
|
||||
if self.signature_version:
|
||||
s3_params['signature_version'] = self.signature_version
|
||||
if self.addressing_style:
|
||||
s3_params['addressing_style'] = self.addressing_style
|
||||
if config_kwargs:
|
||||
s3_params['config'] = Config(**config_kwargs)
|
||||
|
||||
self.conn = boto3.client('s3', **s3_params)
|
||||
self.conn = [boto3.client('s3', **s3_params)]
|
||||
except Exception:
|
||||
logging.exception(f"Fail to connect at region {self.region} or endpoint {self.endpoint_url}")
|
||||
logging.exception(f"Fail to connect at region {self.region_name} or endpoint {self.endpoint_url}")
|
||||
|
||||
def __close__(self):
|
||||
del self.conn
|
||||
del self.conn[0]
|
||||
self.conn = None
|
||||
|
||||
@use_default_bucket
|
||||
def bucket_exists(self, bucket):
|
||||
def bucket_exists(self, bucket, *args, **kwargs):
|
||||
try:
|
||||
logging.debug(f"head_bucket bucketname {bucket}")
|
||||
self.conn.head_bucket(Bucket=bucket)
|
||||
self.conn[0].head_bucket(Bucket=bucket)
|
||||
exists = True
|
||||
except ClientError:
|
||||
logging.exception(f"head_bucket error {bucket}")
|
||||
@ -109,10 +111,10 @@ class RAGFlowS3:
|
||||
fnm = "txtxtxtxt1"
|
||||
fnm, binary = f"{self.prefix_path}/{fnm}" if self.prefix_path else fnm, b"_t@@@1"
|
||||
if not self.bucket_exists(bucket):
|
||||
self.conn.create_bucket(Bucket=bucket)
|
||||
self.conn[0].create_bucket(Bucket=bucket)
|
||||
logging.debug(f"create bucket {bucket} ********")
|
||||
|
||||
r = self.conn.upload_fileobj(BytesIO(binary), bucket, fnm)
|
||||
r = self.conn[0].upload_fileobj(BytesIO(binary), bucket, fnm)
|
||||
return r
|
||||
|
||||
def get_properties(self, bucket, key):
|
||||
@ -123,14 +125,14 @@ class RAGFlowS3:
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def put(self, bucket, fnm, binary):
|
||||
def put(self, bucket, fnm, binary, *args, **kwargs):
|
||||
logging.debug(f"bucket name {bucket}; filename :{fnm}:")
|
||||
for _ in range(1):
|
||||
try:
|
||||
if not self.bucket_exists(bucket):
|
||||
self.conn.create_bucket(Bucket=bucket)
|
||||
self.conn[0].create_bucket(Bucket=bucket)
|
||||
logging.info(f"create bucket {bucket} ********")
|
||||
r = self.conn.upload_fileobj(BytesIO(binary), bucket, fnm)
|
||||
r = self.conn[0].upload_fileobj(BytesIO(binary), bucket, fnm)
|
||||
|
||||
return r
|
||||
except Exception:
|
||||
@ -140,18 +142,18 @@ class RAGFlowS3:
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def rm(self, bucket, fnm):
|
||||
def rm(self, bucket, fnm, *args, **kwargs):
|
||||
try:
|
||||
self.conn.delete_object(Bucket=bucket, Key=fnm)
|
||||
self.conn[0].delete_object(Bucket=bucket, Key=fnm)
|
||||
except Exception:
|
||||
logging.exception(f"Fail rm {bucket}/{fnm}")
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def get(self, bucket, fnm):
|
||||
def get(self, bucket, fnm, *args, **kwargs):
|
||||
for _ in range(1):
|
||||
try:
|
||||
r = self.conn.get_object(Bucket=bucket, Key=fnm)
|
||||
r = self.conn[0].get_object(Bucket=bucket, Key=fnm)
|
||||
object_data = r['Body'].read()
|
||||
return object_data
|
||||
except Exception:
|
||||
@ -162,9 +164,9 @@ class RAGFlowS3:
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def obj_exist(self, bucket, fnm):
|
||||
def obj_exist(self, bucket, fnm, *args, **kwargs):
|
||||
try:
|
||||
if self.conn.head_object(Bucket=bucket, Key=fnm):
|
||||
if self.conn[0].head_object(Bucket=bucket, Key=fnm):
|
||||
return True
|
||||
except ClientError as e:
|
||||
if e.response['Error']['Code'] == '404':
|
||||
@ -174,10 +176,10 @@ class RAGFlowS3:
|
||||
|
||||
@use_prefix_path
|
||||
@use_default_bucket
|
||||
def get_presigned_url(self, bucket, fnm, expires):
|
||||
def get_presigned_url(self, bucket, fnm, expires, *args, **kwargs):
|
||||
for _ in range(10):
|
||||
try:
|
||||
r = self.conn.generate_presigned_url('get_object',
|
||||
r = self.conn[0].generate_presigned_url('get_object',
|
||||
Params={'Bucket': bucket,
|
||||
'Key': fnm},
|
||||
ExpiresIn=expires)
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ragflow-sdk"
|
||||
version = "0.20.0"
|
||||
version = "0.20.1"
|
||||
description = "Python client sdk of [RAGFlow](https://github.com/infiniflow/ragflow). RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding."
|
||||
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
|
||||
license = { text = "Apache License, Version 2.0" }
|
||||
|
||||
2
sdk/python/uv.lock
generated
2
sdk/python/uv.lock
generated
@ -342,7 +342,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "ragflow-sdk"
|
||||
version = "0.20.0"
|
||||
version = "0.20.1"
|
||||
source = { virtual = "." }
|
||||
dependencies = [
|
||||
{ name = "beartype" },
|
||||
|
||||
2
uv.lock
generated
2
uv.lock
generated
@ -5188,7 +5188,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "ragflow"
|
||||
version = "0.20.0"
|
||||
version = "0.20.1"
|
||||
source = { virtual = "." }
|
||||
dependencies = [
|
||||
{ name = "akshare" },
|
||||
|
||||
1
web/src/assets/svg/llm/grok.svg
Normal file
1
web/src/assets/svg/llm/grok.svg
Normal file
@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="48px" height="48px"><path d="M18.542 30.532l15.956-11.776c.783-.576 1.902-.354 2.274.545 1.962 4.728 1.084 10.411-2.819 14.315-3.903 3.901-9.333 4.756-14.299 2.808l-5.423 2.511c7.778 5.315 17.224 4 23.125-1.903 4.682-4.679 6.131-11.058 4.775-16.812l.011.011c-1.966-8.452.482-11.829 5.501-18.735C47.759 1.332 47.88 1.166 48 1l-6.602 6.599V7.577l-22.86 22.958M15.248 33.392c-5.582-5.329-4.619-13.579.142-18.339 3.521-3.522 9.294-4.958 14.331-2.847l5.412-2.497c-.974-.704-2.224-1.46-3.659-1.994-6.478-2.666-14.238-1.34-19.505 3.922C6.904 16.701 5.31 24.488 8.045 31.133c2.044 4.965-1.307 8.48-4.682 12.023C2.164 44.411.967 45.67 0 47l15.241-13.608"/></svg>
|
||||
|
After Width: | Height: | Size: 721 B |
1
web/src/assets/svg/llm/xai.svg
Normal file
1
web/src/assets/svg/llm/xai.svg
Normal file
@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="48px" height="48px" fill-rule="evenodd" clip-rule="evenodd" baseProfile="basic"><polygon fill="#212121" fill-rule="evenodd" points="24.032,28.919 40.145,5.989 33.145,5.989 20.518,23.958" clip-rule="evenodd"/><polygon fill="#212121" fill-rule="evenodd" points="14.591,32.393 7.145,42.989 14.145,42.989 18.105,37.354" clip-rule="evenodd"/><polygon fill="#212121" fill-rule="evenodd" points="14.547,18.989 7.547,18.989 24.547,42.989 31.547,42.989" clip-rule="evenodd"/><polygon fill="#212121" fill-rule="evenodd" points="35,16.789 35,43 41,43 41,8.251" clip-rule="evenodd"/></svg>
|
||||
|
After Width: | Height: | Size: 645 B |
@ -40,7 +40,7 @@ export function BulkOperateBar({
|
||||
{list.map((x) => (
|
||||
<li
|
||||
key={x.id}
|
||||
className={cn({ ['text-text-delete-red']: isDeleteItem(x.id) })}
|
||||
className={cn({ ['text-state-error']: isDeleteItem(x.id) })}
|
||||
>
|
||||
<ConfirmDeleteDialog
|
||||
hidden={!isDeleteItem(x.id)}
|
||||
|
||||
@ -1,46 +0,0 @@
|
||||
import { useEventListener } from 'ahooks';
|
||||
import { Mic, Paperclip, Send } from 'lucide-react';
|
||||
import { useRef, useState } from 'react';
|
||||
import { Button } from './ui/button';
|
||||
import { Textarea } from './ui/textarea';
|
||||
|
||||
export function ChatInput() {
|
||||
const textareaRef = useRef<HTMLTextAreaElement>(null);
|
||||
const [textareaHeight, setTextareaHeight] = useState<number>(40);
|
||||
|
||||
useEventListener(
|
||||
'keydown',
|
||||
(ev) => {
|
||||
if (ev.shiftKey && ev.code === 'Enter') {
|
||||
setTextareaHeight((h) => {
|
||||
return h + 10;
|
||||
});
|
||||
}
|
||||
},
|
||||
{
|
||||
target: textareaRef,
|
||||
},
|
||||
);
|
||||
|
||||
return (
|
||||
<section className="flex items-end bg-colors-background-neutral-strong px-4 py-3 rounded-xl m-8">
|
||||
<Button variant={'icon'} className="w-10 h-10">
|
||||
<Mic />
|
||||
</Button>
|
||||
<Textarea
|
||||
ref={textareaRef}
|
||||
placeholder="Tell us a little bit about yourself "
|
||||
className="resize-none focus-visible:ring-0 focus-visible:ring-offset-0 bg-transparent border-none min-h-0 max-h-20"
|
||||
style={{ height: textareaHeight }}
|
||||
/>
|
||||
<div className="flex gap-2">
|
||||
<Button variant={'icon'} size={'icon'}>
|
||||
<Paperclip />
|
||||
</Button>
|
||||
<Button variant={'tertiary'} size={'icon'}>
|
||||
<Send />
|
||||
</Button>
|
||||
</div>
|
||||
</section>
|
||||
);
|
||||
}
|
||||
@ -52,7 +52,7 @@ export function ConfirmDeleteDialog({
|
||||
{t('common.cancel')}
|
||||
</AlertDialogCancel>
|
||||
<AlertDialogAction
|
||||
className="bg-text-delete-red text-text-title"
|
||||
className="bg-state-error text-text-primary"
|
||||
onClick={onOk}
|
||||
>
|
||||
{t('common.ok')}
|
||||
|
||||
@ -58,7 +58,7 @@ const EditTag = ({ value = [], onChange }: EditTagsProps) => {
|
||||
<HoverCardTrigger>
|
||||
<div
|
||||
key={tag}
|
||||
className="w-fit flex items-center justify-center gap-2 border-dashed border px-1 rounded-sm bg-background-card"
|
||||
className="w-fit flex items-center justify-center gap-2 border-dashed border px-1 rounded-sm bg-bg-card"
|
||||
>
|
||||
<div className="flex gap-2 items-center">
|
||||
<div className="max-w-80 overflow-hidden text-ellipsis">
|
||||
@ -90,7 +90,7 @@ const EditTag = ({ value = [], onChange }: EditTagsProps) => {
|
||||
<Input
|
||||
ref={inputRef}
|
||||
type="text"
|
||||
className="h-8 bg-background-card"
|
||||
className="h-8 bg-bg-card"
|
||||
value={inputValue}
|
||||
onChange={handleInputChange}
|
||||
onBlur={handleInputConfirm}
|
||||
@ -103,7 +103,7 @@ const EditTag = ({ value = [], onChange }: EditTagsProps) => {
|
||||
) : (
|
||||
<Button
|
||||
variant="dashed"
|
||||
className="w-fit flex items-center justify-center gap-2 bg-background-card"
|
||||
className="w-fit flex items-center justify-center gap-2 bg-bg-card"
|
||||
onClick={showInput}
|
||||
style={tagPlusStyle}
|
||||
>
|
||||
|
||||
@ -95,7 +95,7 @@ function CheckboxFormMultiple({
|
||||
name={x.field}
|
||||
render={({ field }) => {
|
||||
return (
|
||||
<div className="flex items-center justify-between text-text-title text-xs">
|
||||
<div className="flex items-center justify-between text-text-primary text-xs">
|
||||
<FormItem
|
||||
key={item.id}
|
||||
className="flex flex-row space-x-3 space-y-0 items-center "
|
||||
|
||||
@ -27,7 +27,7 @@ export const FilterButton = React.forwardRef<
|
||||
<Button variant="secondary" {...props} ref={ref}>
|
||||
<span
|
||||
className={cn({
|
||||
'text-text-title': count > 0,
|
||||
'text-text-primary': count > 0,
|
||||
'text-text-sub-title-invert': count === 0,
|
||||
})}
|
||||
>
|
||||
|
||||
@ -226,7 +226,7 @@ function MessageItem({
|
||||
? styles.messageTextDark
|
||||
: styles.messageText]: isAssistant,
|
||||
[styles.messageUserText]: !isAssistant,
|
||||
'bg-background-card': !isAssistant,
|
||||
'bg-bg-card': !isAssistant,
|
||||
})}
|
||||
>
|
||||
{item.data ? (
|
||||
|
||||
@ -25,7 +25,7 @@ export function InnerUploadedMessageFiles({ files = [] }: IProps) {
|
||||
)}
|
||||
<div className="text-xs max-w-20">
|
||||
<div className="truncate">{file.name}</div>
|
||||
<p className="text-text-sub-title pt-1">{formatBytes(file.size)}</p>
|
||||
<p className="text-text-secondary pt-1">{formatBytes(file.size)}</p>
|
||||
</div>
|
||||
</div>
|
||||
))}
|
||||
|
||||
@ -63,7 +63,7 @@ const NumberInput: React.FC<NumberInputProps> = ({
|
||||
>
|
||||
<button
|
||||
type="button"
|
||||
className="w-10 p-2 text-white focus:outline-none border-r-[1px]"
|
||||
className="w-10 p-2 focus:outline-none border-r-[1px]"
|
||||
onClick={handleDecrement}
|
||||
style={style}
|
||||
>
|
||||
@ -74,12 +74,12 @@ const NumberInput: React.FC<NumberInputProps> = ({
|
||||
value={value}
|
||||
onInput={handleInput}
|
||||
onChange={handleChange}
|
||||
className="w-full flex-1 text-center bg-transparent text-white focus:outline-none"
|
||||
className="w-full flex-1 text-center bg-transparent focus:outline-none"
|
||||
style={style}
|
||||
/>
|
||||
<button
|
||||
type="button"
|
||||
className="w-10 p-2 text-white focus:outline-none border-l-[1px]"
|
||||
className="w-10 p-2 focus:outline-none border-l-[1px]"
|
||||
onClick={handleIncrement}
|
||||
style={style}
|
||||
>
|
||||
|
||||
@ -142,7 +142,7 @@ export function PromptEditor({
|
||||
}
|
||||
placeholder={
|
||||
<div
|
||||
className="absolute top-10 left-2 text-text-sub-title"
|
||||
className="absolute top-10 left-2 text-text-secondary"
|
||||
data-xxx
|
||||
>
|
||||
{placeholder || t('common.pleaseInput')}
|
||||
|
||||
44
web/src/components/ragflow-form.tsx
Normal file
44
web/src/components/ragflow-form.tsx
Normal file
@ -0,0 +1,44 @@
|
||||
import {
|
||||
FormControl,
|
||||
FormField,
|
||||
FormItem,
|
||||
FormLabel,
|
||||
FormMessage,
|
||||
} from '@/components/ui/form';
|
||||
import { ReactNode, cloneElement, isValidElement } from 'react';
|
||||
import { ControllerRenderProps, useFormContext } from 'react-hook-form';
|
||||
|
||||
type RAGFlowFormItemProps = {
|
||||
name: string;
|
||||
label: ReactNode;
|
||||
tooltip?: ReactNode;
|
||||
children: ReactNode | ((field: ControllerRenderProps) => ReactNode);
|
||||
};
|
||||
|
||||
export function RAGFlowFormItem({
|
||||
name,
|
||||
label,
|
||||
tooltip,
|
||||
children,
|
||||
}: RAGFlowFormItemProps) {
|
||||
const form = useFormContext();
|
||||
return (
|
||||
<FormField
|
||||
control={form.control}
|
||||
name={name}
|
||||
render={({ field }) => (
|
||||
<FormItem>
|
||||
<FormLabel tooltip={tooltip}>{label}</FormLabel>
|
||||
<FormControl>
|
||||
{typeof children === 'function'
|
||||
? children(field)
|
||||
: isValidElement(children)
|
||||
? cloneElement(children, { ...field })
|
||||
: children}
|
||||
</FormControl>
|
||||
<FormMessage />
|
||||
</FormItem>
|
||||
)}
|
||||
/>
|
||||
);
|
||||
}
|
||||
16
web/src/components/shared-badge.tsx
Normal file
16
web/src/components/shared-badge.tsx
Normal file
@ -0,0 +1,16 @@
|
||||
import { useFetchUserInfo } from '@/hooks/user-setting-hooks';
|
||||
import { PropsWithChildren } from 'react';
|
||||
|
||||
export function SharedBadge({ children }: PropsWithChildren) {
|
||||
const { data: userInfo } = useFetchUserInfo();
|
||||
|
||||
if (typeof children === 'string' && userInfo.nickname === children) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<span className="bg-text-secondary rounded-sm px-1 text-bg-base text-xs">
|
||||
{children}
|
||||
</span>
|
||||
);
|
||||
}
|
||||
@ -11,12 +11,10 @@ const badgeVariants = cva(
|
||||
default:
|
||||
'border-transparent bg-primary text-primary-foreground hover:bg-primary/80',
|
||||
secondary:
|
||||
'border-transparent bg-background-card text-text-sub-title-invert hover:bg-secondary/80 rounded-md',
|
||||
'border-transparent bg-bg-card text-text-sub-title-invert hover:bg-secondary/80 rounded-md',
|
||||
destructive:
|
||||
'border-transparent bg-destructive text-destructive-foreground hover:bg-destructive/80',
|
||||
outline: 'text-foreground',
|
||||
tertiary:
|
||||
'border-transparent bg-colors-background-core-strong text-colors-text-persist-light hover:bg-colors-background-core-strong/80',
|
||||
},
|
||||
},
|
||||
defaultVariants: {
|
||||
|
||||
@ -34,7 +34,7 @@ const BreadcrumbItem = React.forwardRef<
|
||||
<li
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'inline-flex items-center gap-1.5 text-text-sub-title',
|
||||
'inline-flex items-center gap-1.5 text-text-secondary',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -6,21 +6,21 @@ import { cn } from '@/lib/utils';
|
||||
import { Loader2, Plus } from 'lucide-react';
|
||||
|
||||
const buttonVariants = cva(
|
||||
'inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium ring-offset-background transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg]:size-4 [&_svg]:shrink-0',
|
||||
"inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium transition-all disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg:not([class*='size-'])]:size-4 shrink-0 [&_svg]:shrink-0 outline-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive",
|
||||
{
|
||||
variants: {
|
||||
variant: {
|
||||
default: 'bg-primary text-primary-foreground hover:bg-primary/90',
|
||||
default:
|
||||
'bg-primary text-primary-foreground shadow-xs hover:bg-primary/90',
|
||||
destructive:
|
||||
'bg-destructive text-destructive-foreground hover:bg-destructive/90',
|
||||
'bg-destructive text-white shadow-xs hover:bg-destructive/90 focus-visible:ring-destructive/20 dark:focus-visible:ring-destructive/40 dark:bg-destructive/60',
|
||||
outline:
|
||||
'border border-text-sub-title-invert bg-transparent hover:bg-accent hover:text-accent-foreground',
|
||||
'border bg-background shadow-xs hover:bg-accent hover:text-accent-foreground dark:bg-input/30 dark:border-input dark:hover:bg-input/50',
|
||||
secondary:
|
||||
'bg-background-card text-secondary-foreground hover:bg-secondary/80',
|
||||
ghost: 'hover:bg-accent hover:text-accent-foreground',
|
||||
'bg-secondary text-secondary-foreground shadow-xs hover:bg-secondary/80',
|
||||
ghost:
|
||||
'hover:bg-accent hover:text-accent-foreground dark:hover:bg-accent/50',
|
||||
link: 'text-primary underline-offset-4 hover:underline',
|
||||
tertiary:
|
||||
'bg-colors-background-sentiment-solid-primary text-colors-text-persist-light hover:bg-colors-background-sentiment-solid-primary/80',
|
||||
icon: 'bg-colors-background-inverse-standard text-foreground hover:bg-colors-background-inverse-standard/80',
|
||||
dashed: 'border border-dashed border-input hover:bg-accent',
|
||||
transparent: 'bg-transparent hover:bg-accent border',
|
||||
@ -52,7 +52,7 @@ const Button = React.forwardRef<HTMLButtonElement, ButtonProps>(
|
||||
return (
|
||||
<Comp
|
||||
className={cn(
|
||||
'bg-background-card',
|
||||
'bg-bg-card',
|
||||
buttonVariants({ variant, size, className }),
|
||||
)}
|
||||
ref={ref}
|
||||
|
||||
@ -8,10 +8,7 @@ const Card = React.forwardRef<
|
||||
>(({ className, ...props }, ref) => (
|
||||
<div
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'rounded-lg bg-background-card text-card-foreground shadow-sm',
|
||||
className,
|
||||
)}
|
||||
className={cn('rounded-lg bg-bg-card shadow-sm', className)}
|
||||
{...props}
|
||||
/>
|
||||
));
|
||||
|
||||
@ -1,19 +0,0 @@
|
||||
import { cn } from '@/lib/utils';
|
||||
|
||||
export function Container({
|
||||
children,
|
||||
className,
|
||||
...props
|
||||
}: React.PropsWithChildren<React.HTMLAttributes<HTMLDivElement>>) {
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
'px-2 py-1 bg-colors-background-inverse-standard inline-flex items-center rounded-sm gap-2',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
>
|
||||
{children}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@ -29,11 +29,11 @@ const DualRangeSlider = React.forwardRef<
|
||||
{...props}
|
||||
>
|
||||
<SliderPrimitive.Track className="relative h-2 w-full grow overflow-hidden rounded-full bg-secondary">
|
||||
<SliderPrimitive.Range className="absolute h-full bg-background-checked" />
|
||||
<SliderPrimitive.Range className="absolute h-full bg-accent-primary" />
|
||||
</SliderPrimitive.Track>
|
||||
{initialValue.map((value, index) => (
|
||||
<React.Fragment key={index}>
|
||||
<SliderPrimitive.Thumb className="relative block h-4 w-4 rounded-full border-2 border-background-checked bg-white ring-offset-background transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 cursor-pointer">
|
||||
<SliderPrimitive.Thumb className="relative block h-4 w-4 rounded-full border-2 border-accent-primary bg-white ring-offset-background transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 cursor-pointer">
|
||||
{label && (
|
||||
<span
|
||||
className={cn(
|
||||
|
||||
@ -14,7 +14,7 @@ const Input = React.forwardRef<HTMLInputElement, InputProps>(
|
||||
<input
|
||||
type={type}
|
||||
className={cn(
|
||||
'flex h-8 w-full rounded-md border border-input bg-colors-background-inverse-weak px-2 py-2 text-sm ring-offset-background file:border-0 file:bg-transparent file:text-sm file:font-medium file:text-foreground placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50',
|
||||
'flex h-8 w-full rounded-md border border-input bg-bg-card px-2 py-2 text-sm ring-offset-background file:border-0 file:bg-transparent file:text-sm file:font-medium file:text-foreground placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50',
|
||||
className,
|
||||
)}
|
||||
ref={ref}
|
||||
|
||||
@ -20,8 +20,6 @@ const buttonVariants = cva(
|
||||
'bg-secondary text-secondary-foreground hover:bg-secondary/80',
|
||||
ghost: 'hover:bg-accent hover:text-accent-foreground',
|
||||
link: 'text-primary underline-offset-4 hover:underline',
|
||||
tertiary:
|
||||
'bg-colors-background-sentiment-solid-primary text-colors-text-persist-light hover:bg-colors-background-sentiment-solid-primary/80',
|
||||
},
|
||||
size: {
|
||||
default: 'h-10 px-4 py-2',
|
||||
|
||||
102
web/src/components/ui/modal/modal-manage.tsx
Normal file
102
web/src/components/ui/modal/modal-manage.tsx
Normal file
@ -0,0 +1,102 @@
|
||||
import { ReactNode, useEffect, useState } from 'react';
|
||||
import { createPortal } from 'react-dom';
|
||||
import { createRoot } from 'react-dom/client';
|
||||
import { Modal, ModalProps } from './modal';
|
||||
|
||||
type PortalModalProps = Omit<ModalProps, 'open' | 'onOpenChange'> & {
|
||||
visible: boolean;
|
||||
onVisibleChange: (visible: boolean) => void;
|
||||
container?: HTMLElement;
|
||||
children: ReactNode;
|
||||
[key: string]: any;
|
||||
};
|
||||
|
||||
const PortalModal = ({
|
||||
visible,
|
||||
onVisibleChange,
|
||||
container,
|
||||
children,
|
||||
...restProps
|
||||
}: PortalModalProps) => {
|
||||
const [mounted, setMounted] = useState(false);
|
||||
|
||||
useEffect(() => {
|
||||
setMounted(true);
|
||||
return () => setMounted(false);
|
||||
}, []);
|
||||
|
||||
if (!mounted || !visible) return null;
|
||||
console.log('PortalModal:', visible);
|
||||
return createPortal(
|
||||
<Modal open={visible} onOpenChange={onVisibleChange} {...restProps}>
|
||||
{children}
|
||||
</Modal>,
|
||||
container || document.body,
|
||||
);
|
||||
};
|
||||
|
||||
export const createPortalModal = () => {
|
||||
let container = document.createElement('div');
|
||||
document.body.appendChild(container);
|
||||
|
||||
let currentProps: any = {};
|
||||
let isVisible = false;
|
||||
let root: ReturnType<typeof createRoot> | null = null;
|
||||
|
||||
root = createRoot(container);
|
||||
const destroy = () => {
|
||||
if (root && container) {
|
||||
root.unmount();
|
||||
if (container.parentNode) {
|
||||
container.parentNode.removeChild(container);
|
||||
}
|
||||
root = null;
|
||||
}
|
||||
isVisible = false;
|
||||
currentProps = {};
|
||||
};
|
||||
const render = () => {
|
||||
const { onVisibleChange, ...props } = currentProps;
|
||||
const modalParam = {
|
||||
visible: isVisible,
|
||||
|
||||
onVisibleChange: (visible: boolean) => {
|
||||
isVisible = visible;
|
||||
if (onVisibleChange) {
|
||||
onVisibleChange(visible);
|
||||
}
|
||||
|
||||
if (!visible) {
|
||||
render();
|
||||
}
|
||||
},
|
||||
...props,
|
||||
};
|
||||
root?.render(isVisible ? <PortalModal {...modalParam} /> : null);
|
||||
};
|
||||
|
||||
const show = (props: PortalModalProps) => {
|
||||
if (!container) {
|
||||
container = document.createElement('div');
|
||||
document.body.appendChild(container);
|
||||
}
|
||||
if (!root) {
|
||||
root = createRoot(container);
|
||||
}
|
||||
currentProps = { ...currentProps, ...props };
|
||||
isVisible = true;
|
||||
render();
|
||||
};
|
||||
|
||||
const hide = () => {
|
||||
isVisible = false;
|
||||
render();
|
||||
};
|
||||
|
||||
const update = (props = {}) => {
|
||||
currentProps = { ...currentProps, ...props };
|
||||
render();
|
||||
};
|
||||
|
||||
return { show, hide, update, destroy };
|
||||
};
|
||||
@ -1,15 +1,19 @@
|
||||
// src/components/ui/modal.tsx
|
||||
import { cn } from '@/lib/utils';
|
||||
import * as DialogPrimitive from '@radix-ui/react-dialog';
|
||||
import { Loader, X } from 'lucide-react';
|
||||
import { FC, ReactNode, useCallback, useEffect, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { createPortalModal } from './modal-manage';
|
||||
|
||||
interface ModalProps {
|
||||
export interface ModalProps {
|
||||
open: boolean;
|
||||
onOpenChange?: (open: boolean) => void;
|
||||
title?: ReactNode;
|
||||
titleClassName?: string;
|
||||
children: ReactNode;
|
||||
footer?: ReactNode;
|
||||
footerClassName?: string;
|
||||
showfooter?: boolean;
|
||||
className?: string;
|
||||
size?: 'small' | 'default' | 'large';
|
||||
@ -24,13 +28,19 @@ interface ModalProps {
|
||||
onOk?: () => void;
|
||||
onCancel?: () => void;
|
||||
}
|
||||
export interface ModalType extends FC<ModalProps> {
|
||||
show: typeof modalIns.show;
|
||||
hide: typeof modalIns.hide;
|
||||
}
|
||||
|
||||
export const Modal: FC<ModalProps> = ({
|
||||
const Modal: ModalType = ({
|
||||
open,
|
||||
onOpenChange,
|
||||
title,
|
||||
titleClassName,
|
||||
children,
|
||||
footer,
|
||||
footerClassName,
|
||||
showfooter = true,
|
||||
className = '',
|
||||
size = 'default',
|
||||
@ -74,6 +84,7 @@ export const Modal: FC<ModalProps> = ({
|
||||
}, [onOpenChange, onOk]);
|
||||
const handleChange = (open: boolean) => {
|
||||
onOpenChange?.(open);
|
||||
console.log('open', open, onOpenChange);
|
||||
if (open) {
|
||||
handleOk();
|
||||
}
|
||||
@ -113,7 +124,12 @@ export const Modal: FC<ModalProps> = ({
|
||||
);
|
||||
}
|
||||
return (
|
||||
<div className="flex items-center justify-end border-t border-border px-6 py-4">
|
||||
<div
|
||||
className={cn(
|
||||
'flex items-center justify-end px-6 py-4',
|
||||
footerClassName,
|
||||
)}
|
||||
>
|
||||
{footerTemp}
|
||||
</div>
|
||||
);
|
||||
@ -126,6 +142,7 @@ export const Modal: FC<ModalProps> = ({
|
||||
handleCancel,
|
||||
handleOk,
|
||||
showfooter,
|
||||
footerClassName,
|
||||
]);
|
||||
return (
|
||||
<DialogPrimitive.Root open={open} onOpenChange={handleChange}>
|
||||
@ -139,11 +156,23 @@ export const Modal: FC<ModalProps> = ({
|
||||
onClick={(e) => e.stopPropagation()}
|
||||
>
|
||||
{/* title */}
|
||||
{title && (
|
||||
<div className="flex items-center justify-between border-b border-border px-6 py-4">
|
||||
<DialogPrimitive.Title className="text-lg font-medium text-foreground">
|
||||
{title}
|
||||
</DialogPrimitive.Title>
|
||||
{(title || closable) && (
|
||||
<div
|
||||
className={cn(
|
||||
'flex items-center px-6 py-4',
|
||||
{
|
||||
'justify-end': closable && !title,
|
||||
'justify-between': closable && title,
|
||||
'justify-start': !closable,
|
||||
},
|
||||
titleClassName,
|
||||
)}
|
||||
>
|
||||
{title && (
|
||||
<DialogPrimitive.Title className="text-lg font-medium text-foreground">
|
||||
{title}
|
||||
</DialogPrimitive.Title>
|
||||
)}
|
||||
{closable && (
|
||||
<DialogPrimitive.Close asChild>
|
||||
<button
|
||||
@ -156,13 +185,9 @@ export const Modal: FC<ModalProps> = ({
|
||||
)}
|
||||
</div>
|
||||
)}
|
||||
{/* title */}
|
||||
{!title && (
|
||||
<DialogPrimitive.Title className="text-lg font-medium text-foreground"></DialogPrimitive.Title>
|
||||
)}
|
||||
|
||||
{/* content */}
|
||||
<div className="p-6 overflow-y-auto max-h-[80vh] focus-visible:!outline-none">
|
||||
<div className="py-2 px-6 overflow-y-auto max-h-[80vh] focus-visible:!outline-none">
|
||||
{destroyOnClose && !open ? null : children}
|
||||
</div>
|
||||
|
||||
@ -175,43 +200,13 @@ export const Modal: FC<ModalProps> = ({
|
||||
);
|
||||
};
|
||||
|
||||
// example usage
|
||||
/*
|
||||
import { Modal } from '@/components/ui/modal';
|
||||
let modalIns = createPortalModal();
|
||||
Modal.show = modalIns
|
||||
? modalIns.show
|
||||
: () => {
|
||||
modalIns = createPortalModal();
|
||||
return modalIns.show;
|
||||
};
|
||||
Modal.hide = modalIns.hide;
|
||||
|
||||
function Demo() {
|
||||
const [open, setOpen] = useState(false);
|
||||
|
||||
return (
|
||||
<div>
|
||||
<button onClick={() => setOpen(true)}>open modal</button>
|
||||
|
||||
<Modal
|
||||
open={open}
|
||||
onOpenChange={setOpen}
|
||||
title="title"
|
||||
footer={
|
||||
<div className="flex gap-2">
|
||||
<button onClick={() => setOpen(false)} className="px-4 py-2 border rounded-md">
|
||||
cancel
|
||||
</button>
|
||||
<button onClick={() => setOpen(false)} className="px-4 py-2 bg-primary text-white rounded-md">
|
||||
ok
|
||||
</button>
|
||||
</div>
|
||||
}
|
||||
>
|
||||
<div className="py-4">弹窗内容区域</div>
|
||||
</Modal>
|
||||
<Modal
|
||||
title={'modal-title'}
|
||||
onOk={handleOk}
|
||||
confirmLoading={loading}
|
||||
destroyOnClose
|
||||
>
|
||||
<div className="py-4">弹窗内容区域</div>
|
||||
</Modal>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
*/
|
||||
export { Modal };
|
||||
@ -1,44 +1,45 @@
|
||||
'use client';
|
||||
|
||||
import * as RadioGroupPrimitive from '@radix-ui/react-radio-group';
|
||||
import { Circle } from 'lucide-react';
|
||||
import { CircleIcon } from 'lucide-react';
|
||||
import * as React from 'react';
|
||||
|
||||
import { cn } from '@/lib/utils';
|
||||
|
||||
const RadioGroup = React.forwardRef<
|
||||
React.ElementRef<typeof RadioGroupPrimitive.Root>,
|
||||
React.ComponentPropsWithoutRef<typeof RadioGroupPrimitive.Root>
|
||||
>(({ className, ...props }, ref) => {
|
||||
function RadioGroup({
|
||||
className,
|
||||
...props
|
||||
}: React.ComponentProps<typeof RadioGroupPrimitive.Root>) {
|
||||
return (
|
||||
<RadioGroupPrimitive.Root
|
||||
className={cn('grid gap-2', className)}
|
||||
data-slot="radio-group"
|
||||
className={cn('grid gap-3', className)}
|
||||
{...props}
|
||||
ref={ref}
|
||||
/>
|
||||
);
|
||||
});
|
||||
RadioGroup.displayName = RadioGroupPrimitive.Root.displayName;
|
||||
}
|
||||
|
||||
const RadioGroupItem = React.forwardRef<
|
||||
React.ElementRef<typeof RadioGroupPrimitive.Item>,
|
||||
React.ComponentPropsWithoutRef<typeof RadioGroupPrimitive.Item>
|
||||
>(({ className, ...props }, ref) => {
|
||||
function RadioGroupItem({
|
||||
className,
|
||||
...props
|
||||
}: React.ComponentProps<typeof RadioGroupPrimitive.Item>) {
|
||||
return (
|
||||
<RadioGroupPrimitive.Item
|
||||
ref={ref}
|
||||
data-slot="radio-group-item"
|
||||
className={cn(
|
||||
'aspect-square h-4 w-4 rounded-full border border-primary text-primary ring-offset-background focus:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50',
|
||||
'border-input text-primary focus-visible:border-ring focus-visible:ring-ring/50 aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive dark:bg-input/30 aspect-square size-4 shrink-0 rounded-full border shadow-xs transition-[color,box-shadow] outline-none focus-visible:ring-[3px] disabled:cursor-not-allowed disabled:opacity-50',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
>
|
||||
<RadioGroupPrimitive.Indicator className="flex items-center justify-center">
|
||||
<Circle className="h-2.5 w-2.5 fill-current text-current" />
|
||||
<RadioGroupPrimitive.Indicator
|
||||
data-slot="radio-group-indicator"
|
||||
className="relative flex items-center justify-center"
|
||||
>
|
||||
<CircleIcon className="fill-primary absolute top-1/2 left-1/2 size-2 -translate-x-1/2 -translate-y-1/2" />
|
||||
</RadioGroupPrimitive.Indicator>
|
||||
</RadioGroupPrimitive.Item>
|
||||
);
|
||||
});
|
||||
RadioGroupItem.displayName = RadioGroupPrimitive.Item.displayName;
|
||||
}
|
||||
|
||||
export { RadioGroup, RadioGroupItem };
|
||||
|
||||
@ -150,7 +150,7 @@ export function RAGFlowPagination({
|
||||
<PaginationItem
|
||||
key={page}
|
||||
className={cn({
|
||||
['bg-background-header-bar rounded-md text-text-title']:
|
||||
['bg-bg-card rounded-md text-text-primary']:
|
||||
currentPage === page,
|
||||
})}
|
||||
>
|
||||
@ -174,7 +174,7 @@ export function RAGFlowPagination({
|
||||
options={sizeChangerOptions}
|
||||
value={currentPageSize}
|
||||
onChange={handlePageSizeChange}
|
||||
triggerClassName="bg-background-header-bar"
|
||||
triggerClassName="bg-bg-card"
|
||||
></RAGFlowSelect>
|
||||
)}
|
||||
</section>
|
||||
|
||||
@ -43,7 +43,7 @@ export function Segmented({
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
'flex items-center rounded-3xl p-1 gap-2 bg-background-header-bar px-5 py-2.5',
|
||||
'flex items-center rounded-3xl p-1 gap-2 bg-bg-card px-5 py-2.5',
|
||||
className,
|
||||
)}
|
||||
>
|
||||
@ -55,10 +55,10 @@ export function Segmented({
|
||||
<div
|
||||
key={actualValue}
|
||||
className={cn(
|
||||
'inline-flex items-center px-6 py-2 text-base font-normal rounded-3xl cursor-pointer text-text-badge',
|
||||
'inline-flex items-center px-6 py-2 text-base font-normal rounded-3xl cursor-pointer',
|
||||
{
|
||||
'bg-text-title': selectedValue === actualValue,
|
||||
'text-text-title-invert': selectedValue === actualValue,
|
||||
'bg-text-primary': selectedValue === actualValue,
|
||||
'text-bg-base': selectedValue === actualValue,
|
||||
},
|
||||
)}
|
||||
onClick={() => handleOnChange(actualValue)}
|
||||
|
||||
@ -26,7 +26,7 @@ const SelectTrigger = React.forwardRef<
|
||||
<SelectPrimitive.Trigger
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'flex h-8 w-full items-center justify-between rounded-md border border-input bg-colors-background-inverse-weak px-3 py-2 text-sm ring-offset-background placeholder:text-muted-foreground focus:outline-none focus:ring-2 focus:ring-ring focus:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 [&>span]:line-clamp-1',
|
||||
'flex h-8 w-full items-center bg-bg-card justify-between rounded-md border border-input px-3 py-2 text-sm ring-offset-background placeholder:text-muted-foreground focus:outline-none focus:ring-2 focus:ring-ring focus:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 [&>span]:line-clamp-1',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -316,6 +316,7 @@ const SidebarRail = React.forwardRef<
|
||||
'[[data-side=right][data-collapsible=offcanvas]_&]:-left-2',
|
||||
className,
|
||||
)}
|
||||
type="button"
|
||||
{...props}
|
||||
/>
|
||||
);
|
||||
|
||||
@ -11,7 +11,7 @@ const Switch = React.forwardRef<
|
||||
>(({ className, ...props }, ref) => (
|
||||
<SwitchPrimitives.Root
|
||||
className={cn(
|
||||
'peer inline-flex h-3.5 w-6 shrink-0 cursor-pointer items-center rounded-full border-2 border-transparent transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 focus-visible:ring-offset-background disabled:cursor-not-allowed disabled:opacity-50 data-[state=checked]:bg-background-checked data-[state=unchecked]:bg-text-sub-title',
|
||||
'peer inline-flex h-3.5 w-6 shrink-0 cursor-pointer items-center rounded-full border-2 border-transparent transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 focus-visible:ring-offset-background disabled:cursor-not-allowed disabled:opacity-50 data-[state=checked]:bg-accent-primary data-[state=unchecked]:bg-text-sub-title',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -8,7 +8,7 @@ const Table = React.forwardRef<
|
||||
>(({ className, rootClassName, ...props }, ref) => (
|
||||
<div
|
||||
className={cn(
|
||||
'relative w-full overflow-auto rounded-2xl bg-background-card',
|
||||
'relative w-full overflow-auto rounded-2xl bg-bg-card',
|
||||
rootClassName,
|
||||
)}
|
||||
>
|
||||
@ -82,7 +82,7 @@ const TableHead = React.forwardRef<
|
||||
<th
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'h-12 px-4 text-left align-middle font-normal text-text-sub-title [&:has([role=checkbox])]:pr-0',
|
||||
'h-12 px-4 text-left align-middle font-normal text-text-secondary [&:has([role=checkbox])]:pr-0',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
@ -97,7 +97,7 @@ const TableCell = React.forwardRef<
|
||||
<td
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'p-4 align-middle [&:has([role=checkbox])]:pr-0 text-text-title font-normal',
|
||||
'p-4 align-middle [&:has([role=checkbox])]:pr-0 text-text-primary font-normal',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -14,7 +14,7 @@ const TabsList = React.forwardRef<
|
||||
<TabsPrimitive.List
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'inline-flex h-10 items-center justify-center rounded-md bg-colors-background-inverse-standard p-1 text-colors-text-neutral-standard',
|
||||
'inline-flex h-10 items-center justify-center rounded-md p-1 ',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
@ -29,7 +29,7 @@ const TabsTrigger = React.forwardRef<
|
||||
<TabsPrimitive.Trigger
|
||||
ref={ref}
|
||||
className={cn(
|
||||
'inline-flex items-center justify-center whitespace-nowrap rounded-sm px-3 py-1.5 text-sm font-medium ring-offset-background transition-all focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=active]:bg-text-title-invert data-[state=active]:text-text-title data-[state=active]:shadow-sm',
|
||||
'inline-flex items-center justify-center whitespace-nowrap rounded-sm px-3 py-1.5 text-sm font-medium ring-offset-background transition-all focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=active]:bg-text-title-invert data-[state=active]:text-text-primary data-[state=active]:shadow-sm',
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
|
||||
@ -54,7 +54,7 @@ const Textarea = forwardRef<HTMLTextAreaElement, TextareaProps>(
|
||||
return (
|
||||
<textarea
|
||||
className={cn(
|
||||
'flex min-h-[80px] w-full rounded-md border border-input bg-colors-background-inverse-weak px-3 py-2 text-base ring-offset-background placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 md:text-sm overflow-hidden',
|
||||
'flex min-h-[80px] w-full bg-bg-card rounded-md border border-input px-3 py-2 text-base ring-offset-background placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 md:text-sm overflow-hidden',
|
||||
className,
|
||||
)}
|
||||
rows={autoSize?.minRows ?? props.rows ?? undefined}
|
||||
|
||||
@ -49,8 +49,8 @@ export const LanguageList = [
|
||||
'Japanese',
|
||||
'Portuguese BR',
|
||||
'German',
|
||||
'French',
|
||||
];
|
||||
|
||||
export const LanguageMap = {
|
||||
English: 'English',
|
||||
Chinese: '简体中文',
|
||||
@ -61,6 +61,7 @@ export const LanguageMap = {
|
||||
Japanese: '日本語',
|
||||
'Portuguese BR': 'Português BR',
|
||||
German: 'German',
|
||||
French: 'Français',
|
||||
};
|
||||
|
||||
export enum LanguageAbbreviation {
|
||||
@ -73,6 +74,7 @@ export enum LanguageAbbreviation {
|
||||
Vi = 'vi',
|
||||
PtBr = 'pt-BR',
|
||||
De = 'de',
|
||||
Fr = 'fr',
|
||||
}
|
||||
|
||||
export const LanguageAbbreviationMap = {
|
||||
@ -85,6 +87,7 @@ export const LanguageAbbreviationMap = {
|
||||
[LanguageAbbreviation.Ja]: '日本語',
|
||||
[LanguageAbbreviation.PtBr]: 'Português BR',
|
||||
[LanguageAbbreviation.De]: 'Deutsch',
|
||||
[LanguageAbbreviation.Fr]: 'Français',
|
||||
};
|
||||
|
||||
export const LanguageTranslationMap = {
|
||||
@ -97,6 +100,7 @@ export const LanguageTranslationMap = {
|
||||
Japanese: 'ja',
|
||||
'Portuguese BR': 'pt-br',
|
||||
German: 'de',
|
||||
French: 'fr',
|
||||
};
|
||||
|
||||
export enum FileMimeType {
|
||||
|
||||
@ -52,6 +52,8 @@ export enum LLMFactory {
|
||||
GiteeAI = 'GiteeAI',
|
||||
Ai302 = '302.AI',
|
||||
DeepInfra = 'DeepInfra',
|
||||
Grok = 'Grok',
|
||||
XAI = 'xAI',
|
||||
}
|
||||
|
||||
// Please lowercase the file name
|
||||
@ -109,4 +111,6 @@ export const IconMap = {
|
||||
[LLMFactory.GiteeAI]: 'gitee-ai',
|
||||
[LLMFactory.Ai302]: 'ai302',
|
||||
[LLMFactory.DeepInfra]: 'deepinfra',
|
||||
[LLMFactory.Grok]: 'grok',
|
||||
[LLMFactory.XAI]: 'xai',
|
||||
};
|
||||
|
||||
@ -353,7 +353,12 @@ export const useHandleMessageInputChange = () => {
|
||||
export const useSelectDerivedMessages = () => {
|
||||
const [derivedMessages, setDerivedMessages] = useState<IMessage[]>([]);
|
||||
|
||||
const ref = useScrollToBottom(derivedMessages);
|
||||
const messageContainerRef = useRef<HTMLDivElement>(null);
|
||||
|
||||
const { scrollRef, scrollToBottom } = useScrollToBottom(
|
||||
derivedMessages,
|
||||
messageContainerRef,
|
||||
);
|
||||
|
||||
const addNewestQuestion = useCallback(
|
||||
(message: Message, answer: string = '') => {
|
||||
@ -492,7 +497,8 @@ export const useSelectDerivedMessages = () => {
|
||||
}, [setDerivedMessages]);
|
||||
|
||||
return {
|
||||
ref,
|
||||
scrollRef,
|
||||
messageContainerRef,
|
||||
derivedMessages,
|
||||
setDerivedMessages,
|
||||
addNewestQuestion,
|
||||
@ -503,6 +509,7 @@ export const useSelectDerivedMessages = () => {
|
||||
addNewestOneAnswer,
|
||||
removeMessagesAfterCurrentMessage,
|
||||
removeAllMessages,
|
||||
scrollToBottom,
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
@ -35,9 +35,12 @@ export const useNavigatePage = () => {
|
||||
navigate(Routes.Chats);
|
||||
}, [navigate]);
|
||||
|
||||
const navigateToChat = useCallback(() => {
|
||||
navigate(Routes.Chat);
|
||||
}, [navigate]);
|
||||
const navigateToChat = useCallback(
|
||||
(id: string) => () => {
|
||||
navigate(`${Routes.Chat}/${id}`);
|
||||
},
|
||||
[navigate],
|
||||
);
|
||||
|
||||
const navigateToAgents = useCallback(() => {
|
||||
navigate(Routes.Agents);
|
||||
|
||||
@ -48,6 +48,7 @@ export const enum AgentApiAction {
|
||||
FetchVersion = 'fetchVersion',
|
||||
FetchAgentAvatar = 'fetchAgentAvatar',
|
||||
FetchExternalAgentInputs = 'fetchExternalAgentInputs',
|
||||
SetAgentSetting = 'setAgentSetting',
|
||||
}
|
||||
|
||||
export const EmptyDsl = {
|
||||
@ -613,3 +614,30 @@ export const useFetchExternalAgentInputs = () => {
|
||||
|
||||
return { data, loading, refetch };
|
||||
};
|
||||
|
||||
export const useSetAgentSetting = () => {
|
||||
const { id } = useParams();
|
||||
const queryClient = useQueryClient();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [AgentApiAction.SetAgentSetting],
|
||||
mutationFn: async (params: any) => {
|
||||
const ret = await agentService.settingCanvas({ id, ...params });
|
||||
if (ret?.data?.code === 0) {
|
||||
message.success('success');
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: [AgentApiAction.FetchAgentDetail],
|
||||
});
|
||||
} else {
|
||||
message.error(ret?.data?.data);
|
||||
}
|
||||
return ret?.data?.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, setAgentSetting: mutateAsync };
|
||||
};
|
||||
|
||||
@ -1,9 +1,36 @@
|
||||
import message from '@/components/ui/message';
|
||||
import { ChatSearchParams } from '@/constants/chat';
|
||||
import { IDialog } from '@/interfaces/database/chat';
|
||||
import chatService from '@/services/chat-service';
|
||||
import { useQuery } from '@tanstack/react-query';
|
||||
import { IConversation, IDialog } from '@/interfaces/database/chat';
|
||||
import { IAskRequestBody } from '@/interfaces/request/chat';
|
||||
import { IClientConversation } from '@/pages/next-chats/chat/interface';
|
||||
import { useGetSharedChatSearchParams } from '@/pages/next-chats/hooks/use-send-shared-message';
|
||||
import { isConversationIdExist } from '@/pages/next-chats/utils';
|
||||
import chatService from '@/services/next-chat-service ';
|
||||
import { buildMessageListWithUuid, getConversationId } from '@/utils/chat';
|
||||
import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
|
||||
import { useDebounce } from 'ahooks';
|
||||
import { has } from 'lodash';
|
||||
import { useCallback, useMemo } from 'react';
|
||||
import { history, useSearchParams } from 'umi';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useParams, useSearchParams } from 'umi';
|
||||
import {
|
||||
useGetPaginationWithRouter,
|
||||
useHandleSearchChange,
|
||||
} from './logic-hooks';
|
||||
|
||||
export const enum ChatApiAction {
|
||||
FetchDialogList = 'fetchDialogList',
|
||||
RemoveDialog = 'removeDialog',
|
||||
SetDialog = 'setDialog',
|
||||
FetchDialog = 'fetchDialog',
|
||||
FetchConversationList = 'fetchConversationList',
|
||||
FetchConversation = 'fetchConversation',
|
||||
UpdateConversation = 'updateConversation',
|
||||
RemoveConversation = 'removeConversation',
|
||||
DeleteMessage = 'deleteMessage',
|
||||
FetchMindMap = 'fetchMindMap',
|
||||
FetchRelatedQuestions = 'fetchRelatedQuestions',
|
||||
}
|
||||
|
||||
export const useGetChatSearchParams = () => {
|
||||
const [currentQueryParameters] = useSearchParams();
|
||||
@ -39,39 +66,360 @@ export const useClickDialogCard = () => {
|
||||
return { handleClickDialog };
|
||||
};
|
||||
|
||||
export const useFetchDialogList = (pureFetch = false) => {
|
||||
const { handleClickDialog } = useClickDialogCard();
|
||||
const { dialogId } = useGetChatSearchParams();
|
||||
export const useFetchDialogList = () => {
|
||||
const { searchString, handleInputChange } = useHandleSearchChange();
|
||||
const { pagination, setPagination } = useGetPaginationWithRouter();
|
||||
const debouncedSearchString = useDebounce(searchString, { wait: 500 });
|
||||
|
||||
const {
|
||||
data,
|
||||
isFetching: loading,
|
||||
refetch,
|
||||
} = useQuery<IDialog[]>({
|
||||
queryKey: ['fetchDialogList'],
|
||||
initialData: [],
|
||||
} = useQuery<{ dialogs: IDialog[]; total: number }>({
|
||||
queryKey: [
|
||||
ChatApiAction.FetchDialogList,
|
||||
{
|
||||
debouncedSearchString,
|
||||
...pagination,
|
||||
},
|
||||
],
|
||||
initialData: { dialogs: [], total: 0 },
|
||||
gcTime: 0,
|
||||
refetchOnWindowFocus: false,
|
||||
queryFn: async (...params) => {
|
||||
console.log('🚀 ~ queryFn: ~ params:', params);
|
||||
const { data } = await chatService.listDialog();
|
||||
queryFn: async () => {
|
||||
const { data } = await chatService.listDialog(
|
||||
{
|
||||
params: {
|
||||
keywords: debouncedSearchString,
|
||||
page_size: pagination.pageSize,
|
||||
page: pagination.current,
|
||||
},
|
||||
data: {},
|
||||
},
|
||||
true,
|
||||
);
|
||||
|
||||
return data?.data ?? { dialogs: [], total: 0 };
|
||||
},
|
||||
});
|
||||
|
||||
const onInputChange: React.ChangeEventHandler<HTMLInputElement> = useCallback(
|
||||
(e) => {
|
||||
handleInputChange(e);
|
||||
},
|
||||
[handleInputChange],
|
||||
);
|
||||
|
||||
return {
|
||||
data,
|
||||
loading,
|
||||
refetch,
|
||||
searchString,
|
||||
handleInputChange: onInputChange,
|
||||
pagination: { ...pagination, total: data?.total },
|
||||
setPagination,
|
||||
};
|
||||
};
|
||||
|
||||
export const useRemoveDialog = () => {
|
||||
const queryClient = useQueryClient();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.RemoveDialog],
|
||||
mutationFn: async (dialogIds: string[]) => {
|
||||
const { data } = await chatService.removeDialog({ dialogIds });
|
||||
if (data.code === 0) {
|
||||
const list: IDialog[] = data.data;
|
||||
if (!pureFetch) {
|
||||
if (list.length > 0) {
|
||||
if (list.every((x) => x.id !== dialogId)) {
|
||||
handleClickDialog(data.data[0].id);
|
||||
}
|
||||
} else {
|
||||
history.push('/chat');
|
||||
}
|
||||
}
|
||||
}
|
||||
queryClient.invalidateQueries({ queryKey: ['fetchDialogList'] });
|
||||
|
||||
return data?.data ?? [];
|
||||
message.success(t('message.deleted'));
|
||||
}
|
||||
return data.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, removeDialog: mutateAsync };
|
||||
};
|
||||
|
||||
export const useSetDialog = () => {
|
||||
const queryClient = useQueryClient();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.SetDialog],
|
||||
mutationFn: async (params: Partial<IDialog>) => {
|
||||
const { data } = await chatService.setDialog(params);
|
||||
if (data.code === 0) {
|
||||
queryClient.invalidateQueries({
|
||||
exact: false,
|
||||
queryKey: [ChatApiAction.FetchDialogList],
|
||||
});
|
||||
|
||||
message.success(
|
||||
t(`message.${params.dialog_id ? 'modified' : 'created'}`),
|
||||
);
|
||||
}
|
||||
return data?.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, setDialog: mutateAsync };
|
||||
};
|
||||
|
||||
export const useFetchDialog = () => {
|
||||
const { id } = useParams();
|
||||
|
||||
const {
|
||||
data,
|
||||
isFetching: loading,
|
||||
refetch,
|
||||
} = useQuery<IDialog>({
|
||||
queryKey: [ChatApiAction.FetchDialog, id],
|
||||
gcTime: 0,
|
||||
initialData: {} as IDialog,
|
||||
enabled: !!id,
|
||||
refetchOnWindowFocus: false,
|
||||
queryFn: async () => {
|
||||
const { data } = await chatService.getDialog(
|
||||
{ params: { dialogId: id } },
|
||||
true,
|
||||
);
|
||||
|
||||
return data?.data ?? ({} as IDialog);
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, refetch };
|
||||
};
|
||||
|
||||
//#region Conversation
|
||||
|
||||
export const useClickConversationCard = () => {
|
||||
const [currentQueryParameters, setSearchParams] = useSearchParams();
|
||||
const newQueryParameters: URLSearchParams = useMemo(
|
||||
() => new URLSearchParams(currentQueryParameters.toString()),
|
||||
[currentQueryParameters],
|
||||
);
|
||||
|
||||
const handleClickConversation = useCallback(
|
||||
(conversationId: string, isNew: string) => {
|
||||
newQueryParameters.set(ChatSearchParams.ConversationId, conversationId);
|
||||
newQueryParameters.set(ChatSearchParams.isNew, isNew);
|
||||
setSearchParams(newQueryParameters);
|
||||
},
|
||||
[setSearchParams, newQueryParameters],
|
||||
);
|
||||
|
||||
return { handleClickConversation };
|
||||
};
|
||||
|
||||
export const useFetchConversationList = () => {
|
||||
const { id } = useParams();
|
||||
const { handleClickConversation } = useClickConversationCard();
|
||||
const {
|
||||
data,
|
||||
isFetching: loading,
|
||||
refetch,
|
||||
} = useQuery<IConversation[]>({
|
||||
queryKey: [ChatApiAction.FetchConversationList, id],
|
||||
initialData: [],
|
||||
gcTime: 0,
|
||||
refetchOnWindowFocus: false,
|
||||
enabled: !!id,
|
||||
queryFn: async () => {
|
||||
const { data } = await chatService.listConversation(
|
||||
{ params: { dialog_id: id } },
|
||||
true,
|
||||
);
|
||||
if (data.code === 0) {
|
||||
if (data.data.length > 0) {
|
||||
handleClickConversation(data.data[0].id, '');
|
||||
} else {
|
||||
handleClickConversation('', '');
|
||||
}
|
||||
}
|
||||
return data?.data;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, refetch };
|
||||
};
|
||||
|
||||
export const useFetchConversation = () => {
|
||||
const { isNew, conversationId } = useGetChatSearchParams();
|
||||
const { sharedId } = useGetSharedChatSearchParams();
|
||||
const {
|
||||
data,
|
||||
isFetching: loading,
|
||||
refetch,
|
||||
} = useQuery<IClientConversation>({
|
||||
queryKey: [ChatApiAction.FetchConversation, conversationId],
|
||||
initialData: {} as IClientConversation,
|
||||
// enabled: isConversationIdExist(conversationId),
|
||||
gcTime: 0,
|
||||
refetchOnWindowFocus: false,
|
||||
queryFn: async () => {
|
||||
if (
|
||||
isNew !== 'true' &&
|
||||
isConversationIdExist(sharedId || conversationId)
|
||||
) {
|
||||
const { data } = await chatService.getConversation(
|
||||
{
|
||||
params: {
|
||||
conversationId: conversationId || sharedId,
|
||||
},
|
||||
},
|
||||
true,
|
||||
);
|
||||
|
||||
const conversation = data?.data ?? {};
|
||||
|
||||
const messageList = buildMessageListWithUuid(conversation?.message);
|
||||
|
||||
return { ...conversation, message: messageList };
|
||||
}
|
||||
return { message: [] };
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, refetch };
|
||||
};
|
||||
|
||||
export const useUpdateConversation = () => {
|
||||
const { t } = useTranslation();
|
||||
const queryClient = useQueryClient();
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.UpdateConversation],
|
||||
mutationFn: async (params: Record<string, any>) => {
|
||||
const { data } = await chatService.setConversation({
|
||||
...params,
|
||||
conversation_id: params.conversation_id
|
||||
? params.conversation_id
|
||||
: getConversationId(),
|
||||
});
|
||||
if (data.code === 0) {
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: [ChatApiAction.FetchConversationList],
|
||||
});
|
||||
message.success(t(`message.modified`));
|
||||
}
|
||||
return data;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, updateConversation: mutateAsync };
|
||||
};
|
||||
|
||||
export const useRemoveConversation = () => {
|
||||
const queryClient = useQueryClient();
|
||||
const { dialogId } = useGetChatSearchParams();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.RemoveConversation],
|
||||
mutationFn: async (conversationIds: string[]) => {
|
||||
const { data } = await chatService.removeConversation({
|
||||
conversationIds,
|
||||
dialogId,
|
||||
});
|
||||
if (data.code === 0) {
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: [ChatApiAction.FetchConversationList],
|
||||
});
|
||||
}
|
||||
return data.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, removeConversation: mutateAsync };
|
||||
};
|
||||
|
||||
export const useDeleteMessage = () => {
|
||||
const { conversationId } = useGetChatSearchParams();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.DeleteMessage],
|
||||
mutationFn: async (messageId: string) => {
|
||||
const { data } = await chatService.deleteMessage({
|
||||
messageId,
|
||||
conversationId,
|
||||
});
|
||||
|
||||
if (data.code === 0) {
|
||||
message.success(t(`message.deleted`));
|
||||
}
|
||||
|
||||
return data.code;
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, deleteMessage: mutateAsync };
|
||||
};
|
||||
|
||||
//#endregion
|
||||
|
||||
//#region search page
|
||||
|
||||
export const useFetchMindMap = () => {
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.FetchMindMap],
|
||||
gcTime: 0,
|
||||
mutationFn: async (params: IAskRequestBody) => {
|
||||
try {
|
||||
const ret = await chatService.getMindMap(params);
|
||||
return ret?.data?.data ?? {};
|
||||
} catch (error: any) {
|
||||
if (has(error, 'message')) {
|
||||
message.error(error.message);
|
||||
}
|
||||
|
||||
return [];
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, fetchMindMap: mutateAsync };
|
||||
};
|
||||
|
||||
export const useFetchRelatedQuestions = () => {
|
||||
const {
|
||||
data,
|
||||
isPending: loading,
|
||||
mutateAsync,
|
||||
} = useMutation({
|
||||
mutationKey: [ChatApiAction.FetchRelatedQuestions],
|
||||
gcTime: 0,
|
||||
mutationFn: async (question: string): Promise<string[]> => {
|
||||
const { data } = await chatService.getRelatedQuestions({ question });
|
||||
|
||||
return data?.data ?? [];
|
||||
},
|
||||
});
|
||||
|
||||
return { data, loading, fetchRelatedQuestions: mutateAsync };
|
||||
};
|
||||
//#endregion
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user