Compare commits

...

36 Commits

Author SHA1 Message Date
209b731541 Feat: add SearXNG search tool to Agent (frontend + backend, i18n) (#9699)
### What problem does this PR solve?

This PR integrates SearXNG as a new search tool for Agents. It adds
corresponding form/config UI on the frontend and a new tool
implementation on the backend, enabling aggregated web searches via a
self-hosted SearXNG instance within chats/workflows. It also adds
multilingual copy to support internationalized presentation and
configuration guidance.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

### What’s Changed
- Frontend: new SearXNG tool configuration, forms, and command wiring
  - Main changes under `web/src/pages/agent/`
- New components and form entries are connected to Agent tool selection
and workflow node configuration
- Backend: new tool implementation
- `agent/tools/searxng.py`: connects to a SearXNG instance and performs
search based on the provided instance URL and query parameters
- i18n updates
- Added/updated keys under `web/src/locales/`: `searXNG` and
`searXNGDescription`
- English reference in
[web/src/locales/en.ts](cci:7://file:///c:/Users/ruy_x/Work/CRSC/2025/Software_Development/2025.8/ragflow-pr/ragflow/web/src/locales/en.ts:0:0-0:0):
    - `searXNG: 'SearXNG'`
- `searXNGDescription: 'A component that searches via your provided
SearXNG instance URL. Specify TopN and the instance URL.'`
- Other languages have `searXNG` and `searXNGDescription` added as well,
but accuracy is only guaranteed for English, Simplified Chinese, and
Traditional Chinese.

---------

Co-authored-by: xurui <xurui@crscd.com.cn>
2025-08-29 14:15:40 +08:00
c47a38773c Fix: Fixed the issue that similarity threshold modification in chat and search configuration failed #3221 (#9821)
### What problem does this PR solve?

Fix: Fixed the issue that similarity threshold modification in chat and
search configuration failed #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 14:10:10 +08:00
fcd18d7d87 Fix: Ollama chat cannot access remote deployment (#9816)
### What problem does this PR solve?

Fix Ollama chat can only access localhost instance. #9806.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 13:35:41 +08:00
fe9adbf0a5 Fix: Optimized Input and MultiSelect component functionality and dataSet-chunk page styling #9779 (#9815)
### What problem does this PR solve?

Fix: Optimized Input and MultiSelect component functionality and
dataSet-chunk page styling

- Updated @js-preview/excel to version 1.7.14 #9779
- Optimized the EditTag component
- Updated the Input component to optimize numeric input processing
- Adjusted the MultiSelect component to use lodash's isEmpty method
- Optimized the CheckboxSets component to display action buttons based
on the selected state

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 10:57:29 +08:00
c7f7adf029 Feat: Extract the save buttons for dataset and chat configurations to separate files to increase permission control #3221 (#9803)
### What problem does this PR solve?

Feat: Extract the save buttons for dataset and chat configurations to
separate files to increase permission control #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-29 10:40:41 +08:00
c27172b3bc Feat: init dataflow. (#9791)
### What problem does this PR solve?

#9790

Close #9782

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 18:40:32 +08:00
a246949b77 Fix: Fixed the issue where the thinking mode on the chat page could not be turned off #9789 (#9794)
### What problem does this PR solve?

Fix: Fixed the issue where the thinking mode on the chat page could not
be turned off #9789

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 17:33:27 +08:00
0a954d720a Refa: unify reference format of agent completion and OpenAI-compatible completion API (#9792)
### What problem does this PR solve?

Unify reference format of agent completion and OpenAI-compatible
completion API.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Refactoring
2025-08-28 16:55:28 +08:00
f89e55ec42 Fix: Optimized variable node display and Agent template multi-language support #3221 (#9787)
### What problem does this PR solve?

Fix: Optimized variable node display and Agent template multi-language
support #3221

- Modified the VariableNode component to add parent label and icon
properties
- Updated the VariablePickerMenuPlugin to support displaying parent
labels and icons
- Adjusted useBuildNodeOutputOptions and useBuildBeginVariableOptions to
pass new properties
- Optimized the Agent TemplateCard component to switch the title and
description based on the language

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 15:43:25 +08:00
5fe8cf6018 Feat: Use AvatarUpload to replace the avatar settings on the dataset and search pages #3221 (#9785)
### What problem does this PR solve?

Feat: Use AvatarUpload to replace the avatar settings on the dataset and
search pages #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 14:45:20 +08:00
4720849ac0 Fix: agent template error. (#9784)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 14:40:27 +08:00
d7721833e7 Improve model tag rendering by splitting comma-separated string into styled <Tag> components (#9762)
### What problem does this PR solve?

This PR enhances the display of tags in the UI.

* Before: Model tags were shown as a single string with commas.
* After: Model tags are split by commas and displayed as individual
<Tag> components , making them visually distinct and easier to read.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 14:06:52 +08:00
7332f1d0f3 The agent directly outputs the results under the task model #9745 (#9746)
### What problem does this PR solve?

The agent directly outputs the results under the task model #9745

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:43:40 +08:00
2d101561f8 Add Russian language Update app.tsx (#9772)
Fix Add Russian language.

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:42:42 +08:00
59590e9aae Feat: Add AvatarUpload component #3221 (#9777)
### What problem does this PR solve?

Feat: Add AvatarUpload component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:42:17 +08:00
bb9b9b8357 Clarify installation of pre-commit alongside uv in README (#9749)
### What problem does this PR solve?

Updates the installation step in README.md to explicitly include
pre-commit alongside uv.

Applies the change to all localized versions: English, Chinese,
Japanese, Korean, Indonesian, and Portuguese.
#### Why this is needed:

The installation instructions previously mentioned only uv, but
pre-commit is also required for contributing.

Ensures consistency across all language versions and helps new
contributors set up the environment correctly.

### Type of change

- [x] Documentation Update
2025-08-28 09:53:16 +08:00
a4b368e53f add Russian in translation table index.tsx (#9773)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 09:47:04 +08:00
c461261f0b Refactor: Improve the try logic for upload_to_minio (#9735)
### What problem does this PR solve?

Improve the try logic for upload_to_minio

### Type of change

- [x] Refactoring
2025-08-28 09:35:29 +08:00
a1633e0a2f Fix: second round value removal. (#9756)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 09:34:47 +08:00
369add35b8 Feature/workflow en cn (#9742)
### What problem does this PR solve?
Update workflow ZH CN title and description.
### Type of change
- [x] Documentation Update
2025-08-28 09:34:30 +08:00
5abd0bbac1 Fix typo (#9766)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-08-27 18:56:40 +08:00
2d89863fdd Fix: search list permission (#9767)
### What problem does this PR solve?

Search list permission.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 18:50:02 +08:00
6cb3e08381 Revert: broken agent completion by #9631 (#9760)
### What problem does this PR solve?

Revert broken agent completion by #9631.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 17:16:55 +08:00
986b9cbb1a Docs: Update version references to v0.20.4 in READMEs and docs (#9758)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.20.3 to v0.20.4
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-08-27 16:56:55 +08:00
9c456adffd Added v0.20.4 release notes (#9757)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-08-27 15:29:09 +08:00
c15b138839 Create ecommerce_customer_service_workflow.json (#9755)
### What problem does this PR solve?

Update workflow template.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-27 15:15:24 +08:00
ff11348f7c Fix: Optimize the MultiSelect component and system prompt templates #3221 (#9752)
### What problem does this PR solve?

Fix: Optimize the MultiSelect component and system prompt templates
#3221

- Modify the conditional statements in the MultiSelect component, using
the ?. operator to improve code readability
- Optimize the formatting of the system prompt template to make it more
standardized and easier to read
- Update the Chinese translation, changing "ExeSQL" to "Execute SQL"

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-27 15:12:12 +08:00
cbdabbb58f Fix: Fixed the issue that the agent embedded page needs to be logged in #9750 (#9751)
### What problem does this PR solve?

Fix: Fixed the issue that the agent embedded page needs to be logged in
#9750

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 14:18:00 +08:00
cf0011be67 Feat: Upgrade html parser (#9675)
### What problem does this PR solve?

parse more html content.

### Type of change

- [x] Other (please describe):
2025-08-27 12:43:55 +08:00
1f47001c82 Fix: Optimize tooltips and I118n #3221 (#9744)
### What problem does this PR solve?

Fix: Optimize tooltips and I118n #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-27 11:46:51 +08:00
a914535344 Fix: add mode for embeded agent. (#9741)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 11:46:15 +08:00
ba1063c2b9 Docs: Miscellaneous updates (#9729)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-08-26 19:35:29 +08:00
2b4bca4447 Fix(i18n): Added new translations #3221 (#9727)
### What problem does this PR solve?

Fix(i18n): Added new translations #3221

- Added and updated internationalization translations in multiple
components


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-26 17:57:53 +08:00
11cf6ae313 Fix: After deleting the knowledge graph, jump to the dataset page #9722 (#9723)
### What problem does this PR solve?

Fix: After deleting the knowledge graph, jump to the dataset page #9722
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 17:57:41 +08:00
88db5d90d1 Fix: Try to fix the issue of not being able to log in through Oauth2 #9601 (#9717)
### What problem does this PR solve?

Fix: Try to fix the issue of not being able to log in through Oauth2
#9601

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 14:06:28 +08:00
209ef09dc3 Feat: add Zhipu GLM-4.5 model series (#9715)
### What problem does this PR solve?

Add Zhipu GLM-4.5 model series. #9708.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-26 13:48:00 +08:00
187 changed files with 4778 additions and 2502 deletions

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -190,7 +190,7 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.20.3-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.3-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` for the full edition `v0.20.3`.
> The command below downloads the `v0.20.4-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.4-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` for the full edition `v0.20.4`.
```bash
$ cd ragflow/docker
@ -203,8 +203,8 @@ releases! 🌟
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -307,7 +307,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Launch service from source for development
1. Install uv, or skip this step if it is already installed:
1. Install `uv` and `pre-commit`, or skip this step if they are already installed:
```bash
pipx install uv pre-commit

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -181,7 +181,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.20.3-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.3-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3 untuk edisi lengkap v0.20.3.
> Perintah di bawah ini mengunduh edisi v0.20.4-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.4-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4 untuk edisi lengkap v0.20.4.
```bash
$ cd ragflow/docker
@ -194,8 +194,8 @@ $ docker compose -f docker-compose.yml up -d
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -271,7 +271,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal uv, atau lewati langkah ini jika sudah terinstal:
1. Instal `uv` dan `pre-commit`, atau lewati langkah ini jika sudah terinstal:
```bash
pipx install uv pre-commit

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -160,7 +160,7 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.3-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.3-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.3 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.4-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.4-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.4 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4 と設定します。
```bash
$ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -266,7 +266,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 ソースコードからサービスを起動する方法
1. uv をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
1. `uv` と `pre-commit` をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
```bash
pipx install uv pre-commit

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -160,7 +160,7 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.3-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.3-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.3을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.4-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.4-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.4을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4로 설정합니다.
```bash
$ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -265,7 +265,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 소스 코드로 서비스를 시작합니다.
1. uv를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다:
1. `uv` 와 `pre-commit` 을 설치하거나, 이미 설치된 경우 이 단계를 건너뜁니다:
```bash
pipx install uv pre-commit

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -180,7 +180,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.20.3-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.3-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` para a edição completa `v0.20.3`.
> O comando abaixo baixa a edição `v0.20.4-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.4-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` para a edição completa `v0.20.4`.
```bash
$ cd ragflow/docker
@ -193,8 +193,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.20.3 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.20.3-slim | ~2 | ❌ | Lançamento estável |
| v0.20.4 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.20.4-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
@ -289,7 +289,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
1. Instale o `uv`, ou pule esta etapa se ele já estiver instalado:
1. Instale o `uv` e o `pre-commit`, ou pule esta etapa se eles já estiverem instalados:
```bash
pipx install uv pre-commit

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -183,7 +183,7 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.3-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.3-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` 來下載 RAGFlow 鏡像的 `v0.20.3` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.4-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.4-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` 來下載 RAGFlow 鏡像的 `v0.20.4` 完整發行版。
```bash
$ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -301,7 +301,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
## 🔨 以原始碼啟動服務
1. 安裝 uv。如已安裝,可跳過此步驟:
1. 安裝 `uv` 和 `pre-commit`。如已安裝,可跳過此步驟:
```bash
pipx install uv pre-commit

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -183,7 +183,7 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.3-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.3-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` 来下载 RAGFlow 镜像的 `v0.20.3` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.4-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.4-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` 来下载 RAGFlow 镜像的 `v0.20.4` 完整发行版。
```bash
$ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -301,7 +301,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
## 🔨 以源代码启动服务
1. 安装 uv。如已经安装,可跳过本步骤:
1. 安装 `uv` 和 `pre-commit`。如已经安装,可跳过本步骤:
```bash
pipx install uv pre-commit

View File

@ -29,83 +29,52 @@ from api.utils import get_uuid, hash_str2int
from rag.prompts.prompts import chunks_format
from rag.utils.redis_conn import REDIS_CONN
class Canvas:
class Graph:
"""
dsl = {
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {},
},
"downstream": ["answer_0"],
"upstream": [],
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"path": ["begin"],
"retrieval": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
}
"""
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.path = []
self.history = []
self.components = {}
self.error = ""
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
self.dsl = json.loads(dsl) if dsl else {
dsl = {
"components": {
"begin": {
"obj": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
"params": {},
},
"downstream": [],
"downstream": ["answer_0"],
"upstream": [],
"parent_id": ""
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"path": [],
"retrieval": [],
"path": ["begin"],
"retrieval": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
}
"""
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.path = []
self.components = {}
self.error = ""
self.dsl = json.loads(dsl)
self._tenant_id = tenant_id
self.task_id = task_id if task_id else get_uuid()
self.load()
@ -116,8 +85,6 @@ class Canvas:
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")()
@ -130,27 +97,10 @@ class Canvas:
cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
self.path = self.dsl["path"]
self.history = self.dsl["history"]
if "globals" in self.dsl:
self.globals = self.dsl["globals"]
else:
self.globals = {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
self.retrieval = self.dsl["retrieval"]
self.memory = self.dsl.get("memory", [])
def __str__(self):
self.dsl["path"] = self.path
self.dsl["history"] = self.history
self.dsl["globals"] = self.globals
self.dsl["task_id"] = self.task_id
self.dsl["retrieval"] = self.retrieval
self.dsl["memory"] = self.memory
dsl = {
"components": {}
}
@ -169,14 +119,79 @@ class Canvas:
dsl["components"][k][c] = deepcopy(cpn[c])
return json.dumps(dsl, ensure_ascii=False)
def reset(self, mem=False):
def reset(self):
self.path = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
try:
REDIS_CONN.delete(f"{self.task_id}-logs")
except Exception as e:
logging.exception(e)
def get_component_name(self, cid):
for n in self.dsl.get("graph", {}).get("nodes", []):
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
raise NotImplementedError()
def get_component(self, cpn_id) -> Union[None, dict[str, Any]]:
return self.components.get(cpn_id)
def get_component_obj(self, cpn_id) -> ComponentBase:
return self.components.get(cpn_id)["obj"]
def get_component_type(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].component_name
def get_component_input_form(self, cpn_id) -> dict:
return self.components.get(cpn_id)["obj"].get_input_form()
def get_tenant_id(self):
return self._tenant_id
class Canvas(Graph):
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
super().__init__(dsl, tenant_id, task_id)
def load(self):
super().load()
self.history = self.dsl["history"]
if "globals" in self.dsl:
self.globals = self.dsl["globals"]
else:
self.globals = {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
self.retrieval = self.dsl["retrieval"]
self.memory = self.dsl.get("memory", [])
def __str__(self):
self.dsl["history"] = self.history
self.dsl["retrieval"] = self.retrieval
self.dsl["memory"] = self.memory
return super().__str__()
def reset(self, mem=False):
super().reset()
if not mem:
self.history = []
self.retrieval = []
self.memory = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
for k in self.globals.keys():
if isinstance(self.globals[k], str):
@ -192,22 +207,13 @@ class Canvas:
else:
self.globals[k] = None
try:
REDIS_CONN.delete(f"{self.task_id}-logs")
except Exception as e:
logging.exception(e)
def get_component_name(self, cid):
for n in self.dsl.get("graph", {}).get("nodes", []):
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
st = time.perf_counter()
self.message_id = get_uuid()
created_at = int(time.time())
self.add_user_input(kwargs.get("query"))
for k, cpn in self.components.items():
self.components[k]["obj"].reset(True)
for k in kwargs.keys():
if k in ["query", "user_id", "files"] and kwargs[k]:
@ -386,18 +392,6 @@ class Canvas:
})
self.history.append(("assistant", self.get_component_obj(self.path[-1]).output()))
def get_component(self, cpn_id) -> Union[None, dict[str, Any]]:
return self.components.get(cpn_id)
def get_component_obj(self, cpn_id) -> ComponentBase:
return self.components.get(cpn_id)["obj"]
def get_component_type(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].component_name
def get_component_input_form(self, cpn_id) -> dict:
return self.components.get(cpn_id)["obj"].get_input_form()
def is_reff(self, exp: str) -> bool:
exp = exp.strip("{").strip("}")
if exp.find("@") < 0:
@ -419,9 +413,6 @@ class Canvas:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
def get_tenant_id(self):
return self._tenant_id
def get_history(self, window_size):
convs = []
if window_size <= 0:
@ -436,39 +427,12 @@ class Canvas:
def add_user_input(self, question):
self.history.append(("user", question))
def _find_loop(self, max_loops=6):
path = self.path[-1][::-1]
if len(path) < 2:
return False
for i in range(len(path)):
if path[i].lower().find("answer") == 0 or path[i].lower().find("iterationitem") == 0:
path = path[:i]
break
if len(path) < 2:
return False
for loc in range(2, len(path) // 2):
pat = ",".join(path[0:loc])
path_str = ",".join(path)
if len(pat) >= len(path_str):
return False
loop = max_loops
while path_str.find(pat) == 0 and loop >= 0:
loop -= 1
if len(pat)+1 >= len(path_str):
return False
path_str = path_str[len(pat)+1:]
if loop < 0:
pat = " => ".join([p.split(":")[0] for p in path[0:loc]])
return pat + " => " + pat
return False
def get_prologue(self):
return self.components["begin"]["obj"]._param.prologue
def get_mode(self):
return self.components["begin"]["obj"]._param.mode
def set_global_param(self, **kwargs):
self.globals.update(kwargs)

View File

@ -50,8 +50,9 @@ del _package_path, _import_submodules, _extract_classes_from_module
def component_class(class_name):
m = importlib.import_module("agent.component")
try:
return getattr(m, class_name)
except Exception:
return getattr(importlib.import_module("agent.tools"), class_name)
for mdl in ["agent.component", "agent.tools", "rag.flow"]:
try:
return getattr(importlib.import_module(mdl), class_name)
except Exception:
pass
assert False, f"Can't import {class_name}"

View File

@ -16,7 +16,7 @@
import re
import time
from abc import ABC, abstractmethod
from abc import ABC
import builtins
import json
import os
@ -410,8 +410,8 @@ class ComponentBase(ABC):
)
def __init__(self, canvas, id, param: ComponentParamBase):
from agent.canvas import Canvas # Local import to avoid cyclic dependency
assert isinstance(canvas, Canvas), "canvas must be an instance of Canvas"
from agent.canvas import Graph # Local import to avoid cyclic dependency
assert isinstance(canvas, Graph), "canvas must be an instance of Canvas"
self._canvas = canvas
self._id = id
self._param = param
@ -448,9 +448,11 @@ class ComponentBase(ABC):
def error(self):
return self._param.outputs.get("_ERROR", {}).get("value")
def reset(self):
def reset(self, only_output=False):
for k in self._param.outputs.keys():
self._param.outputs[k]["value"] = None
if only_output:
return
for k in self._param.inputs.keys():
self._param.inputs[k]["value"] = None
self._param.debug_inputs = {}
@ -526,6 +528,10 @@ class ComponentBase(ABC):
cpn_nms = self._canvas.get_component(self._id)['upstream']
return cpn_nms
def get_downstream(self) -> List[str]:
cpn_nms = self._canvas.get_component(self._id)['downstream']
return cpn_nms
@staticmethod
def string_format(content: str, kv: dict[str, str]) -> str:
for n, v in kv.items():
@ -554,6 +560,5 @@ class ComponentBase(ABC):
def set_exception_default_value(self):
self.set_output("result", self.get_exception_default_value())
@abstractmethod
def thoughts(self) -> str:
...
raise NotImplementedError()

View File

@ -1,8 +1,12 @@
{
"id": 19,
"title": "Choose Your Knowledge Base Agent",
"description": "Select your desired knowledge base from the dropdown menu. The Agent will only retrieve from the selected knowledge base and use this content to generate responses.",
"canvas_type": "Agent",
"title": {
"en": "Choose Your Knowledge Base Agent",
"zh": "选择知识库智能体"},
"description": {
"en": "Select your desired knowledge base from the dropdown menu. The Agent will only retrieve from the selected knowledge base and use this content to generate responses.",
"zh": "从下拉菜单中选择知识库,智能体将仅根据所选知识库内容生成回答。"},
"canvas_type": "Agent",
"dsl": {
"components": {
"Agent:BraveParksJoke": {

View File

@ -1,8 +1,12 @@
{
"id": 18,
"title": "Choose Your Knowledge Base Workflow",
"description": "Select your desired knowledge base from the dropdown menu. The retrieval assistant will only use data from your selected knowledge base to generate responses.",
"canvas_type": "Other",
"title": {
"en": "Choose Your Knowledge Base Workflow",
"zh": "选择知识库工作流"},
"description": {
"en": "Select your desired knowledge base from the dropdown menu. The retrieval assistant will only use data from your selected knowledge base to generate responses.",
"zh": "从下拉菜单中选择知识库,工作流将仅根据所选知识库内容生成回答。"},
"canvas_type": "Other",
"dsl": {
"components": {
"Agent:ProudDingosShout": {

View File

@ -1,9 +1,13 @@
{
"id": 11,
"title": "Customer Review Analysis",
"description": "Automatically classify customer reviews using LLM (Large Language Model) and route them via email to the relevant departments.",
"canvas_type": "Customer Support",
"title": {
"en": "Customer Review Analysis",
"zh": "客户评价分析"},
"description": {
"en": "Automatically classify customer reviews using LLM (Large Language Model) and route them via email to the relevant departments.",
"zh": "大模型将自动分类客户评价,并通过电子邮件将结果发送到相关部门。"},
"canvas_type": "Customer Support",
"dsl": {
"components": {
"Categorize:FourTeamsFold": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{
"id": 10,
"title": "Customer Support",
"description": "This is an intelligent customer service processing system workflow based on user intent classification. It uses LLM to identify user demand types and transfers them to the corresponding professional agent for processing.",
"title": {
"en":"Customer Support",
"zh": "客户支持"},
"description": {
"en": "This is an intelligent customer service processing system workflow based on user intent classification. It uses LLM to identify user demand types and transfers them to the corresponding professional agent for processing.",
"zh": "工作流系统,用于智能客服场景。基于用户意图分类。使用大模型识别用户需求类型,并将需求转移给相应的智能体进行处理。"},
"canvas_type": "Customer Support",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 15,
"title": "CV Analysis and Candidate Evaluation",
"description": "This is a workflow that helps companies evaluate resumes, HR uploads a job description first, then submits multiple resumes via the chat window for evaluation.",
"title": {
"en": "CV Analysis and Candidate Evaluation",
"zh": "简历分析和候选人评估"},
"description": {
"en": "This is a workflow that helps companies evaluate resumes, HR uploads a job description first, then submits multiple resumes via the chat window for evaluation.",
"zh": "帮助公司评估简历的工作流。HR首先上传职位描述通过聊天窗口提交多份简历进行评估。"},
"canvas_type": "Other",
"dsl": {
"components": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{
"id": 1,
"title": "Deep Research",
"description": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"title": {
"en": "Deep Research",
"zh": "深度研究"},
"description": {
"en": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"zh": "专为销售、市场、政策或咨询领域的专业人士设计,多智能体的深度研究会结合多源信息进行结构化、多步骤地回答问题,并附带有清晰的引用。"},
"canvas_type": "Recommended",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 6,
"title": "Deep Research",
"description": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"title": {
"en": "Deep Research",
"zh": "深度研究"},
"description": {
"en": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"zh": "专为销售、市场、政策或咨询领域的专业人士设计,多智能体的深度研究会结合多源信息进行结构化、多步骤地回答问题,并附带有清晰的引用。"},
"canvas_type": "Agent",
"dsl": {
"components": {

File diff suppressed because one or more lines are too long

View File

@ -1,7 +1,11 @@
{
"id": 8,
"title": "Generate SEO Blog",
"description": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.",
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.",
"zh": "多智能体架构可根据简单的用户输入自动生成完整的SEO博客文章。模拟小型“作家”团队其中每个智能体扮演一个专业角色——就像真正的编辑团队。"},
"canvas_type": "Agent",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 13,
"title": "ImageLingo",
"description": "ImageLingo lets you snap any photo containing text—menus, signs, or documents—and instantly recognize and translate it into your language of choice using advanced AI-powered translation technology.",
"title": {
"en": "ImageLingo",
"zh": "图片解析"},
"description": {
"en": "ImageLingo lets you snap any photo containing text—menus, signs, or documents—and instantly recognize and translate it into your language of choice using advanced AI-powered translation technology.",
"zh": "多模态大模型允许您拍摄任何包含文本的照片——菜单、标志或文档——立即识别并转换成您选择的语言。"},
"canvas_type": "Consumer App",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 20,
"title": "Report Agent Using Knowledge Base",
"description": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"title": {
"en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Agent",
"dsl": {
"components": {

View File

@ -0,0 +1,331 @@
{
"id": 21,
"title": {
"en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Recommended",
"dsl": {
"components": {
"Agent:NewPumasLick": {
"downstream": [
"Message:OrangeYearsShine"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Message:OrangeYearsShine": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:NewPumasLick@content}"
]
}
},
"upstream": [
"Agent:NewPumasLick"
]
},
"begin": {
"downstream": [
"Agent:NewPumasLick"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:NewPumasLickend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:NewPumasLick",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLickstart-Message:OrangeYearsShineend",
"markerEnd": "logo",
"source": "Agent:NewPumasLick",
"sourceHandle": "start",
"style": {
"stroke": "rgba(91, 93, 106, 1)",
"strokeWidth": 1
},
"target": "Message:OrangeYearsShine",
"targetHandle": "end",
"type": "buttonEdge",
"zIndex": 1001
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLicktool-Tool:AllBirdsNailend",
"selected": false,
"source": "Agent:NewPumasLick",
"sourceHandle": "tool",
"target": "Tool:AllBirdsNail",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
},
"label": "Begin",
"name": "begin"
},
"dragging": false,
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": -9.569875358221438,
"y": 205.84018385864917
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"content": [
"{Agent:NewPumasLick@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:OrangeYearsShine",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 734.4061285881053,
"y": 199.9706031723009
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Knowledge Base Agent"
},
"dragging": false,
"id": "Agent:NewPumasLick",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 347.00048227952215,
"y": 186.49109364794631
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_10"
},
"dragging": false,
"id": "Tool:AllBirdsNail",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 220.24819746977118,
"y": 403.31576836482583
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
}
]
},
"history": [],
"memory": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@ -1,7 +1,11 @@
{
"id": 12,
"title": "Generate SEO Blog",
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Marketing",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 4,
"title": "Generate SEO Blog",
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Recommended",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 17,
"title": "SQL Assistant",
"description": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarters top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"title": {
"en": "SQL Assistant",
"zh": "SQL助理"},
"description": {
"en": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarters top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"zh": "用户能够将简单文本问题转化为完整的SQL查询并输出结果。只需输入您的问题例如“展示上个季度前十名按收入排序的产品”SQL助理就会生成精确的SQL语句对其运行您的数据库并几秒钟内返回结果。"},
"canvas_type": "Marketing",
"dsl": {
"components": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{
"id": 9,
"title": "Technical Docs QA",
"description": "This is a document question-and-answer system based on a knowledge base. When a user asks a question, it retrieves relevant document content to provide accurate answers.",
"title": {
"en": "Technical Docs QA",
"zh": "技术文档问答"},
"description": {
"en": "This is a document question-and-answer system based on a knowledge base. When a user asks a question, it retrieves relevant document content to provide accurate answers.",
"zh": "基于知识库的文档问答系统,当用户提出问题时,会检索相关本地文档并提供准确回答。"},
"canvas_type": "Customer Support",
"dsl": {
"components": {

View File

@ -1,9 +1,13 @@
{
"id": 14,
"title": "Trip Planner",
"description": "This smart trip planner utilizes LLM technology to automatically generate customized travel itineraries, with optional tool integration for enhanced reliability.",
"canvas_type": "Consumer App",
"title": {
"en": "Trip Planner",
"zh": "旅行规划"},
"description": {
"en": "This smart trip planner utilizes LLM technology to automatically generate customized travel itineraries, with optional tool integration for enhanced reliability.",
"zh": "智能旅行规划将利用大模型自动生成定制化的旅行行程,附带可选工具集成,以增强可靠性。"},
"canvas_type": "Consumer App",
"dsl": {
"components": {
"Agent:OddGuestsPump": {

View File

@ -1,9 +1,13 @@
{
"id": 16,
"title": "WebSearch Assistant",
"description": "A chat assistant template that integrates information extracted from a knowledge base and web searches to respond to queries. Let's start by setting up your knowledge base in 'Retrieval'!",
"canvas_type": "Other",
"title": {
"en": "WebSearch Assistant",
"zh": "网页搜索助手"},
"description": {
"en": "A chat assistant template that integrates information extracted from a knowledge base and web searches to respond to queries. Let's start by setting up your knowledge base in 'Retrieval'!",
"zh": "集成了从知识库和网络搜索中提取的信息回答用户问题。让我们从设置您的知识库开始检索!"},
"canvas_type": "Other",
"dsl": {
"components": {
"Agent:SmartSchoolsCross": {

View File

@ -16,9 +16,8 @@
from abc import ABC
import asyncio
from crawl4ai import AsyncWebCrawler
from agent.tools.base import ToolParamBase, ToolBase
from api.utils.web_utils import is_valid_url
class CrawlerParam(ToolParamBase):
@ -39,6 +38,7 @@ class Crawler(ToolBase, ABC):
component_name = "Crawler"
def _run(self, history, **kwargs):
from api.utils.web_utils import is_valid_url
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not is_valid_url(ans):

156
agent/tools/searxng.py Normal file
View File

@ -0,0 +1,156 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import requests
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
class SearXNGParam(ToolParamBase):
"""
Define the SearXNG component parameters.
"""
def __init__(self):
self.meta: ToolMeta = {
"name": "searxng_search",
"description": "SearXNG is a privacy-focused metasearch engine that aggregates results from multiple search engines without tracking users. It provides comprehensive web search capabilities.",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with SearXNG. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
},
"searxng_url": {
"type": "string",
"description": "The base URL of your SearXNG instance (e.g., http://localhost:4000). This is required to connect to your SearXNG server.",
"required": False,
"default": ""
}
}
}
super().__init__()
self.top_n = 10
self.searxng_url = ""
def check(self):
# Keep validation lenient so opening try-run panel won't fail without URL.
# Coerce top_n to int if it comes as string from UI.
try:
if isinstance(self.top_n, str):
self.top_n = int(self.top_n.strip())
except Exception:
pass
self.check_positive_integer(self.top_n, "Top N")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
},
"searxng_url": {
"name": "SearXNG URL",
"type": "line",
"placeholder": "http://localhost:4000"
}
}
class SearXNG(ToolBase, ABC):
component_name = "SearXNG"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
# Gracefully handle try-run without inputs
query = kwargs.get("query")
if not query or not isinstance(query, str) or not query.strip():
self.set_output("formalized_content", "")
return ""
searxng_url = (kwargs.get("searxng_url") or getattr(self._param, "searxng_url", "") or "").strip()
# In try-run, if no URL configured, just return empty instead of raising
if not searxng_url:
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
# 构建搜索参数
search_params = {
'q': query,
'format': 'json',
'categories': 'general',
'language': 'auto',
'safesearch': 1,
'pageno': 1
}
# 发送搜索请求
response = requests.get(
f"{searxng_url}/search",
params=search_params,
timeout=10
)
response.raise_for_status()
data = response.json()
# 验证响应数据
if not data or not isinstance(data, dict):
raise ValueError("Invalid response from SearXNG")
results = data.get("results", [])
if not isinstance(results, list):
raise ValueError("Invalid results format from SearXNG")
# 限制结果数量
results = results[:self._param.top_n]
# 处理搜索结果
self._retrieve_chunks(results,
get_title=lambda r: r.get("title", ""),
get_url=lambda r: r.get("url", ""),
get_content=lambda r: r.get("content", ""))
self.set_output("json", results)
return self.output("formalized_content")
except requests.RequestException as e:
last_e = f"Network error: {e}"
logging.exception(f"SearXNG network error: {e}")
time.sleep(self._param.delay_after_error)
except Exception as e:
last_e = str(e)
logging.exception(f"SearXNG error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", last_e)
return f"SearXNG error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Searching with SearXNG for relevant results...
""".format(self.get_input().get("query", "-_-!"))

View File

@ -93,6 +93,7 @@ def list_chunk():
def get():
chunk_id = request.args["chunk_id"]
try:
chunk = None
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(message="Tenant not found!")

View File

@ -66,7 +66,7 @@ def set_dialog():
if not is_create:
if not req.get("kb_ids", []) and not prompt_config.get("tavily_api_key") and "{knowledge}" in prompt_config['system']:
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base/Tavily used here.")
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base / Tavily used here.")
for p in prompt_config["parameters"]:
if p["optional"]:

View File

@ -243,7 +243,7 @@ def add_llm():
model_name=mdl_nm,
base_url=llm["api_base"]
)
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
arr, tc = mdl.similarity("Hello~ RAGFlower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0:
raise Exception("Not known.")
except KeyError:
@ -271,7 +271,7 @@ def add_llm():
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)
try:
for resp in mdl.tts("Hello~ Ragflower!"):
for resp in mdl.tts("Hello~ RAGFlower!"):
pass
except RuntimeError as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)

View File

@ -82,7 +82,7 @@ def create() -> Response:
server_name = req.get("name", "")
if not server_name or len(server_name.encode("utf-8")) > 255:
return get_data_error_result(message=f"Invaild MCP name or length is {len(server_name)} which is large than 255.")
return get_data_error_result(message=f"Invalid MCP name or length is {len(server_name)} which is large than 255.")
e, _ = MCPServerService.get_by_name_and_tenant(name=server_name, tenant_id=current_user.id)
if e:
@ -90,7 +90,7 @@ def create() -> Response:
url = req.get("url", "")
if not url:
return get_data_error_result(message="Invaild url.")
return get_data_error_result(message="Invalid url.")
headers = safe_json_parse(req.get("headers", {}))
req["headers"] = headers
@ -141,10 +141,10 @@ def update() -> Response:
return get_data_error_result(message="Unsupported MCP server type.")
server_name = req.get("name", mcp_server.name)
if server_name and len(server_name.encode("utf-8")) > 255:
return get_data_error_result(message=f"Invaild MCP name or length is {len(server_name)} which is large than 255.")
return get_data_error_result(message=f"Invalid MCP name or length is {len(server_name)} which is large than 255.")
url = req.get("url", mcp_server.url)
if not url:
return get_data_error_result(message="Invaild url.")
return get_data_error_result(message="Invalid url.")
headers = safe_json_parse(req.get("headers", mcp_server.headers))
req["headers"] = headers
@ -218,7 +218,7 @@ def import_multiple() -> Response:
continue
if not server_name or len(server_name.encode("utf-8")) > 255:
results.append({"server": server_name, "success": False, "message": f"Invaild MCP name or length is {len(server_name)} which is large than 255."})
results.append({"server": server_name, "success": False, "message": f"Invalid MCP name or length is {len(server_name)} which is large than 255."})
continue
base_name = server_name
@ -409,7 +409,7 @@ def test_mcp() -> Response:
url = req.get("url", "")
if not url:
return get_data_error_result(message="Invaild MCP url.")
return get_data_error_result(message="Invalid MCP url.")
server_type = req.get("server_type", "")
if server_type not in VALID_MCP_SERVER_TYPES:

View File

@ -74,7 +74,6 @@ def retrieval(tenant_id):
[tenant_id],
[kb_id],
embd_mdl,
doc_ids,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)

View File

@ -16,8 +16,10 @@
import json
import re
import time
import tiktoken
from flask import Response, jsonify, request
from agent.canvas import Canvas
from api import settings
from api.db import LLMType, StatusEnum
@ -27,7 +29,8 @@ from api.db.services.canvas_service import UserCanvasService, completionOpenAI
from api.db.services.canvas_service import completion as agent_completion
from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap, meta_filter
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
@ -37,7 +40,7 @@ from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_
from rag.app.tag import label_question
from rag.prompts import chunks_format
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import cross_languages, keyword_extraction
from rag.prompts.prompts import cross_languages, gen_meta_filter, keyword_extraction
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
@ -81,10 +84,10 @@ def create_agent_session(tenant_id, agent_id):
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
session_id=get_uuid()
session_id = get_uuid()
canvas = Canvas(cvs.dsl, tenant_id, agent_id)
canvas.reset()
cvs.dsl = json.loads(str(canvas))
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
API4ConversationService.save(**conv)
@ -411,7 +414,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
stream=True,
**req,
),
@ -429,7 +432,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
stream=False,
**req,
)
@ -442,26 +445,49 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
def agent_completions(tenant_id, agent_id):
req = request.json
if req.get("stream", True):
resp = Response(agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req), mimetype="text/event-stream")
def generate():
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
if isinstance(answer, str):
try:
ans = json.loads(answer[5:]) # remove "data:"
except Exception:
continue
if ans.get("event") not in ["message", "message_end"]:
continue
yield answer
yield "data:[DONE]\n\n"
resp = Response(generate(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
result = {}
full_content = ""
reference = {}
final_ans = ""
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
try:
ans = json.loads(answer[5:]) # remove "data:"
if not result:
result = ans.copy()
else:
result["data"]["answer"] += ans["data"]["answer"]
result["data"]["reference"] = ans["data"].get("reference", [])
ans = json.loads(answer[5:])
if ans["event"] == "message":
full_content += ans["data"]["content"]
if ans.get("data", {}).get("reference", None):
reference.update(ans["data"]["reference"])
final_ans = ans
except Exception as e:
return get_error_data_result(str(e))
return result
return get_result(data=f"**ERROR**: {str(e)}")
final_ans["data"]["content"] = full_content
final_ans["data"]["reference"] = reference
return get_result(data=final_ans)
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
@ -556,10 +582,7 @@ def list_agent_session(tenant_id, agent_id):
if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = []
# Add boundary and type checks to prevent KeyError
if (chunk_num < len(conv["reference"]) and
conv["reference"][chunk_num] is not None and
isinstance(conv["reference"][chunk_num], dict) and
"chunks" in conv["reference"][chunk_num]):
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks:
# Ensure chunk is a dictionary before calling get method
@ -860,14 +883,7 @@ def begin_inputs(agent_id):
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
return get_result(
data={
"title": cvs.title,
"avatar": cvs.avatar,
"inputs": canvas.get_component_input_form("begin"),
"prologue": canvas.get_prologue()
}
)
return get_result(data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"), "prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
@ -907,7 +923,7 @@ def ask_about_embedded():
return resp
@manager.route("/searchbots/retrieval_test", methods=['POST']) # noqa: F821
@manager.route("/searchbots/retrieval_test", methods=["POST"]) # noqa: F821
@validate_request("kb_id", "question")
def retrieval_test_embedded():
token = request.headers.get("Authorization").split()
@ -937,18 +953,30 @@ def retrieval_test_embedded():
if not tenant_id:
return get_error_data_result(message="permission denined.")
if req.get("search_id", ""):
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
meta_data_filter = search_config.get("meta_data_filter", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
try:
tenants = UserTenantService.query(user_id=tenant_id)
for kb_id in kb_ids:
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kb_id):
if KnowledgebaseService.query(tenant_id=tenant.tenant_id, id=kb_id):
tenant_ids.append(tenant.tenant_id)
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
@ -968,17 +996,11 @@ def retrieval_test_embedded():
question += keyword_extraction(chat_mdl, question)
labels = label_question(question, [kb])
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
rank_feature=labels
)
ranks = settings.retrievaler.retrieval(
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top, doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
tenant_ids,
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
ck = settings.kg_retrievaler.retrieval(question, tenant_ids, kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
@ -989,8 +1011,7 @@ def retrieval_test_embedded():
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
return get_json_result(data=False, message="No chunk found! Check the chunk status please!", code=settings.RetCode.DATA_ERROR)
return server_error_response(e)

View File

@ -43,7 +43,7 @@ def create():
return get_data_error_result(message=f"Search name length is {len(search_name)} which is large than 255.")
e, _ = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Authorizationd identity.")
return get_data_error_result(message="Authorized identity.")
search_name = search_name.strip()
search_name = duplicate_name(SearchService.query, name=search_name, tenant_id=current_user.id, status=StatusEnum.VALID.value)
@ -78,7 +78,7 @@ def update():
tenant_id = req["tenant_id"]
e, _ = TenantService.get_by_id(tenant_id)
if not e:
return get_data_error_result(message="Authorizationd identity.")
return get_data_error_result(message="Authorized identity.")
search_id = req["search_id"]
if not SearchService.accessible4deletion(search_id, current_user.id):
@ -155,8 +155,9 @@ def list_search_app():
owner_ids = req.get("owner_ids", [])
try:
if not owner_ids:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
tenants = [m["tenant_id"] for m in tenants]
# tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
# tenants = [m["tenant_id"] for m in tenants]
tenants = []
search_apps, total = SearchService.get_by_tenant_ids(tenants, current_user.id, page_number, items_per_page, orderby, desc, keywords)
else:
tenants = owner_ids

View File

@ -824,9 +824,8 @@ class UserCanvas(DataBaseModel):
class CanvasTemplate(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
avatar = TextField(null=True, help_text="avatar base64 string")
title = CharField(max_length=255, null=True, help_text="Canvas title")
description = TextField(null=True, help_text="Canvas description")
title = JSONField(null=True, default=dict, help_text="Canvas title")
description = JSONField(null=True, default=dict, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type", index=True)
dsl = JSONField(null=True, default={})
@ -1021,4 +1020,13 @@ def migrate_db():
migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={})))
except Exception:
pass
try:
migrate(migrator.alter_column_type("canvas_template", "title", JSONField(null=True, default=dict, help_text="Canvas title")))
except Exception:
pass
try:
migrate(migrator.alter_column_type("canvas_template", "description", JSONField(null=True, default=dict, help_text="Canvas description")))
except Exception:
pass
logging.disable(logging.NOTSET)

View File

@ -135,24 +135,6 @@ class UserCanvasService(CommonService):
return True
def structure_answer(conv, ans, message_id, session_id):
if not conv:
return ans
content = ""
if ans["event"] == "message":
if ans["data"].get("start_to_think") is True:
content = "<think>"
elif ans["data"].get("end_to_think") is True:
content = "</think>"
else:
content = ans["data"]["content"]
reference = ans["data"].get("reference")
result = {"id": message_id, "session_id": session_id, "answer": content}
if reference:
result["reference"] = [reference]
return result
def completion(tenant_id, agent_id, session_id=None, **kwargs):
query = kwargs.get("query", "") or kwargs.get("question", "")
files = kwargs.get("files", [])
@ -196,14 +178,13 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
})
txt = ""
for ans in canvas.run(query=query, files=files, user_id=user_id, inputs=inputs):
ans = structure_answer(conv, ans, message_id, session_id)
txt += ans["answer"]
if ans.get("answer") or ans.get("reference"):
yield "data:" + json.dumps({"code": 0, "data": ans},
ensure_ascii=False) + "\n\n"
ans["session_id"] = session_id
if ans["event"] == "message":
txt += ans["data"]["content"]
yield "data:" + json.dumps(ans, ensure_ascii=False) + "\n\n"
conv.message.append({"role": "assistant", "content": txt, "created_at": time.time(), "id": message_id})
conv.reference.append(canvas.get_reference())
conv.reference = canvas.get_reference()
conv.errors = canvas.error
conv.dsl = str(canvas)
conv = conv.to_dict()
@ -232,26 +213,33 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
except Exception as e:
logging.exception(f"Agent OpenAI-Compatible completionOpenAI parse answer failed: {e}")
continue
if not ans["data"]["answer"]:
if ans.get("event") not in ["message", "message_end"]:
continue
content_piece = ans["data"]["answer"]
content_piece = ""
if ans["event"] == "message":
content_piece = ans["data"]["content"]
completion_tokens += len(tiktokenenc.encode(content_piece))
yield "data: " + json.dumps(
get_data_openai(
openai_data = get_data_openai(
id=session_id or str(uuid4()),
model=agent_id,
content=content_piece,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
stream=True
),
ensure_ascii=False
) + "\n\n"
)
if ans.get("data", {}).get("reference", None):
openai_data["choices"][0]["delta"]["reference"] = ans["data"]["reference"]
yield "data: " + json.dumps(openai_data, ensure_ascii=False) + "\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logging.exception(e)
yield "data: " + json.dumps(
get_data_openai(
id=session_id or str(uuid4()),
@ -269,6 +257,7 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
else:
try:
all_content = ""
reference = {}
for ans in completion(
tenant_id=tenant_id,
agent_id=agent_id,
@ -279,13 +268,18 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
):
if isinstance(ans, str):
ans = json.loads(ans[5:])
if not ans["data"]["answer"]:
if ans.get("event") not in ["message", "message_end"]:
continue
all_content += ans["data"]["answer"]
if ans["event"] == "message":
all_content += ans["data"]["content"]
if ans.get("data", {}).get("reference", None):
reference.update(ans["data"]["reference"])
completion_tokens = len(tiktokenenc.encode(all_content))
yield get_data_openai(
openai_data = get_data_openai(
id=session_id or str(uuid4()),
model=agent_id,
prompt_tokens=prompt_tokens,
@ -295,7 +289,12 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
param=None
)
if reference:
openai_data["choices"][0]["message"]["reference"] = reference
yield openai_data
except Exception as e:
logging.exception(e)
yield get_data_openai(
id=session_id or str(uuid4()),
model=agent_id,

View File

@ -133,6 +133,13 @@ class UserService(CommonService):
cls.model.update(user_dict).where(
cls.model.id == user_id).execute()
@classmethod
@DB.connection_context()
def is_admin(cls, user_id):
return cls.model.select().where(
cls.model.id == user_id,
cls.model.is_superuser == 1).count() > 0
class TenantService(CommonService):
"""Service class for managing tenant-related database operations.

View File

@ -354,7 +354,7 @@ def get_parser_config(chunk_method, parser_config):
if not chunk_method:
chunk_method = "naive"
# Define default configurations for each chunk method
# Define default configurations for each chunking method
key_mapping = {
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"qa": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},

View File

@ -532,65 +532,65 @@
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
"llm": [
{
"llm_name": "glm-4.5v",
"tags": "LLM,CHAT,IMAGE2TEXT,",
"max_tokens": 128000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "glm-4.5",
"tags": "LLM,CHAT,128K,",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5-x",
"tags": "LLM,CHAT,128K,",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5-air",
"tags": "LLM,CHAT,128K,",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5-airx",
"tags": "LLM,CHAT,128K,",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5-flash",
"tags": "LLM,CHAT,128K,",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5v",
"tags": "LLM,IMAGE2TEXT,64,",
"max_tokens": 64000,
"model_type": "image2text",
"is_tools": false
},
{
"llm_name": "glm-4-plus",
"tags": "LLM,CHAT,",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4-0520",
"tags": "LLM,CHAT,",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4",
"tags": "LLM,CHAT,",
"tags":"LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true

View File

@ -131,6 +131,12 @@ class RAGFlowExcelParser:
return tb_chunks
def markdown(self, fnm):
import pandas as pd
file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
df = pd.read_excel(file_like_object)
return df.to_markdown(index=False)
def __call__(self, fnm):
file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
wb = RAGFlowExcelParser._load_excel_to_workbook(file_like_object)

View File

@ -15,35 +15,200 @@
# limitations under the License.
#
from rag.nlp import find_codec
import readability
import html_text
from rag.nlp import find_codec, rag_tokenizer
import uuid
import chardet
from bs4 import BeautifulSoup, NavigableString, Tag, Comment
import html
def get_encoding(file):
with open(file,'rb') as f:
tmp = chardet.detect(f.read())
return tmp['encoding']
BLOCK_TAGS = [
"h1", "h2", "h3", "h4", "h5", "h6",
"p", "div", "article", "section", "aside",
"ul", "ol", "li",
"table", "pre", "code", "blockquote",
"figure", "figcaption"
]
TITLE_TAGS = {"h1": "#", "h2": "##", "h3": "###", "h4": "#####", "h5": "#####", "h6": "######"}
class RAGFlowHtmlParser:
def __call__(self, fnm, binary=None):
def __call__(self, fnm, binary=None, chunk_token_num=None):
if binary:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
else:
with open(fnm, "r",encoding=get_encoding(fnm)) as f:
txt = f.read()
return self.parser_txt(txt)
return self.parser_txt(txt, chunk_token_num)
@classmethod
def parser_txt(cls, txt):
def parser_txt(cls, txt, chunk_token_num):
if not isinstance(txt, str):
raise TypeError("txt type should be string!")
html_doc = readability.Document(txt)
title = html_doc.title()
content = html_text.extract_text(html_doc.summary(html_partial=True))
txt = f"{title}\n{content}"
sections = txt.split("\n")
temp_sections = []
soup = BeautifulSoup(txt, "html5lib")
# delete <style> tag
for style_tag in soup.find_all(["style", "script"]):
style_tag.decompose()
# delete <script> tag in <div>
for div_tag in soup.find_all("div"):
for script_tag in div_tag.find_all("script"):
script_tag.decompose()
# delete inline style
for tag in soup.find_all(True):
if 'style' in tag.attrs:
del tag.attrs['style']
# delete HTML comment
for comment in soup.find_all(string=lambda text: isinstance(text, Comment)):
comment.extract()
cls.read_text_recursively(soup.body, temp_sections, chunk_token_num=chunk_token_num)
block_txt_list, table_list = cls.merge_block_text(temp_sections)
sections = cls.chunk_block(block_txt_list, chunk_token_num=chunk_token_num)
for table in table_list:
sections.append(table.get("content", ""))
return sections
@classmethod
def split_table(cls, html_table, chunk_token_num=512):
soup = BeautifulSoup(html_table, "html.parser")
rows = soup.find_all("tr")
tables = []
current_table = []
current_count = 0
table_str_list = []
for row in rows:
tks_str = rag_tokenizer.tokenize(str(row))
token_count = len(tks_str.split(" ")) if tks_str else 0
if current_count + token_count > chunk_token_num:
tables.append(current_table)
current_table = []
current_count = 0
current_table.append(row)
current_count += token_count
if current_table:
tables.append(current_table)
for table_rows in tables:
new_table = soup.new_tag("table")
for row in table_rows:
new_table.append(row)
table_str_list.append(str(new_table))
return table_str_list
@classmethod
def read_text_recursively(cls, element, parser_result, chunk_token_num=512, parent_name=None, block_id=None):
if isinstance(element, NavigableString):
content = element.strip()
def is_valid_html(content):
try:
soup = BeautifulSoup(content, "html.parser")
return bool(soup.find())
except Exception:
return False
return_info = []
if content:
if is_valid_html(content):
soup = BeautifulSoup(content, "html.parser")
child_info = cls.read_text_recursively(soup, parser_result, chunk_token_num, element.name, block_id)
parser_result.extend(child_info)
else:
info = {"content": element.strip(), "tag_name": "inner_text", "metadata": {"block_id": block_id}}
if parent_name:
info["tag_name"] = parent_name
return_info.append(info)
return return_info
elif isinstance(element, Tag):
if str.lower(element.name) == "table":
table_info_list = []
table_id = str(uuid.uuid1())
table_list = [html.unescape(str(element))]
for t in table_list:
table_info_list.append({"content": t, "tag_name": "table",
"metadata": {"table_id": table_id, "index": table_list.index(t)}})
return table_info_list
else:
block_id = None
if str.lower(element.name) in BLOCK_TAGS:
block_id = str(uuid.uuid1())
for child in element.children:
child_info = cls.read_text_recursively(child, parser_result, chunk_token_num, element.name,
block_id)
parser_result.extend(child_info)
return []
@classmethod
def merge_block_text(cls, parser_result):
block_content = []
current_content = ""
table_info_list = []
lask_block_id = None
for item in parser_result:
content = item.get("content")
tag_name = item.get("tag_name")
title_flag = tag_name in TITLE_TAGS
block_id = item.get("metadata", {}).get("block_id")
if block_id:
if title_flag:
content = f"{TITLE_TAGS[tag_name]} {content}"
if lask_block_id != block_id:
if lask_block_id is not None:
block_content.append(current_content)
current_content = content
lask_block_id = block_id
else:
current_content += (" " if current_content else "") + content
else:
if tag_name == "table":
table_info_list.append(item)
else:
current_content += (" " if current_content else "" + content)
if current_content:
block_content.append(current_content)
return block_content, table_info_list
@classmethod
def chunk_block(cls, block_txt_list, chunk_token_num=512):
chunks = []
current_block = ""
current_token_count = 0
for block in block_txt_list:
tks_str = rag_tokenizer.tokenize(block)
block_token_count = len(tks_str.split(" ")) if tks_str else 0
if block_token_count > chunk_token_num:
if current_block:
chunks.append(current_block)
start = 0
tokens = tks_str.split(" ")
while start < len(tokens):
end = start + chunk_token_num
split_tokens = tokens[start:end]
chunks.append(" ".join(split_tokens))
start = end
current_block = ""
current_token_count = 0
else:
if current_token_count + block_token_count <= chunk_token_num:
current_block += ("\n" if current_block else "") + block
current_token_count += block_token_count
else:
chunks.append(current_block)
current_block = block
current_token_count = block_token_count
if current_block:
chunks.append(current_block)
return chunks

View File

@ -93,6 +93,7 @@ class RAGFlowPdfParser:
model_dir, "updown_concat_xgb.model"))
self.page_from = 0
self.column_num = 1
def __char_width(self, c):
return (c["x1"] - c["x0"]) // max(len(c["text"]), 1)
@ -427,10 +428,18 @@ class RAGFlowPdfParser:
i += 1
self.boxes = bxs
def _naive_vertical_merge(self):
def _naive_vertical_merge(self, zoomin=3):
bxs = Recognizer.sort_Y_firstly(
self.boxes, np.median(
self.mean_height) / 3)
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
logging.info("Multi-column................... {} {}".format(column_width,
self.page_images[0].size[0] / zoomin / self.column_num))
self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
i = 0
while i + 1 < len(bxs):
b = bxs[i]
@ -1139,20 +1148,94 @@ class RAGFlowPdfParser:
need_image, zoomin, return_html, False)
return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
start = timer()
self.__images__(fnm, zoomin)
if callback:
callback(0.40, "OCR finished ({:.2f}s)".format(timer() - start))
start = timer()
self._layouts_rec(zoomin)
if callback:
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._table_transformer_job(zoomin)
if callback:
callback(0.83, "Table analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._text_merge()
self._concat_downward()
self._naive_vertical_merge(zoomin)
if callback:
callback(0.92, "Text merged ({:.2f}s)".format(timer() - start))
start = timer()
tbls, figs = self._extract_table_figure(True, zoomin, True, True, True)
def insert_table_figures(tbls_or_figs, layout_type):
def min_rectangle_distance(rect1, rect2):
import math
pn1, left1, right1, top1, bottom1 = rect1
pn2, left2, right2, top2, bottom2 = rect2
if (right1 >= left2 and right2 >= left1 and
bottom1 >= top2 and bottom2 >= top1):
return 0 + (pn1-pn2)*10000
if right1 < left2:
dx = left2 - right1
elif right2 < left1:
dx = left1 - right2
else:
dx = 0
if bottom1 < top2:
dy = top2 - bottom1
elif bottom2 < top1:
dy = top1 - bottom2
else:
dy = 0
return math.sqrt(dx*dx + dy*dy) + (pn1-pn2)*10000
for (img, txt), poss in tbls_or_figs:
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
dists = [(min_rectangle_distance((pn, left, right, top, bott), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
min_i = np.argmin(dists, axis=0)[0]
min_i, rect = bboxes[dists[min_i][-1]]
if isinstance(txt, list):
txt = "\n".join(txt)
self.boxes.insert(min_i, {
"page_number": rect[0], "x0": rect[1], "x1": rect[2], "top": rect[3], "bottom": rect[4], "layout_type": layout_type, "text": txt, "image": img
})
for b in self.boxes:
b["position_tag"] = self._line_tag(b, zoomin)
b["image"] = self.crop(b["position_tag"], zoomin)
insert_table_figures(tbls, "table")
insert_table_figures(figs, "figure")
if callback:
callback(1, "Structured ({:.2f}s)".format(timer() - start))
return deepcopy(self.boxes)
@staticmethod
def remove_tag(txt):
return re.sub(r"@@[\t0-9.-]+?##", "", txt)
def crop(self, text, ZM=3, need_position=False):
imgs = []
@staticmethod
def extract_positions(txt):
poss = []
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", text):
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
pn, left, right, top, bottom = tag.strip(
"#").strip("@").split("\t")
left, right, top, bottom = float(left), float(
right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")],
left, right, top, bottom))
return poss
def crop(self, text, ZM=3, need_position=False):
imgs = []
poss = self.extract_positions(text)
if not poss:
if need_position:
return None, None
@ -1296,8 +1379,8 @@ class VisionParser(RAGFlowPdfParser):
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
callback = kwargs.get("callback", lambda prog, msg: None)
self.__images__(fnm=filename, zoomin=3, page_from=from_page, page_to=to_page, **kwargs)
zoomin = kwargs.get("zoomin", 3)
self.__images__(fnm=filename, zoomin=zoomin, page_from=from_page, page_to=to_page, callback=callback)
total_pdf_pages = self.total_page
@ -1311,16 +1394,19 @@ class VisionParser(RAGFlowPdfParser):
if pdf_page_num < start_page or pdf_page_num >= end_page:
continue
docs = picture_vision_llm_chunk(
text = picture_vision_llm_chunk(
binary=img_binary,
vision_model=self.vision_model,
prompt=vision_llm_describe_prompt(page=pdf_page_num+1),
callback=callback,
)
if kwargs.get("callback"):
kwargs["callback"](idx*1./len(self.page_images), f"Processed: {idx+1}/{len(self.page_images)}")
if docs:
all_docs.append(docs)
return [(doc, "") for doc in all_docs], []
if text:
width, height = self.page_images[idx].size
all_docs.append((text, f"{pdf_page_num+1} 0 {width/zoomin} 0 {height/zoomin}"))
return all_docs, []
if __name__ == "__main__":

View File

@ -31,11 +31,11 @@ def save_results(image_list, results, labels, output_dir='output/', threshold=0.
logging.debug("save result to: " + out_path)
def draw_box(im, result, lables, threshold=0.5):
def draw_box(im, result, labels, threshold=0.5):
draw_thickness = min(im.size) // 320
draw = ImageDraw.Draw(im)
color_list = get_color_map_list(len(lables))
clsid2color = {n.lower():color_list[i] for i,n in enumerate(lables)}
color_list = get_color_map_list(len(labels))
clsid2color = {n.lower():color_list[i] for i,n in enumerate(labels)}
result = [r for r in result if r["score"] >= threshold]
for dt in result:

View File

@ -93,13 +93,13 @@ REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download.
# Defaults to the v0.20.1-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3-slim
# Defaults to the v0.20.4-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4
#
# The Docker image of the v0.20.1 edition includes built-in embedding models:
# The Docker image of the v0.20.4 edition includes built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - maidalun1020/bce-embedding-base_v1
#

View File

@ -79,8 +79,8 @@ The [.env](./.env) file contains important environment variables for Docker.
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.20.3-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.3`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.20.4-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.4`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -99,8 +99,8 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.20.3-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.3`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.20.4-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.4`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -11,7 +11,7 @@ An API key is required for the RAGFlow server to authenticate your HTTP/Python o
2. Click **API** to switch to the **API** page.
3. Obtain a RAGFlow API key:
![ragflow_api_key](https://github.com/user-attachments/assets/f461ed61-04c6-4faf-b3d8-6b5fa56be4e7)
![ragflow_api_key](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ragflow_api_key.jpg)
:::tip NOTE
See the [RAGFlow HTTP API reference](../references/http_api_reference.md) or the [RAGFlow Python API reference](../references/python_api_reference.md) for a complete reference of RAGFlow's HTTP or Python APIs.

View File

@ -77,7 +77,7 @@ After building the infiniflow/ragflow:nightly-slim image, you are ready to launc
1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.3-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.4-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
2. Launch the Service

View File

@ -30,17 +30,17 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.3-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.3`
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.4-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.4`
---
### Which embedding models can be deployed locally?
RAGFlow offers two Docker image editions, `v0.20.3-slim` and `v0.20.3`:
RAGFlow offers two Docker image editions, `v0.20.4-slim` and `v0.20.4`:
- `infiniflow/ragflow:v0.20.3-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.3`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.20.4-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.4`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -9,7 +9,7 @@ The component equipped with reasoning, tool usage, and multi-agent collaboration
---
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.3 onwards, an **Agent** component is able to work independently and with the following capabilities:
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.4 onwards, an **Agent** component is able to work independently and with the following capabilities:
- Autonomous reasoning with reflection and adjustment based on environmental feedback.
- Use of tools or subagents to complete tasks.

View File

@ -9,7 +9,7 @@ A component that retrieves information from specified datasets.
## Scenarios
A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated knowledge bases before being sent to the LLM for content generation. As of v0.20.3, a **Retrieval** component can operate either as a workflow component or as a tool of an **Agent**, enabling the Agent to control its invocation and search queries.
A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated knowledge bases before being sent to the LLM for content generation. As of v0.20.4, a **Retrieval** component can operate either as a workflow component or as a tool of an **Agent**, enabling the Agent to control its invocation and search queries.
## Configurations

View File

@ -48,7 +48,7 @@ You start an AI conversation by creating an assistant.
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
- If you are uncertain about the logic behind **Variable**, leave it *as-is*.
- As of v0.20.3, if you add custom variables here, the only way you can pass in their values is to call:
- As of v0.20.4, if you add custom variables here, the only way you can pass in their values is to call:
- HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or
- Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant).

View File

@ -128,7 +128,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
## Search for knowledge base
As of RAGFlow v0.20.3, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
As of RAGFlow v0.20.4, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)

View File

@ -87,4 +87,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.20.3, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.20.4, bulk download is not supported, nor can you download an entire folder.

View File

@ -18,7 +18,7 @@ RAGFlow ships with a built-in [Langfuse](https://langfuse.com) integration so th
Langfuse stores traces, spans and prompt payloads in a purpose-built observability backend and offers filtering and visualisations on top.
:::info NOTE
• RAGFlow **≥ 0.20.3** (contains the Langfuse connector)
• RAGFlow **≥ 0.20.4** (contains the Langfuse connector)
• A Langfuse workspace (cloud or self-hosted) with a _Project Public Key_ and _Secret Key_
:::

View File

@ -66,10 +66,10 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
git clone https://github.com/infiniflow/ragflow.git
```
2. Switch to the latest, officially published release, e.g., `v0.20.3`:
2. Switch to the latest, officially published release, e.g., `v0.20.4`:
```bash
git checkout -f v0.20.3
git checkout -f v0.20.4
```
3. Update **ragflow/docker/.env**:
@ -83,14 +83,14 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
<TabItem value="slim">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3-slim
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4-slim
```
</TabItem>
<TabItem value="full">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4
```
</TabItem>
@ -114,10 +114,10 @@ No, you do not need to. Upgrading RAGFlow in itself will *not* remove your uploa
1. From an environment with Internet access, pull the required Docker image.
2. Save the Docker image to a **.tar** file.
```bash
docker save -o ragflow.v0.20.3.tar infiniflow/ragflow:v0.20.3
docker save -o ragflow.v0.20.4.tar infiniflow/ragflow:v0.20.4
```
3. Copy the **.tar** file to the target server.
4. Load the **.tar** file into Docker:
```bash
docker load -i ragflow.v0.20.3.tar
docker load -i ragflow.v0.20.4.tar
```

View File

@ -44,7 +44,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.20.3 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
RAGFlow v0.20.4 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs
defaultValue="linux"
@ -184,13 +184,13 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/docker
$ git checkout -f v0.20.3
$ git checkout -f v0.20.4
```
3. Use the pre-built Docker images and start up the server:
:::tip NOTE
The command below downloads the `v0.20.3-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.3-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` for the full edition `v0.20.3`.
The command below downloads the `v0.20.4-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.4-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` for the full edition `v0.20.4`.
:::
```bash
@ -207,8 +207,8 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
| RAGFlow image tag | Image size (GB) | Has embedding models and Python packages? | Stable? |
| ------------------- | --------------- | ----------------------------------------- | ------------------------ |
| `v0.20.3` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.20.3-slim` | &approx;2 | ❌ | Stable release |
| `v0.20.4` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.20.4-slim` | &approx;2 | ❌ | Stable release |
| `nightly` | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| `nightly-slim` | &approx;2 | ❌ | *Unstable* nightly build |
@ -217,7 +217,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```
:::danger IMPORTANT
The embedding models included in `v0.20.3` and `nightly` are:
The embedding models included in `v0.20.4` and `nightly` are:
- BAAI/bge-large-zh-v1.5
- maidalun1020/bce-embedding-base_v1

View File

@ -19,7 +19,7 @@ import TOCInline from '@theme/TOCInline';
### Cross-language search
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.3. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the systems default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.4. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the systems default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
By enabling cross-language search, users can effortlessly access a broader range of information regardless of language barriers, significantly enhancing the systems usability and inclusiveness.

View File

@ -5,7 +5,7 @@ slug: /http_api_reference
# HTTP API
A complete reference for RAGFlow's RESTful API. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](../develop/acquire_ragflow_api_key.md).
A complete reference for RAGFlow's RESTful API. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](https://ragflow.io/docs/dev/acquire_ragflow_api_key).
---
@ -143,7 +143,6 @@ Non-stream:
}
```
Failure:
```json
@ -200,19 +199,24 @@ curl --request POST \
- `stream` (*Body parameter*) `boolean`
Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
- `session_id` (*Body parameter*) `string`
Agent session id.
#### Response
Stream:
```json
...
data: {
"id": "5fa65c94-e316-4954-800a-06dfd5827052",
"id": "c39f6f9c83d911f0858253708ecb6573",
"object": "chat.completion.chunk",
"model": "99ee29d6783511f09c921a6272e682d8",
"model": "d1f79142831f11f09cc51795b9eb07c0",
"choices": [
{
"delta": {
"content": "Hello"
"content": " terminal"
},
"finish_reason": null,
"index": 0
@ -220,21 +224,83 @@ data: {
]
}
data: {"id": "518022d9-545b-4100-89ed-ecd9e46fa753", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": "!"}, "finish_reason": null, "index": 0}]}
data: {
"id": "c39f6f9c83d911f0858253708ecb6573",
"object": "chat.completion.chunk",
"model": "d1f79142831f11f09cc51795b9eb07c0",
"choices": [
{
"delta": {
"content": "."
},
"finish_reason": null,
"index": 0
}
]
}
data: {"id": "f37c4af0-8187-4c86-8186-048c3c6ffe4e", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " How"}, "finish_reason": null, "index": 0}]}
data: {"id": "3ebc0fcb-0f85-4024-b4a5-3b03234a16df", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " can"}, "finish_reason": null, "index": 0}]}
data: {"id": "efa1f3cf-7bc4-47a4-8e53-cd696f290587", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " I"}, "finish_reason": null, "index": 0}]}
data: {"id": "2eb6f741-50a3-4d3d-8418-88be27895611", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " assist"}, "finish_reason": null, "index": 0}]}
data: {"id": "f1227e4f-bf8b-462c-8632-8f5269492ce9", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " you"}, "finish_reason": null, "index": 0}]}
data: {"id": "35b669d0-b2be-4c0c-88d8-17ff98592b21", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " today"}, "finish_reason": null, "index": 0}]}
data: {"id": "f00d8a39-af60-4f32-924f-d64106a7fdf1", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": "?"}, "finish_reason": null, "index": 0}]}
data: {
"id": "c39f6f9c83d911f0858253708ecb6573",
"object": "chat.completion.chunk",
"model": "d1f79142831f11f09cc51795b9eb07c0",
"choices": [
{
"delta": {
"content": "",
"reference": {
"chunks": {
"20": {
"id": "4b8935ac0a22deb1",
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"url": null,
"similarity": 0.5697155305154673,
"vector_similarity": 0.7323851005515574,
"term_similarity": 0.5000000005,
"doc_type": ""
}
},
"doc_aggs": {
"INSTALL22.md": {
"doc_name": "INSTALL22.md",
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"count": 3
},
"INSTALL.md": {
"doc_name": "INSTALL.md",
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"count": 2
},
"INSTALL(1).md": {
"doc_name": "INSTALL(1).md",
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"count": 2
},
"INSTALL3.md": {
"doc_name": "INSTALL3.md",
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"count": 1
}
}
}
},
"finish_reason": null,
"index": 0
}
]
}
data: [DONE]
```
@ -249,30 +315,77 @@ Non-stream:
"index": 0,
"logprobs": null,
"message": {
"content": "Hello! How can I assist you today?",
"content": "\nTo install Neovim, the process varies depending on your operating system:\n\n### For Windows:\n1. **Download from GitHub**: \n - Visit the [Neovim releases page](https://github.com/neovim/neovim/releases)\n - Download the latest Windows installer (nvim-win64.msi)\n - Run the installer and follow the prompts\n\n2. **Using winget** (Windows Package Manager):\n...",
"reference": {
"chunks": {
"20": {
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"doc_type": "",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"id": "4b8935ac0a22deb1",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"similarity": 0.5697155305154673,
"term_similarity": 0.5000000005,
"url": null,
"vector_similarity": 0.7323851005515574
}
},
"doc_aggs": {
"INSTALL(1).md": {
"count": 2,
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"doc_name": "INSTALL(1).md"
},
"INSTALL.md": {
"count": 2,
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"doc_name": "INSTALL.md"
},
"INSTALL22.md": {
"count": 3,
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"doc_name": "INSTALL22.md"
},
"INSTALL3.md": {
"count": 1,
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"doc_name": "INSTALL3.md"
}
}
},
"role": "assistant"
}
}
],
"created": null,
"id": "17aa4ec5-6d36-40c6-9a96-1b069c216d59",
"model": "99ee29d6783511f09c921a6272e682d8",
"id": "c39f6f9c83d911f0858253708ecb6573",
"model": "d1f79142831f11f09cc51795b9eb07c0",
"object": "chat.completion",
"param": null,
"usage": {
"completion_tokens": 9,
"completion_tokens": 415,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0
},
"prompt_tokens": 1,
"total_tokens": 10
"prompt_tokens": 6,
"total_tokens": 421
}
}
```
Failure:
```json
@ -383,7 +496,7 @@ curl --request POST \
- `"layout_recognize"`: `string`
- Defaults to `DeepDOC`
- `"tag_kb_ids"`: `array<string>` refer to [Use tag set](https://ragflow.io/docs/dev/use_tag_sets)
- Must include a list of dataset IDs, where each dataset is parsed using the Tag Chunk Method
- Must include a list of dataset IDs, where each dataset is parsed using the Tag Chunking Method
- `"task_page_size"`: `int` For PDF only.
- Defaults to `12`
- Minimum: `1`
@ -604,7 +717,7 @@ curl --request PUT \
- `"layout_recognize"`: `string`
- Defaults to `DeepDOC`
- `"tag_kb_ids"`: `array<string>` refer to [Use tag set](https://ragflow.io/docs/dev/use_tag_sets)
- Must include a list of dataset IDs, where each dataset is parsed using the Tag Chunk Method
- Must include a list of dataset IDs, where each dataset is parsed using the Tag Chunking Method
- `"task_page_size"`: `int` For PDF only.
- Defaults to `12`
- Minimum: `1`
@ -729,9 +842,10 @@ Failure:
"message": "The dataset doesn't exist"
}
```
---
## Get dataset's knowledge graph
### Get knowledge graph
**GET** `/api/v1/datasets/{dataset_id}/knowledge_graph`
@ -808,9 +922,10 @@ Failure:
"message": "The dataset doesn't exist"
}
```
---
## Delete dataset's knowledge graph
### Delete knowledge graph
**DELETE** `/api/v1/datasets/{dataset_id}/knowledge_graph`
@ -855,6 +970,7 @@ Failure:
"message": "The dataset doesn't exist"
}
```
---
## FILE MANAGEMENT WITHIN DATASET
@ -3017,41 +3133,88 @@ success without `session_id` provided and with no variables specified in the **B
Stream:
```json
data:{
"event": "message",
"message_id": "eb0c0a5e783511f0b9b61a6272e682d8",
"created_at": 1755083342,
"task_id": "99ee29d6783511f09c921a6272e682d8",
"data": {
"content": "Hello"
},
"session_id": "eaf19a8e783511f0b9b61a6272e682d8"
}
data:{
"event": "message",
"message_id": "eb0c0a5e783511f0b9b61a6272e682d8",
"created_at": 1755083342,
"task_id": "99ee29d6783511f09c921a6272e682d8",
"data": {
"content": "!"
},
"session_id": "eaf19a8e783511f0b9b61a6272e682d8"
}
data:{
"event": "message",
"message_id": "eb0c0a5e783511f0b9b61a6272e682d8",
"created_at": 1755083342,
"task_id": "99ee29d6783511f09c921a6272e682d8",
"data": {
"content": " How"
},
"session_id": "eaf19a8e783511f0b9b61a6272e682d8"
}
...
data: {
"event": "message",
"message_id": "cecdcb0e83dc11f0858253708ecb6573",
"created_at": 1756364483,
"task_id": "d1f79142831f11f09cc51795b9eb07c0",
"data": {
"content": " themes"
},
"session_id": "cd097ca083dc11f0858253708ecb6573"
}
data: {
"event": "message",
"message_id": "cecdcb0e83dc11f0858253708ecb6573",
"created_at": 1756364483,
"task_id": "d1f79142831f11f09cc51795b9eb07c0",
"data": {
"content": "."
},
"session_id": "cd097ca083dc11f0858253708ecb6573"
}
data: {
"event": "message_end",
"message_id": "cecdcb0e83dc11f0858253708ecb6573",
"created_at": 1756364483,
"task_id": "d1f79142831f11f09cc51795b9eb07c0",
"data": {
"reference": {
"chunks": {
"20": {
"id": "4b8935ac0a22deb1",
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"url": null,
"similarity": 0.5705525104787287,
"vector_similarity": 0.7351750337624289,
"term_similarity": 0.5000000005,
"doc_type": ""
}
},
"doc_aggs": {
"INSTALL22.md": {
"doc_name": "INSTALL22.md",
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"count": 3
},
"INSTALL.md": {
"doc_name": "INSTALL.md",
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"count": 2
},
"INSTALL(1).md": {
"doc_name": "INSTALL(1).md",
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"count": 2
},
"INSTALL3.md": {
"doc_name": "INSTALL3.md",
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"count": 1
}
}
}
},
"session_id": "cd097ca083dc11f0858253708ecb6573"
}
data:[DONE]
```
@ -3061,21 +3224,77 @@ Non-stream:
{
"code": 0,
"data": {
"created_at": 1755083440,
"created_at": 1756363177,
"data": {
"created_at": 547061.147866385,
"elapsed_time": 2.595433341921307,
"inputs": {},
"content": "\nTo install Neovim, the process varies depending on your operating system:\n\n### For macOS:\nUsing Homebrew:\n```bash\nbrew install neovim\n```\n\n### For Linux (Debian/Ubuntu):\n```bash\nsudo apt update\nsudo apt install neovim\n```\n\nFor other Linux distributions, you can use their respective package managers or build from source.\n\n### For Windows:\n1. Download the latest Windows installer from the official Neovim GitHub releases page\n2. Run the installer and follow the prompts\n3. Add Neovim to your PATH if not done automatically\n\n### From source (Unix-like systems):\n```bash\ngit clone https://github.com/neovim/neovim.git\ncd neovim\nmake CMAKE_BUILD_TYPE=Release\nsudo make install\n```\n\nAfter installation, you can verify it by running `nvim --version` in your terminal.",
"created_at": 18129.044975627,
"elapsed_time": 10.0157331670016,
"inputs": {
"var1": {
"value": "I am var1"
},
"var2": {
"value": "I am var2"
}
},
"outputs": {
"_created_time": 547061.149137775,
"_elapsed_time": 8.720310870558023e-05,
"content": "Hello! How can I assist you today?"
"_created_time": 18129.502422278,
"_elapsed_time": 0.00013378599760471843,
"content": "\nTo install Neovim, the process varies depending on your operating system:\n\n### For macOS:\nUsing Homebrew:\n```bash\nbrew install neovim\n```\n\n### For Linux (Debian/Ubuntu):\n```bash\nsudo apt update\nsudo apt install neovim\n```\n\nFor other Linux distributions, you can use their respective package managers or build from source.\n\n### For Windows:\n1. Download the latest Windows installer from the official Neovim GitHub releases page\n2. Run the installer and follow the prompts\n3. Add Neovim to your PATH if not done automatically\n\n### From source (Unix-like systems):\n```bash\ngit clone https://github.com/neovim/neovim.git\ncd neovim\nmake CMAKE_BUILD_TYPE=Release\nsudo make install\n```\n\nAfter installation, you can verify it by running `nvim --version` in your terminal."
},
"reference": {
"chunks": {
"20": {
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"doc_type": "",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"id": "4b8935ac0a22deb1",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"similarity": 0.5705525104787287,
"term_similarity": 0.5000000005,
"url": null,
"vector_similarity": 0.7351750337624289
}
},
"doc_aggs": {
"INSTALL(1).md": {
"count": 2,
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"doc_name": "INSTALL(1).md"
},
"INSTALL.md": {
"count": 2,
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"doc_name": "INSTALL.md"
},
"INSTALL22.md": {
"count": 3,
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"doc_name": "INSTALL22.md"
},
"INSTALL3.md": {
"count": 1,
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"doc_name": "INSTALL3.md"
}
}
}
},
"event": "workflow_finished",
"message_id": "25807f94783611f095171a6272e682d8",
"session_id": "25663198783611f095171a6272e682d8",
"task_id": "99ee29d6783511f09c921a6272e682d8"
"message_id": "c4692a2683d911f0858253708ecb6573",
"session_id": "c39f6f9c83d911f0858253708ecb6573",
"task_id": "d1f79142831f11f09cc51795b9eb07c0"
}
}
```

View File

@ -5,7 +5,7 @@ slug: /python_api_reference
# Python API
A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](../develop/acquire_ragflow_api_key.md).
A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](https://ragflow.io/docs/dev/acquire_ragflow_api_key).
:::tip NOTE
Run the following command to download the Python SDK:

View File

@ -9,8 +9,8 @@ Key features, improvements and bug fixes in the latest releases.
:::info
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.1`
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.4-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.4`
:::
:::danger IMPORTANT
@ -22,6 +22,38 @@ The embedding models included in a full edition are:
These two embedding models are optimized specifically for English and Chinese, so performance may be compromised if you use them to embed documents in other languages.
:::
## v0.20.4
Released on August 27, 2025.
### Improvements
- Agent component: Completes Chinese localization for the Agent component.
- Introduces the `ENABLE_TIMEOUT_ASSERTION` environment variable to enable or disable timeout assertions for file parsing tasks.
- Dataset:
- Improves Markdown file parsing, with AST support to avoid unintended chunking.
- Enhances HTML parsing, supporting bs4-based HTML tag traversal.
### Added models
ZHIPU GLM-4.5
### New Agent templates
Ecommerce Customer Service Workflow: A template designed to handle enquiries about product features and multi-product comparisons using the internal knowledge base, as well as to manage installation appointment bookings.
### Fixed issues
- Dataset:
- Unable to share resources with the team.
- Inappropriate restrictions on the number and size of uploaded files.
- Chat:
- Unable to preview referenced files in responses.
- Unable to send out messages after file uploads.
- An OAuth2 authentication failure.
- A logical error in multi-conditioned metadata searches within a dataset.
- Citations infinitely increased in multi-turn conversations.
## v0.20.3
Released on August 20, 2025.

View File

@ -56,7 +56,7 @@ env:
ragflow:
image:
repository: infiniflow/ragflow
tag: v0.20.3-slim
tag: v0.20.4-slim
pullPolicy: IfNotPresent
pullSecrets: []
# Optional service configuration overrides

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow"
version = "0.20.3"
version = "0.20.4"
description = "[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data."
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
license-files = ["LICENSE"]

View File

@ -517,7 +517,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
sections = HtmlParser()(filename, binary)
chunk_token_num = int(parser_config.get("chunk_token_num", 128))
sections = HtmlParser()(filename, binary, chunk_token_num)
sections = [(_, "") for _ in sections if _]
callback(0.8, "Finish parsing.")

49
rag/flow/__init__.py Normal file
View File

@ -0,0 +1,49 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import importlib
import inspect
from types import ModuleType
from typing import Dict, Type
_package_path = os.path.dirname(__file__)
__all_classes: Dict[str, Type] = {}
def _import_submodules() -> None:
for filename in os.listdir(_package_path): # noqa: F821
if filename.startswith("__") or not filename.endswith(".py") or filename.startswith("base"):
continue
module_name = filename[:-3]
try:
module = importlib.import_module(f".{module_name}", package=__name__)
_extract_classes_from_module(module) # noqa: F821
except ImportError as e:
print(f"Warning: Failed to import module {module_name}: {str(e)}")
def _extract_classes_from_module(module: ModuleType) -> None:
for name, obj in inspect.getmembers(module):
if (inspect.isclass(obj) and
obj.__module__ == module.__name__ and not name.startswith("_")):
__all_classes[name] = obj
globals()[name] = obj
_import_submodules()
__all__ = list(__all_classes.keys()) + ["__all_classes"]
del _package_path, _import_submodules, _extract_classes_from_module

59
rag/flow/base.py Normal file
View File

@ -0,0 +1,59 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
import os
import logging
from functools import partial
from typing import Any
import trio
from agent.component.base import ComponentParamBase, ComponentBase
from api.utils.api_utils import timeout
class ProcessParamBase(ComponentParamBase):
def __init__(self):
super().__init__()
self.timeout = 100000000
self.persist_logs = True
class ProcessBase(ComponentBase):
def __init__(self, pipeline, id, param: ProcessParamBase):
super().__init__(pipeline, id, param)
self.callback = partial(self._canvas.callback, self.component_name)
async def invoke(self, **kwargs) -> dict[str, Any]:
self.set_output("_created_time", time.perf_counter())
for k,v in kwargs.items():
self.set_output(k, v)
try:
with trio.fail_after(self._param.timeout):
await self._invoke(**kwargs)
self.callback(1, "Done")
except Exception as e:
if self.get_exception_default_value():
self.set_exception_default_value()
else:
self.set_output("_ERROR", str(e))
logging.exception(e)
self.callback(-1, str(e))
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
async def _invoke(self, **kwargs):
raise NotImplementedError()

47
rag/flow/begin.py Normal file
View File

@ -0,0 +1,47 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.utils.storage_factory import STORAGE_IMPL
class FileParam(ProcessParamBase):
def __init__(self):
super().__init__()
def check(self):
pass
class File(ProcessBase):
component_name = "File"
async def _invoke(self, **kwargs):
if self._canvas._doc_id:
e, doc = DocumentService.get_by_id(self._canvas._doc_id)
if not e:
self.set_output("_ERROR", f"Document({self._canvas._doc_id}) not found!")
return
b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
self.set_output("blob", STORAGE_IMPL.get(b, n))
self.set_output("name", doc.name)
else:
file = kwargs.get("file")
self.set_output("name", file["name"])
self.set_output("blob", FileService.get_blob(file["created_by"], file["id"]))

160
rag/flow/chunker.py Normal file
View File

@ -0,0 +1,160 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import trio
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from graphrag.utils import get_llm_cache, chat_limiter, set_llm_cache
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.nlp import naive_merge, naive_merge_with_images
from rag.prompts.prompts import keyword_extraction, question_proposal
class ChunkerParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.method_options = ["general", "q&a", "resume", "manual", "table", "paper", "book", "laws", "presentation", "one"]
self.method = "general"
self.chunk_token_size = 512
self.delimiter = "\n"
self.overlapped_percent = 0
self.page_rank = 0
self.auto_keywords = 0
self.auto_questions = 0
self.tag_sets = []
self.llm_setting = {
"llm_name": "",
"lang": "Chinese"
}
def check(self):
self.check_valid_value(self.method.lower(), "Chunk method abnormal.", self.method_options)
self.check_positive_integer(self.chunk_token_size, "Chunk token size.")
self.check_nonnegative_number(self.page_rank, "Page rank value: (0, 10]")
self.check_nonnegative_number(self.auto_keywords, "Auto-keyword value: (0, 10]")
self.check_nonnegative_number(self.auto_questions, "Auto-question value: (0, 10]")
self.check_decimal_float(self.overlapped_percent, "Overlapped percentage: [0, 1)")
class Chunker(ProcessBase):
component_name = "Chunker"
def _general(self, **kwargs):
self.callback(random.randint(1,5)/100., "Start to chunk via `General`.")
if kwargs.get("output_format") in ["markdown", "text"]:
cks = naive_merge(kwargs.get(kwargs["output_format"]), self._param.chunk_token_size, self._param.delimiter, self._param.overlapped_percent)
return [{"text": c} for c in cks]
sections, section_images = [], []
for o in kwargs["json"]:
sections.append((o["text"], o.get("position_tag","")))
section_images.append(o.get("image"))
chunks, images = naive_merge_with_images(sections, section_images,self._param.chunk_token_size, self._param.delimiter, self._param.overlapped_percent)
return [{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c)
} for c,img in zip(chunks,images)]
def _q_and_a(self, **kwargs):
pass
def _resume(self, **kwargs):
pass
def _manual(self, **kwargs):
pass
def _table(self, **kwargs):
pass
def _paper(self, **kwargs):
pass
def _book(self, **kwargs):
pass
def _laws(self, **kwargs):
pass
def _presentation(self, **kwargs):
pass
def _one(self, **kwargs):
pass
async def _invoke(self, **kwargs):
function_map = {
"general": self._general,
"q&a": self._q_and_a,
"resume": self._resume,
"manual": self._manual,
"table": self._table,
"paper": self._paper,
"book": self._book,
"laws": self._laws,
"presentation": self._presentation,
"one": self._one,
}
chunks = function_map[self._param.method](**kwargs)
llm_setting = self._param.llm_setting
async def auto_keywords():
nonlocal chunks, llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_name"], lang=llm_setting["lang"])
async def doc_keyword_extraction(chat_mdl, ck, topn):
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "keywords", {"topn": topn})
if not cached:
async with chat_limiter:
cached = await trio.to_thread.run_sync(lambda: keyword_extraction(chat_mdl, ck["text"], topn))
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "keywords", {"topn": topn})
if cached:
ck["keywords"] = cached.split(",")
async with trio.open_nursery() as nursery:
for ck in chunks:
nursery.start_soon(doc_keyword_extraction, chat_mdl, ck, self._param.auto_keywords)
async def auto_questions():
nonlocal chunks, llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_name"], lang=llm_setting["lang"])
async def doc_question_proposal(chat_mdl, d, topn):
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "question", {"topn": topn})
if not cached:
async with chat_limiter:
cached = await trio.to_thread.run_sync(lambda: question_proposal(chat_mdl, ck["text"], topn))
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "question", {"topn": topn})
if cached:
d["questions"] = cached.split("\n")
async with trio.open_nursery() as nursery:
for ck in chunks:
nursery.start_soon(doc_question_proposal, chat_mdl, ck, self._param.auto_questions)
async with trio.open_nursery() as nursery:
if self._param.auto_questions:
nursery.start_soon(auto_questions)
if self._param.auto_keywords:
nursery.start_soon(auto_keywords)
if self._param.page_rank:
for ck in chunks:
ck["page_rank"] = self._param.page_rank
self.set_output("chunks", chunks)

107
rag/flow/parser.py Normal file
View File

@ -0,0 +1,107 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import trio
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser.pdf_parser import RAGFlowPdfParser, PlainParser, VisionParser
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.llm.cv_model import Base as VLM
from deepdoc.parser import ExcelParser
class ParserParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.setups = {
"pdf": {
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
"vlm_name": "",
"lang": "Chinese",
"suffix": ["pdf"],
"output_format": "json"
},
"excel": {
"output_format": "html"
},
"ppt": {},
"image": {
"parse_method": "ocr"
},
"email": {},
"text": {},
"audio": {},
"video": {},
}
def check(self):
if self.setups["pdf"].get("parse_method") not in ["deepdoc", "plain_text"]:
assert self.setups["pdf"].get("vlm_name"), "No VLM specified."
assert self.setups["pdf"].get("lang"), "No language specified."
class Parser(ProcessBase):
component_name = "Parser"
def _pdf(self, blob):
self.callback(random.randint(1,5)/100., "Start to work on a PDF.")
conf = self._param.setups["pdf"]
self.set_output("output_format", conf["output_format"])
if conf.get("parse_method") == "deepdoc":
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
elif conf.get("parse_method") == "plain_text":
lines,_ = PlainParser()(blob)
bboxes = [{"text": t} for t,_ in lines]
else:
assert conf.get("vlm_name")
vision_model = LLMBundle(self._canvas.tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("vlm_name"), lang=self.setups["pdf"].get("lang"))
lines, _ = VisionParser(vision_model=vision_model)(bin, callback=self.callback)
bboxes = []
for t, poss in lines:
pn, x0, x1, top, bott = poss.split(" ")
bboxes.append({"page_number": int(pn), "x0": int(x0), "x1": int(x1), "top": int(top), "bottom": int(bott), "text": t})
self.set_output("json", bboxes)
mkdn = ""
for b in bboxes:
if b.get("layout_type", "") == "title":
mkdn += "\n## "
if b.get("layout_type", "") == "figure":
mkdn += "\n![Image]({})".format(VLM.image2base64(b["image"]))
continue
mkdn += b.get("text", "") + "\n"
self.set_output("markdown", mkdn)
def _excel(self, blob):
self.callback(random.randint(1,5)/100., "Start to work on a Excel.")
conf = self._param.setups["excel"]
excel_parser = ExcelParser()
if conf.get("output_format") == "html":
html = excel_parser.html(blob,1000000000)
self.set_output("html", html)
elif conf.get("output_format") == "json":
self.set_output("json", [{"text": txt} for txt in excel_parser(blob) if txt])
elif conf.get("output_format") == "markdown":
self.set_output("markdown", excel_parser.markdown(blob))
async def _invoke(self, **kwargs):
function_map = {
"pdf": self._pdf,
}
for p_type, conf in self._param.setups.items():
if kwargs.get("name", "").split(".")[-1].lower() not in conf.get("suffix", []):
continue
await trio.to_thread.run_sync(function_map[p_type], kwargs["blob"])
break

121
rag/flow/pipeline.py Normal file
View File

@ -0,0 +1,121 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import random
import time
import trio
from agent.canvas import Graph
from api.db.services.document_service import DocumentService
from rag.utils.redis_conn import REDIS_CONN
class Pipeline(Graph):
def __init__(self, dsl: str, tenant_id=None, doc_id=None, task_id=None, flow_id=None):
super().__init__(dsl, tenant_id, task_id)
self._doc_id = doc_id
self._flow_id = flow_id
self._kb_id = None
if doc_id:
self._kb_id = DocumentService.get_knowledgebase_id(doc_id)
assert self._kb_id, f"Can't find KB of this document: {doc_id}"
def callback(self, component_name: str, progress: float|int|None=None, message: str = "") -> None:
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
bin = REDIS_CONN.get(log_key)
obj = json.loads(bin.encode("utf-8"))
if obj:
if obj[-1]["component_name"] == component_name:
obj[-1]["trace"].append({"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")})
else:
obj.append({
"component_name": component_name,
"trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]
})
else:
obj = [{
"component_name": component_name,
"trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]
}]
REDIS_CONN.set_obj(log_key, obj, 60*10)
except Exception as e:
logging.exception(e)
def fetch_logs(self):
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
bin = REDIS_CONN.get(log_key)
if bin:
return json.loads(bin.encode("utf-8"))
except Exception as e:
logging.exception(e)
return []
def reset(self):
super().reset()
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
REDIS_CONN.set_obj(log_key, [], 60*10)
except Exception as e:
logging.exception(e)
async def run(self, **kwargs):
st = time.perf_counter()
if not self.path:
self.path.append("begin")
if self._doc_id:
DocumentService.update_by_id(self._doc_id, {
"progress": random.randint(0,5)/100.,
"progress_msg": "Start the pipeline...",
"process_begin_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
self.error = ""
idx = len(self.path) - 1
if idx == 0:
cpn_obj = self.get_component_obj(self.path[0])
await cpn_obj.invoke(**kwargs)
if cpn_obj.error():
self.error = "[ERROR]" + cpn_obj.error()
else:
idx += 1
self.path.extend(cpn_obj.get_downstream())
while idx < len(self.path) and not self.error:
last_cpn = self.get_component_obj(self.path[idx-1])
cpn_obj = self.get_component_obj(self.path[idx])
async def invoke():
nonlocal last_cpn, cpn_obj
await cpn_obj.invoke(**last_cpn.output())
async with trio.open_nursery() as nursery:
nursery.start_soon(invoke)
if cpn_obj.error():
self.error = "[ERROR]" + cpn_obj.error()
break
idx += 1
self.path.extend(cpn_obj.get_downstream())
if self._doc_id:
DocumentService.update_by_id(self._doc_id, {
"progress": 1 if not self.error else -1,
"progress_msg": "Pipeline finished...\n" + self.error,
"process_duration": time.perf_counter() - st
})

57
rag/flow/tests/client.py Normal file
View File

@ -0,0 +1,57 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor
import trio
from api import settings
from rag.flow.pipeline import Pipeline
def print_logs(pipeline):
last_logs = "[]"
while True:
time.sleep(5)
logs = pipeline.fetch_logs()
logs_str = json.dumps(logs)
if logs_str != last_logs:
print(logs_str)
last_logs = logs_str
if __name__ == '__main__':
parser = argparse.ArgumentParser()
dsl_default_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"dsl_examples",
"general_pdf_all.json",
)
parser.add_argument('-s', '--dsl', default=dsl_default_path, help="input dsl", action='store', required=True)
parser.add_argument('-d', '--doc_id', default=False, help="Document ID", action='store', required=True)
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
args = parser.parse_args()
settings.init_settings()
pipeline = Pipeline(open(args.dsl, "r").read(), tenant_id=args.tenant_id, doc_id=args.doc_id, task_id="xxxx", flow_id="xxx")
pipeline.reset()
exe = ThreadPoolExecutor(max_workers=5)
thr = exe.submit(print_logs, pipeline)
trio.run(pipeline.run)
thr.result()

View File

@ -0,0 +1,54 @@
{
"components": {
"begin": {
"obj":{
"component_name": "File",
"params": {
}
},
"downstream": ["parser:0"],
"upstream": []
},
"parser:0": {
"obj": {
"component_name": "Parser",
"params": {
"setups": {
"pdf": {
"parse_method": "deepdoc",
"vlm_name": "",
"lang": "Chinese",
"suffix": [
"pdf"
],
"output_format": "json"
}
}
}
},
"downstream": ["chunker:0"],
"upstream": ["begin"]
},
"chunker:0": {
"obj": {
"component_name": "Chunker",
"params": {
"method": "general",
"auto_keywords": 5
}
},
"downstream": ["tokenizer:0"],
"upstream": ["chunker:0"]
},
"tokenizer:0": {
"obj": {
"component_name": "Tokenizer",
"params": {
}
},
"downstream": [],
"upstream": ["chunker:0"]
}
},
"path": []
}

134
rag/flow/tokenizer.py Normal file
View File

@ -0,0 +1,134 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import re
import numpy as np
import trio
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from api.utils.api_utils import timeout
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.nlp import rag_tokenizer
from rag.settings import EMBEDDING_BATCH_SIZE
from rag.svr.task_executor import embed_limiter
from rag.utils import truncate
class TokenizerParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.search_method = ["full_text", "embedding"]
self.filename_embd_weight = 0.1
def check(self):
for v in self.search_method:
self.check_valid_value(v.lower(), "Chunk method abnormal.", ["full_text", "embedding"])
class Tokenizer(ProcessBase):
component_name = "Tokenizer"
async def _embedding(self, name, chunks):
parts = sum(["full_text" in self._param.search_method, "embedding" in self._param.search_method])
token_count = 0
if self._canvas._kb_id:
e, kb = KnowledgebaseService.get_by_id(self._canvas._kb_id)
embedding_id = kb.embd_id
else:
e, ten = TenantService.get_by_id(self._canvas._tenant_id)
embedding_id = ten.embd_id
embedding_model = LLMBundle(self._canvas._tenant_id, LLMType.EMBEDDING, llm_name=embedding_id)
texts = []
for c in chunks:
if c.get("questions"):
texts.append("\n".join(c["questions"]))
else:
texts.append(re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c["text"]))
vts, c = embedding_model.encode([name])
token_count += c
tts = np.concatenate([vts[0] for _ in range(len(texts))], axis=0)
@timeout(60)
def batch_encode(txts):
nonlocal embedding_model
return embedding_model.encode([truncate(c, embedding_model.max_length-10) for c in txts])
cnts_ = np.array([])
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
async with embed_limiter:
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i: i + EMBEDDING_BATCH_SIZE]))
if len(cnts_) == 0:
cnts_ = vts
else:
cnts_ = np.concatenate((cnts_, vts), axis=0)
token_count += c
if i % 33 == 32:
self.callback(i*1./len(texts)/parts/EMBEDDING_BATCH_SIZE + 0.5*(parts-1))
cnts = cnts_
title_w = float(self._param.filename_embd_weight)
vects = (title_w * tts + (1 - title_w) * cnts) if len(tts) == len(cnts) else cnts
assert len(vects) == len(chunks)
for i, ck in enumerate(chunks):
v = vects[i].tolist()
ck["q_%d_vec" % len(v)] = v
return chunks, token_count
async def _invoke(self, **kwargs):
parts = sum(["full_text" in self._param.search_method, "embedding" in self._param.search_method])
if "full_text" in self._param.search_method:
self.callback(random.randint(1,5)/100., "Start to tokenize.")
if kwargs.get("chunks"):
chunks = kwargs["chunks"]
for i, ck in enumerate(chunks):
if ck.get("questions"):
ck["question_tks"] = rag_tokenizer.tokenize("\n".join(ck["questions"]))
if ck.get("keywords"):
ck["important_tks"] = rag_tokenizer.tokenize("\n".join(ck["keywords"]))
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99:
self.callback(i*1./len(chunks)/parts)
elif kwargs.get("output_format") in ["markdown", "text"]:
ck = {
"text": kwargs.get(kwargs["output_format"], "")
}
if "full_text" in self._param.search_method:
ck["content_ltks"] = rag_tokenizer.tokenize(kwargs.get(kwargs["output_format"], ""))
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
chunks = [ck]
else:
chunks = kwargs["json"]
for i, ck in enumerate(chunks):
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99:
self.callback(i*1./len(chunks)/parts)
self.callback(1./parts, "Finish tokenizing.")
if "embedding" in self._param.search_method:
self.callback(random.randint(1,5)/100. + 0.5*(parts-1), "Start embedding inference.")
chunks, token_count = await self._embedding(kwargs.get("name", ""), chunks)
self.set_output("embedding_token_consumption", token_count)
self.callback(1., "Finish embedding.")
self.set_output("chunks", chunks)

View File

@ -43,6 +43,7 @@ FACTORY_DEFAULT_BASE_URL = {
SupportedLiteLLMProvider.Tongyi_Qianwen: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Dashscope: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Moonshot: "https://api.moonshot.cn/v1",
SupportedLiteLLMProvider.Ollama: "",
}

View File

@ -1362,7 +1362,7 @@ class LiteLLMBase(ABC):
self.prefix = LITELLM_PROVIDER_PREFIX.get(self.provider, "")
self.model_name = f"{self.prefix}{model_name}"
self.api_key = key
self.base_url = base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip('/')
# Configure retry parameters
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))

View File

@ -554,8 +554,8 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。", overl
if num_tokens_from_string(sec) < chunk_token_num:
add_chunk(sec, pos)
continue
splited_sec = re.split(r"(%s)" % dels, sec, flags=re.DOTALL)
for sub_sec in splited_sec:
split_sec = re.split(r"(%s)" % dels, sec, flags=re.DOTALL)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, pos)
@ -563,7 +563,8 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。", overl
return cks
def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。;!?"):
def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。;!?", overlapped_percent=0):
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
if not texts or len(texts) != len(images):
return [], []
cks = [""]
@ -578,7 +579,10 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
if tnum < 8:
pos = ""
# Ensure that the length of the merged chunk does not exceed chunk_token_num
if cks[-1] == "" or tk_nums[-1] > chunk_token_num:
if cks[-1] == "" or tk_nums[-1] > chunk_token_num * (100 - overlapped_percent)/100.:
if cks:
overlapped = RAGFlowPdfParser.remove_tag(cks[-1])
t = overlapped[int(len(overlapped)*(100-overlapped_percent)/100.):] + t
if t.find(pos) < 0:
t += pos
cks.append(t)
@ -600,14 +604,14 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
if isinstance(text, tuple):
text_str = text[0]
text_pos = text[1] if len(text) > 1 else ""
splited_sec = re.split(r"(%s)" % dels, text_str)
for sub_sec in splited_sec:
split_sec = re.split(r"(%s)" % dels, text_str)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, image, text_pos)
else:
splited_sec = re.split(r"(%s)" % dels, text)
for sub_sec in splited_sec:
split_sec = re.split(r"(%s)" % dels, text)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, image)
@ -684,8 +688,8 @@ def naive_merge_docx(sections, chunk_token_num=128, delimiter="\n。"):
dels = get_delimiters(delimiter)
for sec, image in sections:
splited_sec = re.split(r"(%s)" % dels, sec)
for sub_sec in splited_sec:
split_sec = re.split(r"(%s)" % dels, sec)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, image,"")

View File

@ -293,8 +293,7 @@ async def build_chunks(task, progress_callback):
docs.append(d)
return
output_buffer = BytesIO()
try:
with BytesIO() as output_buffer:
if isinstance(d["image"], bytes):
output_buffer.write(d["image"])
output_buffer.seek(0)
@ -317,8 +316,6 @@ async def build_chunks(task, progress_callback):
d["image"].close()
del d["image"] # Remove image reference
docs.append(d)
finally:
output_buffer.close() # Ensure BytesIO is always closed
except Exception:
logging.exception(
"Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["id"]))

View File

@ -93,7 +93,8 @@ class MCPToolCallSession(ToolCallSession):
msg = f"Timeout initializing client_session for server {self._mcp_server.id}"
logging.error(msg)
await self._process_mcp_tasks(None, msg)
except Exception:
except Exception as e:
logging.exception(e)
msg = "Connection failed (possibly due to auth error). Please check authentication settings first"
await self._process_mcp_tasks(None, msg)
@ -148,7 +149,7 @@ class MCPToolCallSession(ToolCallSession):
if result.isError:
return f"MCP server error: {result.content}"
# For now we only support text content
# For now, we only support text content
if isinstance(result.content[0], TextContent):
return result.content[0].text
else:

View File

@ -336,7 +336,7 @@ class RedisDB:
def delete_if_equal(self, key: str, expected_value: str) -> bool:
"""
Do follwing atomically:
Do following atomically:
Delete a key if its value is equals to the given one, do nothing otherwise.
"""
return bool(self.lua_delete_if_equal(keys=[key], args=[expected_value], client=self.REDIS))

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow-sdk"
version = "0.20.3"
version = "0.20.4"
description = "Python client sdk of [RAGFlow](https://github.com/infiniflow/ragflow). RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding."
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
license = { text = "Apache License, Version 2.0" }

2
sdk/python/uv.lock generated
View File

@ -342,7 +342,7 @@ wheels = [
[[package]]
name = "ragflow-sdk"
version = "0.20.3"
version = "0.20.4"
source = { virtual = "." }
dependencies = [
{ name = "beartype" },

2
uv.lock generated
View File

@ -5268,7 +5268,7 @@ wheels = [
[[package]]
name = "ragflow"
version = "0.20.3"
version = "0.20.4"
source = { virtual = "." }
dependencies = [
{ name = "akshare" },

9
web/package-lock.json generated
View File

@ -12,7 +12,7 @@
"@antv/g2": "^5.2.10",
"@antv/g6": "^5.0.10",
"@hookform/resolvers": "^3.9.1",
"@js-preview/excel": "^1.7.8",
"@js-preview/excel": "^1.7.14",
"@lexical/react": "^0.23.1",
"@monaco-editor/react": "^4.6.0",
"@radix-ui/react-accordion": "^1.2.3",
@ -4114,9 +4114,10 @@
}
},
"node_modules/@js-preview/excel": {
"version": "1.7.8",
"resolved": "https://registry.npmmirror.com/@js-preview/excel/-/excel-1.7.8.tgz",
"integrity": "sha512-pLJTDIhbzqaiH3kUPnbeWLsBFeCAHjnBwloMvoREdW4YUYTcsHDQ5h41QTyRJWSYRJBCcsy6Kt7KeDHOHDbVEw=="
"version": "1.7.14",
"resolved": "https://registry.npmmirror.com/@js-preview/excel/-/excel-1.7.14.tgz",
"integrity": "sha512-7QHtuRalWQzWIKARc/IRN8+kj1S5eWV4+cAQipzZngE3mVxMPL1RHXKJt/ONmpcKZ410egYkaBuOOs9+LctBkA==",
"license": "MIT"
},
"node_modules/@lexical/clipboard": {
"version": "0.23.1",

View File

@ -23,7 +23,7 @@
"@antv/g2": "^5.2.10",
"@antv/g6": "^5.0.10",
"@hookform/resolvers": "^3.9.1",
"@js-preview/excel": "^1.7.8",
"@js-preview/excel": "^1.7.14",
"@lexical/react": "^0.23.1",
"@monaco-editor/react": "^4.6.0",
"@radix-ui/react-accordion": "^1.2.3",

View File

@ -6,6 +6,7 @@ import { App, ConfigProvider, ConfigProviderProps, theme } from 'antd';
import pt_BR from 'antd/lib/locale/pt_BR';
import deDE from 'antd/locale/de_DE';
import enUS from 'antd/locale/en_US';
import ru_RU from 'antd/locale/ru_RU';
import vi_VN from 'antd/locale/vi_VN';
import zhCN from 'antd/locale/zh_CN';
import zh_HK from 'antd/locale/zh_HK';
@ -34,6 +35,7 @@ const AntLanguageMap = {
en: enUS,
zh: zhCN,
'zh-TRADITIONAL': zh_HK,
ru: ru_RU,
vi: vi_VN,
'pt-BR': pt_BR,
de: deDE,

View File

@ -0,0 +1,5 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="currentColor">
<path d="M15.5 14h-.79l-.28-.27C15.41 12.59 16 11.11 16 9.5 16 5.91 13.09 3 9.5 3S3 5.91 3 9.5 5.91 16 9.5 16c1.61 0 3.09-.59 4.23-1.57l.27.28v.79l5 4.99L20.49 19l-4.99-5zm-6 0C7.01 14 5 11.99 5 9.5S7.01 5 9.5 5 14 7.01 14 9.5 11.99 14 9.5 14z"/>
<circle cx="9.5" cy="9.5" r="2.5" fill="currentColor" opacity="0.6"/>
<path d="M12 2l1.5 3h3L15 7l1.5 3L15 8.5 12 10 9 8.5 7.5 10 9 7 7.5 5h3L12 2z" opacity="0.4"/>
</svg>

After

Width:  |  Height:  |  Size: 506 B

View File

@ -0,0 +1,80 @@
import { transformFile2Base64 } from '@/utils/file-util';
import { Pencil, Upload } from 'lucide-react';
import {
ChangeEventHandler,
forwardRef,
useCallback,
useEffect,
useState,
} from 'react';
import { useTranslation } from 'react-i18next';
import { Avatar, AvatarFallback, AvatarImage } from './ui/avatar';
import { Input } from './ui/input';
type AvatarUploadProps = { value?: string; onChange?: (value: string) => void };
export const AvatarUpload = forwardRef<HTMLInputElement, AvatarUploadProps>(
function AvatarUpload({ value, onChange }, ref) {
const { t } = useTranslation();
const [avatarBase64Str, setAvatarBase64Str] = useState(''); // Avatar Image base64
const handleChange: ChangeEventHandler<HTMLInputElement> = useCallback(
async (ev) => {
const file = ev.target?.files?.[0];
if (/\.(jpg|jpeg|png|webp|bmp)$/i.test(file?.name ?? '')) {
const str = await transformFile2Base64(file!);
setAvatarBase64Str(str);
onChange?.(str);
}
ev.target.value = '';
},
[onChange],
);
useEffect(() => {
if (value) {
setAvatarBase64Str(value);
}
}, [value]);
return (
<div className="flex justify-start items-end space-x-2">
<div className="relative group">
{!avatarBase64Str ? (
<div className="w-[64px] h-[64px] grid place-content-center border border-dashed rounded-md">
<div className="flex flex-col items-center">
<Upload />
<p>{t('common.upload')}</p>
</div>
</div>
) : (
<div className="w-[64px] h-[64px] relative grid place-content-center">
<Avatar className="w-[64px] h-[64px] rounded-md">
<AvatarImage className=" block" src={avatarBase64Str} alt="" />
<AvatarFallback></AvatarFallback>
</Avatar>
<div className="absolute inset-0 bg-[#000]/20 group-hover:bg-[#000]/60">
<Pencil
size={20}
className="absolute right-2 bottom-0 opacity-50 hidden group-hover:block"
/>
</div>
</div>
)}
<Input
placeholder=""
type="file"
title=""
accept="image/*"
className="absolute top-0 left-0 w-full h-full opacity-0 cursor-pointer"
onChange={handleChange}
ref={ref}
/>
</div>
<div className="margin-1 text-muted-foreground">
{t('knowledgeConfiguration.photoTip')}
</div>
</div>
);
},
);

View File

@ -15,123 +15,122 @@ interface EditTagsProps {
onChange?: (tags: string[]) => void;
}
const EditTag = ({ value = [], onChange }: EditTagsProps) => {
const [inputVisible, setInputVisible] = useState(false);
const [inputValue, setInputValue] = useState('');
const inputRef = useRef<HTMLInputElement>(null);
const EditTag = React.forwardRef<HTMLDivElement, EditTagsProps>(
({ value = [], onChange }: EditTagsProps, ref) => {
const [inputVisible, setInputVisible] = useState(false);
const [inputValue, setInputValue] = useState('');
const inputRef = useRef<HTMLInputElement>(null);
useEffect(() => {
if (inputVisible) {
inputRef.current?.focus();
}
}, [inputVisible]);
useEffect(() => {
if (inputVisible) {
inputRef.current?.focus();
}
}, [inputVisible]);
const handleClose = (removedTag: string) => {
const newTags = value?.filter((tag) => tag !== removedTag);
onChange?.(newTags ?? []);
};
const handleClose = (removedTag: string) => {
const newTags = value?.filter((tag) => tag !== removedTag);
onChange?.(newTags ?? []);
};
const showInput = () => {
setInputVisible(true);
};
const showInput = () => {
setInputVisible(true);
};
const handleInputChange = (e: React.ChangeEvent<HTMLInputElement>) => {
setInputValue(e.target.value);
};
const handleInputChange = (e: React.ChangeEvent<HTMLInputElement>) => {
setInputValue(e.target.value);
};
const handleInputConfirm = () => {
if (inputValue && value) {
const newTags = inputValue
.split(';')
.map((tag) => tag.trim())
.filter((tag) => tag && !value.includes(tag));
onChange?.([...value, ...newTags]);
}
setInputVisible(false);
setInputValue('');
};
const handleInputConfirm = () => {
if (inputValue && value) {
const newTags = inputValue
.split(';')
.map((tag) => tag.trim())
.filter((tag) => tag && !value.includes(tag));
onChange?.([...value, ...newTags]);
}
setInputVisible(false);
setInputValue('');
};
const forMap = (tag: string) => {
return (
<HoverCard>
<HoverCardContent side="top">{tag}</HoverCardContent>
<HoverCardTrigger>
<div
key={tag}
className="w-fit flex items-center justify-center gap-2 border-dashed border px-1 rounded-sm bg-bg-card"
>
<div className="flex gap-2 items-center">
<div className="max-w-80 overflow-hidden text-ellipsis">
{tag}
const forMap = (tag: string) => {
return (
<HoverCard key={tag}>
<HoverCardContent side="top">{tag}</HoverCardContent>
<HoverCardTrigger asChild>
<div className="w-fit flex items-center justify-center gap-2 border-dashed border px-1 rounded-sm bg-bg-card">
<div className="flex gap-2 items-center">
<div className="max-w-80 overflow-hidden text-ellipsis">
{tag}
</div>
<X
className="w-4 h-4 text-muted-foreground hover:text-primary"
onClick={(e) => {
e.preventDefault();
handleClose(tag);
}}
/>
</div>
<X
className="w-4 h-4 text-muted-foreground hover:text-primary"
onClick={(e) => {
e.preventDefault();
handleClose(tag);
}}
/>
</div>
</div>
</HoverCardTrigger>
</HoverCard>
</HoverCardTrigger>
</HoverCard>
);
};
const tagChild = value?.map(forMap);
const tagPlusStyle: React.CSSProperties = {
borderStyle: 'dashed',
};
return (
<div>
{inputVisible ? (
<Input
ref={inputRef}
type="text"
className="h-8 bg-bg-card"
value={inputValue}
onChange={handleInputChange}
onBlur={handleInputConfirm}
onKeyDown={(e) => {
if (e?.key === 'Enter') {
handleInputConfirm();
}
}}
/>
) : (
<Button
variant="dashed"
className="w-fit flex items-center justify-center gap-2 bg-bg-card"
onClick={showInput}
style={tagPlusStyle}
>
<PlusOutlined />
</Button>
)}
{Array.isArray(tagChild) && tagChild.length > 0 && (
<TweenOneGroup
className="flex gap-2 flex-wrap mt-2"
enter={{
scale: 0.8,
opacity: 0,
type: 'from',
duration: 100,
}}
onEnd={(e) => {
if (e.type === 'appear' || e.type === 'enter') {
(e.target as any).style = 'display: inline-block';
}
}}
leave={{ opacity: 0, width: 0, scale: 0, duration: 200 }}
appear={false}
>
{tagChild}
</TweenOneGroup>
)}
</div>
);
};
const tagChild = value?.map(forMap);
const tagPlusStyle: React.CSSProperties = {
borderStyle: 'dashed',
};
return (
<div>
{inputVisible ? (
<Input
ref={inputRef}
type="text"
className="h-8 bg-bg-card"
value={inputValue}
onChange={handleInputChange}
onBlur={handleInputConfirm}
onKeyDown={(e) => {
if (e?.key === 'Enter') {
handleInputConfirm();
}
}}
/>
) : (
<Button
variant="dashed"
className="w-fit flex items-center justify-center gap-2 bg-bg-card"
onClick={showInput}
style={tagPlusStyle}
>
<PlusOutlined />
</Button>
)}
{Array.isArray(tagChild) && tagChild.length > 0 && (
<TweenOneGroup
className="flex gap-2 flex-wrap mt-2"
enter={{
scale: 0.8,
opacity: 0,
type: 'from',
duration: 100,
}}
onEnd={(e) => {
if (e.type === 'appear' || e.type === 'enter') {
(e.target as any).style = 'display: inline-block';
}
}}
leave={{ opacity: 0, width: 0, scale: 0, duration: 200 }}
appear={false}
>
{tagChild}
</TweenOneGroup>
)}
</div>
);
};
},
);
export default EditTag;

View File

@ -158,6 +158,8 @@ interface FileUploaderProps extends React.HTMLAttributes<HTMLDivElement> {
* @example disabled
*/
disabled?: boolean;
description?: string;
}
export function FileUploader(props: FileUploaderProps) {
@ -174,6 +176,7 @@ export function FileUploader(props: FileUploaderProps) {
multiple = false,
disabled = false,
className,
description,
...dropzoneProps
} = props;
const { t } = useTranslation();
@ -302,7 +305,7 @@ export function FileUploader(props: FileUploaderProps) {
{t('knowledgeDetails.uploadTitle')}
</p>
<p className="text-sm text-muted-foreground/70">
{t('knowledgeDetails.uploadDescription')}
{description || t('knowledgeDetails.uploadDescription')}
{/* You can upload
{maxFileCount > 1
? ` ${maxFileCount === Infinity ? 'multiple' : maxFileCount}

View File

@ -12,6 +12,7 @@ import {
FormMessage,
} from '@/components/ui/form';
import { LlmModelType } from '@/constants/knowledge';
import { t } from 'i18next';
import { Funnel } from 'lucide-react';
import { useFormContext, useWatch } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
@ -21,15 +22,15 @@ import { Button } from './ui/button';
const ModelTypes = [
{
title: 'All Models',
title: t('flow.allModels'),
value: 'all',
},
{
title: 'Text-only Models',
title: t('flow.textOnlyModels'),
value: LlmModelType.Chat,
},
{
title: 'Multimodal Models',
title: t('flow.multimodalModels'),
value: LlmModelType.Image2text,
},
];

View File

@ -102,8 +102,8 @@ export function LlmSettingFieldItems({
control={form.control}
name={'parameter'}
render={({ field }) => (
<FormItem>
<FormLabel>{t('freedom')}</FormLabel>
<FormItem className="flex justify-between items-center">
<FormLabel className="flex-1">{t('freedom')}</FormLabel>
<FormControl>
<Select
{...field}
@ -112,7 +112,7 @@ export function LlmSettingFieldItems({
field.onChange(val);
}}
>
<SelectTrigger>
<SelectTrigger className="flex-1 !m-0">
<SelectValue />
</SelectTrigger>
<SelectContent>

View File

@ -30,7 +30,6 @@
.messageTextDark {
.chunkText();
.messageTextBase();
background-color: #1668dc;
word-break: break-word;
:global(section.think) {
color: rgb(166, 166, 166);

View File

@ -235,7 +235,7 @@ function MarkdownContent({
<HoverCardTrigger>
<CircleAlert className="size-4 inline-block" />
</HoverCardTrigger>
<HoverCardContent>
<HoverCardContent className="max-w-3xl">
{renderPopoverContent(chunkIndex)}
</HoverCardContent>
</HoverCard>

View File

@ -145,9 +145,9 @@ export const SelectWithSearch = forwardRef<
align="start"
>
<Command>
<CommandInput placeholder="Search ..." />
<CommandInput placeholder={t('common.search') + '...'} />
<CommandList>
<CommandEmpty>No data found.</CommandEmpty>
<CommandEmpty>{t('common.noDataFound')}</CommandEmpty>
{options.map((group, idx) => {
if (group.options) {
return (

Some files were not shown because too many files have changed in this diff Show More