Perf: test llm before RAPTOR. (#8897)

### What problem does this PR solve?


### Type of change

- [x] Performance Improvement
This commit is contained in:
Kevin Hu
2025-07-17 16:48:50 +08:00
committed by GitHub
parent 606bf20a3f
commit ecdb1701df
4 changed files with 22 additions and 12 deletions

View File

@ -670,3 +670,18 @@ def timeout(
return wrapper
return decorator
async def is_strong_enough(chat_model, embedding_model):
@timeout(30, 2)
async def _is_strong_enough():
nonlocal chat_model, embedding_model
_ = await trio.to_thread.run_sync(lambda: embedding_model.encode(["Are you strong enough!?"]))
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role":"user", "content": "Are you strong enough!?"}], {}))
if res.find("**ERROR**") >= 0:
raise Exception(res)
# Pressure test for GraphRAG task
async with trio.open_nursery() as nursery:
for _ in range(12):
nursery.start_soon(_is_strong_enough, chat_model, embedding_model)

View File

@ -17,6 +17,7 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
from PIL import Image
from api.utils.api_utils import timeout
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
from rag.prompts import vision_llm_figure_describe_prompt
@ -80,6 +81,7 @@ class VisionFigureParser:
def __call__(self, **kwargs):
callback = kwargs.get("callback", lambda prog, msg: None)
@timeout(30, 3)
def process(figure_idx, figure_binary):
description_text = picture_vision_llm_chunk(
binary=figure_binary,

View File

@ -20,7 +20,7 @@ import trio
from api import settings
from api.utils import get_uuid
from api.utils.api_utils import timeout
from api.utils.api_utils import timeout, is_strong_enough
from graphrag.light.graph_extractor import GraphExtractor as LightKGExt
from graphrag.general.graph_extractor import GraphExtractor as GeneralKGExt
from graphrag.general.community_reports_extractor import CommunityReportsExtractor
@ -39,13 +39,6 @@ from rag.nlp import rag_tokenizer, search
from rag.utils.redis_conn import RedisDistributedLock
@timeout(30, 2)
async def _is_strong_enough(chat_model, embedding_model):
_ = await trio.to_thread.run_sync(lambda: embedding_model.encode(["Are you strong enough!?"]))
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role":"user", "content": "Are you strong enough!?"}], {}))
if res.find("**ERROR**") >= 0:
raise Exception(res)
async def run_graphrag(
row: dict,
@ -57,9 +50,7 @@ async def run_graphrag(
callback,
):
# Pressure test for GraphRAG task
async with trio.open_nursery() as nursery:
for _ in range(12):
nursery.start_soon(_is_strong_enough, chat_model, embedding_model)
await is_strong_enough(chat_model, embedding_model)
start = trio.current_time()
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"]

View File

@ -21,7 +21,7 @@ import sys
import threading
import time
from api.utils.api_utils import timeout
from api.utils.api_utils import timeout, is_strong_enough
from api.utils.log_utils import init_root_logger, get_project_base_directory
from graphrag.general.index import run_graphrag
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
@ -466,6 +466,8 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
@timeout(3600)
async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
# Pressure test for GraphRAG task
await is_strong_enough(chat_mdl, embd_mdl)
chunks = []
vctr_nm = "q_%d_vec"%vector_size
for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],