Add Q&A and Book, fix task running bugs (#50)

This commit is contained in:
KevinHuSh
2024-02-01 18:53:56 +08:00
committed by GitHub
parent 6224edcd1b
commit e6acaf6738
21 changed files with 628 additions and 276 deletions

View File

@ -4,14 +4,8 @@ from nltk import word_tokenize
from rag.nlp import stemmer, huqie
def callback__(progress, msg, func):
if not func :return
func(progress, msg)
BULLET_PATTERN = [[
r"第[零一二三四五六七八九十百]+",
r"第[零一二三四五六七八九十百]+(编|部分)",
r"第[零一二三四五六七八九十百]+章",
r"第[零一二三四五六七八九十百]+节",
r"第[零一二三四五六七八九十百]+条",
@ -22,6 +16,8 @@ BULLET_PATTERN = [[
r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}",
r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}",
], [
r"第[零一二三四五六七八九十百]+章",
r"第[零一二三四五六七八九十百]+节",
r"[零一二三四五六七八九十百]+[ 、]",
r"[\(][零一二三四五六七八九十百]+[\)]",
r"[\(][0-9]{,2}[\)]",
@ -54,7 +50,7 @@ def bullets_category(sections):
def is_english(texts):
eng = 0
for t in texts:
if re.match(r"[a-zA-Z]", t.strip()):
if re.match(r"[a-zA-Z]{2,}", t.strip()):
eng += 1
if eng / len(texts) > 0.8:
return True
@ -70,3 +66,26 @@ def tokenize(d, t, eng):
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
def remove_contents_table(sections, eng=False):
i = 0
while i < len(sections):
def get(i):
nonlocal sections
return (sections[i] if type(sections[i]) == type("") else sections[i][0]).strip()
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", get(i).split("@@")[0], re.IGNORECASE)):
i += 1
continue
sections.pop(i)
if i >= len(sections): break
prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2])
while not prefix:
sections.pop(i)
if i >= len(sections): break
prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2])
sections.pop(i)
if i >= len(sections) or not prefix: break
for j in range(i, min(i+128, len(sections))):
if not re.match(prefix, get(j)):
continue
for _ in range(i, j):sections.pop(i)
break

156
rag/app/book.py Normal file
View File

@ -0,0 +1,156 @@
import copy
import random
import re
from io import BytesIO
from docx import Document
import numpy as np
from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table
from rag.nlp import huqie
from rag.parser.docx_parser import HuDocxParser
from rag.parser.pdf_parser import HuParser
class Pdf(HuParser):
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page)
callback(0.1, "OCR finished")
from timeit import default_timer as timer
start = timer()
self._layouts_paddle(zoomin)
callback(0.47, "Layout analysis finished")
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback(0.68, "Table analysis finished")
self._text_merge()
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self._concat_downward(concat_between_pages=False)
self._filter_forpages()
self._merge_with_same_bullet()
callback(0.75, "Text merging finished.")
tbls = self._extract_table_figure(True, zoomin, False)
callback(0.8, "Text extraction finished")
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes]
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
doc = {
"docnm_kwd": filename,
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
pdf_parser = None
sections,tbls = [], []
if re.search(r"\.docx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
doc_parser = HuDocxParser()
# TODO: table of contents need to be removed
sections, tbls = doc_parser(binary if binary else filename)
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
sections,tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:txt = binary.decode("utf-8")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l:break
txt += l
sections = txt.split("\n")
sections = [(l,"") for l in sections if l]
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
bull = bullets_category([b["text"] for b in random.choices([t for t,_ in sections], k=100)])
projs = [len(BULLET_PATTERN[bull]) + 1] * len(sections)
levels = [[]] * len(BULLET_PATTERN[bull]) + 2
for i, (txt, layout) in enumerate(sections):
for j, p in enumerate(BULLET_PATTERN[bull]):
if re.match(p, txt.strip()):
projs[i] = j
levels[j].append(i)
break
else:
if re.search(r"(title|head)", layout):
projs[i] = BULLET_PATTERN[bull]
levels[BULLET_PATTERN[bull]].append(i)
else:
levels[BULLET_PATTERN[bull] + 1].append(i)
sections = [t for t,_ in sections]
def binary_search(arr, target):
if target > arr[-1]: return len(arr) - 1
if target > arr[0]: return -1
s, e = 0, len(arr)
while e - s > 1:
i = (e + s) // 2
if target > arr[i]:
s = i
continue
elif target < arr[i]:
e = i
continue
else:
assert False
return s
cks = []
readed = [False] * len(sections)
levels = levels[::-1]
for i, arr in enumerate(levels):
for j in arr:
if readed[j]: continue
readed[j] = True
cks.append([j])
if i + 1 == len(levels) - 1: continue
for ii in range(i + 1, len(levels)):
jj = binary_search(levels[ii], j)
if jj < 0: break
if jj > cks[-1][-1]: cks[-1].pop(-1)
cks[-1].append(levels[ii][jj])
# is it English
eng = is_english(random.choices(sections, k=218))
res = []
# add tables
for img, rows in tbls:
bs = 10
de = ";" if eng else ""
for i in range(0, len(rows), bs):
d = copy.deepcopy(doc)
r = de.join(rows[i:i + bs])
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
tokenize(d, r, eng)
d["image"] = img
res.append(d)
# wrap up to es documents
for ck in cks:
print("\n-".join(ck[::-1]))
ck = "\n".join(ck[::-1])
d = copy.deepcopy(doc)
if pdf_parser:
d["image"] = pdf_parser.crop(ck)
ck = pdf_parser.remove_tag(ck)
tokenize(d, ck, eng)
res.append(d)
return res
if __name__ == "__main__":
import sys
chunk(sys.argv[1])

View File

@ -3,7 +3,7 @@ import re
from io import BytesIO
from docx import Document
import numpy as np
from rag.app import callback__, bullets_category, BULLET_PATTERN, is_english, tokenize
from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize
from rag.nlp import huqie
from rag.parser.docx_parser import HuDocxParser
from rag.parser.pdf_parser import HuParser
@ -32,12 +32,12 @@ class Pdf(HuParser):
zoomin,
from_page,
to_page)
callback__(0.1, "OCR finished", callback)
callback(0.1, "OCR finished")
from timeit import default_timer as timer
start = timer()
self._layouts_paddle(zoomin)
callback__(0.77, "Layout analysis finished", callback)
callback(0.77, "Layout analysis finished")
print("paddle layouts:", timer()-start)
bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
# is it English
@ -75,7 +75,7 @@ class Pdf(HuParser):
b["x1"] = max(b["x1"], b_["x1"])
bxs.pop(i + 1)
callback__(0.8, "Text extraction finished", callback)
callback(0.8, "Text extraction finished")
return [b["text"] + self._line_tag(b, zoomin) for b in bxs]
@ -89,17 +89,17 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
pdf_parser = None
sections = []
if re.search(r"\.docx?$", filename, re.IGNORECASE):
callback__(0.1, "Start to parse.", callback)
callback(0.1, "Start to parse.")
for txt in Docx()(filename, binary):
sections.append(txt)
callback__(0.8, "Finish parsing.", callback)
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
for txt in pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback):
sections.append(txt)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback__(0.1, "Start to parse.", callback)
callback(0.1, "Start to parse.")
txt = ""
if binary:txt = binary.decode("utf-8")
else:
@ -110,7 +110,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
txt += l
sections = txt.split("\n")
sections = [l for l in sections if l]
callback__(0.8, "Finish parsing.", callback)
callback(0.8, "Finish parsing.")
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
# is it English
@ -118,7 +118,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
# Remove 'Contents' part
i = 0
while i < len(sections):
if not re.match(r"(Contents|目录|目次)$", re.sub(r"( | |\u3000)+", "", sections[i].split("@@")[0])):
if not re.match(r"(contents|目录|目次|table of contents)$", re.sub(r"( | |\u3000)+", "", sections[i].split("@@")[0], re.IGNORECASE)):
i += 1
continue
sections.pop(i)
@ -133,7 +133,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
for j in range(i, min(i+128, len(sections))):
if not re.match(prefix, sections[j]):
continue
for k in range(i, j):sections.pop(i)
for _ in range(i, j):sections.pop(i)
break
bull = bullets_category(sections)

View File

@ -1,6 +1,6 @@
import copy
import re
from rag.app import callback__, tokenize
from rag.app import tokenize
from rag.nlp import huqie
from rag.parser.pdf_parser import HuParser
from rag.utils import num_tokens_from_string
@ -14,19 +14,19 @@ class Pdf(HuParser):
zoomin,
from_page,
to_page)
callback__(0.2, "OCR finished.", callback)
callback(0.2, "OCR finished.")
from timeit import default_timer as timer
start = timer()
self._layouts_paddle(zoomin)
callback__(0.5, "Layout analysis finished.", callback)
callback(0.5, "Layout analysis finished.")
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback__(0.7, "Table analysis finished.", callback)
callback(0.7, "Table analysis finished.")
self._text_merge()
self._concat_downward(concat_between_pages=False)
self._filter_forpages()
callback__(0.77, "Text merging finished", callback)
callback(0.77, "Text merging finished")
tbls = self._extract_table_figure(True, zoomin, False)
# clean mess
@ -34,20 +34,8 @@ class Pdf(HuParser):
b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
# merge chunks with the same bullets
i = 0
while i + 1 < len(self.boxes):
b = self.boxes[i]
b_ = self.boxes[i + 1]
if b["text"].strip()[0] != b_["text"].strip()[0] \
or b["page_number"]!=b_["page_number"] \
or b["top"] > b_["bottom"]:
i += 1
continue
b_["text"] = b["text"] + "\n" + b_["text"]
b_["x0"] = min(b["x0"], b_["x0"])
b_["x1"] = max(b["x1"], b_["x1"])
b_["top"] = b["top"]
self.boxes.pop(i)
self._merge_with_same_bullet()
# merge title with decent chunk
i = 0
while i + 1 < len(self.boxes):
@ -62,7 +50,7 @@ class Pdf(HuParser):
b_["top"] = b["top"]
self.boxes.pop(i)
callback__(0.8, "Parsing finished", callback)
callback(0.8, "Parsing finished")
for b in self.boxes: print(b["text"], b.get("layoutno"))
print(tbls)

View File

@ -1,11 +1,9 @@
import copy
import re
from collections import Counter
from rag.app import callback__, bullets_category, BULLET_PATTERN, is_english, tokenize
from rag.nlp import huqie, stemmer
from rag.parser.docx_parser import HuDocxParser
from rag.app import tokenize
from rag.nlp import huqie
from rag.parser.pdf_parser import HuParser
from nltk.tokenize import word_tokenize
import numpy as np
from rag.utils import num_tokens_from_string
@ -18,20 +16,20 @@ class Pdf(HuParser):
zoomin,
from_page,
to_page)
callback__(0.2, "OCR finished.", callback)
callback(0.2, "OCR finished.")
from timeit import default_timer as timer
start = timer()
self._layouts_paddle(zoomin)
callback__(0.47, "Layout analysis finished", callback)
callback(0.47, "Layout analysis finished")
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback__(0.68, "Table analysis finished", callback)
callback(0.68, "Table analysis finished")
self._text_merge()
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self._concat_downward(concat_between_pages=False)
self._filter_forpages()
callback__(0.75, "Text merging finished.", callback)
callback(0.75, "Text merging finished.")
tbls = self._extract_table_figure(True, zoomin, False)
# clean mess
@ -101,7 +99,7 @@ class Pdf(HuParser):
break
if not abstr: i = 0
callback__(0.8, "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback)
callback(0.8, "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)))
for b in self.boxes: print(b["text"], b.get("layoutno"))
print(tbls)

View File

@ -3,7 +3,7 @@ import re
from io import BytesIO
from pptx import Presentation
from rag.app import callback__, tokenize, is_english
from rag.app import tokenize, is_english
from rag.nlp import huqie
from rag.parser.pdf_parser import HuParser
@ -43,7 +43,7 @@ class Ppt(object):
if txt: texts.append(txt)
txts.append("\n".join(texts))
callback__(0.5, "Text extraction finished.", callback)
callback(0.5, "Text extraction finished.")
import aspose.slides as slides
import aspose.pydrawing as drawing
imgs = []
@ -53,7 +53,7 @@ class Ppt(object):
slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg)
imgs.append(buffered.getvalue())
assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts))
callback__(0.9, "Image extraction finished", callback)
callback(0.9, "Image extraction finished")
self.is_english = is_english(txts)
return [(txts[i], imgs[i]) for i in range(len(txts))]
@ -70,7 +70,7 @@ class Pdf(HuParser):
def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None):
self.__images__(filename if not binary else binary, zoomin, from_page, to_page)
callback__(0.8, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback)
callback(0.8, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)))
assert len(self.boxes) == len(self.page_images), "{} vs. {}".format(len(self.boxes), len(self.page_images))
res = []
#################### More precisely ###################
@ -89,7 +89,7 @@ class Pdf(HuParser):
for i in range(len(self.boxes)):
lines = "\n".join([b["text"] for b in self.boxes[i] if not self.__garbage(b["text"])])
res.append((lines, self.page_images[i]))
callback__(0.9, "Page {}~{}: Parsing finished".format(from_page, min(to_page, self.total_page)), callback)
callback(0.9, "Page {}~{}: Parsing finished".format(from_page, min(to_page, self.total_page)))
return res

104
rag/app/qa.py Normal file
View File

@ -0,0 +1,104 @@
import random
import re
from io import BytesIO
from nltk import word_tokenize
from openpyxl import load_workbook
from rag.app import is_english
from rag.nlp import huqie, stemmer
class Excel(object):
def __call__(self, fnm, binary=None, callback=None):
if not binary:
wb = load_workbook(fnm)
else:
wb = load_workbook(BytesIO(binary))
total = 0
for sheetname in wb.sheetnames:
total += len(list(wb[sheetname].rows))
res, fails = [], []
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
for i, r in enumerate(rows):
q, a = "", ""
for cell in r:
if not cell.value: continue
if not q: q = str(cell.value)
elif not a: a = str(cell.value)
else: break
if q and a: res.append((q, a))
else: fails.append(str(i+1))
if len(res) % 999 == 0:
callback(len(res)*0.6/total, ("Extract Q&A: {}".format(len(res)) + (f"{len(fails)} failure, line: %s..."%(",".join(fails[:3])) if fails else "")))
callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
self.is_english = is_english([rmPrefix(q) for q, _ in random.choices(res, k=30) if len(q)>1])
return res
def rmPrefix(txt):
return re.sub(r"^(问题|答案|回答|user|assistant|Q|A|Question|Answer|问|答)[\t: ]+", "", txt.strip(), flags=re.IGNORECASE)
def beAdoc(d, q, a, eng):
qprefix = "Question: " if eng else "问题:"
aprefix = "Answer: " if eng else "回答:"
d["content_with_weight"] = "\t".join([qprefix+rmPrefix(q), aprefix+rmPrefix(a)])
if eng:
d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(q)])
else:
d["content_ltks"] = huqie.qie(q)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
return d
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
res = []
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = Excel()
for q,a in excel_parser(filename, binary, callback):
res.append(beAdoc({}, q, a, excel_parser.is_english))
return res
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:
txt = binary.decode("utf-8")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l: break
txt += l
lines = txt.split("\n")
eng = is_english([rmPrefix(l) for l in lines[:100]])
fails = []
for i, line in enumerate(lines):
arr = [l for l in line.split("\t") if len(l) > 1]
if len(arr) != 2:
fails.append(str(i))
continue
res.append(beAdoc({}, arr[0], arr[1], eng))
if len(res) % 999 == 0:
callback(len(res) * 0.6 / len(lines), ("Extract Q&A: {}".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
raise NotImplementedError("file type not supported yet(pptx, pdf supported)")
if __name__== "__main__":
import sys
def kk(rat, ss):
pass
print(chunk(sys.argv[1], callback=kk))