mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
157 lines
5.6 KiB
Python
157 lines
5.6 KiB
Python
import copy
|
||
import random
|
||
import re
|
||
from io import BytesIO
|
||
from docx import Document
|
||
import numpy as np
|
||
from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table
|
||
from rag.nlp import huqie
|
||
from rag.parser.docx_parser import HuDocxParser
|
||
from rag.parser.pdf_parser import HuParser
|
||
|
||
|
||
class Pdf(HuParser):
|
||
def __call__(self, filename, binary=None, from_page=0,
|
||
to_page=100000, zoomin=3, callback=None):
|
||
self.__images__(
|
||
filename if not binary else binary,
|
||
zoomin,
|
||
from_page,
|
||
to_page)
|
||
callback(0.1, "OCR finished")
|
||
|
||
from timeit import default_timer as timer
|
||
start = timer()
|
||
self._layouts_paddle(zoomin)
|
||
callback(0.47, "Layout analysis finished")
|
||
print("paddle layouts:", timer() - start)
|
||
self._table_transformer_job(zoomin)
|
||
callback(0.68, "Table analysis finished")
|
||
self._text_merge()
|
||
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
||
self._concat_downward(concat_between_pages=False)
|
||
self._filter_forpages()
|
||
self._merge_with_same_bullet()
|
||
callback(0.75, "Text merging finished.")
|
||
tbls = self._extract_table_figure(True, zoomin, False)
|
||
|
||
callback(0.8, "Text extraction finished")
|
||
|
||
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes]
|
||
|
||
|
||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
||
doc = {
|
||
"docnm_kwd": filename,
|
||
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||
}
|
||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||
pdf_parser = None
|
||
sections,tbls = [], []
|
||
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
||
callback(0.1, "Start to parse.")
|
||
doc_parser = HuDocxParser()
|
||
# TODO: table of contents need to be removed
|
||
sections, tbls = doc_parser(binary if binary else filename)
|
||
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
|
||
callback(0.8, "Finish parsing.")
|
||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||
pdf_parser = Pdf()
|
||
sections,tbls = pdf_parser(filename if not binary else binary,
|
||
from_page=from_page, to_page=to_page, callback=callback)
|
||
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
||
callback(0.1, "Start to parse.")
|
||
txt = ""
|
||
if binary:txt = binary.decode("utf-8")
|
||
else:
|
||
with open(filename, "r") as f:
|
||
while True:
|
||
l = f.readline()
|
||
if not l:break
|
||
txt += l
|
||
sections = txt.split("\n")
|
||
sections = [(l,"") for l in sections if l]
|
||
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
|
||
callback(0.8, "Finish parsing.")
|
||
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||
|
||
bull = bullets_category([b["text"] for b in random.choices([t for t,_ in sections], k=100)])
|
||
projs = [len(BULLET_PATTERN[bull]) + 1] * len(sections)
|
||
levels = [[]] * len(BULLET_PATTERN[bull]) + 2
|
||
for i, (txt, layout) in enumerate(sections):
|
||
for j, p in enumerate(BULLET_PATTERN[bull]):
|
||
if re.match(p, txt.strip()):
|
||
projs[i] = j
|
||
levels[j].append(i)
|
||
break
|
||
else:
|
||
if re.search(r"(title|head)", layout):
|
||
projs[i] = BULLET_PATTERN[bull]
|
||
levels[BULLET_PATTERN[bull]].append(i)
|
||
else:
|
||
levels[BULLET_PATTERN[bull] + 1].append(i)
|
||
sections = [t for t,_ in sections]
|
||
|
||
def binary_search(arr, target):
|
||
if target > arr[-1]: return len(arr) - 1
|
||
if target > arr[0]: return -1
|
||
s, e = 0, len(arr)
|
||
while e - s > 1:
|
||
i = (e + s) // 2
|
||
if target > arr[i]:
|
||
s = i
|
||
continue
|
||
elif target < arr[i]:
|
||
e = i
|
||
continue
|
||
else:
|
||
assert False
|
||
return s
|
||
|
||
cks = []
|
||
readed = [False] * len(sections)
|
||
levels = levels[::-1]
|
||
for i, arr in enumerate(levels):
|
||
for j in arr:
|
||
if readed[j]: continue
|
||
readed[j] = True
|
||
cks.append([j])
|
||
if i + 1 == len(levels) - 1: continue
|
||
for ii in range(i + 1, len(levels)):
|
||
jj = binary_search(levels[ii], j)
|
||
if jj < 0: break
|
||
if jj > cks[-1][-1]: cks[-1].pop(-1)
|
||
cks[-1].append(levels[ii][jj])
|
||
|
||
# is it English
|
||
eng = is_english(random.choices(sections, k=218))
|
||
|
||
res = []
|
||
# add tables
|
||
for img, rows in tbls:
|
||
bs = 10
|
||
de = ";" if eng else ";"
|
||
for i in range(0, len(rows), bs):
|
||
d = copy.deepcopy(doc)
|
||
r = de.join(rows[i:i + bs])
|
||
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
||
tokenize(d, r, eng)
|
||
d["image"] = img
|
||
res.append(d)
|
||
# wrap up to es documents
|
||
for ck in cks:
|
||
print("\n-".join(ck[::-1]))
|
||
ck = "\n".join(ck[::-1])
|
||
d = copy.deepcopy(doc)
|
||
if pdf_parser:
|
||
d["image"] = pdf_parser.crop(ck)
|
||
ck = pdf_parser.remove_tag(ck)
|
||
tokenize(d, ck, eng)
|
||
res.append(d)
|
||
return res
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import sys
|
||
chunk(sys.argv[1])
|