mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Refine resume parts and fix bugs in retrival using sql (#66)
This commit is contained in:
@ -21,20 +21,21 @@ from api.db.services.dialog_service import DialogService, ConversationService
|
||||
from api.db import LLMType
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMService, LLMBundle
|
||||
from api.settings import access_logger
|
||||
from api.settings import access_logger, stat_logger
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import get_json_result
|
||||
from rag.app.resume import forbidden_select_fields4resume
|
||||
from rag.llm import ChatModel
|
||||
from rag.nlp import retrievaler
|
||||
from rag.nlp.search import index_name
|
||||
from rag.utils import num_tokens_from_string, encoder
|
||||
from rag.utils import num_tokens_from_string, encoder, rmSpace
|
||||
|
||||
|
||||
@manager.route('/set', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("dialog_id")
|
||||
def set():
|
||||
def set_conversation():
|
||||
req = request.json
|
||||
conv_id = req.get("conversation_id")
|
||||
if conv_id:
|
||||
@ -96,9 +97,10 @@ def rm():
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/list', methods=['GET'])
|
||||
@login_required
|
||||
def list():
|
||||
def list_convsersation():
|
||||
dialog_id = request.args["dialog_id"]
|
||||
try:
|
||||
convs = ConversationService.query(dialog_id=dialog_id)
|
||||
@ -175,6 +177,7 @@ def chat(dialog, messages, **kwargs):
|
||||
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
|
||||
## try to use sql if field mapping is good to go
|
||||
if field_map:
|
||||
stat_logger.info("Use SQL to retrieval.")
|
||||
markdown_tbl, chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl)
|
||||
if markdown_tbl:
|
||||
return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}}
|
||||
@ -186,7 +189,8 @@ def chat(dialog, messages, **kwargs):
|
||||
if p["key"] not in kwargs:
|
||||
prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
|
||||
|
||||
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold,
|
||||
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
|
||||
dialog.similarity_threshold,
|
||||
dialog.vector_similarity_weight, top=1024, aggs=False)
|
||||
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
||||
|
||||
@ -220,32 +224,42 @@ def use_sql(question,field_map, tenant_id, chat_mdl):
|
||||
{}
|
||||
|
||||
问题:{}
|
||||
请写出SQL。
|
||||
请写出SQL,且只要SQL,不要有其他说明及文字。
|
||||
""".format(
|
||||
index_name(tenant_id),
|
||||
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
|
||||
question
|
||||
)
|
||||
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.1})
|
||||
sql = re.sub(r".*?select ", "select ", sql, flags=re.IGNORECASE)
|
||||
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.06})
|
||||
stat_logger.info(f"“{question}” get SQL: {sql}")
|
||||
sql = re.sub(r"[\r\n]+", " ", sql.lower())
|
||||
sql = re.sub(r".*?select ", "select ", sql.lower())
|
||||
sql = re.sub(r" +", " ", sql)
|
||||
sql = re.sub(r"[;;].*", "", sql)
|
||||
if sql[:len("select ")].lower() != "select ":
|
||||
sql = re.sub(r"([;;]|```).*", "", sql)
|
||||
if sql[:len("select ")] != "select ":
|
||||
return None, None
|
||||
if sql[:len("select *")].lower() != "select *":
|
||||
if sql[:len("select *")] != "select *":
|
||||
sql = "select doc_id,docnm_kwd," + sql[6:]
|
||||
else:
|
||||
flds = []
|
||||
for k in field_map.keys():
|
||||
if k in forbidden_select_fields4resume:continue
|
||||
if len(flds) > 11:break
|
||||
flds.append(k)
|
||||
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
|
||||
|
||||
tbl = retrievaler.sql_retrieval(sql)
|
||||
if not tbl: return None, None
|
||||
stat_logger.info(f"“{question}” get SQL(refined): {sql}")
|
||||
tbl = retrievaler.sql_retrieval(sql, format="json")
|
||||
if not tbl or len(tbl["rows"]) == 0: return None, None
|
||||
|
||||
docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
|
||||
docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
|
||||
clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
|
||||
|
||||
# compose markdown table
|
||||
clmns = "|".join([re.sub(r"/.*", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
|
||||
clmns = "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
|
||||
line = "|".join(["------" for _ in range(len(clmn_idx))]) + "|------"
|
||||
rows = ["|".join([str(r[i]) for i in clmn_idx])+"|" for r in tbl["rows"]]
|
||||
rows = ["|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
|
||||
if not docid_idx or not docnm_idx:
|
||||
access_logger.error("SQL missing field: " + sql)
|
||||
return "\n".join([clmns, line, "\n".join(rows)]), []
|
||||
|
||||
@ -27,7 +27,7 @@ from api.utils.api_utils import get_json_result
|
||||
|
||||
@manager.route('/set', methods=['POST'])
|
||||
@login_required
|
||||
def set():
|
||||
def set_dialog():
|
||||
req = request.json
|
||||
dialog_id = req.get("dialog_id")
|
||||
name = req.get("name", "New Dialog")
|
||||
|
||||
@ -262,17 +262,18 @@ def rename():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/get', methods=['GET'])
|
||||
@login_required
|
||||
def get():
|
||||
doc_id = request.args["doc_id"]
|
||||
@manager.route('/get/<doc_id>', methods=['GET'])
|
||||
def get(doc_id):
|
||||
try:
|
||||
e, doc = DocumentService.get_by_id(doc_id)
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Document not found!")
|
||||
|
||||
blob = MINIO.get(doc.kb_id, doc.location)
|
||||
return get_json_result(data={"base64": base64.b64decode(blob)})
|
||||
response = flask.make_response(MINIO.get(doc.kb_id, doc.location))
|
||||
ext = re.search(r"\.([^.]+)$", doc.name)
|
||||
if ext:
|
||||
response.headers.set('Content-Type', 'application/%s'%ext.group(1))
|
||||
return response
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@ -38,6 +38,9 @@ def create():
|
||||
req["id"] = get_uuid()
|
||||
req["tenant_id"] = current_user.id
|
||||
req["created_by"] = current_user.id
|
||||
e, t = TenantService.get_by_id(current_user.id)
|
||||
if not e: return get_data_error_result(retmsg="Tenant not found.")
|
||||
req["embd_id"] = t.embd_id
|
||||
if not KnowledgebaseService.save(**req): return get_data_error_result()
|
||||
return get_json_result(data={"kb_id": req["id"]})
|
||||
except Exception as e:
|
||||
|
||||
@ -21,11 +21,12 @@ from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, L
|
||||
from api.db.services.user_service import TenantService, UserTenantService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.utils import get_uuid, get_format_time
|
||||
from api.db import StatusEnum, UserTenantRole
|
||||
from api.db import StatusEnum, UserTenantRole, LLMType
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.db_models import Knowledgebase, TenantLLM
|
||||
from api.settings import stat_logger, RetCode
|
||||
from api.utils.api_utils import get_json_result
|
||||
from rag.llm import EmbeddingModel, CvModel, ChatModel
|
||||
|
||||
|
||||
@manager.route('/factories', methods=['GET'])
|
||||
@ -43,16 +44,37 @@ def factories():
|
||||
@validate_request("llm_factory", "api_key")
|
||||
def set_api_key():
|
||||
req = request.json
|
||||
# test if api key works
|
||||
msg = ""
|
||||
for llm in LLMService.query(fid=req["llm_factory"]):
|
||||
if llm.model_type == LLMType.EMBEDDING.value:
|
||||
mdl = EmbeddingModel[req["llm_factory"]](
|
||||
req["api_key"], llm.llm_name)
|
||||
try:
|
||||
arr, tc = mdl.encode(["Test if the api key is available"])
|
||||
if len(arr[0]) == 0 or tc ==0: raise Exception("Fail")
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key."
|
||||
elif llm.model_type == LLMType.CHAT.value:
|
||||
mdl = ChatModel[req["llm_factory"]](
|
||||
req["api_key"], llm.llm_name)
|
||||
try:
|
||||
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {"temperature": 0.9})
|
||||
if not tc: raise Exception(m)
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(e)
|
||||
|
||||
if msg: return get_data_error_result(retmsg=msg)
|
||||
|
||||
llm = {
|
||||
"tenant_id": current_user.id,
|
||||
"llm_factory": req["llm_factory"],
|
||||
"api_key": req["api_key"]
|
||||
}
|
||||
# TODO: Test api_key
|
||||
for n in ["model_type", "llm_name"]:
|
||||
if n in req: llm[n] = req[n]
|
||||
|
||||
TenantLLM.insert(**llm).on_conflict("replace").execute()
|
||||
TenantLLMService.filter_update([TenantLLM.tenant_id==llm["tenant_id"], TenantLLM.llm_factory==llm["llm_factory"]], llm)
|
||||
return get_json_result(data=True)
|
||||
|
||||
|
||||
@ -69,6 +91,7 @@ def my_llms():
|
||||
@manager.route('/list', methods=['GET'])
|
||||
@login_required
|
||||
def list():
|
||||
model_type = request.args.get("model_type")
|
||||
try:
|
||||
objs = TenantLLMService.query(tenant_id=current_user.id)
|
||||
mdlnms = set([o.to_dict()["llm_name"] for o in objs if o.api_key])
|
||||
@ -79,6 +102,7 @@ def list():
|
||||
|
||||
res = {}
|
||||
for m in llms:
|
||||
if model_type and m["model_type"] != model_type: continue
|
||||
if m["fid"] not in res: res[m["fid"]] = []
|
||||
res[m["fid"]].append(m)
|
||||
|
||||
|
||||
@ -24,7 +24,8 @@ from api.db.services.llm_service import TenantLLMService, LLMService
|
||||
from api.utils.api_utils import server_error_response, validate_request
|
||||
from api.utils import get_uuid, get_format_time, decrypt, download_img
|
||||
from api.db import UserTenantRole, LLMType
|
||||
from api.settings import RetCode, GITHUB_OAUTH, CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS
|
||||
from api.settings import RetCode, GITHUB_OAUTH, CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, API_KEY, \
|
||||
LLM_FACTORY
|
||||
from api.db.services.user_service import UserService, TenantService, UserTenantService
|
||||
from api.settings import stat_logger
|
||||
from api.utils.api_utils import get_json_result, cors_reponse
|
||||
@ -204,8 +205,8 @@ def user_register(user_id, user):
|
||||
"role": UserTenantRole.OWNER
|
||||
}
|
||||
tenant_llm = []
|
||||
for llm in LLMService.query(fid="Infiniflow"):
|
||||
tenant_llm.append({"tenant_id": user_id, "llm_factory": "Infiniflow", "llm_name": llm.llm_name, "model_type":llm.model_type, "api_key": "infiniflow API Key"})
|
||||
for llm in LLMService.query(fid=LLM_FACTORY):
|
||||
tenant_llm.append({"tenant_id": user_id, "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type":llm.model_type, "api_key": API_KEY})
|
||||
|
||||
if not UserService.save(**user):return
|
||||
TenantService.save(**tenant)
|
||||
|
||||
@ -465,7 +465,8 @@ class Knowledgebase(DataBaseModel):
|
||||
tenant_id = CharField(max_length=32, null=False)
|
||||
name = CharField(max_length=128, null=False, help_text="KB name", index=True)
|
||||
description = TextField(null=True, help_text="KB description")
|
||||
permission = CharField(max_length=16, null=False, help_text="me|team")
|
||||
embd_id = CharField(max_length=128, null=False, help_text="default embedding model ID")
|
||||
permission = CharField(max_length=16, null=False, help_text="me|team", default="me")
|
||||
created_by = CharField(max_length=32, null=False)
|
||||
doc_num = IntegerField(default=0)
|
||||
token_num = IntegerField(default=0)
|
||||
|
||||
@ -46,11 +46,6 @@ def init_llm_factory():
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
},{
|
||||
"name": "Infiniflow",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
},{
|
||||
"name": "智普AI",
|
||||
"logo": "",
|
||||
@ -135,59 +130,33 @@ def init_llm_factory():
|
||||
"model_type": LLMType.SPEECH2TEXT.value
|
||||
},{
|
||||
"fid": factory_infos[1]["name"],
|
||||
"llm_name": "qwen_vl_chat_v1",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT",
|
||||
"max_tokens": 765,
|
||||
"model_type": LLMType.IMAGE2TEXT.value
|
||||
},
|
||||
# ----------------------- Infiniflow -----------------------
|
||||
{
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "gpt-3.5-turbo",
|
||||
"tags": "LLM,CHAT,4K",
|
||||
"max_tokens": 4096,
|
||||
"model_type": LLMType.CHAT.value
|
||||
},{
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "text-embedding-ada-002",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
},{
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "whisper-1",
|
||||
"tags": "SPEECH2TEXT",
|
||||
"max_tokens": 25*1024*1024,
|
||||
"model_type": LLMType.SPEECH2TEXT.value
|
||||
},{
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "gpt-4-vision-preview",
|
||||
"llm_name": "qwen-vl-max",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT",
|
||||
"max_tokens": 765,
|
||||
"model_type": LLMType.IMAGE2TEXT.value
|
||||
},
|
||||
# ---------------------- ZhipuAI ----------------------
|
||||
{
|
||||
"fid": factory_infos[3]["name"],
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "glm-3-turbo",
|
||||
"tags": "LLM,CHAT,",
|
||||
"max_tokens": 128 * 1000,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[3]["name"],
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "glm-4",
|
||||
"tags": "LLM,CHAT,",
|
||||
"max_tokens": 128 * 1000,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[3]["name"],
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "glm-4v",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT",
|
||||
"max_tokens": 2000,
|
||||
"model_type": LLMType.IMAGE2TEXT.value
|
||||
},
|
||||
{
|
||||
"fid": factory_infos[3]["name"],
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "embedding-2",
|
||||
"tags": "TEXT EMBEDDING",
|
||||
"max_tokens": 512,
|
||||
|
||||
@ -77,9 +77,12 @@ class KnowledgebaseService(CommonService):
|
||||
if isinstance(v, dict):
|
||||
assert isinstance(old[k], dict)
|
||||
dfs_update(old[k], v)
|
||||
if isinstance(v, list):
|
||||
assert isinstance(old[k], list)
|
||||
old[k] = list(set(old[k]+v))
|
||||
else: old[k] = v
|
||||
dfs_update(m.parser_config, config)
|
||||
cls.update_by_id(id, m.parser_config)
|
||||
cls.update_by_id(id, {"parser_config": m.parser_config})
|
||||
|
||||
|
||||
@classmethod
|
||||
@ -88,6 +91,6 @@ class KnowledgebaseService(CommonService):
|
||||
conf = {}
|
||||
for k in cls.get_by_ids(ids):
|
||||
if k.parser_config and "field_map" in k.parser_config:
|
||||
conf.update(k.parser_config)
|
||||
conf.update(k.parser_config["field_map"])
|
||||
return conf
|
||||
|
||||
|
||||
@ -43,12 +43,14 @@ REQUEST_MAX_WAIT_SEC = 300
|
||||
|
||||
USE_REGISTRY = get_base_config("use_registry")
|
||||
|
||||
LLM = get_base_config("llm", {})
|
||||
CHAT_MDL = LLM.get("chat_model", "gpt-3.5-turbo")
|
||||
EMBEDDING_MDL = LLM.get("embedding_model", "text-embedding-ada-002")
|
||||
ASR_MDL = LLM.get("asr_model", "whisper-1")
|
||||
LLM = get_base_config("user_default_llm", {})
|
||||
LLM_FACTORY=LLM.get("factory", "通义千问")
|
||||
CHAT_MDL = LLM.get("chat_model", "qwen-plus")
|
||||
EMBEDDING_MDL = LLM.get("embedding_model", "text-embedding-v2")
|
||||
ASR_MDL = LLM.get("asr_model", "paraformer-realtime-8k-v1")
|
||||
IMAGE2TEXT_MDL = LLM.get("image2text_model", "qwen-vl-max")
|
||||
API_KEY = LLM.get("api_key", "infiniflow API Key")
|
||||
PARSERS = LLM.get("parsers", "general:General,qa:Q&A,resume:Resume,naive:Naive,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture")
|
||||
IMAGE2TEXT_MDL = LLM.get("image2text_model", "gpt-4-vision-preview")
|
||||
|
||||
# distribution
|
||||
DEPENDENT_DISTRIBUTION = get_base_config("dependent_distribution", False)
|
||||
|
||||
@ -164,10 +164,10 @@ def thumbnail(filename, blob):
|
||||
buffered = BytesIO()
|
||||
Image.frombytes("RGB", [pix.width, pix.height],
|
||||
pix.samples).save(buffered, format="png")
|
||||
return "data:image/png;base64," + base64.b64encode(buffered.getvalue())
|
||||
return "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
|
||||
if re.match(r".*\.(jpg|jpeg|png|tif|gif|icon|ico|webp)$", filename):
|
||||
return ("data:image/%s;base64,"%filename.split(".")[-1]) + base64.b64encode(Image.open(BytesIO(blob)).thumbnail((30, 30)).tobytes())
|
||||
return ("data:image/%s;base64,"%filename.split(".")[-1]) + base64.b64encode(Image.open(BytesIO(blob)).thumbnail((30, 30)).tobytes()).decode("utf-8")
|
||||
|
||||
if re.match(r".*\.(ppt|pptx)$", filename):
|
||||
import aspose.slides as slides
|
||||
@ -176,7 +176,7 @@ def thumbnail(filename, blob):
|
||||
with slides.Presentation(BytesIO(blob)) as presentation:
|
||||
buffered = BytesIO()
|
||||
presentation.slides[0].get_thumbnail(0.03, 0.03).save(buffered, drawing.imaging.ImageFormat.png)
|
||||
return "data:image/png;base64," + base64.b64encode(buffered.getvalue())
|
||||
return "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
|
||||
@ -118,11 +118,45 @@
|
||||
},
|
||||
{
|
||||
"dense_vector": {
|
||||
"match": "*_vec",
|
||||
"match": "*_512_vec",
|
||||
"mapping": {
|
||||
"type": "dense_vector",
|
||||
"index": true,
|
||||
"similarity": "cosine"
|
||||
"similarity": "cosine",
|
||||
"dims": 512
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"dense_vector": {
|
||||
"match": "*_768_vec",
|
||||
"mapping": {
|
||||
"type": "dense_vector",
|
||||
"index": true,
|
||||
"similarity": "cosine",
|
||||
"dims": 768
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"dense_vector": {
|
||||
"match": "*_1024_vec",
|
||||
"mapping": {
|
||||
"type": "dense_vector",
|
||||
"index": true,
|
||||
"similarity": "cosine",
|
||||
"dims": 1024
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"dense_vector": {
|
||||
"match": "*_1536_vec",
|
||||
"mapping": {
|
||||
"type": "dense_vector",
|
||||
"index": true,
|
||||
"similarity": "cosine",
|
||||
"dims": 1536
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
@ -11,7 +11,7 @@ permission:
|
||||
dataset: false
|
||||
ragflow:
|
||||
# you must set real ip address, 127.0.0.1 and 0.0.0.0 is not supported
|
||||
host: 127.0.0.1
|
||||
host: 0.0.0.0
|
||||
http_port: 9380
|
||||
database:
|
||||
name: 'rag_flow'
|
||||
@ -21,6 +21,19 @@ database:
|
||||
port: 5455
|
||||
max_connections: 100
|
||||
stale_timeout: 30
|
||||
minio:
|
||||
user: 'rag_flow'
|
||||
passwd: 'infini_rag_flow'
|
||||
host: '123.60.95.134:9000'
|
||||
es:
|
||||
hosts: 'http://123.60.95.134:9200'
|
||||
user_default_llm:
|
||||
factory: '通义千问'
|
||||
chat_model: 'qwen-plus'
|
||||
embedding_model: 'text-embedding-v2'
|
||||
asr_model: 'paraformer-realtime-8k-v1'
|
||||
image2text_model: 'qwen-vl-max'
|
||||
api_key: 'sk-xxxxxxxxxxxxx'
|
||||
oauth:
|
||||
github:
|
||||
client_id: 302129228f0d96055bee
|
||||
|
||||
@ -39,6 +39,11 @@ class Pdf(HuParser):
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
"""
|
||||
Supported file formats are docx, pdf, txt.
|
||||
Since a book is long and not all the parts are useful, if it's a PDF,
|
||||
please setup the page ranges for every book in order eliminate negative effects and save elapsed computing time.
|
||||
"""
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||||
|
||||
@ -2,7 +2,6 @@ import copy
|
||||
import re
|
||||
from io import BytesIO
|
||||
from docx import Document
|
||||
import numpy as np
|
||||
from rag.parser import bullets_category, is_english, tokenize, remove_contents_table, hierarchical_merge, \
|
||||
make_colon_as_title
|
||||
from rag.nlp import huqie
|
||||
@ -59,6 +58,9 @@ class Pdf(HuParser):
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
"""
|
||||
Supported file formats are docx, pdf, txt.
|
||||
"""
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||||
|
||||
@ -58,8 +58,10 @@ class Pdf(HuParser):
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
"""
|
||||
Only pdf is supported.
|
||||
"""
|
||||
pdf_parser = None
|
||||
paper = {}
|
||||
|
||||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
|
||||
@ -6,6 +6,7 @@ from rag.nlp import huqie
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
from rag.settings import cron_logger
|
||||
|
||||
|
||||
class Pdf(HuParser):
|
||||
def __call__(self, filename, binary=None, from_page=0,
|
||||
to_page=100000, zoomin=3, callback=None):
|
||||
@ -26,6 +27,12 @@ class Pdf(HuParser):
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
"""
|
||||
Supported file formats are docx, pdf, txt.
|
||||
This method apply the naive ways to chunk files.
|
||||
Successive text will be sliced into pieces using 'delimiter'.
|
||||
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
|
||||
"""
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||||
@ -45,7 +52,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
txt = ""
|
||||
if binary:txt = binary.decode("utf-8")
|
||||
if binary:
|
||||
txt = binary.decode("utf-8")
|
||||
else:
|
||||
with open(filename, "r") as f:
|
||||
while True:
|
||||
@ -55,10 +63,11 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
sections = txt.split("\n")
|
||||
sections = [(l, "") for l in sections if l]
|
||||
callback(0.8, "Finish parsing.")
|
||||
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||||
else:
|
||||
raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||||
|
||||
parser_config = kwargs.get("parser_config", {"chunk_token_num": 128, "delimer": "\n。;!?"})
|
||||
cks = naive_merge(sections, parser_config["chunk_token_num"], parser_config["delimer"])
|
||||
parser_config = kwargs.get("parser_config", {"chunk_token_num": 128, "delimiter": "\n!?。;!?"})
|
||||
cks = naive_merge(sections, parser_config["chunk_token_num"], parser_config["delimiter"])
|
||||
eng = is_english(cks)
|
||||
res = []
|
||||
# wrap up to es documents
|
||||
@ -75,6 +84,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
|
||||
def dummy(a, b):
|
||||
pass
|
||||
|
||||
|
||||
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
||||
|
||||
@ -129,6 +129,10 @@ class Pdf(HuParser):
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
"""
|
||||
Only pdf is supported.
|
||||
The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly.
|
||||
"""
|
||||
pdf_parser = None
|
||||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
|
||||
@ -94,6 +94,11 @@ class Pdf(HuParser):
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
"""
|
||||
The supported file formats are pdf, pptx.
|
||||
Every page will be treated as a chunk. And the thumbnail of every page will be stored.
|
||||
PPT file will be parsed by using this method automatically, setting-up for every PPT file is not necessary.
|
||||
"""
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||||
|
||||
@ -70,7 +70,17 @@ def beAdoc(d, q, a, eng):
|
||||
|
||||
|
||||
def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
"""
|
||||
Excel and csv(txt) format files are supported.
|
||||
If the file is in excel format, there should be 2 column question and answer without header.
|
||||
And question column is ahead of answer column.
|
||||
And it's O.K if it has multiple sheets as long as the columns are rightly composed.
|
||||
|
||||
If it's in csv format, it should be UTF-8 encoded. Use TAB as delimiter to separate question and answer.
|
||||
|
||||
All the deformed lines will be ignored.
|
||||
Every pair of Q&A will be treated as a chunk.
|
||||
"""
|
||||
res = []
|
||||
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
|
||||
@ -4,24 +4,34 @@ import os
|
||||
import re
|
||||
import requests
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.settings import stat_logger
|
||||
from rag.nlp import huqie
|
||||
|
||||
from rag.settings import cron_logger
|
||||
from rag.utils import rmSpace
|
||||
|
||||
forbidden_select_fields4resume = [
|
||||
"name_pinyin_kwd", "edu_first_fea_kwd", "degree_kwd", "sch_rank_kwd", "edu_fea_kwd"
|
||||
]
|
||||
|
||||
def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
"""
|
||||
The supported file formats are pdf, docx and txt.
|
||||
To maximize the effectiveness, parse the resume correctly,
|
||||
please visit https://github.com/infiniflow/ragflow, and sign in the our demo web-site
|
||||
to get token. It's FREE!
|
||||
Set INFINIFLOW_SERVER and INFINIFLOW_TOKEN in '.env' file or
|
||||
using 'export' to set both environment variables: INFINIFLOW_SERVER and INFINIFLOW_TOKEN in docker container.
|
||||
"""
|
||||
if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE):
|
||||
raise NotImplementedError("file type not supported yet(pdf supported)")
|
||||
|
||||
url = os.environ.get("INFINIFLOW_SERVER")
|
||||
if not url:
|
||||
raise EnvironmentError(
|
||||
"Please set environment variable: 'INFINIFLOW_SERVER'")
|
||||
token = os.environ.get("INFINIFLOW_TOKEN")
|
||||
if not token:
|
||||
raise EnvironmentError(
|
||||
"Please set environment variable: 'INFINIFLOW_TOKEN'")
|
||||
if not url or not token:
|
||||
stat_logger.warning(
|
||||
"INFINIFLOW_SERVER is not specified. To maximize the effectiveness, please visit https://github.com/infiniflow/ragflow, and sign in the our demo web site to get token. It's FREE! Using 'export' to set both environment variables: INFINIFLOW_SERVER and INFINIFLOW_TOKEN.")
|
||||
return []
|
||||
|
||||
if not binary:
|
||||
with open(filename, "rb") as f:
|
||||
@ -44,22 +54,28 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
|
||||
callback(0.2, "Resume parsing is going on...")
|
||||
resume = remote_call()
|
||||
if len(resume.keys()) < 7:
|
||||
callback(-1, "Resume is not successfully parsed.")
|
||||
return []
|
||||
callback(0.6, "Done parsing. Chunking...")
|
||||
print(json.dumps(resume, ensure_ascii=False, indent=2))
|
||||
|
||||
field_map = {
|
||||
"name_kwd": "姓名/名字",
|
||||
"name_pinyin_kwd": "姓名拼音/名字拼音",
|
||||
"gender_kwd": "性别(男,女)",
|
||||
"age_int": "年龄/岁/年纪",
|
||||
"phone_kwd": "电话/手机/微信",
|
||||
"email_tks": "email/e-mail/邮箱",
|
||||
"position_name_tks": "职位/职能/岗位/职责",
|
||||
"expect_position_name_tks": "期望职位/期望职能/期望岗位",
|
||||
"expect_city_names_tks": "期望城市",
|
||||
"work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年",
|
||||
"corporation_name_tks": "最近就职(上班)的公司/上一家公司",
|
||||
|
||||
"hightest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"first_major_tks": "第一学历专业",
|
||||
"first_school_name_tks": "第一学历毕业学校",
|
||||
"first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"highest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"first_major_tks": "第一学历专业",
|
||||
"edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
||||
|
||||
"degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
@ -68,14 +84,14 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
"sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)",
|
||||
"edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
||||
|
||||
"work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年",
|
||||
"birth_dt": "生日/出生年份",
|
||||
"corp_nm_tks": "就职过的公司/之前的公司/上过班的公司",
|
||||
"corporation_name_tks": "最近就职(上班)的公司/上一家公司",
|
||||
"edu_end_int": "毕业年份",
|
||||
"expect_city_names_tks": "期望城市",
|
||||
"industry_name_tks": "所在行业"
|
||||
"industry_name_tks": "所在行业",
|
||||
|
||||
"birth_dt": "生日/出生年份",
|
||||
"expect_position_name_tks": "期望职位/期望职能/期望岗位",
|
||||
}
|
||||
|
||||
titles = []
|
||||
for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]:
|
||||
v = resume.get(n, "")
|
||||
@ -105,6 +121,10 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
doc["content_ltks"] = huqie.qie(doc["content_with_weight"])
|
||||
doc["content_sm_ltks"] = huqie.qieqie(doc["content_ltks"])
|
||||
for n, _ in field_map.items():
|
||||
if n not in resume:continue
|
||||
if isinstance(resume[n], list) and (len(resume[n]) == 1 or n not in forbidden_select_fields4resume):
|
||||
resume[n] = resume[n][0]
|
||||
if n.find("_tks")>0: resume[n] = huqie.qieqie(resume[n])
|
||||
doc[n] = resume[n]
|
||||
|
||||
print(doc)
|
||||
|
||||
@ -100,7 +100,20 @@ def column_data_type(arr):
|
||||
|
||||
|
||||
def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
dfs = []
|
||||
"""
|
||||
Excel and csv(txt) format files are supported.
|
||||
For csv or txt file, the delimiter between columns is TAB.
|
||||
The first line must be column headers.
|
||||
Column headers must be meaningful terms inorder to make our NLP model understanding.
|
||||
It's good to enumerate some synonyms using slash '/' to separate, and even better to
|
||||
enumerate values using brackets like 'gender/sex(male, female)'.
|
||||
Here are some examples for headers:
|
||||
1. supplier/vendor\tcolor(yellow, red, brown)\tgender/sex(male, female)\tsize(M,L,XL,XXL)
|
||||
2. 姓名/名字\t电话/手机/微信\t最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)
|
||||
|
||||
Every row in table will be treated as a chunk.
|
||||
"""
|
||||
|
||||
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
excel_parser = Excel()
|
||||
@ -155,7 +168,7 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
del df[n]
|
||||
clmns = df.columns.values
|
||||
txts = list(copy.deepcopy(clmns))
|
||||
py_clmns = [PY.get_pinyins(n)[0].replace("-", "_") for n in clmns]
|
||||
py_clmns = [PY.get_pinyins(re.sub(r"(/.*|([^()]+?)|\([^()]+?\))", "", n), '_')[0] for n in clmns]
|
||||
clmn_tys = []
|
||||
for j in range(len(clmns)):
|
||||
cln, ty = column_data_type(df[clmns[j]])
|
||||
|
||||
@ -21,7 +21,7 @@ from .cv_model import *
|
||||
EmbeddingModel = {
|
||||
"Infiniflow": HuEmbedding,
|
||||
"OpenAI": OpenAIEmbed,
|
||||
"通义千问": QWenEmbed,
|
||||
"通义千问": HuEmbedding, #QWenEmbed,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -32,7 +32,7 @@ class GptTurbo(Base):
|
||||
self.model_name = model_name
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
if system: history.insert(0, {"role": "system", "content": system})
|
||||
res = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=history,
|
||||
@ -49,11 +49,12 @@ class QWenChat(Base):
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
from http import HTTPStatus
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
if system: history.insert(0, {"role": "system", "content": system})
|
||||
response = Generation.call(
|
||||
self.model_name,
|
||||
messages=history,
|
||||
result_format='message'
|
||||
result_format='message',
|
||||
**gen_conf
|
||||
)
|
||||
if response.status_code == HTTPStatus.OK:
|
||||
return response.output.choices[0]['message']['content'], response.usage.output_tokens
|
||||
@ -68,10 +69,11 @@ class ZhipuChat(Base):
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
from http import HTTPStatus
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
if system: history.insert(0, {"role": "system", "content": system})
|
||||
response = self.client.chat.completions.create(
|
||||
self.model_name,
|
||||
messages=history
|
||||
messages=history,
|
||||
**gen_conf
|
||||
)
|
||||
if response.status_code == HTTPStatus.OK:
|
||||
return response.output.choices[0]['message']['content'], response.usage.completion_tokens
|
||||
|
||||
@ -100,11 +100,11 @@ class QWenEmbed(Base):
|
||||
input=texts[i:i+batch_size],
|
||||
text_type="document"
|
||||
)
|
||||
embds = [[]] * len(resp["output"]["embeddings"])
|
||||
embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
|
||||
for e in resp["output"]["embeddings"]:
|
||||
embds[e["text_index"]] = e["embedding"]
|
||||
res.extend(embds)
|
||||
token_count += resp["usage"]["input_tokens"]
|
||||
token_count += resp["usage"]["total_tokens"]
|
||||
return np.array(res), token_count
|
||||
|
||||
def encode_queries(self, text):
|
||||
@ -113,7 +113,7 @@ class QWenEmbed(Base):
|
||||
input=text[:2048],
|
||||
text_type="query"
|
||||
)
|
||||
return np.array(resp["output"]["embeddings"][0]["embedding"]), resp["usage"]["input_tokens"]
|
||||
return np.array(resp["output"]["embeddings"][0]["embedding"]), resp["usage"]["total_tokens"]
|
||||
|
||||
|
||||
from zhipuai import ZhipuAI
|
||||
|
||||
@ -92,7 +92,7 @@ class Dealer:
|
||||
assert emb_mdl, "No embedding model selected"
|
||||
s["knn"] = self._vector(
|
||||
qst, emb_mdl, req.get(
|
||||
"similarity", 0.4), ps)
|
||||
"similarity", 0.1), ps)
|
||||
s["knn"]["filter"] = bqry.to_dict()
|
||||
if "highlight" in s:
|
||||
del s["highlight"]
|
||||
@ -106,7 +106,7 @@ class Dealer:
|
||||
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
|
||||
s["query"] = bqry.to_dict()
|
||||
s["knn"]["filter"] = bqry.to_dict()
|
||||
s["knn"]["similarity"] = 0.7
|
||||
s["knn"]["similarity"] = 0.17
|
||||
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
||||
|
||||
kwds = set([])
|
||||
@ -171,7 +171,7 @@ class Dealer:
|
||||
continue
|
||||
if not isinstance(v, type("")):
|
||||
m[n] = str(m[n])
|
||||
m[n] = rmSpace(m[n])
|
||||
if n.find("tks")>0: m[n] = rmSpace(m[n])
|
||||
|
||||
if m:
|
||||
res[d["id"]] = m
|
||||
@ -303,21 +303,22 @@ class Dealer:
|
||||
|
||||
return ranks
|
||||
|
||||
def sql_retrieval(self, sql, fetch_size=128):
|
||||
def sql_retrieval(self, sql, fetch_size=128, format="json"):
|
||||
sql = re.sub(r"[ ]+", " ", sql)
|
||||
sql = sql.replace("%", "")
|
||||
es_logger.info(f"Get es sql: {sql}")
|
||||
replaces = []
|
||||
for r in re.finditer(r" ([a-z_]+_l?tks like |[a-z_]+_l?tks ?= ?)'([^']+)'", sql):
|
||||
fld, v = r.group(1), r.group(2)
|
||||
fld = re.sub(r" ?(like|=)$", "", fld).lower()
|
||||
if v[0] == "%%": v = v[1:-1]
|
||||
match = " MATCH({}, '{}', 'operator=OR;fuzziness=AUTO:1,3;minimum_should_match=30%') ".format(fld, huqie.qie(v))
|
||||
replaces.append((r.group(1)+r.group(2), match))
|
||||
for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
|
||||
fld, v = r.group(1), r.group(3)
|
||||
match = " MATCH({}, '{}', 'operator=OR;fuzziness=AUTO:1,3;minimum_should_match=30%') ".format(fld, huqie.qieqie(huqie.qie(v)))
|
||||
replaces.append(("{}{}'{}'".format(r.group(1), r.group(2), r.group(3)), match))
|
||||
|
||||
for p, r in replaces: sql.replace(p, r)
|
||||
for p, r in replaces: sql = sql.replace(p, r, 1)
|
||||
es_logger.info(f"To es: {sql}")
|
||||
|
||||
try:
|
||||
tbl = self.es.sql(sql, fetch_size)
|
||||
tbl = self.es.sql(sql, fetch_size, format)
|
||||
return tbl
|
||||
except Exception as e:
|
||||
es_logger(f"SQL failure: {sql} =>" + str(e))
|
||||
es_logger.error(f"SQL failure: {sql} =>" + str(e))
|
||||
|
||||
|
||||
@ -53,9 +53,10 @@ class HuParser:
|
||||
|
||||
def __remote_call(self, species, images, thr=0.7):
|
||||
url = os.environ.get("INFINIFLOW_SERVER")
|
||||
if not url:raise EnvironmentError("Please set environment variable: 'INFINIFLOW_SERVER'")
|
||||
token = os.environ.get("INFINIFLOW_TOKEN")
|
||||
if not token:raise EnvironmentError("Please set environment variable: 'INFINIFLOW_TOKEN'")
|
||||
if not url or not token:
|
||||
logging.warning("INFINIFLOW_SERVER is not specified. To maximize the effectiveness, please visit https://github.com/infiniflow/ragflow, and sign in the our demo web site to get token. It's FREE! Using 'export' to set both environment variables: INFINIFLOW_SERVER and INFINIFLOW_TOKEN.")
|
||||
return []
|
||||
|
||||
def convert_image_to_bytes(PILimage):
|
||||
image = BytesIO()
|
||||
|
||||
@ -47,7 +47,7 @@ from api.utils.file_utils import get_project_base_directory
|
||||
BATCH_SIZE = 64
|
||||
|
||||
FACTORY = {
|
||||
ParserType.GENERAL.value: laws,
|
||||
ParserType.GENERAL.value: manual,
|
||||
ParserType.PAPER.value: paper,
|
||||
ParserType.BOOK.value: book,
|
||||
ParserType.PRESENTATION.value: presentation,
|
||||
@ -119,8 +119,8 @@ def build(row, cvmdl):
|
||||
chunker = FACTORY[row["parser_id"].lower()]
|
||||
try:
|
||||
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
||||
cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"],
|
||||
callback, kb_id=row["kb_id"], parser_config=row["parser_config"])
|
||||
cks = chunker.chunk(row["name"], binary = MINIO.get(row["kb_id"], row["location"]), from_page=row["from_page"], to_page=row["to_page"],
|
||||
callback = callback, kb_id=row["kb_id"], parser_config=row["parser_config"])
|
||||
except Exception as e:
|
||||
if re.search("(No such file|not found)", str(e)):
|
||||
callback(-1, "Can not find file <%s>" % row["doc_name"])
|
||||
@ -129,7 +129,7 @@ def build(row, cvmdl):
|
||||
|
||||
cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
|
||||
|
||||
return []
|
||||
return
|
||||
|
||||
callback(msg="Finished slicing files. Start to embedding the content.")
|
||||
|
||||
@ -211,6 +211,7 @@ def main(comm, mod):
|
||||
|
||||
st_tm = timer()
|
||||
cks = build(r, cv_mdl)
|
||||
if cks is None:continue
|
||||
if not cks:
|
||||
tmf.write(str(r["update_time"]) + "\n")
|
||||
callback(1., "No chunk! Done!")
|
||||
|
||||
@ -241,7 +241,7 @@ class HuEs:
|
||||
es_logger.error("ES search timeout for 3 times!")
|
||||
raise Exception("ES search timeout.")
|
||||
|
||||
def sql(self, sql, fetch_size=128, format="json", timeout=2):
|
||||
def sql(self, sql, fetch_size=128, format="json", timeout="2s"):
|
||||
for i in range(3):
|
||||
try:
|
||||
res = self.es.sql.query(body={"query": sql, "fetch_size": fetch_size}, format=format, request_timeout=timeout)
|
||||
|
||||
Reference in New Issue
Block a user