mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 12:32:30 +08:00
142 lines
5.9 KiB
Python
142 lines
5.9 KiB
Python
import copy
|
||
import json
|
||
import os
|
||
import re
|
||
import requests
|
||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||
from api.settings import stat_logger
|
||
from rag.nlp import huqie
|
||
|
||
from rag.settings import cron_logger
|
||
from rag.utils import rmSpace
|
||
|
||
forbidden_select_fields4resume = [
|
||
"name_pinyin_kwd", "edu_first_fea_kwd", "degree_kwd", "sch_rank_kwd", "edu_fea_kwd"
|
||
]
|
||
|
||
def chunk(filename, binary=None, callback=None, **kwargs):
|
||
"""
|
||
The supported file formats are pdf, docx and txt.
|
||
To maximize the effectiveness, parse the resume correctly,
|
||
please visit https://github.com/infiniflow/ragflow, and sign in the our demo web-site
|
||
to get token. It's FREE!
|
||
Set INFINIFLOW_SERVER and INFINIFLOW_TOKEN in '.env' file or
|
||
using 'export' to set both environment variables: INFINIFLOW_SERVER and INFINIFLOW_TOKEN in docker container.
|
||
"""
|
||
if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE):
|
||
raise NotImplementedError("file type not supported yet(pdf supported)")
|
||
|
||
url = os.environ.get("INFINIFLOW_SERVER")
|
||
token = os.environ.get("INFINIFLOW_TOKEN")
|
||
if not url or not token:
|
||
stat_logger.warning(
|
||
"INFINIFLOW_SERVER is not specified. To maximize the effectiveness, please visit https://github.com/infiniflow/ragflow, and sign in the our demo web site to get token. It's FREE! Using 'export' to set both environment variables: INFINIFLOW_SERVER and INFINIFLOW_TOKEN.")
|
||
return []
|
||
|
||
if not binary:
|
||
with open(filename, "rb") as f:
|
||
binary = f.read()
|
||
|
||
def remote_call():
|
||
nonlocal filename, binary
|
||
for _ in range(3):
|
||
try:
|
||
res = requests.post(url + "/v1/layout/resume/", files=[(filename, binary)],
|
||
headers={"Authorization": token}, timeout=180)
|
||
res = res.json()
|
||
if res["retcode"] != 0:
|
||
raise RuntimeError(res["retmsg"])
|
||
return res["data"]
|
||
except RuntimeError as e:
|
||
raise e
|
||
except Exception as e:
|
||
cron_logger.error("resume parsing:" + str(e))
|
||
|
||
callback(0.2, "Resume parsing is going on...")
|
||
resume = remote_call()
|
||
if len(resume.keys()) < 7:
|
||
callback(-1, "Resume is not successfully parsed.")
|
||
return []
|
||
callback(0.6, "Done parsing. Chunking...")
|
||
print(json.dumps(resume, ensure_ascii=False, indent=2))
|
||
|
||
field_map = {
|
||
"name_kwd": "姓名/名字",
|
||
"name_pinyin_kwd": "姓名拼音/名字拼音",
|
||
"gender_kwd": "性别(男,女)",
|
||
"age_int": "年龄/岁/年纪",
|
||
"phone_kwd": "电话/手机/微信",
|
||
"email_tks": "email/e-mail/邮箱",
|
||
"position_name_tks": "职位/职能/岗位/职责",
|
||
"expect_city_names_tks": "期望城市",
|
||
"work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年",
|
||
"corporation_name_tks": "最近就职(上班)的公司/上一家公司",
|
||
|
||
"first_school_name_tks": "第一学历毕业学校",
|
||
"first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||
"highest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||
"first_major_tks": "第一学历专业",
|
||
"edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
||
|
||
"degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||
"major_tks": "学过的专业/过往专业",
|
||
"school_name_tks": "学校/毕业院校",
|
||
"sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)",
|
||
"edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
||
|
||
"corp_nm_tks": "就职过的公司/之前的公司/上过班的公司",
|
||
"edu_end_int": "毕业年份",
|
||
"industry_name_tks": "所在行业",
|
||
|
||
"birth_dt": "生日/出生年份",
|
||
"expect_position_name_tks": "期望职位/期望职能/期望岗位",
|
||
}
|
||
|
||
titles = []
|
||
for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]:
|
||
v = resume.get(n, "")
|
||
if isinstance(v, list):
|
||
v = v[0]
|
||
if n.find("tks") > 0:
|
||
v = rmSpace(v)
|
||
titles.append(str(v))
|
||
doc = {
|
||
"docnm_kwd": filename,
|
||
"title_tks": huqie.qie("-".join(titles) + "-简历")
|
||
}
|
||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||
pairs = []
|
||
for n, m in field_map.items():
|
||
if not resume.get(n):
|
||
continue
|
||
v = resume[n]
|
||
if isinstance(v, list):
|
||
v = " ".join(v)
|
||
if n.find("tks") > 0:
|
||
v = rmSpace(v)
|
||
pairs.append((m, str(v)))
|
||
|
||
doc["content_with_weight"] = "\n".join(
|
||
["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k, v in pairs])
|
||
doc["content_ltks"] = huqie.qie(doc["content_with_weight"])
|
||
doc["content_sm_ltks"] = huqie.qieqie(doc["content_ltks"])
|
||
for n, _ in field_map.items():
|
||
if n not in resume:continue
|
||
if isinstance(resume[n], list) and (len(resume[n]) == 1 or n not in forbidden_select_fields4resume):
|
||
resume[n] = resume[n][0]
|
||
if n.find("_tks")>0: resume[n] = huqie.qieqie(resume[n])
|
||
doc[n] = resume[n]
|
||
|
||
print(doc)
|
||
KnowledgebaseService.update_parser_config(
|
||
kwargs["kb_id"], {"field_map": field_map})
|
||
return [doc]
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import sys
|
||
|
||
def dummy(a, b):
|
||
pass
|
||
chunk(sys.argv[1], callback=dummy)
|