refine admin initialization (#75)

This commit is contained in:
KevinHuSh
2024-02-27 14:57:34 +08:00
committed by GitHub
parent d1c600d5d3
commit 4568a4b2cb
13 changed files with 91 additions and 34 deletions

View File

@ -230,7 +230,7 @@ class HuParser:
b["H_right"] = headers[ii]["x1"]
b["H"] = ii
ii = Recognizer.find_overlapped_with_threashold(b, clmns, thr=0.3)
ii = Recognizer.find_horizontally_tightest_fit(b, clmns)
if ii is not None:
b["C"] = ii
b["C_left"] = clmns[ii]["x0"]

View File

@ -37,7 +37,7 @@ class LayoutRecognizer(Recognizer):
super().__init__(self.labels, domain,
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.7, batch_size=16):
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16):
def __is_garbage(b):
patt = [r"^•+$", r"(版权归©|免责条款|地址[:])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",

View File

@ -2,7 +2,6 @@ import copy
import numpy as np
import cv2
import paddle
from shapely.geometry import Polygon
import pyclipper
@ -215,7 +214,7 @@ class DBPostProcess(object):
def __call__(self, outs_dict, shape_list):
pred = outs_dict['maps']
if isinstance(pred, paddle.Tensor):
if not isinstance(pred, np.ndarray):
pred = pred.numpy()
pred = pred[:, 0, :, :]
segmentation = pred > self.thresh
@ -339,7 +338,7 @@ class CTCLabelDecode(BaseRecLabelDecode):
def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, tuple) or isinstance(preds, list):
preds = preds[-1]
if isinstance(preds, paddle.Tensor):
if not isinstance(preds, np.ndarray):
preds = preds.numpy()
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)

View File

@ -259,6 +259,18 @@ class Recognizer(object):
return max_overlaped_i
@staticmethod
def find_horizontally_tightest_fit(box, boxes):
if not boxes:
return
min_dis, min_i = 1000000, None
for i,b in enumerate(boxes):
dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
if dis < min_dis:
min_i = i
min_dis = dis
return min_i
@staticmethod
def find_overlapped_with_threashold(box, boxes, thr=0.3):
if not boxes:

View File

@ -74,6 +74,7 @@ def get_table_html(img, tb_cpns, ocr):
clmns = sorted([r for r in tb_cpns if re.match(
r"table column$", r["label"])], key=lambda x: x["x0"])
clmns = Recognizer.layouts_cleanup(boxes, clmns, 5, 0.5)
for b in boxes:
ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
if ii is not None:
@ -89,7 +90,7 @@ def get_table_html(img, tb_cpns, ocr):
b["H_right"] = headers[ii]["x1"]
b["H"] = ii
ii = Recognizer.find_overlapped_with_threashold(b, clmns, thr=0.3)
ii = Recognizer.find_horizontally_tightest_fit(b, clmns)
if ii is not None:
b["C"] = ii
b["C_left"] = clmns[ii]["x0"]
@ -102,6 +103,7 @@ def get_table_html(img, tb_cpns, ocr):
b["H_left"] = spans[ii]["x0"]
b["H_right"] = spans[ii]["x1"]
b["SP"] = ii
html = """
<html>
<head>

View File

@ -14,7 +14,6 @@ import logging
import os
import re
from collections import Counter
from copy import deepcopy
import numpy as np
@ -37,7 +36,7 @@ class TableStructureRecognizer(Recognizer):
super().__init__(self.labels, "tsr",
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
def __call__(self, images, thr=0.5):
def __call__(self, images, thr=0.2):
tbls = super().__call__(images, thr)
res = []
# align left&right for rows, align top&bottom for columns
@ -56,8 +55,8 @@ class TableStructureRecognizer(Recognizer):
"row") > 0 or b["label"].find("header") > 0]
if not left:
continue
left = np.median(left) if len(left) > 4 else np.min(left)
right = np.median(right) if len(right) > 4 else np.max(right)
left = np.mean(left) if len(left) > 4 else np.min(left)
right = np.mean(right) if len(right) > 4 else np.max(right)
for b in lts:
if b["label"].find("row") > 0 or b["label"].find("header") > 0:
if b["x0"] > left:
@ -129,6 +128,7 @@ class TableStructureRecognizer(Recognizer):
i = 0
while i < len(boxes):
if TableStructureRecognizer.is_caption(boxes[i]):
if is_english: cap + " "
cap += boxes[i]["text"]
boxes.pop(i)
i -= 1
@ -398,7 +398,7 @@ class TableStructureRecognizer(Recognizer):
for i in range(clmno):
if not tbl[r][i]:
continue
txt = "".join([a["text"].strip() for a in tbl[r][i]])
txt = " ".join([a["text"].strip() for a in tbl[r][i]])
headers[r][i] = txt
hdrset.add(txt)
if all([not t for t in headers[r]]):