Refactor: Improve the logic to calculate embedding total token count (#11943)

### What problem does this PR solve?

 Improve the logic to calculate embedding total token count 

### Type of change

- [x] Refactoring
This commit is contained in:
Stephen Hu
2025-12-15 11:33:57 +08:00
committed by GitHub
parent 13d8241eee
commit 2a0f835ffe

View File

@ -28,7 +28,7 @@ from openai import OpenAI
from zhipuai import ZhipuAI from zhipuai import ZhipuAI
from common.log_utils import log_exception from common.log_utils import log_exception
from common.token_utils import num_tokens_from_string, truncate from common.token_utils import num_tokens_from_string, truncate, total_token_count_from_response
from common import settings from common import settings
import logging import logging
import base64 import base64
@ -118,7 +118,7 @@ class OpenAIEmbed(Base):
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name, encoding_format="float", extra_body={"drop_params": True}) res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name, encoding_format="float", extra_body={"drop_params": True})
try: try:
ress.extend([d.embedding for d in res.data]) ress.extend([d.embedding for d in res.data])
total_tokens += self.total_token_count(res) total_tokens += total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, res) log_exception(_e, res)
raise Exception(f"Error: {res}") raise Exception(f"Error: {res}")
@ -127,7 +127,7 @@ class OpenAIEmbed(Base):
def encode_queries(self, text): def encode_queries(self, text):
res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name, encoding_format="float",extra_body={"drop_params": True}) res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name, encoding_format="float",extra_body={"drop_params": True})
try: try:
return np.array(res.data[0].embedding), self.total_token_count(res) return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, res) log_exception(_e, res)
raise Exception(f"Error: {res}") raise Exception(f"Error: {res}")
@ -216,7 +216,7 @@ class QWenEmbed(Base):
for e in resp["output"]["embeddings"]: for e in resp["output"]["embeddings"]:
embds[e["text_index"]] = e["embedding"] embds[e["text_index"]] = e["embedding"]
res.extend(embds) res.extend(embds)
token_count += self.total_token_count(resp) token_count += self.total_token_count_from_response(resp)
except Exception as _e: except Exception as _e:
log_exception(_e, resp) log_exception(_e, resp)
raise raise
@ -225,7 +225,7 @@ class QWenEmbed(Base):
def encode_queries(self, text): def encode_queries(self, text):
resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query") resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
try: try:
return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count(resp) return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count_from_response(resp)
except Exception as _e: except Exception as _e:
log_exception(_e, resp) log_exception(_e, resp)
raise Exception(f"Error: {resp}") raise Exception(f"Error: {resp}")
@ -253,7 +253,7 @@ class ZhipuEmbed(Base):
res = self.client.embeddings.create(input=txt, model=self.model_name) res = self.client.embeddings.create(input=txt, model=self.model_name)
try: try:
arr.append(res.data[0].embedding) arr.append(res.data[0].embedding)
tks_num += self.total_token_count(res) tks_num += self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, res) log_exception(_e, res)
raise Exception(f"Error: {res}") raise Exception(f"Error: {res}")
@ -262,7 +262,7 @@ class ZhipuEmbed(Base):
def encode_queries(self, text): def encode_queries(self, text):
res = self.client.embeddings.create(input=text, model=self.model_name) res = self.client.embeddings.create(input=text, model=self.model_name)
try: try:
return np.array(res.data[0].embedding), self.total_token_count(res) return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, res) log_exception(_e, res)
raise Exception(f"Error: {res}") raise Exception(f"Error: {res}")
@ -323,7 +323,7 @@ class XinferenceEmbed(Base):
try: try:
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name) res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
ress.extend([d.embedding for d in res.data]) ress.extend([d.embedding for d in res.data])
total_tokens += self.total_token_count(res) total_tokens += self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, res) log_exception(_e, res)
raise Exception(f"Error: {res}") raise Exception(f"Error: {res}")
@ -333,7 +333,7 @@ class XinferenceEmbed(Base):
res = None res = None
try: try:
res = self.client.embeddings.create(input=[text], model=self.model_name) res = self.client.embeddings.create(input=[text], model=self.model_name)
return np.array(res.data[0].embedding), self.total_token_count(res) return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, res) log_exception(_e, res)
raise Exception(f"Error: {res}") raise Exception(f"Error: {res}")
@ -409,7 +409,7 @@ class JinaMultiVecEmbed(Base):
ress.append(chunk_emb) ress.append(chunk_emb)
token_count += self.total_token_count(res) token_count += self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, response) log_exception(_e, response)
raise Exception(f"Error: {response}") raise Exception(f"Error: {response}")
@ -443,7 +443,7 @@ class MistralEmbed(Base):
try: try:
res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name) res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
ress.extend([d.embedding for d in res.data]) ress.extend([d.embedding for d in res.data])
token_count += self.total_token_count(res) token_count += self.total_token_count_from_response(res)
break break
except Exception as _e: except Exception as _e:
if retry_max == 1: if retry_max == 1:
@ -460,7 +460,7 @@ class MistralEmbed(Base):
while retry_max > 0: while retry_max > 0:
try: try:
res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name) res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
return np.array(res.data[0].embedding), self.total_token_count(res) return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
if retry_max == 1: if retry_max == 1:
log_exception(_e) log_exception(_e)
@ -595,7 +595,7 @@ class NvidiaEmbed(Base):
try: try:
res = response.json() res = response.json()
ress.extend([d["embedding"] for d in res["data"]]) ress.extend([d["embedding"] for d in res["data"]])
token_count += self.total_token_count(res) token_count += self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, response) log_exception(_e, response)
raise Exception(f"Error: {response}") raise Exception(f"Error: {response}")
@ -732,7 +732,7 @@ class SILICONFLOWEmbed(Base):
try: try:
res = response.json() res = response.json()
ress.extend([d["embedding"] for d in res["data"]]) ress.extend([d["embedding"] for d in res["data"]])
token_count += self.total_token_count(res) token_count += self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, response) log_exception(_e, response)
raise Exception(f"Error: {response}") raise Exception(f"Error: {response}")
@ -748,7 +748,7 @@ class SILICONFLOWEmbed(Base):
response = requests.post(self.base_url, json=payload, headers=self.headers) response = requests.post(self.base_url, json=payload, headers=self.headers)
try: try:
res = response.json() res = response.json()
return np.array(res["data"][0]["embedding"]), self.total_token_count(res) return np.array(res["data"][0]["embedding"]), self.total_token_count_from_response(res)
except Exception as _e: except Exception as _e:
log_exception(_e, response) log_exception(_e, response)
raise Exception(f"Error: {response}") raise Exception(f"Error: {response}")
@ -794,7 +794,7 @@ class BaiduYiyanEmbed(Base):
try: try:
return ( return (
np.array([r["embedding"] for r in res["data"]]), np.array([r["embedding"] for r in res["data"]]),
self.total_token_count(res), self.total_token_count_from_response(res),
) )
except Exception as _e: except Exception as _e:
log_exception(_e, res) log_exception(_e, res)
@ -805,7 +805,7 @@ class BaiduYiyanEmbed(Base):
try: try:
return ( return (
np.array([r["embedding"] for r in res["data"]]), np.array([r["embedding"] for r in res["data"]]),
self.total_token_count(res), self.total_token_count_from_response(res),
) )
except Exception as _e: except Exception as _e:
log_exception(_e, res) log_exception(_e, res)