mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-18 19:46:44 +08:00
Refactor: Improve the logic to calculate embedding total token count (#11943)
### What problem does this PR solve? Improve the logic to calculate embedding total token count ### Type of change - [x] Refactoring
This commit is contained in:
@ -28,7 +28,7 @@ from openai import OpenAI
|
||||
from zhipuai import ZhipuAI
|
||||
|
||||
from common.log_utils import log_exception
|
||||
from common.token_utils import num_tokens_from_string, truncate
|
||||
from common.token_utils import num_tokens_from_string, truncate, total_token_count_from_response
|
||||
from common import settings
|
||||
import logging
|
||||
import base64
|
||||
@ -118,7 +118,7 @@ class OpenAIEmbed(Base):
|
||||
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name, encoding_format="float", extra_body={"drop_params": True})
|
||||
try:
|
||||
ress.extend([d.embedding for d in res.data])
|
||||
total_tokens += self.total_token_count(res)
|
||||
total_tokens += total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -127,7 +127,7 @@ class OpenAIEmbed(Base):
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name, encoding_format="float",extra_body={"drop_params": True})
|
||||
try:
|
||||
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||
return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -216,7 +216,7 @@ class QWenEmbed(Base):
|
||||
for e in resp["output"]["embeddings"]:
|
||||
embds[e["text_index"]] = e["embedding"]
|
||||
res.extend(embds)
|
||||
token_count += self.total_token_count(resp)
|
||||
token_count += self.total_token_count_from_response(resp)
|
||||
except Exception as _e:
|
||||
log_exception(_e, resp)
|
||||
raise
|
||||
@ -225,7 +225,7 @@ class QWenEmbed(Base):
|
||||
def encode_queries(self, text):
|
||||
resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
|
||||
try:
|
||||
return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count(resp)
|
||||
return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count_from_response(resp)
|
||||
except Exception as _e:
|
||||
log_exception(_e, resp)
|
||||
raise Exception(f"Error: {resp}")
|
||||
@ -253,7 +253,7 @@ class ZhipuEmbed(Base):
|
||||
res = self.client.embeddings.create(input=txt, model=self.model_name)
|
||||
try:
|
||||
arr.append(res.data[0].embedding)
|
||||
tks_num += self.total_token_count(res)
|
||||
tks_num += self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -262,7 +262,7 @@ class ZhipuEmbed(Base):
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=text, model=self.model_name)
|
||||
try:
|
||||
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||
return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -323,7 +323,7 @@ class XinferenceEmbed(Base):
|
||||
try:
|
||||
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
|
||||
ress.extend([d.embedding for d in res.data])
|
||||
total_tokens += self.total_token_count(res)
|
||||
total_tokens += self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -333,7 +333,7 @@ class XinferenceEmbed(Base):
|
||||
res = None
|
||||
try:
|
||||
res = self.client.embeddings.create(input=[text], model=self.model_name)
|
||||
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||
return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -409,7 +409,7 @@ class JinaMultiVecEmbed(Base):
|
||||
|
||||
ress.append(chunk_emb)
|
||||
|
||||
token_count += self.total_token_count(res)
|
||||
token_count += self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, response)
|
||||
raise Exception(f"Error: {response}")
|
||||
@ -443,7 +443,7 @@ class MistralEmbed(Base):
|
||||
try:
|
||||
res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
|
||||
ress.extend([d.embedding for d in res.data])
|
||||
token_count += self.total_token_count(res)
|
||||
token_count += self.total_token_count_from_response(res)
|
||||
break
|
||||
except Exception as _e:
|
||||
if retry_max == 1:
|
||||
@ -460,7 +460,7 @@ class MistralEmbed(Base):
|
||||
while retry_max > 0:
|
||||
try:
|
||||
res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
|
||||
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||
return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
if retry_max == 1:
|
||||
log_exception(_e)
|
||||
@ -595,7 +595,7 @@ class NvidiaEmbed(Base):
|
||||
try:
|
||||
res = response.json()
|
||||
ress.extend([d["embedding"] for d in res["data"]])
|
||||
token_count += self.total_token_count(res)
|
||||
token_count += self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, response)
|
||||
raise Exception(f"Error: {response}")
|
||||
@ -732,7 +732,7 @@ class SILICONFLOWEmbed(Base):
|
||||
try:
|
||||
res = response.json()
|
||||
ress.extend([d["embedding"] for d in res["data"]])
|
||||
token_count += self.total_token_count(res)
|
||||
token_count += self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, response)
|
||||
raise Exception(f"Error: {response}")
|
||||
@ -748,7 +748,7 @@ class SILICONFLOWEmbed(Base):
|
||||
response = requests.post(self.base_url, json=payload, headers=self.headers)
|
||||
try:
|
||||
res = response.json()
|
||||
return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
|
||||
return np.array(res["data"][0]["embedding"]), self.total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, response)
|
||||
raise Exception(f"Error: {response}")
|
||||
@ -794,7 +794,7 @@ class BaiduYiyanEmbed(Base):
|
||||
try:
|
||||
return (
|
||||
np.array([r["embedding"] for r in res["data"]]),
|
||||
self.total_token_count(res),
|
||||
self.total_token_count_from_response(res),
|
||||
)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
@ -805,7 +805,7 @@ class BaiduYiyanEmbed(Base):
|
||||
try:
|
||||
return (
|
||||
np.array([r["embedding"] for r in res["data"]]),
|
||||
self.total_token_count(res),
|
||||
self.total_token_count_from_response(res),
|
||||
)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
|
||||
Reference in New Issue
Block a user