Files
ragflow/README_ja.md
Ikko Eltociear Ashimine f2f021bfd1 docs: Add Japanese README (#224)
### What problem does this PR solve?

I created Japanese translated README.

### Type of change

- [x] Documentation Update
2024-04-04 09:26:39 +08:00

183 lines
8.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo">
</a>
</div>
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a>
</p>
<p align="center">
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/RAGFLOW-LLM-white?&labelColor=dd0af7"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v1.0-brightgreen"
alt="docker pull ragflow:v1.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=7d09f1" alt="license">
</a>
</p>
## 💡 RAGFlow とは?
[RAGFlow](https://demo.ragflow.io) は、深い文書理解に基づいたオープンソースの RAG (Retrieval-Augmented Generation) エンジンである。LLM大規模言語モデルを組み合わせることで、様々な複雑なフォーマットのデータから根拠のある引用に裏打ちされた、真実味のある質問応答機能を提供し、あらゆる規模のビジネスに合理化された RAG ワークフローを提供します。
## 🌟 主な特徴
### 🍭 **"Quality in, quality out"**
- 複雑な形式の非構造化データからの[深い文書理解](./deepdoc/README.md)ベースの知識抽出。
- 文字通り無限のトークンから"干し草の山の中の針"を見つける。
### 🍱 **テンプレートベースのチャンク化**
- 知的で説明しやすい。
- 豊富なテンプレートオプション。
### 🌱 **ハルシネーションが軽減された根拠のある引用**
- 人間の介入を可能にするテキストチャンキングの視覚化。
- 重要な参考文献のクイックビューと、根拠ある答えをサポートする追跡可能な引用。
### 🍔 **異種のデータソースとの互換性**
- Word、スライド、Excel、txt、画像、スキャンコピー、構造化データ、Web ページなどをサポート。
### 🛀 **自動化された楽な RAG ワークフロー**
- 個人から大企業まで対応する合理化されたRAGオーケストレーション。
- 設定可能な LLM とエンベッディングモデル。
- 複数の想起と融合された再ランク付け。
- ビジネスとのシームレスな統合のための直感的な API。
## 🔎 システム構成
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>
## 🎬 始める
### 📝 必要条件
- CPU >= 2 cores
- RAM >= 8 GB
- Docker
> ローカルマシンWindows、Mac、または Linuxに Docker をインストールしていない場合は、[Docker Engine のインストール](https://docs.docker.com/engine/install/)を参照してください。
### 🚀 サーバーを起動
1. `vm.max_map_count` > 65535 であることを確認する:
> `vm.max_map_count` の値をチェックするには:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> `vm.max_map_count` が 65535 より大きい値でなければリセットする。
>
> ```bash
> # In this case, we set it to 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> この変更はシステム再起動後にリセットされる。変更を恒久的なものにするには、**/etc/sysctl.conf** の `vm.max_map_count` 値を適宜追加または更新する:
>
> ```bash
> vm.max_map_count=262144
> ```
2. リポジトリをクローンする:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. ビルド済みの Docker イメージをビルドし、サーバーを起動する:
```bash
$ cd ragflow/docker
$ docker compose up -d
```
> コアイメージのサイズは約 15 GB で、ロードに時間がかかる場合があります。
4. サーバーを立ち上げた後、サーバーの状態を確認する:
```bash
$ docker logs -f ragflow-server
```
_以下の出力は、システムが正常に起動したことを確認するものです:_
```bash
____ ______ __
/ __ \ ____ _ ____ _ / ____// /____ _ __
/ /_/ // __ `// __ `// /_ / // __ \| | /| / /
/ _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/
/____/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://172.22.0.5:9380
INFO:werkzeug:Press CTRL+C to quit
```
5. ウェブブラウザで、プロンプトに従ってサーバーの IP アドレスを入力し、RAGFlow にログインします。
> デフォルトの設定を使用する場合、デフォルトの HTTP サービングポート `80` は省略できるので、与えられたシナリオでは、`http://172.22.0.5`(ポート番号は省略)だけを入力すればよい。
6. [service_conf.yaml](./docker/service_conf.yaml) で、`user_default_llm` で希望の LLM ファクトリを選択し、`API_KEY` フィールドを対応する API キーで更新する。
> 詳しくは [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) を参照してください。
_ショーの開幕です_
## 🔧 コンフィグ
システムコンフィグに関しては、以下のファイルを管理する必要がある:
- [.env](./docker/.env): `SVR_HTTP_PORT`、`MYSQL_PASSWORD`、`MINIO_PASSWORD` などのシステムの基本設定を保持する。
- [service_conf.yaml](./docker/service_conf.yaml): バックエンドのサービスを設定します。
- [docker-compose.yml](./docker/docker-compose.yml): システムの起動は [docker-compose.yml](./docker/docker-compose.yml) に依存している。
[.env](./docker/.env) ファイルの変更が [service_conf.yaml](./docker/service_conf.yaml) ファイルの内容と一致していることを確認する必要があります。
> [./docker/README](./docker/README.md) ファイルは環境設定とサービスコンフィグの詳細な説明を提供し、[./docker/README](./docker/README.md) ファイルに記載されている全ての環境設定が [service_conf.yaml](./docker/service_conf.yaml) ファイルの対応するコンフィグと一致していることを確認することが義務付けられています。
デフォルトの HTTP サービングポート(80)を更新するには、[docker-compose.yml](./docker/docker-compose.yml) にアクセスして、`80:80` を `<YOUR_SERVING_PORT>:80` に変更します。
> すべてのシステム設定のアップデートを有効にするには、システムの再起動が必要です:
>
> ```bash
> $ docker-compose up -d
> ```
## 🛠️ ソースからビルドする
ソースからDockerイメージをビルドするには:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v1.0 .
$ cd ragflow/docker
$ docker compose up -d
```
## 📜 ロードマップ
[RAGFlow ロードマップ 2024](https://github.com/infiniflow/ragflow/issues/162) を参照
## 🏄 コミュニティ
- [Discord](https://discord.gg/uqQ4YMDf)
- [Twitter](https://twitter.com/infiniflowai)
## 🙌 コントリビュート
RAGFlow はオープンソースのコラボレーションによって発展してきました。この精神に基づき、私たちはコミュニティからの多様なコントリビュートを受け入れています。 参加を希望される方は、まず[コントリビューションガイド](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md)をご覧ください。