mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
### What problem does this PR solve? Fix broken imports ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) --------- Signed-off-by: jinhai <haijin.chn@gmail.com>
213 lines
7.7 KiB
Python
213 lines
7.7 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import random
|
|
|
|
import trio
|
|
|
|
from api.db import LLMType
|
|
from api.db.services.llm_service import LLMBundle
|
|
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
|
|
from graphrag.utils import chat_limiter, get_llm_cache, set_llm_cache
|
|
from rag.flow.base import ProcessBase, ProcessParamBase
|
|
from rag.flow.chunker.schema import ChunkerFromUpstream
|
|
from rag.nlp import naive_merge, naive_merge_with_images
|
|
from rag.prompts.generator import keyword_extraction, question_proposal
|
|
|
|
|
|
class ChunkerParam(ProcessParamBase):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.method_options = [
|
|
# General
|
|
"general",
|
|
"onetable",
|
|
# Customer Service
|
|
"q&a",
|
|
"manual",
|
|
# Recruitment
|
|
"resume",
|
|
# Education & Research
|
|
"book",
|
|
"paper",
|
|
"laws",
|
|
"presentation",
|
|
# Other
|
|
# "Tag" # TODO: Other method
|
|
]
|
|
self.method = "general"
|
|
self.chunk_token_size = 512
|
|
self.delimiter = "\n"
|
|
self.overlapped_percent = 0
|
|
self.page_rank = 0
|
|
self.auto_keywords = 0
|
|
self.auto_questions = 0
|
|
self.tag_sets = []
|
|
self.llm_setting = {"llm_name": "", "lang": "Chinese"}
|
|
|
|
def check(self):
|
|
self.check_valid_value(self.method.lower(), "Chunk method abnormal.", self.method_options)
|
|
self.check_positive_integer(self.chunk_token_size, "Chunk token size.")
|
|
self.check_nonnegative_number(self.page_rank, "Page rank value: (0, 10]")
|
|
self.check_nonnegative_number(self.auto_keywords, "Auto-keyword value: (0, 10]")
|
|
self.check_nonnegative_number(self.auto_questions, "Auto-question value: (0, 10]")
|
|
self.check_decimal_float(self.overlapped_percent, "Overlapped percentage: [0, 1)")
|
|
|
|
def get_input_form(self) -> dict[str, dict]:
|
|
return {}
|
|
|
|
|
|
class Chunker(ProcessBase):
|
|
component_name = "Chunker"
|
|
|
|
def _general(self, from_upstream: ChunkerFromUpstream):
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to chunk via `General`.")
|
|
if from_upstream.output_format in ["markdown", "text", "html"]:
|
|
if from_upstream.output_format == "markdown":
|
|
payload = from_upstream.markdown_result
|
|
elif from_upstream.output_format == "text":
|
|
payload = from_upstream.text_result
|
|
else: # == "html"
|
|
payload = from_upstream.html_result
|
|
|
|
if not payload:
|
|
payload = ""
|
|
|
|
cks = naive_merge(
|
|
payload,
|
|
self._param.chunk_token_size,
|
|
self._param.delimiter,
|
|
self._param.overlapped_percent,
|
|
)
|
|
return [{"text": c} for c in cks]
|
|
|
|
# json
|
|
sections, section_images = [], []
|
|
for o in from_upstream.json_result or []:
|
|
sections.append((o.get("text", ""), o.get("position_tag", "")))
|
|
section_images.append(o.get("image"))
|
|
|
|
chunks, images = naive_merge_with_images(
|
|
sections,
|
|
section_images,
|
|
self._param.chunk_token_size,
|
|
self._param.delimiter,
|
|
self._param.overlapped_percent,
|
|
)
|
|
|
|
return [
|
|
{
|
|
"text": RAGFlowPdfParser.remove_tag(c),
|
|
"image": img,
|
|
"positions": RAGFlowPdfParser.extract_positions(c),
|
|
}
|
|
for c, img in zip(chunks, images)
|
|
]
|
|
|
|
def _q_and_a(self, from_upstream: ChunkerFromUpstream):
|
|
pass
|
|
|
|
def _resume(self, from_upstream: ChunkerFromUpstream):
|
|
pass
|
|
|
|
def _manual(self, from_upstream: ChunkerFromUpstream):
|
|
pass
|
|
|
|
def _table(self, from_upstream: ChunkerFromUpstream):
|
|
pass
|
|
|
|
def _paper(self, from_upstream: ChunkerFromUpstream):
|
|
pass
|
|
|
|
def _book(self, from_upstream: ChunkerFromUpstream):
|
|
pass
|
|
|
|
def _laws(self, from_upstream: ChunkerFromUpstream):
|
|
pass
|
|
|
|
def _presentation(self, from_upstream: ChunkerFromUpstream):
|
|
pass
|
|
|
|
def _one(self, from_upstream: ChunkerFromUpstream):
|
|
pass
|
|
|
|
async def _invoke(self, **kwargs):
|
|
function_map = {
|
|
"general": self._general,
|
|
"q&a": self._q_and_a,
|
|
"resume": self._resume,
|
|
"manual": self._manual,
|
|
"table": self._table,
|
|
"paper": self._paper,
|
|
"book": self._book,
|
|
"laws": self._laws,
|
|
"presentation": self._presentation,
|
|
"one": self._one,
|
|
}
|
|
|
|
try:
|
|
from_upstream = ChunkerFromUpstream.model_validate(kwargs)
|
|
except Exception as e:
|
|
self.set_output("_ERROR", f"Input error: {str(e)}")
|
|
return
|
|
|
|
chunks = function_map[self._param.method](from_upstream)
|
|
llm_setting = self._param.llm_setting
|
|
|
|
async def auto_keywords():
|
|
nonlocal chunks, llm_setting
|
|
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_name"], lang=llm_setting["lang"])
|
|
|
|
async def doc_keyword_extraction(chat_mdl, ck, topn):
|
|
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "keywords", {"topn": topn})
|
|
if not cached:
|
|
async with chat_limiter:
|
|
cached = await trio.to_thread.run_sync(lambda: keyword_extraction(chat_mdl, ck["text"], topn))
|
|
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "keywords", {"topn": topn})
|
|
if cached:
|
|
ck["keywords"] = cached.split(",")
|
|
|
|
async with trio.open_nursery() as nursery:
|
|
for ck in chunks:
|
|
nursery.start_soon(doc_keyword_extraction, chat_mdl, ck, self._param.auto_keywords)
|
|
|
|
async def auto_questions():
|
|
nonlocal chunks, llm_setting
|
|
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_name"], lang=llm_setting["lang"])
|
|
|
|
async def doc_question_proposal(chat_mdl, d, topn):
|
|
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "question", {"topn": topn})
|
|
if not cached:
|
|
async with chat_limiter:
|
|
cached = await trio.to_thread.run_sync(lambda: question_proposal(chat_mdl, ck["text"], topn))
|
|
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "question", {"topn": topn})
|
|
if cached:
|
|
d["questions"] = cached.split("\n")
|
|
|
|
async with trio.open_nursery() as nursery:
|
|
for ck in chunks:
|
|
nursery.start_soon(doc_question_proposal, chat_mdl, ck, self._param.auto_questions)
|
|
|
|
async with trio.open_nursery() as nursery:
|
|
if self._param.auto_questions:
|
|
nursery.start_soon(auto_questions)
|
|
if self._param.auto_keywords:
|
|
nursery.start_soon(auto_keywords)
|
|
|
|
if self._param.page_rank:
|
|
for ck in chunks:
|
|
ck["page_rank"] = self._param.page_rank
|
|
|
|
self.set_output("chunks", chunks)
|