Files
ragflow/conf/os_mapping.json
pyyuhao ad56137a59 Feat: ​​OpenSearch's support for newly embedding models​​ (#10494)
### What problem does this PR solve?

fix issues:https://github.com/infiniflow/ragflow/issues/10402

As the newly distributed embedding models support vector dimensions max
to 4096, while current OpenSearch's max dimension support is 1536.
As I tested, the 4096-dimensions vector will be treated as a float type
which is unacceptable in OpenSearch.

Besides, OpenSearch supports max to 16000 dimensions by defalut with the
vector engine(Faiss). According to:
https://docs.opensearch.org/2.19/field-types/supported-field-types/knn-methods-engines/

I added max to 10240 dimensions support for OpenSearch, as I think will
be sufficient in the future.

As I tested , it worked well on my own server (treated as knn_vector)by
using qwen3-embedding:8b as the embedding model:
<img width="1338" height="790" alt="image"
src="https://github.com/user-attachments/assets/a9b2d284-fcf6-4cea-859a-6aadccf36ace"
/>


### Type of change

- [x] New Feature (non-breaking change which adds functionality)


By the way, I will still focus on the stuff about
Elasticsearch/Opensearch as search engines and vector databases.

Co-authored-by: 张雨豪 <zhangyh80@chinatelecom.cn>
2025-10-11 19:58:12 +08:00

268 lines
5.6 KiB
JSON

{
"settings": {
"index": {
"number_of_shards": 2,
"number_of_replicas": 0,
"refresh_interval": "1000ms",
"knn": true,
"similarity": {
"scripted_sim": {
"type": "scripted",
"script": {
"source": "double idf = Math.log(1+(field.docCount-term.docFreq+0.5)/(term.docFreq + 0.5))/Math.log(1+((field.docCount-0.5)/1.5)); return query.boost * idf * Math.min(doc.freq, 1);"
}
}
}
}
},
"mappings": {
"properties": {
"lat_lon": {
"type": "geo_point",
"store": "true"
}
},
"date_detection": "true",
"dynamic_templates": [
{
"int": {
"match": "*_int",
"mapping": {
"type": "integer",
"store": "true"
}
}
},
{
"ulong": {
"match": "*_ulong",
"mapping": {
"type": "unsigned_long",
"store": "true"
}
}
},
{
"long": {
"match": "*_long",
"mapping": {
"type": "long",
"store": "true"
}
}
},
{
"short": {
"match": "*_short",
"mapping": {
"type": "short",
"store": "true"
}
}
},
{
"numeric": {
"match": "*_flt",
"mapping": {
"type": "float",
"store": true
}
}
},
{
"tks": {
"match": "*_tks",
"mapping": {
"type": "text",
"similarity": "scripted_sim",
"analyzer": "whitespace",
"store": true
}
}
},
{
"ltks": {
"match": "*_ltks",
"mapping": {
"type": "text",
"analyzer": "whitespace",
"store": true
}
}
},
{
"kwd": {
"match_pattern": "regex",
"match": "^(.*_(kwd|id|ids|uid|uids)|uid)$",
"mapping": {
"type": "keyword",
"similarity": "boolean",
"store": true
}
}
},
{
"dt": {
"match_pattern": "regex",
"match": "^.*(_dt|_time|_at)$",
"mapping": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||yyyy-MM-dd_HH:mm:ss",
"store": true
}
}
},
{
"nested": {
"match": "*_nst",
"mapping": {
"type": "nested"
}
}
},
{
"object": {
"match": "*_obj",
"mapping": {
"type": "object",
"dynamic": "true"
}
}
},
{
"string": {
"match_pattern": "regex",
"match": "^.*_(with_weight|list)$",
"mapping": {
"type": "text",
"index": "false",
"store": true
}
}
},
{
"rank_feature": {
"match": "*_fea",
"mapping": {
"type": "rank_feature"
}
}
},
{
"rank_features": {
"match": "*_feas",
"mapping": {
"type": "rank_features"
}
}
},
{
"knn_vector": {
"match": "*_512_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 512
}
}
},
{
"knn_vector": {
"match": "*_768_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 768
}
}
},
{
"knn_vector": {
"match": "*_1024_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 1024
}
}
},
{
"knn_vector": {
"match": "*_1536_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 1536
}
}
},
{
"knn_vector": {
"match": "*_2048_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 2048
}
}
},
{
"knn_vector": {
"match": "*_4096_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 4096
}
}
},
{
"knn_vector": {
"match": "*_6144_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 6144
}
}
},
{
"knn_vector": {
"match": "*_8192_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 8192
}
}
},
{
"knn_vector": {
"match": "*_10240_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 10240
}
}
},
{
"binary": {
"match": "*_bin",
"mapping": {
"type": "binary"
}
}
}
]
}
}