mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
226 lines
8.3 KiB
Python
226 lines
8.3 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import logging
|
|
from datetime import datetime
|
|
|
|
from peewee import fn
|
|
|
|
from api.db import VALID_PIPELINE_TASK_TYPES
|
|
from api.db.db_models import DB, PipelineOperationLog, Document
|
|
from api.db.services.canvas_service import UserCanvasService
|
|
from api.db.services.common_service import CommonService
|
|
from api.db.services.document_service import DocumentService
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.task_service import GRAPH_RAPTOR_FAKE_DOC_ID
|
|
from api.utils import current_timestamp, datetime_format, get_uuid
|
|
|
|
|
|
class PipelineOperationLogService(CommonService):
|
|
model = PipelineOperationLog
|
|
|
|
@classmethod
|
|
def get_file_logs_fields(cls):
|
|
return [
|
|
cls.model.id,
|
|
cls.model.document_id,
|
|
cls.model.tenant_id,
|
|
cls.model.kb_id,
|
|
cls.model.pipeline_id,
|
|
cls.model.pipeline_title,
|
|
cls.model.parser_id,
|
|
cls.model.document_name,
|
|
cls.model.document_suffix,
|
|
cls.model.document_type,
|
|
cls.model.source_from,
|
|
cls.model.progress,
|
|
cls.model.progress_msg,
|
|
cls.model.process_begin_at,
|
|
cls.model.process_duration,
|
|
cls.model.dsl,
|
|
cls.model.task_type,
|
|
cls.model.operation_status,
|
|
cls.model.avatar,
|
|
cls.model.status,
|
|
cls.model.create_time,
|
|
cls.model.create_date,
|
|
cls.model.update_time,
|
|
cls.model.update_date,
|
|
]
|
|
|
|
@classmethod
|
|
def get_dataset_logs_fields(cls):
|
|
return [
|
|
cls.model.id,
|
|
cls.model.tenant_id,
|
|
cls.model.kb_id,
|
|
cls.model.progress,
|
|
cls.model.progress_msg,
|
|
cls.model.process_begin_at,
|
|
cls.model.process_duration,
|
|
cls.model.task_type,
|
|
cls.model.operation_status,
|
|
cls.model.avatar,
|
|
cls.model.status,
|
|
cls.model.create_time,
|
|
cls.model.create_date,
|
|
cls.model.update_time,
|
|
cls.model.update_date,
|
|
]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def create(cls, document_id, pipeline_id, task_type, fake_document_ids=[]):
|
|
from rag.flow.pipeline import Pipeline
|
|
|
|
dsl = ""
|
|
referred_document_id = document_id
|
|
|
|
if referred_document_id == GRAPH_RAPTOR_FAKE_DOC_ID and fake_document_ids:
|
|
referred_document_id = fake_document_ids[0]
|
|
ok, document = DocumentService.get_by_id(referred_document_id)
|
|
if not ok:
|
|
logging.warning(f"Document for referred_document_id {referred_document_id} not found")
|
|
return
|
|
DocumentService.update_progress_immediately([document.to_dict()])
|
|
ok, document = DocumentService.get_by_id(referred_document_id)
|
|
if not ok:
|
|
logging.warning(f"Document for referred_document_id {referred_document_id} not found")
|
|
return
|
|
if document.progress not in [1, -1]:
|
|
return
|
|
operation_status = document.run
|
|
|
|
if pipeline_id:
|
|
ok, user_pipeline = UserCanvasService.get_by_id(pipeline_id)
|
|
if not ok:
|
|
raise RuntimeError(f"Pipeline {pipeline_id} not found")
|
|
|
|
pipeline = Pipeline(dsl=json.dumps(user_pipeline.dsl), tenant_id=user_pipeline.user_id, doc_id=referred_document_id, task_id="", flow_id=pipeline_id)
|
|
|
|
tenant_id = user_pipeline.user_id
|
|
title = user_pipeline.title
|
|
avatar = user_pipeline.avatar
|
|
dsl = json.loads(str(pipeline))
|
|
else:
|
|
ok, kb_info = KnowledgebaseService.get_by_id(document.kb_id)
|
|
if not ok:
|
|
raise RuntimeError(f"Cannot find knowledge base {document.kb_id} for referred_document {referred_document_id}")
|
|
|
|
tenant_id = kb_info.tenant_id
|
|
title = document.name
|
|
avatar = document.thumbnail
|
|
|
|
if task_type not in VALID_PIPELINE_TASK_TYPES:
|
|
raise ValueError(f"Invalid task type: {task_type}")
|
|
|
|
log = dict(
|
|
id=get_uuid(),
|
|
document_id=document_id, # GRAPH_RAPTOR_FAKE_DOC_ID or real document_id
|
|
tenant_id=tenant_id,
|
|
kb_id=document.kb_id,
|
|
pipeline_id=pipeline_id,
|
|
pipeline_title=title,
|
|
parser_id=document.parser_id,
|
|
document_name=document.name,
|
|
document_suffix=document.suffix,
|
|
document_type=document.type,
|
|
source_from="", # TODO: add in the future
|
|
progress=document.progress,
|
|
progress_msg=document.progress_msg,
|
|
process_begin_at=document.process_begin_at,
|
|
process_duration=document.process_duration,
|
|
dsl=dsl,
|
|
task_type=task_type,
|
|
operation_status=operation_status,
|
|
avatar=avatar,
|
|
)
|
|
log["create_time"] = current_timestamp()
|
|
log["create_date"] = datetime_format(datetime.now())
|
|
log["update_time"] = current_timestamp()
|
|
log["update_date"] = datetime_format(datetime.now())
|
|
obj = cls.save(**log)
|
|
return obj
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def record_pipeline_operation(cls, document_id, pipeline_id, task_type, fake_document_ids=[]):
|
|
return cls.create(document_id=document_id, pipeline_id=pipeline_id, task_type=task_type, fake_document_ids=fake_document_ids)
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_file_logs_by_kb_id(cls, kb_id, page_number, items_per_page, orderby, desc, keywords, operation_status, types, suffix):
|
|
fields = cls.get_file_logs_fields()
|
|
if keywords:
|
|
logs = cls.model.select(*fields).where((cls.model.kb_id == kb_id), (fn.LOWER(cls.model.document_name).contains(keywords.lower())))
|
|
else:
|
|
logs = cls.model.select(*fields).where(cls.model.kb_id == kb_id)
|
|
|
|
logs = logs.where(cls.model.document_id != GRAPH_RAPTOR_FAKE_DOC_ID)
|
|
|
|
if operation_status:
|
|
logs = logs.where(cls.model.operation_status.in_(operation_status))
|
|
if types:
|
|
logs = logs.where(cls.model.document_type.in_(types))
|
|
if suffix:
|
|
logs = logs.where(cls.model.document_suffix.in_(suffix))
|
|
|
|
count = logs.count()
|
|
if desc:
|
|
logs = logs.order_by(cls.model.getter_by(orderby).desc())
|
|
else:
|
|
logs = logs.order_by(cls.model.getter_by(orderby).asc())
|
|
|
|
if page_number and items_per_page:
|
|
logs = logs.paginate(page_number, items_per_page)
|
|
|
|
return list(logs.dicts()), count
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_documents_info(cls, id):
|
|
fields = [
|
|
Document.id,
|
|
Document.name,
|
|
Document.progress
|
|
]
|
|
return cls.model.select(*fields).join(Document, on=(cls.model.document_id == Document.id)).where(
|
|
cls.model.id == id,
|
|
Document.progress > 0,
|
|
Document.progress < 1
|
|
).dicts()
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_dataset_logs_by_kb_id(cls, kb_id, page_number, items_per_page, orderby, desc, operation_status):
|
|
fields = cls.get_dataset_logs_fields()
|
|
logs = cls.model.select(*fields).where((cls.model.kb_id == kb_id), (cls.model.document_id == GRAPH_RAPTOR_FAKE_DOC_ID))
|
|
|
|
if operation_status:
|
|
logs = logs.where(cls.model.operation_status.in_(operation_status))
|
|
|
|
count = logs.count()
|
|
if desc:
|
|
logs = logs.order_by(cls.model.getter_by(orderby).desc())
|
|
else:
|
|
logs = logs.order_by(cls.model.getter_by(orderby).asc())
|
|
|
|
if page_number and items_per_page:
|
|
logs = logs.paginate(page_number, items_per_page)
|
|
|
|
return list(logs.dicts()), count
|
|
|