mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
### What problem does this PR solve? #9869 ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Signed-off-by: dependabot[bot] <support@github.com> Signed-off-by: jinhai <haijin.chn@gmail.com> Signed-off-by: Jin Hai <haijin.chn@gmail.com> Co-authored-by: chanx <1243304602@qq.com> Co-authored-by: balibabu <cike8899@users.noreply.github.com> Co-authored-by: Lynn <lynn_inf@hotmail.com> Co-authored-by: 纷繁下的无奈 <zhileihuang@126.com> Co-authored-by: huangzl <huangzl@shinemo.com> Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com> Co-authored-by: Wilmer <33392318@qq.com> Co-authored-by: Adrian Weidig <adrianweidig@gmx.net> Co-authored-by: Zhichang Yu <yuzhichang@gmail.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Yongteng Lei <yongtengrey@outlook.com> Co-authored-by: Liu An <asiro@qq.com> Co-authored-by: buua436 <66937541+buua436@users.noreply.github.com> Co-authored-by: BadwomanCraZY <511528396@qq.com> Co-authored-by: cucusenok <31804608+cucusenok@users.noreply.github.com> Co-authored-by: Russell Valentine <russ@coldstonelabs.org> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Billy Bao <newyorkupperbay@gmail.com> Co-authored-by: Zhedong Cen <cenzhedong2@126.com> Co-authored-by: TensorNull <129579691+TensorNull@users.noreply.github.com> Co-authored-by: TensorNull <tensor.null@gmail.com> Co-authored-by: TeslaZY <TeslaZY@outlook.com> Co-authored-by: Ajay <160579663+aybanda@users.noreply.github.com> Co-authored-by: AB <aj@Ajays-MacBook-Air.local> Co-authored-by: 天海蒼灆 <huangaoqin@tecpie.com> Co-authored-by: He Wang <wanghechn@qq.com> Co-authored-by: Atsushi Hatakeyama <atu729@icloud.com> Co-authored-by: Jin Hai <haijin.chn@gmail.com> Co-authored-by: Mohamed Mathari <155896313+melmathari@users.noreply.github.com> Co-authored-by: Mohamed Mathari <nocodeventure@Mac-mini-van-Mohamed.fritz.box> Co-authored-by: Stephen Hu <stephenhu@seismic.com> Co-authored-by: Shaun Zhang <zhangwfjh@users.noreply.github.com> Co-authored-by: zhimeng123 <60221886+zhimeng123@users.noreply.github.com> Co-authored-by: mxc <mxc@example.com> Co-authored-by: Dominik Novotný <50611433+SgtMarmite@users.noreply.github.com> Co-authored-by: EVGENY M <168018528+rjohny55@users.noreply.github.com> Co-authored-by: mcoder6425 <mcoder64@gmail.com> Co-authored-by: lemsn <lemsn@msn.com> Co-authored-by: lemsn <lemsn@126.com> Co-authored-by: Adrian Gora <47756404+adagora@users.noreply.github.com> Co-authored-by: Womsxd <45663319+Womsxd@users.noreply.github.com> Co-authored-by: FatMii <39074672+FatMii@users.noreply.github.com>
515 lines
17 KiB
Python
515 lines
17 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import logging
|
|
import os
|
|
|
|
import networkx as nx
|
|
import trio
|
|
|
|
from api import settings
|
|
from api.db.services.document_service import DocumentService
|
|
from api.utils import get_uuid
|
|
from api.utils.api_utils import timeout
|
|
from graphrag.entity_resolution import EntityResolution
|
|
from graphrag.general.community_reports_extractor import CommunityReportsExtractor
|
|
from graphrag.general.extractor import Extractor
|
|
from graphrag.general.graph_extractor import GraphExtractor as GeneralKGExt
|
|
from graphrag.light.graph_extractor import GraphExtractor as LightKGExt
|
|
from graphrag.utils import (
|
|
GraphChange,
|
|
chunk_id,
|
|
does_graph_contains,
|
|
get_graph,
|
|
graph_merge,
|
|
set_graph,
|
|
tidy_graph,
|
|
)
|
|
from rag.nlp import rag_tokenizer, search
|
|
from rag.utils.redis_conn import RedisDistributedLock
|
|
|
|
|
|
async def run_graphrag(
|
|
row: dict,
|
|
language,
|
|
with_resolution: bool,
|
|
with_community: bool,
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
):
|
|
enable_timeout_assertion = os.environ.get("ENABLE_TIMEOUT_ASSERTION")
|
|
start = trio.current_time()
|
|
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"]
|
|
chunks = []
|
|
for d in settings.retrievaler.chunk_list(doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"], sort_by_position=True):
|
|
chunks.append(d["content_with_weight"])
|
|
|
|
with trio.fail_after(max(120, len(chunks) * 60 * 10) if enable_timeout_assertion else 10000000000):
|
|
subgraph = await generate_subgraph(
|
|
LightKGExt if "method" not in row["kb_parser_config"].get("graphrag", {}) or row["kb_parser_config"]["graphrag"]["method"] != "general" else GeneralKGExt,
|
|
tenant_id,
|
|
kb_id,
|
|
doc_id,
|
|
chunks,
|
|
language,
|
|
row["kb_parser_config"]["graphrag"].get("entity_types", []),
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
|
|
if not subgraph:
|
|
return
|
|
|
|
graphrag_task_lock = RedisDistributedLock(f"graphrag_task_{kb_id}", lock_value=doc_id, timeout=1200)
|
|
await graphrag_task_lock.spin_acquire()
|
|
callback(msg=f"run_graphrag {doc_id} graphrag_task_lock acquired")
|
|
|
|
try:
|
|
subgraph_nodes = set(subgraph.nodes())
|
|
new_graph = await merge_subgraph(
|
|
tenant_id,
|
|
kb_id,
|
|
doc_id,
|
|
subgraph,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
assert new_graph is not None
|
|
|
|
if not with_resolution and not with_community:
|
|
return
|
|
|
|
if with_resolution:
|
|
await graphrag_task_lock.spin_acquire()
|
|
callback(msg=f"run_graphrag {doc_id} graphrag_task_lock acquired")
|
|
await resolve_entities(
|
|
new_graph,
|
|
subgraph_nodes,
|
|
tenant_id,
|
|
kb_id,
|
|
doc_id,
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
if with_community:
|
|
await graphrag_task_lock.spin_acquire()
|
|
callback(msg=f"run_graphrag {doc_id} graphrag_task_lock acquired")
|
|
await extract_community(
|
|
new_graph,
|
|
tenant_id,
|
|
kb_id,
|
|
doc_id,
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
finally:
|
|
graphrag_task_lock.release()
|
|
now = trio.current_time()
|
|
callback(msg=f"GraphRAG for doc {doc_id} done in {now - start:.2f} seconds.")
|
|
return
|
|
|
|
|
|
async def run_graphrag_for_kb(
|
|
row: dict,
|
|
doc_ids: list[str],
|
|
language: str,
|
|
kb_parser_config: dict,
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
*,
|
|
with_resolution: bool = True,
|
|
with_community: bool = True,
|
|
max_parallel_docs: int = 4,
|
|
) -> dict:
|
|
tenant_id, kb_id = row["tenant_id"], row["kb_id"]
|
|
enable_timeout_assertion = os.environ.get("ENABLE_TIMEOUT_ASSERTION")
|
|
start = trio.current_time()
|
|
fields_for_chunks = ["content_with_weight", "doc_id"]
|
|
|
|
if not doc_ids:
|
|
logging.info(f"Fetching all docs for {kb_id}")
|
|
docs, _ = DocumentService.get_by_kb_id(
|
|
kb_id=kb_id,
|
|
page_number=0,
|
|
items_per_page=0,
|
|
orderby="create_time",
|
|
desc=False,
|
|
keywords="",
|
|
run_status=[],
|
|
types=[],
|
|
suffix=[],
|
|
)
|
|
doc_ids = [doc["id"] for doc in docs]
|
|
|
|
doc_ids = list(dict.fromkeys(doc_ids))
|
|
if not doc_ids:
|
|
callback(msg=f"[GraphRAG] kb:{kb_id} has no processable doc_id.")
|
|
return {"ok_docs": [], "failed_docs": [], "total_docs": 0, "total_chunks": 0, "seconds": 0.0}
|
|
|
|
def load_doc_chunks(doc_id: str) -> list[str]:
|
|
from rag.utils import num_tokens_from_string
|
|
|
|
chunks = []
|
|
current_chunk = ""
|
|
|
|
for d in settings.retrievaler.chunk_list(
|
|
doc_id,
|
|
tenant_id,
|
|
[kb_id],
|
|
fields=fields_for_chunks,
|
|
sort_by_position=True,
|
|
):
|
|
content = d["content_with_weight"]
|
|
if num_tokens_from_string(current_chunk + content) < 1024:
|
|
current_chunk += content
|
|
else:
|
|
if current_chunk:
|
|
chunks.append(current_chunk)
|
|
current_chunk = content
|
|
|
|
if current_chunk:
|
|
chunks.append(current_chunk)
|
|
|
|
return chunks
|
|
|
|
all_doc_chunks: dict[str, list[str]] = {}
|
|
total_chunks = 0
|
|
for doc_id in doc_ids:
|
|
chunks = load_doc_chunks(doc_id)
|
|
all_doc_chunks[doc_id] = chunks
|
|
total_chunks += len(chunks)
|
|
|
|
if total_chunks == 0:
|
|
callback(msg=f"[GraphRAG] kb:{kb_id} has no available chunks in all documents, skip.")
|
|
return {"ok_docs": [], "failed_docs": doc_ids, "total_docs": len(doc_ids), "total_chunks": 0, "seconds": 0.0}
|
|
|
|
semaphore = trio.Semaphore(max_parallel_docs)
|
|
|
|
subgraphs: dict[str, object] = {}
|
|
failed_docs: list[tuple[str, str]] = [] # (doc_id, error)
|
|
|
|
async def build_one(doc_id: str):
|
|
chunks = all_doc_chunks.get(doc_id, [])
|
|
if not chunks:
|
|
callback(msg=f"[GraphRAG] doc:{doc_id} has no available chunks, skip generation.")
|
|
return
|
|
|
|
kg_extractor = LightKGExt if ("method" not in kb_parser_config.get("graphrag", {}) or kb_parser_config["graphrag"]["method"] != "general") else GeneralKGExt
|
|
|
|
deadline = max(120, len(chunks) * 60 * 10) if enable_timeout_assertion else 10000000000
|
|
|
|
async with semaphore:
|
|
try:
|
|
msg = f"[GraphRAG] build_subgraph doc:{doc_id}"
|
|
callback(msg=f"{msg} start (chunks={len(chunks)}, timeout={deadline}s)")
|
|
with trio.fail_after(deadline):
|
|
sg = await generate_subgraph(
|
|
kg_extractor,
|
|
tenant_id,
|
|
kb_id,
|
|
doc_id,
|
|
chunks,
|
|
language,
|
|
kb_parser_config.get("graphrag", {}).get("entity_types", []),
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
if sg:
|
|
subgraphs[doc_id] = sg
|
|
callback(msg=f"{msg} done")
|
|
else:
|
|
failed_docs.append((doc_id, "subgraph is empty"))
|
|
callback(msg=f"{msg} empty")
|
|
except Exception as e:
|
|
failed_docs.append((doc_id, repr(e)))
|
|
callback(msg=f"[GraphRAG] build_subgraph doc:{doc_id} FAILED: {e!r}")
|
|
|
|
async with trio.open_nursery() as nursery:
|
|
for doc_id in doc_ids:
|
|
nursery.start_soon(build_one, doc_id)
|
|
|
|
ok_docs = [d for d in doc_ids if d in subgraphs]
|
|
if not ok_docs:
|
|
callback(msg=f"[GraphRAG] kb:{kb_id} no subgraphs generated successfully, end.")
|
|
now = trio.current_time()
|
|
return {"ok_docs": [], "failed_docs": failed_docs, "total_docs": len(doc_ids), "total_chunks": total_chunks, "seconds": now - start}
|
|
|
|
kb_lock = RedisDistributedLock(f"graphrag_task_{kb_id}", lock_value="batch_merge", timeout=1200)
|
|
await kb_lock.spin_acquire()
|
|
callback(msg=f"[GraphRAG] kb:{kb_id} merge lock acquired")
|
|
|
|
try:
|
|
union_nodes: set = set()
|
|
final_graph = None
|
|
|
|
for doc_id in ok_docs:
|
|
sg = subgraphs[doc_id]
|
|
union_nodes.update(set(sg.nodes()))
|
|
|
|
new_graph = await merge_subgraph(
|
|
tenant_id,
|
|
kb_id,
|
|
doc_id,
|
|
sg,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
if new_graph is not None:
|
|
final_graph = new_graph
|
|
|
|
if final_graph is None:
|
|
callback(msg=f"[GraphRAG] kb:{kb_id} merge finished (no in-memory graph returned).")
|
|
else:
|
|
callback(msg=f"[GraphRAG] kb:{kb_id} merge finished, graph ready.")
|
|
finally:
|
|
kb_lock.release()
|
|
|
|
if not with_resolution and not with_community:
|
|
now = trio.current_time()
|
|
callback(msg=f"[GraphRAG] KB merge done in {now - start:.2f}s. ok={len(ok_docs)} / total={len(doc_ids)}")
|
|
return {"ok_docs": ok_docs, "failed_docs": failed_docs, "total_docs": len(doc_ids), "total_chunks": total_chunks, "seconds": now - start}
|
|
|
|
await kb_lock.spin_acquire()
|
|
callback(msg=f"[GraphRAG] kb:{kb_id} post-merge lock acquired for resolution/community")
|
|
|
|
try:
|
|
subgraph_nodes = set()
|
|
for sg in subgraphs.values():
|
|
subgraph_nodes.update(set(sg.nodes()))
|
|
|
|
if with_resolution:
|
|
await resolve_entities(
|
|
final_graph,
|
|
subgraph_nodes,
|
|
tenant_id,
|
|
kb_id,
|
|
None,
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
|
|
if with_community:
|
|
await extract_community(
|
|
final_graph,
|
|
tenant_id,
|
|
kb_id,
|
|
None,
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
finally:
|
|
kb_lock.release()
|
|
|
|
now = trio.current_time()
|
|
callback(msg=f"[GraphRAG] GraphRAG for KB {kb_id} done in {now - start:.2f} seconds. ok={len(ok_docs)} failed={len(failed_docs)} total_docs={len(doc_ids)} total_chunks={total_chunks}")
|
|
return {
|
|
"ok_docs": ok_docs,
|
|
"failed_docs": failed_docs, # [(doc_id, error), ...]
|
|
"total_docs": len(doc_ids),
|
|
"total_chunks": total_chunks,
|
|
"seconds": now - start,
|
|
}
|
|
|
|
|
|
async def generate_subgraph(
|
|
extractor: Extractor,
|
|
tenant_id: str,
|
|
kb_id: str,
|
|
doc_id: str,
|
|
chunks: list[str],
|
|
language,
|
|
entity_types,
|
|
llm_bdl,
|
|
embed_bdl,
|
|
callback,
|
|
):
|
|
contains = await does_graph_contains(tenant_id, kb_id, doc_id)
|
|
if contains:
|
|
callback(msg=f"Graph already contains {doc_id}")
|
|
return None
|
|
start = trio.current_time()
|
|
ext = extractor(
|
|
llm_bdl,
|
|
language=language,
|
|
entity_types=entity_types,
|
|
)
|
|
ents, rels = await ext(doc_id, chunks, callback)
|
|
subgraph = nx.Graph()
|
|
for ent in ents:
|
|
assert "description" in ent, f"entity {ent} does not have description"
|
|
ent["source_id"] = [doc_id]
|
|
subgraph.add_node(ent["entity_name"], **ent)
|
|
|
|
ignored_rels = 0
|
|
for rel in rels:
|
|
assert "description" in rel, f"relation {rel} does not have description"
|
|
if not subgraph.has_node(rel["src_id"]) or not subgraph.has_node(rel["tgt_id"]):
|
|
ignored_rels += 1
|
|
continue
|
|
rel["source_id"] = [doc_id]
|
|
subgraph.add_edge(
|
|
rel["src_id"],
|
|
rel["tgt_id"],
|
|
**rel,
|
|
)
|
|
if ignored_rels:
|
|
callback(msg=f"ignored {ignored_rels} relations due to missing entities.")
|
|
tidy_graph(subgraph, callback, check_attribute=False)
|
|
|
|
subgraph.graph["source_id"] = [doc_id]
|
|
chunk = {
|
|
"content_with_weight": json.dumps(nx.node_link_data(subgraph, edges="edges"), ensure_ascii=False),
|
|
"knowledge_graph_kwd": "subgraph",
|
|
"kb_id": kb_id,
|
|
"source_id": [doc_id],
|
|
"available_int": 0,
|
|
"removed_kwd": "N",
|
|
}
|
|
cid = chunk_id(chunk)
|
|
await trio.to_thread.run_sync(settings.docStoreConn.delete, {"knowledge_graph_kwd": "subgraph", "source_id": doc_id}, search.index_name(tenant_id), kb_id)
|
|
await trio.to_thread.run_sync(settings.docStoreConn.insert, [{"id": cid, **chunk}], search.index_name(tenant_id), kb_id)
|
|
now = trio.current_time()
|
|
callback(msg=f"generated subgraph for doc {doc_id} in {now - start:.2f} seconds.")
|
|
return subgraph
|
|
|
|
|
|
@timeout(60 * 3)
|
|
async def merge_subgraph(
|
|
tenant_id: str,
|
|
kb_id: str,
|
|
doc_id: str,
|
|
subgraph: nx.Graph,
|
|
embedding_model,
|
|
callback,
|
|
):
|
|
start = trio.current_time()
|
|
change = GraphChange()
|
|
old_graph = await get_graph(tenant_id, kb_id, subgraph.graph["source_id"])
|
|
if old_graph is not None:
|
|
logging.info("Merge with an exiting graph...................")
|
|
tidy_graph(old_graph, callback)
|
|
new_graph = graph_merge(old_graph, subgraph, change)
|
|
else:
|
|
new_graph = subgraph
|
|
change.added_updated_nodes = set(new_graph.nodes())
|
|
change.added_updated_edges = set(new_graph.edges())
|
|
pr = nx.pagerank(new_graph)
|
|
for node_name, pagerank in pr.items():
|
|
new_graph.nodes[node_name]["pagerank"] = pagerank
|
|
|
|
await set_graph(tenant_id, kb_id, embedding_model, new_graph, change, callback)
|
|
now = trio.current_time()
|
|
callback(msg=f"merging subgraph for doc {doc_id} into the global graph done in {now - start:.2f} seconds.")
|
|
return new_graph
|
|
|
|
|
|
@timeout(60 * 30, 1)
|
|
async def resolve_entities(
|
|
graph,
|
|
subgraph_nodes: set[str],
|
|
tenant_id: str,
|
|
kb_id: str,
|
|
doc_id: str,
|
|
llm_bdl,
|
|
embed_bdl,
|
|
callback,
|
|
):
|
|
start = trio.current_time()
|
|
er = EntityResolution(
|
|
llm_bdl,
|
|
)
|
|
reso = await er(graph, subgraph_nodes, callback=callback)
|
|
graph = reso.graph
|
|
change = reso.change
|
|
callback(msg=f"Graph resolution removed {len(change.removed_nodes)} nodes and {len(change.removed_edges)} edges.")
|
|
callback(msg="Graph resolution updated pagerank.")
|
|
|
|
await set_graph(tenant_id, kb_id, embed_bdl, graph, change, callback)
|
|
now = trio.current_time()
|
|
callback(msg=f"Graph resolution done in {now - start:.2f}s.")
|
|
|
|
|
|
@timeout(60 * 30, 1)
|
|
async def extract_community(
|
|
graph,
|
|
tenant_id: str,
|
|
kb_id: str,
|
|
doc_id: str,
|
|
llm_bdl,
|
|
embed_bdl,
|
|
callback,
|
|
):
|
|
start = trio.current_time()
|
|
ext = CommunityReportsExtractor(
|
|
llm_bdl,
|
|
)
|
|
cr = await ext(graph, callback=callback)
|
|
community_structure = cr.structured_output
|
|
community_reports = cr.output
|
|
doc_ids = graph.graph["source_id"]
|
|
|
|
now = trio.current_time()
|
|
callback(msg=f"Graph extracted {len(cr.structured_output)} communities in {now - start:.2f}s.")
|
|
start = now
|
|
chunks = []
|
|
for stru, rep in zip(community_structure, community_reports):
|
|
obj = {
|
|
"report": rep,
|
|
"evidences": "\n".join([f.get("explanation", "") for f in stru["findings"]]),
|
|
}
|
|
chunk = {
|
|
"id": get_uuid(),
|
|
"docnm_kwd": stru["title"],
|
|
"title_tks": rag_tokenizer.tokenize(stru["title"]),
|
|
"content_with_weight": json.dumps(obj, ensure_ascii=False),
|
|
"content_ltks": rag_tokenizer.tokenize(obj["report"] + " " + obj["evidences"]),
|
|
"knowledge_graph_kwd": "community_report",
|
|
"weight_flt": stru["weight"],
|
|
"entities_kwd": stru["entities"],
|
|
"important_kwd": stru["entities"],
|
|
"kb_id": kb_id,
|
|
"source_id": list(doc_ids),
|
|
"available_int": 0,
|
|
}
|
|
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
|
|
chunks.append(chunk)
|
|
|
|
await trio.to_thread.run_sync(
|
|
lambda: settings.docStoreConn.delete(
|
|
{"knowledge_graph_kwd": "community_report", "kb_id": kb_id},
|
|
search.index_name(tenant_id),
|
|
kb_id,
|
|
)
|
|
)
|
|
es_bulk_size = 4
|
|
for b in range(0, len(chunks), es_bulk_size):
|
|
doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert(chunks[b : b + es_bulk_size], search.index_name(tenant_id), kb_id))
|
|
if doc_store_result:
|
|
error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!"
|
|
raise Exception(error_message)
|
|
|
|
now = trio.current_time()
|
|
callback(msg=f"Graph indexed {len(cr.structured_output)} communities in {now - start:.2f}s.")
|
|
return community_structure, community_reports
|