Files
ragflow/api/db/services/tenant_llm_service.py
Kevin Hu 5e8cd693a5 Refa: split services about llm. (#9450)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-08-13 16:41:01 +08:00

252 lines
11 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from langfuse import Langfuse
from api import settings
from api.db import LLMType
from api.db.db_models import DB, LLMFactories, TenantLLM
from api.db.services.common_service import CommonService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.user_service import TenantService
from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
class LLMFactoriesService(CommonService):
model = LLMFactories
class TenantLLMService(CommonService):
model = TenantLLM
@classmethod
@DB.connection_context()
def get_api_key(cls, tenant_id, model_name):
mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
if not fid:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
else:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
if (not objs) and fid:
if fid == "LocalAI":
mdlnm += "___LocalAI"
elif fid == "HuggingFace":
mdlnm += "___HuggingFace"
elif fid == "OpenAI-API-Compatible":
mdlnm += "___OpenAI-API"
elif fid == "VLLM":
mdlnm += "___VLLM"
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
if not objs:
return
return objs[0]
@classmethod
@DB.connection_context()
def get_my_llms(cls, tenant_id):
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
return list(objs)
@staticmethod
def split_model_name_and_factory(model_name):
arr = model_name.split("@")
if len(arr) < 2:
return model_name, None
if len(arr) > 2:
return "@".join(arr[0:-1]), arr[-1]
# model name must be xxx@yyy
try:
model_factories = settings.FACTORY_LLM_INFOS
model_providers = set([f["name"] for f in model_factories])
if arr[-1] not in model_providers:
return model_name, None
return arr[0], arr[-1]
except Exception as e:
logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
return model_name, None
@classmethod
@DB.connection_context()
def get_model_config(cls, tenant_id, llm_type, llm_name=None):
from api.db.services.llm_service import LLMService
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
if llm_type == LLMType.EMBEDDING.value:
mdlnm = tenant.embd_id if not llm_name else llm_name
elif llm_type == LLMType.SPEECH2TEXT.value:
mdlnm = tenant.asr_id
elif llm_type == LLMType.IMAGE2TEXT.value:
mdlnm = tenant.img2txt_id if not llm_name else llm_name
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.rerank_id if not llm_name else llm_name
elif llm_type == LLMType.TTS:
mdlnm = tenant.tts_id if not llm_name else llm_name
else:
assert False, "LLM type error"
model_config = cls.get_api_key(tenant_id, mdlnm)
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
if not model_config: # for some cases seems fid mismatch
model_config = cls.get_api_key(tenant_id, mdlnm)
if model_config:
model_config = model_config.to_dict()
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if not llm and fid: # for some cases seems fid mismatch
llm = LLMService.query(llm_name=mdlnm)
if llm:
model_config["is_tools"] = llm[0].is_tools
if not model_config:
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
if not model_config:
if mdlnm == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
else:
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
raise LookupError("Model({}) not authorized".format(mdlnm))
return model_config
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
kwargs.update({"provider": model_config["llm_factory"]})
if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel:
return
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.RERANK:
if model_config["llm_factory"] not in RerankModel:
return
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.IMAGE2TEXT.value:
if model_config["llm_factory"] not in CvModel:
return
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
if llm_type == LLMType.CHAT.value:
if model_config["llm_factory"] not in ChatModel:
return
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
if llm_type == LLMType.SPEECH2TEXT:
if model_config["llm_factory"] not in Seq2txtModel:
return
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
if llm_type == LLMType.TTS:
if model_config["llm_factory"] not in TTSModel:
return
return TTSModel[model_config["llm_factory"]](
model_config["api_key"],
model_config["llm_name"],
base_url=model_config["api_base"],
)
@classmethod
@DB.connection_context()
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
logging.error(f"Tenant not found: {tenant_id}")
return 0
llm_map = {
LLMType.EMBEDDING.value: tenant.embd_id if not llm_name else llm_name,
LLMType.SPEECH2TEXT.value: tenant.asr_id,
LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
}
mdlnm = llm_map.get(llm_type)
if mdlnm is None:
logging.error(f"LLM type error: {llm_type}")
return 0
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
try:
num = (
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
.execute()
)
except Exception:
logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
return 0
return num
@classmethod
@DB.connection_context()
def get_openai_models(cls):
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
return list(objs)
@staticmethod
def llm_id2llm_type(llm_id: str) -> str | None:
from api.db.services.llm_service import LLMService
llm_id, *_ = TenantLLMService.split_model_name_and_factory(llm_id)
llm_factories = settings.FACTORY_LLM_INFOS
for llm_factory in llm_factories:
for llm in llm_factory["llm"]:
if llm_id == llm["llm_name"]:
return llm["model_type"].split(",")[-1]
for llm in LLMService.query(llm_name=llm_id):
return llm.model_type
llm = TenantLLMService.get_or_none(llm_name=llm_id)
if llm:
return llm.model_type
for llm in TenantLLMService.query(llm_name=llm_id):
return llm.model_type
class LLM4Tenant:
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
self.tenant_id = tenant_id
self.llm_type = llm_type
self.llm_name = llm_name
self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang, **kwargs)
assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
self.max_length = model_config.get("max_tokens", 8192)
self.is_tools = model_config.get("is_tools", False)
self.verbose_tool_use = kwargs.get("verbose_tool_use")
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
self.langfuse = None
if langfuse_keys:
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
if langfuse.auth_check():
self.langfuse = langfuse
trace_id = self.langfuse.create_trace_id()
self.trace_context = {"trace_id": trace_id}