mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-30 15:16:45 +08:00
## What problem does this PR solve?
This PR addresses three specific issues to improve agent reliability and
model support:
1. **`codeExec` Output Limitation**: Previously, the `codeExec` tool was
strictly limited to returning `string` types. I updated the output
constraint to `object` to support structured data (Dicts, Lists, etc.)
required for complex downstream tasks.
2. **`codeExec` Error Handling**: Improved the execution logic so that
when runtime errors occur, the tool captures the exception and returns
the error message as the output instead of causing the process to abort
or fail silently.
3. **Spark Model Configuration**:
- Added support for the `MAX-32k` model variant.
- Fixed the `Spark-Lite` mapping from `general` to `lite` to match the
latest API specifications.
## Type of change
- [x] Bug Fix (fixes execution logic and model mapping)
- [x] New Feature / Enhancement (adds model support and improves tool
flexibility)
## Key Changes
### `agent/tools/code_exec.py`
- Changed the output type definition from `string` to `object`.
- Refactored the execution flow to gracefully catch exceptions and
return error messages as part of the tool output.
### `rag/llm/chat_model.py`
- Added `"Spark-Max-32K": "max-32k"` to the model list.
- Updated `"Spark-Lite"` value from `"general"` to `"lite"`.
## Checklist
- [x] My code follows the style guidelines of this project.
- [x] I have performed a self-review of my own code.
Signed-off-by: evilhero <2278596667@qq.com>
1652 lines
67 KiB
Python
1652 lines
67 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import asyncio
|
|
import json
|
|
import logging
|
|
import os
|
|
import random
|
|
import re
|
|
import time
|
|
from abc import ABC
|
|
from copy import deepcopy
|
|
from urllib.parse import urljoin
|
|
|
|
import json_repair
|
|
import litellm
|
|
import openai
|
|
from openai import AsyncOpenAI, OpenAI
|
|
from strenum import StrEnum
|
|
|
|
from common.token_utils import num_tokens_from_string, total_token_count_from_response
|
|
from rag.llm import FACTORY_DEFAULT_BASE_URL, LITELLM_PROVIDER_PREFIX, SupportedLiteLLMProvider
|
|
from rag.nlp import is_chinese, is_english
|
|
|
|
from common.misc_utils import thread_pool_exec
|
|
class LLMErrorCode(StrEnum):
|
|
ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED"
|
|
ERROR_AUTHENTICATION = "AUTH_ERROR"
|
|
ERROR_INVALID_REQUEST = "INVALID_REQUEST"
|
|
ERROR_SERVER = "SERVER_ERROR"
|
|
ERROR_TIMEOUT = "TIMEOUT"
|
|
ERROR_CONNECTION = "CONNECTION_ERROR"
|
|
ERROR_MODEL = "MODEL_ERROR"
|
|
ERROR_MAX_ROUNDS = "ERROR_MAX_ROUNDS"
|
|
ERROR_CONTENT_FILTER = "CONTENT_FILTERED"
|
|
ERROR_QUOTA = "QUOTA_EXCEEDED"
|
|
ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED"
|
|
ERROR_GENERIC = "GENERIC_ERROR"
|
|
|
|
|
|
class ReActMode(StrEnum):
|
|
FUNCTION_CALL = "function_call"
|
|
REACT = "react"
|
|
|
|
|
|
ERROR_PREFIX = "**ERROR**"
|
|
LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。"
|
|
LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
|
|
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name, base_url, **kwargs):
|
|
timeout = int(os.environ.get("LLM_TIMEOUT_SECONDS", 600))
|
|
self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
|
|
self.async_client = AsyncOpenAI(api_key=key, base_url=base_url, timeout=timeout)
|
|
self.model_name = model_name
|
|
# Configure retry parameters
|
|
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
|
|
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
|
|
self.max_rounds = kwargs.get("max_rounds", 5)
|
|
self.is_tools = False
|
|
self.tools = []
|
|
self.toolcall_sessions = {}
|
|
|
|
def _get_delay(self):
|
|
return self.base_delay * random.uniform(10, 150)
|
|
|
|
def _classify_error(self, error):
|
|
error_str = str(error).lower()
|
|
|
|
keywords_mapping = [
|
|
(["quota", "capacity", "credit", "billing", "balance", "欠费"], LLMErrorCode.ERROR_QUOTA),
|
|
(["rate limit", "429", "tpm limit", "too many requests", "requests per minute"], LLMErrorCode.ERROR_RATE_LIMIT),
|
|
(["auth", "key", "apikey", "401", "forbidden", "permission"], LLMErrorCode.ERROR_AUTHENTICATION),
|
|
(["invalid", "bad request", "400", "format", "malformed", "parameter"], LLMErrorCode.ERROR_INVALID_REQUEST),
|
|
(["server", "503", "502", "504", "500", "unavailable"], LLMErrorCode.ERROR_SERVER),
|
|
(["timeout", "timed out"], LLMErrorCode.ERROR_TIMEOUT),
|
|
(["connect", "network", "unreachable", "dns"], LLMErrorCode.ERROR_CONNECTION),
|
|
(["filter", "content", "policy", "blocked", "safety", "inappropriate"], LLMErrorCode.ERROR_CONTENT_FILTER),
|
|
(["model", "not found", "does not exist", "not available"], LLMErrorCode.ERROR_MODEL),
|
|
(["max rounds"], LLMErrorCode.ERROR_MODEL),
|
|
]
|
|
for words, code in keywords_mapping:
|
|
if re.search("({})".format("|".join(words)), error_str):
|
|
return code
|
|
|
|
return LLMErrorCode.ERROR_GENERIC
|
|
|
|
def _clean_conf(self, gen_conf):
|
|
model_name_lower = (self.model_name or "").lower()
|
|
# gpt-5 and gpt-5.1 endpoints have inconsistent parameter support, clear custom generation params to prevent unexpected issues
|
|
if "gpt-5" in model_name_lower:
|
|
gen_conf = {}
|
|
return gen_conf
|
|
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
|
|
allowed_conf = {
|
|
"temperature",
|
|
"max_completion_tokens",
|
|
"top_p",
|
|
"stream",
|
|
"stream_options",
|
|
"stop",
|
|
"n",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"functions",
|
|
"function_call",
|
|
"logit_bias",
|
|
"user",
|
|
"response_format",
|
|
"seed",
|
|
"tools",
|
|
"tool_choice",
|
|
"logprobs",
|
|
"top_logprobs",
|
|
"extra_headers",
|
|
}
|
|
|
|
gen_conf = {k: v for k, v in gen_conf.items() if k in allowed_conf}
|
|
return gen_conf
|
|
|
|
async def _async_chat_streamly(self, history, gen_conf, **kwargs):
|
|
logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
|
|
reasoning_start = False
|
|
|
|
request_kwargs = {"model": self.model_name, "messages": history, "stream": True, **gen_conf}
|
|
stop = kwargs.get("stop")
|
|
if stop:
|
|
request_kwargs["stop"] = stop
|
|
|
|
response = await self.async_client.chat.completions.create(**request_kwargs)
|
|
async for resp in response:
|
|
if not resp.choices:
|
|
continue
|
|
if not resp.choices[0].delta.content:
|
|
resp.choices[0].delta.content = ""
|
|
if kwargs.get("with_reasoning", True) and hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
|
|
ans = ""
|
|
if not reasoning_start:
|
|
reasoning_start = True
|
|
ans = "<think>"
|
|
ans += resp.choices[0].delta.reasoning_content + "</think>"
|
|
else:
|
|
reasoning_start = False
|
|
ans = resp.choices[0].delta.content
|
|
tol = total_token_count_from_response(resp)
|
|
if not tol:
|
|
tol = num_tokens_from_string(resp.choices[0].delta.content)
|
|
|
|
finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else ""
|
|
if finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
yield ans, tol
|
|
|
|
async def async_chat_streamly(self, system, history, gen_conf: dict = {}, **kwargs):
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
ans = ""
|
|
total_tokens = 0
|
|
|
|
for attempt in range(self.max_retries + 1):
|
|
try:
|
|
async for delta_ans, tol in self._async_chat_streamly(history, gen_conf, **kwargs):
|
|
ans = delta_ans
|
|
total_tokens += tol
|
|
yield ans
|
|
|
|
yield total_tokens
|
|
return
|
|
except Exception as e:
|
|
e = await self._exceptions_async(e, attempt)
|
|
if e:
|
|
yield e
|
|
yield total_tokens
|
|
return
|
|
|
|
def _length_stop(self, ans):
|
|
if is_chinese([ans]):
|
|
return ans + LENGTH_NOTIFICATION_CN
|
|
return ans + LENGTH_NOTIFICATION_EN
|
|
|
|
@property
|
|
def _retryable_errors(self) -> set[str]:
|
|
return {
|
|
LLMErrorCode.ERROR_RATE_LIMIT,
|
|
LLMErrorCode.ERROR_SERVER,
|
|
}
|
|
|
|
def _should_retry(self, error_code: str) -> bool:
|
|
return error_code in self._retryable_errors
|
|
|
|
def _exceptions(self, e, attempt) -> str | None:
|
|
logging.exception("OpenAI chat_with_tools")
|
|
# Classify the error
|
|
error_code = self._classify_error(e)
|
|
if attempt == self.max_retries:
|
|
error_code = LLMErrorCode.ERROR_MAX_RETRIES
|
|
|
|
if self._should_retry(error_code):
|
|
delay = self._get_delay()
|
|
logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
|
|
time.sleep(delay)
|
|
return None
|
|
|
|
msg = f"{ERROR_PREFIX}: {error_code} - {str(e)}"
|
|
logging.error(f"sync base giving up: {msg}")
|
|
return msg
|
|
|
|
async def _exceptions_async(self, e, attempt):
|
|
logging.exception("OpenAI async completion")
|
|
error_code = self._classify_error(e)
|
|
if attempt == self.max_retries:
|
|
error_code = LLMErrorCode.ERROR_MAX_RETRIES
|
|
|
|
if self._should_retry(error_code):
|
|
delay = self._get_delay()
|
|
logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
|
|
await asyncio.sleep(delay)
|
|
return None
|
|
|
|
msg = f"{ERROR_PREFIX}: {error_code} - {str(e)}"
|
|
logging.error(f"async base giving up: {msg}")
|
|
return msg
|
|
|
|
def _verbose_tool_use(self, name, args, res):
|
|
return "<tool_call>" + json.dumps({"name": name, "args": args, "result": res}, ensure_ascii=False, indent=2) + "</tool_call>"
|
|
|
|
def _append_history(self, hist, tool_call, tool_res):
|
|
hist.append(
|
|
{
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"index": tool_call.index,
|
|
"id": tool_call.id,
|
|
"function": {
|
|
"name": tool_call.function.name,
|
|
"arguments": tool_call.function.arguments,
|
|
},
|
|
"type": "function",
|
|
},
|
|
],
|
|
}
|
|
)
|
|
try:
|
|
if isinstance(tool_res, dict):
|
|
tool_res = json.dumps(tool_res, ensure_ascii=False)
|
|
finally:
|
|
hist.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_res)})
|
|
return hist
|
|
|
|
def bind_tools(self, toolcall_session, tools):
|
|
if not (toolcall_session and tools):
|
|
return
|
|
self.is_tools = True
|
|
self.toolcall_session = toolcall_session
|
|
self.tools = tools
|
|
|
|
async def async_chat_with_tools(self, system: str, history: list, gen_conf: dict = {}):
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
|
|
ans = ""
|
|
tk_count = 0
|
|
hist = deepcopy(history)
|
|
for attempt in range(self.max_retries + 1):
|
|
history = deepcopy(hist)
|
|
try:
|
|
for _ in range(self.max_rounds + 1):
|
|
logging.info(f"{self.tools=}")
|
|
response = await self.async_client.chat.completions.create(model=self.model_name, messages=history, tools=self.tools, tool_choice="auto", **gen_conf)
|
|
tk_count += total_token_count_from_response(response)
|
|
if any([not response.choices, not response.choices[0].message]):
|
|
raise Exception(f"500 response structure error. Response: {response}")
|
|
|
|
if not hasattr(response.choices[0].message, "tool_calls") or not response.choices[0].message.tool_calls:
|
|
if hasattr(response.choices[0].message, "reasoning_content") and response.choices[0].message.reasoning_content:
|
|
ans += "<think>" + response.choices[0].message.reasoning_content + "</think>"
|
|
|
|
ans += response.choices[0].message.content
|
|
if response.choices[0].finish_reason == "length":
|
|
ans = self._length_stop(ans)
|
|
|
|
return ans, tk_count
|
|
|
|
for tool_call in response.choices[0].message.tool_calls:
|
|
logging.info(f"Response {tool_call=}")
|
|
name = tool_call.function.name
|
|
try:
|
|
args = json_repair.loads(tool_call.function.arguments)
|
|
tool_response = await thread_pool_exec(self.toolcall_session.tool_call, name, args)
|
|
history = self._append_history(history, tool_call, tool_response)
|
|
ans += self._verbose_tool_use(name, args, tool_response)
|
|
except Exception as e:
|
|
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
|
|
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
|
|
ans += self._verbose_tool_use(name, {}, str(e))
|
|
|
|
logging.warning(f"Exceed max rounds: {self.max_rounds}")
|
|
history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
|
|
response, token_count = await self._async_chat(history, gen_conf)
|
|
ans += response
|
|
tk_count += token_count
|
|
return ans, tk_count
|
|
except Exception as e:
|
|
e = await self._exceptions_async(e, attempt)
|
|
if e:
|
|
return e, tk_count
|
|
|
|
assert False, "Shouldn't be here."
|
|
|
|
async def async_chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict = {}):
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
tools = self.tools
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
|
|
total_tokens = 0
|
|
hist = deepcopy(history)
|
|
|
|
for attempt in range(self.max_retries + 1):
|
|
history = deepcopy(hist)
|
|
try:
|
|
for _ in range(self.max_rounds + 1):
|
|
reasoning_start = False
|
|
logging.info(f"{tools=}")
|
|
|
|
response = await self.async_client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, tool_choice="auto", **gen_conf)
|
|
|
|
final_tool_calls = {}
|
|
answer = ""
|
|
|
|
async for resp in response:
|
|
if not hasattr(resp, "choices") or not resp.choices:
|
|
continue
|
|
|
|
delta = resp.choices[0].delta
|
|
|
|
if hasattr(delta, "tool_calls") and delta.tool_calls:
|
|
for tool_call in delta.tool_calls:
|
|
index = tool_call.index
|
|
if index not in final_tool_calls:
|
|
if not tool_call.function.arguments:
|
|
tool_call.function.arguments = ""
|
|
final_tool_calls[index] = tool_call
|
|
else:
|
|
final_tool_calls[index].function.arguments += tool_call.function.arguments or ""
|
|
continue
|
|
|
|
if not hasattr(delta, "content") or delta.content is None:
|
|
delta.content = ""
|
|
|
|
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
|
|
ans = ""
|
|
if not reasoning_start:
|
|
reasoning_start = True
|
|
ans = "<think>"
|
|
ans += delta.reasoning_content + "</think>"
|
|
yield ans
|
|
else:
|
|
reasoning_start = False
|
|
answer += delta.content
|
|
yield delta.content
|
|
|
|
tol = total_token_count_from_response(resp)
|
|
if not tol:
|
|
total_tokens += num_tokens_from_string(delta.content)
|
|
else:
|
|
total_tokens = tol
|
|
|
|
finish_reason = getattr(resp.choices[0], "finish_reason", "")
|
|
if finish_reason == "length":
|
|
yield self._length_stop("")
|
|
|
|
if answer:
|
|
yield total_tokens
|
|
return
|
|
|
|
for tool_call in final_tool_calls.values():
|
|
name = tool_call.function.name
|
|
try:
|
|
args = json_repair.loads(tool_call.function.arguments)
|
|
yield self._verbose_tool_use(name, args, "Begin to call...")
|
|
tool_response = await thread_pool_exec(self.toolcall_session.tool_call, name, args)
|
|
history = self._append_history(history, tool_call, tool_response)
|
|
yield self._verbose_tool_use(name, args, tool_response)
|
|
except Exception as e:
|
|
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
|
|
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
|
|
yield self._verbose_tool_use(name, {}, str(e))
|
|
|
|
logging.warning(f"Exceed max rounds: {self.max_rounds}")
|
|
history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
|
|
|
|
response = await self.async_client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, tool_choice="auto", **gen_conf)
|
|
|
|
async for resp in response:
|
|
if not hasattr(resp, "choices") or not resp.choices:
|
|
continue
|
|
delta = resp.choices[0].delta
|
|
if not hasattr(delta, "content") or delta.content is None:
|
|
continue
|
|
tol = total_token_count_from_response(resp)
|
|
if not tol:
|
|
total_tokens += num_tokens_from_string(delta.content)
|
|
else:
|
|
total_tokens = tol
|
|
yield delta.content
|
|
|
|
yield total_tokens
|
|
return
|
|
|
|
except Exception as e:
|
|
e = await self._exceptions_async(e, attempt)
|
|
if e:
|
|
logging.error(f"async_chat_streamly failed: {e}")
|
|
yield e
|
|
yield total_tokens
|
|
return
|
|
|
|
assert False, "Shouldn't be here."
|
|
|
|
async def _async_chat(self, history, gen_conf, **kwargs):
|
|
logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2))
|
|
if self.model_name.lower().find("qwq") >= 0:
|
|
logging.info(f"[INFO] {self.model_name} detected as reasoning model, using async_chat_streamly")
|
|
|
|
final_ans = ""
|
|
tol_token = 0
|
|
async for delta, tol in self._async_chat_streamly(history, gen_conf, with_reasoning=False, **kwargs):
|
|
if delta.startswith("<think>") or delta.endswith("</think>"):
|
|
continue
|
|
final_ans += delta
|
|
tol_token = tol
|
|
|
|
if len(final_ans.strip()) == 0:
|
|
final_ans = "**ERROR**: Empty response from reasoning model"
|
|
|
|
return final_ans.strip(), tol_token
|
|
|
|
if self.model_name.lower().find("qwen3") >= 0:
|
|
kwargs["extra_body"] = {"enable_thinking": False}
|
|
|
|
response = await self.async_client.chat.completions.create(model=self.model_name, messages=history, **gen_conf, **kwargs)
|
|
|
|
if not response.choices or not response.choices[0].message or not response.choices[0].message.content:
|
|
return "", 0
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans = self._length_stop(ans)
|
|
return ans, total_token_count_from_response(response)
|
|
|
|
async def async_chat(self, system, history, gen_conf={}, **kwargs):
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
|
|
for attempt in range(self.max_retries + 1):
|
|
try:
|
|
return await self._async_chat(history, gen_conf, **kwargs)
|
|
except Exception as e:
|
|
e = await self._exceptions_async(e, attempt)
|
|
if e:
|
|
return e, 0
|
|
assert False, "Shouldn't be here."
|
|
|
|
|
|
class XinferenceChat(Base):
|
|
_FACTORY_NAME = "Xinference"
|
|
|
|
def __init__(self, key=None, model_name="", base_url="", **kwargs):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
super().__init__(key, model_name, base_url, **kwargs)
|
|
|
|
|
|
class HuggingFaceChat(Base):
|
|
_FACTORY_NAME = "HuggingFace"
|
|
|
|
def __init__(self, key=None, model_name="", base_url="", **kwargs):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
|
|
|
|
|
|
class ModelScopeChat(Base):
|
|
_FACTORY_NAME = "ModelScope"
|
|
|
|
def __init__(self, key=None, model_name="", base_url="", **kwargs):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
|
|
|
|
|
|
class BaiChuanChat(Base):
|
|
_FACTORY_NAME = "BaiChuan"
|
|
|
|
def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1", **kwargs):
|
|
if not base_url:
|
|
base_url = "https://api.baichuan-ai.com/v1"
|
|
super().__init__(key, model_name, base_url, **kwargs)
|
|
|
|
@staticmethod
|
|
def _format_params(params):
|
|
return {
|
|
"temperature": params.get("temperature", 0.3),
|
|
"top_p": params.get("top_p", 0.85),
|
|
}
|
|
|
|
def _clean_conf(self, gen_conf):
|
|
return {
|
|
"temperature": gen_conf.get("temperature", 0.3),
|
|
"top_p": gen_conf.get("top_p", 0.85),
|
|
}
|
|
|
|
def _chat(self, history, gen_conf={}, **kwargs):
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
|
|
**gen_conf,
|
|
)
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
if is_chinese([ans]):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
return ans, total_token_count_from_response(response)
|
|
|
|
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
|
|
stream=True,
|
|
**self._format_params(gen_conf),
|
|
)
|
|
for resp in response:
|
|
if not resp.choices:
|
|
continue
|
|
if not resp.choices[0].delta.content:
|
|
resp.choices[0].delta.content = ""
|
|
ans = resp.choices[0].delta.content
|
|
tol = total_token_count_from_response(resp)
|
|
if not tol:
|
|
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
|
|
else:
|
|
total_tokens = tol
|
|
if resp.choices[0].finish_reason == "length":
|
|
if is_chinese([ans]):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class LocalAIChat(Base):
|
|
_FACTORY_NAME = "LocalAI"
|
|
|
|
def __init__(self, key, model_name, base_url=None, **kwargs):
|
|
super().__init__(key, model_name, base_url=base_url, **kwargs)
|
|
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key="empty", base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
|
|
|
|
class LocalLLM(Base):
|
|
def __init__(self, key, model_name, base_url=None, **kwargs):
|
|
super().__init__(key, model_name, base_url=base_url, **kwargs)
|
|
from jina import Client
|
|
|
|
self.client = Client(port=12345, protocol="grpc", asyncio=True)
|
|
|
|
def _prepare_prompt(self, system, history, gen_conf):
|
|
from rag.svr.jina_server import Prompt
|
|
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
return Prompt(message=history, gen_conf=gen_conf)
|
|
|
|
def _stream_response(self, endpoint, prompt):
|
|
from rag.svr.jina_server import Generation
|
|
|
|
answer = ""
|
|
try:
|
|
res = self.client.stream_doc(on=endpoint, inputs=prompt, return_type=Generation)
|
|
loop = asyncio.get_event_loop()
|
|
try:
|
|
while True:
|
|
answer = loop.run_until_complete(res.__anext__()).text
|
|
yield answer
|
|
except StopAsyncIteration:
|
|
pass
|
|
except Exception as e:
|
|
yield answer + "\n**ERROR**: " + str(e)
|
|
yield num_tokens_from_string(answer)
|
|
|
|
def chat(self, system, history, gen_conf={}, **kwargs):
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
prompt = self._prepare_prompt(system, history, gen_conf)
|
|
chat_gen = self._stream_response("/chat", prompt)
|
|
ans = next(chat_gen)
|
|
total_tokens = next(chat_gen)
|
|
return ans, total_tokens
|
|
|
|
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
prompt = self._prepare_prompt(system, history, gen_conf)
|
|
return self._stream_response("/stream", prompt)
|
|
|
|
|
|
class VolcEngineChat(Base):
|
|
_FACTORY_NAME = "VolcEngine"
|
|
|
|
def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs):
|
|
"""
|
|
Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
|
|
Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
|
|
model_name is for display only
|
|
"""
|
|
base_url = base_url if base_url else "https://ark.cn-beijing.volces.com/api/v3"
|
|
ark_api_key = json.loads(key).get("ark_api_key", "")
|
|
model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
|
|
super().__init__(ark_api_key, model_name, base_url, **kwargs)
|
|
|
|
|
|
class MistralChat(Base):
|
|
_FACTORY_NAME = "Mistral"
|
|
|
|
def __init__(self, key, model_name, base_url=None, **kwargs):
|
|
super().__init__(key, model_name, base_url=base_url, **kwargs)
|
|
|
|
from mistralai.client import MistralClient
|
|
|
|
self.client = MistralClient(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def _clean_conf(self, gen_conf):
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
return gen_conf
|
|
|
|
def _chat(self, history, gen_conf={}, **kwargs):
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
response = self.client.chat(model=self.model_name, messages=history, **gen_conf)
|
|
ans = response.choices[0].message.content
|
|
if response.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
return ans, total_token_count_from_response(response)
|
|
|
|
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat_stream(model=self.model_name, messages=history, **gen_conf, **kwargs)
|
|
for resp in response:
|
|
if not resp.choices or not resp.choices[0].delta.content:
|
|
continue
|
|
ans = resp.choices[0].delta.content
|
|
total_tokens += 1
|
|
if resp.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
yield ans
|
|
|
|
except openai.APIError as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class LmStudioChat(Base):
|
|
_FACTORY_NAME = "LM-Studio"
|
|
|
|
def __init__(self, key, model_name, base_url, **kwargs):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
super().__init__(key, model_name, base_url, **kwargs)
|
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class OpenAI_APIChat(Base):
|
|
_FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
|
|
|
|
def __init__(self, key, model_name, base_url, **kwargs):
|
|
if not base_url:
|
|
raise ValueError("url cannot be None")
|
|
model_name = model_name.split("___")[0]
|
|
super().__init__(key, model_name, base_url, **kwargs)
|
|
|
|
|
|
class LeptonAIChat(Base):
|
|
_FACTORY_NAME = "LeptonAI"
|
|
|
|
def __init__(self, key, model_name, base_url=None, **kwargs):
|
|
if not base_url:
|
|
base_url = urljoin("https://" + model_name + ".lepton.run", "api/v1")
|
|
super().__init__(key, model_name, base_url, **kwargs)
|
|
|
|
|
|
class ReplicateChat(Base):
|
|
_FACTORY_NAME = "Replicate"
|
|
|
|
def __init__(self, key, model_name, base_url=None, **kwargs):
|
|
super().__init__(key, model_name, base_url=base_url, **kwargs)
|
|
|
|
from replicate.client import Client
|
|
|
|
self.model_name = model_name
|
|
self.client = Client(api_token=key)
|
|
|
|
def _chat(self, history, gen_conf={}, **kwargs):
|
|
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
|
|
prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:] if item["role"] != "system"])
|
|
response = self.client.run(
|
|
self.model_name,
|
|
input={"system_prompt": system, "prompt": prompt, **gen_conf},
|
|
)
|
|
ans = "".join(response)
|
|
return ans, num_tokens_from_string(ans)
|
|
|
|
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]])
|
|
ans = ""
|
|
try:
|
|
response = self.client.run(
|
|
self.model_name,
|
|
input={"system_prompt": system, "prompt": prompt, **gen_conf},
|
|
)
|
|
for resp in response:
|
|
ans = resp
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield num_tokens_from_string(ans)
|
|
|
|
|
|
class SparkChat(Base):
|
|
_FACTORY_NAME = "XunFei Spark"
|
|
|
|
def __init__(self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1", **kwargs):
|
|
if not base_url:
|
|
base_url = "https://spark-api-open.xf-yun.com/v1"
|
|
model2version = {
|
|
"Spark-Max": "generalv3.5",
|
|
"Spark-Max-32K": "max-32k",
|
|
"Spark-Lite": "lite",
|
|
"Spark-Pro": "generalv3",
|
|
"Spark-Pro-128K": "pro-128k",
|
|
"Spark-4.0-Ultra": "4.0Ultra",
|
|
}
|
|
version2model = {v: k for k, v in model2version.items()}
|
|
assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
|
|
if model_name in model2version:
|
|
model_version = model2version[model_name]
|
|
else:
|
|
model_version = model_name
|
|
super().__init__(key, model_version, base_url, **kwargs)
|
|
|
|
|
|
class BaiduYiyanChat(Base):
|
|
_FACTORY_NAME = "BaiduYiyan"
|
|
|
|
def __init__(self, key, model_name, base_url=None, **kwargs):
|
|
super().__init__(key, model_name, base_url=base_url, **kwargs)
|
|
|
|
import qianfan
|
|
|
|
key = json.loads(key)
|
|
ak = key.get("yiyan_ak", "")
|
|
sk = key.get("yiyan_sk", "")
|
|
self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
|
|
self.model_name = model_name.lower()
|
|
|
|
def _clean_conf(self, gen_conf):
|
|
gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
return gen_conf
|
|
|
|
def _chat(self, history, gen_conf):
|
|
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
|
|
response = self.client.do(model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, **gen_conf).body
|
|
ans = response["result"]
|
|
return ans, total_token_count_from_response(response)
|
|
|
|
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
|
gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
ans = ""
|
|
total_tokens = 0
|
|
|
|
try:
|
|
response = self.client.do(model=self.model_name, messages=history, system=system, stream=True, **gen_conf)
|
|
for resp in response:
|
|
resp = resp.body
|
|
ans = resp["result"]
|
|
total_tokens = total_token_count_from_response(resp)
|
|
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class GoogleChat(Base):
|
|
_FACTORY_NAME = "Google Cloud"
|
|
|
|
def __init__(self, key, model_name, base_url=None, **kwargs):
|
|
super().__init__(key, model_name, base_url=base_url, **kwargs)
|
|
|
|
import base64
|
|
|
|
from google.oauth2 import service_account
|
|
|
|
key = json.loads(key)
|
|
access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
|
|
project_id = key.get("google_project_id", "")
|
|
region = key.get("google_region", "")
|
|
|
|
scopes = ["https://www.googleapis.com/auth/cloud-platform"]
|
|
self.model_name = model_name
|
|
|
|
if "claude" in self.model_name:
|
|
from anthropic import AnthropicVertex
|
|
from google.auth.transport.requests import Request
|
|
|
|
if access_token:
|
|
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
|
|
request = Request()
|
|
credits.refresh(request)
|
|
token = credits.token
|
|
self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
|
|
else:
|
|
self.client = AnthropicVertex(region=region, project_id=project_id)
|
|
else:
|
|
from google import genai
|
|
|
|
if access_token:
|
|
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
|
|
self.client = genai.Client(vertexai=True, project=project_id, location=region, credentials=credits)
|
|
else:
|
|
self.client = genai.Client(vertexai=True, project=project_id, location=region)
|
|
|
|
def _clean_conf(self, gen_conf):
|
|
if "claude" in self.model_name:
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
else:
|
|
if "max_tokens" in gen_conf:
|
|
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
|
|
del gen_conf["max_tokens"]
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_output_tokens"]:
|
|
del gen_conf[k]
|
|
return gen_conf
|
|
|
|
def _chat(self, history, gen_conf={}, **kwargs):
|
|
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
|
|
|
|
if "claude" in self.model_name:
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=[h for h in history if h["role"] != "system"],
|
|
system=system,
|
|
stream=False,
|
|
**gen_conf,
|
|
).json()
|
|
ans = response["content"][0]["text"]
|
|
if response["stop_reason"] == "max_tokens":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return (
|
|
ans,
|
|
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
|
|
)
|
|
|
|
# Gemini models with google-genai SDK
|
|
# Set default thinking_budget=0 if not specified
|
|
if "thinking_budget" not in gen_conf:
|
|
gen_conf["thinking_budget"] = 0
|
|
|
|
thinking_budget = gen_conf.pop("thinking_budget", 0)
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
|
|
# Build GenerateContentConfig
|
|
try:
|
|
from google.genai.types import Content, GenerateContentConfig, Part, ThinkingConfig
|
|
except ImportError as e:
|
|
logging.error(f"[GoogleChat] Failed to import google-genai: {e}. Please install: pip install google-genai>=1.41.0")
|
|
raise
|
|
|
|
config_dict = {}
|
|
if system:
|
|
config_dict["system_instruction"] = system
|
|
if "temperature" in gen_conf:
|
|
config_dict["temperature"] = gen_conf["temperature"]
|
|
if "top_p" in gen_conf:
|
|
config_dict["top_p"] = gen_conf["top_p"]
|
|
if "max_output_tokens" in gen_conf:
|
|
config_dict["max_output_tokens"] = gen_conf["max_output_tokens"]
|
|
|
|
# Add ThinkingConfig
|
|
config_dict["thinking_config"] = ThinkingConfig(thinking_budget=thinking_budget)
|
|
|
|
config = GenerateContentConfig(**config_dict)
|
|
|
|
# Convert history to google-genai Content format
|
|
contents = []
|
|
for item in history:
|
|
if item["role"] == "system":
|
|
continue
|
|
# google-genai uses 'model' instead of 'assistant'
|
|
role = "model" if item["role"] == "assistant" else item["role"]
|
|
content = Content(
|
|
role=role,
|
|
parts=[Part(text=item["content"])],
|
|
)
|
|
contents.append(content)
|
|
|
|
response = self.client.models.generate_content(
|
|
model=self.model_name,
|
|
contents=contents,
|
|
config=config,
|
|
)
|
|
|
|
ans = response.text
|
|
# Get token count from response
|
|
try:
|
|
total_tokens = response.usage_metadata.total_token_count
|
|
except Exception:
|
|
total_tokens = 0
|
|
|
|
return ans, total_tokens
|
|
|
|
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
|
if "claude" in self.model_name:
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
system=system,
|
|
stream=True,
|
|
**gen_conf,
|
|
)
|
|
for res in response.iter_lines():
|
|
res = res.decode("utf-8")
|
|
if "content_block_delta" in res and "data" in res:
|
|
text = json.loads(res[6:])["delta"]["text"]
|
|
ans = text
|
|
total_tokens += num_tokens_from_string(text)
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
else:
|
|
# Gemini models with google-genai SDK
|
|
ans = ""
|
|
total_tokens = 0
|
|
|
|
# Set default thinking_budget=0 if not specified
|
|
if "thinking_budget" not in gen_conf:
|
|
gen_conf["thinking_budget"] = 0
|
|
|
|
thinking_budget = gen_conf.pop("thinking_budget", 0)
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
|
|
# Build GenerateContentConfig
|
|
try:
|
|
from google.genai.types import Content, GenerateContentConfig, Part, ThinkingConfig
|
|
except ImportError as e:
|
|
logging.error(f"[GoogleChat] Failed to import google-genai: {e}. Please install: pip install google-genai>=1.41.0")
|
|
raise
|
|
|
|
config_dict = {}
|
|
if system:
|
|
config_dict["system_instruction"] = system
|
|
if "temperature" in gen_conf:
|
|
config_dict["temperature"] = gen_conf["temperature"]
|
|
if "top_p" in gen_conf:
|
|
config_dict["top_p"] = gen_conf["top_p"]
|
|
if "max_output_tokens" in gen_conf:
|
|
config_dict["max_output_tokens"] = gen_conf["max_output_tokens"]
|
|
|
|
# Add ThinkingConfig
|
|
config_dict["thinking_config"] = ThinkingConfig(thinking_budget=thinking_budget)
|
|
|
|
config = GenerateContentConfig(**config_dict)
|
|
|
|
# Convert history to google-genai Content format
|
|
contents = []
|
|
for item in history:
|
|
# google-genai uses 'model' instead of 'assistant'
|
|
role = "model" if item["role"] == "assistant" else item["role"]
|
|
content = Content(
|
|
role=role,
|
|
parts=[Part(text=item["content"])],
|
|
)
|
|
contents.append(content)
|
|
|
|
try:
|
|
for chunk in self.client.models.generate_content_stream(
|
|
model=self.model_name,
|
|
contents=contents,
|
|
config=config,
|
|
):
|
|
text = chunk.text
|
|
ans = text
|
|
total_tokens += num_tokens_from_string(text)
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class TokenPonyChat(Base):
|
|
_FACTORY_NAME = "TokenPony"
|
|
|
|
def __init__(self, key, model_name, base_url="https://ragflow.vip-api.tokenpony.cn/v1", **kwargs):
|
|
if not base_url:
|
|
base_url = "https://ragflow.vip-api.tokenpony.cn/v1"
|
|
super().__init__(key, model_name, base_url, **kwargs)
|
|
|
|
|
|
class N1nChat(Base):
|
|
_FACTORY_NAME = "n1n"
|
|
|
|
def __init__(self, key, model_name, base_url="https://api.n1n.ai/v1", **kwargs):
|
|
if not base_url:
|
|
base_url = "https://api.n1n.ai/v1"
|
|
super().__init__(key, model_name, base_url, **kwargs)
|
|
|
|
|
|
class LiteLLMBase(ABC):
|
|
_FACTORY_NAME = [
|
|
"Tongyi-Qianwen",
|
|
"Bedrock",
|
|
"Moonshot",
|
|
"xAI",
|
|
"DeepInfra",
|
|
"Groq",
|
|
"Cohere",
|
|
"Gemini",
|
|
"DeepSeek",
|
|
"NVIDIA",
|
|
"TogetherAI",
|
|
"Anthropic",
|
|
"Ollama",
|
|
"LongCat",
|
|
"CometAPI",
|
|
"SILICONFLOW",
|
|
"OpenRouter",
|
|
"StepFun",
|
|
"PPIO",
|
|
"PerfXCloud",
|
|
"Upstage",
|
|
"NovitaAI",
|
|
"01.AI",
|
|
"GiteeAI",
|
|
"302.AI",
|
|
"Jiekou.AI",
|
|
"ZHIPU-AI",
|
|
"MiniMax",
|
|
"DeerAPI",
|
|
"GPUStack",
|
|
"OpenAI",
|
|
"Azure-OpenAI",
|
|
"Tencent Hunyuan",
|
|
]
|
|
|
|
def __init__(self, key, model_name, base_url=None, **kwargs):
|
|
self.timeout = int(os.environ.get("LLM_TIMEOUT_SECONDS", 600))
|
|
self.provider = kwargs.get("provider", "")
|
|
self.prefix = LITELLM_PROVIDER_PREFIX.get(self.provider, "")
|
|
self.model_name = f"{self.prefix}{model_name}"
|
|
self.api_key = key
|
|
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip("/")
|
|
# Configure retry parameters
|
|
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
|
|
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
|
|
self.max_rounds = kwargs.get("max_rounds", 5)
|
|
self.is_tools = False
|
|
self.tools = []
|
|
self.toolcall_sessions = {}
|
|
|
|
# Factory specific fields
|
|
if self.provider == SupportedLiteLLMProvider.OpenRouter:
|
|
self.api_key = json.loads(key).get("api_key", "")
|
|
self.provider_order = json.loads(key).get("provider_order", "")
|
|
elif self.provider == SupportedLiteLLMProvider.Azure_OpenAI:
|
|
self.api_key = json.loads(key).get("api_key", "")
|
|
self.api_version = json.loads(key).get("api_version", "2024-02-01")
|
|
|
|
def _get_delay(self):
|
|
return self.base_delay * random.uniform(10, 150)
|
|
|
|
def _classify_error(self, error):
|
|
error_str = str(error).lower()
|
|
|
|
keywords_mapping = [
|
|
(["quota", "capacity", "credit", "billing", "balance", "欠费"], LLMErrorCode.ERROR_QUOTA),
|
|
(["rate limit", "429", "tpm limit", "too many requests", "requests per minute"], LLMErrorCode.ERROR_RATE_LIMIT),
|
|
(["auth", "key", "apikey", "401", "forbidden", "permission"], LLMErrorCode.ERROR_AUTHENTICATION),
|
|
(["invalid", "bad request", "400", "format", "malformed", "parameter"], LLMErrorCode.ERROR_INVALID_REQUEST),
|
|
(["server", "503", "502", "504", "500", "unavailable"], LLMErrorCode.ERROR_SERVER),
|
|
(["timeout", "timed out"], LLMErrorCode.ERROR_TIMEOUT),
|
|
(["connect", "network", "unreachable", "dns"], LLMErrorCode.ERROR_CONNECTION),
|
|
(["filter", "content", "policy", "blocked", "safety", "inappropriate"], LLMErrorCode.ERROR_CONTENT_FILTER),
|
|
(["model", "not found", "does not exist", "not available"], LLMErrorCode.ERROR_MODEL),
|
|
(["max rounds"], LLMErrorCode.ERROR_MODEL),
|
|
]
|
|
for words, code in keywords_mapping:
|
|
if re.search("({})".format("|".join(words)), error_str):
|
|
return code
|
|
|
|
return LLMErrorCode.ERROR_GENERIC
|
|
|
|
def _clean_conf(self, gen_conf):
|
|
gen_conf = deepcopy(gen_conf) if gen_conf else {}
|
|
|
|
if self.provider == SupportedLiteLLMProvider.HunYuan:
|
|
unsupported = ["presence_penalty", "frequency_penalty"]
|
|
for key in unsupported:
|
|
gen_conf.pop(key, None)
|
|
|
|
elif "kimi-k2.5" in self.model_name.lower():
|
|
reasoning = gen_conf.pop("reasoning", None) # will never get one here, handle this later
|
|
thinking = {"type": "enabled"} # enable thinking by default
|
|
if reasoning is not None:
|
|
thinking = {"type": "enabled"} if reasoning else {"type": "disabled"}
|
|
elif not isinstance(thinking, dict) or thinking.get("type") not in {"enabled", "disabled"}:
|
|
thinking = {"type": "disabled"}
|
|
gen_conf["thinking"] = thinking
|
|
|
|
thinking_enabled = thinking.get("type") == "enabled"
|
|
gen_conf["temperature"] = 1.0 if thinking_enabled else 0.6
|
|
gen_conf["top_p"] = 0.95
|
|
gen_conf["n"] = 1
|
|
gen_conf["presence_penalty"] = 0.0
|
|
gen_conf["frequency_penalty"] = 0.0
|
|
|
|
gen_conf.pop("max_tokens", None)
|
|
return gen_conf
|
|
|
|
async def async_chat(self, system, history, gen_conf, **kwargs):
|
|
hist = list(history) if history else []
|
|
if system:
|
|
if not hist or hist[0].get("role") != "system":
|
|
hist.insert(0, {"role": "system", "content": system})
|
|
|
|
logging.info("[HISTORY]" + json.dumps(hist, ensure_ascii=False, indent=2))
|
|
if self.model_name.lower().find("qwen3") >= 0:
|
|
kwargs["extra_body"] = {"enable_thinking": False}
|
|
|
|
completion_args = self._construct_completion_args(history=hist, stream=False, tools=False, **{**gen_conf, **kwargs})
|
|
|
|
for attempt in range(self.max_retries + 1):
|
|
try:
|
|
response = await litellm.acompletion(
|
|
**completion_args,
|
|
drop_params=True,
|
|
timeout=self.timeout,
|
|
)
|
|
|
|
if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
|
|
return "", 0
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans = self._length_stop(ans)
|
|
|
|
return ans, total_token_count_from_response(response)
|
|
except Exception as e:
|
|
e = await self._exceptions_async(e, attempt)
|
|
if e:
|
|
return e, 0
|
|
|
|
assert False, "Shouldn't be here."
|
|
|
|
async def async_chat_streamly(self, system, history, gen_conf, **kwargs):
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
reasoning_start = False
|
|
total_tokens = 0
|
|
|
|
completion_args = self._construct_completion_args(history=history, stream=True, tools=False, **gen_conf)
|
|
stop = kwargs.get("stop")
|
|
if stop:
|
|
completion_args["stop"] = stop
|
|
|
|
for attempt in range(self.max_retries + 1):
|
|
try:
|
|
stream = await litellm.acompletion(
|
|
**completion_args,
|
|
drop_params=True,
|
|
timeout=self.timeout,
|
|
)
|
|
|
|
async for resp in stream:
|
|
if not hasattr(resp, "choices") or not resp.choices:
|
|
continue
|
|
|
|
delta = resp.choices[0].delta
|
|
if not hasattr(delta, "content") or delta.content is None:
|
|
delta.content = ""
|
|
|
|
if kwargs.get("with_reasoning", True) and hasattr(delta, "reasoning_content") and delta.reasoning_content:
|
|
ans = ""
|
|
if not reasoning_start:
|
|
reasoning_start = True
|
|
ans = "<think>"
|
|
ans += delta.reasoning_content + "</think>"
|
|
else:
|
|
reasoning_start = False
|
|
ans = delta.content
|
|
|
|
tol = total_token_count_from_response(resp)
|
|
if not tol:
|
|
tol = num_tokens_from_string(delta.content)
|
|
total_tokens += tol
|
|
|
|
finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else ""
|
|
if finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
|
|
yield ans
|
|
yield total_tokens
|
|
return
|
|
except Exception as e:
|
|
e = await self._exceptions_async(e, attempt)
|
|
if e:
|
|
yield e
|
|
yield total_tokens
|
|
return
|
|
|
|
def _length_stop(self, ans):
|
|
if is_chinese([ans]):
|
|
return ans + LENGTH_NOTIFICATION_CN
|
|
return ans + LENGTH_NOTIFICATION_EN
|
|
|
|
@property
|
|
def _retryable_errors(self) -> set[str]:
|
|
return {
|
|
LLMErrorCode.ERROR_RATE_LIMIT,
|
|
LLMErrorCode.ERROR_SERVER,
|
|
}
|
|
|
|
def _should_retry(self, error_code: str) -> bool:
|
|
return error_code in self._retryable_errors
|
|
|
|
async def _exceptions_async(self, e, attempt):
|
|
logging.exception("LiteLLMBase async completion")
|
|
error_code = self._classify_error(e)
|
|
if attempt == self.max_retries:
|
|
error_code = LLMErrorCode.ERROR_MAX_RETRIES
|
|
|
|
if self._should_retry(error_code):
|
|
delay = self._get_delay()
|
|
logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
|
|
await asyncio.sleep(delay)
|
|
return None
|
|
msg = f"{ERROR_PREFIX}: {error_code} - {str(e)}"
|
|
logging.error(f"async_chat_streamly giving up: {msg}")
|
|
return msg
|
|
|
|
def _verbose_tool_use(self, name, args, res):
|
|
return "<tool_call>" + json.dumps({"name": name, "args": args, "result": res}, ensure_ascii=False, indent=2) + "</tool_call>"
|
|
|
|
def _append_history(self, hist, tool_call, tool_res):
|
|
hist.append(
|
|
{
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"index": tool_call.index,
|
|
"id": tool_call.id,
|
|
"function": {
|
|
"name": tool_call.function.name,
|
|
"arguments": tool_call.function.arguments,
|
|
},
|
|
"type": "function",
|
|
},
|
|
],
|
|
}
|
|
)
|
|
try:
|
|
if isinstance(tool_res, dict):
|
|
tool_res = json.dumps(tool_res, ensure_ascii=False)
|
|
finally:
|
|
hist.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_res)})
|
|
return hist
|
|
|
|
def bind_tools(self, toolcall_session, tools):
|
|
if not (toolcall_session and tools):
|
|
return
|
|
self.is_tools = True
|
|
self.toolcall_session = toolcall_session
|
|
self.tools = tools
|
|
|
|
async def async_chat_with_tools(self, system: str, history: list, gen_conf: dict = {}):
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
|
|
ans = ""
|
|
tk_count = 0
|
|
hist = deepcopy(history)
|
|
for attempt in range(self.max_retries + 1):
|
|
history = deepcopy(hist)
|
|
try:
|
|
for _ in range(self.max_rounds + 1):
|
|
logging.info(f"{self.tools=}")
|
|
|
|
completion_args = self._construct_completion_args(history=history, stream=False, tools=True, **gen_conf)
|
|
response = await litellm.acompletion(
|
|
**completion_args,
|
|
drop_params=True,
|
|
timeout=self.timeout,
|
|
)
|
|
|
|
tk_count += total_token_count_from_response(response)
|
|
|
|
if not hasattr(response, "choices") or not response.choices or not response.choices[0].message:
|
|
raise Exception(f"500 response structure error. Response: {response}")
|
|
|
|
message = response.choices[0].message
|
|
|
|
if not hasattr(message, "tool_calls") or not message.tool_calls:
|
|
if hasattr(message, "reasoning_content") and message.reasoning_content:
|
|
ans += f"<think>{message.reasoning_content}</think>"
|
|
ans += message.content or ""
|
|
if response.choices[0].finish_reason == "length":
|
|
ans = self._length_stop(ans)
|
|
return ans, tk_count
|
|
|
|
for tool_call in message.tool_calls:
|
|
logging.info(f"Response {tool_call=}")
|
|
name = tool_call.function.name
|
|
try:
|
|
args = json_repair.loads(tool_call.function.arguments)
|
|
tool_response = await thread_pool_exec(self.toolcall_session.tool_call, name, args)
|
|
history = self._append_history(history, tool_call, tool_response)
|
|
ans += self._verbose_tool_use(name, args, tool_response)
|
|
except Exception as e:
|
|
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
|
|
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
|
|
ans += self._verbose_tool_use(name, {}, str(e))
|
|
|
|
logging.warning(f"Exceed max rounds: {self.max_rounds}")
|
|
history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
|
|
|
|
response, token_count = await self.async_chat("", history, gen_conf)
|
|
ans += response
|
|
tk_count += token_count
|
|
return ans, tk_count
|
|
|
|
except Exception as e:
|
|
e = await self._exceptions_async(e, attempt)
|
|
if e:
|
|
return e, tk_count
|
|
|
|
assert False, "Shouldn't be here."
|
|
|
|
async def async_chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict = {}):
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
tools = self.tools
|
|
if system and history and history[0].get("role") != "system":
|
|
history.insert(0, {"role": "system", "content": system})
|
|
|
|
total_tokens = 0
|
|
hist = deepcopy(history)
|
|
|
|
for attempt in range(self.max_retries + 1):
|
|
history = deepcopy(hist)
|
|
try:
|
|
for _ in range(self.max_rounds + 1):
|
|
reasoning_start = False
|
|
logging.info(f"{tools=}")
|
|
|
|
completion_args = self._construct_completion_args(history=history, stream=True, tools=True, **gen_conf)
|
|
response = await litellm.acompletion(
|
|
**completion_args,
|
|
drop_params=True,
|
|
timeout=self.timeout,
|
|
)
|
|
|
|
final_tool_calls = {}
|
|
answer = ""
|
|
|
|
async for resp in response:
|
|
if not hasattr(resp, "choices") or not resp.choices:
|
|
continue
|
|
|
|
delta = resp.choices[0].delta
|
|
|
|
if hasattr(delta, "tool_calls") and delta.tool_calls:
|
|
for tool_call in delta.tool_calls:
|
|
index = tool_call.index
|
|
if index not in final_tool_calls:
|
|
if not tool_call.function.arguments:
|
|
tool_call.function.arguments = ""
|
|
final_tool_calls[index] = tool_call
|
|
else:
|
|
final_tool_calls[index].function.arguments += tool_call.function.arguments or ""
|
|
continue
|
|
|
|
if not hasattr(delta, "content") or delta.content is None:
|
|
delta.content = ""
|
|
|
|
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
|
|
ans = ""
|
|
if not reasoning_start:
|
|
reasoning_start = True
|
|
ans = "<think>"
|
|
ans += delta.reasoning_content + "</think>"
|
|
yield ans
|
|
else:
|
|
reasoning_start = False
|
|
answer += delta.content
|
|
yield delta.content
|
|
|
|
tol = total_token_count_from_response(resp)
|
|
if not tol:
|
|
total_tokens += num_tokens_from_string(delta.content)
|
|
else:
|
|
total_tokens = tol
|
|
|
|
finish_reason = getattr(resp.choices[0], "finish_reason", "")
|
|
if finish_reason == "length":
|
|
yield self._length_stop("")
|
|
|
|
if answer:
|
|
yield total_tokens
|
|
return
|
|
|
|
for tool_call in final_tool_calls.values():
|
|
name = tool_call.function.name
|
|
try:
|
|
args = json_repair.loads(tool_call.function.arguments)
|
|
yield self._verbose_tool_use(name, args, "Begin to call...")
|
|
tool_response = await thread_pool_exec(self.toolcall_session.tool_call, name, args)
|
|
history = self._append_history(history, tool_call, tool_response)
|
|
yield self._verbose_tool_use(name, args, tool_response)
|
|
except Exception as e:
|
|
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
|
|
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
|
|
yield self._verbose_tool_use(name, {}, str(e))
|
|
|
|
logging.warning(f"Exceed max rounds: {self.max_rounds}")
|
|
history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
|
|
|
|
completion_args = self._construct_completion_args(history=history, stream=True, tools=True, **gen_conf)
|
|
response = await litellm.acompletion(
|
|
**completion_args,
|
|
drop_params=True,
|
|
timeout=self.timeout,
|
|
)
|
|
|
|
async for resp in response:
|
|
if not hasattr(resp, "choices") or not resp.choices:
|
|
continue
|
|
delta = resp.choices[0].delta
|
|
if not hasattr(delta, "content") or delta.content is None:
|
|
continue
|
|
tol = total_token_count_from_response(resp)
|
|
if not tol:
|
|
total_tokens += num_tokens_from_string(delta.content)
|
|
else:
|
|
total_tokens = tol
|
|
yield delta.content
|
|
|
|
yield total_tokens
|
|
return
|
|
|
|
except Exception as e:
|
|
e = await self._exceptions_async(e, attempt)
|
|
if e:
|
|
yield e
|
|
yield total_tokens
|
|
return
|
|
|
|
assert False, "Shouldn't be here."
|
|
|
|
def _construct_completion_args(self, history, stream: bool, tools: bool, **kwargs):
|
|
completion_args = {
|
|
"model": self.model_name,
|
|
"messages": history,
|
|
"api_key": self.api_key,
|
|
"num_retries": self.max_retries,
|
|
**kwargs,
|
|
}
|
|
if stream:
|
|
completion_args.update(
|
|
{
|
|
"stream": stream,
|
|
}
|
|
)
|
|
if tools and self.tools:
|
|
completion_args.update(
|
|
{
|
|
"tools": self.tools,
|
|
"tool_choice": "auto",
|
|
}
|
|
)
|
|
if self.provider in FACTORY_DEFAULT_BASE_URL:
|
|
completion_args.update({"api_base": self.base_url})
|
|
elif self.provider == SupportedLiteLLMProvider.Bedrock:
|
|
import boto3
|
|
|
|
completion_args.pop("api_key", None)
|
|
completion_args.pop("api_base", None)
|
|
|
|
bedrock_key = json.loads(self.api_key)
|
|
mode = bedrock_key.get("auth_mode")
|
|
if not mode:
|
|
logging.error("Bedrock auth_mode is not provided in the key")
|
|
raise ValueError("Bedrock auth_mode must be provided in the key")
|
|
|
|
bedrock_region = bedrock_key.get("bedrock_region")
|
|
|
|
if mode == "access_key_secret":
|
|
completion_args.update({"aws_region_name": bedrock_region})
|
|
completion_args.update({"aws_access_key_id": bedrock_key.get("bedrock_ak")})
|
|
completion_args.update({"aws_secret_access_key": bedrock_key.get("bedrock_sk")})
|
|
elif mode == "iam_role":
|
|
aws_role_arn = bedrock_key.get("aws_role_arn")
|
|
sts_client = boto3.client("sts", region_name=bedrock_region)
|
|
resp = sts_client.assume_role(RoleArn=aws_role_arn, RoleSessionName="BedrockSession")
|
|
creds = resp["Credentials"]
|
|
completion_args.update({"aws_region_name": bedrock_region})
|
|
completion_args.update({"aws_access_key_id": creds["AccessKeyId"]})
|
|
completion_args.update({"aws_secret_access_key": creds["SecretAccessKey"]})
|
|
completion_args.update({"aws_session_token": creds["SessionToken"]})
|
|
else: # assume_role - use default credential chain (IRSA, instance profile, etc.)
|
|
completion_args.update({"aws_region_name": bedrock_region})
|
|
|
|
elif self.provider == SupportedLiteLLMProvider.OpenRouter:
|
|
if self.provider_order:
|
|
|
|
def _to_order_list(x):
|
|
if x is None:
|
|
return []
|
|
if isinstance(x, str):
|
|
return [s.strip() for s in x.split(",") if s.strip()]
|
|
if isinstance(x, (list, tuple)):
|
|
return [str(s).strip() for s in x if str(s).strip()]
|
|
return []
|
|
|
|
extra_body = {}
|
|
provider_cfg = {}
|
|
provider_order = _to_order_list(self.provider_order)
|
|
provider_cfg["order"] = provider_order
|
|
provider_cfg["allow_fallbacks"] = False
|
|
extra_body["provider"] = provider_cfg
|
|
completion_args.update({"extra_body": extra_body})
|
|
elif self.provider == SupportedLiteLLMProvider.GPUStack:
|
|
completion_args.update(
|
|
{
|
|
"api_base": self.base_url,
|
|
}
|
|
)
|
|
elif self.provider == SupportedLiteLLMProvider.Azure_OpenAI:
|
|
completion_args.pop("api_key", None)
|
|
completion_args.pop("api_base", None)
|
|
completion_args.update(
|
|
{
|
|
"api_key": self.api_key,
|
|
"api_base": self.base_url,
|
|
"api_version": self.api_version,
|
|
}
|
|
)
|
|
|
|
# Ollama deployments commonly sit behind a reverse proxy that enforces
|
|
# Bearer auth. Ensure the Authorization header is set when an API key
|
|
# is provided, while respecting any user-supplied headers. #11350
|
|
extra_headers = deepcopy(completion_args.get("extra_headers") or {})
|
|
if self.provider == SupportedLiteLLMProvider.Ollama and self.api_key and "Authorization" not in extra_headers:
|
|
extra_headers["Authorization"] = f"Bearer {self.api_key}"
|
|
if extra_headers:
|
|
completion_args["extra_headers"] = extra_headers
|
|
return completion_args
|
|
|