mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
### What problem does this PR solve? #9790 Close #9782 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
135 lines
5.7 KiB
Python
135 lines
5.7 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import random
|
|
import re
|
|
|
|
import numpy as np
|
|
import trio
|
|
|
|
from api.db import LLMType
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.db.services.user_service import TenantService
|
|
from api.utils.api_utils import timeout
|
|
from rag.flow.base import ProcessBase, ProcessParamBase
|
|
from rag.nlp import rag_tokenizer
|
|
from rag.settings import EMBEDDING_BATCH_SIZE
|
|
from rag.svr.task_executor import embed_limiter
|
|
from rag.utils import truncate
|
|
|
|
|
|
class TokenizerParam(ProcessParamBase):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.search_method = ["full_text", "embedding"]
|
|
self.filename_embd_weight = 0.1
|
|
|
|
def check(self):
|
|
for v in self.search_method:
|
|
self.check_valid_value(v.lower(), "Chunk method abnormal.", ["full_text", "embedding"])
|
|
|
|
|
|
class Tokenizer(ProcessBase):
|
|
component_name = "Tokenizer"
|
|
|
|
async def _embedding(self, name, chunks):
|
|
parts = sum(["full_text" in self._param.search_method, "embedding" in self._param.search_method])
|
|
token_count = 0
|
|
if self._canvas._kb_id:
|
|
e, kb = KnowledgebaseService.get_by_id(self._canvas._kb_id)
|
|
embedding_id = kb.embd_id
|
|
else:
|
|
e, ten = TenantService.get_by_id(self._canvas._tenant_id)
|
|
embedding_id = ten.embd_id
|
|
embedding_model = LLMBundle(self._canvas._tenant_id, LLMType.EMBEDDING, llm_name=embedding_id)
|
|
texts = []
|
|
for c in chunks:
|
|
if c.get("questions"):
|
|
texts.append("\n".join(c["questions"]))
|
|
else:
|
|
texts.append(re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c["text"]))
|
|
vts, c = embedding_model.encode([name])
|
|
token_count += c
|
|
tts = np.concatenate([vts[0] for _ in range(len(texts))], axis=0)
|
|
|
|
@timeout(60)
|
|
def batch_encode(txts):
|
|
nonlocal embedding_model
|
|
return embedding_model.encode([truncate(c, embedding_model.max_length-10) for c in txts])
|
|
|
|
cnts_ = np.array([])
|
|
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
|
|
async with embed_limiter:
|
|
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i: i + EMBEDDING_BATCH_SIZE]))
|
|
if len(cnts_) == 0:
|
|
cnts_ = vts
|
|
else:
|
|
cnts_ = np.concatenate((cnts_, vts), axis=0)
|
|
token_count += c
|
|
if i % 33 == 32:
|
|
self.callback(i*1./len(texts)/parts/EMBEDDING_BATCH_SIZE + 0.5*(parts-1))
|
|
|
|
cnts = cnts_
|
|
title_w = float(self._param.filename_embd_weight)
|
|
vects = (title_w * tts + (1 - title_w) * cnts) if len(tts) == len(cnts) else cnts
|
|
|
|
assert len(vects) == len(chunks)
|
|
for i, ck in enumerate(chunks):
|
|
v = vects[i].tolist()
|
|
ck["q_%d_vec" % len(v)] = v
|
|
return chunks, token_count
|
|
|
|
async def _invoke(self, **kwargs):
|
|
parts = sum(["full_text" in self._param.search_method, "embedding" in self._param.search_method])
|
|
if "full_text" in self._param.search_method:
|
|
self.callback(random.randint(1,5)/100., "Start to tokenize.")
|
|
if kwargs.get("chunks"):
|
|
chunks = kwargs["chunks"]
|
|
for i, ck in enumerate(chunks):
|
|
if ck.get("questions"):
|
|
ck["question_tks"] = rag_tokenizer.tokenize("\n".join(ck["questions"]))
|
|
if ck.get("keywords"):
|
|
ck["important_tks"] = rag_tokenizer.tokenize("\n".join(ck["keywords"]))
|
|
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
|
|
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
|
|
if i % 100 == 99:
|
|
self.callback(i*1./len(chunks)/parts)
|
|
elif kwargs.get("output_format") in ["markdown", "text"]:
|
|
ck = {
|
|
"text": kwargs.get(kwargs["output_format"], "")
|
|
}
|
|
if "full_text" in self._param.search_method:
|
|
ck["content_ltks"] = rag_tokenizer.tokenize(kwargs.get(kwargs["output_format"], ""))
|
|
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
|
|
chunks = [ck]
|
|
else:
|
|
chunks = kwargs["json"]
|
|
for i, ck in enumerate(chunks):
|
|
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
|
|
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
|
|
if i % 100 == 99:
|
|
self.callback(i*1./len(chunks)/parts)
|
|
|
|
self.callback(1./parts, "Finish tokenizing.")
|
|
|
|
if "embedding" in self._param.search_method:
|
|
self.callback(random.randint(1,5)/100. + 0.5*(parts-1), "Start embedding inference.")
|
|
chunks, token_count = await self._embedding(kwargs.get("name", ""), chunks)
|
|
self.set_output("embedding_token_consumption", token_count)
|
|
|
|
self.callback(1., "Finish embedding.")
|
|
|
|
self.set_output("chunks", chunks)
|