Files
ragflow/rag/flow/extractor/extractor.py
Kevin Hu b5ad7b7062 Feat: support TOC transformer. (#11685)
### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-03 12:27:50 +08:00

109 lines
4.0 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import random
from copy import deepcopy, copy
import trio
import xxhash
from agent.component.llm import LLMParam, LLM
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.prompts.generator import run_toc_from_text
class ExtractorParam(ProcessParamBase, LLMParam):
def __init__(self):
super().__init__()
self.field_name = ""
def check(self):
super().check()
self.check_empty(self.field_name, "Result Destination")
class Extractor(ProcessBase, LLM):
component_name = "Extractor"
def _build_TOC(self, docs):
self.callback(message="Start to generate table of content ...")
docs = sorted(docs, key=lambda d:(
d.get("page_num_int", 0)[0] if isinstance(d.get("page_num_int", 0), list) else d.get("page_num_int", 0),
d.get("top_int", 0)[0] if isinstance(d.get("top_int", 0), list) else d.get("top_int", 0)
))
toc: list[dict] = trio.run(run_toc_from_text, [d["text"] for d in docs], self.chat_mdl)
logging.info("------------ T O C -------------\n"+json.dumps(toc, ensure_ascii=False, indent=' '))
ii = 0
while ii < len(toc):
try:
idx = int(toc[ii]["chunk_id"])
del toc[ii]["chunk_id"]
toc[ii]["ids"] = [docs[idx]["id"]]
if ii == len(toc) -1:
break
for jj in range(idx+1, int(toc[ii+1]["chunk_id"])+1):
toc[ii]["ids"].append(docs[jj]["id"])
except Exception as e:
logging.exception(e)
ii += 1
if toc:
d = copy.deepcopy(docs[-1])
d["content_with_weight"] = json.dumps(toc, ensure_ascii=False)
d["toc_kwd"] = "toc"
d["available_int"] = 0
d["page_num_int"] = [100000000]
d["id"] = xxhash.xxh64((d["content_with_weight"] + str(d["doc_id"])).encode("utf-8", "surrogatepass")).hexdigest()
return d
return None
async def _invoke(self, **kwargs):
self.set_output("output_format", "chunks")
self.callback(random.randint(1, 5) / 100.0, "Start to generate.")
inputs = self.get_input_elements()
chunks = []
chunks_key = ""
args = {}
for k, v in inputs.items():
args[k] = v["value"]
if isinstance(args[k], list):
chunks = deepcopy(args[k])
chunks_key = k
if chunks:
if self._param.field_name == "toc":
toc = self._build_TOC(chunks)
chunks.append(toc)
self.set_output("chunks", chunks)
return
prog = 0
for i, ck in enumerate(chunks):
args[chunks_key] = ck["text"]
msg, sys_prompt = self._sys_prompt_and_msg([], args)
msg.insert(0, {"role": "system", "content": sys_prompt})
ck[self._param.field_name] = self._generate(msg)
prog += 1./len(chunks)
if i % (len(chunks)//100+1) == 1:
self.callback(prog, f"{i+1} / {len(chunks)}")
self.set_output("chunks", chunks)
else:
msg, sys_prompt = self._sys_prompt_and_msg([], args)
msg.insert(0, {"role": "system", "content": sys_prompt})
self.set_output("chunks", [{self._param.field_name: self._generate(msg)}])