Files
ragflow/rag/app/one.py
lys1313013 b226e06e2d refactor: remove debug print statements (#12534)
### What problem does this PR solve?

refactor: remove debug print statements

### Type of change

- [x] Refactoring
2026-01-09 19:23:50 +08:00

176 lines
6.6 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from io import BytesIO
import re
from deepdoc.parser.utils import get_text
from rag.app import naive
from rag.nlp import rag_tokenizer, tokenize
from deepdoc.parser import PdfParser, ExcelParser, HtmlParser
from deepdoc.parser.figure_parser import vision_figure_parser_docx_wrapper_naive
from rag.app.naive import by_plaintext, PARSERS
from common.parser_config_utils import normalize_layout_recognizer
class Pdf(PdfParser):
def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None):
from timeit import default_timer as timer
start = timer()
callback(msg="OCR started")
self.__images__(filename if not binary else binary, zoomin, from_page, to_page, callback)
callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
start = timer()
self._layouts_rec(zoomin, drop=False)
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
logging.debug("layouts cost: {}s".format(timer() - start))
start = timer()
self._table_transformer_job(zoomin)
callback(0.65, "Table analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._text_merge()
callback(0.67, "Text merged ({:.2f}s)".format(timer() - start))
tbls = self._extract_table_figure(True, zoomin, True, True)
self._concat_downward()
sections = [(b["text"], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1]))], tbls
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
"""
Supported file formats are docx, pdf, excel, txt.
One file forms a chunk which maintains original text order.
"""
parser_config = kwargs.get("parser_config", {"chunk_token_num": 512, "delimiter": "\n!?。;!?", "layout_recognize": "DeepDOC"})
eng = lang.lower() == "english" # is_english(cks)
if re.search(r"\.docx$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
sections = naive.Docx()(filename, binary)
cks = []
image_idxs = []
for text, image, table in sections:
if table is not None:
text = (text or "") + str(table)
ck_type = "table"
else:
ck_type = "image" if image is not None else "text"
if ck_type == "image":
image_idxs.append(len(cks))
cks.append({"text": text, "image": image, "ck_type": ck_type})
vision_figure_parser_docx_wrapper_naive(cks, image_idxs, callback, **kwargs)
sections = [ck["text"] for ck in cks if ck.get("text")]
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
layout_recognizer, parser_model_name = normalize_layout_recognizer(parser_config.get("layout_recognize", "DeepDOC"))
if isinstance(layout_recognizer, bool):
layout_recognizer = "DeepDOC" if layout_recognizer else "Plain Text"
name = layout_recognizer.strip().lower()
parser = PARSERS.get(name, by_plaintext)
callback(0.1, "Start to parse.")
sections, tbls, pdf_parser = parser(
filename=filename,
binary=binary,
from_page=from_page,
to_page=to_page,
lang=lang,
callback=callback,
pdf_cls=Pdf,
layout_recognizer=layout_recognizer,
mineru_llm_name=parser_model_name,
paddleocr_llm_name=parser_model_name,
**kwargs,
)
if not sections and not tbls:
return []
if name in ["tcadp", "docling", "mineru", "paddleocr"]:
parser_config["chunk_token_num"] = 0
callback(0.8, "Finish parsing.")
for (img, rows), poss in tbls:
if not rows:
continue
sections.append((rows if isinstance(rows, str) else rows[0], [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
sections = [s for s, _ in sections if s]
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = ExcelParser()
sections = excel_parser.html(binary, 1000000000)
elif re.search(r"\.(txt|md|markdown|mdx)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = get_text(filename, binary)
sections = txt.split("\n")
sections = [s for s in sections if s]
callback(0.8, "Finish parsing.")
elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
sections = HtmlParser()(filename, binary)
sections = [s for s in sections if s]
callback(0.8, "Finish parsing.")
elif re.search(r"\.doc$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
try:
from tika import parser as tika_parser
except Exception as e:
callback(0.8, f"tika not available: {e}. Unsupported .doc parsing.")
logging.warning(f"tika not available: {e}. Unsupported .doc parsing for {filename}.")
return []
binary = BytesIO(binary)
doc_parsed = tika_parser.from_buffer(binary)
if doc_parsed.get("content", None) is not None:
sections = doc_parsed["content"].split("\n")
sections = [s for s in sections if s]
callback(0.8, "Finish parsing.")
else:
raise NotImplementedError("file type not supported yet(doc, docx, pdf, txt supported)")
doc = {"docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))}
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
tokenize(doc, "\n".join(sections), eng)
return [doc]
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)