Files
ragflow/rag/flow/extractor/extractor.py
buua436 9b8971a9de Fix:toc in pipeline (#11785)
### What problem does this PR solve?
change:
Fix toc in pipeline
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-08 09:42:20 +08:00

112 lines
4.2 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import random
from copy import deepcopy
import xxhash
from agent.component.llm import LLMParam, LLM
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.prompts.generator import run_toc_from_text
class ExtractorParam(ProcessParamBase, LLMParam):
def __init__(self):
super().__init__()
self.field_name = ""
def check(self):
super().check()
self.check_empty(self.field_name, "Result Destination")
class Extractor(ProcessBase, LLM):
component_name = "Extractor"
async def _build_TOC(self, docs):
self.callback(0.2,message="Start to generate table of content ...")
docs = sorted(docs, key=lambda d:(
d.get("page_num_int", 0)[0] if isinstance(d.get("page_num_int", 0), list) else d.get("page_num_int", 0),
d.get("top_int", 0)[0] if isinstance(d.get("top_int", 0), list) else d.get("top_int", 0)
))
toc = await run_toc_from_text([d["text"] for d in docs], self.chat_mdl)
logging.info("------------ T O C -------------\n"+json.dumps(toc, ensure_ascii=False, indent=' '))
ii = 0
while ii < len(toc):
try:
idx = int(toc[ii]["chunk_id"])
del toc[ii]["chunk_id"]
toc[ii]["ids"] = [docs[idx]["id"]]
if ii == len(toc) -1:
break
for jj in range(idx+1, int(toc[ii+1]["chunk_id"])+1):
toc[ii]["ids"].append(docs[jj]["id"])
except Exception as e:
logging.exception(e)
ii += 1
if toc:
d = deepcopy(docs[-1])
d["doc_id"] = self._canvas._doc_id
d["content_with_weight"] = json.dumps(toc, ensure_ascii=False)
d["toc_kwd"] = "toc"
d["available_int"] = 0
d["page_num_int"] = [100000000]
d["id"] = xxhash.xxh64((d["content_with_weight"] + str(d["doc_id"])).encode("utf-8", "surrogatepass")).hexdigest()
return d
return None
async def _invoke(self, **kwargs):
self.set_output("output_format", "chunks")
self.callback(random.randint(1, 5) / 100.0, "Start to generate.")
inputs = self.get_input_elements()
chunks = []
chunks_key = ""
args = {}
for k, v in inputs.items():
args[k] = v["value"]
if isinstance(args[k], list):
chunks = deepcopy(args[k])
chunks_key = k
if chunks:
if self._param.field_name == "toc":
for ck in chunks:
ck["doc_id"] = self._canvas._doc_id
ck["id"] = xxhash.xxh64((ck["text"] + str(ck["doc_id"])).encode("utf-8")).hexdigest()
toc =await self._build_TOC(chunks)
chunks.append(toc)
self.set_output("chunks", chunks)
return
prog = 0
for i, ck in enumerate(chunks):
args[chunks_key] = ck["text"]
msg, sys_prompt = self._sys_prompt_and_msg([], args)
msg.insert(0, {"role": "system", "content": sys_prompt})
ck[self._param.field_name] = self._generate(msg)
prog += 1./len(chunks)
if i % (len(chunks)//100+1) == 1:
self.callback(prog, f"{i+1} / {len(chunks)}")
self.set_output("chunks", chunks)
else:
msg, sys_prompt = self._sys_prompt_and_msg([], args)
msg.insert(0, {"role": "system", "content": sys_prompt})
self.set_output("chunks", [{self._param.field_name: self._generate(msg)}])