Files
ragflow/rag/flow/tokenizer/schema.py
Yongteng Lei 0d9c1f1c3c Feat: dataflow supports Spreadsheet and Word processor document (#9996)
### What problem does this PR solve?

Dataflow supports Spreadsheet and Word processor document

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 13:02:53 +08:00

52 lines
2.2 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field, model_validator
class TokenizerFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str = ""
blob: bytes
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)
chunks: list[dict[str, Any]] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: list[str] | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
@model_validator(mode="after")
def _check_payloads(self) -> "TokenizerFromUpstream":
if self.chunks:
return self
if self.output_format in {"markdown", "text"}:
if self.output_format == "markdown" and not self.markdown_result:
raise ValueError("output_format=markdown requires a markdown payload (field: 'markdown' or 'markdown_result').")
if self.output_format == "text" and not self.text_result:
raise ValueError("output_format=text requires a text payload (field: 'text' or 'text_result').")
else:
if not self.json_result:
raise ValueError("When no chunks are provided and output_format is not markdown/text, a JSON list payload is required (field: 'json' or 'json_result').")
return self